USB: gadget: Fix EEM driver comments and VID/PID
[linux-2.6/mini2440.git] / kernel / sched.c
blob8d25be06db629baa9d1896aa7ba706ded1b66ab8
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
118 * single value that denotes runtime == period, ie unlimited time.
120 #define RUNTIME_INF ((u64)~0ULL)
122 static inline int rt_policy(int policy)
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
129 static inline int task_has_rt_policy(struct task_struct *p)
131 return rt_policy(p->policy);
135 * This is the priority-queue data structure of the RT scheduling class:
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
150 static struct rt_bandwidth def_rt_bandwidth;
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166 if (!overrun)
167 break;
169 idle = do_sched_rt_period_timer(rt_b, overrun);
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
181 spin_lock_init(&rt_b->rt_runtime_lock);
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
188 static inline int rt_bandwidth_enabled(void)
190 return sysctl_sched_rt_runtime >= 0;
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195 ktime_t now;
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
220 spin_unlock(&rt_b->rt_runtime_lock);
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226 hrtimer_cancel(&rt_b->rt_period_timer);
228 #endif
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
234 static DEFINE_MUTEX(sched_domains_mutex);
236 #ifdef CONFIG_GROUP_SCHED
238 #include <linux/cgroup.h>
240 struct cfs_rq;
242 static LIST_HEAD(task_groups);
244 /* task group related information */
245 struct task_group {
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248 #endif
250 #ifdef CONFIG_USER_SCHED
251 uid_t uid;
252 #endif
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260 #endif
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
266 struct rt_bandwidth rt_bandwidth;
267 #endif
269 struct rcu_head rcu;
270 struct list_head list;
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
277 #ifdef CONFIG_USER_SCHED
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct *user)
282 user->tg->uid = user->uid;
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
290 struct task_group root_task_group;
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
310 static DEFINE_SPINLOCK(task_group_lock);
312 #ifdef CONFIG_SMP
313 static int root_task_group_empty(void)
315 return list_empty(&root_task_group.children);
317 #endif
319 #ifdef CONFIG_FAIR_GROUP_SCHED
320 #ifdef CONFIG_USER_SCHED
321 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
322 #else /* !CONFIG_USER_SCHED */
323 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
324 #endif /* CONFIG_USER_SCHED */
327 * A weight of 0 or 1 can cause arithmetics problems.
328 * A weight of a cfs_rq is the sum of weights of which entities
329 * are queued on this cfs_rq, so a weight of a entity should not be
330 * too large, so as the shares value of a task group.
331 * (The default weight is 1024 - so there's no practical
332 * limitation from this.)
334 #define MIN_SHARES 2
335 #define MAX_SHARES (1UL << 18)
337 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
338 #endif
340 /* Default task group.
341 * Every task in system belong to this group at bootup.
343 struct task_group init_task_group;
345 /* return group to which a task belongs */
346 static inline struct task_group *task_group(struct task_struct *p)
348 struct task_group *tg;
350 #ifdef CONFIG_USER_SCHED
351 rcu_read_lock();
352 tg = __task_cred(p)->user->tg;
353 rcu_read_unlock();
354 #elif defined(CONFIG_CGROUP_SCHED)
355 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
356 struct task_group, css);
357 #else
358 tg = &init_task_group;
359 #endif
360 return tg;
363 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
364 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
366 #ifdef CONFIG_FAIR_GROUP_SCHED
367 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
368 p->se.parent = task_group(p)->se[cpu];
369 #endif
371 #ifdef CONFIG_RT_GROUP_SCHED
372 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
373 p->rt.parent = task_group(p)->rt_se[cpu];
374 #endif
377 #else
379 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
380 static inline struct task_group *task_group(struct task_struct *p)
382 return NULL;
385 #endif /* CONFIG_GROUP_SCHED */
387 /* CFS-related fields in a runqueue */
388 struct cfs_rq {
389 struct load_weight load;
390 unsigned long nr_running;
392 u64 exec_clock;
393 u64 min_vruntime;
395 struct rb_root tasks_timeline;
396 struct rb_node *rb_leftmost;
398 struct list_head tasks;
399 struct list_head *balance_iterator;
402 * 'curr' points to currently running entity on this cfs_rq.
403 * It is set to NULL otherwise (i.e when none are currently running).
405 struct sched_entity *curr, *next, *last;
407 unsigned int nr_spread_over;
409 #ifdef CONFIG_FAIR_GROUP_SCHED
410 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
413 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
414 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
415 * (like users, containers etc.)
417 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
418 * list is used during load balance.
420 struct list_head leaf_cfs_rq_list;
421 struct task_group *tg; /* group that "owns" this runqueue */
423 #ifdef CONFIG_SMP
425 * the part of load.weight contributed by tasks
427 unsigned long task_weight;
430 * h_load = weight * f(tg)
432 * Where f(tg) is the recursive weight fraction assigned to
433 * this group.
435 unsigned long h_load;
438 * this cpu's part of tg->shares
440 unsigned long shares;
443 * load.weight at the time we set shares
445 unsigned long rq_weight;
446 #endif
447 #endif
450 /* Real-Time classes' related field in a runqueue: */
451 struct rt_rq {
452 struct rt_prio_array active;
453 unsigned long rt_nr_running;
454 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
455 struct {
456 int curr; /* highest queued rt task prio */
457 #ifdef CONFIG_SMP
458 int next; /* next highest */
459 #endif
460 } highest_prio;
461 #endif
462 #ifdef CONFIG_SMP
463 unsigned long rt_nr_migratory;
464 unsigned long rt_nr_total;
465 int overloaded;
466 struct plist_head pushable_tasks;
467 #endif
468 int rt_throttled;
469 u64 rt_time;
470 u64 rt_runtime;
471 /* Nests inside the rq lock: */
472 spinlock_t rt_runtime_lock;
474 #ifdef CONFIG_RT_GROUP_SCHED
475 unsigned long rt_nr_boosted;
477 struct rq *rq;
478 struct list_head leaf_rt_rq_list;
479 struct task_group *tg;
480 struct sched_rt_entity *rt_se;
481 #endif
484 #ifdef CONFIG_SMP
487 * We add the notion of a root-domain which will be used to define per-domain
488 * variables. Each exclusive cpuset essentially defines an island domain by
489 * fully partitioning the member cpus from any other cpuset. Whenever a new
490 * exclusive cpuset is created, we also create and attach a new root-domain
491 * object.
494 struct root_domain {
495 atomic_t refcount;
496 cpumask_var_t span;
497 cpumask_var_t online;
500 * The "RT overload" flag: it gets set if a CPU has more than
501 * one runnable RT task.
503 cpumask_var_t rto_mask;
504 atomic_t rto_count;
505 #ifdef CONFIG_SMP
506 struct cpupri cpupri;
507 #endif
511 * By default the system creates a single root-domain with all cpus as
512 * members (mimicking the global state we have today).
514 static struct root_domain def_root_domain;
516 #endif
519 * This is the main, per-CPU runqueue data structure.
521 * Locking rule: those places that want to lock multiple runqueues
522 * (such as the load balancing or the thread migration code), lock
523 * acquire operations must be ordered by ascending &runqueue.
525 struct rq {
526 /* runqueue lock: */
527 spinlock_t lock;
530 * nr_running and cpu_load should be in the same cacheline because
531 * remote CPUs use both these fields when doing load calculation.
533 unsigned long nr_running;
534 #define CPU_LOAD_IDX_MAX 5
535 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
536 #ifdef CONFIG_NO_HZ
537 unsigned long last_tick_seen;
538 unsigned char in_nohz_recently;
539 #endif
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544 u64 nr_migrations_in;
546 struct cfs_rq cfs;
547 struct rt_rq rt;
549 #ifdef CONFIG_FAIR_GROUP_SCHED
550 /* list of leaf cfs_rq on this cpu: */
551 struct list_head leaf_cfs_rq_list;
552 #endif
553 #ifdef CONFIG_RT_GROUP_SCHED
554 struct list_head leaf_rt_rq_list;
555 #endif
558 * This is part of a global counter where only the total sum
559 * over all CPUs matters. A task can increase this counter on
560 * one CPU and if it got migrated afterwards it may decrease
561 * it on another CPU. Always updated under the runqueue lock:
563 unsigned long nr_uninterruptible;
565 struct task_struct *curr, *idle;
566 unsigned long next_balance;
567 struct mm_struct *prev_mm;
569 u64 clock;
571 atomic_t nr_iowait;
573 #ifdef CONFIG_SMP
574 struct root_domain *rd;
575 struct sched_domain *sd;
577 unsigned char idle_at_tick;
578 /* For active balancing */
579 int post_schedule;
580 int active_balance;
581 int push_cpu;
582 /* cpu of this runqueue: */
583 int cpu;
584 int online;
586 unsigned long avg_load_per_task;
588 struct task_struct *migration_thread;
589 struct list_head migration_queue;
591 u64 rt_avg;
592 u64 age_stamp;
593 #endif
595 /* calc_load related fields */
596 unsigned long calc_load_update;
597 long calc_load_active;
599 #ifdef CONFIG_SCHED_HRTICK
600 #ifdef CONFIG_SMP
601 int hrtick_csd_pending;
602 struct call_single_data hrtick_csd;
603 #endif
604 struct hrtimer hrtick_timer;
605 #endif
607 #ifdef CONFIG_SCHEDSTATS
608 /* latency stats */
609 struct sched_info rq_sched_info;
610 unsigned long long rq_cpu_time;
611 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
613 /* sys_sched_yield() stats */
614 unsigned int yld_count;
616 /* schedule() stats */
617 unsigned int sched_switch;
618 unsigned int sched_count;
619 unsigned int sched_goidle;
621 /* try_to_wake_up() stats */
622 unsigned int ttwu_count;
623 unsigned int ttwu_local;
625 /* BKL stats */
626 unsigned int bkl_count;
627 #endif
630 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
632 static inline
633 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
635 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
638 static inline int cpu_of(struct rq *rq)
640 #ifdef CONFIG_SMP
641 return rq->cpu;
642 #else
643 return 0;
644 #endif
648 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
649 * See detach_destroy_domains: synchronize_sched for details.
651 * The domain tree of any CPU may only be accessed from within
652 * preempt-disabled sections.
654 #define for_each_domain(cpu, __sd) \
655 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
657 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
658 #define this_rq() (&__get_cpu_var(runqueues))
659 #define task_rq(p) cpu_rq(task_cpu(p))
660 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
661 #define raw_rq() (&__raw_get_cpu_var(runqueues))
663 inline void update_rq_clock(struct rq *rq)
665 rq->clock = sched_clock_cpu(cpu_of(rq));
669 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
671 #ifdef CONFIG_SCHED_DEBUG
672 # define const_debug __read_mostly
673 #else
674 # define const_debug static const
675 #endif
678 * runqueue_is_locked
680 * Returns true if the current cpu runqueue is locked.
681 * This interface allows printk to be called with the runqueue lock
682 * held and know whether or not it is OK to wake up the klogd.
684 int runqueue_is_locked(int cpu)
686 return spin_is_locked(&cpu_rq(cpu)->lock);
690 * Debugging: various feature bits
693 #define SCHED_FEAT(name, enabled) \
694 __SCHED_FEAT_##name ,
696 enum {
697 #include "sched_features.h"
700 #undef SCHED_FEAT
702 #define SCHED_FEAT(name, enabled) \
703 (1UL << __SCHED_FEAT_##name) * enabled |
705 const_debug unsigned int sysctl_sched_features =
706 #include "sched_features.h"
709 #undef SCHED_FEAT
711 #ifdef CONFIG_SCHED_DEBUG
712 #define SCHED_FEAT(name, enabled) \
713 #name ,
715 static __read_mostly char *sched_feat_names[] = {
716 #include "sched_features.h"
717 NULL
720 #undef SCHED_FEAT
722 static int sched_feat_show(struct seq_file *m, void *v)
724 int i;
726 for (i = 0; sched_feat_names[i]; i++) {
727 if (!(sysctl_sched_features & (1UL << i)))
728 seq_puts(m, "NO_");
729 seq_printf(m, "%s ", sched_feat_names[i]);
731 seq_puts(m, "\n");
733 return 0;
736 static ssize_t
737 sched_feat_write(struct file *filp, const char __user *ubuf,
738 size_t cnt, loff_t *ppos)
740 char buf[64];
741 char *cmp = buf;
742 int neg = 0;
743 int i;
745 if (cnt > 63)
746 cnt = 63;
748 if (copy_from_user(&buf, ubuf, cnt))
749 return -EFAULT;
751 buf[cnt] = 0;
753 if (strncmp(buf, "NO_", 3) == 0) {
754 neg = 1;
755 cmp += 3;
758 for (i = 0; sched_feat_names[i]; i++) {
759 int len = strlen(sched_feat_names[i]);
761 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
762 if (neg)
763 sysctl_sched_features &= ~(1UL << i);
764 else
765 sysctl_sched_features |= (1UL << i);
766 break;
770 if (!sched_feat_names[i])
771 return -EINVAL;
773 filp->f_pos += cnt;
775 return cnt;
778 static int sched_feat_open(struct inode *inode, struct file *filp)
780 return single_open(filp, sched_feat_show, NULL);
783 static const struct file_operations sched_feat_fops = {
784 .open = sched_feat_open,
785 .write = sched_feat_write,
786 .read = seq_read,
787 .llseek = seq_lseek,
788 .release = single_release,
791 static __init int sched_init_debug(void)
793 debugfs_create_file("sched_features", 0644, NULL, NULL,
794 &sched_feat_fops);
796 return 0;
798 late_initcall(sched_init_debug);
800 #endif
802 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
805 * Number of tasks to iterate in a single balance run.
806 * Limited because this is done with IRQs disabled.
808 const_debug unsigned int sysctl_sched_nr_migrate = 32;
811 * ratelimit for updating the group shares.
812 * default: 0.25ms
814 unsigned int sysctl_sched_shares_ratelimit = 250000;
817 * Inject some fuzzyness into changing the per-cpu group shares
818 * this avoids remote rq-locks at the expense of fairness.
819 * default: 4
821 unsigned int sysctl_sched_shares_thresh = 4;
824 * period over which we average the RT time consumption, measured
825 * in ms.
827 * default: 1s
829 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
832 * period over which we measure -rt task cpu usage in us.
833 * default: 1s
835 unsigned int sysctl_sched_rt_period = 1000000;
837 static __read_mostly int scheduler_running;
840 * part of the period that we allow rt tasks to run in us.
841 * default: 0.95s
843 int sysctl_sched_rt_runtime = 950000;
845 static inline u64 global_rt_period(void)
847 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
850 static inline u64 global_rt_runtime(void)
852 if (sysctl_sched_rt_runtime < 0)
853 return RUNTIME_INF;
855 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
858 #ifndef prepare_arch_switch
859 # define prepare_arch_switch(next) do { } while (0)
860 #endif
861 #ifndef finish_arch_switch
862 # define finish_arch_switch(prev) do { } while (0)
863 #endif
865 static inline int task_current(struct rq *rq, struct task_struct *p)
867 return rq->curr == p;
870 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
871 static inline int task_running(struct rq *rq, struct task_struct *p)
873 return task_current(rq, p);
876 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
880 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
882 #ifdef CONFIG_DEBUG_SPINLOCK
883 /* this is a valid case when another task releases the spinlock */
884 rq->lock.owner = current;
885 #endif
887 * If we are tracking spinlock dependencies then we have to
888 * fix up the runqueue lock - which gets 'carried over' from
889 * prev into current:
891 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
893 spin_unlock_irq(&rq->lock);
896 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
897 static inline int task_running(struct rq *rq, struct task_struct *p)
899 #ifdef CONFIG_SMP
900 return p->oncpu;
901 #else
902 return task_current(rq, p);
903 #endif
906 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
908 #ifdef CONFIG_SMP
910 * We can optimise this out completely for !SMP, because the
911 * SMP rebalancing from interrupt is the only thing that cares
912 * here.
914 next->oncpu = 1;
915 #endif
916 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
917 spin_unlock_irq(&rq->lock);
918 #else
919 spin_unlock(&rq->lock);
920 #endif
923 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
925 #ifdef CONFIG_SMP
927 * After ->oncpu is cleared, the task can be moved to a different CPU.
928 * We must ensure this doesn't happen until the switch is completely
929 * finished.
931 smp_wmb();
932 prev->oncpu = 0;
933 #endif
934 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
935 local_irq_enable();
936 #endif
938 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
941 * __task_rq_lock - lock the runqueue a given task resides on.
942 * Must be called interrupts disabled.
944 static inline struct rq *__task_rq_lock(struct task_struct *p)
945 __acquires(rq->lock)
947 for (;;) {
948 struct rq *rq = task_rq(p);
949 spin_lock(&rq->lock);
950 if (likely(rq == task_rq(p)))
951 return rq;
952 spin_unlock(&rq->lock);
957 * task_rq_lock - lock the runqueue a given task resides on and disable
958 * interrupts. Note the ordering: we can safely lookup the task_rq without
959 * explicitly disabling preemption.
961 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
962 __acquires(rq->lock)
964 struct rq *rq;
966 for (;;) {
967 local_irq_save(*flags);
968 rq = task_rq(p);
969 spin_lock(&rq->lock);
970 if (likely(rq == task_rq(p)))
971 return rq;
972 spin_unlock_irqrestore(&rq->lock, *flags);
976 void task_rq_unlock_wait(struct task_struct *p)
978 struct rq *rq = task_rq(p);
980 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
981 spin_unlock_wait(&rq->lock);
984 static void __task_rq_unlock(struct rq *rq)
985 __releases(rq->lock)
987 spin_unlock(&rq->lock);
990 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
991 __releases(rq->lock)
993 spin_unlock_irqrestore(&rq->lock, *flags);
997 * this_rq_lock - lock this runqueue and disable interrupts.
999 static struct rq *this_rq_lock(void)
1000 __acquires(rq->lock)
1002 struct rq *rq;
1004 local_irq_disable();
1005 rq = this_rq();
1006 spin_lock(&rq->lock);
1008 return rq;
1011 #ifdef CONFIG_SCHED_HRTICK
1013 * Use HR-timers to deliver accurate preemption points.
1015 * Its all a bit involved since we cannot program an hrt while holding the
1016 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1017 * reschedule event.
1019 * When we get rescheduled we reprogram the hrtick_timer outside of the
1020 * rq->lock.
1024 * Use hrtick when:
1025 * - enabled by features
1026 * - hrtimer is actually high res
1028 static inline int hrtick_enabled(struct rq *rq)
1030 if (!sched_feat(HRTICK))
1031 return 0;
1032 if (!cpu_active(cpu_of(rq)))
1033 return 0;
1034 return hrtimer_is_hres_active(&rq->hrtick_timer);
1037 static void hrtick_clear(struct rq *rq)
1039 if (hrtimer_active(&rq->hrtick_timer))
1040 hrtimer_cancel(&rq->hrtick_timer);
1044 * High-resolution timer tick.
1045 * Runs from hardirq context with interrupts disabled.
1047 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1049 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1051 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1053 spin_lock(&rq->lock);
1054 update_rq_clock(rq);
1055 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1056 spin_unlock(&rq->lock);
1058 return HRTIMER_NORESTART;
1061 #ifdef CONFIG_SMP
1063 * called from hardirq (IPI) context
1065 static void __hrtick_start(void *arg)
1067 struct rq *rq = arg;
1069 spin_lock(&rq->lock);
1070 hrtimer_restart(&rq->hrtick_timer);
1071 rq->hrtick_csd_pending = 0;
1072 spin_unlock(&rq->lock);
1076 * Called to set the hrtick timer state.
1078 * called with rq->lock held and irqs disabled
1080 static void hrtick_start(struct rq *rq, u64 delay)
1082 struct hrtimer *timer = &rq->hrtick_timer;
1083 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1085 hrtimer_set_expires(timer, time);
1087 if (rq == this_rq()) {
1088 hrtimer_restart(timer);
1089 } else if (!rq->hrtick_csd_pending) {
1090 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1091 rq->hrtick_csd_pending = 1;
1095 static int
1096 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1098 int cpu = (int)(long)hcpu;
1100 switch (action) {
1101 case CPU_UP_CANCELED:
1102 case CPU_UP_CANCELED_FROZEN:
1103 case CPU_DOWN_PREPARE:
1104 case CPU_DOWN_PREPARE_FROZEN:
1105 case CPU_DEAD:
1106 case CPU_DEAD_FROZEN:
1107 hrtick_clear(cpu_rq(cpu));
1108 return NOTIFY_OK;
1111 return NOTIFY_DONE;
1114 static __init void init_hrtick(void)
1116 hotcpu_notifier(hotplug_hrtick, 0);
1118 #else
1120 * Called to set the hrtick timer state.
1122 * called with rq->lock held and irqs disabled
1124 static void hrtick_start(struct rq *rq, u64 delay)
1126 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1127 HRTIMER_MODE_REL_PINNED, 0);
1130 static inline void init_hrtick(void)
1133 #endif /* CONFIG_SMP */
1135 static void init_rq_hrtick(struct rq *rq)
1137 #ifdef CONFIG_SMP
1138 rq->hrtick_csd_pending = 0;
1140 rq->hrtick_csd.flags = 0;
1141 rq->hrtick_csd.func = __hrtick_start;
1142 rq->hrtick_csd.info = rq;
1143 #endif
1145 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1146 rq->hrtick_timer.function = hrtick;
1148 #else /* CONFIG_SCHED_HRTICK */
1149 static inline void hrtick_clear(struct rq *rq)
1153 static inline void init_rq_hrtick(struct rq *rq)
1157 static inline void init_hrtick(void)
1160 #endif /* CONFIG_SCHED_HRTICK */
1163 * resched_task - mark a task 'to be rescheduled now'.
1165 * On UP this means the setting of the need_resched flag, on SMP it
1166 * might also involve a cross-CPU call to trigger the scheduler on
1167 * the target CPU.
1169 #ifdef CONFIG_SMP
1171 #ifndef tsk_is_polling
1172 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1173 #endif
1175 static void resched_task(struct task_struct *p)
1177 int cpu;
1179 assert_spin_locked(&task_rq(p)->lock);
1181 if (test_tsk_need_resched(p))
1182 return;
1184 set_tsk_need_resched(p);
1186 cpu = task_cpu(p);
1187 if (cpu == smp_processor_id())
1188 return;
1190 /* NEED_RESCHED must be visible before we test polling */
1191 smp_mb();
1192 if (!tsk_is_polling(p))
1193 smp_send_reschedule(cpu);
1196 static void resched_cpu(int cpu)
1198 struct rq *rq = cpu_rq(cpu);
1199 unsigned long flags;
1201 if (!spin_trylock_irqsave(&rq->lock, flags))
1202 return;
1203 resched_task(cpu_curr(cpu));
1204 spin_unlock_irqrestore(&rq->lock, flags);
1207 #ifdef CONFIG_NO_HZ
1209 * When add_timer_on() enqueues a timer into the timer wheel of an
1210 * idle CPU then this timer might expire before the next timer event
1211 * which is scheduled to wake up that CPU. In case of a completely
1212 * idle system the next event might even be infinite time into the
1213 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1214 * leaves the inner idle loop so the newly added timer is taken into
1215 * account when the CPU goes back to idle and evaluates the timer
1216 * wheel for the next timer event.
1218 void wake_up_idle_cpu(int cpu)
1220 struct rq *rq = cpu_rq(cpu);
1222 if (cpu == smp_processor_id())
1223 return;
1226 * This is safe, as this function is called with the timer
1227 * wheel base lock of (cpu) held. When the CPU is on the way
1228 * to idle and has not yet set rq->curr to idle then it will
1229 * be serialized on the timer wheel base lock and take the new
1230 * timer into account automatically.
1232 if (rq->curr != rq->idle)
1233 return;
1236 * We can set TIF_RESCHED on the idle task of the other CPU
1237 * lockless. The worst case is that the other CPU runs the
1238 * idle task through an additional NOOP schedule()
1240 set_tsk_need_resched(rq->idle);
1242 /* NEED_RESCHED must be visible before we test polling */
1243 smp_mb();
1244 if (!tsk_is_polling(rq->idle))
1245 smp_send_reschedule(cpu);
1247 #endif /* CONFIG_NO_HZ */
1249 static u64 sched_avg_period(void)
1251 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1254 static void sched_avg_update(struct rq *rq)
1256 s64 period = sched_avg_period();
1258 while ((s64)(rq->clock - rq->age_stamp) > period) {
1259 rq->age_stamp += period;
1260 rq->rt_avg /= 2;
1264 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1266 rq->rt_avg += rt_delta;
1267 sched_avg_update(rq);
1270 #else /* !CONFIG_SMP */
1271 static void resched_task(struct task_struct *p)
1273 assert_spin_locked(&task_rq(p)->lock);
1274 set_tsk_need_resched(p);
1277 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1280 #endif /* CONFIG_SMP */
1282 #if BITS_PER_LONG == 32
1283 # define WMULT_CONST (~0UL)
1284 #else
1285 # define WMULT_CONST (1UL << 32)
1286 #endif
1288 #define WMULT_SHIFT 32
1291 * Shift right and round:
1293 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1296 * delta *= weight / lw
1298 static unsigned long
1299 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1300 struct load_weight *lw)
1302 u64 tmp;
1304 if (!lw->inv_weight) {
1305 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1306 lw->inv_weight = 1;
1307 else
1308 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1309 / (lw->weight+1);
1312 tmp = (u64)delta_exec * weight;
1314 * Check whether we'd overflow the 64-bit multiplication:
1316 if (unlikely(tmp > WMULT_CONST))
1317 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1318 WMULT_SHIFT/2);
1319 else
1320 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1322 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1325 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1327 lw->weight += inc;
1328 lw->inv_weight = 0;
1331 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1333 lw->weight -= dec;
1334 lw->inv_weight = 0;
1338 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1339 * of tasks with abnormal "nice" values across CPUs the contribution that
1340 * each task makes to its run queue's load is weighted according to its
1341 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1342 * scaled version of the new time slice allocation that they receive on time
1343 * slice expiry etc.
1346 #define WEIGHT_IDLEPRIO 3
1347 #define WMULT_IDLEPRIO 1431655765
1350 * Nice levels are multiplicative, with a gentle 10% change for every
1351 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1352 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1353 * that remained on nice 0.
1355 * The "10% effect" is relative and cumulative: from _any_ nice level,
1356 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1357 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1358 * If a task goes up by ~10% and another task goes down by ~10% then
1359 * the relative distance between them is ~25%.)
1361 static const int prio_to_weight[40] = {
1362 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1363 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1364 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1365 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1366 /* 0 */ 1024, 820, 655, 526, 423,
1367 /* 5 */ 335, 272, 215, 172, 137,
1368 /* 10 */ 110, 87, 70, 56, 45,
1369 /* 15 */ 36, 29, 23, 18, 15,
1373 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1375 * In cases where the weight does not change often, we can use the
1376 * precalculated inverse to speed up arithmetics by turning divisions
1377 * into multiplications:
1379 static const u32 prio_to_wmult[40] = {
1380 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1381 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1382 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1383 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1384 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1385 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1386 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1387 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1390 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1393 * runqueue iterator, to support SMP load-balancing between different
1394 * scheduling classes, without having to expose their internal data
1395 * structures to the load-balancing proper:
1397 struct rq_iterator {
1398 void *arg;
1399 struct task_struct *(*start)(void *);
1400 struct task_struct *(*next)(void *);
1403 #ifdef CONFIG_SMP
1404 static unsigned long
1405 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1406 unsigned long max_load_move, struct sched_domain *sd,
1407 enum cpu_idle_type idle, int *all_pinned,
1408 int *this_best_prio, struct rq_iterator *iterator);
1410 static int
1411 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412 struct sched_domain *sd, enum cpu_idle_type idle,
1413 struct rq_iterator *iterator);
1414 #endif
1416 /* Time spent by the tasks of the cpu accounting group executing in ... */
1417 enum cpuacct_stat_index {
1418 CPUACCT_STAT_USER, /* ... user mode */
1419 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1421 CPUACCT_STAT_NSTATS,
1424 #ifdef CONFIG_CGROUP_CPUACCT
1425 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1426 static void cpuacct_update_stats(struct task_struct *tsk,
1427 enum cpuacct_stat_index idx, cputime_t val);
1428 #else
1429 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1430 static inline void cpuacct_update_stats(struct task_struct *tsk,
1431 enum cpuacct_stat_index idx, cputime_t val) {}
1432 #endif
1434 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1436 update_load_add(&rq->load, load);
1439 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1441 update_load_sub(&rq->load, load);
1444 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1445 typedef int (*tg_visitor)(struct task_group *, void *);
1448 * Iterate the full tree, calling @down when first entering a node and @up when
1449 * leaving it for the final time.
1451 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1453 struct task_group *parent, *child;
1454 int ret;
1456 rcu_read_lock();
1457 parent = &root_task_group;
1458 down:
1459 ret = (*down)(parent, data);
1460 if (ret)
1461 goto out_unlock;
1462 list_for_each_entry_rcu(child, &parent->children, siblings) {
1463 parent = child;
1464 goto down;
1467 continue;
1469 ret = (*up)(parent, data);
1470 if (ret)
1471 goto out_unlock;
1473 child = parent;
1474 parent = parent->parent;
1475 if (parent)
1476 goto up;
1477 out_unlock:
1478 rcu_read_unlock();
1480 return ret;
1483 static int tg_nop(struct task_group *tg, void *data)
1485 return 0;
1487 #endif
1489 #ifdef CONFIG_SMP
1490 /* Used instead of source_load when we know the type == 0 */
1491 static unsigned long weighted_cpuload(const int cpu)
1493 return cpu_rq(cpu)->load.weight;
1497 * Return a low guess at the load of a migration-source cpu weighted
1498 * according to the scheduling class and "nice" value.
1500 * We want to under-estimate the load of migration sources, to
1501 * balance conservatively.
1503 static unsigned long source_load(int cpu, int type)
1505 struct rq *rq = cpu_rq(cpu);
1506 unsigned long total = weighted_cpuload(cpu);
1508 if (type == 0 || !sched_feat(LB_BIAS))
1509 return total;
1511 return min(rq->cpu_load[type-1], total);
1515 * Return a high guess at the load of a migration-target cpu weighted
1516 * according to the scheduling class and "nice" value.
1518 static unsigned long target_load(int cpu, int type)
1520 struct rq *rq = cpu_rq(cpu);
1521 unsigned long total = weighted_cpuload(cpu);
1523 if (type == 0 || !sched_feat(LB_BIAS))
1524 return total;
1526 return max(rq->cpu_load[type-1], total);
1529 static struct sched_group *group_of(int cpu)
1531 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1533 if (!sd)
1534 return NULL;
1536 return sd->groups;
1539 static unsigned long power_of(int cpu)
1541 struct sched_group *group = group_of(cpu);
1543 if (!group)
1544 return SCHED_LOAD_SCALE;
1546 return group->cpu_power;
1549 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1551 static unsigned long cpu_avg_load_per_task(int cpu)
1553 struct rq *rq = cpu_rq(cpu);
1554 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1556 if (nr_running)
1557 rq->avg_load_per_task = rq->load.weight / nr_running;
1558 else
1559 rq->avg_load_per_task = 0;
1561 return rq->avg_load_per_task;
1564 #ifdef CONFIG_FAIR_GROUP_SCHED
1566 struct update_shares_data {
1567 unsigned long rq_weight[NR_CPUS];
1570 static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1572 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1575 * Calculate and set the cpu's group shares.
1577 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1578 unsigned long sd_shares,
1579 unsigned long sd_rq_weight,
1580 struct update_shares_data *usd)
1582 unsigned long shares, rq_weight;
1583 int boost = 0;
1585 rq_weight = usd->rq_weight[cpu];
1586 if (!rq_weight) {
1587 boost = 1;
1588 rq_weight = NICE_0_LOAD;
1592 * \Sum_j shares_j * rq_weight_i
1593 * shares_i = -----------------------------
1594 * \Sum_j rq_weight_j
1596 shares = (sd_shares * rq_weight) / sd_rq_weight;
1597 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1599 if (abs(shares - tg->se[cpu]->load.weight) >
1600 sysctl_sched_shares_thresh) {
1601 struct rq *rq = cpu_rq(cpu);
1602 unsigned long flags;
1604 spin_lock_irqsave(&rq->lock, flags);
1605 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1606 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1607 __set_se_shares(tg->se[cpu], shares);
1608 spin_unlock_irqrestore(&rq->lock, flags);
1613 * Re-compute the task group their per cpu shares over the given domain.
1614 * This needs to be done in a bottom-up fashion because the rq weight of a
1615 * parent group depends on the shares of its child groups.
1617 static int tg_shares_up(struct task_group *tg, void *data)
1619 unsigned long weight, rq_weight = 0, shares = 0;
1620 struct update_shares_data *usd;
1621 struct sched_domain *sd = data;
1622 unsigned long flags;
1623 int i;
1625 if (!tg->se[0])
1626 return 0;
1628 local_irq_save(flags);
1629 usd = &__get_cpu_var(update_shares_data);
1631 for_each_cpu(i, sched_domain_span(sd)) {
1632 weight = tg->cfs_rq[i]->load.weight;
1633 usd->rq_weight[i] = weight;
1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to
1638 * run here it will not get delayed by group starvation.
1640 if (!weight)
1641 weight = NICE_0_LOAD;
1643 rq_weight += weight;
1644 shares += tg->cfs_rq[i]->shares;
1647 if ((!shares && rq_weight) || shares > tg->shares)
1648 shares = tg->shares;
1650 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1651 shares = tg->shares;
1653 for_each_cpu(i, sched_domain_span(sd))
1654 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1656 local_irq_restore(flags);
1658 return 0;
1662 * Compute the cpu's hierarchical load factor for each task group.
1663 * This needs to be done in a top-down fashion because the load of a child
1664 * group is a fraction of its parents load.
