tcp: add helper for lost bit toggling
[linux-2.6/mini2440.git] / net / ipv4 / tcp_input.c
blob12512336dbd81751798ff0bc5efa31796c2e2df5
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <net/dst.h>
68 #include <net/tcp.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
74 int sysctl_tcp_timestamps __read_mostly = 1;
75 int sysctl_tcp_window_scaling __read_mostly = 1;
76 int sysctl_tcp_sack __read_mostly = 1;
77 int sysctl_tcp_fack __read_mostly = 1;
78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79 int sysctl_tcp_ecn __read_mostly;
80 int sysctl_tcp_dsack __read_mostly = 1;
81 int sysctl_tcp_app_win __read_mostly = 31;
82 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84 int sysctl_tcp_stdurg __read_mostly;
85 int sysctl_tcp_rfc1337 __read_mostly;
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87 int sysctl_tcp_frto __read_mostly = 2;
88 int sysctl_tcp_frto_response __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
100 #define FLAG_ECE 0x40 /* ECE in this ACK */
101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
118 /* Adapt the MSS value used to make delayed ack decision to the
119 * real world.
121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
123 struct inet_connection_sock *icsk = inet_csk(sk);
124 const unsigned int lss = icsk->icsk_ack.last_seg_size;
125 unsigned int len;
127 icsk->icsk_ack.last_seg_size = 0;
129 /* skb->len may jitter because of SACKs, even if peer
130 * sends good full-sized frames.
132 len = skb_shinfo(skb)->gso_size ? : skb->len;
133 if (len >= icsk->icsk_ack.rcv_mss) {
134 icsk->icsk_ack.rcv_mss = len;
135 } else {
136 /* Otherwise, we make more careful check taking into account,
137 * that SACKs block is variable.
139 * "len" is invariant segment length, including TCP header.
141 len += skb->data - skb_transport_header(skb);
142 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143 /* If PSH is not set, packet should be
144 * full sized, provided peer TCP is not badly broken.
145 * This observation (if it is correct 8)) allows
146 * to handle super-low mtu links fairly.
148 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150 /* Subtract also invariant (if peer is RFC compliant),
151 * tcp header plus fixed timestamp option length.
152 * Resulting "len" is MSS free of SACK jitter.
154 len -= tcp_sk(sk)->tcp_header_len;
155 icsk->icsk_ack.last_seg_size = len;
156 if (len == lss) {
157 icsk->icsk_ack.rcv_mss = len;
158 return;
161 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167 static void tcp_incr_quickack(struct sock *sk)
169 struct inet_connection_sock *icsk = inet_csk(sk);
170 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
172 if (quickacks == 0)
173 quickacks = 2;
174 if (quickacks > icsk->icsk_ack.quick)
175 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
178 void tcp_enter_quickack_mode(struct sock *sk)
180 struct inet_connection_sock *icsk = inet_csk(sk);
181 tcp_incr_quickack(sk);
182 icsk->icsk_ack.pingpong = 0;
183 icsk->icsk_ack.ato = TCP_ATO_MIN;
186 /* Send ACKs quickly, if "quick" count is not exhausted
187 * and the session is not interactive.
190 static inline int tcp_in_quickack_mode(const struct sock *sk)
192 const struct inet_connection_sock *icsk = inet_csk(sk);
193 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
198 if (tp->ecn_flags & TCP_ECN_OK)
199 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
204 if (tcp_hdr(skb)->cwr)
205 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
210 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
215 if (tp->ecn_flags & TCP_ECN_OK) {
216 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218 /* Funny extension: if ECT is not set on a segment,
219 * it is surely retransmit. It is not in ECN RFC,
220 * but Linux follows this rule. */
221 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222 tcp_enter_quickack_mode((struct sock *)tp);
226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
228 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229 tp->ecn_flags &= ~TCP_ECN_OK;
232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
234 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235 tp->ecn_flags &= ~TCP_ECN_OK;
238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
240 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
241 return 1;
242 return 0;
245 /* Buffer size and advertised window tuning.
247 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
250 static void tcp_fixup_sndbuf(struct sock *sk)
252 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253 sizeof(struct sk_buff);
255 if (sk->sk_sndbuf < 3 * sndmem)
256 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
261 * All tcp_full_space() is split to two parts: "network" buffer, allocated
262 * forward and advertised in receiver window (tp->rcv_wnd) and
263 * "application buffer", required to isolate scheduling/application
264 * latencies from network.
265 * window_clamp is maximal advertised window. It can be less than
266 * tcp_full_space(), in this case tcp_full_space() - window_clamp
267 * is reserved for "application" buffer. The less window_clamp is
268 * the smoother our behaviour from viewpoint of network, but the lower
269 * throughput and the higher sensitivity of the connection to losses. 8)
271 * rcv_ssthresh is more strict window_clamp used at "slow start"
272 * phase to predict further behaviour of this connection.
273 * It is used for two goals:
274 * - to enforce header prediction at sender, even when application
275 * requires some significant "application buffer". It is check #1.
276 * - to prevent pruning of receive queue because of misprediction
277 * of receiver window. Check #2.
279 * The scheme does not work when sender sends good segments opening
280 * window and then starts to feed us spaghetti. But it should work
281 * in common situations. Otherwise, we have to rely on queue collapsing.
284 /* Slow part of check#2. */
285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
287 struct tcp_sock *tp = tcp_sk(sk);
288 /* Optimize this! */
289 int truesize = tcp_win_from_space(skb->truesize) >> 1;
290 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
292 while (tp->rcv_ssthresh <= window) {
293 if (truesize <= skb->len)
294 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
296 truesize >>= 1;
297 window >>= 1;
299 return 0;
302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
304 struct tcp_sock *tp = tcp_sk(sk);
306 /* Check #1 */
307 if (tp->rcv_ssthresh < tp->window_clamp &&
308 (int)tp->rcv_ssthresh < tcp_space(sk) &&
309 !tcp_memory_pressure) {
310 int incr;
312 /* Check #2. Increase window, if skb with such overhead
313 * will fit to rcvbuf in future.
315 if (tcp_win_from_space(skb->truesize) <= skb->len)
316 incr = 2 * tp->advmss;
317 else
318 incr = __tcp_grow_window(sk, skb);
320 if (incr) {
321 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
322 tp->window_clamp);
323 inet_csk(sk)->icsk_ack.quick |= 1;
328 /* 3. Tuning rcvbuf, when connection enters established state. */
330 static void tcp_fixup_rcvbuf(struct sock *sk)
332 struct tcp_sock *tp = tcp_sk(sk);
333 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
335 /* Try to select rcvbuf so that 4 mss-sized segments
336 * will fit to window and corresponding skbs will fit to our rcvbuf.
337 * (was 3; 4 is minimum to allow fast retransmit to work.)
339 while (tcp_win_from_space(rcvmem) < tp->advmss)
340 rcvmem += 128;
341 if (sk->sk_rcvbuf < 4 * rcvmem)
342 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
345 /* 4. Try to fixup all. It is made immediately after connection enters
346 * established state.
348 static void tcp_init_buffer_space(struct sock *sk)
350 struct tcp_sock *tp = tcp_sk(sk);
351 int maxwin;
353 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354 tcp_fixup_rcvbuf(sk);
355 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356 tcp_fixup_sndbuf(sk);
358 tp->rcvq_space.space = tp->rcv_wnd;
360 maxwin = tcp_full_space(sk);
362 if (tp->window_clamp >= maxwin) {
363 tp->window_clamp = maxwin;
365 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366 tp->window_clamp = max(maxwin -
367 (maxwin >> sysctl_tcp_app_win),
368 4 * tp->advmss);
371 /* Force reservation of one segment. */
372 if (sysctl_tcp_app_win &&
373 tp->window_clamp > 2 * tp->advmss &&
374 tp->window_clamp + tp->advmss > maxwin)
375 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
377 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378 tp->snd_cwnd_stamp = tcp_time_stamp;
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
382 static void tcp_clamp_window(struct sock *sk)
384 struct tcp_sock *tp = tcp_sk(sk);
385 struct inet_connection_sock *icsk = inet_csk(sk);
387 icsk->icsk_ack.quick = 0;
389 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391 !tcp_memory_pressure &&
392 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
394 sysctl_tcp_rmem[2]);
396 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
400 /* Initialize RCV_MSS value.
401 * RCV_MSS is an our guess about MSS used by the peer.
402 * We haven't any direct information about the MSS.
403 * It's better to underestimate the RCV_MSS rather than overestimate.
404 * Overestimations make us ACKing less frequently than needed.
405 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
407 void tcp_initialize_rcv_mss(struct sock *sk)
409 struct tcp_sock *tp = tcp_sk(sk);
410 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
412 hint = min(hint, tp->rcv_wnd / 2);
413 hint = min(hint, TCP_MIN_RCVMSS);
414 hint = max(hint, TCP_MIN_MSS);
416 inet_csk(sk)->icsk_ack.rcv_mss = hint;
419 /* Receiver "autotuning" code.