1666 static int tg_load_down(struct task_group *tg, void *data)
1668 unsigned long load;
1669 long cpu = (long)data;
1671 if (!tg->parent) {
1672 load = cpu_rq(cpu)->load.weight;
1673 } else {
1674 load = tg->parent->cfs_rq[cpu]->h_load;
1675 load *= tg->cfs_rq[cpu]->shares;
1676 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1679 tg->cfs_rq[cpu]->h_load = load;
1681 return 0;
1684 static void update_shares(struct sched_domain *sd)
1686 s64 elapsed;
1687 u64 now;
1689 if (root_task_group_empty())
1690 return;
1692 now = cpu_clock(raw_smp_processor_id());
1693 elapsed = now - sd->last_update;
1695 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1696 sd->last_update = now;
1697 walk_tg_tree(tg_nop, tg_shares_up, sd);
1701 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1703 if (root_task_group_empty())
1704 return;
1706 spin_unlock(&rq->lock);
1707 update_shares(sd);
1708 spin_lock(&rq->lock);
1711 static void update_h_load(long cpu)
1713 if (root_task_group_empty())
1714 return;
1716 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1719 #else
1721 static inline void update_shares(struct sched_domain *sd)
1725 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1729 #endif
1731 #ifdef CONFIG_PREEMPT
1733 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1736 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1737 * way at the expense of forcing extra atomic operations in all
1738 * invocations. This assures that the double_lock is acquired using the
1739 * same underlying policy as the spinlock_t on this architecture, which
1740 * reduces latency compared to the unfair variant below. However, it
1741 * also adds more overhead and therefore may reduce throughput.
1743 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1744 __releases(this_rq->lock)
1745 __acquires(busiest->lock)
1746 __acquires(this_rq->lock)
1748 spin_unlock(&this_rq->lock);
1749 double_rq_lock(this_rq, busiest);
1751 return 1;
1754 #else
1756 * Unfair double_lock_balance: Optimizes throughput at the expense of
1757 * latency by eliminating extra atomic operations when the locks are
1758 * already in proper order on entry. This favors lower cpu-ids and will
1759 * grant the double lock to lower cpus over higher ids under contention,
1760 * regardless of entry order into the function.
1762 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1763 __releases(this_rq->lock)
1764 __acquires(busiest->lock)
1765 __acquires(this_rq->lock)
1767 int ret = 0;
1769 if (unlikely(!spin_trylock(&busiest->lock))) {
1770 if (busiest < this_rq) {
1771 spin_unlock(&this_rq->lock);
1772 spin_lock(&busiest->lock);
1773 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1774 ret = 1;
1775 } else
1776 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1778 return ret;
1781 #endif /* CONFIG_PREEMPT */
1784 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1786 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1788 if (unlikely(!irqs_disabled())) {
1789 /* printk() doesn't work good under rq->lock */
1790 spin_unlock(&this_rq->lock);
1791 BUG_ON(1);
1794 return _double_lock_balance(this_rq, busiest);
1797 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1798 __releases(busiest->lock)
1800 spin_unlock(&busiest->lock);
1801 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1803 #endif
1805 #ifdef CONFIG_FAIR_GROUP_SCHED
1806 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1808 #ifdef CONFIG_SMP
1809 cfs_rq->shares = shares;
1810 #endif
1812 #endif
1814 static void calc_load_account_active(struct rq *this_rq);
1816 #include "sched_stats.h"
1817 #include "sched_idletask.c"
1818 #include "sched_fair.c"
1819 #include "sched_rt.c"
1820 #ifdef CONFIG_SCHED_DEBUG
1821 # include "sched_debug.c"
1822 #endif
1824 #define sched_class_highest (&rt_sched_class)
1825 #define for_each_class(class) \
1826 for (class = sched_class_highest; class; class = class->next)
1828 static void inc_nr_running(struct rq *rq)
1830 rq->nr_running++;
1833 static void dec_nr_running(struct rq *rq)
1835 rq->nr_running--;
1838 static void set_load_weight(struct task_struct *p)
1840 if (task_has_rt_policy(p)) {
1841 p->se.load.weight = prio_to_weight[0] * 2;
1842 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1843 return;
1847 * SCHED_IDLE tasks get minimal weight:
1849 if (p->policy == SCHED_IDLE) {
1850 p->se.load.weight = WEIGHT_IDLEPRIO;
1851 p->se.load.inv_weight = WMULT_IDLEPRIO;
1852 return;
1855 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1856 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1859 static void update_avg(u64 *avg, u64 sample)
1861 s64 diff = sample - *avg;
1862 *avg += diff >> 3;
1865 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1867 if (wakeup)
1868 p->se.start_runtime = p->se.sum_exec_runtime;
1870 sched_info_queued(p);
1871 p->sched_class->enqueue_task(rq, p, wakeup);
1872 p->se.on_rq = 1;
1875 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1877 if (sleep) {
1878 if (p->se.last_wakeup) {
1879 update_avg(&p->se.avg_overlap,
1880 p->se.sum_exec_runtime - p->se.last_wakeup);
1881 p->se.last_wakeup = 0;
1882 } else {
1883 update_avg(&p->se.avg_wakeup,
1884 sysctl_sched_wakeup_granularity);
1888 sched_info_dequeued(p);
1889 p->sched_class->dequeue_task(rq, p, sleep);
1890 p->se.on_rq = 0;
1894 * __normal_prio - return the priority that is based on the static prio
1896 static inline int __normal_prio(struct task_struct *p)
1898 return p->static_prio;
1902 * Calculate the expected normal priority: i.e. priority
1903 * without taking RT-inheritance into account. Might be
1904 * boosted by interactivity modifiers. Changes upon fork,
1905 * setprio syscalls, and whenever the interactivity
1906 * estimator recalculates.
1908 static inline int normal_prio(struct task_struct *p)
1910 int prio;
1912 if (task_has_rt_policy(p))
1913 prio = MAX_RT_PRIO-1 - p->rt_priority;
1914 else
1915 prio = __normal_prio(p);
1916 return prio;
1920 * Calculate the current priority, i.e. the priority
1921 * taken into account by the scheduler. This value might
1922 * be boosted by RT tasks, or might be boosted by
1923 * interactivity modifiers. Will be RT if the task got
1924 * RT-boosted. If not then it returns p->normal_prio.
1926 static int effective_prio(struct task_struct *p)
1928 p->normal_prio = normal_prio(p);
1930 * If we are RT tasks or we were boosted to RT priority,
1931 * keep the priority unchanged. Otherwise, update priority
1932 * to the normal priority:
1934 if (!rt_prio(p->prio))
1935 return p->normal_prio;
1936 return p->prio;
1940 * activate_task - move a task to the runqueue.
1942 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1944 if (task_contributes_to_load(p))
1945 rq->nr_uninterruptible--;
1947 enqueue_task(rq, p, wakeup);
1948 inc_nr_running(rq);
1952 * deactivate_task - remove a task from the runqueue.
1954 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1956 if (task_contributes_to_load(p))
1957 rq->nr_uninterruptible++;
1959 dequeue_task(rq, p, sleep);
1960 dec_nr_running(rq);
1964 * task_curr - is this task currently executing on a CPU?
1965 * @p: the task in question.
1967 inline int task_curr(const struct task_struct *p)
1969 return cpu_curr(task_cpu(p)) == p;
1972 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1974 set_task_rq(p, cpu);
1975 #ifdef CONFIG_SMP
1977 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1978 * successfuly executed on another CPU. We must ensure that updates of
1979 * per-task data have been completed by this moment.
1981 smp_wmb();
1982 task_thread_info(p)->cpu = cpu;
1983 #endif
1986 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1987 const struct sched_class *prev_class,
1988 int oldprio, int running)
1990 if (prev_class != p->sched_class) {
1991 if (prev_class->switched_from)
1992 prev_class->switched_from(rq, p, running);
1993 p->sched_class->switched_to(rq, p, running);
1994 } else
1995 p->sched_class->prio_changed(rq, p, oldprio, running);
1998 #ifdef CONFIG_SMP
2000 * Is this task likely cache-hot:
2002 static int
2003 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2005 s64 delta;
2008 * Buddy candidates are cache hot:
2010 if (sched_feat(CACHE_HOT_BUDDY) &&
2011 (&p->se == cfs_rq_of(&p->se)->next ||
2012 &p->se == cfs_rq_of(&p->se)->last))
2013 return 1;
2015 if (p->sched_class != &fair_sched_class)
2016 return 0;
2018 if (sysctl_sched_migration_cost == -1)
2019 return 1;
2020 if (sysctl_sched_migration_cost == 0)
2021 return 0;
2023 delta = now - p->se.exec_start;
2025 return delta < (s64)sysctl_sched_migration_cost;
2029 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2031 int old_cpu = task_cpu(p);
2032 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2033 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2034 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2035 u64 clock_offset;
2037 clock_offset = old_rq->clock - new_rq->clock;
2039 trace_sched_migrate_task(p, new_cpu);
2041 #ifdef CONFIG_SCHEDSTATS
2042 if (p->se.wait_start)
2043 p->se.wait_start -= clock_offset;
2044 if (p->se.sleep_start)
2045 p->se.sleep_start -= clock_offset;
2046 if (p->se.block_start)
2047 p->se.block_start -= clock_offset;
2048 #endif
2049 if (old_cpu != new_cpu) {
2050 p->se.nr_migrations++;
2051 new_rq->nr_migrations_in++;
2052 #ifdef CONFIG_SCHEDSTATS
2053 if (task_hot(p, old_rq->clock, NULL))
2054 schedstat_inc(p, se.nr_forced2_migrations);
2055 #endif
2056 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2057 1, 1, NULL, 0);
2059 p->se.vruntime -= old_cfsrq->min_vruntime -
2060 new_cfsrq->min_vruntime;
2062 __set_task_cpu(p, new_cpu);
2065 struct migration_req {
2066 struct list_head list;
2068 struct task_struct *task;
2069 int dest_cpu;
2071 struct completion done;
2075 * The task's runqueue lock must be held.
2076 * Returns true if you have to wait for migration thread.
2078 static int
2079 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2081 struct rq *rq = task_rq(p);
2084 * If the task is not on a runqueue (and not running), then
2085 * it is sufficient to simply update the task's cpu field.
2087 if (!p->se.on_rq && !task_running(rq, p)) {
2088 set_task_cpu(p, dest_cpu);
2089 return 0;
2092 init_completion(&req->done);
2093 req->task = p;
2094 req->dest_cpu = dest_cpu;
2095 list_add(&req->list, &rq->migration_queue);
2097 return 1;
2101 * wait_task_context_switch - wait for a thread to complete at least one
2102 * context switch.
2104 * @p must not be current.
2106 void wait_task_context_switch(struct task_struct *p)
2108 unsigned long nvcsw, nivcsw, flags;
2109 int running;
2110 struct rq *rq;
2112 nvcsw = p->nvcsw;
2113 nivcsw = p->nivcsw;
2114 for (;;) {
2116 * The runqueue is assigned before the actual context
2117 * switch. We need to take the runqueue lock.
2119 * We could check initially without the lock but it is
2120 * very likely that we need to take the lock in every
2121 * iteration.
2123 rq = task_rq_lock(p, &flags);
2124 running = task_running(rq, p);
2125 task_rq_unlock(rq, &flags);
2127 if (likely(!running))
2128 break;
2130 * The switch count is incremented before the actual
2131 * context switch. We thus wait for two switches to be
2132 * sure at least one completed.
2134 if ((p->nvcsw - nvcsw) > 1)
2135 break;
2136 if ((p->nivcsw - nivcsw) > 1)
2137 break;
2139 cpu_relax();
2144 * wait_task_inactive - wait for a thread to unschedule.
2146 * If @match_state is nonzero, it's the @p->state value just checked and
2147 * not expected to change. If it changes, i.e. @p might have woken up,
2148 * then return zero. When we succeed in waiting for @p to be off its CPU,
2149 * we return a positive number (its total switch count). If a second call
2150 * a short while later returns the same number, the caller can be sure that
2151 * @p has remained unscheduled the whole time.
2153 * The caller must ensure that the task *will* unschedule sometime soon,
2154 * else this function might spin for a *long* time. This function can't
2155 * be called with interrupts off, or it may introduce deadlock with
2156 * smp_call_function() if an IPI is sent by the same process we are
2157 * waiting to become inactive.
2159 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2161 unsigned long flags;
2162 int running, on_rq;
2163 unsigned long ncsw;
2164 struct rq *rq;
2166 for (;;) {
2168 * We do the initial early heuristics without holding
2169 * any task-queue locks at all. We'll only try to get
2170 * the runqueue lock when things look like they will
2171 * work out!
2173 rq = task_rq(p);
2176 * If the task is actively running on another CPU
2177 * still, just relax and busy-wait without holding
2178 * any locks.
2180 * NOTE! Since we don't hold any locks, it's not
2181 * even sure that "rq" stays as the right runqueue!
2182 * But we don't care, since "task_running()" will
2183 * return false if the runqueue has changed and p
2184 * is actually now running somewhere else!
2186 while (task_running(rq, p)) {
2187 if (match_state && unlikely(p->state != match_state))
2188 return 0;
2189 cpu_relax();
2193 * Ok, time to look more closely! We need the rq
2194 * lock now, to be *sure*. If we're wrong, we'll
2195 * just go back and repeat.
2197 rq = task_rq_lock(p, &flags);
2198 trace_sched_wait_task(rq, p);
2199 running = task_running(rq, p);
2200 on_rq = p->se.on_rq;
2201 ncsw = 0;
2202 if (!match_state || p->state == match_state)
2203 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2204 task_rq_unlock(rq, &flags);
2207 * If it changed from the expected state, bail out now.
2209 if (unlikely(!ncsw))
2210 break;
2213 * Was it really running after all now that we
2214 * checked with the proper locks actually held?
2216 * Oops. Go back and try again..
2218 if (unlikely(running)) {
2219 cpu_relax();
2220 continue;
2224 * It's not enough that it's not actively running,
2225 * it must be off the runqueue _entirely_, and not
2226 * preempted!
2228 * So if it was still runnable (but just not actively
2229 * running right now), it's preempted, and we should
2230 * yield - it could be a while.
2232 if (unlikely(on_rq)) {
2233 schedule_timeout_uninterruptible(1);
2234 continue;
2238 * Ahh, all good. It wasn't running, and it wasn't
2239 * runnable, which means that it will never become
2240 * running in the future either. We're all done!
2242 break;
2245 return ncsw;
2248 /***
2249 * kick_process - kick a running thread to enter/exit the kernel
2250 * @p: the to-be-kicked thread
2252 * Cause a process which is running on another CPU to enter
2253 * kernel-mode, without any delay. (to get signals handled.)
2255 * NOTE: this function doesnt have to take the runqueue lock,
2256 * because all it wants to ensure is that the remote task enters
2257 * the kernel. If the IPI races and the task has been migrated
2258 * to another CPU then no harm is done and the purpose has been
2259 * achieved as well.
2261 void kick_process(struct task_struct *p)
2263 int cpu;
2265 preempt_disable();
2266 cpu = task_cpu(p);
2267 if ((cpu != smp_processor_id()) && task_curr(p))
2268 smp_send_reschedule(cpu);
2269 preempt_enable();
2271 EXPORT_SYMBOL_GPL(kick_process);
2272 #endif /* CONFIG_SMP */
2275 * task_oncpu_function_call - call a function on the cpu on which a task runs
2276 * @p: the task to evaluate
2277 * @func: the function to be called
2278 * @info: the function call argument
2280 * Calls the function @func when the task is currently running. This might
2281 * be on the current CPU, which just calls the function directly
2283 void task_oncpu_function_call(struct task_struct *p,
2284 void (*func) (void *info), void *info)
2286 int cpu;
2288 preempt_disable();
2289 cpu = task_cpu(p);
2290 if (task_curr(p))
2291 smp_call_function_single(cpu, func, info, 1);
2292 preempt_enable();
2295 /***
2296 * try_to_wake_up - wake up a thread
2297 * @p: the to-be-woken-up thread
2298 * @state: the mask of task states that can be woken
2299 * @sync: do a synchronous wakeup?
2301 * Put it on the run-queue if it's not already there. The "current"
2302 * thread is always on the run-queue (except when the actual
2303 * re-schedule is in progress), and as such you're allowed to do
2304 * the simpler "current->state = TASK_RUNNING" to mark yourself
2305 * runnable without the overhead of this.
2307 * returns failure only if the task is already active.
2309 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2310 int wake_flags)
2312 int cpu, orig_cpu, this_cpu, success = 0;
2313 unsigned long flags;
2314 struct rq *rq;
2316 if (!sched_feat(SYNC_WAKEUPS))
2317 wake_flags &= ~WF_SYNC;
2319 this_cpu = get_cpu();
2321 smp_wmb();
2322 rq = task_rq_lock(p, &flags);
2323 update_rq_clock(rq);
2324 if (!(p->state & state))
2325 goto out;
2327 if (p->se.on_rq)
2328 goto out_running;
2330 cpu = task_cpu(p);
2331 orig_cpu = cpu;
2333 #ifdef CONFIG_SMP
2334 if (unlikely(task_running(rq, p)))
2335 goto out_activate;
2338 * In order to handle concurrent wakeups and release the rq->lock
2339 * we put the task in TASK_WAKING state.
2341 * First fix up the nr_uninterruptible count:
2343 if (task_contributes_to_load(p))
2344 rq->nr_uninterruptible--;
2345 p->state = TASK_WAKING;
2346 task_rq_unlock(rq, &flags);
2348 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2349 if (cpu != orig_cpu)
2350 set_task_cpu(p, cpu);
2352 rq = task_rq_lock(p, &flags);
2353 WARN_ON(p->state != TASK_WAKING);
2354 cpu = task_cpu(p);
2356 #ifdef CONFIG_SCHEDSTATS
2357 schedstat_inc(rq, ttwu_count);
2358 if (cpu == this_cpu)
2359 schedstat_inc(rq, ttwu_local);
2360 else {
2361 struct sched_domain *sd;
2362 for_each_domain(this_cpu, sd) {
2363 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2364 schedstat_inc(sd, ttwu_wake_remote);
2365 break;
2369 #endif /* CONFIG_SCHEDSTATS */
2371 out_activate:
2372 #endif /* CONFIG_SMP */
2373 schedstat_inc(p, se.nr_wakeups);
2374 if (wake_flags & WF_SYNC)
2375 schedstat_inc(p, se.nr_wakeups_sync);
2376 if (orig_cpu != cpu)
2377 schedstat_inc(p, se.nr_wakeups_migrate);
2378 if (cpu == this_cpu)
2379 schedstat_inc(p, se.nr_wakeups_local);
2380 else
2381 schedstat_inc(p, se.nr_wakeups_remote);
2382 activate_task(rq, p, 1);
2383 success = 1;
2386 * Only attribute actual wakeups done by this task.
2388 if (!in_interrupt()) {
2389 struct sched_entity *se = &current->se;
2390 u64 sample = se->sum_exec_runtime;
2392 if (se->last_wakeup)
2393 sample -= se->last_wakeup;
2394 else
2395 sample -= se->start_runtime;
2396 update_avg(&se->avg_wakeup, sample);
2398 se->last_wakeup = se->sum_exec_runtime;
2401 out_running:
2402 trace_sched_wakeup(rq, p, success);
2403 check_preempt_curr(rq, p, wake_flags);
2405 p->state = TASK_RUNNING;
2406 #ifdef CONFIG_SMP
2407 if (p->sched_class->task_wake_up)
2408 p->sched_class->task_wake_up(rq, p);
2409 #endif
2410 out:
2411 task_rq_unlock(rq, &flags);
2412 put_cpu();
2414 return success;
2418 * wake_up_process - Wake up a specific process
2419 * @p: The process to be woken up.
2421 * Attempt to wake up the nominated process and move it to the set of runnable
2422 * processes. Returns 1 if the process was woken up, 0 if it was already
2423 * running.
2425 * It may be assumed that this function implies a write memory barrier before
2426 * changing the task state if and only if any tasks are woken up.
2428 int wake_up_process(struct task_struct *p)
2430 return try_to_wake_up(p, TASK_ALL, 0);
2432 EXPORT_SYMBOL(wake_up_process);
2434 int wake_up_state(struct task_struct *p, unsigned int state)
2436 return try_to_wake_up(p, state, 0);
2440 * Perform scheduler related setup for a newly forked process p.
2441 * p is forked by current.
2443 * __sched_fork() is basic setup used by init_idle() too:
2445 static void __sched_fork(struct task_struct *p)
2447 p->se.exec_start = 0;
2448 p->se.sum_exec_runtime = 0;
2449 p->se.prev_sum_exec_runtime = 0;
2450 p->se.nr_migrations = 0;
2451 p->se.last_wakeup = 0;
2452 p->se.avg_overlap = 0;
2453 p->se.start_runtime = 0;
2454 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2455 p->se.avg_running = 0;
2457 #ifdef CONFIG_SCHEDSTATS
2458 p->se.wait_start = 0;
2459 p->se.wait_max = 0;
2460 p->se.wait_count = 0;
2461 p->se.wait_sum = 0;
2463 p->se.sleep_start = 0;
2464 p->se.sleep_max = 0;
2465 p->se.sum_sleep_runtime = 0;
2467 p->se.block_start = 0;
2468 p->se.block_max = 0;
2469 p->se.exec_max = 0;
2470 p->se.slice_max = 0;
2472 p->se.nr_migrations_cold = 0;
2473 p->se.nr_failed_migrations_affine = 0;
2474 p->se.nr_failed_migrations_running = 0;
2475 p->se.nr_failed_migrations_hot = 0;
2476 p->se.nr_forced_migrations = 0;
2477 p->se.nr_forced2_migrations = 0;
2479 p->se.nr_wakeups = 0;
2480 p->se.nr_wakeups_sync = 0;
2481 p->se.nr_wakeups_migrate = 0;
2482 p->se.nr_wakeups_local = 0;
2483 p->se.nr_wakeups_remote = 0;
2484 p->se.nr_wakeups_affine = 0;
2485 p->se.nr_wakeups_affine_attempts = 0;
2486 p->se.nr_wakeups_passive = 0;
2487 p->se.nr_wakeups_idle = 0;
2489 #endif
2491 INIT_LIST_HEAD(&p->rt.run_list);
2492 p->se.on_rq = 0;
2493 INIT_LIST_HEAD(&p->se.group_node);
2495 #ifdef CONFIG_PREEMPT_NOTIFIERS
2496 INIT_HLIST_HEAD(&p->preempt_notifiers);
2497 #endif
2500 * We mark the process as running here, but have not actually
2501 * inserted it onto the runqueue yet. This guarantees that
2502 * nobody will actually run it, and a signal or other external
2503 * event cannot wake it up and insert it on the runqueue either.
2505 p->state = TASK_RUNNING;
2509 * fork()/clone()-time setup:
2511 void sched_fork(struct task_struct *p, int clone_flags)
2513 int cpu = get_cpu();
2515 __sched_fork(p);
2518 * Revert to default priority/policy on fork if requested.
2520 if (unlikely(p->sched_reset_on_fork)) {
2521 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2522 p->policy = SCHED_NORMAL;
2523 p->normal_prio = p->static_prio;
2526 if (PRIO_TO_NICE(p->static_prio) < 0) {
2527 p->static_prio = NICE_TO_PRIO(0);
2528 p->normal_prio = p->static_prio;
2529 set_load_weight(p);
2533 * We don't need the reset flag anymore after the fork. It has
2534 * fulfilled its duty:
2536 p->sched_reset_on_fork = 0;
2540 * Make sure we do not leak PI boosting priority to the child.
2542 p->prio = current->normal_prio;
2544 if (!rt_prio(p->prio))
2545 p->sched_class = &fair_sched_class;
2547 #ifdef CONFIG_SMP
2548 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2549 #endif
2550 set_task_cpu(p, cpu);
2552 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2553 if (likely(sched_info_on()))
2554 memset(&p->sched_info, 0, sizeof(p->sched_info));
2555 #endif
2556 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2557 p->oncpu = 0;
2558 #endif
2559 #ifdef CONFIG_PREEMPT
2560 /* Want to start with kernel preemption disabled. */
2561 task_thread_info(p)->preempt_count = 1;
2562 #endif
2563 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2565 put_cpu();
2569 * wake_up_new_task - wake up a newly created task for the first time.
2571 * This function will do some initial scheduler statistics housekeeping
2572 * that must be done for every newly created context, then puts the task
2573 * on the runqueue and wakes it.
2575 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2577 unsigned long flags;
2578 struct rq *rq;
2580 rq = task_rq_lock(p, &flags);
2581 BUG_ON(p->state != TASK_RUNNING);
2582 update_rq_clock(rq);
2584 if (!p->sched_class->task_new || !current->se.on_rq) {
2585 activate_task(rq, p, 0);
2586 } else {
2588 * Let the scheduling class do new task startup
2589 * management (if any):
2591 p->sched_class->task_new(rq, p);
2592 inc_nr_running(rq);
2594 trace_sched_wakeup_new(rq, p, 1);
2595 check_preempt_curr(rq, p, WF_FORK);
2596 #ifdef CONFIG_SMP
2597 if (p->sched_class->task_wake_up)
2598 p->sched_class->task_wake_up(rq, p);
2599 #endif
2600 task_rq_unlock(rq, &flags);
2603 #ifdef CONFIG_PREEMPT_NOTIFIERS
2606 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2607 * @notifier: notifier struct to register
2609 void preempt_notifier_register(struct preempt_notifier *notifier)
2611 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2613 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2616 * preempt_notifier_unregister - no longer interested in preemption notifications
2617 * @notifier: notifier struct to unregister
2619 * This is safe to call from within a preemption notifier.
2621 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2623 hlist_del(&notifier->link);
2625 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2627 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2629 struct preempt_notifier *notifier;
2630 struct hlist_node *node;
2632 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2633 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2636 static void
2637 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2638 struct task_struct *next)
2640 struct preempt_notifier *notifier;
2641 struct hlist_node *node;
2643 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2644 notifier->ops->sched_out(notifier, next);
2647 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2649 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2653 static void
2654 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2655 struct task_struct *next)
2659 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2662 * prepare_task_switch - prepare to switch tasks
2663 * @rq: the runqueue preparing to switch
2664 * @prev: the current task that is being switched out
2665 * @next: the task we are going to switch to.
2667 * This is called with the rq lock held and interrupts off. It must
2668 * be paired with a subsequent finish_task_switch after the context
2669 * switch.
2671 * prepare_task_switch sets up locking and calls architecture specific
2672 * hooks.
2674 static inline void
2675 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2676 struct task_struct *next)
2678 fire_sched_out_preempt_notifiers(prev, next);
2679 prepare_lock_switch(rq, next);
2680 prepare_arch_switch(next);
2684 * finish_task_switch - clean up after a task-switch
2685 * @rq: runqueue associated with task-switch
2686 * @prev: the thread we just switched away from.
2688 * finish_task_switch must be called after the context switch, paired
2689 * with a prepare_task_switch call before the context switch.
2690 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2691 * and do any other architecture-specific cleanup actions.
2693 * Note that we may have delayed dropping an mm in context_switch(). If
2694 * so, we finish that here outside of the runqueue lock. (Doing it
2695 * with the lock held can cause deadlocks; see schedule() for
2696 * details.)
2698 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2699 __releases(rq->lock)
2701 struct mm_struct *mm = rq->prev_mm;
2702 long prev_state;
2704 rq->prev_mm = NULL;
2707 * A task struct has one reference for the use as "current".
2708 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2709 * schedule one last time. The schedule call will never return, and
2710 * the scheduled task must drop that reference.
2711 * The test for TASK_DEAD must occur while the runqueue locks are
2712 * still held, otherwise prev could be scheduled on another cpu, die
2713 * there before we look at prev->state, and then the reference would
2714 * be dropped twice.
2715 * Manfred Spraul <manfred@colorfullife.com>
2717 prev_state = prev->state;
2718 finish_arch_switch(prev);
2719 perf_event_task_sched_in(current, cpu_of(rq));
2720 finish_lock_switch(rq, prev);
2722 fire_sched_in_preempt_notifiers(current);
2723 if (mm)
2724 mmdrop(mm);
2725 if (unlikely(prev_state == TASK_DEAD)) {
2727 * Remove function-return probe instances associated with this
2728 * task and put them back on the free list.
2730 kprobe_flush_task(prev);
2731 put_task_struct(prev);
2735 #ifdef CONFIG_SMP
2737 /* assumes rq->lock is held */
2738 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2740 if (prev->sched_class->pre_schedule)
2741 prev->sched_class->pre_schedule(rq, prev);
2744 /* rq->lock is NOT held, but preemption is disabled */
2745 static inline void post_schedule(struct rq *rq)
2747 if (rq->post_schedule) {
2748 unsigned long flags;
2750 spin_lock_irqsave(&rq->lock, flags);
2751 if (rq->curr->sched_class->post_schedule)
2752 rq->curr->sched_class->post_schedule(rq);
2753 spin_unlock_irqrestore(&rq->lock, flags);
2755 rq->post_schedule = 0;
2759 #else
2761 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2765 static inline void post_schedule(struct rq *rq)
2769 #endif
2772 * schedule_tail - first thing a freshly forked thread must call.
2773 * @prev: the thread we just switched away from.
2775 asmlinkage void schedule_tail(struct task_struct *prev)
2776 __releases(rq->lock)
2778 struct rq *rq = this_rq();
2780 finish_task_switch(rq, prev);
2783 * FIXME: do we need to worry about rq being invalidated by the
2784 * task_switch?
2786 post_schedule(rq);
2788 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2789 /* In this case, finish_task_switch does not reenable preemption */
2790 preempt_enable();
2791 #endif
2792 if (current->set_child_tid)
2793 put_user(task_pid_vnr(current), current->set_child_tid);
2797 * context_switch - switch to the new MM and the new
2798 * thread's register state.
2800 static inline void
2801 context_switch(struct rq *rq, struct task_struct *prev,
2802 struct task_struct *next)
2804 struct mm_struct *mm, *oldmm;
2806 prepare_task_switch(rq, prev, next);
2807 trace_sched_switch(rq, prev, next);
2808 mm = next->mm;
2809 oldmm = prev->active_mm;
2811 * For paravirt, this is coupled with an exit in switch_to to
2812 * combine the page table reload and the switch backend into
2813 * one hypercall.
2815 arch_start_context_switch(prev);
2817 if (unlikely(!mm)) {
2818 next->active_mm = oldmm;
2819 atomic_inc(&oldmm->mm_count);
2820 enter_lazy_tlb(oldmm, next);
2821 } else
2822 switch_mm(oldmm, mm, next);
2824 if (unlikely(!prev->mm)) {
2825 prev->active_mm = NULL;
2826 rq->prev_mm = oldmm;
2829 * Since the runqueue lock will be released by the next
2830 * task (which is an invalid locking op but in the case
2831 * of the scheduler it's an obvious special-case), so we
2832 * do an early lockdep release here:
2834 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2835 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2836 #endif
2838 /* Here we just switch the register state and the stack. */
2839 switch_to(prev, next, prev);
2841 barrier();
2843 * this_rq must be evaluated again because prev may have moved
2844 * CPUs since it called schedule(), thus the 'rq' on its stack
2845 * frame will be invalid.
2847 finish_task_switch(this_rq(), prev);
2851 * nr_running, nr_uninterruptible and nr_context_switches:
2853 * externally visible scheduler statistics: current number of runnable
2854 * threads, current number of uninterruptible-sleeping threads, total
2855 * number of context switches performed since bootup.
2857 unsigned long nr_running(void)
2859 unsigned long i, sum = 0;
2861 for_each_online_cpu(i)
2862 sum += cpu_rq(i)->nr_running;
2864 return sum;
2867 unsigned long nr_uninterruptible(void)
2869 unsigned long i, sum = 0;
2871 for_each_possible_cpu(i)
2872 sum += cpu_rq(i)->nr_uninterruptible;
2875 * Since we read the counters lockless, it might be slightly
2876 * inaccurate. Do not allow it to go below zero though:
2878 if (unlikely((long)sum < 0))
2879 sum = 0;
2881 return sum;
2884 unsigned long long nr_context_switches(void)
2886 int i;
2887 unsigned long long sum = 0;
2889 for_each_possible_cpu(i)
2890 sum += cpu_rq(i)->nr_switches;
2892 return sum;
2895 unsigned long nr_iowait(void)
2897 unsigned long i, sum = 0;
2899 for_each_possible_cpu(i)
2900 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2902 return sum;
2905 unsigned long nr_iowait_cpu(void)
2907 struct rq *this = this_rq();
2908 return atomic_read(&this->nr_iowait);
2911 unsigned long this_cpu_load(void)
2913 struct rq *this = this_rq();
2914 return this->cpu_load[0];
2918 /* Variables and functions for calc_load */
2919 static atomic_long_t calc_load_tasks;
2920 static unsigned long calc_load_update;
2921 unsigned long avenrun[3];
2922 EXPORT_SYMBOL(avenrun);
2925 * get_avenrun - get the load average array
2926 * @loads: pointer to dest load array
2927 * @offset: offset to add
2928 * @shift: shift count to shift the result left
2930 * These values are estimates at best, so no need for locking.
2932 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2934 loads[0] = (avenrun[0] + offset) << shift;
2935 loads[1] = (avenrun[1] + offset) << shift;
2936 loads[2] = (avenrun[2] + offset) << shift;
2939 static unsigned long
2940 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2942 load *= exp;
2943 load += active * (FIXED_1 - exp);
2944 return load >> FSHIFT;
2948 * calc_load - update the avenrun load estimates 10 ticks after the
2949 * CPUs have updated calc_load_tasks.
2951 void calc_global_load(void)
2953 unsigned long upd = calc_load_update + 10;
2954 long active;
2956 if (time_before(jiffies, upd))
2957 return;
2959 active = atomic_long_read(&calc_load_tasks);
2960 active = active > 0 ? active * FIXED_1 : 0;
2962 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2963 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2964 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2966 calc_load_update += LOAD_FREQ;
2970 * Either called from update_cpu_load() or from a cpu going idle
2972 static void calc_load_account_active(struct rq *this_rq)
2974 long nr_active, delta;
2976 nr_active = this_rq->nr_running;
2977 nr_active += (long) this_rq->nr_uninterruptible;
2979 if (nr_active != this_rq->calc_load_active) {
2980 delta = nr_active - this_rq->calc_load_active;
2981 this_rq->calc_load_active = nr_active;
2982 atomic_long_add(delta, &calc_load_tasks);
2987 * Externally visible per-cpu scheduler statistics:
2988 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2990 u64 cpu_nr_migrations(int cpu)
2992 return cpu_rq(cpu)->nr_migrations_in;
2996 * Update rq->cpu_load[] statistics. This function is usually called every
2997 * scheduler tick (TICK_NSEC).
2999 static void update_cpu_load(struct rq *this_rq)
3001 unsigned long this_load = this_rq->load.weight;
3002 int i, scale;
3004 this_rq->nr_load_updates++;
3006 /* Update our load: */
3007 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3008 unsigned long old_load, new_load;
3010 /* scale is effectively 1 << i now, and >> i divides by scale */
3012 old_load = this_rq->cpu_load[i];
3013 new_load = this_load;
3015 * Round up the averaging division if load is increasing. This
3016 * prevents us from getting stuck on 9 if the load is 10, for
3017 * example.
3019 if (new_load > old_load)
3020 new_load += scale-1;
3021 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3024 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3025 this_rq->calc_load_update += LOAD_FREQ;
3026 calc_load_account_active(this_rq);
3030 #ifdef CONFIG_SMP
3033 * double_rq_lock - safely lock two runqueues
3035 * Note this does not disable interrupts like task_rq_lock,
3036 * you need to do so manually before calling.
3038 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3039 __acquires(rq1->lock)
3040 __acquires(rq2->lock)
3042 BUG_ON(!irqs_disabled());
3043 if (rq1 == rq2) {
3044 spin_lock(&rq1->lock);
3045 __acquire(rq2->lock); /* Fake it out ;) */
3046 } else {
3047 if (rq1 < rq2) {
3048 spin_lock(&rq1->lock);
3049 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3050 } else {
3051 spin_lock(&rq2->lock);
3052 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3055 update_rq_clock(rq1);
3056 update_rq_clock(rq2);
3060 * double_rq_unlock - safely unlock two runqueues
3062 * Note this does not restore interrupts like task_rq_unlock,
3063 * you need to do so manually after calling.
3065 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3066 __releases(rq1->lock)
3067 __releases(rq2->lock)
3069 spin_unlock(&rq1->lock);
3070 if (rq1 != rq2)
3071 spin_unlock(&rq2->lock);
3072 else
3073 __release(rq2->lock);
3077 * If dest_cpu is allowed for this process, migrate the task to it.
3078 * This is accomplished by forcing the cpu_allowed mask to only
3079 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3080 * the cpu_allowed mask is restored.
3082 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3084 struct migration_req req;
3085 unsigned long flags;
3086 struct rq *rq;
3088 rq = task_rq_lock(p, &flags);
3089 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3090 || unlikely(!cpu_active(dest_cpu)))
3091 goto out;
3093 /* force the process onto the specified CPU */
3094 if (migrate_task(p, dest_cpu, &req)) {
3095 /* Need to wait for migration thread (might exit: take ref). */
3096 struct task_struct *mt = rq->migration_thread;
3098 get_task_struct(mt);
3099 task_rq_unlock(rq, &flags);
3100 wake_up_process(mt);
3101 put_task_struct(mt);
3102 wait_for_completion(&req.done);
3104 return;
3106 out:
3107 task_rq_unlock(rq, &flags);
3111 * sched_exec - execve() is a valuable balancing opportunity, because at
3112 * this point the task has the smallest effective memory and cache footprint.
3114 void sched_exec(void)
3116 int new_cpu, this_cpu = get_cpu();
3117 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
3118 put_cpu();
3119 if (new_cpu != this_cpu)
3120 sched_migrate_task(current, new_cpu);
3124 * pull_task - move a task from a remote runqueue to the local runqueue.
3125 * Both runqueues must be locked.
3127 static void pull_task(struct rq *src_rq, struct task_struct *p,
3128 struct rq *this_rq, int this_cpu)
3130 deactivate_task(src_rq, p, 0);
3131 set_task_cpu(p, this_cpu);
3132 activate_task(this_rq, p, 0);
3134 * Note that idle threads have a prio of MAX_PRIO, for this test
3135 * to be always true for them.
3137 check_preempt_curr(this_rq, p, 0);
3141 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3143 static
3144 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3145 struct sched_domain *sd, enum cpu_idle_type idle,
3146 int *all_pinned)
3148 int tsk_cache_hot = 0;
3150 * We do not migrate tasks that are:
3151 * 1) running (obviously), or
3152 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3153 * 3) are cache-hot on their current CPU.
3155 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3156 schedstat_inc(p, se.nr_failed_migrations_affine);
3157 return 0;
3159 *all_pinned = 0;
3161 if (task_running(rq, p)) {
3162 schedstat_inc(p, se.nr_failed_migrations_running);
3163 return 0;
3167 * Aggressive migration if:
3168 * 1) task is cache cold, or
3169 * 2) too many balance attempts have failed.
3172 tsk_cache_hot = task_hot(p, rq->clock, sd);
3173 if (!tsk_cache_hot ||
3174 sd->nr_balance_failed > sd->cache_nice_tries) {
3175 #ifdef CONFIG_SCHEDSTATS
3176 if (tsk_cache_hot) {
3177 schedstat_inc(sd, lb_hot_gained[idle]);
3178 schedstat_inc(p, se.nr_forced_migrations);
3180 #endif
3181 return 1;
3184 if (tsk_cache_hot) {
3185 schedstat_inc(p, se.nr_failed_migrations_hot);
3186 return 0;
3188 return 1;
3191 static unsigned long
3192 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3193 unsigned long max_load_move, struct sched_domain *sd,
3194 enum cpu_idle_type idle, int *all_pinned,
3195 int *this_best_prio, struct rq_iterator *iterator)
3197 int loops = 0, pulled = 0, pinned = 0;
3198 struct task_struct *p;
3199 long rem_load_move = max_load_move;
3201 if (max_load_move == 0)
3202 goto out;
3204 pinned = 1;
3207 * Start the load-balancing iterator:
3209 p = iterator->start(iterator->arg);
3210 next:
3211 if (!p || loops++ > sysctl_sched_nr_migrate)
3212 goto out;
3214 if ((p->se.load.weight >> 1) > rem_load_move ||
3215 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3216 p = iterator->next(iterator->arg);
3217 goto next;
3220 pull_task(busiest, p, this_rq, this_cpu);
3221 pulled++;
3222 rem_load_move -= p->se.load.weight;
3224 #ifdef CONFIG_PREEMPT
3226 * NEWIDLE balancing is a source of latency, so preemptible kernels
3227 * will stop after the first task is pulled to minimize the critical
3228 * section.
3230 if (idle == CPU_NEWLY_IDLE)
3231 goto out;
3232 #endif
3235 * We only want to steal up to the prescribed amount of weighted load.
3237 if (rem_load_move > 0) {
3238 if (p->prio < *this_best_prio)
3239 *this_best_prio = p->prio;
3240 p = iterator->next(iterator->arg);
3241 goto next;
3243 out:
3245 * Right now, this is one of only two places pull_task() is called,
3246 * so we can safely collect pull_task() stats here rather than
3247 * inside pull_task().
3249 schedstat_add(sd, lb_gained[idle], pulled);
3251 if (all_pinned)
3252 *all_pinned = pinned;
3254 return max_load_move - rem_load_move;
3258 * move_tasks tries to move up to max_load_move weighted load from busiest to
3259 * this_rq, as part of a balancing operation within domain "sd".
3260 * Returns 1 if successful and 0 otherwise.
3262 * Called with both runqueues locked.
3264 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3265 unsigned long max_load_move,
3266 struct sched_domain *sd, enum cpu_idle_type idle,
3267 int *all_pinned)
3269 const struct sched_class *class = sched_class_highest;
3270 unsigned long total_load_moved = 0;
3271 int this_best_prio = this_rq->curr->prio;
3273 do {
3274 total_load_moved +=
3275 class->load_balance(this_rq, this_cpu, busiest,
3276 max_load_move - total_load_moved,
3277 sd, idle, all_pinned, &this_best_prio);
3278 class = class->next;
3280 #ifdef CONFIG_PREEMPT
3282 * NEWIDLE balancing is a source of latency, so preemptible
3283 * kernels will stop after the first task is pulled to minimize
3284 * the critical section.
3286 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3287 break;
3288 #endif
3289 } while (class && max_load_move > total_load_moved);
3291 return total_load_moved > 0;
3294 static int
3295 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3296 struct sched_domain *sd, enum cpu_idle_type idle,
3297 struct rq_iterator *iterator)
3299 struct task_struct *p = iterator->start(iterator->arg);
3300 int pinned = 0;
3302 while (p) {
3303 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3304 pull_task(busiest, p, this_rq, this_cpu);
3306 * Right now, this is only the second place pull_task()
3307 * is called, so we can safely collect pull_task()
3308 * stats here rather than inside pull_task().
3310 schedstat_inc(sd, lb_gained[idle]);
3312 return 1;
3314 p = iterator->next(iterator->arg);
3317 return 0;
3321 * move_one_task tries to move exactly one task from busiest to this_rq, as
3322 * part of active balancing operations within "domain".
3323 * Returns 1 if successful and 0 otherwise.
3325 * Called with both runqueues locked.
3327 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3328 struct sched_domain *sd, enum cpu_idle_type idle)
3330 const struct sched_class *class;
3332 for_each_class(class) {
3333 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3334 return 1;
3337 return 0;
3339 /********** Helpers for find_busiest_group ************************/
3341 * sd_lb_stats - Structure to store the statistics of a sched_domain
3342 * during load balancing.
3344 struct sd_lb_stats {
3345 struct sched_group *busiest; /* Busiest group in this sd */
3346 struct sched_group *this; /* Local group in this sd */
3347 unsigned long total_load; /* Total load of all groups in sd */
3348 unsigned long total_pwr; /* Total power of all groups in sd */
3349 unsigned long avg_load; /* Average load across all groups in sd */
3351 /** Statistics of this group */
3352 unsigned long this_load;
3353 unsigned long this_load_per_task;
3354 unsigned long this_nr_running;
3356 /* Statistics of the busiest group */
3357 unsigned long max_load;
3358 unsigned long busiest_load_per_task;
3359 unsigned long busiest_nr_running;
3361 int group_imb; /* Is there imbalance in this sd */
3362 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3363 int power_savings_balance; /* Is powersave balance needed for this sd */
3364 struct sched_group *group_min; /* Least loaded group in sd */
3365 struct sched_group *group_leader; /* Group which relieves group_min */
3366 unsigned long min_load_per_task; /* load_per_task in group_min */
3367 unsigned long leader_nr_running; /* Nr running of group_leader */
3368 unsigned long min_nr_running; /* Nr running of group_min */
3369 #endif
3373 * sg_lb_stats - stats of a sched_group required for load_balancing
3375 struct sg_lb_stats {
3376 unsigned long avg_load; /*Avg load across the CPUs of the group */
3377 unsigned long group_load; /* Total load over the CPUs of the group */
3378 unsigned long sum_nr_running; /* Nr tasks running in the group */
3379 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3380 unsigned long group_capacity;
3381 int group_imb; /* Is there an imbalance in the group ? */
3385 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3386 * @group: The group whose first cpu is to be returned.
3388 static inline unsigned int group_first_cpu(struct sched_group *group)
3390 return cpumask_first(sched_group_cpus(group));
3394 * get_sd_load_idx - Obtain the load index for a given sched domain.
3395 * @sd: The sched_domain whose load_idx is to be obtained.
3396 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3398 static inline int get_sd_load_idx(struct sched_domain *sd,
3399 enum cpu_idle_type idle)
3401 int load_idx;
3403 switch (idle) {
3404 case CPU_NOT_IDLE:
3405 load_idx = sd->busy_idx;
3406 break;
3408 case CPU_NEWLY_IDLE:
3409 load_idx = sd->newidle_idx;
3410 break;
3411 default:
3412 load_idx = sd->idle_idx;
3413 break;
3416 return load_idx;
3420 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3422 * init_sd_power_savings_stats - Initialize power savings statistics for
3423 * the given sched_domain, during load balancing.
3425 * @sd: Sched domain whose power-savings statistics are to be initialized.
3426 * @sds: Variable containing the statistics for sd.
3427 * @idle: Idle status of the CPU at which we're performing load-balancing.
3429 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3430 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3433 * Busy processors will not participate in power savings
3434 * balance.
3436 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3437 sds->power_savings_balance = 0;
3438 else {
3439 sds->power_savings_balance = 1;
3440 sds->min_nr_running = ULONG_MAX;
3441 sds->leader_nr_running = 0;
3446 * update_sd_power_savings_stats - Update the power saving stats for a
3447 * sched_domain while performing load balancing.
3449 * @group: sched_group belonging to the sched_domain under consideration.
3450 * @sds: Variable containing the statistics of the sched_domain
3451 * @local_group: Does group contain the CPU for which we're performing
3452 * load balancing ?
3453 * @sgs: Variable containing the statistics of the group.
3455 static inline void update_sd_power_savings_stats(struct sched_group *group,
3456 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3459 if (!sds->power_savings_balance)
3460 return;
3463 * If the local group is idle or completely loaded
3464 * no need to do power savings balance at this domain
3466 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3467 !sds->this_nr_running))
3468 sds->power_savings_balance = 0;
3471 * If a group is already running at full capacity or idle,
3472 * don't include that group in power savings calculations
3474 if (!sds->power_savings_balance ||
3475 sgs->sum_nr_running >= sgs->group_capacity ||
3476 !sgs->sum_nr_running)
3477 return;
3480 * Calculate the group which has the least non-idle load.
3481 * This is the group from where we need to pick up the load
3482 * for saving power
3484 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3485 (sgs->sum_nr_running == sds->min_nr_running &&
3486 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3487 sds->group_min = group;
3488 sds->min_nr_running = sgs->sum_nr_running;
3489 sds->min_load_per_task = sgs->sum_weighted_load /
3490 sgs->sum_nr_running;
3494 * Calculate the group which is almost near its
3495 * capacity but still has some space to pick up some load
3496 * from other group and save more power
3498 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3499 return;
3501 if (sgs->sum_nr_running > sds->leader_nr_running ||
3502 (sgs->sum_nr_running == sds->leader_nr_running &&
3503 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3504 sds->group_leader = group;
3505 sds->leader_nr_running = sgs->sum_nr_running;
3510 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3511 * @sds: Variable containing the statistics of the sched_domain
3512 * under consideration.
3513 * @this_cpu: Cpu at which we're currently performing load-balancing.
3514 * @imbalance: Variable to store the imbalance.
3516 * Description:
3517 * Check if we have potential to perform some power-savings balance.
3518 * If yes, set the busiest group to be the least loaded group in the
3519 * sched_domain, so that it's CPUs can be put to idle.
3521 * Returns 1 if there is potential to perform power-savings balance.
3522 * Else returns 0.
3524 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3525 int this_cpu, unsigned long *imbalance)
3527 if (!sds->power_savings_balance)
3528 return 0;
3530 if (sds->this != sds->group_leader ||
3531 sds->group_leader == sds->group_min)
3532 return 0;
3534 *imbalance = sds->min_load_per_task;
3535 sds->busiest = sds->group_min;
3537 return 1;
3540 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3541 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3542 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3544 return;
3547 static inline void update_sd_power_savings_stats(struct sched_group *group,
3548 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3550 return;
3553 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3554 int this_cpu, unsigned long *imbalance)
3556 return 0;
3558 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3561 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3563 return SCHED_LOAD_SCALE;
3566 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3568 return default_scale_freq_power(sd, cpu);
3571 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3573 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3574 unsigned long smt_gain = sd->smt_gain;
3576 smt_gain /= weight;
3578 return smt_gain;
3581 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3583 return default_scale_smt_power(sd, cpu);
3586 unsigned long scale_rt_power(int cpu)
3588 struct rq *rq = cpu_rq(cpu);
3589 u64 total, available;
3591 sched_avg_update(rq);
3593 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3594 available = total - rq->rt_avg;
3596 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3597 total = SCHED_LOAD_SCALE;
3599 total >>= SCHED_LOAD_SHIFT;
3601 return div_u64(available, total);
3604 static void update_cpu_power(struct sched_domain *sd, int cpu)
3606 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3607 unsigned long power = SCHED_LOAD_SCALE;
3608 struct sched_group *sdg = sd->groups;
3610 if (sched_feat(ARCH_POWER))
3611 power *= arch_scale_freq_power(sd, cpu);
3612 else
3613 power *= default_scale_freq_power(sd, cpu);
3615 power >>= SCHED_LOAD_SHIFT;
3617 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3618 if (sched_feat(ARCH_POWER))
3619 power *= arch_scale_smt_power(sd, cpu);
3620 else
3621 power *= default_scale_smt_power(sd, cpu);
3623 power >>= SCHED_LOAD_SHIFT;
3626 power *= scale_rt_power(cpu);
3627 power >>= SCHED_LOAD_SHIFT;
3629 if (!power)
3630 power = 1;
3632 sdg->cpu_power = power;
3635 static void update_group_power(struct sched_domain *sd, int cpu)
3637 struct sched_domain *child = sd->child;
3638 struct sched_group *group, *sdg = sd->groups;
3639 unsigned long power;
3641 if (!child) {
3642 update_cpu_power(sd, cpu);
3643 return;
3646 power = 0;
3648 group = child->groups;
3649 do {
3650 power += group->cpu_power;
3651 group = group->next;
3652 } while (group != child->groups);
3654 sdg->cpu_power = power;
3658 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3659 * @group: sched_group whose statistics are to be updated.
3660 * @this_cpu: Cpu for which load balance is currently performed.
3661 * @idle: Idle status of this_cpu
3662 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3663 * @sd_idle: Idle status of the sched_domain containing group.
3664 * @local_group: Does group contain this_cpu.
3665 * @cpus: Set of cpus considered for load balancing.
3666 * @balance: Should we balance.
3667 * @sgs: variable to hold the statistics for this group.
3669 static inline void update_sg_lb_stats(struct sched_domain *sd,
3670 struct sched_group *group, int this_cpu,
3671 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3672 int local_group, const struct cpumask *cpus,
3673 int *balance, struct sg_lb_stats *sgs)
3675 unsigned long load, max_cpu_load, min_cpu_load;
3676 int i;
3677 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3678 unsigned long sum_avg_load_per_task;
3679 unsigned long avg_load_per_task;
3681 if (local_group) {
3682 balance_cpu = group_first_cpu(group);
3683 if (balance_cpu == this_cpu)
3684 update_group_power(sd, this_cpu);
3687 /* Tally up the load of all CPUs in the group */
3688 sum_avg_load_per_task = avg_load_per_task = 0;
3689 max_cpu_load = 0;
3690 min_cpu_load = ~0UL;
3692 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3693 struct rq *rq = cpu_rq(i);
3695 if (*sd_idle && rq->nr_running)
3696 *sd_idle = 0;
3698 /* Bias balancing toward cpus of our domain */
3699 if (local_group) {
3700 if (idle_cpu(i) && !first_idle_cpu) {
3701 first_idle_cpu = 1;
3702 balance_cpu = i;
3705 load = target_load(i, load_idx);
3706 } else {
3707 load = source_load(i, load_idx);
3708 if (load > max_cpu_load)
3709 max_cpu_load = load;
3710 if (min_cpu_load > load)
3711 min_cpu_load = load;
3714 sgs->group_load += load;
3715 sgs->sum_nr_running += rq->nr_running;
3716 sgs->sum_weighted_load += weighted_cpuload(i);
3718 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3722 * First idle cpu or the first cpu(busiest) in this sched group
3723 * is eligible for doing load balancing at this and above
3724 * domains. In the newly idle case, we will allow all the cpu's
3725 * to do the newly idle load balance.
3727 if (idle != CPU_NEWLY_IDLE && local_group &&
3728 balance_cpu != this_cpu && balance) {
3729 *balance = 0;
3730 return;
3733 /* Adjust by relative CPU power of the group */
3734 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3738 * Consider the group unbalanced when the imbalance is larger
3739 * than the average weight of two tasks.
3741 * APZ: with cgroup the avg task weight can vary wildly and
3742 * might not be a suitable number - should we keep a
3743 * normalized nr_running number somewhere that negates
3744 * the hierarchy?
3746 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3747 group->cpu_power;
3749 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3750 sgs->group_imb = 1;
3752 sgs->group_capacity =
3753 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3757 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3758 * @sd: sched_domain whose statistics are to be updated.
3759 * @this_cpu: Cpu for which load balance is currently performed.
3760 * @idle: Idle status of this_cpu
3761 * @sd_idle: Idle status of the sched_domain containing group.
3762 * @cpus: Set of cpus considered for load balancing.
3763 * @balance: Should we balance.
3764 * @sds: variable to hold the statistics for this sched_domain.
3766 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3767 enum cpu_idle_type idle, int *sd_idle,
3768 const struct cpumask *cpus, int *balance,
3769 struct sd_lb_stats *sds)
3771 struct sched_domain *child = sd->child;
3772 struct sched_group *group = sd->groups;
3773 struct sg_lb_stats sgs;
3774 int load_idx, prefer_sibling = 0;
3776 if (child && child->flags & SD_PREFER_SIBLING)
3777 prefer_sibling = 1;
3779 init_sd_power_savings_stats(sd, sds, idle);
3780 load_idx = get_sd_load_idx(sd, idle);
3782 do {
3783 int local_group;
3785 local_group = cpumask_test_cpu(this_cpu,
3786 sched_group_cpus(group));
3787 memset(&sgs, 0, sizeof(sgs));
3788 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3789 local_group, cpus, balance, &sgs);
3791 if (local_group && balance && !(*balance))
3792 return;
3794 sds->total_load += sgs.group_load;
3795 sds->total_pwr += group->cpu_power;
3798 * In case the child domain prefers tasks go to siblings
3799 * first, lower the group capacity to one so that we'll try
3800 * and move all the excess tasks away.
3802 if (prefer_sibling)
3803 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3805 if (local_group) {
3806 sds->this_load = sgs.avg_load;
3807 sds->this = group;
3808 sds->this_nr_running = sgs.sum_nr_running;
3809 sds->this_load_per_task = sgs.sum_weighted_load;
3810 } else if (sgs.avg_load > sds->max_load &&
3811 (sgs.sum_nr_running > sgs.group_capacity ||
3812 sgs.group_imb)) {
3813 sds->max_load = sgs.avg_load;
3814 sds->busiest = group;
3815 sds->busiest_nr_running = sgs.sum_nr_running;
3816 sds->busiest_load_per_task = sgs.sum_weighted_load;
3817 sds->group_imb = sgs.group_imb;
3820 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3821 group = group->next;
3822 } while (group != sd->groups);
3826 * fix_small_imbalance - Calculate the minor imbalance that exists
3827 * amongst the groups of a sched_domain, during
3828 * load balancing.
3829 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3830 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3831 * @imbalance: Variable to store the imbalance.
3833 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3834 int this_cpu, unsigned long *imbalance)
3836 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3837 unsigned int imbn = 2;
3839 if (sds->this_nr_running) {
3840 sds->this_load_per_task /= sds->this_nr_running;
3841 if (sds->busiest_load_per_task >
3842 sds->this_load_per_task)
3843 imbn = 1;
3844 } else
3845 sds->this_load_per_task =
3846 cpu_avg_load_per_task(this_cpu);
3848 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3849 sds->busiest_load_per_task * imbn) {
3850 *imbalance = sds->busiest_load_per_task;
3851 return;
3855 * OK, we don't have enough imbalance to justify moving tasks,
3856 * however we may be able to increase total CPU power used by
3857 * moving them.
3860 pwr_now += sds->busiest->cpu_power *
3861 min(sds->busiest_load_per_task, sds->max_load);
3862 pwr_now += sds->this->cpu_power *
3863 min(sds->this_load_per_task, sds->this_load);
3864 pwr_now /= SCHED_LOAD_SCALE;
3866 /* Amount of load we'd subtract */
3867 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3868 sds->busiest->cpu_power;
3869 if (sds->max_load > tmp)
3870 pwr_move += sds->busiest->cpu_power *
3871 min(sds->busiest_load_per_task, sds->max_load - tmp);
3873 /* Amount of load we'd add */
3874 if (sds->max_load * sds->busiest->cpu_power <
3875 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3876 tmp = (sds->max_load * sds->busiest->cpu_power) /
3877 sds->this->cpu_power;
3878 else
3879 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3880 sds->this->cpu_power;
3881 pwr_move += sds->this->cpu_power *
3882 min(sds->this_load_per_task, sds->this_load + tmp);
3883 pwr_move /= SCHED_LOAD_SCALE;
3885 /* Move if we gain throughput */
3886 if (pwr_move > pwr_now)
3887 *imbalance = sds->busiest_load_per_task;
3891 * calculate_imbalance - Calculate the amount of imbalance present within the
3892 * groups of a given sched_domain during load balance.
3893 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3894 * @this_cpu: Cpu for which currently load balance is being performed.
3895 * @imbalance: The variable to store the imbalance.
3897 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3898 unsigned long *imbalance)
3900 unsigned long max_pull;
3902 * In the presence of smp nice balancing, certain scenarios can have
3903 * max load less than avg load(as we skip the groups at or below
3904 * its cpu_power, while calculating max_load..)
3906 if (sds->max_load < sds->avg_load) {
3907 *imbalance = 0;
3908 return fix_small_imbalance(sds, this_cpu, imbalance);
3911 /* Don't want to pull so many tasks that a group would go idle */
3912 max_pull = min(sds->max_load - sds->avg_load,
3913 sds->max_load - sds->busiest_load_per_task);
3915 /* How much load to actually move to equalise the imbalance */
3916 *imbalance = min(max_pull * sds->busiest->cpu_power,
3917 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3918 / SCHED_LOAD_SCALE;
3921 * if *imbalance is less than the average load per runnable task
3922 * there is no gaurantee that any tasks will be moved so we'll have
3923 * a think about bumping its value to force at least one task to be
3924 * moved
3926 if (*imbalance < sds->busiest_load_per_task)
3927 return fix_small_imbalance(sds, this_cpu, imbalance);
3930 /******* find_busiest_group() helpers end here *********************/
3933 * find_busiest_group - Returns the busiest group within the sched_domain
3934 * if there is an imbalance. If there isn't an imbalance, and
3935 * the user has opted for power-savings, it returns a group whose
3936 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3937 * such a group exists.
3939 * Also calculates the amount of weighted load which should be moved
3940 * to restore balance.
3942 * @sd: The sched_domain whose busiest group is to be returned.
3943 * @this_cpu: The cpu for which load balancing is currently being performed.
3944 * @imbalance: Variable which stores amount of weighted load which should
3945 * be moved to restore balance/put a group to idle.
3946 * @idle: The idle status of this_cpu.
3947 * @sd_idle: The idleness of sd
3948 * @cpus: The set of CPUs under consideration for load-balancing.
3949 * @balance: Pointer to a variable indicating if this_cpu
3950 * is the appropriate cpu to perform load balancing at this_level.
3952 * Returns: - the busiest group if imbalance exists.
3953 * - If no imbalance and user has opted for power-savings balance,
3954 * return the least loaded group whose CPUs can be
3955 * put to idle by rebalancing its tasks onto our group.
3957 static struct sched_group *
3958 find_busiest_group(struct sched_domain *sd, int this_cpu,
3959 unsigned long *imbalance, enum cpu_idle_type idle,
3960 int *sd_idle, const struct cpumask *cpus, int *balance)
3962 struct sd_lb_stats sds;
3964 memset(&sds, 0, sizeof(sds));
3967 * Compute the various statistics relavent for load balancing at
3968 * this level.
3970 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3971 balance, &sds);
3973 /* Cases where imbalance does not exist from POV of this_cpu */
3974 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3975 * at this level.
3976 * 2) There is no busy sibling group to pull from.
3977 * 3) This group is the busiest group.
3978 * 4) This group is more busy than the avg busieness at this
3979 * sched_domain.
3980 * 5) The imbalance is within the specified limit.
3981 * 6) Any rebalance would lead to ping-pong
3983 if (balance && !(*balance))
3984 goto ret;
3986 if (!sds.busiest || sds.busiest_nr_running == 0)
3987 goto out_balanced;
3989 if (sds.this_load >= sds.max_load)
3990 goto out_balanced;
3992 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3994 if (sds.this_load >= sds.avg_load)
3995 goto out_balanced;
3997 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3998 goto out_balanced;
4000 sds.busiest_load_per_task /= sds.busiest_nr_running;
4001 if (sds.group_imb)
4002 sds.busiest_load_per_task =
4003 min(sds.busiest_load_per_task, sds.avg_load);
4006 * We're trying to get all the cpus to the average_load, so we don't
4007 * want to push ourselves above the average load, nor do we wish to
4008 * reduce the max loaded cpu below the average load, as either of these
4009 * actions would just result in more rebalancing later, and ping-pong
4010 * tasks around. Thus we look for the minimum possible imbalance.
4011 * Negative imbalances (*we* are more loaded than anyone else) will
4012 * be counted as no imbalance for these purposes -- we can't fix that
4013 * by pulling tasks to us. Be careful of negative numbers as they'll
4014 * appear as very large values with unsigned longs.
4016 if (sds.max_load <= sds.busiest_load_per_task)
4017 goto out_balanced;
4019 /* Looks like there is an imbalance. Compute it */
4020 calculate_imbalance(&sds, this_cpu, imbalance);
4021 return sds.busiest;
4023 out_balanced:
4025 * There is no obvious imbalance. But check if we can do some balancing
4026 * to save power.
4028 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4029 return sds.busiest;
4030 ret:
4031 *imbalance = 0;
4032 return NULL;
4036 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4038 static struct rq *
4039 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4040 unsigned long imbalance, const struct cpumask *cpus)
4042 struct rq *busiest = NULL, *rq;
4043 unsigned long max_load = 0;
4044 int i;
4046 for_each_cpu(i, sched_group_cpus(group)) {
4047 unsigned long power = power_of(i);
4048 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4049 unsigned long wl;
4051 if (!cpumask_test_cpu(i, cpus))
4052 continue;
4054 rq = cpu_rq(i);
4055 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4056 wl /= power;
4058 if (capacity && rq->nr_running == 1 && wl > imbalance)
4059 continue;
4061 if (wl > max_load) {
4062 max_load = wl;
4063 busiest = rq;
4067 return busiest;
4071 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4072 * so long as it is large enough.
4074 #define MAX_PINNED_INTERVAL 512
4076 /* Working cpumask for load_balance and load_balance_newidle. */
4077 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4080 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4081 * tasks if there is an imbalance.
4083 static int load_balance(int this_cpu, struct rq *this_rq,
4084 struct sched_domain *sd, enum cpu_idle_type idle,
4085 int *balance)
4087 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4088 struct sched_group *group;
4089 unsigned long imbalance;
4090 struct rq *busiest;
4091 unsigned long flags;
4092 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4094 cpumask_setall(cpus);
4097 * When power savings policy is enabled for the parent domain, idle
4098 * sibling can pick up load irrespective of busy siblings. In this case,
4099 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4100 * portraying it as CPU_NOT_IDLE.
4102 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4103 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4104 sd_idle = 1;
4106 schedstat_inc(sd, lb_count[idle]);
4108 redo:
4109 update_shares(sd);
4110 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4111 cpus, balance);
4113 if (*balance == 0)
4114 goto out_balanced;
4116 if (!group) {
4117 schedstat_inc(sd, lb_nobusyg[idle]);
4118 goto out_balanced;
4121 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4122 if (!busiest) {
4123 schedstat_inc(sd, lb_nobusyq[idle]);
4124 goto out_balanced;
4127 BUG_ON(busiest == this_rq);
4129 schedstat_add(sd, lb_imbalance[idle], imbalance);
4131 ld_moved = 0;
4132 if (busiest->nr_running > 1) {
4134 * Attempt to move tasks. If find_busiest_group has found
4135 * an imbalance but busiest->nr_running <= 1, the group is
4136 * still unbalanced. ld_moved simply stays zero, so it is
4137 * correctly treated as an imbalance.
4139 local_irq_save(flags);
4140 double_rq_lock(this_rq, busiest);
4141 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4142 imbalance, sd, idle, &all_pinned);
4143 double_rq_unlock(this_rq, busiest);
4144 local_irq_restore(flags);
4147 * some other cpu did the load balance for us.
4149 if (ld_moved && this_cpu != smp_processor_id())
4150 resched_cpu(this_cpu);
4152 /* All tasks on this runqueue were pinned by CPU affinity */
4153 if (unlikely(all_pinned)) {
4154 cpumask_clear_cpu(cpu_of(busiest), cpus);
4155 if (!cpumask_empty(cpus))
4156 goto redo;
4157 goto out_balanced;
4161 if (!ld_moved) {
4162 schedstat_inc(sd, lb_failed[idle]);
4163 sd->nr_balance_failed++;
4165 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4167 spin_lock_irqsave(&busiest->lock, flags);
4169 /* don't kick the migration_thread, if the curr
4170 * task on busiest cpu can't be moved to this_cpu
4172 if (!cpumask_test_cpu(this_cpu,
4173 &busiest->curr->cpus_allowed)) {
4174 spin_unlock_irqrestore(&busiest->lock, flags);
4175 all_pinned = 1;
4176 goto out_one_pinned;
4179 if (!busiest->active_balance) {
4180 busiest->active_balance = 1;
4181 busiest->push_cpu = this_cpu;
4182 active_balance = 1;
4184 spin_unlock_irqrestore(&busiest->lock, flags);
4185 if (active_balance)
4186 wake_up_process(busiest->migration_thread);
4189 * We've kicked active balancing, reset the failure
4190 * counter.
4192 sd->nr_balance_failed = sd->cache_nice_tries+1;
4194 } else
4195 sd->nr_balance_failed = 0;
4197 if (likely(!active_balance)) {
4198 /* We were unbalanced, so reset the balancing interval */
4199 sd->balance_interval = sd->min_interval;
4200 } else {
4202 * If we've begun active balancing, start to back off. This
4203 * case may not be covered by the all_pinned logic if there
4204 * is only 1 task on the busy runqueue (because we don't call
4205 * move_tasks).
4207 if (sd->balance_interval < sd->max_interval)
4208 sd->balance_interval *= 2;
4211 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4212 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4213 ld_moved = -1;
4215 goto out;
4217 out_balanced:
4218 schedstat_inc(sd, lb_balanced[idle]);
4220 sd->nr_balance_failed = 0;
4222 out_one_pinned:
4223 /* tune up the balancing interval */
4224 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4225 (sd->balance_interval < sd->max_interval))
4226 sd->balance_interval *= 2;
4228 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4229 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4230 ld_moved = -1;
4231 else
4232 ld_moved = 0;
4233 out:
4234 if (ld_moved)
4235 update_shares(sd);
4236 return ld_moved;
4240 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4241 * tasks if there is an imbalance.
4243 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4244 * this_rq is locked.