421 * The algorithm for RTT estimation w/o timestamps is based on
422 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
425 * More detail on this code can be found at
426 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427 * though this reference is out of date. A new paper
428 * is pending.
430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
432 u32 new_sample = tp->rcv_rtt_est.rtt;
433 long m = sample;
435 if (m == 0)
436 m = 1;
438 if (new_sample != 0) {
439 /* If we sample in larger samples in the non-timestamp
440 * case, we could grossly overestimate the RTT especially
441 * with chatty applications or bulk transfer apps which
442 * are stalled on filesystem I/O.
444 * Also, since we are only going for a minimum in the
445 * non-timestamp case, we do not smooth things out
446 * else with timestamps disabled convergence takes too
447 * long.
449 if (!win_dep) {
450 m -= (new_sample >> 3);
451 new_sample += m;
452 } else if (m < new_sample)
453 new_sample = m << 3;
454 } else {
455 /* No previous measure. */
456 new_sample = m << 3;
459 if (tp->rcv_rtt_est.rtt != new_sample)
460 tp->rcv_rtt_est.rtt = new_sample;
463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
465 if (tp->rcv_rtt_est.time == 0)
466 goto new_measure;
467 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
468 return;
469 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
471 new_measure:
472 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473 tp->rcv_rtt_est.time = tcp_time_stamp;
476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477 const struct sk_buff *skb)
479 struct tcp_sock *tp = tcp_sk(sk);
480 if (tp->rx_opt.rcv_tsecr &&
481 (TCP_SKB_CB(skb)->end_seq -
482 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
487 * This function should be called every time data is copied to user space.
488 * It calculates the appropriate TCP receive buffer space.
490 void tcp_rcv_space_adjust(struct sock *sk)
492 struct tcp_sock *tp = tcp_sk(sk);
493 int time;
494 int space;
496 if (tp->rcvq_space.time == 0)
497 goto new_measure;
499 time = tcp_time_stamp - tp->rcvq_space.time;
500 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
501 return;
503 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
505 space = max(tp->rcvq_space.space, space);
507 if (tp->rcvq_space.space != space) {
508 int rcvmem;
510 tp->rcvq_space.space = space;
512 if (sysctl_tcp_moderate_rcvbuf &&
513 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514 int new_clamp = space;
516 /* Receive space grows, normalize in order to
517 * take into account packet headers and sk_buff
518 * structure overhead.
520 space /= tp->advmss;
521 if (!space)
522 space = 1;
523 rcvmem = (tp->advmss + MAX_TCP_HEADER +
524 16 + sizeof(struct sk_buff));
525 while (tcp_win_from_space(rcvmem) < tp->advmss)
526 rcvmem += 128;
527 space *= rcvmem;
528 space = min(space, sysctl_tcp_rmem[2]);
529 if (space > sk->sk_rcvbuf) {
530 sk->sk_rcvbuf = space;
532 /* Make the window clamp follow along. */
533 tp->window_clamp = new_clamp;
538 new_measure:
539 tp->rcvq_space.seq = tp->copied_seq;
540 tp->rcvq_space.time = tcp_time_stamp;
543 /* There is something which you must keep in mind when you analyze the
544 * behavior of the tp->ato delayed ack timeout interval. When a
545 * connection starts up, we want to ack as quickly as possible. The
546 * problem is that "good" TCP's do slow start at the beginning of data
547 * transmission. The means that until we send the first few ACK's the
548 * sender will sit on his end and only queue most of his data, because
549 * he can only send snd_cwnd unacked packets at any given time. For
550 * each ACK we send, he increments snd_cwnd and transmits more of his
551 * queue. -DaveM
553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
555 struct tcp_sock *tp = tcp_sk(sk);
556 struct inet_connection_sock *icsk = inet_csk(sk);
557 u32 now;
559 inet_csk_schedule_ack(sk);
561 tcp_measure_rcv_mss(sk, skb);
563 tcp_rcv_rtt_measure(tp);
565 now = tcp_time_stamp;
567 if (!icsk->icsk_ack.ato) {
568 /* The _first_ data packet received, initialize
569 * delayed ACK engine.
571 tcp_incr_quickack(sk);
572 icsk->icsk_ack.ato = TCP_ATO_MIN;
573 } else {
574 int m = now - icsk->icsk_ack.lrcvtime;
576 if (m <= TCP_ATO_MIN / 2) {
577 /* The fastest case is the first. */
578 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579 } else if (m < icsk->icsk_ack.ato) {
580 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581 if (icsk->icsk_ack.ato > icsk->icsk_rto)
582 icsk->icsk_ack.ato = icsk->icsk_rto;
583 } else if (m > icsk->icsk_rto) {
584 /* Too long gap. Apparently sender failed to
585 * restart window, so that we send ACKs quickly.
587 tcp_incr_quickack(sk);
588 sk_mem_reclaim(sk);
591 icsk->icsk_ack.lrcvtime = now;
593 TCP_ECN_check_ce(tp, skb);
595 if (skb->len >= 128)
596 tcp_grow_window(sk, skb);
599 static u32 tcp_rto_min(struct sock *sk)
601 struct dst_entry *dst = __sk_dst_get(sk);
602 u32 rto_min = TCP_RTO_MIN;
604 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
606 return rto_min;
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610 * routine either comes from timestamps, or from segments that were
611 * known _not_ to have been retransmitted [see Karn/Partridge
612 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613 * piece by Van Jacobson.
614 * NOTE: the next three routines used to be one big routine.
615 * To save cycles in the RFC 1323 implementation it was better to break
616 * it up into three procedures. -- erics
618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
620 struct tcp_sock *tp = tcp_sk(sk);
621 long m = mrtt; /* RTT */
623 /* The following amusing code comes from Jacobson's
624 * article in SIGCOMM '88. Note that rtt and mdev
625 * are scaled versions of rtt and mean deviation.
626 * This is designed to be as fast as possible
627 * m stands for "measurement".
629 * On a 1990 paper the rto value is changed to:
630 * RTO = rtt + 4 * mdev
632 * Funny. This algorithm seems to be very broken.
633 * These formulae increase RTO, when it should be decreased, increase
634 * too slowly, when it should be increased quickly, decrease too quickly
635 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636 * does not matter how to _calculate_ it. Seems, it was trap
637 * that VJ failed to avoid. 8)
639 if (m == 0)
640 m = 1;
641 if (tp->srtt != 0) {
642 m -= (tp->srtt >> 3); /* m is now error in rtt est */
643 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
644 if (m < 0) {
645 m = -m; /* m is now abs(error) */
646 m -= (tp->mdev >> 2); /* similar update on mdev */
647 /* This is similar to one of Eifel findings.
648 * Eifel blocks mdev updates when rtt decreases.
649 * This solution is a bit different: we use finer gain
650 * for mdev in this case (alpha*beta).
651 * Like Eifel it also prevents growth of rto,
652 * but also it limits too fast rto decreases,
653 * happening in pure Eifel.
655 if (m > 0)
656 m >>= 3;
657 } else {
658 m -= (tp->mdev >> 2); /* similar update on mdev */
660 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
661 if (tp->mdev > tp->mdev_max) {
662 tp->mdev_max = tp->mdev;
663 if (tp->mdev_max > tp->rttvar)
664 tp->rttvar = tp->mdev_max;
666 if (after(tp->snd_una, tp->rtt_seq)) {
667 if (tp->mdev_max < tp->rttvar)
668 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669 tp->rtt_seq = tp->snd_nxt;
670 tp->mdev_max = tcp_rto_min(sk);
672 } else {
673 /* no previous measure. */
674 tp->srtt = m << 3; /* take the measured time to be rtt */
675 tp->mdev = m << 1; /* make sure rto = 3*rtt */
676 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677 tp->rtt_seq = tp->snd_nxt;
681 /* Calculate rto without backoff. This is the second half of Van Jacobson's
682 * routine referred to above.
684 static inline void tcp_set_rto(struct sock *sk)
686 const struct tcp_sock *tp = tcp_sk(sk);
687 /* Old crap is replaced with new one. 8)
689 * More seriously:
690 * 1. If rtt variance happened to be less 50msec, it is hallucination.
691 * It cannot be less due to utterly erratic ACK generation made
692 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693 * to do with delayed acks, because at cwnd>2 true delack timeout
694 * is invisible. Actually, Linux-2.4 also generates erratic
695 * ACKs in some circumstances.
697 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
699 /* 2. Fixups made earlier cannot be right.
700 * If we do not estimate RTO correctly without them,
701 * all the algo is pure shit and should be replaced
702 * with correct one. It is exactly, which we pretend to do.
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707 * guarantees that rto is higher.
709 static inline void tcp_bound_rto(struct sock *sk)
711 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
712 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
715 /* Save metrics learned by this TCP session.