4246 static int
4247 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4249 struct sched_group *group;
4250 struct rq *busiest = NULL;
4251 unsigned long imbalance;
4252 int ld_moved = 0;
4253 int sd_idle = 0;
4254 int all_pinned = 0;
4255 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4257 cpumask_setall(cpus);
4260 * When power savings policy is enabled for the parent domain, idle
4261 * sibling can pick up load irrespective of busy siblings. In this case,
4262 * let the state of idle sibling percolate up as IDLE, instead of
4263 * portraying it as CPU_NOT_IDLE.
4265 if (sd->flags & SD_SHARE_CPUPOWER &&
4266 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4267 sd_idle = 1;
4269 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4270 redo:
4271 update_shares_locked(this_rq, sd);
4272 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4273 &sd_idle, cpus, NULL);
4274 if (!group) {
4275 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4276 goto out_balanced;
4279 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4280 if (!busiest) {
4281 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4282 goto out_balanced;
4285 BUG_ON(busiest == this_rq);
4287 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4289 ld_moved = 0;
4290 if (busiest->nr_running > 1) {
4291 /* Attempt to move tasks */
4292 double_lock_balance(this_rq, busiest);
4293 /* this_rq->clock is already updated */
4294 update_rq_clock(busiest);
4295 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4296 imbalance, sd, CPU_NEWLY_IDLE,
4297 &all_pinned);
4298 double_unlock_balance(this_rq, busiest);
4300 if (unlikely(all_pinned)) {
4301 cpumask_clear_cpu(cpu_of(busiest), cpus);
4302 if (!cpumask_empty(cpus))
4303 goto redo;
4307 if (!ld_moved) {
4308 int active_balance = 0;
4310 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4311 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4312 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4313 return -1;
4315 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4316 return -1;
4318 if (sd->nr_balance_failed++ < 2)
4319 return -1;
4322 * The only task running in a non-idle cpu can be moved to this
4323 * cpu in an attempt to completely freeup the other CPU
4324 * package. The same method used to move task in load_balance()
4325 * have been extended for load_balance_newidle() to speedup
4326 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4328 * The package power saving logic comes from
4329 * find_busiest_group(). If there are no imbalance, then
4330 * f_b_g() will return NULL. However when sched_mc={1,2} then
4331 * f_b_g() will select a group from which a running task may be
4332 * pulled to this cpu in order to make the other package idle.
4333 * If there is no opportunity to make a package idle and if
4334 * there are no imbalance, then f_b_g() will return NULL and no
4335 * action will be taken in load_balance_newidle().
4337 * Under normal task pull operation due to imbalance, there
4338 * will be more than one task in the source run queue and
4339 * move_tasks() will succeed. ld_moved will be true and this
4340 * active balance code will not be triggered.
4343 /* Lock busiest in correct order while this_rq is held */
4344 double_lock_balance(this_rq, busiest);
4347 * don't kick the migration_thread, if the curr
4348 * task on busiest cpu can't be moved to this_cpu
4350 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4351 double_unlock_balance(this_rq, busiest);
4352 all_pinned = 1;
4353 return ld_moved;
4356 if (!busiest->active_balance) {
4357 busiest->active_balance = 1;
4358 busiest->push_cpu = this_cpu;
4359 active_balance = 1;
4362 double_unlock_balance(this_rq, busiest);
4364 * Should not call ttwu while holding a rq->lock
4366 spin_unlock(&this_rq->lock);
4367 if (active_balance)
4368 wake_up_process(busiest->migration_thread);
4369 spin_lock(&this_rq->lock);
4371 } else
4372 sd->nr_balance_failed = 0;
4374 update_shares_locked(this_rq, sd);
4375 return ld_moved;
4377 out_balanced:
4378 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4379 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4380 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4381 return -1;
4382 sd->nr_balance_failed = 0;
4384 return 0;
4388 * idle_balance is called by schedule() if this_cpu is about to become
4389 * idle. Attempts to pull tasks from other CPUs.
4391 static void idle_balance(int this_cpu, struct rq *this_rq)
4393 struct sched_domain *sd;
4394 int pulled_task = 0;
4395 unsigned long next_balance = jiffies + HZ;
4397 for_each_domain(this_cpu, sd) {
4398 unsigned long interval;
4400 if (!(sd->flags & SD_LOAD_BALANCE))
4401 continue;
4403 if (sd->flags & SD_BALANCE_NEWIDLE)
4404 /* If we've pulled tasks over stop searching: */
4405 pulled_task = load_balance_newidle(this_cpu, this_rq,
4406 sd);
4408 interval = msecs_to_jiffies(sd->balance_interval);
4409 if (time_after(next_balance, sd->last_balance + interval))
4410 next_balance = sd->last_balance + interval;
4411 if (pulled_task)
4412 break;
4414 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4416 * We are going idle. next_balance may be set based on
4417 * a busy processor. So reset next_balance.
4419 this_rq->next_balance = next_balance;
4424 * active_load_balance is run by migration threads. It pushes running tasks
4425 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4426 * running on each physical CPU where possible, and avoids physical /
4427 * logical imbalances.
4429 * Called with busiest_rq locked.
4431 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4433 int target_cpu = busiest_rq->push_cpu;
4434 struct sched_domain *sd;
4435 struct rq *target_rq;
4437 /* Is there any task to move? */
4438 if (busiest_rq->nr_running <= 1)
4439 return;
4441 target_rq = cpu_rq(target_cpu);
4444 * This condition is "impossible", if it occurs
4445 * we need to fix it. Originally reported by
4446 * Bjorn Helgaas on a 128-cpu setup.
4448 BUG_ON(busiest_rq == target_rq);
4450 /* move a task from busiest_rq to target_rq */
4451 double_lock_balance(busiest_rq, target_rq);
4452 update_rq_clock(busiest_rq);
4453 update_rq_clock(target_rq);
4455 /* Search for an sd spanning us and the target CPU. */
4456 for_each_domain(target_cpu, sd) {
4457 if ((sd->flags & SD_LOAD_BALANCE) &&
4458 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4459 break;
4462 if (likely(sd)) {
4463 schedstat_inc(sd, alb_count);
4465 if (move_one_task(target_rq, target_cpu, busiest_rq,
4466 sd, CPU_IDLE))
4467 schedstat_inc(sd, alb_pushed);
4468 else
4469 schedstat_inc(sd, alb_failed);
4471 double_unlock_balance(busiest_rq, target_rq);
4474 #ifdef CONFIG_NO_HZ
4475 static struct {
4476 atomic_t load_balancer;
4477 cpumask_var_t cpu_mask;
4478 cpumask_var_t ilb_grp_nohz_mask;
4479 } nohz ____cacheline_aligned = {
4480 .load_balancer = ATOMIC_INIT(-1),
4483 int get_nohz_load_balancer(void)
4485 return atomic_read(&nohz.load_balancer);
4488 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4490 * lowest_flag_domain - Return lowest sched_domain containing flag.
4491 * @cpu: The cpu whose lowest level of sched domain is to
4492 * be returned.
4493 * @flag: The flag to check for the lowest sched_domain
4494 * for the given cpu.
4496 * Returns the lowest sched_domain of a cpu which contains the given flag.
4498 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4500 struct sched_domain *sd;
4502 for_each_domain(cpu, sd)
4503 if (sd && (sd->flags & flag))
4504 break;
4506 return sd;
4510 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4511 * @cpu: The cpu whose domains we're iterating over.
4512 * @sd: variable holding the value of the power_savings_sd
4513 * for cpu.
4514 * @flag: The flag to filter the sched_domains to be iterated.
4516 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4517 * set, starting from the lowest sched_domain to the highest.
4519 #define for_each_flag_domain(cpu, sd, flag) \
4520 for (sd = lowest_flag_domain(cpu, flag); \
4521 (sd && (sd->flags & flag)); sd = sd->parent)
4524 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4525 * @ilb_group: group to be checked for semi-idleness
4527 * Returns: 1 if the group is semi-idle. 0 otherwise.
4529 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4530 * and atleast one non-idle CPU. This helper function checks if the given
4531 * sched_group is semi-idle or not.
4533 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4535 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4536 sched_group_cpus(ilb_group));
4539 * A sched_group is semi-idle when it has atleast one busy cpu
4540 * and atleast one idle cpu.
4542 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4543 return 0;
4545 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4546 return 0;
4548 return 1;
4551 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4552 * @cpu: The cpu which is nominating a new idle_load_balancer.
4554 * Returns: Returns the id of the idle load balancer if it exists,
4555 * Else, returns >= nr_cpu_ids.
4557 * This algorithm picks the idle load balancer such that it belongs to a
4558 * semi-idle powersavings sched_domain. The idea is to try and avoid
4559 * completely idle packages/cores just for the purpose of idle load balancing
4560 * when there are other idle cpu's which are better suited for that job.
4562 static int find_new_ilb(int cpu)
4564 struct sched_domain *sd;
4565 struct sched_group *ilb_group;
4568 * Have idle load balancer selection from semi-idle packages only
4569 * when power-aware load balancing is enabled
4571 if (!(sched_smt_power_savings || sched_mc_power_savings))
4572 goto out_done;
4575 * Optimize for the case when we have no idle CPUs or only one
4576 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4578 if (cpumask_weight(nohz.cpu_mask) < 2)
4579 goto out_done;
4581 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4582 ilb_group = sd->groups;
4584 do {
4585 if (is_semi_idle_group(ilb_group))
4586 return cpumask_first(nohz.ilb_grp_nohz_mask);
4588 ilb_group = ilb_group->next;
4590 } while (ilb_group != sd->groups);
4593 out_done:
4594 return cpumask_first(nohz.cpu_mask);
4596 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4597 static inline int find_new_ilb(int call_cpu)
4599 return cpumask_first(nohz.cpu_mask);
4601 #endif
4604 * This routine will try to nominate the ilb (idle load balancing)
4605 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4606 * load balancing on behalf of all those cpus. If all the cpus in the system
4607 * go into this tickless mode, then there will be no ilb owner (as there is
4608 * no need for one) and all the cpus will sleep till the next wakeup event
4609 * arrives...
4611 * For the ilb owner, tick is not stopped. And this tick will be used
4612 * for idle load balancing. ilb owner will still be part of
4613 * nohz.cpu_mask..
4615 * While stopping the tick, this cpu will become the ilb owner if there
4616 * is no other owner. And will be the owner till that cpu becomes busy
4617 * or if all cpus in the system stop their ticks at which point
4618 * there is no need for ilb owner.
4620 * When the ilb owner becomes busy, it nominates another owner, during the
4621 * next busy scheduler_tick()
4623 int select_nohz_load_balancer(int stop_tick)
4625 int cpu = smp_processor_id();
4627 if (stop_tick) {
4628 cpu_rq(cpu)->in_nohz_recently = 1;
4630 if (!cpu_active(cpu)) {
4631 if (atomic_read(&nohz.load_balancer) != cpu)
4632 return 0;
4635 * If we are going offline and still the leader,
4636 * give up!
4638 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4639 BUG();
4641 return 0;
4644 cpumask_set_cpu(cpu, nohz.cpu_mask);
4646 /* time for ilb owner also to sleep */
4647 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4648 if (atomic_read(&nohz.load_balancer) == cpu)
4649 atomic_set(&nohz.load_balancer, -1);
4650 return 0;
4653 if (atomic_read(&nohz.load_balancer) == -1) {
4654 /* make me the ilb owner */
4655 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4656 return 1;
4657 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4658 int new_ilb;
4660 if (!(sched_smt_power_savings ||
4661 sched_mc_power_savings))
4662 return 1;
4664 * Check to see if there is a more power-efficient
4665 * ilb.
4667 new_ilb = find_new_ilb(cpu);
4668 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4669 atomic_set(&nohz.load_balancer, -1);
4670 resched_cpu(new_ilb);
4671 return 0;
4673 return 1;
4675 } else {
4676 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4677 return 0;
4679 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4681 if (atomic_read(&nohz.load_balancer) == cpu)
4682 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4683 BUG();
4685 return 0;
4687 #endif
4689 static DEFINE_SPINLOCK(balancing);
4692 * It checks each scheduling domain to see if it is due to be balanced,
4693 * and initiates a balancing operation if so.
4695 * Balancing parameters are set up in arch_init_sched_domains.
4697 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4699 int balance = 1;
4700 struct rq *rq = cpu_rq(cpu);
4701 unsigned long interval;
4702 struct sched_domain *sd;
4703 /* Earliest time when we have to do rebalance again */
4704 unsigned long next_balance = jiffies + 60*HZ;
4705 int update_next_balance = 0;
4706 int need_serialize;
4708 for_each_domain(cpu, sd) {
4709 if (!(sd->flags & SD_LOAD_BALANCE))
4710 continue;
4712 interval = sd->balance_interval;
4713 if (idle != CPU_IDLE)
4714 interval *= sd->busy_factor;
4716 /* scale ms to jiffies */
4717 interval = msecs_to_jiffies(interval);
4718 if (unlikely(!interval))
4719 interval = 1;
4720 if (interval > HZ*NR_CPUS/10)
4721 interval = HZ*NR_CPUS/10;
4723 need_serialize = sd->flags & SD_SERIALIZE;
4725 if (need_serialize) {
4726 if (!spin_trylock(&balancing))
4727 goto out;
4730 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4731 if (load_balance(cpu, rq, sd, idle, &balance)) {
4733 * We've pulled tasks over so either we're no
4734 * longer idle, or one of our SMT siblings is
4735 * not idle.
4737 idle = CPU_NOT_IDLE;
4739 sd->last_balance = jiffies;
4741 if (need_serialize)
4742 spin_unlock(&balancing);
4743 out:
4744 if (time_after(next_balance, sd->last_balance + interval)) {
4745 next_balance = sd->last_balance + interval;
4746 update_next_balance = 1;
4750 * Stop the load balance at this level. There is another
4751 * CPU in our sched group which is doing load balancing more
4752 * actively.
4754 if (!balance)
4755 break;
4759 * next_balance will be updated only when there is a need.
4760 * When the cpu is attached to null domain for ex, it will not be
4761 * updated.
4763 if (likely(update_next_balance))
4764 rq->next_balance = next_balance;
4768 * run_rebalance_domains is triggered when needed from the scheduler tick.
4769 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4770 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4772 static void run_rebalance_domains(struct softirq_action *h)
4774 int this_cpu = smp_processor_id();
4775 struct rq *this_rq = cpu_rq(this_cpu);
4776 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4777 CPU_IDLE : CPU_NOT_IDLE;
4779 rebalance_domains(this_cpu, idle);
4781 #ifdef CONFIG_NO_HZ
4783 * If this cpu is the owner for idle load balancing, then do the
4784 * balancing on behalf of the other idle cpus whose ticks are
4785 * stopped.
4787 if (this_rq->idle_at_tick &&
4788 atomic_read(&nohz.load_balancer) == this_cpu) {
4789 struct rq *rq;
4790 int balance_cpu;
4792 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4793 if (balance_cpu == this_cpu)
4794 continue;
4797 * If this cpu gets work to do, stop the load balancing
4798 * work being done for other cpus. Next load
4799 * balancing owner will pick it up.
4801 if (need_resched())
4802 break;
4804 rebalance_domains(balance_cpu, CPU_IDLE);
4806 rq = cpu_rq(balance_cpu);
4807 if (time_after(this_rq->next_balance, rq->next_balance))
4808 this_rq->next_balance = rq->next_balance;
4811 #endif
4814 static inline int on_null_domain(int cpu)
4816 return !rcu_dereference(cpu_rq(cpu)->sd);
4820 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4822 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4823 * idle load balancing owner or decide to stop the periodic load balancing,
4824 * if the whole system is idle.
4826 static inline void trigger_load_balance(struct rq *rq, int cpu)
4828 #ifdef CONFIG_NO_HZ
4830 * If we were in the nohz mode recently and busy at the current
4831 * scheduler tick, then check if we need to nominate new idle
4832 * load balancer.
4834 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4835 rq->in_nohz_recently = 0;
4837 if (atomic_read(&nohz.load_balancer) == cpu) {
4838 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4839 atomic_set(&nohz.load_balancer, -1);
4842 if (atomic_read(&nohz.load_balancer) == -1) {
4843 int ilb = find_new_ilb(cpu);
4845 if (ilb < nr_cpu_ids)
4846 resched_cpu(ilb);
4851 * If this cpu is idle and doing idle load balancing for all the
4852 * cpus with ticks stopped, is it time for that to stop?
4854 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4855 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4856 resched_cpu(cpu);
4857 return;
4861 * If this cpu is idle and the idle load balancing is done by
4862 * someone else, then no need raise the SCHED_SOFTIRQ
4864 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4865 cpumask_test_cpu(cpu, nohz.cpu_mask))
4866 return;
4867 #endif
4868 /* Don't need to rebalance while attached to NULL domain */
4869 if (time_after_eq(jiffies, rq->next_balance) &&
4870 likely(!on_null_domain(cpu)))
4871 raise_softirq(SCHED_SOFTIRQ);
4874 #else /* CONFIG_SMP */
4877 * on UP we do not need to balance between CPUs:
4879 static inline void idle_balance(int cpu, struct rq *rq)
4883 #endif
4885 DEFINE_PER_CPU(struct kernel_stat, kstat);
4887 EXPORT_PER_CPU_SYMBOL(kstat);
4890 * Return any ns on the sched_clock that have not yet been accounted in
4891 * @p in case that task is currently running.
4893 * Called with task_rq_lock() held on @rq.
4895 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4897 u64 ns = 0;
4899 if (task_current(rq, p)) {
4900 update_rq_clock(rq);
4901 ns = rq->clock - p->se.exec_start;
4902 if ((s64)ns < 0)
4903 ns = 0;
4906 return ns;
4909 unsigned long long task_delta_exec(struct task_struct *p)
4911 unsigned long flags;
4912 struct rq *rq;
4913 u64 ns = 0;
4915 rq = task_rq_lock(p, &flags);
4916 ns = do_task_delta_exec(p, rq);
4917 task_rq_unlock(rq, &flags);
4919 return ns;
4923 * Return accounted runtime for the task.
4924 * In case the task is currently running, return the runtime plus current's
4925 * pending runtime that have not been accounted yet.
4927 unsigned long long task_sched_runtime(struct task_struct *p)
4929 unsigned long flags;
4930 struct rq *rq;
4931 u64 ns = 0;
4933 rq = task_rq_lock(p, &flags);
4934 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4935 task_rq_unlock(rq, &flags);
4937 return ns;
4941 * Return sum_exec_runtime for the thread group.
4942 * In case the task is currently running, return the sum plus current's
4943 * pending runtime that have not been accounted yet.
4945 * Note that the thread group might have other running tasks as well,
4946 * so the return value not includes other pending runtime that other
4947 * running tasks might have.
4949 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4951 struct task_cputime totals;
4952 unsigned long flags;
4953 struct rq *rq;
4954 u64 ns;
4956 rq = task_rq_lock(p, &flags);
4957 thread_group_cputime(p, &totals);
4958 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4959 task_rq_unlock(rq, &flags);
4961 return ns;
4965 * Account user cpu time to a process.
4966 * @p: the process that the cpu time gets accounted to
4967 * @cputime: the cpu time spent in user space since the last update
4968 * @cputime_scaled: cputime scaled by cpu frequency
4970 void account_user_time(struct task_struct *p, cputime_t cputime,
4971 cputime_t cputime_scaled)
4973 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4974 cputime64_t tmp;
4976 /* Add user time to process. */
4977 p->utime = cputime_add(p->utime, cputime);
4978 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4979 account_group_user_time(p, cputime);
4981 /* Add user time to cpustat. */
4982 tmp = cputime_to_cputime64(cputime);
4983 if (TASK_NICE(p) > 0)
4984 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4985 else
4986 cpustat->user = cputime64_add(cpustat->user, tmp);
4988 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4989 /* Account for user time used */
4990 acct_update_integrals(p);
4994 * Account guest cpu time to a process.
4995 * @p: the process that the cpu time gets accounted to
4996 * @cputime: the cpu time spent in virtual machine since the last update
4997 * @cputime_scaled: cputime scaled by cpu frequency
4999 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5000 cputime_t cputime_scaled)
5002 cputime64_t tmp;
5003 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5005 tmp = cputime_to_cputime64(cputime);
5007 /* Add guest time to process. */
5008 p->utime = cputime_add(p->utime, cputime);
5009 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5010 account_group_user_time(p, cputime);
5011 p->gtime = cputime_add(p->gtime, cputime);
5013 /* Add guest time to cpustat. */
5014 cpustat->user = cputime64_add(cpustat->user, tmp);
5015 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5019 * Account system cpu time to a process.
5020 * @p: the process that the cpu time gets accounted to
5021 * @hardirq_offset: the offset to subtract from hardirq_count()
5022 * @cputime: the cpu time spent in kernel space since the last update
5023 * @cputime_scaled: cputime scaled by cpu frequency
5025 void account_system_time(struct task_struct *p, int hardirq_offset,
5026 cputime_t cputime, cputime_t cputime_scaled)
5028 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5029 cputime64_t tmp;
5031 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5032 account_guest_time(p, cputime, cputime_scaled);
5033 return;
5036 /* Add system time to process. */
5037 p->stime = cputime_add(p->stime, cputime);
5038 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5039 account_group_system_time(p, cputime);
5041 /* Add system time to cpustat. */
5042 tmp = cputime_to_cputime64(cputime);
5043 if (hardirq_count() - hardirq_offset)
5044 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5045 else if (softirq_count())
5046 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5047 else
5048 cpustat->system = cputime64_add(cpustat->system, tmp);
5050 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5052 /* Account for system time used */
5053 acct_update_integrals(p);
5057 * Account for involuntary wait time.
5058 * @steal: the cpu time spent in involuntary wait
5060 void account_steal_time(cputime_t cputime)
5062 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5063 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5065 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5069 * Account for idle time.
5070 * @cputime: the cpu time spent in idle wait
5072 void account_idle_time(cputime_t cputime)
5074 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5075 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5076 struct rq *rq = this_rq();
5078 if (atomic_read(&rq->nr_iowait) > 0)
5079 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5080 else
5081 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5084 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5087 * Account a single tick of cpu time.
5088 * @p: the process that the cpu time gets accounted to
5089 * @user_tick: indicates if the tick is a user or a system tick
5091 void account_process_tick(struct task_struct *p, int user_tick)
5093 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5094 struct rq *rq = this_rq();
5096 if (user_tick)
5097 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5098 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5099 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5100 one_jiffy_scaled);
5101 else
5102 account_idle_time(cputime_one_jiffy);
5106 * Account multiple ticks of steal time.
5107 * @p: the process from which the cpu time has been stolen
5108 * @ticks: number of stolen ticks
5110 void account_steal_ticks(unsigned long ticks)
5112 account_steal_time(jiffies_to_cputime(ticks));
5116 * Account multiple ticks of idle time.
5117 * @ticks: number of stolen ticks
5119 void account_idle_ticks(unsigned long ticks)
5121 account_idle_time(jiffies_to_cputime(ticks));
5124 #endif
5127 * Use precise platform statistics if available:
5129 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5130 cputime_t task_utime(struct task_struct *p)
5132 return p->utime;
5135 cputime_t task_stime(struct task_struct *p)
5137 return p->stime;
5139 #else
5140 cputime_t task_utime(struct task_struct *p)
5142 clock_t utime = cputime_to_clock_t(p->utime),
5143 total = utime + cputime_to_clock_t(p->stime);
5144 u64 temp;
5147 * Use CFS's precise accounting:
5149 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5151 if (total) {
5152 temp *= utime;
5153 do_div(temp, total);
5155 utime = (clock_t)temp;
5157 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5158 return p->prev_utime;
5161 cputime_t task_stime(struct task_struct *p)
5163 clock_t stime;
5166 * Use CFS's precise accounting. (we subtract utime from
5167 * the total, to make sure the total observed by userspace
5168 * grows monotonically - apps rely on that):
5170 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5171 cputime_to_clock_t(task_utime(p));
5173 if (stime >= 0)
5174 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5176 return p->prev_stime;
5178 #endif
5180 inline cputime_t task_gtime(struct task_struct *p)
5182 return p->gtime;
5186 * This function gets called by the timer code, with HZ frequency.
5187 * We call it with interrupts disabled.
5189 * It also gets called by the fork code, when changing the parent's
5190 * timeslices.
5192 void scheduler_tick(void)
5194 int cpu = smp_processor_id();
5195 struct rq *rq = cpu_rq(cpu);
5196 struct task_struct *curr = rq->curr;
5198 sched_clock_tick();
5200 spin_lock(&rq->lock);
5201 update_rq_clock(rq);
5202 update_cpu_load(rq);
5203 curr->sched_class->task_tick(rq, curr, 0);
5204 spin_unlock(&rq->lock);
5206 perf_event_task_tick(curr, cpu);
5208 #ifdef CONFIG_SMP
5209 rq->idle_at_tick = idle_cpu(cpu);
5210 trigger_load_balance(rq, cpu);
5211 #endif
5214 notrace unsigned long get_parent_ip(unsigned long addr)
5216 if (in_lock_functions(addr)) {
5217 addr = CALLER_ADDR2;
5218 if (in_lock_functions(addr))
5219 addr = CALLER_ADDR3;
5221 return addr;
5224 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5225 defined(CONFIG_PREEMPT_TRACER))
5227 void __kprobes add_preempt_count(int val)
5229 #ifdef CONFIG_DEBUG_PREEMPT
5231 * Underflow?
5233 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5234 return;
5235 #endif
5236 preempt_count() += val;
5237 #ifdef CONFIG_DEBUG_PREEMPT
5239 * Spinlock count overflowing soon?
5241 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5242 PREEMPT_MASK - 10);
5243 #endif
5244 if (preempt_count() == val)
5245 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5247 EXPORT_SYMBOL(add_preempt_count);
5249 void __kprobes sub_preempt_count(int val)
5251 #ifdef CONFIG_DEBUG_PREEMPT
5253 * Underflow?
5255 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5256 return;
5258 * Is the spinlock portion underflowing?
5260 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5261 !(preempt_count() & PREEMPT_MASK)))
5262 return;
5263 #endif
5265 if (preempt_count() == val)
5266 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5267 preempt_count() -= val;
5269 EXPORT_SYMBOL(sub_preempt_count);
5271 #endif
5274 * Print scheduling while atomic bug:
5276 static noinline void __schedule_bug(struct task_struct *prev)
5278 struct pt_regs *regs = get_irq_regs();
5280 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5281 prev->comm, prev->pid, preempt_count());
5283 debug_show_held_locks(prev);
5284 print_modules();
5285 if (irqs_disabled())
5286 print_irqtrace_events(prev);
5288 if (regs)
5289 show_regs(regs);
5290 else
5291 dump_stack();
5295 * Various schedule()-time debugging checks and statistics:
5297 static inline void schedule_debug(struct task_struct *prev)
5300 * Test if we are atomic. Since do_exit() needs to call into
5301 * schedule() atomically, we ignore that path for now.
5302 * Otherwise, whine if we are scheduling when we should not be.
5304 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5305 __schedule_bug(prev);
5307 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5309 schedstat_inc(this_rq(), sched_count);
5310 #ifdef CONFIG_SCHEDSTATS
5311 if (unlikely(prev->lock_depth >= 0)) {
5312 schedstat_inc(this_rq(), bkl_count);
5313 schedstat_inc(prev, sched_info.bkl_count);
5315 #endif
5318 static void put_prev_task(struct rq *rq, struct task_struct *p)
5320 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
5322 update_avg(&p->se.avg_running, runtime);
5324 if (p->state == TASK_RUNNING) {
5326 * In order to avoid avg_overlap growing stale when we are
5327 * indeed overlapping and hence not getting put to sleep, grow
5328 * the avg_overlap on preemption.
5330 * We use the average preemption runtime because that
5331 * correlates to the amount of cache footprint a task can
5332 * build up.
5334 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5335 update_avg(&p->se.avg_overlap, runtime);
5336 } else {
5337 update_avg(&p->se.avg_running, 0);
5339 p->sched_class->put_prev_task(rq, p);
5343 * Pick up the highest-prio task:
5345 static inline struct task_struct *
5346 pick_next_task(struct rq *rq)
5348 const struct sched_class *class;
5349 struct task_struct *p;
5352 * Optimization: we know that if all tasks are in
5353 * the fair class we can call that function directly:
5355 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5356 p = fair_sched_class.pick_next_task(rq);
5357 if (likely(p))
5358 return p;
5361 class = sched_class_highest;
5362 for ( ; ; ) {
5363 p = class->pick_next_task(rq);
5364 if (p)
5365 return p;
5367 * Will never be NULL as the idle class always
5368 * returns a non-NULL p:
5370 class = class->next;
5375 * schedule() is the main scheduler function.
5377 asmlinkage void __sched schedule(void)
5379 struct task_struct *prev, *next;
5380 unsigned long *switch_count;
5381 struct rq *rq;
5382 int cpu;
5384 need_resched:
5385 preempt_disable();
5386 cpu = smp_processor_id();
5387 rq = cpu_rq(cpu);
5388 rcu_sched_qs(cpu);
5389 prev = rq->curr;
5390 switch_count = &prev->nivcsw;
5392 release_kernel_lock(prev);
5393 need_resched_nonpreemptible:
5395 schedule_debug(prev);
5397 if (sched_feat(HRTICK))
5398 hrtick_clear(rq);
5400 spin_lock_irq(&rq->lock);
5401 update_rq_clock(rq);
5402 clear_tsk_need_resched(prev);
5404 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5405 if (unlikely(signal_pending_state(prev->state, prev)))
5406 prev->state = TASK_RUNNING;
5407 else
5408 deactivate_task(rq, prev, 1);
5409 switch_count = &prev->nvcsw;
5412 pre_schedule(rq, prev);
5414 if (unlikely(!rq->nr_running))
5415 idle_balance(cpu, rq);
5417 put_prev_task(rq, prev);
5418 next = pick_next_task(rq);
5420 if (likely(prev != next)) {
5421 sched_info_switch(prev, next);
5422 perf_event_task_sched_out(prev, next, cpu);
5424 rq->nr_switches++;
5425 rq->curr = next;
5426 ++*switch_count;
5428 context_switch(rq, prev, next); /* unlocks the rq */
5430 * the context switch might have flipped the stack from under
5431 * us, hence refresh the local variables.
5433 cpu = smp_processor_id();
5434 rq = cpu_rq(cpu);
5435 } else
5436 spin_unlock_irq(&rq->lock);
5438 post_schedule(rq);
5440 if (unlikely(reacquire_kernel_lock(current) < 0))
5441 goto need_resched_nonpreemptible;
5443 preempt_enable_no_resched();
5444 if (need_resched())
5445 goto need_resched;
5447 EXPORT_SYMBOL(schedule);
5449 #ifdef CONFIG_SMP
5451 * Look out! "owner" is an entirely speculative pointer
5452 * access and not reliable.
5454 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5456 unsigned int cpu;
5457 struct rq *rq;
5459 if (!sched_feat(OWNER_SPIN))
5460 return 0;
5462 #ifdef CONFIG_DEBUG_PAGEALLOC
5464 * Need to access the cpu field knowing that
5465 * DEBUG_PAGEALLOC could have unmapped it if
5466 * the mutex owner just released it and exited.
5468 if (probe_kernel_address(&owner->cpu, cpu))
5469 goto out;
5470 #else
5471 cpu = owner->cpu;
5472 #endif
5475 * Even if the access succeeded (likely case),
5476 * the cpu field may no longer be valid.
5478 if (cpu >= nr_cpumask_bits)
5479 goto out;
5482 * We need to validate that we can do a
5483 * get_cpu() and that we have the percpu area.
5485 if (!cpu_online(cpu))
5486 goto out;
5488 rq = cpu_rq(cpu);
5490 for (;;) {
5492 * Owner changed, break to re-assess state.
5494 if (lock->owner != owner)
5495 break;
5498 * Is that owner really running on that cpu?
5500 if (task_thread_info(rq->curr) != owner || need_resched())
5501 return 0;
5503 cpu_relax();
5505 out:
5506 return 1;
5508 #endif
5510 #ifdef CONFIG_PREEMPT
5512 * this is the entry point to schedule() from in-kernel preemption
5513 * off of preempt_enable. Kernel preemptions off return from interrupt
5514 * occur there and call schedule directly.
5516 asmlinkage void __sched preempt_schedule(void)
5518 struct thread_info *ti = current_thread_info();
5521 * If there is a non-zero preempt_count or interrupts are disabled,
5522 * we do not want to preempt the current task. Just return..
5524 if (likely(ti->preempt_count || irqs_disabled()))
5525 return;
5527 do {
5528 add_preempt_count(PREEMPT_ACTIVE);
5529 schedule();
5530 sub_preempt_count(PREEMPT_ACTIVE);
5533 * Check again in case we missed a preemption opportunity
5534 * between schedule and now.
5536 barrier();
5537 } while (need_resched());
5539 EXPORT_SYMBOL(preempt_schedule);
5542 * this is the entry point to schedule() from kernel preemption
5543 * off of irq context.
5544 * Note, that this is called and return with irqs disabled. This will
5545 * protect us against recursive calling from irq.
5547 asmlinkage void __sched preempt_schedule_irq(void)
5549 struct thread_info *ti = current_thread_info();
5551 /* Catch callers which need to be fixed */
5552 BUG_ON(ti->preempt_count || !irqs_disabled());
5554 do {
5555 add_preempt_count(PREEMPT_ACTIVE);
5556 local_irq_enable();
5557 schedule();
5558 local_irq_disable();
5559 sub_preempt_count(PREEMPT_ACTIVE);
5562 * Check again in case we missed a preemption opportunity
5563 * between schedule and now.
5565 barrier();
5566 } while (need_resched());
5569 #endif /* CONFIG_PREEMPT */
5571 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5572 void *key)
5574 return try_to_wake_up(curr->private, mode, wake_flags);
5576 EXPORT_SYMBOL(default_wake_function);
5579 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5580 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5581 * number) then we wake all the non-exclusive tasks and one exclusive task.
5583 * There are circumstances in which we can try to wake a task which has already
5584 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5585 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5587 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5588 int nr_exclusive, int wake_flags, void *key)
5590 wait_queue_t *curr, *next;
5592 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5593 unsigned flags = curr->flags;
5595 if (curr->func(curr, mode, wake_flags, key) &&
5596 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5597 break;
5602 * __wake_up - wake up threads blocked on a waitqueue.
5603 * @q: the waitqueue
5604 * @mode: which threads
5605 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5606 * @key: is directly passed to the wakeup function
5608 * It may be assumed that this function implies a write memory barrier before
5609 * changing the task state if and only if any tasks are woken up.
5611 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5612 int nr_exclusive, void *key)
5614 unsigned long flags;
5616 spin_lock_irqsave(&q->lock, flags);
5617 __wake_up_common(q, mode, nr_exclusive, 0, key);
5618 spin_unlock_irqrestore(&q->lock, flags);
5620 EXPORT_SYMBOL(__wake_up);
5623 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5625 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5627 __wake_up_common(q, mode, 1, 0, NULL);
5630 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5632 __wake_up_common(q, mode, 1, 0, key);
5636 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5637 * @q: the waitqueue
5638 * @mode: which threads
5639 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5640 * @key: opaque value to be passed to wakeup targets
5642 * The sync wakeup differs that the waker knows that it will schedule
5643 * away soon, so while the target thread will be woken up, it will not
5644 * be migrated to another CPU - ie. the two threads are 'synchronized'
5645 * with each other. This can prevent needless bouncing between CPUs.
5647 * On UP it can prevent extra preemption.
5649 * It may be assumed that this function implies a write memory barrier before
5650 * changing the task state if and only if any tasks are woken up.
5652 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5653 int nr_exclusive, void *key)
5655 unsigned long flags;
5656 int wake_flags = WF_SYNC;
5658 if (unlikely(!q))
5659 return;
5661 if (unlikely(!nr_exclusive))
5662 wake_flags = 0;
5664 spin_lock_irqsave(&q->lock, flags);
5665 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5666 spin_unlock_irqrestore(&q->lock, flags);
5668 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5671 * __wake_up_sync - see __wake_up_sync_key()
5673 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5675 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5677 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5680 * complete: - signals a single thread waiting on this completion
5681 * @x: holds the state of this particular completion
5683 * This will wake up a single thread waiting on this completion. Threads will be
5684 * awakened in the same order in which they were queued.
5686 * See also complete_all(), wait_for_completion() and related routines.
5688 * It may be assumed that this function implies a write memory barrier before
5689 * changing the task state if and only if any tasks are woken up.
5691 void complete(struct completion *x)
5693 unsigned long flags;
5695 spin_lock_irqsave(&x->wait.lock, flags);
5696 x->done++;
5697 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5698 spin_unlock_irqrestore(&x->wait.lock, flags);
5700 EXPORT_SYMBOL(complete);
5703 * complete_all: - signals all threads waiting on this completion
5704 * @x: holds the state of this particular completion
5706 * This will wake up all threads waiting on this particular completion event.
5708 * It may be assumed that this function implies a write memory barrier before
5709 * changing the task state if and only if any tasks are woken up.
5711 void complete_all(struct completion *x)
5713 unsigned long flags;
5715 spin_lock_irqsave(&x->wait.lock, flags);
5716 x->done += UINT_MAX/2;
5717 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5718 spin_unlock_irqrestore(&x->wait.lock, flags);
5720 EXPORT_SYMBOL(complete_all);
5722 static inline long __sched
5723 do_wait_for_common(struct completion *x, long timeout, int state)
5725 if (!x->done) {
5726 DECLARE_WAITQUEUE(wait, current);
5728 wait.flags |= WQ_FLAG_EXCLUSIVE;
5729 __add_wait_queue_tail(&x->wait, &wait);
5730 do {
5731 if (signal_pending_state(state, current)) {
5732 timeout = -ERESTARTSYS;
5733 break;
5735 __set_current_state(state);
5736 spin_unlock_irq(&x->wait.lock);
5737 timeout = schedule_timeout(timeout);
5738 spin_lock_irq(&x->wait.lock);
5739 } while (!x->done && timeout);
5740 __remove_wait_queue(&x->wait, &wait);
5741 if (!x->done)
5742 return timeout;
5744 x->done--;
5745 return timeout ?: 1;
5748 static long __sched
5749 wait_for_common(struct completion *x, long timeout, int state)
5751 might_sleep();
5753 spin_lock_irq(&x->wait.lock);
5754 timeout = do_wait_for_common(x, timeout, state);
5755 spin_unlock_irq(&x->wait.lock);
5756 return timeout;
5760 * wait_for_completion: - waits for completion of a task
5761 * @x: holds the state of this particular completion
5763 * This waits to be signaled for completion of a specific task. It is NOT
5764 * interruptible and there is no timeout.
5766 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5767 * and interrupt capability. Also see complete().
5769 void __sched wait_for_completion(struct completion *x)
5771 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5773 EXPORT_SYMBOL(wait_for_completion);
5776 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5777 * @x: holds the state of this particular completion
5778 * @timeout: timeout value in jiffies
5780 * This waits for either a completion of a specific task to be signaled or for a
5781 * specified timeout to expire. The timeout is in jiffies. It is not
5782 * interruptible.
5784 unsigned long __sched
5785 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5787 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5789 EXPORT_SYMBOL(wait_for_completion_timeout);
5792 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5793 * @x: holds the state of this particular completion
5795 * This waits for completion of a specific task to be signaled. It is
5796 * interruptible.
5798 int __sched wait_for_completion_interruptible(struct completion *x)
5800 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5801 if (t == -ERESTARTSYS)
5802 return t;
5803 return 0;
5805 EXPORT_SYMBOL(wait_for_completion_interruptible);
5808 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5809 * @x: holds the state of this particular completion
5810 * @timeout: timeout value in jiffies
5812 * This waits for either a completion of a specific task to be signaled or for a
5813 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5815 unsigned long __sched
5816 wait_for_completion_interruptible_timeout(struct completion *x,
5817 unsigned long timeout)
5819 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5821 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5824 * wait_for_completion_killable: - waits for completion of a task (killable)
5825 * @x: holds the state of this particular completion
5827 * This waits to be signaled for completion of a specific task. It can be
5828 * interrupted by a kill signal.
5830 int __sched wait_for_completion_killable(struct completion *x)
5832 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5833 if (t == -ERESTARTSYS)
5834 return t;
5835 return 0;
5837 EXPORT_SYMBOL(wait_for_completion_killable);
5840 * try_wait_for_completion - try to decrement a completion without blocking
5841 * @x: completion structure
5843 * Returns: 0 if a decrement cannot be done without blocking
5844 * 1 if a decrement succeeded.
5846 * If a completion is being used as a counting completion,
5847 * attempt to decrement the counter without blocking. This
5848 * enables us to avoid waiting if the resource the completion
5849 * is protecting is not available.
5851 bool try_wait_for_completion(struct completion *x)
5853 int ret = 1;
5855 spin_lock_irq(&x->wait.lock);
5856 if (!x->done)
5857 ret = 0;
5858 else
5859 x->done--;
5860 spin_unlock_irq(&x->wait.lock);
5861 return ret;
5863 EXPORT_SYMBOL(try_wait_for_completion);
5866 * completion_done - Test to see if a completion has any waiters
5867 * @x: completion structure
5869 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5870 * 1 if there are no waiters.
5873 bool completion_done(struct completion *x)
5875 int ret = 1;
5877 spin_lock_irq(&x->wait.lock);
5878 if (!x->done)
5879 ret = 0;
5880 spin_unlock_irq(&x->wait.lock);
5881 return ret;
5883 EXPORT_SYMBOL(completion_done);
5885 static long __sched
5886 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5888 unsigned long flags;
5889 wait_queue_t wait;
5891 init_waitqueue_entry(&wait, current);
5893 __set_current_state(state);
5895 spin_lock_irqsave(&q->lock, flags);
5896 __add_wait_queue(q, &wait);
5897 spin_unlock(&q->lock);
5898 timeout = schedule_timeout(timeout);
5899 spin_lock_irq(&q->lock);
5900 __remove_wait_queue(q, &wait);
5901 spin_unlock_irqrestore(&q->lock, flags);
5903 return timeout;
5906 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5908 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5910 EXPORT_SYMBOL(interruptible_sleep_on);
5912 long __sched
5913 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5915 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5917 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5919 void __sched sleep_on(wait_queue_head_t *q)
5921 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5923 EXPORT_SYMBOL(sleep_on);
5925 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5927 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5929 EXPORT_SYMBOL(sleep_on_timeout);
5931 #ifdef CONFIG_RT_MUTEXES
5934 * rt_mutex_setprio - set the current priority of a task
5935 * @p: task
5936 * @prio: prio value (kernel-internal form)
5938 * This function changes the 'effective' priority of a task. It does
5939 * not touch ->normal_prio like __setscheduler().
5941 * Used by the rt_mutex code to implement priority inheritance logic.
5943 void rt_mutex_setprio(struct task_struct *p, int prio)
5945 unsigned long flags;
5946 int oldprio, on_rq, running;
5947 struct rq *rq;
5948 const struct sched_class *prev_class = p->sched_class;
5950 BUG_ON(prio < 0 || prio > MAX_PRIO);
5952 rq = task_rq_lock(p, &flags);
5953 update_rq_clock(rq);
5955 oldprio = p->prio;
5956 on_rq = p->se.on_rq;
5957 running = task_current(rq, p);
5958 if (on_rq)
5959 dequeue_task(rq, p, 0);
5960 if (running)
5961 p->sched_class->put_prev_task(rq, p);
5963 if (rt_prio(prio))
5964 p->sched_class = &rt_sched_class;
5965 else
5966 p->sched_class = &fair_sched_class;
5968 p->prio = prio;
5970 if (running)
5971 p->sched_class->set_curr_task(rq);
5972 if (on_rq) {
5973 enqueue_task(rq, p, 0);
5975 check_class_changed(rq, p, prev_class, oldprio, running);
5977 task_rq_unlock(rq, &flags);
5980 #endif
5982 void set_user_nice(struct task_struct *p, long nice)
5984 int old_prio, delta, on_rq;
5985 unsigned long flags;
5986 struct rq *rq;
5988 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5989 return;
5991 * We have to be careful, if called from sys_setpriority(),
5992 * the task might be in the middle of scheduling on another CPU.
5994 rq = task_rq_lock(p, &flags);
5995 update_rq_clock(rq);
5997 * The RT priorities are set via sched_setscheduler(), but we still
5998 * allow the 'normal' nice value to be set - but as expected
5999 * it wont have any effect on scheduling until the task is
6000 * SCHED_FIFO/SCHED_RR:
6002 if (task_has_rt_policy(p)) {
6003 p->static_prio = NICE_TO_PRIO(nice);
6004 goto out_unlock;
6006 on_rq = p->se.on_rq;
6007 if (on_rq)
6008 dequeue_task(rq, p, 0);
6010 p->static_prio = NICE_TO_PRIO(nice);
6011 set_load_weight(p);
6012 old_prio = p->prio;
6013 p->prio = effective_prio(p);
6014 delta = p->prio - old_prio;
6016 if (on_rq) {
6017 enqueue_task(rq, p, 0);
6019 * If the task increased its priority or is running and
6020 * lowered its priority, then reschedule its CPU:
6022 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6023 resched_task(rq->curr);
6025 out_unlock:
6026 task_rq_unlock(rq, &flags);
6028 EXPORT_SYMBOL(set_user_nice);
6031 * can_nice - check if a task can reduce its nice value
6032 * @p: task
6033 * @nice: nice value
6035 int can_nice(const struct task_struct *p, const int nice)
6037 /* convert nice value [19,-20] to rlimit style value [1,40] */
6038 int nice_rlim = 20 - nice;
6040 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6041 capable(CAP_SYS_NICE));
6044 #ifdef __ARCH_WANT_SYS_NICE
6047 * sys_nice - change the priority of the current process.
6048 * @increment: priority increment
6050 * sys_setpriority is a more generic, but much slower function that
6051 * does similar things.
6053 SYSCALL_DEFINE1(nice, int, increment)
6055 long nice, retval;
6058 * Setpriority might change our priority at the same moment.
6059 * We don't have to worry. Conceptually one call occurs first
6060 * and we have a single winner.
6062 if (increment < -40)
6063 increment = -40;
6064 if (increment > 40)
6065 increment = 40;
6067 nice = TASK_NICE(current) + increment;
6068 if (nice < -20)
6069 nice = -20;
6070 if (nice > 19)
6071 nice = 19;
6073 if (increment < 0 && !can_nice(current, nice))
6074 return -EPERM;
6076 retval = security_task_setnice(current, nice);
6077 if (retval)
6078 return retval;
6080 set_user_nice(current, nice);
6081 return 0;
6084 #endif
6087 * task_prio - return the priority value of a given task.
6088 * @p: the task in question.
6090 * This is the priority value as seen by users in /proc.
6091 * RT tasks are offset by -200. Normal tasks are centered
6092 * around 0, value goes from -16 to +15.
6094 int task_prio(const struct task_struct *p)
6096 return p->prio - MAX_RT_PRIO;
6100 * task_nice - return the nice value of a given task.
6101 * @p: the task in question.
6103 int task_nice(const struct task_struct *p)
6105 return TASK_NICE(p);
6107 EXPORT_SYMBOL(task_nice);
6110 * idle_cpu - is a given cpu idle currently?
6111 * @cpu: the processor in question.
6113 int idle_cpu(int cpu)
6115 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6119 * idle_task - return the idle task for a given cpu.
6120 * @cpu: the processor in question.
6122 struct task_struct *idle_task(int cpu)
6124 return cpu_rq(cpu)->idle;
6128 * find_process_by_pid - find a process with a matching PID value.
6129 * @pid: the pid in question.
6131 static struct task_struct *find_process_by_pid(pid_t pid)
6133 return pid ? find_task_by_vpid(pid) : current;
6136 /* Actually do priority change: must hold rq lock. */
6137 static void
6138 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6140 BUG_ON(p->se.on_rq);
6142 p->policy = policy;
6143 switch (p->policy) {
6144 case SCHED_NORMAL:
6145 case SCHED_BATCH:
6146 case SCHED_IDLE:
6147 p->sched_class = &fair_sched_class;
6148 break;
6149 case SCHED_FIFO:
6150 case SCHED_RR:
6151 p->sched_class = &rt_sched_class;
6152 break;
6155 p->rt_priority = prio;
6156 p->normal_prio = normal_prio(p);
6157 /* we are holding p->pi_lock already */
6158 p->prio = rt_mutex_getprio(p);
6159 set_load_weight(p);
6163 * check the target process has a UID that matches the current process's
6165 static bool check_same_owner(struct task_struct *p)
6167 const struct cred *cred = current_cred(), *pcred;
6168 bool match;
6170 rcu_read_lock();
6171 pcred = __task_cred(p);
6172 match = (cred->euid == pcred->euid ||
6173 cred->euid == pcred->uid);
6174 rcu_read_unlock();
6175 return match;
6178 static int __sched_setscheduler(struct task_struct *p, int policy,
6179 struct sched_param *param, bool user)
6181 int retval, oldprio, oldpolicy = -1, on_rq, running;
6182 unsigned long flags;
6183 const struct sched_class *prev_class = p->sched_class;
6184 struct rq *rq;
6185 int reset_on_fork;
6187 /* may grab non-irq protected spin_locks */
6188 BUG_ON(in_interrupt());
6189 recheck:
6190 /* double check policy once rq lock held */
6191 if (policy < 0) {
6192 reset_on_fork = p->sched_reset_on_fork;
6193 policy = oldpolicy = p->policy;
6194 } else {
6195 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6196 policy &= ~SCHED_RESET_ON_FORK;
6198 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6199 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6200 policy != SCHED_IDLE)
6201 return -EINVAL;
6205 * Valid priorities for SCHED_FIFO and SCHED_RR are
6206 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6207 * SCHED_BATCH and SCHED_IDLE is 0.
6209 if (param->sched_priority < 0 ||
6210 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6211 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6212 return -EINVAL;
6213 if (rt_policy(policy) != (param->sched_priority != 0))
6214 return -EINVAL;
6217 * Allow unprivileged RT tasks to decrease priority:
6219 if (user && !capable(CAP_SYS_NICE)) {
6220 if (rt_policy(policy)) {
6221 unsigned long rlim_rtprio;
6223 if (!lock_task_sighand(p, &flags))
6224 return -ESRCH;
6225 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6226 unlock_task_sighand(p, &flags);
6228 /* can't set/change the rt policy */
6229 if (policy != p->policy && !rlim_rtprio)
6230 return -EPERM;
6232 /* can't increase priority */
6233 if (param->sched_priority > p->rt_priority &&
6234 param->sched_priority > rlim_rtprio)
6235 return -EPERM;
6238 * Like positive nice levels, dont allow tasks to
6239 * move out of SCHED_IDLE either:
6241 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6242 return -EPERM;
6244 /* can't change other user's priorities */
6245 if (!check_same_owner(p))
6246 return -EPERM;
6248 /* Normal users shall not reset the sched_reset_on_fork flag */
6249 if (p->sched_reset_on_fork && !reset_on_fork)
6250 return -EPERM;
6253 if (user) {
6254 #ifdef CONFIG_RT_GROUP_SCHED
6256 * Do not allow realtime tasks into groups that have no runtime
6257 * assigned.
6259 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6260 task_group(p)->rt_bandwidth.rt_runtime == 0)
6261 return -EPERM;
6262 #endif
6264 retval = security_task_setscheduler(p, policy, param);
6265 if (retval)
6266 return retval;
6270 * make sure no PI-waiters arrive (or leave) while we are
6271 * changing the priority of the task:
6273 spin_lock_irqsave(&p->pi_lock, flags);
6275 * To be able to change p->policy safely, the apropriate
6276 * runqueue lock must be held.
6278 rq = __task_rq_lock(p);
6279 /* recheck policy now with rq lock held */
6280 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6281 policy = oldpolicy = -1;
6282 __task_rq_unlock(rq);
6283 spin_unlock_irqrestore(&p->pi_lock, flags);
6284 goto recheck;
6286 update_rq_clock(rq);
6287 on_rq = p->se.on_rq;
6288 running = task_current(rq, p);
6289 if (on_rq)
6290 deactivate_task(rq, p, 0);
6291 if (running)
6292 p->sched_class->put_prev_task(rq, p);
6294 p->sched_reset_on_fork = reset_on_fork;
6296 oldprio = p->prio;
6297 __setscheduler(rq, p, policy, param->sched_priority);
6299 if (running)
6300 p->sched_class->set_curr_task(rq);
6301 if (on_rq) {
6302 activate_task(rq, p, 0);
6304 check_class_changed(rq, p, prev_class, oldprio, running);
6306 __task_rq_unlock(rq);
6307 spin_unlock_irqrestore(&p->pi_lock, flags);
6309 rt_mutex_adjust_pi(p);
6311 return 0;
6315 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6316 * @p: the task in question.
6317 * @policy: new policy.
6318 * @param: structure containing the new RT priority.
6320 * NOTE that the task may be already dead.
6322 int sched_setscheduler(struct task_struct *p, int policy,
6323 struct sched_param *param)
6325 return __sched_setscheduler(p, policy, param, true);
6327 EXPORT_SYMBOL_GPL(sched_setscheduler);
6330 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6331 * @p: the task in question.
6332 * @policy: new policy.
6333 * @param: structure containing the new RT priority.
6335 * Just like sched_setscheduler, only don't bother checking if the
6336 * current context has permission. For example, this is needed in
6337 * stop_machine(): we create temporary high priority worker threads,
6338 * but our caller might not have that capability.
6340 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6341 struct sched_param *param)
6343 return __sched_setscheduler(p, policy, param, false);
6346 static int
6347 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6349 struct sched_param lparam;
6350 struct task_struct *p;
6351 int retval;
6353 if (!param || pid < 0)
6354 return -EINVAL;
6355 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6356 return -EFAULT;
6358 rcu_read_lock();
6359 retval = -ESRCH;
6360 p = find_process_by_pid(pid);
6361 if (p != NULL)
6362 retval = sched_setscheduler(p, policy, &lparam);
6363 rcu_read_unlock();
6365 return retval;
6369 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6370 * @pid: the pid in question.
6371 * @policy: new policy.
6372 * @param: structure containing the new RT priority.
6374 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6375 struct sched_param __user *, param)
6377 /* negative values for policy are not valid */
6378 if (policy < 0)
6379 return -EINVAL;
6381 return do_sched_setscheduler(pid, policy, param);
6385 * sys_sched_setparam - set/change the RT priority of a thread
6386 * @pid: the pid in question.
6387 * @param: structure containing the new RT priority.
6389 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6391 return do_sched_setscheduler(pid, -1, param);
6395 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6396 * @pid: the pid in question.
6398 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6400 struct task_struct *p;
6401 int retval;
6403 if (pid < 0)
6404 return -EINVAL;
6406 retval = -ESRCH;
6407 read_lock(&tasklist_lock);
6408 p = find_process_by_pid(pid);
6409 if (p) {
6410 retval = security_task_getscheduler(p);
6411 if (!retval)
6412 retval = p->policy
6413 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6415 read_unlock(&tasklist_lock);
6416 return retval;
6420 * sys_sched_getparam - get the RT priority of a thread
6421 * @pid: the pid in question.
6422 * @param: structure containing the RT priority.
6424 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6426 struct sched_param lp;
6427 struct task_struct *p;
6428 int retval;
6430 if (!param || pid < 0)
6431 return -EINVAL;
6433 read_lock(&tasklist_lock);
6434 p = find_process_by_pid(pid);
6435 retval = -ESRCH;
6436 if (!p)
6437 goto out_unlock;
6439 retval = security_task_getscheduler(p);
6440 if (retval)
6441 goto out_unlock;
6443 lp.sched_priority = p->rt_priority;
6444 read_unlock(&tasklist_lock);
6447 * This one might sleep, we cannot do it with a spinlock held ...
6449 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6451 return retval;
6453 out_unlock:
6454 read_unlock(&tasklist_lock);
6455 return retval;
6458 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6460 cpumask_var_t cpus_allowed, new_mask;
6461 struct task_struct *p;
6462 int retval;
6464 get_online_cpus();
6465 read_lock(&tasklist_lock);
6467 p = find_process_by_pid(pid);
6468 if (!p) {
6469 read_unlock(&tasklist_lock);
6470 put_online_cpus();
6471 return -ESRCH;
6475 * It is not safe to call set_cpus_allowed with the
6476 * tasklist_lock held. We will bump the task_struct's
6477 * usage count and then drop tasklist_lock.
6479 get_task_struct(p);
6480 read_unlock(&tasklist_lock);
6482 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6483 retval = -ENOMEM;
6484 goto out_put_task;
6486 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6487 retval = -ENOMEM;
6488 goto out_free_cpus_allowed;
6490 retval = -EPERM;
6491 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6492 goto out_unlock;
6494 retval = security_task_setscheduler(p, 0, NULL);
6495 if (retval)
6496 goto out_unlock;
6498 cpuset_cpus_allowed(p, cpus_allowed);
6499 cpumask_and(new_mask, in_mask, cpus_allowed);
6500 again:
6501 retval = set_cpus_allowed_ptr(p, new_mask);
6503 if (!retval) {
6504 cpuset_cpus_allowed(p, cpus_allowed);
6505 if (!cpumask_subset(new_mask, cpus_allowed)) {
6507 * We must have raced with a concurrent cpuset
6508 * update. Just reset the cpus_allowed to the
6509 * cpuset's cpus_allowed
6511 cpumask_copy(new_mask, cpus_allowed);
6512 goto again;
6515 out_unlock:
6516 free_cpumask_var(new_mask);
6517 out_free_cpus_allowed:
6518 free_cpumask_var(cpus_allowed);
6519 out_put_task:
6520 put_task_struct(p);
6521 put_online_cpus();
6522 return retval;
6525 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6526 struct cpumask *new_mask)
6528 if (len < cpumask_size())
6529 cpumask_clear(new_mask);
6530 else if (len > cpumask_size())
6531 len = cpumask_size();
6533 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6537 * sys_sched_setaffinity - set the cpu affinity of a process
6538 * @pid: pid of the process
6539 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6540 * @user_mask_ptr: user-space pointer to the new cpu mask
6542 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6543 unsigned long __user *, user_mask_ptr)
6545 cpumask_var_t new_mask;
6546 int retval;
6548 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6549 return -ENOMEM;
6551 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6552 if (retval == 0)
6553 retval = sched_setaffinity(pid, new_mask);
6554 free_cpumask_var(new_mask);
6555 return retval;
6558 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6560 struct task_struct *p;
6561 int retval;
6563 get_online_cpus();
6564 read_lock(&tasklist_lock);
6566 retval = -ESRCH;
6567 p = find_process_by_pid(pid);
6568 if (!p)
6569 goto out_unlock;
6571 retval = security_task_getscheduler(p);
6572 if (retval)
6573 goto out_unlock;
6575 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6577 out_unlock:
6578 read_unlock(&tasklist_lock);
6579 put_online_cpus();
6581 return retval;
6585 * sys_sched_getaffinity - get the cpu affinity of a process
6586 * @pid: pid of the process
6587 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6588 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6590 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6591 unsigned long __user *, user_mask_ptr)
6593 int ret;
6594 cpumask_var_t mask;
6596 if (len < cpumask_size())
6597 return -EINVAL;
6599 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6600 return -ENOMEM;
6602 ret = sched_getaffinity(pid, mask);
6603 if (ret == 0) {
6604 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6605 ret = -EFAULT;
6606 else
6607 ret = cpumask_size();
6609 free_cpumask_var(mask);
6611 return ret;
6615 * sys_sched_yield - yield the current processor to other threads.
6617 * This function yields the current CPU to other tasks. If there are no
6618 * other threads running on this CPU then this function will return.
6620 SYSCALL_DEFINE0(sched_yield)
6622 struct rq *rq = this_rq_lock();
6624 schedstat_inc(rq, yld_count);
6625 current->sched_class->yield_task(rq);
6628 * Since we are going to call schedule() anyway, there's
6629 * no need to preempt or enable interrupts:
6631 __release(rq->lock);
6632 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6633 _raw_spin_unlock(&rq->lock);
6634 preempt_enable_no_resched();
6636 schedule();
6638 return 0;
6641 static inline int should_resched(void)
6643 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6646 static void __cond_resched(void)
6648 add_preempt_count(PREEMPT_ACTIVE);
6649 schedule();
6650 sub_preempt_count(PREEMPT_ACTIVE);
6653 int __sched _cond_resched(void)
6655 if (should_resched()) {
6656 __cond_resched();
6657 return 1;
6659 return 0;
6661 EXPORT_SYMBOL(_cond_resched);
6664 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6665 * call schedule, and on return reacquire the lock.
6667 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6668 * operations here to prevent schedule() from being called twice (once via
6669 * spin_unlock(), once by hand).
6671 int __cond_resched_lock(spinlock_t *lock)
6673 int resched = should_resched();
6674 int ret = 0;
6676 lockdep_assert_held(lock);
6678 if (spin_needbreak(lock) || resched) {
6679 spin_unlock(lock);
6680 if (resched)
6681 __cond_resched();
6682 else
6683 cpu_relax();
6684 ret = 1;
6685 spin_lock(lock);
6687 return ret;
6689 EXPORT_SYMBOL(__cond_resched_lock);
6691 int __sched __cond_resched_softirq(void)
6693 BUG_ON(!in_softirq());
6695 if (should_resched()) {
6696 local_bh_enable();
6697 __cond_resched();
6698 local_bh_disable();
6699 return 1;
6701 return 0;
6703 EXPORT_SYMBOL(__cond_resched_softirq);
6706 * yield - yield the current processor to other threads.
6708 * This is a shortcut for kernel-space yielding - it marks the
6709 * thread runnable and calls sys_sched_yield().
6711 void __sched yield(void)
6713 set_current_state(TASK_RUNNING);
6714 sys_sched_yield();
6716 EXPORT_SYMBOL(yield);
6719 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6720 * that process accounting knows that this is a task in IO wait state.
6722 void __sched io_schedule(void)
6724 struct rq *rq = raw_rq();
6726 delayacct_blkio_start();
6727 atomic_inc(&rq->nr_iowait);
6728 current->in_iowait = 1;
6729 schedule();
6730 current->in_iowait = 0;
6731 atomic_dec(&rq->nr_iowait);
6732 delayacct_blkio_end();
6734 EXPORT_SYMBOL(io_schedule);
6736 long __sched io_schedule_timeout(long timeout)
6738 struct rq *rq = raw_rq();
6739 long ret;
6741 delayacct_blkio_start();
6742 atomic_inc(&rq->nr_iowait);
6743 current->in_iowait = 1;
6744 ret = schedule_timeout(timeout);
6745 current->in_iowait = 0;
6746 atomic_dec(&rq->nr_iowait);
6747 delayacct_blkio_end();
6748 return ret;
6752 * sys_sched_get_priority_max - return maximum RT priority.
6753 * @policy: scheduling class.
6755 * this syscall returns the maximum rt_priority that can be used
6756 * by a given scheduling class.
6758 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6760 int ret = -EINVAL;
6762 switch (policy) {
6763 case SCHED_FIFO:
6764 case SCHED_RR:
6765 ret = MAX_USER_RT_PRIO-1;
6766 break;
6767 case SCHED_NORMAL:
6768 case SCHED_BATCH:
6769 case SCHED_IDLE:
6770 ret = 0;
6771 break;
6773 return ret;
6777 * sys_sched_get_priority_min - return minimum RT priority.
6778 * @policy: scheduling class.
6780 * this syscall returns the minimum rt_priority that can be used
6781 * by a given scheduling class.
6783 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6785 int ret = -EINVAL;
6787 switch (policy) {
6788 case SCHED_FIFO:
6789 case SCHED_RR:
6790 ret = 1;
6791 break;
6792 case SCHED_NORMAL:
6793 case SCHED_BATCH:
6794 case SCHED_IDLE:
6795 ret = 0;
6797 return ret;
6801 * sys_sched_rr_get_interval - return the default timeslice of a process.
6802 * @pid: pid of the process.
6803 * @interval: userspace pointer to the timeslice value.
6805 * this syscall writes the default timeslice value of a given process
6806 * into the user-space timespec buffer. A value of '0' means infinity.
6808 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6809 struct timespec __user *, interval)
6811 struct task_struct *p;
6812 unsigned int time_slice;
6813 int retval;
6814 struct timespec t;
6816 if (pid < 0)
6817 return -EINVAL;
6819 retval = -ESRCH;
6820 read_lock(&tasklist_lock);
6821 p = find_process_by_pid(pid);
6822 if (!p)
6823 goto out_unlock;
6825 retval = security_task_getscheduler(p);
6826 if (retval)
6827 goto out_unlock;
6829 time_slice = p->sched_class->get_rr_interval(p);
6831 read_unlock(&tasklist_lock);
6832 jiffies_to_timespec(time_slice, &t);
6833 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6834 return retval;
6836 out_unlock:
6837 read_unlock(&tasklist_lock);
6838 return retval;
6841 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6843 void sched_show_task(struct task_struct *p)
6845 unsigned long free = 0;
6846 unsigned state;
6848 state = p->state ? __ffs(p->state) + 1 : 0;
6849 printk(KERN_INFO "%-13.13s %c", p->comm,
6850 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6851 #if BITS_PER_LONG == 32
6852 if (state == TASK_RUNNING)
6853 printk(KERN_CONT " running ");
6854 else
6855 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6856 #else
6857 if (state == TASK_RUNNING)
6858 printk(KERN_CONT " running task ");
6859 else
6860 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6861 #endif
6862 #ifdef CONFIG_DEBUG_STACK_USAGE
6863 free = stack_not_used(p);
6864 #endif
6865 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6866 task_pid_nr(p), task_pid_nr(p->real_parent),
6867 (unsigned long)task_thread_info(p)->flags);
6869 show_stack(p, NULL);
6872 void show_state_filter(unsigned long state_filter)
6874 struct task_struct *g, *p;
6876 #if BITS_PER_LONG == 32
6877 printk(KERN_INFO
6878 " task PC stack pid father\n");
6879 #else
6880 printk(KERN_INFO
6881 " task PC stack pid father\n");
6882 #endif
6883 read_lock(&tasklist_lock);
6884 do_each_thread(g, p) {
6886 * reset the NMI-timeout, listing all files on a slow
6887 * console might take alot of time:
6889 touch_nmi_watchdog();
6890 if (!state_filter || (p->state & state_filter))
6891 sched_show_task(p);
6892 } while_each_thread(g, p);
6894 touch_all_softlockup_watchdogs();
6896 #ifdef CONFIG_SCHED_DEBUG
6897 sysrq_sched_debug_show();
6898 #endif
6899 read_unlock(&tasklist_lock);
6901 * Only show locks if all tasks are dumped:
6903 if (state_filter == -1)
6904 debug_show_all_locks();
6907 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6909 idle->sched_class = &idle_sched_class;
6913 * init_idle - set up an idle thread for a given CPU
6914 * @idle: task in question
6915 * @cpu: cpu the idle task belongs to
6917 * NOTE: this function does not set the idle thread's NEED_RESCHED
6918 * flag, to make booting more robust.
6920 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6922 struct rq *rq = cpu_rq(cpu);
6923 unsigned long flags;
6925 spin_lock_irqsave(&rq->lock, flags);
6927 __sched_fork(idle);
6928 idle->se.exec_start = sched_clock();
6930 idle->prio = idle->normal_prio = MAX_PRIO;
6931 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6932 __set_task_cpu(idle, cpu);
6934 rq->curr = rq->idle = idle;
6935 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6936 idle->oncpu = 1;
6937 #endif
6938 spin_unlock_irqrestore(&rq->lock, flags);
6940 /* Set the preempt count _outside_ the spinlocks! */
6941 #if defined(CONFIG_PREEMPT)
6942 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6943 #else
6944 task_thread_info(idle)->preempt_count = 0;
6945 #endif
6947 * The idle tasks have their own, simple scheduling class:
6949 idle->sched_class = &idle_sched_class;
6950 ftrace_graph_init_task(idle);
6954 * In a system that switches off the HZ timer nohz_cpu_mask
6955 * indicates which cpus entered this state. This is used
6956 * in the rcu update to wait only for active cpus. For system
6957 * which do not switch off the HZ timer nohz_cpu_mask should
6958 * always be CPU_BITS_NONE.
6960 cpumask_var_t nohz_cpu_mask;
6963 * Increase the granularity value when there are more CPUs,
6964 * because with more CPUs the 'effective latency' as visible
6965 * to users decreases. But the relationship is not linear,
6966 * so pick a second-best guess by going with the log2 of the
6967 * number of CPUs.