716 This function is called only, when TCP finishes successfully
717 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
719 void tcp_update_metrics(struct sock *sk)
721 struct tcp_sock *tp = tcp_sk(sk);
722 struct dst_entry *dst = __sk_dst_get(sk);
724 if (sysctl_tcp_nometrics_save)
725 return;
727 dst_confirm(dst);
729 if (dst && (dst->flags & DST_HOST)) {
730 const struct inet_connection_sock *icsk = inet_csk(sk);
731 int m;
732 unsigned long rtt;
734 if (icsk->icsk_backoff || !tp->srtt) {
735 /* This session failed to estimate rtt. Why?
736 * Probably, no packets returned in time.
737 * Reset our results.
739 if (!(dst_metric_locked(dst, RTAX_RTT)))
740 dst->metrics[RTAX_RTT - 1] = 0;
741 return;
744 rtt = dst_metric_rtt(dst, RTAX_RTT);
745 m = rtt - tp->srtt;
747 /* If newly calculated rtt larger than stored one,
748 * store new one. Otherwise, use EWMA. Remember,
749 * rtt overestimation is always better than underestimation.
751 if (!(dst_metric_locked(dst, RTAX_RTT))) {
752 if (m <= 0)
753 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
754 else
755 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
758 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
759 unsigned long var;
760 if (m < 0)
761 m = -m;
763 /* Scale deviation to rttvar fixed point */
764 m >>= 1;
765 if (m < tp->mdev)
766 m = tp->mdev;
768 var = dst_metric_rtt(dst, RTAX_RTTVAR);
769 if (m >= var)
770 var = m;
771 else
772 var -= (var - m) >> 2;
774 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
777 if (tp->snd_ssthresh >= 0xFFFF) {
778 /* Slow start still did not finish. */
779 if (dst_metric(dst, RTAX_SSTHRESH) &&
780 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
781 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
782 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
783 if (!dst_metric_locked(dst, RTAX_CWND) &&
784 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
785 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
786 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
787 icsk->icsk_ca_state == TCP_CA_Open) {
788 /* Cong. avoidance phase, cwnd is reliable. */
789 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
790 dst->metrics[RTAX_SSTHRESH-1] =
791 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
792 if (!dst_metric_locked(dst, RTAX_CWND))
793 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
794 } else {
795 /* Else slow start did not finish, cwnd is non-sense,
796 ssthresh may be also invalid.
798 if (!dst_metric_locked(dst, RTAX_CWND))
799 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
800 if (dst_metric(dst, RTAX_SSTHRESH) &&
801 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
802 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
803 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
806 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
807 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
808 tp->reordering != sysctl_tcp_reordering)
809 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
814 /* Numbers are taken from RFC3390.
816 * John Heffner states:
818 * The RFC specifies a window of no more than 4380 bytes
819 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
820 * is a bit misleading because they use a clamp at 4380 bytes
821 * rather than use a multiplier in the relevant range.
823 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827 if (!cwnd) {
828 if (tp->mss_cache > 1460)
829 cwnd = 2;
830 else
831 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
833 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
836 /* Set slow start threshold and cwnd not falling to slow start */
837 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
839 struct tcp_sock *tp = tcp_sk(sk);
840 const struct inet_connection_sock *icsk = inet_csk(sk);
842 tp->prior_ssthresh = 0;
843 tp->bytes_acked = 0;
844 if (icsk->icsk_ca_state < TCP_CA_CWR) {
845 tp->undo_marker = 0;
846 if (set_ssthresh)
847 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
848 tp->snd_cwnd = min(tp->snd_cwnd,
849 tcp_packets_in_flight(tp) + 1U);
850 tp->snd_cwnd_cnt = 0;
851 tp->high_seq = tp->snd_nxt;
852 tp->snd_cwnd_stamp = tcp_time_stamp;
853 TCP_ECN_queue_cwr(tp);
855 tcp_set_ca_state(sk, TCP_CA_CWR);
860 * Packet counting of FACK is based on in-order assumptions, therefore TCP
861 * disables it when reordering is detected
863 static void tcp_disable_fack(struct tcp_sock *tp)
865 /* RFC3517 uses different metric in lost marker => reset on change */
866 if (tcp_is_fack(tp))
867 tp->lost_skb_hint = NULL;
868 tp->rx_opt.sack_ok &= ~2;
871 /* Take a notice that peer is sending D-SACKs */
872 static void tcp_dsack_seen(struct tcp_sock *tp)
874 tp->rx_opt.sack_ok |= 4;
877 /* Initialize metrics on socket. */
879 static void tcp_init_metrics(struct sock *sk)
881 struct tcp_sock *tp = tcp_sk(sk);
882 struct dst_entry *dst = __sk_dst_get(sk);
884 if (dst == NULL)
885 goto reset;
887 dst_confirm(dst);
889 if (dst_metric_locked(dst, RTAX_CWND))
890 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
891 if (dst_metric(dst, RTAX_SSTHRESH)) {
892 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
893 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
894 tp->snd_ssthresh = tp->snd_cwnd_clamp;
896 if (dst_metric(dst, RTAX_REORDERING) &&
897 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
898 tcp_disable_fack(tp);
899 tp->reordering = dst_metric(dst, RTAX_REORDERING);
902 if (dst_metric(dst, RTAX_RTT) == 0)
903 goto reset;
905 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
906 goto reset;
908 /* Initial rtt is determined from SYN,SYN-ACK.
909 * The segment is small and rtt may appear much
910 * less than real one. Use per-dst memory
911 * to make it more realistic.
913 * A bit of theory. RTT is time passed after "normal" sized packet
914 * is sent until it is ACKed. In normal circumstances sending small
915 * packets force peer to delay ACKs and calculation is correct too.
916 * The algorithm is adaptive and, provided we follow specs, it
917 * NEVER underestimate RTT. BUT! If peer tries to make some clever
918 * tricks sort of "quick acks" for time long enough to decrease RTT
919 * to low value, and then abruptly stops to do it and starts to delay
920 * ACKs, wait for troubles.
922 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
923 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
924 tp->rtt_seq = tp->snd_nxt;
926 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
927 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
928 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
930 tcp_set_rto(sk);
931 tcp_bound_rto(sk);
932 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
933 goto reset;
934 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
935 tp->snd_cwnd_stamp = tcp_time_stamp;
936 return;
938 reset:
939 /* Play conservative. If timestamps are not
940 * supported, TCP will fail to recalculate correct
941 * rtt, if initial rto is too small. FORGET ALL AND RESET!
943 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
944 tp->srtt = 0;
945 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
946 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
950 static void tcp_update_reordering(struct sock *sk, const int metric,
951 const int ts)
953 struct tcp_sock *tp = tcp_sk(sk);
954 if (metric > tp->reordering) {
955 int mib_idx;
957 tp->reordering = min(TCP_MAX_REORDERING, metric);
959 /* This exciting event is worth to be remembered. 8) */
960 if (ts)
961 mib_idx = LINUX_MIB_TCPTSREORDER;
962 else if (tcp_is_reno(tp))
963 mib_idx = LINUX_MIB_TCPRENOREORDER;
964 else if (tcp_is_fack(tp))
965 mib_idx = LINUX_MIB_TCPFACKREORDER;
966 else
967 mib_idx = LINUX_MIB_TCPSACKREORDER;
969 NET_INC_STATS_BH(sock_net(sk), mib_idx);
970 #if FASTRETRANS_DEBUG > 1
971 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
972 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
973 tp->reordering,
974 tp->fackets_out,
975 tp->sacked_out,
976 tp->undo_marker ? tp->undo_retrans : 0);
977 #endif
978 tcp_disable_fack(tp);
982 /* RFC: This is from the original, I doubt that this is necessary at all:
983 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
984 * retransmitted past LOST markings in the first place? I'm not fully sure
985 * about undo and end of connection cases, which can cause R without L?
987 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
989 if ((tp->retransmit_skb_hint != NULL) &&
990 before(TCP_SKB_CB(skb)->seq,
991 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
992 tp->retransmit_skb_hint = NULL;
995 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
997 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
998 tcp_verify_retransmit_hint(tp, skb);
1000 tp->lost_out += tcp_skb_pcount(skb);
1001 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1005 /* This procedure tags the retransmission queue when SACKs arrive.
1007 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1008 * Packets in queue with these bits set are counted in variables
1009 * sacked_out, retrans_out and lost_out, correspondingly.
1011 * Valid combinations are:
1012 * Tag InFlight Description
1013 * 0 1 - orig segment is in flight.
1014 * S 0 - nothing flies, orig reached receiver.
1015 * L 0 - nothing flies, orig lost by net.
1016 * R 2 - both orig and retransmit are in flight.
1017 * L|R 1 - orig is lost, retransmit is in flight.
1018 * S|R 1 - orig reached receiver, retrans is still in flight.
1019 * (L|S|R is logically valid, it could occur when L|R is sacked,
1020 * but it is equivalent to plain S and code short-curcuits it to S.
1021 * L|S is logically invalid, it would mean -1 packet in flight 8))
1023 * These 6 states form finite state machine, controlled by the following events:
1024 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1025 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1026 * 3. Loss detection event of one of three flavors:
1027 * A. Scoreboard estimator decided the packet is lost.