6969 * This idea comes from the SD scheduler of Con Kolivas:
6971 static inline void sched_init_granularity(void)
6973 unsigned int factor = 1 + ilog2(num_online_cpus());
6974 const unsigned long limit = 200000000;
6976 sysctl_sched_min_granularity *= factor;
6977 if (sysctl_sched_min_granularity > limit)
6978 sysctl_sched_min_granularity = limit;
6980 sysctl_sched_latency *= factor;
6981 if (sysctl_sched_latency > limit)
6982 sysctl_sched_latency = limit;
6984 sysctl_sched_wakeup_granularity *= factor;
6986 sysctl_sched_shares_ratelimit *= factor;
6989 #ifdef CONFIG_SMP
6991 * This is how migration works:
6993 * 1) we queue a struct migration_req structure in the source CPU's
6994 * runqueue and wake up that CPU's migration thread.
6995 * 2) we down() the locked semaphore => thread blocks.
6996 * 3) migration thread wakes up (implicitly it forces the migrated
6997 * thread off the CPU)
6998 * 4) it gets the migration request and checks whether the migrated
6999 * task is still in the wrong runqueue.
7000 * 5) if it's in the wrong runqueue then the migration thread removes
7001 * it and puts it into the right queue.
7002 * 6) migration thread up()s the semaphore.
7003 * 7) we wake up and the migration is done.
7007 * Change a given task's CPU affinity. Migrate the thread to a
7008 * proper CPU and schedule it away if the CPU it's executing on
7009 * is removed from the allowed bitmask.
7011 * NOTE: the caller must have a valid reference to the task, the
7012 * task must not exit() & deallocate itself prematurely. The
7013 * call is not atomic; no spinlocks may be held.
7015 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7017 struct migration_req req;
7018 unsigned long flags;
7019 struct rq *rq;
7020 int ret = 0;
7022 rq = task_rq_lock(p, &flags);
7023 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
7024 ret = -EINVAL;
7025 goto out;
7028 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7029 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7030 ret = -EINVAL;
7031 goto out;
7034 if (p->sched_class->set_cpus_allowed)
7035 p->sched_class->set_cpus_allowed(p, new_mask);
7036 else {
7037 cpumask_copy(&p->cpus_allowed, new_mask);
7038 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7041 /* Can the task run on the task's current CPU? If so, we're done */
7042 if (cpumask_test_cpu(task_cpu(p), new_mask))
7043 goto out;
7045 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
7046 /* Need help from migration thread: drop lock and wait. */
7047 struct task_struct *mt = rq->migration_thread;
7049 get_task_struct(mt);
7050 task_rq_unlock(rq, &flags);
7051 wake_up_process(rq->migration_thread);
7052 put_task_struct(mt);
7053 wait_for_completion(&req.done);
7054 tlb_migrate_finish(p->mm);
7055 return 0;
7057 out:
7058 task_rq_unlock(rq, &flags);
7060 return ret;
7062 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7065 * Move (not current) task off this cpu, onto dest cpu. We're doing
7066 * this because either it can't run here any more (set_cpus_allowed()
7067 * away from this CPU, or CPU going down), or because we're
7068 * attempting to rebalance this task on exec (sched_exec).
7070 * So we race with normal scheduler movements, but that's OK, as long
7071 * as the task is no longer on this CPU.
7073 * Returns non-zero if task was successfully migrated.
7075 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7077 struct rq *rq_dest, *rq_src;
7078 int ret = 0, on_rq;
7080 if (unlikely(!cpu_active(dest_cpu)))
7081 return ret;
7083 rq_src = cpu_rq(src_cpu);
7084 rq_dest = cpu_rq(dest_cpu);
7086 double_rq_lock(rq_src, rq_dest);
7087 /* Already moved. */
7088 if (task_cpu(p) != src_cpu)
7089 goto done;
7090 /* Affinity changed (again). */
7091 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7092 goto fail;
7094 on_rq = p->se.on_rq;
7095 if (on_rq)
7096 deactivate_task(rq_src, p, 0);
7098 set_task_cpu(p, dest_cpu);
7099 if (on_rq) {
7100 activate_task(rq_dest, p, 0);
7101 check_preempt_curr(rq_dest, p, 0);
7103 done:
7104 ret = 1;
7105 fail:
7106 double_rq_unlock(rq_src, rq_dest);
7107 return ret;
7110 #define RCU_MIGRATION_IDLE 0
7111 #define RCU_MIGRATION_NEED_QS 1
7112 #define RCU_MIGRATION_GOT_QS 2
7113 #define RCU_MIGRATION_MUST_SYNC 3
7116 * migration_thread - this is a highprio system thread that performs
7117 * thread migration by bumping thread off CPU then 'pushing' onto
7118 * another runqueue.
7120 static int migration_thread(void *data)
7122 int badcpu;
7123 int cpu = (long)data;
7124 struct rq *rq;
7126 rq = cpu_rq(cpu);
7127 BUG_ON(rq->migration_thread != current);
7129 set_current_state(TASK_INTERRUPTIBLE);
7130 while (!kthread_should_stop()) {
7131 struct migration_req *req;
7132 struct list_head *head;
7134 spin_lock_irq(&rq->lock);
7136 if (cpu_is_offline(cpu)) {
7137 spin_unlock_irq(&rq->lock);
7138 break;
7141 if (rq->active_balance) {
7142 active_load_balance(rq, cpu);
7143 rq->active_balance = 0;
7146 head = &rq->migration_queue;
7148 if (list_empty(head)) {
7149 spin_unlock_irq(&rq->lock);
7150 schedule();
7151 set_current_state(TASK_INTERRUPTIBLE);
7152 continue;
7154 req = list_entry(head->next, struct migration_req, list);
7155 list_del_init(head->next);
7157 if (req->task != NULL) {
7158 spin_unlock(&rq->lock);
7159 __migrate_task(req->task, cpu, req->dest_cpu);
7160 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7161 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7162 spin_unlock(&rq->lock);
7163 } else {
7164 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7165 spin_unlock(&rq->lock);
7166 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7168 local_irq_enable();
7170 complete(&req->done);
7172 __set_current_state(TASK_RUNNING);
7174 return 0;
7177 #ifdef CONFIG_HOTPLUG_CPU
7179 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7181 int ret;
7183 local_irq_disable();
7184 ret = __migrate_task(p, src_cpu, dest_cpu);
7185 local_irq_enable();
7186 return ret;
7190 * Figure out where task on dead CPU should go, use force if necessary.
7192 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7194 int dest_cpu;
7195 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7197 again:
7198 /* Look for allowed, online CPU in same node. */
7199 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7200 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7201 goto move;
7203 /* Any allowed, online CPU? */
7204 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7205 if (dest_cpu < nr_cpu_ids)
7206 goto move;
7208 /* No more Mr. Nice Guy. */
7209 if (dest_cpu >= nr_cpu_ids) {
7210 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7211 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7214 * Don't tell them about moving exiting tasks or
7215 * kernel threads (both mm NULL), since they never
7216 * leave kernel.
7218 if (p->mm && printk_ratelimit()) {
7219 printk(KERN_INFO "process %d (%s) no "
7220 "longer affine to cpu%d\n",
7221 task_pid_nr(p), p->comm, dead_cpu);
7225 move:
7226 /* It can have affinity changed while we were choosing. */
7227 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7228 goto again;
7232 * While a dead CPU has no uninterruptible tasks queued at this point,
7233 * it might still have a nonzero ->nr_uninterruptible counter, because
7234 * for performance reasons the counter is not stricly tracking tasks to
7235 * their home CPUs. So we just add the counter to another CPU's counter,
7236 * to keep the global sum constant after CPU-down:
7238 static void migrate_nr_uninterruptible(struct rq *rq_src)
7240 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7241 unsigned long flags;
7243 local_irq_save(flags);
7244 double_rq_lock(rq_src, rq_dest);
7245 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7246 rq_src->nr_uninterruptible = 0;
7247 double_rq_unlock(rq_src, rq_dest);
7248 local_irq_restore(flags);
7251 /* Run through task list and migrate tasks from the dead cpu. */
7252 static void migrate_live_tasks(int src_cpu)
7254 struct task_struct *p, *t;
7256 read_lock(&tasklist_lock);
7258 do_each_thread(t, p) {
7259 if (p == current)
7260 continue;
7262 if (task_cpu(p) == src_cpu)
7263 move_task_off_dead_cpu(src_cpu, p);
7264 } while_each_thread(t, p);
7266 read_unlock(&tasklist_lock);
7270 * Schedules idle task to be the next runnable task on current CPU.
7271 * It does so by boosting its priority to highest possible.
7272 * Used by CPU offline code.
7274 void sched_idle_next(void)
7276 int this_cpu = smp_processor_id();
7277 struct rq *rq = cpu_rq(this_cpu);
7278 struct task_struct *p = rq->idle;
7279 unsigned long flags;
7281 /* cpu has to be offline */
7282 BUG_ON(cpu_online(this_cpu));
7285 * Strictly not necessary since rest of the CPUs are stopped by now
7286 * and interrupts disabled on the current cpu.
7288 spin_lock_irqsave(&rq->lock, flags);
7290 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7292 update_rq_clock(rq);
7293 activate_task(rq, p, 0);
7295 spin_unlock_irqrestore(&rq->lock, flags);
7299 * Ensures that the idle task is using init_mm right before its cpu goes
7300 * offline.
7302 void idle_task_exit(void)
7304 struct mm_struct *mm = current->active_mm;
7306 BUG_ON(cpu_online(smp_processor_id()));
7308 if (mm != &init_mm)
7309 switch_mm(mm, &init_mm, current);
7310 mmdrop(mm);
7313 /* called under rq->lock with disabled interrupts */
7314 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7316 struct rq *rq = cpu_rq(dead_cpu);
7318 /* Must be exiting, otherwise would be on tasklist. */
7319 BUG_ON(!p->exit_state);
7321 /* Cannot have done final schedule yet: would have vanished. */
7322 BUG_ON(p->state == TASK_DEAD);
7324 get_task_struct(p);
7327 * Drop lock around migration; if someone else moves it,
7328 * that's OK. No task can be added to this CPU, so iteration is
7329 * fine.
7331 spin_unlock_irq(&rq->lock);
7332 move_task_off_dead_cpu(dead_cpu, p);
7333 spin_lock_irq(&rq->lock);
7335 put_task_struct(p);
7338 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7339 static void migrate_dead_tasks(unsigned int dead_cpu)
7341 struct rq *rq = cpu_rq(dead_cpu);
7342 struct task_struct *next;
7344 for ( ; ; ) {
7345 if (!rq->nr_running)
7346 break;
7347 update_rq_clock(rq);
7348 next = pick_next_task(rq);
7349 if (!next)
7350 break;
7351 next->sched_class->put_prev_task(rq, next);
7352 migrate_dead(dead_cpu, next);
7358 * remove the tasks which were accounted by rq from calc_load_tasks.
7360 static void calc_global_load_remove(struct rq *rq)
7362 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7363 rq->calc_load_active = 0;
7365 #endif /* CONFIG_HOTPLUG_CPU */
7367 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7369 static struct ctl_table sd_ctl_dir[] = {
7371 .procname = "sched_domain",
7372 .mode = 0555,
7374 {0, },
7377 static struct ctl_table sd_ctl_root[] = {
7379 .ctl_name = CTL_KERN,
7380 .procname = "kernel",
7381 .mode = 0555,
7382 .child = sd_ctl_dir,
7384 {0, },
7387 static struct ctl_table *sd_alloc_ctl_entry(int n)
7389 struct ctl_table *entry =
7390 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7392 return entry;
7395 static void sd_free_ctl_entry(struct ctl_table **tablep)
7397 struct ctl_table *entry;
7400 * In the intermediate directories, both the child directory and
7401 * procname are dynamically allocated and could fail but the mode
7402 * will always be set. In the lowest directory the names are
7403 * static strings and all have proc handlers.
7405 for (entry = *tablep; entry->mode; entry++) {
7406 if (entry->child)
7407 sd_free_ctl_entry(&entry->child);
7408 if (entry->proc_handler == NULL)
7409 kfree(entry->procname);
7412 kfree(*tablep);
7413 *tablep = NULL;
7416 static void
7417 set_table_entry(struct ctl_table *entry,
7418 const char *procname, void *data, int maxlen,
7419 mode_t mode, proc_handler *proc_handler)
7421 entry->procname = procname;
7422 entry->data = data;
7423 entry->maxlen = maxlen;
7424 entry->mode = mode;
7425 entry->proc_handler = proc_handler;
7428 static struct ctl_table *
7429 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7431 struct ctl_table *table = sd_alloc_ctl_entry(13);
7433 if (table == NULL)
7434 return NULL;
7436 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7437 sizeof(long), 0644, proc_doulongvec_minmax);
7438 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7439 sizeof(long), 0644, proc_doulongvec_minmax);
7440 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7441 sizeof(int), 0644, proc_dointvec_minmax);
7442 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7443 sizeof(int), 0644, proc_dointvec_minmax);
7444 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7445 sizeof(int), 0644, proc_dointvec_minmax);
7446 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7447 sizeof(int), 0644, proc_dointvec_minmax);
7448 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7449 sizeof(int), 0644, proc_dointvec_minmax);
7450 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7451 sizeof(int), 0644, proc_dointvec_minmax);
7452 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7453 sizeof(int), 0644, proc_dointvec_minmax);
7454 set_table_entry(&table[9], "cache_nice_tries",
7455 &sd->cache_nice_tries,
7456 sizeof(int), 0644, proc_dointvec_minmax);
7457 set_table_entry(&table[10], "flags", &sd->flags,
7458 sizeof(int), 0644, proc_dointvec_minmax);
7459 set_table_entry(&table[11], "name", sd->name,
7460 CORENAME_MAX_SIZE, 0444, proc_dostring);
7461 /* &table[12] is terminator */
7463 return table;
7466 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7468 struct ctl_table *entry, *table;
7469 struct sched_domain *sd;
7470 int domain_num = 0, i;
7471 char buf[32];
7473 for_each_domain(cpu, sd)
7474 domain_num++;
7475 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7476 if (table == NULL)
7477 return NULL;
7479 i = 0;
7480 for_each_domain(cpu, sd) {
7481 snprintf(buf, 32, "domain%d", i);
7482 entry->procname = kstrdup(buf, GFP_KERNEL);
7483 entry->mode = 0555;
7484 entry->child = sd_alloc_ctl_domain_table(sd);
7485 entry++;
7486 i++;
7488 return table;
7491 static struct ctl_table_header *sd_sysctl_header;
7492 static void register_sched_domain_sysctl(void)
7494 int i, cpu_num = num_online_cpus();
7495 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7496 char buf[32];
7498 WARN_ON(sd_ctl_dir[0].child);
7499 sd_ctl_dir[0].child = entry;
7501 if (entry == NULL)
7502 return;
7504 for_each_online_cpu(i) {
7505 snprintf(buf, 32, "cpu%d", i);
7506 entry->procname = kstrdup(buf, GFP_KERNEL);
7507 entry->mode = 0555;
7508 entry->child = sd_alloc_ctl_cpu_table(i);
7509 entry++;
7512 WARN_ON(sd_sysctl_header);
7513 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7516 /* may be called multiple times per register */
7517 static void unregister_sched_domain_sysctl(void)
7519 if (sd_sysctl_header)
7520 unregister_sysctl_table(sd_sysctl_header);
7521 sd_sysctl_header = NULL;
7522 if (sd_ctl_dir[0].child)
7523 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7525 #else
7526 static void register_sched_domain_sysctl(void)
7529 static void unregister_sched_domain_sysctl(void)
7532 #endif
7534 static void set_rq_online(struct rq *rq)
7536 if (!rq->online) {
7537 const struct sched_class *class;
7539 cpumask_set_cpu(rq->cpu, rq->rd->online);
7540 rq->online = 1;
7542 for_each_class(class) {
7543 if (class->rq_online)
7544 class->rq_online(rq);
7549 static void set_rq_offline(struct rq *rq)
7551 if (rq->online) {
7552 const struct sched_class *class;
7554 for_each_class(class) {
7555 if (class->rq_offline)
7556 class->rq_offline(rq);
7559 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7560 rq->online = 0;
7565 * migration_call - callback that gets triggered when a CPU is added.
7566 * Here we can start up the necessary migration thread for the new CPU.
7568 static int __cpuinit
7569 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7571 struct task_struct *p;
7572 int cpu = (long)hcpu;
7573 unsigned long flags;
7574 struct rq *rq;
7576 switch (action) {
7578 case CPU_UP_PREPARE:
7579 case CPU_UP_PREPARE_FROZEN:
7580 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7581 if (IS_ERR(p))
7582 return NOTIFY_BAD;
7583 kthread_bind(p, cpu);
7584 /* Must be high prio: stop_machine expects to yield to it. */
7585 rq = task_rq_lock(p, &flags);
7586 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7587 task_rq_unlock(rq, &flags);
7588 get_task_struct(p);
7589 cpu_rq(cpu)->migration_thread = p;
7590 rq->calc_load_update = calc_load_update;
7591 break;
7593 case CPU_ONLINE:
7594 case CPU_ONLINE_FROZEN:
7595 /* Strictly unnecessary, as first user will wake it. */
7596 wake_up_process(cpu_rq(cpu)->migration_thread);
7598 /* Update our root-domain */
7599 rq = cpu_rq(cpu);
7600 spin_lock_irqsave(&rq->lock, flags);
7601 if (rq->rd) {
7602 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7604 set_rq_online(rq);
7606 spin_unlock_irqrestore(&rq->lock, flags);
7607 break;
7609 #ifdef CONFIG_HOTPLUG_CPU
7610 case CPU_UP_CANCELED:
7611 case CPU_UP_CANCELED_FROZEN:
7612 if (!cpu_rq(cpu)->migration_thread)
7613 break;
7614 /* Unbind it from offline cpu so it can run. Fall thru. */
7615 kthread_bind(cpu_rq(cpu)->migration_thread,
7616 cpumask_any(cpu_online_mask));
7617 kthread_stop(cpu_rq(cpu)->migration_thread);
7618 put_task_struct(cpu_rq(cpu)->migration_thread);
7619 cpu_rq(cpu)->migration_thread = NULL;
7620 break;
7622 case CPU_DEAD:
7623 case CPU_DEAD_FROZEN:
7624 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7625 migrate_live_tasks(cpu);
7626 rq = cpu_rq(cpu);
7627 kthread_stop(rq->migration_thread);
7628 put_task_struct(rq->migration_thread);
7629 rq->migration_thread = NULL;
7630 /* Idle task back to normal (off runqueue, low prio) */
7631 spin_lock_irq(&rq->lock);
7632 update_rq_clock(rq);
7633 deactivate_task(rq, rq->idle, 0);
7634 rq->idle->static_prio = MAX_PRIO;
7635 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7636 rq->idle->sched_class = &idle_sched_class;
7637 migrate_dead_tasks(cpu);
7638 spin_unlock_irq(&rq->lock);
7639 cpuset_unlock();
7640 migrate_nr_uninterruptible(rq);
7641 BUG_ON(rq->nr_running != 0);
7642 calc_global_load_remove(rq);
7644 * No need to migrate the tasks: it was best-effort if
7645 * they didn't take sched_hotcpu_mutex. Just wake up
7646 * the requestors.
7648 spin_lock_irq(&rq->lock);
7649 while (!list_empty(&rq->migration_queue)) {
7650 struct migration_req *req;
7652 req = list_entry(rq->migration_queue.next,
7653 struct migration_req, list);
7654 list_del_init(&req->list);
7655 spin_unlock_irq(&rq->lock);
7656 complete(&req->done);
7657 spin_lock_irq(&rq->lock);
7659 spin_unlock_irq(&rq->lock);
7660 break;
7662 case CPU_DYING:
7663 case CPU_DYING_FROZEN:
7664 /* Update our root-domain */
7665 rq = cpu_rq(cpu);
7666 spin_lock_irqsave(&rq->lock, flags);
7667 if (rq->rd) {
7668 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7669 set_rq_offline(rq);
7671 spin_unlock_irqrestore(&rq->lock, flags);
7672 break;
7673 #endif
7675 return NOTIFY_OK;
7679 * Register at high priority so that task migration (migrate_all_tasks)
7680 * happens before everything else. This has to be lower priority than
7681 * the notifier in the perf_event subsystem, though.
7683 static struct notifier_block __cpuinitdata migration_notifier = {
7684 .notifier_call = migration_call,
7685 .priority = 10
7688 static int __init migration_init(void)
7690 void *cpu = (void *)(long)smp_processor_id();
7691 int err;
7693 /* Start one for the boot CPU: */
7694 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7695 BUG_ON(err == NOTIFY_BAD);
7696 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7697 register_cpu_notifier(&migration_notifier);
7699 return 0;
7701 early_initcall(migration_init);
7702 #endif
7704 #ifdef CONFIG_SMP
7706 #ifdef CONFIG_SCHED_DEBUG
7708 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7709 struct cpumask *groupmask)
7711 struct sched_group *group = sd->groups;
7712 char str[256];
7714 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7715 cpumask_clear(groupmask);
7717 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7719 if (!(sd->flags & SD_LOAD_BALANCE)) {
7720 printk("does not load-balance\n");
7721 if (sd->parent)
7722 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7723 " has parent");
7724 return -1;
7727 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7729 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7730 printk(KERN_ERR "ERROR: domain->span does not contain "
7731 "CPU%d\n", cpu);
7733 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7734 printk(KERN_ERR "ERROR: domain->groups does not contain"
7735 " CPU%d\n", cpu);
7738 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7739 do {
7740 if (!group) {
7741 printk("\n");
7742 printk(KERN_ERR "ERROR: group is NULL\n");
7743 break;
7746 if (!group->cpu_power) {
7747 printk(KERN_CONT "\n");
7748 printk(KERN_ERR "ERROR: domain->cpu_power not "
7749 "set\n");
7750 break;
7753 if (!cpumask_weight(sched_group_cpus(group))) {
7754 printk(KERN_CONT "\n");
7755 printk(KERN_ERR "ERROR: empty group\n");
7756 break;
7759 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7760 printk(KERN_CONT "\n");
7761 printk(KERN_ERR "ERROR: repeated CPUs\n");
7762 break;
7765 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7767 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7769 printk(KERN_CONT " %s", str);
7770 if (group->cpu_power != SCHED_LOAD_SCALE) {
7771 printk(KERN_CONT " (cpu_power = %d)",
7772 group->cpu_power);
7775 group = group->next;
7776 } while (group != sd->groups);
7777 printk(KERN_CONT "\n");
7779 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7780 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7782 if (sd->parent &&
7783 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7784 printk(KERN_ERR "ERROR: parent span is not a superset "
7785 "of domain->span\n");
7786 return 0;
7789 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7791 cpumask_var_t groupmask;
7792 int level = 0;
7794 if (!sd) {
7795 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7796 return;
7799 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7801 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7802 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7803 return;
7806 for (;;) {
7807 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7808 break;
7809 level++;
7810 sd = sd->parent;
7811 if (!sd)
7812 break;
7814 free_cpumask_var(groupmask);
7816 #else /* !CONFIG_SCHED_DEBUG */
7817 # define sched_domain_debug(sd, cpu) do { } while (0)
7818 #endif /* CONFIG_SCHED_DEBUG */
7820 static int sd_degenerate(struct sched_domain *sd)
7822 if (cpumask_weight(sched_domain_span(sd)) == 1)
7823 return 1;
7825 /* Following flags need at least 2 groups */
7826 if (sd->flags & (SD_LOAD_BALANCE |
7827 SD_BALANCE_NEWIDLE |
7828 SD_BALANCE_FORK |
7829 SD_BALANCE_EXEC |
7830 SD_SHARE_CPUPOWER |
7831 SD_SHARE_PKG_RESOURCES)) {
7832 if (sd->groups != sd->groups->next)
7833 return 0;
7836 /* Following flags don't use groups */
7837 if (sd->flags & (SD_WAKE_AFFINE))
7838 return 0;
7840 return 1;
7843 static int
7844 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7846 unsigned long cflags = sd->flags, pflags = parent->flags;
7848 if (sd_degenerate(parent))
7849 return 1;
7851 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7852 return 0;
7854 /* Flags needing groups don't count if only 1 group in parent */
7855 if (parent->groups == parent->groups->next) {
7856 pflags &= ~(SD_LOAD_BALANCE |
7857 SD_BALANCE_NEWIDLE |
7858 SD_BALANCE_FORK |
7859 SD_BALANCE_EXEC |
7860 SD_SHARE_CPUPOWER |
7861 SD_SHARE_PKG_RESOURCES);
7862 if (nr_node_ids == 1)
7863 pflags &= ~SD_SERIALIZE;
7865 if (~cflags & pflags)
7866 return 0;
7868 return 1;
7871 static void free_rootdomain(struct root_domain *rd)
7873 cpupri_cleanup(&rd->cpupri);
7875 free_cpumask_var(rd->rto_mask);
7876 free_cpumask_var(rd->online);
7877 free_cpumask_var(rd->span);
7878 kfree(rd);
7881 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7883 struct root_domain *old_rd = NULL;
7884 unsigned long flags;
7886 spin_lock_irqsave(&rq->lock, flags);
7888 if (rq->rd) {
7889 old_rd = rq->rd;
7891 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7892 set_rq_offline(rq);
7894 cpumask_clear_cpu(rq->cpu, old_rd->span);
7897 * If we dont want to free the old_rt yet then
7898 * set old_rd to NULL to skip the freeing later
7899 * in this function:
7901 if (!atomic_dec_and_test(&old_rd->refcount))
7902 old_rd = NULL;
7905 atomic_inc(&rd->refcount);
7906 rq->rd = rd;
7908 cpumask_set_cpu(rq->cpu, rd->span);
7909 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7910 set_rq_online(rq);
7912 spin_unlock_irqrestore(&rq->lock, flags);
7914 if (old_rd)
7915 free_rootdomain(old_rd);
7918 static int init_rootdomain(struct root_domain *rd, bool bootmem)
7920 gfp_t gfp = GFP_KERNEL;
7922 memset(rd, 0, sizeof(*rd));
7924 if (bootmem)
7925 gfp = GFP_NOWAIT;
7927 if (!alloc_cpumask_var(&rd->span, gfp))
7928 goto out;
7929 if (!alloc_cpumask_var(&rd->online, gfp))
7930 goto free_span;
7931 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7932 goto free_online;
7934 if (cpupri_init(&rd->cpupri, bootmem) != 0)
7935 goto free_rto_mask;
7936 return 0;
7938 free_rto_mask:
7939 free_cpumask_var(rd->rto_mask);
7940 free_online:
7941 free_cpumask_var(rd->online);
7942 free_span:
7943 free_cpumask_var(rd->span);
7944 out:
7945 return -ENOMEM;
7948 static void init_defrootdomain(void)
7950 init_rootdomain(&def_root_domain, true);
7952 atomic_set(&def_root_domain.refcount, 1);
7955 static struct root_domain *alloc_rootdomain(void)
7957 struct root_domain *rd;
7959 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7960 if (!rd)
7961 return NULL;
7963 if (init_rootdomain(rd, false) != 0) {
7964 kfree(rd);
7965 return NULL;
7968 return rd;
7972 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7973 * hold the hotplug lock.
7975 static void
7976 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7978 struct rq *rq = cpu_rq(cpu);
7979 struct sched_domain *tmp;
7981 /* Remove the sched domains which do not contribute to scheduling. */
7982 for (tmp = sd; tmp; ) {
7983 struct sched_domain *parent = tmp->parent;
7984 if (!parent)
7985 break;
7987 if (sd_parent_degenerate(tmp, parent)) {
7988 tmp->parent = parent->parent;
7989 if (parent->parent)
7990 parent->parent->child = tmp;
7991 } else
7992 tmp = tmp->parent;
7995 if (sd && sd_degenerate(sd)) {
7996 sd = sd->parent;
7997 if (sd)
7998 sd->child = NULL;
8001 sched_domain_debug(sd, cpu);
8003 rq_attach_root(rq, rd);
8004 rcu_assign_pointer(rq->sd, sd);
8007 /* cpus with isolated domains */
8008 static cpumask_var_t cpu_isolated_map;
8010 /* Setup the mask of cpus configured for isolated domains */
8011 static int __init isolated_cpu_setup(char *str)
8013 cpulist_parse(str, cpu_isolated_map);
8014 return 1;
8017 __setup("isolcpus=", isolated_cpu_setup);
8020 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8021 * to a function which identifies what group(along with sched group) a CPU
8022 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8023 * (due to the fact that we keep track of groups covered with a struct cpumask).
8025 * init_sched_build_groups will build a circular linked list of the groups
8026 * covered by the given span, and will set each group's ->cpumask correctly,
8027 * and ->cpu_power to 0.
8029 static void
8030 init_sched_build_groups(const struct cpumask *span,
8031 const struct cpumask *cpu_map,
8032 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8033 struct sched_group **sg,
8034 struct cpumask *tmpmask),
8035 struct cpumask *covered, struct cpumask *tmpmask)
8037 struct sched_group *first = NULL, *last = NULL;
8038 int i;
8040 cpumask_clear(covered);
8042 for_each_cpu(i, span) {
8043 struct sched_group *sg;
8044 int group = group_fn(i, cpu_map, &sg, tmpmask);
8045 int j;
8047 if (cpumask_test_cpu(i, covered))
8048 continue;
8050 cpumask_clear(sched_group_cpus(sg));
8051 sg->cpu_power = 0;
8053 for_each_cpu(j, span) {
8054 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8055 continue;
8057 cpumask_set_cpu(j, covered);
8058 cpumask_set_cpu(j, sched_group_cpus(sg));
8060 if (!first)
8061 first = sg;
8062 if (last)
8063 last->next = sg;
8064 last = sg;
8066 last->next = first;
8069 #define SD_NODES_PER_DOMAIN 16
8071 #ifdef CONFIG_NUMA
8074 * find_next_best_node - find the next node to include in a sched_domain
8075 * @node: node whose sched_domain we're building
8076 * @used_nodes: nodes already in the sched_domain
8078 * Find the next node to include in a given scheduling domain. Simply
8079 * finds the closest node not already in the @used_nodes map.
8081 * Should use nodemask_t.
8083 static int find_next_best_node(int node, nodemask_t *used_nodes)
8085 int i, n, val, min_val, best_node = 0;
8087 min_val = INT_MAX;
8089 for (i = 0; i < nr_node_ids; i++) {
8090 /* Start at @node */
8091 n = (node + i) % nr_node_ids;
8093 if (!nr_cpus_node(n))
8094 continue;
8096 /* Skip already used nodes */
8097 if (node_isset(n, *used_nodes))
8098 continue;
8100 /* Simple min distance search */
8101 val = node_distance(node, n);
8103 if (val < min_val) {
8104 min_val = val;
8105 best_node = n;
8109 node_set(best_node, *used_nodes);
8110 return best_node;
8114 * sched_domain_node_span - get a cpumask for a node's sched_domain
8115 * @node: node whose cpumask we're constructing
8116 * @span: resulting cpumask
8118 * Given a node, construct a good cpumask for its sched_domain to span. It
8119 * should be one that prevents unnecessary balancing, but also spreads tasks
8120 * out optimally.
8122 static void sched_domain_node_span(int node, struct cpumask *span)
8124 nodemask_t used_nodes;
8125 int i;
8127 cpumask_clear(span);
8128 nodes_clear(used_nodes);
8130 cpumask_or(span, span, cpumask_of_node(node));
8131 node_set(node, used_nodes);
8133 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8134 int next_node = find_next_best_node(node, &used_nodes);
8136 cpumask_or(span, span, cpumask_of_node(next_node));
8139 #endif /* CONFIG_NUMA */
8141 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8144 * The cpus mask in sched_group and sched_domain hangs off the end.
8146 * ( See the the comments in include/linux/sched.h:struct sched_group
8147 * and struct sched_domain. )
8149 struct static_sched_group {
8150 struct sched_group sg;
8151 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8154 struct static_sched_domain {
8155 struct sched_domain sd;
8156 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8159 struct s_data {
8160 #ifdef CONFIG_NUMA
8161 int sd_allnodes;
8162 cpumask_var_t domainspan;
8163 cpumask_var_t covered;
8164 cpumask_var_t notcovered;
8165 #endif
8166 cpumask_var_t nodemask;
8167 cpumask_var_t this_sibling_map;
8168 cpumask_var_t this_core_map;
8169 cpumask_var_t send_covered;
8170 cpumask_var_t tmpmask;
8171 struct sched_group **sched_group_nodes;
8172 struct root_domain *rd;
8175 enum s_alloc {
8176 sa_sched_groups = 0,
8177 sa_rootdomain,
8178 sa_tmpmask,
8179 sa_send_covered,
8180 sa_this_core_map,
8181 sa_this_sibling_map,
8182 sa_nodemask,
8183 sa_sched_group_nodes,
8184 #ifdef CONFIG_NUMA
8185 sa_notcovered,
8186 sa_covered,
8187 sa_domainspan,
8188 #endif
8189 sa_none,
8193 * SMT sched-domains:
8195 #ifdef CONFIG_SCHED_SMT
8196 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8197 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8199 static int
8200 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8201 struct sched_group **sg, struct cpumask *unused)
8203 if (sg)
8204 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8205 return cpu;
8207 #endif /* CONFIG_SCHED_SMT */
8210 * multi-core sched-domains:
8212 #ifdef CONFIG_SCHED_MC
8213 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8214 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8215 #endif /* CONFIG_SCHED_MC */
8217 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8218 static int
8219 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8220 struct sched_group **sg, struct cpumask *mask)
8222 int group;
8224 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8225 group = cpumask_first(mask);
8226 if (sg)
8227 *sg = &per_cpu(sched_group_core, group).sg;
8228 return group;
8230 #elif defined(CONFIG_SCHED_MC)
8231 static int
8232 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8233 struct sched_group **sg, struct cpumask *unused)
8235 if (sg)
8236 *sg = &per_cpu(sched_group_core, cpu).sg;
8237 return cpu;
8239 #endif
8241 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8242 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8244 static int
8245 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8246 struct sched_group **sg, struct cpumask *mask)
8248 int group;
8249 #ifdef CONFIG_SCHED_MC
8250 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8251 group = cpumask_first(mask);
8252 #elif defined(CONFIG_SCHED_SMT)
8253 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8254 group = cpumask_first(mask);
8255 #else
8256 group = cpu;
8257 #endif
8258 if (sg)
8259 *sg = &per_cpu(sched_group_phys, group).sg;
8260 return group;
8263 #ifdef CONFIG_NUMA
8265 * The init_sched_build_groups can't handle what we want to do with node
8266 * groups, so roll our own. Now each node has its own list of groups which
8267 * gets dynamically allocated.