1028 * A'. Reno "three dupacks" marks head of queue lost.
1029 * A''. Its FACK modfication, head until snd.fack is lost.
1030 * B. SACK arrives sacking data transmitted after never retransmitted
1031 * hole was sent out.
1032 * C. SACK arrives sacking SND.NXT at the moment, when the
1033 * segment was retransmitted.
1034 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1036 * It is pleasant to note, that state diagram turns out to be commutative,
1037 * so that we are allowed not to be bothered by order of our actions,
1038 * when multiple events arrive simultaneously. (see the function below).
1040 * Reordering detection.
1041 * --------------------
1042 * Reordering metric is maximal distance, which a packet can be displaced
1043 * in packet stream. With SACKs we can estimate it:
1045 * 1. SACK fills old hole and the corresponding segment was not
1046 * ever retransmitted -> reordering. Alas, we cannot use it
1047 * when segment was retransmitted.
1048 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1049 * for retransmitted and already SACKed segment -> reordering..
1050 * Both of these heuristics are not used in Loss state, when we cannot
1051 * account for retransmits accurately.
1053 * SACK block validation.
1054 * ----------------------
1056 * SACK block range validation checks that the received SACK block fits to
1057 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1058 * Note that SND.UNA is not included to the range though being valid because
1059 * it means that the receiver is rather inconsistent with itself reporting
1060 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1061 * perfectly valid, however, in light of RFC2018 which explicitly states
1062 * that "SACK block MUST reflect the newest segment. Even if the newest
1063 * segment is going to be discarded ...", not that it looks very clever
1064 * in case of head skb. Due to potentional receiver driven attacks, we
1065 * choose to avoid immediate execution of a walk in write queue due to
1066 * reneging and defer head skb's loss recovery to standard loss recovery
1067 * procedure that will eventually trigger (nothing forbids us doing this).
1069 * Implements also blockage to start_seq wrap-around. Problem lies in the
1070 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1071 * there's no guarantee that it will be before snd_nxt (n). The problem
1072 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1073 * wrap (s_w):
1075 * <- outs wnd -> <- wrapzone ->
1076 * u e n u_w e_w s n_w
1077 * | | | | | | |
1078 * |<------------+------+----- TCP seqno space --------------+---------->|
1079 * ...-- <2^31 ->| |<--------...
1080 * ...---- >2^31 ------>| |<--------...
1082 * Current code wouldn't be vulnerable but it's better still to discard such
1083 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1084 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1085 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1086 * equal to the ideal case (infinite seqno space without wrap caused issues).
1088 * With D-SACK the lower bound is extended to cover sequence space below
1089 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1090 * again, D-SACK block must not to go across snd_una (for the same reason as
1091 * for the normal SACK blocks, explained above). But there all simplicity
1092 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1093 * fully below undo_marker they do not affect behavior in anyway and can
1094 * therefore be safely ignored. In rare cases (which are more or less
1095 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1096 * fragmentation and packet reordering past skb's retransmission. To consider
1097 * them correctly, the acceptable range must be extended even more though
1098 * the exact amount is rather hard to quantify. However, tp->max_window can
1099 * be used as an exaggerated estimate.
1101 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1102 u32 start_seq, u32 end_seq)
1104 /* Too far in future, or reversed (interpretation is ambiguous) */
1105 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1106 return 0;
1108 /* Nasty start_seq wrap-around check (see comments above) */
1109 if (!before(start_seq, tp->snd_nxt))
1110 return 0;
1112 /* In outstanding window? ...This is valid exit for D-SACKs too.
1113 * start_seq == snd_una is non-sensical (see comments above)
1115 if (after(start_seq, tp->snd_una))
1116 return 1;
1118 if (!is_dsack || !tp->undo_marker)
1119 return 0;
1121 /* ...Then it's D-SACK, and must reside below snd_una completely */
1122 if (!after(end_seq, tp->snd_una))
1123 return 0;
1125 if (!before(start_seq, tp->undo_marker))
1126 return 1;
1128 /* Too old */
1129 if (!after(end_seq, tp->undo_marker))
1130 return 0;
1132 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1133 * start_seq < undo_marker and end_seq >= undo_marker.
1135 return !before(start_seq, end_seq - tp->max_window);
1138 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1139 * Event "C". Later note: FACK people cheated me again 8), we have to account
1140 * for reordering! Ugly, but should help.
1142 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1143 * less than what is now known to be received by the other end (derived from
1144 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1145 * retransmitted skbs to avoid some costly processing per ACKs.
1147 static void tcp_mark_lost_retrans(struct sock *sk)
1149 const struct inet_connection_sock *icsk = inet_csk(sk);
1150 struct tcp_sock *tp = tcp_sk(sk);
1151 struct sk_buff *skb;
1152 int cnt = 0;
1153 u32 new_low_seq = tp->snd_nxt;
1154 u32 received_upto = tcp_highest_sack_seq(tp);
1156 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1157 !after(received_upto, tp->lost_retrans_low) ||
1158 icsk->icsk_ca_state != TCP_CA_Recovery)
1159 return;
1161 tcp_for_write_queue(skb, sk) {
1162 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1164 if (skb == tcp_send_head(sk))
1165 break;
1166 if (cnt == tp->retrans_out)
1167 break;
1168 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1169 continue;
1171 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1172 continue;
1174 if (after(received_upto, ack_seq) &&
1175 (tcp_is_fack(tp) ||
1176 !before(received_upto,
1177 ack_seq + tp->reordering * tp->mss_cache))) {
1178 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1179 tp->retrans_out -= tcp_skb_pcount(skb);
1181 /* clear lost hint */
1182 tp->retransmit_skb_hint = NULL;
1184 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1185 tp->lost_out += tcp_skb_pcount(skb);
1186 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1188 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1189 } else {
1190 if (before(ack_seq, new_low_seq))
1191 new_low_seq = ack_seq;
1192 cnt += tcp_skb_pcount(skb);
1196 if (tp->retrans_out)
1197 tp->lost_retrans_low = new_low_seq;
1200 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1201 struct tcp_sack_block_wire *sp, int num_sacks,
1202 u32 prior_snd_una)
1204 struct tcp_sock *tp = tcp_sk(sk);
1205 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1206 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1207 int dup_sack = 0;
1209 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1210 dup_sack = 1;
1211 tcp_dsack_seen(tp);
1212 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1213 } else if (num_sacks > 1) {
1214 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1215 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1217 if (!after(end_seq_0, end_seq_1) &&
1218 !before(start_seq_0, start_seq_1)) {
1219 dup_sack = 1;
1220 tcp_dsack_seen(tp);
1221 NET_INC_STATS_BH(sock_net(sk),
1222 LINUX_MIB_TCPDSACKOFORECV);
1226 /* D-SACK for already forgotten data... Do dumb counting. */
1227 if (dup_sack &&
1228 !after(end_seq_0, prior_snd_una) &&
1229 after(end_seq_0, tp->undo_marker))
1230 tp->undo_retrans--;
1232 return dup_sack;
1235 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1236 * the incoming SACK may not exactly match but we can find smaller MSS
1237 * aligned portion of it that matches. Therefore we might need to fragment
1238 * which may fail and creates some hassle (caller must handle error case
1239 * returns).
1241 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1242 u32 start_seq, u32 end_seq)
1244 int in_sack, err;
1245 unsigned int pkt_len;
1247 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1248 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1250 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1251 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1253 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1255 if (!in_sack)
1256 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1257 else
1258 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1259 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1260 if (err < 0)
1261 return err;
1264 return in_sack;
1267 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1268 int *reord, int dup_sack, int fack_count)
1270 struct tcp_sock *tp = tcp_sk(sk);
1271 u8 sacked = TCP_SKB_CB(skb)->sacked;
1272 int flag = 0;
1274 /* Account D-SACK for retransmitted packet. */
1275 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1276 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1277 tp->undo_retrans--;
1278 if (sacked & TCPCB_SACKED_ACKED)
1279 *reord = min(fack_count, *reord);
1282 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1283 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1284 return flag;
1286 if (!(sacked & TCPCB_SACKED_ACKED)) {
1287 if (sacked & TCPCB_SACKED_RETRANS) {
1288 /* If the segment is not tagged as lost,
1289 * we do not clear RETRANS, believing
1290 * that retransmission is still in flight.
1292 if (sacked & TCPCB_LOST) {
1293 TCP_SKB_CB(skb)->sacked &=
1294 ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1295 tp->lost_out -= tcp_skb_pcount(skb);
1296 tp->retrans_out -= tcp_skb_pcount(skb);
1298 /* clear lost hint */
1299 tp->retransmit_skb_hint = NULL;
1301 } else {
1302 if (!(sacked & TCPCB_RETRANS)) {
1303 /* New sack for not retransmitted frame,
1304 * which was in hole. It is reordering.
1306 if (before(TCP_SKB_CB(skb)->seq,
1307 tcp_highest_sack_seq(tp)))
1308 *reord = min(fack_count, *reord);
1310 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1311 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1312 flag |= FLAG_ONLY_ORIG_SACKED;
1315 if (sacked & TCPCB_LOST) {
1316 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1317 tp->lost_out -= tcp_skb_pcount(skb);
1319 /* clear lost hint */
1320 tp->retransmit_skb_hint = NULL;
1324 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1325 flag |= FLAG_DATA_SACKED;
1326 tp->sacked_out += tcp_skb_pcount(skb);
1328 fack_count += tcp_skb_pcount(skb);
1330 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1331 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1332 before(TCP_SKB_CB(skb)->seq,
1333 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1334 tp->lost_cnt_hint += tcp_skb_pcount(skb);
1336 if (fack_count > tp->fackets_out)
1337 tp->fackets_out = fack_count;
1339 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1340 tcp_advance_highest_sack(sk, skb);
1343 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1344 * frames and clear it. undo_retrans is decreased above, L|R frames
1345 * are accounted above as well.
1347 if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1348 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1349 tp->retrans_out -= tcp_skb_pcount(skb);
1350 tp->retransmit_skb_hint = NULL;
1353 return flag;
1356 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1357 struct tcp_sack_block *next_dup,
1358 u32 start_seq, u32 end_seq,
1359 int dup_sack_in, int *fack_count,
1360 int *reord, int *flag)
1362 tcp_for_write_queue_from(skb, sk) {
1363 int in_sack = 0;
1364 int dup_sack = dup_sack_in;
1366 if (skb == tcp_send_head(sk))
1367 break;
1369 /* queue is in-order => we can short-circuit the walk early */
1370 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1371 break;
1373 if ((next_dup != NULL) &&
1374 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1375 in_sack = tcp_match_skb_to_sack(sk, skb,
1376 next_dup->start_seq,
1377 next_dup->end_seq);
1378 if (in_sack > 0)
1379 dup_sack = 1;
1382 if (in_sack <= 0)
1383 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1384 end_seq);
1385 if (unlikely(in_sack < 0))
1386 break;
1388 if (in_sack)
1389 *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1390 *fack_count);
1392 *fack_count += tcp_skb_pcount(skb);
1394 return skb;
1397 /* Avoid all extra work that is being done by sacktag while walking in
1398 * a normal way
1400 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1401 u32 skip_to_seq, int *fack_count)
1403 tcp_for_write_queue_from(skb, sk) {
1404 if (skb == tcp_send_head(sk))
1405 break;
1407 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1408 break;
1410 *fack_count += tcp_skb_pcount(skb);
1412 return skb;
1415 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1416 struct sock *sk,
1417 struct tcp_sack_block *next_dup,
1418 u32 skip_to_seq,
1419 int *fack_count, int *reord,
1420 int *flag)
1422 if (next_dup == NULL)
1423 return skb;
1425 if (before(next_dup->start_seq, skip_to_seq)) {
1426 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1427 skb = tcp_sacktag_walk(skb, sk, NULL,
1428 next_dup->start_seq, next_dup->end_seq,
1429 1, fack_count, reord, flag);
1432 return skb;
1435 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1437 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1440 static int
1441 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1442 u32 prior_snd_una)
1444 const struct inet_connection_sock *icsk = inet_csk(sk);
1445 struct tcp_sock *tp = tcp_sk(sk);
1446 unsigned char *ptr = (skb_transport_header(ack_skb) +
1447 TCP_SKB_CB(ack_skb)->sacked);
1448 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1449 struct tcp_sack_block sp[TCP_NUM_SACKS];
1450 struct tcp_sack_block *cache;
1451 struct sk_buff *skb;
1452 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1453 int used_sacks;
1454 int reord = tp->packets_out;
1455 int flag = 0;
1456 int found_dup_sack = 0;
1457 int fack_count;
1458 int i, j;
1459 int first_sack_index;
1461 if (!tp->sacked_out) {
1462 if (WARN_ON(tp->fackets_out))
1463 tp->fackets_out = 0;
1464 tcp_highest_sack_reset(sk);
1467 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1468 num_sacks, prior_snd_una);
1469 if (found_dup_sack)
1470 flag |= FLAG_DSACKING_ACK;
1472 /* Eliminate too old ACKs, but take into
1473 * account more or less fresh ones, they can
1474 * contain valid SACK info.
1476 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1477 return 0;
1479 if (!tp->packets_out)
1480 goto out;
1482 used_sacks = 0;
1483 first_sack_index = 0;
1484 for (i = 0; i < num_sacks; i++) {
1485 int dup_sack = !i && found_dup_sack;
1487 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1488 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1490 if (!tcp_is_sackblock_valid(tp, dup_sack,
1491 sp[used_sacks].start_seq,
1492 sp[used_sacks].end_seq)) {
1493 int mib_idx;
1495 if (dup_sack) {
1496 if (!tp->undo_marker)
1497 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1498 else
1499 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1500 } else {
1501 /* Don't count olds caused by ACK reordering */
1502 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1503 !after(sp[used_sacks].end_seq, tp->snd_una))
1504 continue;
1505 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1508 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1509 if (i == 0)
1510 first_sack_index = -1;
1511 continue;
1514 /* Ignore very old stuff early */
1515 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1516 continue;
1518 used_sacks++;
1521 /* order SACK blocks to allow in order walk of the retrans queue */
1522 for (i = used_sacks - 1; i > 0; i--) {
1523 for (j = 0; j < i; j++) {
1524 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1525 struct tcp_sack_block tmp;
1527 tmp = sp[j];
1528 sp[j] = sp[j + 1];
1529 sp[j + 1] = tmp;
1531 /* Track where the first SACK block goes to */
1532 if (j == first_sack_index)
1533 first_sack_index = j + 1;
1538 skb = tcp_write_queue_head(sk);
1539 fack_count = 0;
1540 i = 0;
1542 if (!tp->sacked_out) {
1543 /* It's already past, so skip checking against it */
1544 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1545 } else {
1546 cache = tp->recv_sack_cache;
1547 /* Skip empty blocks in at head of the cache */
1548 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1549 !cache->end_seq)
1550 cache++;
1553 while (i < used_sacks) {
1554 u32 start_seq = sp[i].start_seq;
1555 u32 end_seq = sp[i].end_seq;
1556 int dup_sack = (found_dup_sack && (i == first_sack_index));
1557 struct tcp_sack_block *next_dup = NULL;
1559 if (found_dup_sack && ((i + 1) == first_sack_index))
1560 next_dup = &sp[i + 1];
1562 /* Event "B" in the comment above. */
1563 if (after(end_seq, tp->high_seq))
1564 flag |= FLAG_DATA_LOST;
1566 /* Skip too early cached blocks */
1567 while (tcp_sack_cache_ok(tp, cache) &&
1568 !before(start_seq, cache->end_seq))
1569 cache++;
1571 /* Can skip some work by looking recv_sack_cache? */
1572 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1573 after(end_seq, cache->start_seq)) {
1575 /* Head todo? */
1576 if (before(start_seq, cache->start_seq)) {
1577 skb = tcp_sacktag_skip(skb, sk, start_seq,
1578 &fack_count);
1579 skb = tcp_sacktag_walk(skb, sk, next_dup,
1580 start_seq,
1581 cache->start_seq,
1582 dup_sack, &fack_count,
1583 &reord, &flag);
1586 /* Rest of the block already fully processed? */
1587 if (!after(end_seq, cache->end_seq))
1588 goto advance_sp;
1590 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1591 cache->end_seq,
1592 &fack_count, &reord,
1593 &flag);
1595 /* ...tail remains todo... */
1596 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1597 /* ...but better entrypoint exists! */
1598 skb = tcp_highest_sack(sk);
1599 if (skb == NULL)
1600 break;
1601 fack_count = tp->fackets_out;
1602 cache++;
1603 goto walk;
1606 skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1607 &fack_count);
1608 /* Check overlap against next cached too (past this one already) */
1609 cache++;
1610 continue;
1613 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1614 skb = tcp_highest_sack(sk);
1615 if (skb == NULL)
1616 break;
1617 fack_count = tp->fackets_out;
1619 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1621 walk:
1622 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1623 dup_sack, &fack_count, &reord, &flag);
1625 advance_sp:
1626 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1627 * due to in-order walk
1629 if (after(end_seq, tp->frto_highmark))
1630 flag &= ~FLAG_ONLY_ORIG_SACKED;
1632 i++;
1635 /* Clear the head of the cache sack blocks so we can skip it next time */
1636 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1637 tp->recv_sack_cache[i].start_seq = 0;
1638 tp->recv_sack_cache[i].end_seq = 0;
1640 for (j = 0; j < used_sacks; j++)
1641 tp->recv_sack_cache[i++] = sp[j];
1643 tcp_mark_lost_retrans(sk);
1645 tcp_verify_left_out(tp);
1647 if ((reord < tp->fackets_out) &&
1648 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1649 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1650 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1652 out:
1654 #if FASTRETRANS_DEBUG > 0
1655 WARN_ON((int)tp->sacked_out < 0);
1656 WARN_ON((int)tp->lost_out < 0);
1657 WARN_ON((int)tp->retrans_out < 0);
1658 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1659 #endif
1660 return flag;
1663 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1664 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1666 int tcp_limit_reno_sacked(struct tcp_sock *tp)
1668 u32 holes;
1670 holes = max(tp->lost_out, 1U);
1671 holes = min(holes, tp->packets_out);
1673 if ((tp->sacked_out + holes) > tp->packets_out) {
1674 tp->sacked_out = tp->packets_out - holes;
1675 return 1;
1677 return 0;
1680 /* If we receive more dupacks than we expected counting segments
1681 * in assumption of absent reordering, interpret this as reordering.