8269 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8270 static struct sched_group ***sched_group_nodes_bycpu;
8272 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8273 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8275 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8276 struct sched_group **sg,
8277 struct cpumask *nodemask)
8279 int group;
8281 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8282 group = cpumask_first(nodemask);
8284 if (sg)
8285 *sg = &per_cpu(sched_group_allnodes, group).sg;
8286 return group;
8289 static void init_numa_sched_groups_power(struct sched_group *group_head)
8291 struct sched_group *sg = group_head;
8292 int j;
8294 if (!sg)
8295 return;
8296 do {
8297 for_each_cpu(j, sched_group_cpus(sg)) {
8298 struct sched_domain *sd;
8300 sd = &per_cpu(phys_domains, j).sd;
8301 if (j != group_first_cpu(sd->groups)) {
8303 * Only add "power" once for each
8304 * physical package.
8306 continue;
8309 sg->cpu_power += sd->groups->cpu_power;
8311 sg = sg->next;
8312 } while (sg != group_head);
8315 static int build_numa_sched_groups(struct s_data *d,
8316 const struct cpumask *cpu_map, int num)
8318 struct sched_domain *sd;
8319 struct sched_group *sg, *prev;
8320 int n, j;
8322 cpumask_clear(d->covered);
8323 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8324 if (cpumask_empty(d->nodemask)) {
8325 d->sched_group_nodes[num] = NULL;
8326 goto out;
8329 sched_domain_node_span(num, d->domainspan);
8330 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8332 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8333 GFP_KERNEL, num);
8334 if (!sg) {
8335 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8336 num);
8337 return -ENOMEM;
8339 d->sched_group_nodes[num] = sg;
8341 for_each_cpu(j, d->nodemask) {
8342 sd = &per_cpu(node_domains, j).sd;
8343 sd->groups = sg;
8346 sg->cpu_power = 0;
8347 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8348 sg->next = sg;
8349 cpumask_or(d->covered, d->covered, d->nodemask);
8351 prev = sg;
8352 for (j = 0; j < nr_node_ids; j++) {
8353 n = (num + j) % nr_node_ids;
8354 cpumask_complement(d->notcovered, d->covered);
8355 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8356 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8357 if (cpumask_empty(d->tmpmask))
8358 break;
8359 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8360 if (cpumask_empty(d->tmpmask))
8361 continue;
8362 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8363 GFP_KERNEL, num);
8364 if (!sg) {
8365 printk(KERN_WARNING
8366 "Can not alloc domain group for node %d\n", j);
8367 return -ENOMEM;
8369 sg->cpu_power = 0;
8370 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8371 sg->next = prev->next;
8372 cpumask_or(d->covered, d->covered, d->tmpmask);
8373 prev->next = sg;
8374 prev = sg;
8376 out:
8377 return 0;
8379 #endif /* CONFIG_NUMA */
8381 #ifdef CONFIG_NUMA
8382 /* Free memory allocated for various sched_group structures */
8383 static void free_sched_groups(const struct cpumask *cpu_map,
8384 struct cpumask *nodemask)
8386 int cpu, i;
8388 for_each_cpu(cpu, cpu_map) {
8389 struct sched_group **sched_group_nodes
8390 = sched_group_nodes_bycpu[cpu];
8392 if (!sched_group_nodes)
8393 continue;
8395 for (i = 0; i < nr_node_ids; i++) {
8396 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8398 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8399 if (cpumask_empty(nodemask))
8400 continue;
8402 if (sg == NULL)
8403 continue;
8404 sg = sg->next;
8405 next_sg:
8406 oldsg = sg;
8407 sg = sg->next;
8408 kfree(oldsg);
8409 if (oldsg != sched_group_nodes[i])
8410 goto next_sg;
8412 kfree(sched_group_nodes);
8413 sched_group_nodes_bycpu[cpu] = NULL;
8416 #else /* !CONFIG_NUMA */
8417 static void free_sched_groups(const struct cpumask *cpu_map,
8418 struct cpumask *nodemask)
8421 #endif /* CONFIG_NUMA */
8424 * Initialize sched groups cpu_power.
8426 * cpu_power indicates the capacity of sched group, which is used while
8427 * distributing the load between different sched groups in a sched domain.
8428 * Typically cpu_power for all the groups in a sched domain will be same unless
8429 * there are asymmetries in the topology. If there are asymmetries, group
8430 * having more cpu_power will pickup more load compared to the group having
8431 * less cpu_power.
8433 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8435 struct sched_domain *child;
8436 struct sched_group *group;
8437 long power;
8438 int weight;
8440 WARN_ON(!sd || !sd->groups);
8442 if (cpu != group_first_cpu(sd->groups))
8443 return;
8445 child = sd->child;
8447 sd->groups->cpu_power = 0;
8449 if (!child) {
8450 power = SCHED_LOAD_SCALE;
8451 weight = cpumask_weight(sched_domain_span(sd));
8453 * SMT siblings share the power of a single core.
8454 * Usually multiple threads get a better yield out of
8455 * that one core than a single thread would have,
8456 * reflect that in sd->smt_gain.
8458 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8459 power *= sd->smt_gain;
8460 power /= weight;
8461 power >>= SCHED_LOAD_SHIFT;
8463 sd->groups->cpu_power += power;
8464 return;
8468 * Add cpu_power of each child group to this groups cpu_power.
8470 group = child->groups;
8471 do {
8472 sd->groups->cpu_power += group->cpu_power;
8473 group = group->next;
8474 } while (group != child->groups);
8478 * Initializers for schedule domains
8479 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8482 #ifdef CONFIG_SCHED_DEBUG
8483 # define SD_INIT_NAME(sd, type) sd->name = #type
8484 #else
8485 # define SD_INIT_NAME(sd, type) do { } while (0)
8486 #endif
8488 #define SD_INIT(sd, type) sd_init_##type(sd)
8490 #define SD_INIT_FUNC(type) \
8491 static noinline void sd_init_##type(struct sched_domain *sd) \
8493 memset(sd, 0, sizeof(*sd)); \
8494 *sd = SD_##type##_INIT; \
8495 sd->level = SD_LV_##type; \
8496 SD_INIT_NAME(sd, type); \
8499 SD_INIT_FUNC(CPU)
8500 #ifdef CONFIG_NUMA
8501 SD_INIT_FUNC(ALLNODES)
8502 SD_INIT_FUNC(NODE)
8503 #endif
8504 #ifdef CONFIG_SCHED_SMT
8505 SD_INIT_FUNC(SIBLING)
8506 #endif
8507 #ifdef CONFIG_SCHED_MC
8508 SD_INIT_FUNC(MC)
8509 #endif
8511 static int default_relax_domain_level = -1;
8513 static int __init setup_relax_domain_level(char *str)
8515 unsigned long val;
8517 val = simple_strtoul(str, NULL, 0);
8518 if (val < SD_LV_MAX)
8519 default_relax_domain_level = val;
8521 return 1;
8523 __setup("relax_domain_level=", setup_relax_domain_level);
8525 static void set_domain_attribute(struct sched_domain *sd,
8526 struct sched_domain_attr *attr)
8528 int request;
8530 if (!attr || attr->relax_domain_level < 0) {
8531 if (default_relax_domain_level < 0)
8532 return;
8533 else
8534 request = default_relax_domain_level;
8535 } else
8536 request = attr->relax_domain_level;
8537 if (request < sd->level) {
8538 /* turn off idle balance on this domain */
8539 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8540 } else {
8541 /* turn on idle balance on this domain */
8542 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8546 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8547 const struct cpumask *cpu_map)
8549 switch (what) {
8550 case sa_sched_groups:
8551 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8552 d->sched_group_nodes = NULL;
8553 case sa_rootdomain:
8554 free_rootdomain(d->rd); /* fall through */
8555 case sa_tmpmask:
8556 free_cpumask_var(d->tmpmask); /* fall through */
8557 case sa_send_covered:
8558 free_cpumask_var(d->send_covered); /* fall through */
8559 case sa_this_core_map:
8560 free_cpumask_var(d->this_core_map); /* fall through */
8561 case sa_this_sibling_map:
8562 free_cpumask_var(d->this_sibling_map); /* fall through */
8563 case sa_nodemask:
8564 free_cpumask_var(d->nodemask); /* fall through */
8565 case sa_sched_group_nodes:
8566 #ifdef CONFIG_NUMA
8567 kfree(d->sched_group_nodes); /* fall through */
8568 case sa_notcovered:
8569 free_cpumask_var(d->notcovered); /* fall through */
8570 case sa_covered:
8571 free_cpumask_var(d->covered); /* fall through */
8572 case sa_domainspan:
8573 free_cpumask_var(d->domainspan); /* fall through */
8574 #endif
8575 case sa_none:
8576 break;
8580 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8581 const struct cpumask *cpu_map)
8583 #ifdef CONFIG_NUMA
8584 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8585 return sa_none;
8586 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8587 return sa_domainspan;
8588 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8589 return sa_covered;
8590 /* Allocate the per-node list of sched groups */
8591 d->sched_group_nodes = kcalloc(nr_node_ids,
8592 sizeof(struct sched_group *), GFP_KERNEL);
8593 if (!d->sched_group_nodes) {
8594 printk(KERN_WARNING "Can not alloc sched group node list\n");
8595 return sa_notcovered;
8597 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8598 #endif
8599 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8600 return sa_sched_group_nodes;
8601 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8602 return sa_nodemask;
8603 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8604 return sa_this_sibling_map;
8605 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8606 return sa_this_core_map;
8607 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8608 return sa_send_covered;
8609 d->rd = alloc_rootdomain();
8610 if (!d->rd) {
8611 printk(KERN_WARNING "Cannot alloc root domain\n");
8612 return sa_tmpmask;
8614 return sa_rootdomain;
8617 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8618 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8620 struct sched_domain *sd = NULL;
8621 #ifdef CONFIG_NUMA
8622 struct sched_domain *parent;
8624 d->sd_allnodes = 0;
8625 if (cpumask_weight(cpu_map) >
8626 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8627 sd = &per_cpu(allnodes_domains, i).sd;
8628 SD_INIT(sd, ALLNODES);
8629 set_domain_attribute(sd, attr);
8630 cpumask_copy(sched_domain_span(sd), cpu_map);
8631 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8632 d->sd_allnodes = 1;
8634 parent = sd;
8636 sd = &per_cpu(node_domains, i).sd;
8637 SD_INIT(sd, NODE);
8638 set_domain_attribute(sd, attr);
8639 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8640 sd->parent = parent;
8641 if (parent)
8642 parent->child = sd;
8643 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8644 #endif
8645 return sd;
8648 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8649 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8650 struct sched_domain *parent, int i)
8652 struct sched_domain *sd;
8653 sd = &per_cpu(phys_domains, i).sd;
8654 SD_INIT(sd, CPU);
8655 set_domain_attribute(sd, attr);
8656 cpumask_copy(sched_domain_span(sd), d->nodemask);
8657 sd->parent = parent;
8658 if (parent)
8659 parent->child = sd;
8660 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8661 return sd;
8664 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8665 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8666 struct sched_domain *parent, int i)
8668 struct sched_domain *sd = parent;
8669 #ifdef CONFIG_SCHED_MC
8670 sd = &per_cpu(core_domains, i).sd;
8671 SD_INIT(sd, MC);
8672 set_domain_attribute(sd, attr);
8673 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8674 sd->parent = parent;
8675 parent->child = sd;
8676 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8677 #endif
8678 return sd;
8681 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8682 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8683 struct sched_domain *parent, int i)
8685 struct sched_domain *sd = parent;
8686 #ifdef CONFIG_SCHED_SMT
8687 sd = &per_cpu(cpu_domains, i).sd;
8688 SD_INIT(sd, SIBLING);
8689 set_domain_attribute(sd, attr);
8690 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8691 sd->parent = parent;
8692 parent->child = sd;
8693 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8694 #endif
8695 return sd;
8698 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8699 const struct cpumask *cpu_map, int cpu)
8701 switch (l) {
8702 #ifdef CONFIG_SCHED_SMT
8703 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8704 cpumask_and(d->this_sibling_map, cpu_map,
8705 topology_thread_cpumask(cpu));
8706 if (cpu == cpumask_first(d->this_sibling_map))
8707 init_sched_build_groups(d->this_sibling_map, cpu_map,
8708 &cpu_to_cpu_group,
8709 d->send_covered, d->tmpmask);
8710 break;
8711 #endif
8712 #ifdef CONFIG_SCHED_MC
8713 case SD_LV_MC: /* set up multi-core groups */
8714 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8715 if (cpu == cpumask_first(d->this_core_map))
8716 init_sched_build_groups(d->this_core_map, cpu_map,
8717 &cpu_to_core_group,
8718 d->send_covered, d->tmpmask);
8719 break;
8720 #endif
8721 case SD_LV_CPU: /* set up physical groups */
8722 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8723 if (!cpumask_empty(d->nodemask))
8724 init_sched_build_groups(d->nodemask, cpu_map,
8725 &cpu_to_phys_group,
8726 d->send_covered, d->tmpmask);
8727 break;
8728 #ifdef CONFIG_NUMA
8729 case SD_LV_ALLNODES:
8730 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8731 d->send_covered, d->tmpmask);
8732 break;
8733 #endif
8734 default:
8735 break;
8740 * Build sched domains for a given set of cpus and attach the sched domains
8741 * to the individual cpus
8743 static int __build_sched_domains(const struct cpumask *cpu_map,
8744 struct sched_domain_attr *attr)
8746 enum s_alloc alloc_state = sa_none;
8747 struct s_data d;
8748 struct sched_domain *sd;
8749 int i;
8750 #ifdef CONFIG_NUMA
8751 d.sd_allnodes = 0;
8752 #endif
8754 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8755 if (alloc_state != sa_rootdomain)
8756 goto error;
8757 alloc_state = sa_sched_groups;
8760 * Set up domains for cpus specified by the cpu_map.
8762 for_each_cpu(i, cpu_map) {
8763 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8764 cpu_map);
8766 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8767 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8768 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8769 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8772 for_each_cpu(i, cpu_map) {
8773 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8774 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8777 /* Set up physical groups */
8778 for (i = 0; i < nr_node_ids; i++)
8779 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8781 #ifdef CONFIG_NUMA
8782 /* Set up node groups */
8783 if (d.sd_allnodes)
8784 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8786 for (i = 0; i < nr_node_ids; i++)
8787 if (build_numa_sched_groups(&d, cpu_map, i))
8788 goto error;
8789 #endif
8791 /* Calculate CPU power for physical packages and nodes */
8792 #ifdef CONFIG_SCHED_SMT
8793 for_each_cpu(i, cpu_map) {
8794 sd = &per_cpu(cpu_domains, i).sd;
8795 init_sched_groups_power(i, sd);
8797 #endif
8798 #ifdef CONFIG_SCHED_MC
8799 for_each_cpu(i, cpu_map) {
8800 sd = &per_cpu(core_domains, i).sd;
8801 init_sched_groups_power(i, sd);
8803 #endif
8805 for_each_cpu(i, cpu_map) {
8806 sd = &per_cpu(phys_domains, i).sd;
8807 init_sched_groups_power(i, sd);
8810 #ifdef CONFIG_NUMA
8811 for (i = 0; i < nr_node_ids; i++)
8812 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8814 if (d.sd_allnodes) {
8815 struct sched_group *sg;
8817 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8818 d.tmpmask);
8819 init_numa_sched_groups_power(sg);
8821 #endif
8823 /* Attach the domains */
8824 for_each_cpu(i, cpu_map) {
8825 #ifdef CONFIG_SCHED_SMT
8826 sd = &per_cpu(cpu_domains, i).sd;
8827 #elif defined(CONFIG_SCHED_MC)
8828 sd = &per_cpu(core_domains, i).sd;
8829 #else
8830 sd = &per_cpu(phys_domains, i).sd;
8831 #endif
8832 cpu_attach_domain(sd, d.rd, i);
8835 d.sched_group_nodes = NULL; /* don't free this we still need it */
8836 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8837 return 0;
8839 error:
8840 __free_domain_allocs(&d, alloc_state, cpu_map);
8841 return -ENOMEM;
8844 static int build_sched_domains(const struct cpumask *cpu_map)
8846 return __build_sched_domains(cpu_map, NULL);
8849 static struct cpumask *doms_cur; /* current sched domains */
8850 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8851 static struct sched_domain_attr *dattr_cur;
8852 /* attribues of custom domains in 'doms_cur' */
8855 * Special case: If a kmalloc of a doms_cur partition (array of
8856 * cpumask) fails, then fallback to a single sched domain,
8857 * as determined by the single cpumask fallback_doms.
8859 static cpumask_var_t fallback_doms;
8862 * arch_update_cpu_topology lets virtualized architectures update the
8863 * cpu core maps. It is supposed to return 1 if the topology changed
8864 * or 0 if it stayed the same.
8866 int __attribute__((weak)) arch_update_cpu_topology(void)
8868 return 0;
8872 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8873 * For now this just excludes isolated cpus, but could be used to
8874 * exclude other special cases in the future.
8876 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8878 int err;
8880 arch_update_cpu_topology();
8881 ndoms_cur = 1;
8882 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8883 if (!doms_cur)
8884 doms_cur = fallback_doms;
8885 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8886 dattr_cur = NULL;
8887 err = build_sched_domains(doms_cur);
8888 register_sched_domain_sysctl();
8890 return err;
8893 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8894 struct cpumask *tmpmask)
8896 free_sched_groups(cpu_map, tmpmask);
8900 * Detach sched domains from a group of cpus specified in cpu_map
8901 * These cpus will now be attached to the NULL domain
8903 static void detach_destroy_domains(const struct cpumask *cpu_map)
8905 /* Save because hotplug lock held. */
8906 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8907 int i;
8909 for_each_cpu(i, cpu_map)
8910 cpu_attach_domain(NULL, &def_root_domain, i);
8911 synchronize_sched();
8912 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8915 /* handle null as "default" */
8916 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8917 struct sched_domain_attr *new, int idx_new)
8919 struct sched_domain_attr tmp;
8921 /* fast path */
8922 if (!new && !cur)
8923 return 1;
8925 tmp = SD_ATTR_INIT;
8926 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8927 new ? (new + idx_new) : &tmp,
8928 sizeof(struct sched_domain_attr));
8932 * Partition sched domains as specified by the 'ndoms_new'
8933 * cpumasks in the array doms_new[] of cpumasks. This compares
8934 * doms_new[] to the current sched domain partitioning, doms_cur[].
8935 * It destroys each deleted domain and builds each new domain.
8937 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8938 * The masks don't intersect (don't overlap.) We should setup one
8939 * sched domain for each mask. CPUs not in any of the cpumasks will
8940 * not be load balanced. If the same cpumask appears both in the
8941 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8942 * it as it is.
8944 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8945 * ownership of it and will kfree it when done with it. If the caller
8946 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8947 * ndoms_new == 1, and partition_sched_domains() will fallback to
8948 * the single partition 'fallback_doms', it also forces the domains
8949 * to be rebuilt.
8951 * If doms_new == NULL it will be replaced with cpu_online_mask.
8952 * ndoms_new == 0 is a special case for destroying existing domains,
8953 * and it will not create the default domain.
8955 * Call with hotplug lock held
8957 /* FIXME: Change to struct cpumask *doms_new[] */
8958 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8959 struct sched_domain_attr *dattr_new)
8961 int i, j, n;
8962 int new_topology;
8964 mutex_lock(&sched_domains_mutex);
8966 /* always unregister in case we don't destroy any domains */
8967 unregister_sched_domain_sysctl();
8969 /* Let architecture update cpu core mappings. */
8970 new_topology = arch_update_cpu_topology();
8972 n = doms_new ? ndoms_new : 0;
8974 /* Destroy deleted domains */
8975 for (i = 0; i < ndoms_cur; i++) {
8976 for (j = 0; j < n && !new_topology; j++) {
8977 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8978 && dattrs_equal(dattr_cur, i, dattr_new, j))
8979 goto match1;
8981 /* no match - a current sched domain not in new doms_new[] */
8982 detach_destroy_domains(doms_cur + i);
8983 match1:
8987 if (doms_new == NULL) {
8988 ndoms_cur = 0;
8989 doms_new = fallback_doms;
8990 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8991 WARN_ON_ONCE(dattr_new);
8994 /* Build new domains */
8995 for (i = 0; i < ndoms_new; i++) {
8996 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8997 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8998 && dattrs_equal(dattr_new, i, dattr_cur, j))
8999 goto match2;
9001 /* no match - add a new doms_new */
9002 __build_sched_domains(doms_new + i,
9003 dattr_new ? dattr_new + i : NULL);
9004 match2:
9008 /* Remember the new sched domains */
9009 if (doms_cur != fallback_doms)
9010 kfree(doms_cur);
9011 kfree(dattr_cur); /* kfree(NULL) is safe */
9012 doms_cur = doms_new;
9013 dattr_cur = dattr_new;
9014 ndoms_cur = ndoms_new;
9016 register_sched_domain_sysctl();
9018 mutex_unlock(&sched_domains_mutex);
9021 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9022 static void arch_reinit_sched_domains(void)
9024 get_online_cpus();
9026 /* Destroy domains first to force the rebuild */
9027 partition_sched_domains(0, NULL, NULL);
9029 rebuild_sched_domains();
9030 put_online_cpus();
9033 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9035 unsigned int level = 0;
9037 if (sscanf(buf, "%u", &level) != 1)
9038 return -EINVAL;
9041 * level is always be positive so don't check for
9042 * level < POWERSAVINGS_BALANCE_NONE which is 0
9043 * What happens on 0 or 1 byte write,
9044 * need to check for count as well?
9047 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9048 return -EINVAL;
9050 if (smt)
9051 sched_smt_power_savings = level;
9052 else
9053 sched_mc_power_savings = level;
9055 arch_reinit_sched_domains();
9057 return count;
9060 #ifdef CONFIG_SCHED_MC
9061 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9062 char *page)
9064 return sprintf(page, "%u\n", sched_mc_power_savings);
9066 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9067 const char *buf, size_t count)
9069 return sched_power_savings_store(buf, count, 0);
9071 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9072 sched_mc_power_savings_show,
9073 sched_mc_power_savings_store);
9074 #endif
9076 #ifdef CONFIG_SCHED_SMT
9077 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9078 char *page)
9080 return sprintf(page, "%u\n", sched_smt_power_savings);
9082 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9083 const char *buf, size_t count)
9085 return sched_power_savings_store(buf, count, 1);
9087 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9088 sched_smt_power_savings_show,
9089 sched_smt_power_savings_store);
9090 #endif
9092 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9094 int err = 0;
9096 #ifdef CONFIG_SCHED_SMT
9097 if (smt_capable())
9098 err = sysfs_create_file(&cls->kset.kobj,
9099 &attr_sched_smt_power_savings.attr);
9100 #endif
9101 #ifdef CONFIG_SCHED_MC
9102 if (!err && mc_capable())
9103 err = sysfs_create_file(&cls->kset.kobj,
9104 &attr_sched_mc_power_savings.attr);
9105 #endif
9106 return err;
9108 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9110 #ifndef CONFIG_CPUSETS
9112 * Add online and remove offline CPUs from the scheduler domains.
9113 * When cpusets are enabled they take over this function.
9115 static int update_sched_domains(struct notifier_block *nfb,
9116 unsigned long action, void *hcpu)
9118 switch (action) {
9119 case CPU_ONLINE:
9120 case CPU_ONLINE_FROZEN:
9121 case CPU_DEAD:
9122 case CPU_DEAD_FROZEN:
9123 partition_sched_domains(1, NULL, NULL);
9124 return NOTIFY_OK;
9126 default:
9127 return NOTIFY_DONE;
9130 #endif
9132 static int update_runtime(struct notifier_block *nfb,
9133 unsigned long action, void *hcpu)
9135 int cpu = (int)(long)hcpu;
9137 switch (action) {
9138 case CPU_DOWN_PREPARE:
9139 case CPU_DOWN_PREPARE_FROZEN:
9140 disable_runtime(cpu_rq(cpu));
9141 return NOTIFY_OK;
9143 case CPU_DOWN_FAILED:
9144 case CPU_DOWN_FAILED_FROZEN:
9145 case CPU_ONLINE:
9146 case CPU_ONLINE_FROZEN:
9147 enable_runtime(cpu_rq(cpu));
9148 return NOTIFY_OK;
9150 default:
9151 return NOTIFY_DONE;
9155 void __init sched_init_smp(void)
9157 cpumask_var_t non_isolated_cpus;
9159 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9160 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9162 #if defined(CONFIG_NUMA)
9163 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9164 GFP_KERNEL);
9165 BUG_ON(sched_group_nodes_bycpu == NULL);
9166 #endif
9167 get_online_cpus();
9168 mutex_lock(&sched_domains_mutex);
9169 arch_init_sched_domains(cpu_online_mask);
9170 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9171 if (cpumask_empty(non_isolated_cpus))
9172 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9173 mutex_unlock(&sched_domains_mutex);
9174 put_online_cpus();
9176 #ifndef CONFIG_CPUSETS
9177 /* XXX: Theoretical race here - CPU may be hotplugged now */
9178 hotcpu_notifier(update_sched_domains, 0);
9179 #endif
9181 /* RT runtime code needs to handle some hotplug events */
9182 hotcpu_notifier(update_runtime, 0);
9184 init_hrtick();
9186 /* Move init over to a non-isolated CPU */
9187 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9188 BUG();
9189 sched_init_granularity();
9190 free_cpumask_var(non_isolated_cpus);
9192 init_sched_rt_class();
9194 #else
9195 void __init sched_init_smp(void)
9197 sched_init_granularity();
9199 #endif /* CONFIG_SMP */
9201 const_debug unsigned int sysctl_timer_migration = 1;
9203 int in_sched_functions(unsigned long addr)
9205 return in_lock_functions(addr) ||
9206 (addr >= (unsigned long)__sched_text_start
9207 && addr < (unsigned long)__sched_text_end);
9210 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9212 cfs_rq->tasks_timeline = RB_ROOT;
9213 INIT_LIST_HEAD(&cfs_rq->tasks);
9214 #ifdef CONFIG_FAIR_GROUP_SCHED
9215 cfs_rq->rq = rq;
9216 #endif
9217 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9220 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9222 struct rt_prio_array *array;
9223 int i;
9225 array = &rt_rq->active;
9226 for (i = 0; i < MAX_RT_PRIO; i++) {
9227 INIT_LIST_HEAD(array->queue + i);
9228 __clear_bit(i, array->bitmap);
9230 /* delimiter for bitsearch: */
9231 __set_bit(MAX_RT_PRIO, array->bitmap);
9233 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9234 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9235 #ifdef CONFIG_SMP
9236 rt_rq->highest_prio.next = MAX_RT_PRIO;
9237 #endif
9238 #endif
9239 #ifdef CONFIG_SMP
9240 rt_rq->rt_nr_migratory = 0;
9241 rt_rq->overloaded = 0;
9242 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9243 #endif
9245 rt_rq->rt_time = 0;
9246 rt_rq->rt_throttled = 0;
9247 rt_rq->rt_runtime = 0;
9248 spin_lock_init(&rt_rq->rt_runtime_lock);
9250 #ifdef CONFIG_RT_GROUP_SCHED
9251 rt_rq->rt_nr_boosted = 0;
9252 rt_rq->rq = rq;
9253 #endif
9256 #ifdef CONFIG_FAIR_GROUP_SCHED
9257 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9258 struct sched_entity *se, int cpu, int add,
9259 struct sched_entity *parent)
9261 struct rq *rq = cpu_rq(cpu);
9262 tg->cfs_rq[cpu] = cfs_rq;
9263 init_cfs_rq(cfs_rq, rq);
9264 cfs_rq->tg = tg;
9265 if (add)
9266 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9268 tg->se[cpu] = se;
9269 /* se could be NULL for init_task_group */
9270 if (!se)
9271 return;
9273 if (!parent)
9274 se->cfs_rq = &rq->cfs;
9275 else
9276 se->cfs_rq = parent->my_q;
9278 se->my_q = cfs_rq;
9279 se->load.weight = tg->shares;
9280 se->load.inv_weight = 0;
9281 se->parent = parent;
9283 #endif
9285 #ifdef CONFIG_RT_GROUP_SCHED
9286 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9287 struct sched_rt_entity *rt_se, int cpu, int add,
9288 struct sched_rt_entity *parent)
9290 struct rq *rq = cpu_rq(cpu);
9292 tg->rt_rq[cpu] = rt_rq;
9293 init_rt_rq(rt_rq, rq);
9294 rt_rq->tg = tg;
9295 rt_rq->rt_se = rt_se;
9296 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9297 if (add)
9298 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9300 tg->rt_se[cpu] = rt_se;
9301 if (!rt_se)
9302 return;
9304 if (!parent)
9305 rt_se->rt_rq = &rq->rt;
9306 else
9307 rt_se->rt_rq = parent->my_q;
9309 rt_se->my_q = rt_rq;
9310 rt_se->parent = parent;
9311 INIT_LIST_HEAD(&rt_se->run_list);
9313 #endif
9315 void __init sched_init(void)
9317 int i, j;
9318 unsigned long alloc_size = 0, ptr;
9320 #ifdef CONFIG_FAIR_GROUP_SCHED
9321 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9322 #endif
9323 #ifdef CONFIG_RT_GROUP_SCHED
9324 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9325 #endif
9326 #ifdef CONFIG_USER_SCHED
9327 alloc_size *= 2;
9328 #endif
9329 #ifdef CONFIG_CPUMASK_OFFSTACK
9330 alloc_size += num_possible_cpus() * cpumask_size();
9331 #endif
9333 * As sched_init() is called before page_alloc is setup,
9334 * we use alloc_bootmem().
9336 if (alloc_size) {
9337 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9339 #ifdef CONFIG_FAIR_GROUP_SCHED
9340 init_task_group.se = (struct sched_entity **)ptr;
9341 ptr += nr_cpu_ids * sizeof(void **);
9343 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9344 ptr += nr_cpu_ids * sizeof(void **);
9346 #ifdef CONFIG_USER_SCHED
9347 root_task_group.se = (struct sched_entity **)ptr;
9348 ptr += nr_cpu_ids * sizeof(void **);
9350 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9351 ptr += nr_cpu_ids * sizeof(void **);
9352 #endif /* CONFIG_USER_SCHED */
9353 #endif /* CONFIG_FAIR_GROUP_SCHED */
9354 #ifdef CONFIG_RT_GROUP_SCHED
9355 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9356 ptr += nr_cpu_ids * sizeof(void **);
9358 init_task_group.rt_rq = (struct rt_rq **)ptr;
9359 ptr += nr_cpu_ids * sizeof(void **);
9361 #ifdef CONFIG_USER_SCHED
9362 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9363 ptr += nr_cpu_ids * sizeof(void **);
9365 root_task_group.rt_rq = (struct rt_rq **)ptr;
9366 ptr += nr_cpu_ids * sizeof(void **);
9367 #endif /* CONFIG_USER_SCHED */
9368 #endif /* CONFIG_RT_GROUP_SCHED */
9369 #ifdef CONFIG_CPUMASK_OFFSTACK
9370 for_each_possible_cpu(i) {
9371 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9372 ptr += cpumask_size();
9374 #endif /* CONFIG_CPUMASK_OFFSTACK */
9377 #ifdef CONFIG_SMP
9378 init_defrootdomain();
9379 #endif
9381 init_rt_bandwidth(&def_rt_bandwidth,
9382 global_rt_period(), global_rt_runtime());
9384 #ifdef CONFIG_RT_GROUP_SCHED
9385 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9386 global_rt_period(), global_rt_runtime());
9387 #ifdef CONFIG_USER_SCHED
9388 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9389 global_rt_period(), RUNTIME_INF);
9390 #endif /* CONFIG_USER_SCHED */
9391 #endif /* CONFIG_RT_GROUP_SCHED */
9393 #ifdef CONFIG_GROUP_SCHED
9394 list_add(&init_task_group.list, &task_groups);
9395 INIT_LIST_HEAD(&init_task_group.children);
9397 #ifdef CONFIG_USER_SCHED
9398 INIT_LIST_HEAD(&root_task_group.children);
9399 init_task_group.parent = &root_task_group;
9400 list_add(&init_task_group.siblings, &root_task_group.children);
9401 #endif /* CONFIG_USER_SCHED */
9402 #endif /* CONFIG_GROUP_SCHED */
9404 for_each_possible_cpu(i) {
9405 struct rq *rq;
9407 rq = cpu_rq(i);
9408 spin_lock_init(&rq->lock);
9409 rq->nr_running = 0;
9410 rq->calc_load_active = 0;
9411 rq->calc_load_update = jiffies + LOAD_FREQ;
9412 init_cfs_rq(&rq->cfs, rq);
9413 init_rt_rq(&rq->rt, rq);
9414 #ifdef CONFIG_FAIR_GROUP_SCHED
9415 init_task_group.shares = init_task_group_load;
9416 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9417 #ifdef CONFIG_CGROUP_SCHED
9419 * How much cpu bandwidth does init_task_group get?
9421 * In case of task-groups formed thr' the cgroup filesystem, it
9422 * gets 100% of the cpu resources in the system. This overall
9423 * system cpu resource is divided among the tasks of
9424 * init_task_group and its child task-groups in a fair manner,
9425 * based on each entity's (task or task-group's) weight
9426 * (se->load.weight).
9428 * In other words, if init_task_group has 10 tasks of weight
9429 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9430 * then A0's share of the cpu resource is:
9432 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9434 * We achieve this by letting init_task_group's tasks sit
9435 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9437 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9438 #elif defined CONFIG_USER_SCHED
9439 root_task_group.shares = NICE_0_LOAD;
9440 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9442 * In case of task-groups formed thr' the user id of tasks,
9443 * init_task_group represents tasks belonging to root user.
9444 * Hence it forms a sibling of all subsequent groups formed.