1682 * The only another reason could be bug in receiver TCP.
1684 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1686 struct tcp_sock *tp = tcp_sk(sk);
1687 if (tcp_limit_reno_sacked(tp))
1688 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1691 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1693 static void tcp_add_reno_sack(struct sock *sk)
1695 struct tcp_sock *tp = tcp_sk(sk);
1696 tp->sacked_out++;
1697 tcp_check_reno_reordering(sk, 0);
1698 tcp_verify_left_out(tp);
1701 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1703 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1705 struct tcp_sock *tp = tcp_sk(sk);
1707 if (acked > 0) {
1708 /* One ACK acked hole. The rest eat duplicate ACKs. */
1709 if (acked - 1 >= tp->sacked_out)
1710 tp->sacked_out = 0;
1711 else
1712 tp->sacked_out -= acked - 1;
1714 tcp_check_reno_reordering(sk, acked);
1715 tcp_verify_left_out(tp);
1718 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1720 tp->sacked_out = 0;
1723 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1725 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1728 /* F-RTO can only be used if TCP has never retransmitted anything other than
1729 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1731 int tcp_use_frto(struct sock *sk)
1733 const struct tcp_sock *tp = tcp_sk(sk);
1734 const struct inet_connection_sock *icsk = inet_csk(sk);
1735 struct sk_buff *skb;
1737 if (!sysctl_tcp_frto)
1738 return 0;
1740 /* MTU probe and F-RTO won't really play nicely along currently */
1741 if (icsk->icsk_mtup.probe_size)
1742 return 0;
1744 if (tcp_is_sackfrto(tp))
1745 return 1;
1747 /* Avoid expensive walking of rexmit queue if possible */
1748 if (tp->retrans_out > 1)
1749 return 0;
1751 skb = tcp_write_queue_head(sk);
1752 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1753 tcp_for_write_queue_from(skb, sk) {
1754 if (skb == tcp_send_head(sk))
1755 break;
1756 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1757 return 0;
1758 /* Short-circuit when first non-SACKed skb has been checked */
1759 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1760 break;
1762 return 1;
1765 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1766 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1767 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1768 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1769 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1770 * bits are handled if the Loss state is really to be entered (in
1771 * tcp_enter_frto_loss).
1773 * Do like tcp_enter_loss() would; when RTO expires the second time it
1774 * does:
1775 * "Reduce ssthresh if it has not yet been made inside this window."
1777 void tcp_enter_frto(struct sock *sk)
1779 const struct inet_connection_sock *icsk = inet_csk(sk);
1780 struct tcp_sock *tp = tcp_sk(sk);
1781 struct sk_buff *skb;
1783 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1784 tp->snd_una == tp->high_seq ||
1785 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1786 !icsk->icsk_retransmits)) {
1787 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1788 /* Our state is too optimistic in ssthresh() call because cwnd
1789 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1790 * recovery has not yet completed. Pattern would be this: RTO,
1791 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1792 * up here twice).
1793 * RFC4138 should be more specific on what to do, even though
1794 * RTO is quite unlikely to occur after the first Cumulative ACK
1795 * due to back-off and complexity of triggering events ...
1797 if (tp->frto_counter) {
1798 u32 stored_cwnd;
1799 stored_cwnd = tp->snd_cwnd;
1800 tp->snd_cwnd = 2;
1801 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1802 tp->snd_cwnd = stored_cwnd;
1803 } else {
1804 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1806 /* ... in theory, cong.control module could do "any tricks" in
1807 * ssthresh(), which means that ca_state, lost bits and lost_out
1808 * counter would have to be faked before the call occurs. We
1809 * consider that too expensive, unlikely and hacky, so modules
1810 * using these in ssthresh() must deal these incompatibility
1811 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1813 tcp_ca_event(sk, CA_EVENT_FRTO);
1816 tp->undo_marker = tp->snd_una;
1817 tp->undo_retrans = 0;
1819 skb = tcp_write_queue_head(sk);
1820 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1821 tp->undo_marker = 0;
1822 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1823 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1824 tp->retrans_out -= tcp_skb_pcount(skb);
1826 tcp_verify_left_out(tp);
1828 /* Too bad if TCP was application limited */
1829 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1831 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1832 * The last condition is necessary at least in tp->frto_counter case.
1834 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1835 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1836 after(tp->high_seq, tp->snd_una)) {
1837 tp->frto_highmark = tp->high_seq;
1838 } else {
1839 tp->frto_highmark = tp->snd_nxt;
1841 tcp_set_ca_state(sk, TCP_CA_Disorder);
1842 tp->high_seq = tp->snd_nxt;
1843 tp->frto_counter = 1;
1846 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1847 * which indicates that we should follow the traditional RTO recovery,
1848 * i.e. mark everything lost and do go-back-N retransmission.
1850 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1852 struct tcp_sock *tp = tcp_sk(sk);
1853 struct sk_buff *skb;
1855 tp->lost_out = 0;
1856 tp->retrans_out = 0;
1857 if (tcp_is_reno(tp))
1858 tcp_reset_reno_sack(tp);
1860 tcp_for_write_queue(skb, sk) {
1861 if (skb == tcp_send_head(sk))
1862 break;
1864 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1866 * Count the retransmission made on RTO correctly (only when
1867 * waiting for the first ACK and did not get it)...
1869 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1870 /* For some reason this R-bit might get cleared? */
1871 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1872 tp->retrans_out += tcp_skb_pcount(skb);
1873 /* ...enter this if branch just for the first segment */
1874 flag |= FLAG_DATA_ACKED;
1875 } else {
1876 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1877 tp->undo_marker = 0;
1878 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1881 /* Marking forward transmissions that were made after RTO lost
1882 * can cause unnecessary retransmissions in some scenarios,
1883 * SACK blocks will mitigate that in some but not in all cases.
1884 * We used to not mark them but it was causing break-ups with
1885 * receivers that do only in-order receival.
1887 * TODO: we could detect presence of such receiver and select
1888 * different behavior per flow.
1890 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1891 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1892 tp->lost_out += tcp_skb_pcount(skb);
1895 tcp_verify_left_out(tp);
1897 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1898 tp->snd_cwnd_cnt = 0;
1899 tp->snd_cwnd_stamp = tcp_time_stamp;
1900 tp->frto_counter = 0;
1901 tp->bytes_acked = 0;
1903 tp->reordering = min_t(unsigned int, tp->reordering,
1904 sysctl_tcp_reordering);
1905 tcp_set_ca_state(sk, TCP_CA_Loss);
1906 tp->high_seq = tp->snd_nxt;
1907 TCP_ECN_queue_cwr(tp);
1909 tcp_clear_all_retrans_hints(tp);
1912 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1914 tp->retrans_out = 0;
1915 tp->lost_out = 0;
1917 tp->undo_marker = 0;
1918 tp->undo_retrans = 0;
1921 void tcp_clear_retrans(struct tcp_sock *tp)
1923 tcp_clear_retrans_partial(tp);
1925 tp->fackets_out = 0;
1926 tp->sacked_out = 0;
1929 /* Enter Loss state. If "how" is not zero, forget all SACK information
1930 * and reset tags completely, otherwise preserve SACKs. If receiver
1931 * dropped its ofo queue, we will know this due to reneging detection.
1933 void tcp_enter_loss(struct sock *sk, int how)
1935 const struct inet_connection_sock *icsk = inet_csk(sk);
1936 struct tcp_sock *tp = tcp_sk(sk);
1937 struct sk_buff *skb;
1939 /* Reduce ssthresh if it has not yet been made inside this window. */
1940 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1941 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1942 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1943 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1944 tcp_ca_event(sk, CA_EVENT_LOSS);
1946 tp->snd_cwnd = 1;
1947 tp->snd_cwnd_cnt = 0;
1948 tp->snd_cwnd_stamp = tcp_time_stamp;
1950 tp->bytes_acked = 0;
1951 tcp_clear_retrans_partial(tp);
1953 if (tcp_is_reno(tp))
1954 tcp_reset_reno_sack(tp);
1956 if (!how) {
1957 /* Push undo marker, if it was plain RTO and nothing
1958 * was retransmitted. */
1959 tp->undo_marker = tp->snd_una;
1960 } else {
1961 tp->sacked_out = 0;
1962 tp->fackets_out = 0;
1964 tcp_clear_all_retrans_hints(tp);
1966 tcp_for_write_queue(skb, sk) {
1967 if (skb == tcp_send_head(sk))
1968 break;
1970 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1971 tp->undo_marker = 0;
1972 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1973 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1974 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1975 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1976 tp->lost_out += tcp_skb_pcount(skb);
1979 tcp_verify_left_out(tp);
1981 tp->reordering = min_t(unsigned int, tp->reordering,
1982 sysctl_tcp_reordering);
1983 tcp_set_ca_state(sk, TCP_CA_Loss);
1984 tp->high_seq = tp->snd_nxt;
1985 TCP_ECN_queue_cwr(tp);
1986 /* Abort F-RTO algorithm if one is in progress */
1987 tp->frto_counter = 0;
1990 /* If ACK arrived pointing to a remembered SACK, it means that our
1991 * remembered SACKs do not reflect real state of receiver i.e.
1992 * receiver _host_ is heavily congested (or buggy).
1994 * Do processing similar to RTO timeout.
1996 static int tcp_check_sack_reneging(struct sock *sk, int flag)
1998 if (flag & FLAG_SACK_RENEGING) {
1999 struct inet_connection_sock *icsk = inet_csk(sk);
2000 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2002 tcp_enter_loss(sk, 1);
2003 icsk->icsk_retransmits++;
2004 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2005 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2006 icsk->icsk_rto, TCP_RTO_MAX);
2007 return 1;
2009 return 0;
2012 static inline int tcp_fackets_out(struct tcp_sock *tp)
2014 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2017 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2018 * counter when SACK is enabled (without SACK, sacked_out is used for
2019 * that purpose).
2021 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2022 * segments up to the highest received SACK block so far and holes in
2023 * between them.
2025 * With reordering, holes may still be in flight, so RFC3517 recovery
2026 * uses pure sacked_out (total number of SACKed segments) even though
2027 * it violates the RFC that uses duplicate ACKs, often these are equal
2028 * but when e.g. out-of-window ACKs or packet duplication occurs,
2029 * they differ. Since neither occurs due to loss, TCP should really
2030 * ignore them.
2032 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2034 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2037 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2039 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2042 static inline int tcp_head_timedout(struct sock *sk)
2044 struct tcp_sock *tp = tcp_sk(sk);
2046 return tp->packets_out &&
2047 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2050 /* Linux NewReno/SACK/FACK/ECN state machine.
2051 * --------------------------------------
2053 * "Open" Normal state, no dubious events, fast path.
2054 * "Disorder" In all the respects it is "Open",
2055 * but requires a bit more attention. It is entered when
2056 * we see some SACKs or dupacks. It is split of "Open"
2057 * mainly to move some processing from fast path to slow one.
2058 * "CWR" CWND was reduced due to some Congestion Notification event.
2059 * It can be ECN, ICMP source quench, local device congestion.
2060 * "Recovery" CWND was reduced, we are fast-retransmitting.
2061 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2063 * tcp_fastretrans_alert() is entered:
2064 * - each incoming ACK, if state is not "Open"
2065 * - when arrived ACK is unusual, namely:
2066 * * SACK
2067 * * Duplicate ACK.
2068 * * ECN ECE.
2070 * Counting packets in flight is pretty simple.
2072 * in_flight = packets_out - left_out + retrans_out
2074 * packets_out is SND.NXT-SND.UNA counted in packets.
2076 * retrans_out is number of retransmitted segments.
2078 * left_out is number of segments left network, but not ACKed yet.
2080 * left_out = sacked_out + lost_out
2082 * sacked_out: Packets, which arrived to receiver out of order
2083 * and hence not ACKed. With SACKs this number is simply
2084 * amount of SACKed data. Even without SACKs
2085 * it is easy to give pretty reliable estimate of this number,
2086 * counting duplicate ACKs.
2088 * lost_out: Packets lost by network. TCP has no explicit
2089 * "loss notification" feedback from network (for now).
2090 * It means that this number can be only _guessed_.
2091 * Actually, it is the heuristics to predict lossage that
2092 * distinguishes different algorithms.
2094 * F.e. after RTO, when all the queue is considered as lost,
2095 * lost_out = packets_out and in_flight = retrans_out.
2097 * Essentially, we have now two algorithms counting
2098 * lost packets.
2100 * FACK: It is the simplest heuristics. As soon as we decided
2101 * that something is lost, we decide that _all_ not SACKed
2102 * packets until the most forward SACK are lost. I.e.
2103 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2104 * It is absolutely correct estimate, if network does not reorder
2105 * packets. And it loses any connection to reality when reordering
2106 * takes place. We use FACK by default until reordering
2107 * is suspected on the path to this destination.
2109 * NewReno: when Recovery is entered, we assume that one segment
2110 * is lost (classic Reno). While we are in Recovery and
2111 * a partial ACK arrives, we assume that one more packet
2112 * is lost (NewReno). This heuristics are the same in NewReno
2113 * and SACK.
2115 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2116 * deflation etc. CWND is real congestion window, never inflated, changes
2117 * only according to classic VJ rules.
2119 * Really tricky (and requiring careful tuning) part of algorithm
2120 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2121 * The first determines the moment _when_ we should reduce CWND and,
2122 * hence, slow down forward transmission. In fact, it determines the moment
2123 * when we decide that hole is caused by loss, rather than by a reorder.
2125 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2126 * holes, caused by lost packets.
2128 * And the most logically complicated part of algorithm is undo
2129 * heuristics. We detect false retransmits due to both too early
2130 * fast retransmit (reordering) and underestimated RTO, analyzing
2131 * timestamps and D-SACKs. When we detect that some segments were
2132 * retransmitted by mistake and CWND reduction was wrong, we undo
2133 * window reduction and abort recovery phase. This logic is hidden
2134 * inside several functions named tcp_try_undo_<something>.
2137 /* This function decides, when we should leave Disordered state
2138 * and enter Recovery phase, reducing congestion window.
2140 * Main question: may we further continue forward transmission
2141 * with the same cwnd?
2143 static int tcp_time_to_recover(struct sock *sk)
2145 struct tcp_sock *tp = tcp_sk(sk);
2146 __u32 packets_out;
2148 /* Do not perform any recovery during F-RTO algorithm */
2149 if (tp->frto_counter)
2150 return 0;
2152 /* Trick#1: The loss is proven. */
2153 if (tp->lost_out)
2154 return 1;
2156 /* Not-A-Trick#2 : Classic rule... */
2157 if (tcp_dupack_heurestics(tp) > tp->reordering)
2158 return 1;
2160 /* Trick#3 : when we use RFC2988 timer restart, fast
2161 * retransmit can be triggered by timeout of queue head.
2163 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2164 return 1;
2166 /* Trick#4: It is still not OK... But will it be useful to delay
2167 * recovery more?
2169 packets_out = tp->packets_out;
2170 if (packets_out <= tp->reordering &&
2171 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2172 !tcp_may_send_now(sk)) {
2173 /* We have nothing to send. This connection is limited
2174 * either by receiver window or by application.
2176 return 1;
2179 return 0;
2182 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2183 * is against sacked "cnt", otherwise it's against facked "cnt"
2185 static void tcp_mark_head_lost(struct sock *sk, int packets)
2187 struct tcp_sock *tp = tcp_sk(sk);
2188 struct sk_buff *skb;
2189 int cnt, oldcnt;
2190 int err;
2191 unsigned int mss;
2193 WARN_ON(packets > tp->packets_out);
2194 if (tp->lost_skb_hint) {
2195 skb = tp->lost_skb_hint;
2196 cnt = tp->lost_cnt_hint;
2197 } else {
2198 skb = tcp_write_queue_head(sk);
2199 cnt = 0;
2202 tcp_for_write_queue_from(skb, sk) {
2203 if (skb == tcp_send_head(sk))
2204 break;
2205 /* TODO: do this better */
2206 /* this is not the most efficient way to do this... */
2207 tp->lost_skb_hint = skb;
2208 tp->lost_cnt_hint = cnt;
2210 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2211 break;
2213 oldcnt = cnt;
2214 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2215 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2216 cnt += tcp_skb_pcount(skb);
2218 if (cnt > packets) {
2219 if (tcp_is_sack(tp) || (oldcnt >= packets))
2220 break;
2222 mss = skb_shinfo(skb)->gso_size;
2223 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2224 if (err < 0)
2225 break;
2226 cnt = packets;
2229 tcp_skb_mark_lost(tp, skb);
2231 tcp_verify_left_out(tp);
2234 /* Account newly detected lost packet(s) */
2236 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2238 struct tcp_sock *tp = tcp_sk(sk);
2240 if (tcp_is_reno(tp)) {
2241 tcp_mark_head_lost(sk, 1);
2242 } else if (tcp_is_fack(tp)) {
2243 int lost = tp->fackets_out - tp->reordering;
2244 if (lost <= 0)
2245 lost = 1;
2246 tcp_mark_head_lost(sk, lost);
2247 } else {
2248 int sacked_upto = tp->sacked_out - tp->reordering;
2249 if (sacked_upto < fast_rexmit)
2250 sacked_upto = fast_rexmit;
2251 tcp_mark_head_lost(sk, sacked_upto);
2254 /* New heuristics: it is possible only after we switched
2255 * to restart timer each time when something is ACKed.