9445 * In this case, init_task_group gets only a fraction of overall
9446 * system cpu resource, based on the weight assigned to root
9447 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9448 * by letting tasks of init_task_group sit in a separate cfs_rq
9449 * (init_tg_cfs_rq) and having one entity represent this group of
9450 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9452 init_tg_cfs_entry(&init_task_group,
9453 &per_cpu(init_tg_cfs_rq, i),
9454 &per_cpu(init_sched_entity, i), i, 1,
9455 root_task_group.se[i]);
9457 #endif
9458 #endif /* CONFIG_FAIR_GROUP_SCHED */
9460 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9461 #ifdef CONFIG_RT_GROUP_SCHED
9462 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9463 #ifdef CONFIG_CGROUP_SCHED
9464 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9465 #elif defined CONFIG_USER_SCHED
9466 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9467 init_tg_rt_entry(&init_task_group,
9468 &per_cpu(init_rt_rq, i),
9469 &per_cpu(init_sched_rt_entity, i), i, 1,
9470 root_task_group.rt_se[i]);
9471 #endif
9472 #endif
9474 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9475 rq->cpu_load[j] = 0;
9476 #ifdef CONFIG_SMP
9477 rq->sd = NULL;
9478 rq->rd = NULL;
9479 rq->post_schedule = 0;
9480 rq->active_balance = 0;
9481 rq->next_balance = jiffies;
9482 rq->push_cpu = 0;
9483 rq->cpu = i;
9484 rq->online = 0;
9485 rq->migration_thread = NULL;
9486 INIT_LIST_HEAD(&rq->migration_queue);
9487 rq_attach_root(rq, &def_root_domain);
9488 #endif
9489 init_rq_hrtick(rq);
9490 atomic_set(&rq->nr_iowait, 0);
9493 set_load_weight(&init_task);
9495 #ifdef CONFIG_PREEMPT_NOTIFIERS
9496 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9497 #endif
9499 #ifdef CONFIG_SMP
9500 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9501 #endif
9503 #ifdef CONFIG_RT_MUTEXES
9504 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9505 #endif
9508 * The boot idle thread does lazy MMU switching as well:
9510 atomic_inc(&init_mm.mm_count);
9511 enter_lazy_tlb(&init_mm, current);
9514 * Make us the idle thread. Technically, schedule() should not be
9515 * called from this thread, however somewhere below it might be,
9516 * but because we are the idle thread, we just pick up running again
9517 * when this runqueue becomes "idle".
9519 init_idle(current, smp_processor_id());
9521 calc_load_update = jiffies + LOAD_FREQ;
9524 * During early bootup we pretend to be a normal task:
9526 current->sched_class = &fair_sched_class;
9528 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9529 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9530 #ifdef CONFIG_SMP
9531 #ifdef CONFIG_NO_HZ
9532 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9533 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9534 #endif
9535 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9536 #endif /* SMP */
9538 perf_event_init();
9540 scheduler_running = 1;
9543 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9544 static inline int preempt_count_equals(int preempt_offset)
9546 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9548 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9551 void __might_sleep(char *file, int line, int preempt_offset)
9553 #ifdef in_atomic
9554 static unsigned long prev_jiffy; /* ratelimiting */
9556 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9557 system_state != SYSTEM_RUNNING || oops_in_progress)
9558 return;
9559 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9560 return;
9561 prev_jiffy = jiffies;
9563 printk(KERN_ERR
9564 "BUG: sleeping function called from invalid context at %s:%d\n",
9565 file, line);
9566 printk(KERN_ERR
9567 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9568 in_atomic(), irqs_disabled(),
9569 current->pid, current->comm);
9571 debug_show_held_locks(current);
9572 if (irqs_disabled())
9573 print_irqtrace_events(current);
9574 dump_stack();
9575 #endif
9577 EXPORT_SYMBOL(__might_sleep);
9578 #endif
9580 #ifdef CONFIG_MAGIC_SYSRQ
9581 static void normalize_task(struct rq *rq, struct task_struct *p)
9583 int on_rq;
9585 update_rq_clock(rq);
9586 on_rq = p->se.on_rq;
9587 if (on_rq)
9588 deactivate_task(rq, p, 0);
9589 __setscheduler(rq, p, SCHED_NORMAL, 0);
9590 if (on_rq) {
9591 activate_task(rq, p, 0);
9592 resched_task(rq->curr);
9596 void normalize_rt_tasks(void)
9598 struct task_struct *g, *p;
9599 unsigned long flags;
9600 struct rq *rq;
9602 read_lock_irqsave(&tasklist_lock, flags);
9603 do_each_thread(g, p) {
9605 * Only normalize user tasks:
9607 if (!p->mm)
9608 continue;
9610 p->se.exec_start = 0;
9611 #ifdef CONFIG_SCHEDSTATS
9612 p->se.wait_start = 0;
9613 p->se.sleep_start = 0;
9614 p->se.block_start = 0;
9615 #endif
9617 if (!rt_task(p)) {
9619 * Renice negative nice level userspace
9620 * tasks back to 0:
9622 if (TASK_NICE(p) < 0 && p->mm)
9623 set_user_nice(p, 0);
9624 continue;
9627 spin_lock(&p->pi_lock);
9628 rq = __task_rq_lock(p);
9630 normalize_task(rq, p);
9632 __task_rq_unlock(rq);
9633 spin_unlock(&p->pi_lock);
9634 } while_each_thread(g, p);
9636 read_unlock_irqrestore(&tasklist_lock, flags);
9639 #endif /* CONFIG_MAGIC_SYSRQ */
9641 #ifdef CONFIG_IA64
9643 * These functions are only useful for the IA64 MCA handling.
9645 * They can only be called when the whole system has been
9646 * stopped - every CPU needs to be quiescent, and no scheduling
9647 * activity can take place. Using them for anything else would
9648 * be a serious bug, and as a result, they aren't even visible
9649 * under any other configuration.
9653 * curr_task - return the current task for a given cpu.
9654 * @cpu: the processor in question.
9656 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9658 struct task_struct *curr_task(int cpu)
9660 return cpu_curr(cpu);
9664 * set_curr_task - set the current task for a given cpu.
9665 * @cpu: the processor in question.
9666 * @p: the task pointer to set.
9668 * Description: This function must only be used when non-maskable interrupts
9669 * are serviced on a separate stack. It allows the architecture to switch the
9670 * notion of the current task on a cpu in a non-blocking manner. This function
9671 * must be called with all CPU's synchronized, and interrupts disabled, the
9672 * and caller must save the original value of the current task (see
9673 * curr_task() above) and restore that value before reenabling interrupts and
9674 * re-starting the system.
9676 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9678 void set_curr_task(int cpu, struct task_struct *p)
9680 cpu_curr(cpu) = p;
9683 #endif
9685 #ifdef CONFIG_FAIR_GROUP_SCHED
9686 static void free_fair_sched_group(struct task_group *tg)
9688 int i;
9690 for_each_possible_cpu(i) {
9691 if (tg->cfs_rq)
9692 kfree(tg->cfs_rq[i]);
9693 if (tg->se)
9694 kfree(tg->se[i]);
9697 kfree(tg->cfs_rq);
9698 kfree(tg->se);
9701 static
9702 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9704 struct cfs_rq *cfs_rq;
9705 struct sched_entity *se;
9706 struct rq *rq;
9707 int i;
9709 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9710 if (!tg->cfs_rq)
9711 goto err;
9712 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9713 if (!tg->se)
9714 goto err;
9716 tg->shares = NICE_0_LOAD;
9718 for_each_possible_cpu(i) {
9719 rq = cpu_rq(i);
9721 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9722 GFP_KERNEL, cpu_to_node(i));
9723 if (!cfs_rq)
9724 goto err;
9726 se = kzalloc_node(sizeof(struct sched_entity),
9727 GFP_KERNEL, cpu_to_node(i));
9728 if (!se)
9729 goto err;
9731 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9734 return 1;
9736 err:
9737 return 0;
9740 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9742 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9743 &cpu_rq(cpu)->leaf_cfs_rq_list);
9746 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9748 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9750 #else /* !CONFG_FAIR_GROUP_SCHED */
9751 static inline void free_fair_sched_group(struct task_group *tg)
9755 static inline
9756 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9758 return 1;
9761 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9765 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9768 #endif /* CONFIG_FAIR_GROUP_SCHED */
9770 #ifdef CONFIG_RT_GROUP_SCHED
9771 static void free_rt_sched_group(struct task_group *tg)
9773 int i;
9775 destroy_rt_bandwidth(&tg->rt_bandwidth);
9777 for_each_possible_cpu(i) {
9778 if (tg->rt_rq)
9779 kfree(tg->rt_rq[i]);
9780 if (tg->rt_se)
9781 kfree(tg->rt_se[i]);
9784 kfree(tg->rt_rq);
9785 kfree(tg->rt_se);
9788 static
9789 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9791 struct rt_rq *rt_rq;
9792 struct sched_rt_entity *rt_se;
9793 struct rq *rq;
9794 int i;
9796 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9797 if (!tg->rt_rq)
9798 goto err;
9799 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9800 if (!tg->rt_se)
9801 goto err;
9803 init_rt_bandwidth(&tg->rt_bandwidth,
9804 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9806 for_each_possible_cpu(i) {
9807 rq = cpu_rq(i);
9809 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9810 GFP_KERNEL, cpu_to_node(i));
9811 if (!rt_rq)
9812 goto err;
9814 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9815 GFP_KERNEL, cpu_to_node(i));
9816 if (!rt_se)
9817 goto err;
9819 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9822 return 1;
9824 err:
9825 return 0;
9828 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9830 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9831 &cpu_rq(cpu)->leaf_rt_rq_list);
9834 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9836 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9838 #else /* !CONFIG_RT_GROUP_SCHED */
9839 static inline void free_rt_sched_group(struct task_group *tg)
9843 static inline
9844 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9846 return 1;
9849 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9853 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9856 #endif /* CONFIG_RT_GROUP_SCHED */
9858 #ifdef CONFIG_GROUP_SCHED
9859 static void free_sched_group(struct task_group *tg)
9861 free_fair_sched_group(tg);
9862 free_rt_sched_group(tg);
9863 kfree(tg);
9866 /* allocate runqueue etc for a new task group */
9867 struct task_group *sched_create_group(struct task_group *parent)
9869 struct task_group *tg;
9870 unsigned long flags;
9871 int i;
9873 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9874 if (!tg)
9875 return ERR_PTR(-ENOMEM);
9877 if (!alloc_fair_sched_group(tg, parent))
9878 goto err;
9880 if (!alloc_rt_sched_group(tg, parent))
9881 goto err;
9883 spin_lock_irqsave(&task_group_lock, flags);
9884 for_each_possible_cpu(i) {
9885 register_fair_sched_group(tg, i);
9886 register_rt_sched_group(tg, i);
9888 list_add_rcu(&tg->list, &task_groups);
9890 WARN_ON(!parent); /* root should already exist */
9892 tg->parent = parent;
9893 INIT_LIST_HEAD(&tg->children);
9894 list_add_rcu(&tg->siblings, &parent->children);
9895 spin_unlock_irqrestore(&task_group_lock, flags);
9897 return tg;
9899 err:
9900 free_sched_group(tg);
9901 return ERR_PTR(-ENOMEM);
9904 /* rcu callback to free various structures associated with a task group */
9905 static void free_sched_group_rcu(struct rcu_head *rhp)
9907 /* now it should be safe to free those cfs_rqs */
9908 free_sched_group(container_of(rhp, struct task_group, rcu));
9911 /* Destroy runqueue etc associated with a task group */
9912 void sched_destroy_group(struct task_group *tg)
9914 unsigned long flags;
9915 int i;
9917 spin_lock_irqsave(&task_group_lock, flags);
9918 for_each_possible_cpu(i) {
9919 unregister_fair_sched_group(tg, i);
9920 unregister_rt_sched_group(tg, i);
9922 list_del_rcu(&tg->list);
9923 list_del_rcu(&tg->siblings);
9924 spin_unlock_irqrestore(&task_group_lock, flags);
9926 /* wait for possible concurrent references to cfs_rqs complete */
9927 call_rcu(&tg->rcu, free_sched_group_rcu);
9930 /* change task's runqueue when it moves between groups.
9931 * The caller of this function should have put the task in its new group
9932 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9933 * reflect its new group.
9935 void sched_move_task(struct task_struct *tsk)
9937 int on_rq, running;
9938 unsigned long flags;
9939 struct rq *rq;
9941 rq = task_rq_lock(tsk, &flags);
9943 update_rq_clock(rq);
9945 running = task_current(rq, tsk);
9946 on_rq = tsk->se.on_rq;
9948 if (on_rq)
9949 dequeue_task(rq, tsk, 0);
9950 if (unlikely(running))
9951 tsk->sched_class->put_prev_task(rq, tsk);
9953 set_task_rq(tsk, task_cpu(tsk));
9955 #ifdef CONFIG_FAIR_GROUP_SCHED
9956 if (tsk->sched_class->moved_group)
9957 tsk->sched_class->moved_group(tsk);
9958 #endif
9960 if (unlikely(running))
9961 tsk->sched_class->set_curr_task(rq);
9962 if (on_rq)
9963 enqueue_task(rq, tsk, 0);
9965 task_rq_unlock(rq, &flags);
9967 #endif /* CONFIG_GROUP_SCHED */
9969 #ifdef CONFIG_FAIR_GROUP_SCHED
9970 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9972 struct cfs_rq *cfs_rq = se->cfs_rq;
9973 int on_rq;
9975 on_rq = se->on_rq;
9976 if (on_rq)
9977 dequeue_entity(cfs_rq, se, 0);
9979 se->load.weight = shares;
9980 se->load.inv_weight = 0;
9982 if (on_rq)
9983 enqueue_entity(cfs_rq, se, 0);
9986 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9988 struct cfs_rq *cfs_rq = se->cfs_rq;
9989 struct rq *rq = cfs_rq->rq;
9990 unsigned long flags;
9992 spin_lock_irqsave(&rq->lock, flags);
9993 __set_se_shares(se, shares);
9994 spin_unlock_irqrestore(&rq->lock, flags);
9997 static DEFINE_MUTEX(shares_mutex);
9999 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10001 int i;
10002 unsigned long flags;
10005 * We can't change the weight of the root cgroup.
10007 if (!tg->se[0])
10008 return -EINVAL;
10010 if (shares < MIN_SHARES)
10011 shares = MIN_SHARES;
10012 else if (shares > MAX_SHARES)
10013 shares = MAX_SHARES;
10015 mutex_lock(&shares_mutex);
10016 if (tg->shares == shares)
10017 goto done;
10019 spin_lock_irqsave(&task_group_lock, flags);
10020 for_each_possible_cpu(i)
10021 unregister_fair_sched_group(tg, i);
10022 list_del_rcu(&tg->siblings);
10023 spin_unlock_irqrestore(&task_group_lock, flags);
10025 /* wait for any ongoing reference to this group to finish */
10026 synchronize_sched();
10029 * Now we are free to modify the group's share on each cpu
10030 * w/o tripping rebalance_share or load_balance_fair.
10032 tg->shares = shares;
10033 for_each_possible_cpu(i) {
10035 * force a rebalance
10037 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10038 set_se_shares(tg->se[i], shares);
10042 * Enable load balance activity on this group, by inserting it back on
10043 * each cpu's rq->leaf_cfs_rq_list.
10045 spin_lock_irqsave(&task_group_lock, flags);
10046 for_each_possible_cpu(i)
10047 register_fair_sched_group(tg, i);
10048 list_add_rcu(&tg->siblings, &tg->parent->children);
10049 spin_unlock_irqrestore(&task_group_lock, flags);
10050 done:
10051 mutex_unlock(&shares_mutex);
10052 return 0;
10055 unsigned long sched_group_shares(struct task_group *tg)
10057 return tg->shares;
10059 #endif
10061 #ifdef CONFIG_RT_GROUP_SCHED
10063 * Ensure that the real time constraints are schedulable.
10065 static DEFINE_MUTEX(rt_constraints_mutex);
10067 static unsigned long to_ratio(u64 period, u64 runtime)
10069 if (runtime == RUNTIME_INF)
10070 return 1ULL << 20;
10072 return div64_u64(runtime << 20, period);
10075 /* Must be called with tasklist_lock held */
10076 static inline int tg_has_rt_tasks(struct task_group *tg)
10078 struct task_struct *g, *p;
10080 do_each_thread(g, p) {
10081 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10082 return 1;
10083 } while_each_thread(g, p);
10085 return 0;
10088 struct rt_schedulable_data {
10089 struct task_group *tg;
10090 u64 rt_period;
10091 u64 rt_runtime;
10094 static int tg_schedulable(struct task_group *tg, void *data)
10096 struct rt_schedulable_data *d = data;
10097 struct task_group *child;
10098 unsigned long total, sum = 0;
10099 u64 period, runtime;
10101 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10102 runtime = tg->rt_bandwidth.rt_runtime;
10104 if (tg == d->tg) {
10105 period = d->rt_period;
10106 runtime = d->rt_runtime;
10109 #ifdef CONFIG_USER_SCHED
10110 if (tg == &root_task_group) {
10111 period = global_rt_period();
10112 runtime = global_rt_runtime();
10114 #endif
10117 * Cannot have more runtime than the period.
10119 if (runtime > period && runtime != RUNTIME_INF)
10120 return -EINVAL;
10123 * Ensure we don't starve existing RT tasks.
10125 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10126 return -EBUSY;
10128 total = to_ratio(period, runtime);
10131 * Nobody can have more than the global setting allows.
10133 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10134 return -EINVAL;
10137 * The sum of our children's runtime should not exceed our own.
10139 list_for_each_entry_rcu(child, &tg->children, siblings) {
10140 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10141 runtime = child->rt_bandwidth.rt_runtime;
10143 if (child == d->tg) {
10144 period = d->rt_period;
10145 runtime = d->rt_runtime;
10148 sum += to_ratio(period, runtime);
10151 if (sum > total)
10152 return -EINVAL;
10154 return 0;
10157 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10159 struct rt_schedulable_data data = {
10160 .tg = tg,
10161 .rt_period = period,
10162 .rt_runtime = runtime,
10165 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10168 static int tg_set_bandwidth(struct task_group *tg,
10169 u64 rt_period, u64 rt_runtime)
10171 int i, err = 0;
10173 mutex_lock(&rt_constraints_mutex);
10174 read_lock(&tasklist_lock);
10175 err = __rt_schedulable(tg, rt_period, rt_runtime);
10176 if (err)
10177 goto unlock;
10179 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10180 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10181 tg->rt_bandwidth.rt_runtime = rt_runtime;
10183 for_each_possible_cpu(i) {
10184 struct rt_rq *rt_rq = tg->rt_rq[i];
10186 spin_lock(&rt_rq->rt_runtime_lock);
10187 rt_rq->rt_runtime = rt_runtime;
10188 spin_unlock(&rt_rq->rt_runtime_lock);
10190 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10191 unlock:
10192 read_unlock(&tasklist_lock);
10193 mutex_unlock(&rt_constraints_mutex);
10195 return err;
10198 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10200 u64 rt_runtime, rt_period;
10202 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10203 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10204 if (rt_runtime_us < 0)
10205 rt_runtime = RUNTIME_INF;
10207 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10210 long sched_group_rt_runtime(struct task_group *tg)
10212 u64 rt_runtime_us;
10214 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10215 return -1;
10217 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10218 do_div(rt_runtime_us, NSEC_PER_USEC);
10219 return rt_runtime_us;
10222 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10224 u64 rt_runtime, rt_period;
10226 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10227 rt_runtime = tg->rt_bandwidth.rt_runtime;
10229 if (rt_period == 0)
10230 return -EINVAL;
10232 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10235 long sched_group_rt_period(struct task_group *tg)
10237 u64 rt_period_us;
10239 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10240 do_div(rt_period_us, NSEC_PER_USEC);
10241 return rt_period_us;
10244 static int sched_rt_global_constraints(void)
10246 u64 runtime, period;
10247 int ret = 0;
10249 if (sysctl_sched_rt_period <= 0)
10250 return -EINVAL;
10252 runtime = global_rt_runtime();
10253 period = global_rt_period();
10256 * Sanity check on the sysctl variables.
10258 if (runtime > period && runtime != RUNTIME_INF)
10259 return -EINVAL;
10261 mutex_lock(&rt_constraints_mutex);
10262 read_lock(&tasklist_lock);
10263 ret = __rt_schedulable(NULL, 0, 0);
10264 read_unlock(&tasklist_lock);
10265 mutex_unlock(&rt_constraints_mutex);
10267 return ret;
10270 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10272 /* Don't accept realtime tasks when there is no way for them to run */
10273 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10274 return 0;
10276 return 1;
10279 #else /* !CONFIG_RT_GROUP_SCHED */
10280 static int sched_rt_global_constraints(void)
10282 unsigned long flags;
10283 int i;
10285 if (sysctl_sched_rt_period <= 0)
10286 return -EINVAL;
10289 * There's always some RT tasks in the root group
10290 * -- migration, kstopmachine etc..
10292 if (sysctl_sched_rt_runtime == 0)
10293 return -EBUSY;
10295 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10296 for_each_possible_cpu(i) {
10297 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10299 spin_lock(&rt_rq->rt_runtime_lock);
10300 rt_rq->rt_runtime = global_rt_runtime();
10301 spin_unlock(&rt_rq->rt_runtime_lock);
10303 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10305 return 0;
10307 #endif /* CONFIG_RT_GROUP_SCHED */
10309 int sched_rt_handler(struct ctl_table *table, int write,
10310 void __user *buffer, size_t *lenp,
10311 loff_t *ppos)
10313 int ret;
10314 int old_period, old_runtime;
10315 static DEFINE_MUTEX(mutex);
10317 mutex_lock(&mutex);
10318 old_period = sysctl_sched_rt_period;
10319 old_runtime = sysctl_sched_rt_runtime;
10321 ret = proc_dointvec(table, write, buffer, lenp, ppos);
10323 if (!ret && write) {
10324 ret = sched_rt_global_constraints();
10325 if (ret) {
10326 sysctl_sched_rt_period = old_period;
10327 sysctl_sched_rt_runtime = old_runtime;
10328 } else {
10329 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10330 def_rt_bandwidth.rt_period =
10331 ns_to_ktime(global_rt_period());
10334 mutex_unlock(&mutex);
10336 return ret;
10339 #ifdef CONFIG_CGROUP_SCHED
10341 /* return corresponding task_group object of a cgroup */
10342 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10344 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10345 struct task_group, css);
10348 static struct cgroup_subsys_state *
10349 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10351 struct task_group *tg, *parent;
10353 if (!cgrp->parent) {
10354 /* This is early initialization for the top cgroup */
10355 return &init_task_group.css;
10358 parent = cgroup_tg(cgrp->parent);
10359 tg = sched_create_group(parent);
10360 if (IS_ERR(tg))
10361 return ERR_PTR(-ENOMEM);
10363 return &tg->css;
10366 static void
10367 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10369 struct task_group *tg = cgroup_tg(cgrp);
10371 sched_destroy_group(tg);
10374 static int
10375 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10377 #ifdef CONFIG_RT_GROUP_SCHED
10378 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10379 return -EINVAL;
10380 #else
10381 /* We don't support RT-tasks being in separate groups */
10382 if (tsk->sched_class != &fair_sched_class)
10383 return -EINVAL;
10384 #endif
10385 return 0;
10388 static int
10389 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10390 struct task_struct *tsk, bool threadgroup)
10392 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10393 if (retval)
10394 return retval;
10395 if (threadgroup) {
10396 struct task_struct *c;
10397 rcu_read_lock();
10398 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10399 retval = cpu_cgroup_can_attach_task(cgrp, c);
10400 if (retval) {
10401 rcu_read_unlock();
10402 return retval;
10405 rcu_read_unlock();
10407 return 0;
10410 static void
10411 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10412 struct cgroup *old_cont, struct task_struct *tsk,
10413 bool threadgroup)
10415 sched_move_task(tsk);
10416 if (threadgroup) {
10417 struct task_struct *c;
10418 rcu_read_lock();
10419 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10420 sched_move_task(c);
10422 rcu_read_unlock();
10426 #ifdef CONFIG_FAIR_GROUP_SCHED
10427 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10428 u64 shareval)
10430 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10433 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10435 struct task_group *tg = cgroup_tg(cgrp);
10437 return (u64) tg->shares;
10439 #endif /* CONFIG_FAIR_GROUP_SCHED */
10441 #ifdef CONFIG_RT_GROUP_SCHED
10442 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10443 s64 val)
10445 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10448 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10450 return sched_group_rt_runtime(cgroup_tg(cgrp));
10453 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10454 u64 rt_period_us)
10456 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10459 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10461 return sched_group_rt_period(cgroup_tg(cgrp));
10463 #endif /* CONFIG_RT_GROUP_SCHED */
10465 static struct cftype cpu_files[] = {
10466 #ifdef CONFIG_FAIR_GROUP_SCHED
10468 .name = "shares",
10469 .read_u64 = cpu_shares_read_u64,
10470 .write_u64 = cpu_shares_write_u64,
10472 #endif
10473 #ifdef CONFIG_RT_GROUP_SCHED
10475 .name = "rt_runtime_us",
10476 .read_s64 = cpu_rt_runtime_read,
10477 .write_s64 = cpu_rt_runtime_write,
10480 .name = "rt_period_us",
10481 .read_u64 = cpu_rt_period_read_uint,
10482 .write_u64 = cpu_rt_period_write_uint,
10484 #endif
10487 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10489 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10492 struct cgroup_subsys cpu_cgroup_subsys = {
10493 .name = "cpu",
10494 .create = cpu_cgroup_create,
10495 .destroy = cpu_cgroup_destroy,
10496 .can_attach = cpu_cgroup_can_attach,
10497 .attach = cpu_cgroup_attach,
10498 .populate = cpu_cgroup_populate,
10499 .subsys_id = cpu_cgroup_subsys_id,
10500 .early_init = 1,
10503 #endif /* CONFIG_CGROUP_SCHED */
10505 #ifdef CONFIG_CGROUP_CPUACCT
10508 * CPU accounting code for task groups.
10510 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10511 * (balbir@in.ibm.com).
10514 /* track cpu usage of a group of tasks and its child groups */
10515 struct cpuacct {
10516 struct cgroup_subsys_state css;
10517 /* cpuusage holds pointer to a u64-type object on every cpu */
10518 u64 *cpuusage;
10519 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10520 struct cpuacct *parent;
10523 struct cgroup_subsys cpuacct_subsys;
10525 /* return cpu accounting group corresponding to this container */
10526 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10528 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10529 struct cpuacct, css);
10532 /* return cpu accounting group to which this task belongs */
10533 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10535 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10536 struct cpuacct, css);
10539 /* create a new cpu accounting group */
10540 static struct cgroup_subsys_state *cpuacct_create(
10541 struct cgroup_subsys *ss, struct cgroup *cgrp)
10543 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10544 int i;
10546 if (!ca)
10547 goto out;
10549 ca->cpuusage = alloc_percpu(u64);
10550 if (!ca->cpuusage)
10551 goto out_free_ca;
10553 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10554 if (percpu_counter_init(&ca->cpustat[i], 0))
10555 goto out_free_counters;
10557 if (cgrp->parent)
10558 ca->parent = cgroup_ca(cgrp->parent);
10560 return &ca->css;
10562 out_free_counters:
10563 while (--i >= 0)
10564 percpu_counter_destroy(&ca->cpustat[i]);
10565 free_percpu(ca->cpuusage);
10566 out_free_ca:
10567 kfree(ca);
10568 out:
10569 return ERR_PTR(-ENOMEM);
10572 /* destroy an existing cpu accounting group */
10573 static void
10574 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10576 struct cpuacct *ca = cgroup_ca(cgrp);
10577 int i;
10579 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10580 percpu_counter_destroy(&ca->cpustat[i]);
10581 free_percpu(ca->cpuusage);
10582 kfree(ca);
10585 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10587 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10588 u64 data;
10590 #ifndef CONFIG_64BIT
10592 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10594 spin_lock_irq(&cpu_rq(cpu)->lock);
10595 data = *cpuusage;
10596 spin_unlock_irq(&cpu_rq(cpu)->lock);
10597 #else
10598 data = *cpuusage;
10599 #endif
10601 return data;
10604 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10606 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10608 #ifndef CONFIG_64BIT
10610 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10612 spin_lock_irq(&cpu_rq(cpu)->lock);
10613 *cpuusage = val;
10614 spin_unlock_irq(&cpu_rq(cpu)->lock);
10615 #else
10616 *cpuusage = val;
10617 #endif
10620 /* return total cpu usage (in nanoseconds) of a group */
10621 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10623 struct cpuacct *ca = cgroup_ca(cgrp);
10624 u64 totalcpuusage = 0;
10625 int i;
10627 for_each_present_cpu(i)
10628 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10630 return totalcpuusage;
10633 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10634 u64 reset)
10636 struct cpuacct *ca = cgroup_ca(cgrp);
10637 int err = 0;
10638 int i;
10640 if (reset) {
10641 err = -EINVAL;
10642 goto out;
10645 for_each_present_cpu(i)
10646 cpuacct_cpuusage_write(ca, i, 0);
10648 out:
10649 return err;
10652 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10653 struct seq_file *m)
10655 struct cpuacct *ca = cgroup_ca(cgroup);
10656 u64 percpu;
10657 int i;
10659 for_each_present_cpu(i) {
10660 percpu = cpuacct_cpuusage_read(ca, i);
10661 seq_printf(m, "%llu ", (unsigned long long) percpu);
10663 seq_printf(m, "\n");
10664 return 0;
10667 static const char *cpuacct_stat_desc[] = {
10668 [CPUACCT_STAT_USER] = "user",
10669 [CPUACCT_STAT_SYSTEM] = "system",
10672 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10673 struct cgroup_map_cb *cb)
10675 struct cpuacct *ca = cgroup_ca(cgrp);
10676 int i;
10678 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10679 s64 val = percpu_counter_read(&ca->cpustat[i]);
10680 val = cputime64_to_clock_t(val);
10681 cb->fill(cb, cpuacct_stat_desc[i], val);
10683 return 0;
10686 static struct cftype files[] = {
10688 .name = "usage",
10689 .read_u64 = cpuusage_read,
10690 .write_u64 = cpuusage_write,
10693 .name = "usage_percpu",
10694 .read_seq_string = cpuacct_percpu_seq_read,
10697 .name = "stat",
10698 .read_map = cpuacct_stats_show,
10702 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10704 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10708 * charge this task's execution time to its accounting group.
10710 * called with rq->lock held.
10712 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10714 struct cpuacct *ca;
10715 int cpu;
10717 if (unlikely(!cpuacct_subsys.active))
10718 return;
10720 cpu = task_cpu(tsk);
10722 rcu_read_lock();
10724 ca = task_ca(tsk);
10726 for (; ca; ca = ca->parent) {
10727 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10728 *cpuusage += cputime;
10731 rcu_read_unlock();
10735 * Charge the system/user time to the task's accounting group.
10737 static void cpuacct_update_stats(struct task_struct *tsk,
10738 enum cpuacct_stat_index idx, cputime_t val)
10740 struct cpuacct *ca;
10742 if (unlikely(!cpuacct_subsys.active))
10743 return;
10745 rcu_read_lock();
10746 ca = task_ca(tsk);
10748 do {
10749 percpu_counter_add(&ca->cpustat[idx], val);
10750 ca = ca->parent;
10751 } while (ca);
10752 rcu_read_unlock();
10755 struct cgroup_subsys cpuacct_subsys = {
10756 .name = "cpuacct",
10757 .create = cpuacct_create,
10758 .destroy = cpuacct_destroy,
10759 .populate = cpuacct_populate,
10760 .subsys_id = cpuacct_subsys_id,
10762 #endif /* CONFIG_CGROUP_CPUACCT */
10764 #ifndef CONFIG_SMP
10766 int rcu_expedited_torture_stats(char *page)
10768 return 0;
10770 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10772 void synchronize_sched_expedited(void)
10775 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10777 #else /* #ifndef CONFIG_SMP */
10779 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10780 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10782 #define RCU_EXPEDITED_STATE_POST -2
10783 #define RCU_EXPEDITED_STATE_IDLE -1
10785 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10787 int rcu_expedited_torture_stats(char *page)
10789 int cnt = 0;
10790 int cpu;
10792 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10793 for_each_online_cpu(cpu) {
10794 cnt += sprintf(&page[cnt], " %d:%d",
10795 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10797 cnt += sprintf(&page[cnt], "\n");
10798 return cnt;
10800 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10802 static long synchronize_sched_expedited_count;
10805 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10806 * approach to force grace period to end quickly. This consumes
10807 * significant time on all CPUs, and is thus not recommended for
10808 * any sort of common-case code.
10810 * Note that it is illegal to call this function while holding any
10811 * lock that is acquired by a CPU-hotplug notifier. Failing to
10812 * observe this restriction will result in deadlock.
10814 void synchronize_sched_expedited(void)
10816 int cpu;
10817 unsigned long flags;
10818 bool need_full_sync = 0;
10819 struct rq *rq;
10820 struct migration_req *req;
10821 long snap;
10822 int trycount = 0;
10824 smp_mb(); /* ensure prior mod happens before capturing snap. */
10825 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10826 get_online_cpus();
10827 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10828 put_online_cpus();
10829 if (trycount++ < 10)
10830 udelay(trycount * num_online_cpus());
10831 else {
10832 synchronize_sched();
10833 return;
10835 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10836 smp_mb(); /* ensure test happens before caller kfree */
10837 return;
10839 get_online_cpus();
10841 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10842 for_each_online_cpu(cpu) {
10843 rq = cpu_rq(cpu);
10844 req = &per_cpu(rcu_migration_req, cpu);
10845 init_completion(&req->done);
10846 req->task = NULL;
10847 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10848 spin_lock_irqsave(&rq->lock, flags);
10849 list_add(&req->list, &rq->migration_queue);
10850 spin_unlock_irqrestore(&rq->lock, flags);
10851 wake_up_process(rq->migration_thread);
10853 for_each_online_cpu(cpu) {
10854 rcu_expedited_state = cpu;
10855 req = &per_cpu(rcu_migration_req, cpu);
10856 rq = cpu_rq(cpu);
10857 wait_for_completion(&req->done);
10858 spin_lock_irqsave(&rq->lock, flags);
10859 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10860 need_full_sync = 1;
10861 req->dest_cpu = RCU_MIGRATION_IDLE;
10862 spin_unlock_irqrestore(&rq->lock, flags);
10864 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10865 mutex_unlock(&rcu_sched_expedited_mutex);
10866 put_online_cpus();
10867 if (need_full_sync)
10868 synchronize_sched();
10870 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10872 #endif /* #else #ifndef CONFIG_SMP */