2256 * Hence, we can detect timed out packets during fast
2257 * retransmit without falling to slow start.
2259 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2260 struct sk_buff *skb;
2262 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2263 : tcp_write_queue_head(sk);
2265 tcp_for_write_queue_from(skb, sk) {
2266 if (skb == tcp_send_head(sk))
2267 break;
2268 if (!tcp_skb_timedout(sk, skb))
2269 break;
2271 tcp_skb_mark_lost(tp, skb);
2274 tp->scoreboard_skb_hint = skb;
2276 tcp_verify_left_out(tp);
2280 /* CWND moderation, preventing bursts due to too big ACKs
2281 * in dubious situations.
2283 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2285 tp->snd_cwnd = min(tp->snd_cwnd,
2286 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2287 tp->snd_cwnd_stamp = tcp_time_stamp;
2290 /* Lower bound on congestion window is slow start threshold
2291 * unless congestion avoidance choice decides to overide it.
2293 static inline u32 tcp_cwnd_min(const struct sock *sk)
2295 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2297 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2300 /* Decrease cwnd each second ack. */
2301 static void tcp_cwnd_down(struct sock *sk, int flag)
2303 struct tcp_sock *tp = tcp_sk(sk);
2304 int decr = tp->snd_cwnd_cnt + 1;
2306 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2307 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2308 tp->snd_cwnd_cnt = decr & 1;
2309 decr >>= 1;
2311 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2312 tp->snd_cwnd -= decr;
2314 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2315 tp->snd_cwnd_stamp = tcp_time_stamp;
2319 /* Nothing was retransmitted or returned timestamp is less
2320 * than timestamp of the first retransmission.
2322 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2324 return !tp->retrans_stamp ||
2325 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2326 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2329 /* Undo procedures. */
2331 #if FASTRETRANS_DEBUG > 1
2332 static void DBGUNDO(struct sock *sk, const char *msg)
2334 struct tcp_sock *tp = tcp_sk(sk);
2335 struct inet_sock *inet = inet_sk(sk);
2337 if (sk->sk_family == AF_INET) {
2338 printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
2339 msg,
2340 NIPQUAD(inet->daddr), ntohs(inet->dport),
2341 tp->snd_cwnd, tcp_left_out(tp),
2342 tp->snd_ssthresh, tp->prior_ssthresh,
2343 tp->packets_out);
2345 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2346 else if (sk->sk_family == AF_INET6) {
2347 struct ipv6_pinfo *np = inet6_sk(sk);
2348 printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
2349 msg,
2350 NIP6(np->daddr), ntohs(inet->dport),
2351 tp->snd_cwnd, tcp_left_out(tp),
2352 tp->snd_ssthresh, tp->prior_ssthresh,
2353 tp->packets_out);
2355 #endif
2357 #else
2358 #define DBGUNDO(x...) do { } while (0)
2359 #endif
2361 static void tcp_undo_cwr(struct sock *sk, const int undo)
2363 struct tcp_sock *tp = tcp_sk(sk);
2365 if (tp->prior_ssthresh) {
2366 const struct inet_connection_sock *icsk = inet_csk(sk);
2368 if (icsk->icsk_ca_ops->undo_cwnd)
2369 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2370 else
2371 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2373 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2374 tp->snd_ssthresh = tp->prior_ssthresh;
2375 TCP_ECN_withdraw_cwr(tp);
2377 } else {
2378 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2380 tcp_moderate_cwnd(tp);
2381 tp->snd_cwnd_stamp = tcp_time_stamp;
2383 /* There is something screwy going on with the retrans hints after
2384 an undo */
2385 tcp_clear_all_retrans_hints(tp);
2388 static inline int tcp_may_undo(struct tcp_sock *tp)
2390 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2393 /* People celebrate: "We love our President!" */
2394 static int tcp_try_undo_recovery(struct sock *sk)
2396 struct tcp_sock *tp = tcp_sk(sk);
2398 if (tcp_may_undo(tp)) {
2399 int mib_idx;
2401 /* Happy end! We did not retransmit anything
2402 * or our original transmission succeeded.
2404 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2405 tcp_undo_cwr(sk, 1);
2406 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2407 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2408 else
2409 mib_idx = LINUX_MIB_TCPFULLUNDO;
2411 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2412 tp->undo_marker = 0;
2414 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2415 /* Hold old state until something *above* high_seq
2416 * is ACKed. For Reno it is MUST to prevent false
2417 * fast retransmits (RFC2582). SACK TCP is safe. */
2418 tcp_moderate_cwnd(tp);
2419 return 1;
2421 tcp_set_ca_state(sk, TCP_CA_Open);
2422 return 0;
2425 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2426 static void tcp_try_undo_dsack(struct sock *sk)
2428 struct tcp_sock *tp = tcp_sk(sk);
2430 if (tp->undo_marker && !tp->undo_retrans) {
2431 DBGUNDO(sk, "D-SACK");
2432 tcp_undo_cwr(sk, 1);
2433 tp->undo_marker = 0;
2434 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2438 /* Undo during fast recovery after partial ACK. */
2440 static int tcp_try_undo_partial(struct sock *sk, int acked)
2442 struct tcp_sock *tp = tcp_sk(sk);
2443 /* Partial ACK arrived. Force Hoe's retransmit. */
2444 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2446 if (tcp_may_undo(tp)) {
2447 /* Plain luck! Hole if filled with delayed
2448 * packet, rather than with a retransmit.
2450 if (tp->retrans_out == 0)
2451 tp->retrans_stamp = 0;
2453 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2455 DBGUNDO(sk, "Hoe");
2456 tcp_undo_cwr(sk, 0);
2457 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2459 /* So... Do not make Hoe's retransmit yet.
2460 * If the first packet was delayed, the rest
2461 * ones are most probably delayed as well.
2463 failed = 0;
2465 return failed;
2468 /* Undo during loss recovery after partial ACK. */
2469 static int tcp_try_undo_loss(struct sock *sk)
2471 struct tcp_sock *tp = tcp_sk(sk);
2473 if (tcp_may_undo(tp)) {
2474 struct sk_buff *skb;
2475 tcp_for_write_queue(skb, sk) {
2476 if (skb == tcp_send_head(sk))
2477 break;
2478 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2481 tcp_clear_all_retrans_hints(tp);
2483 DBGUNDO(sk, "partial loss");
2484 tp->lost_out = 0;
2485 tcp_undo_cwr(sk, 1);
2486 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2487 inet_csk(sk)->icsk_retransmits = 0;
2488 tp->undo_marker = 0;
2489 if (tcp_is_sack(tp))
2490 tcp_set_ca_state(sk, TCP_CA_Open);
2491 return 1;
2493 return 0;
2496 static inline void tcp_complete_cwr(struct sock *sk)
2498 struct tcp_sock *tp = tcp_sk(sk);
2499 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2500 tp->snd_cwnd_stamp = tcp_time_stamp;
2501 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2504 static void tcp_try_keep_open(struct sock *sk)
2506 struct tcp_sock *tp = tcp_sk(sk);
2507 int state = TCP_CA_Open;
2509 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2510 state = TCP_CA_Disorder;
2512 if (inet_csk(sk)->icsk_ca_state != state) {
2513 tcp_set_ca_state(sk, state);
2514 tp->high_seq = tp->snd_nxt;
2518 static void tcp_try_to_open(struct sock *sk, int flag)
2520 struct tcp_sock *tp = tcp_sk(sk);
2522 tcp_verify_left_out(tp);
2524 if (!tp->frto_counter && tp->retrans_out == 0)
2525 tp->retrans_stamp = 0;
2527 if (flag & FLAG_ECE)
2528 tcp_enter_cwr(sk, 1);
2530 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2531 tcp_try_keep_open(sk);
2532 tcp_moderate_cwnd(tp);
2533 } else {
2534 tcp_cwnd_down(sk, flag);
2538 static void tcp_mtup_probe_failed(struct sock *sk)
2540 struct inet_connection_sock *icsk = inet_csk(sk);
2542 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2543 icsk->icsk_mtup.probe_size = 0;
2546 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2548 struct tcp_sock *tp = tcp_sk(sk);
2549 struct inet_connection_sock *icsk = inet_csk(sk);
2551 /* FIXME: breaks with very large cwnd */
2552 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2553 tp->snd_cwnd = tp->snd_cwnd *
2554 tcp_mss_to_mtu(sk, tp->mss_cache) /
2555 icsk->icsk_mtup.probe_size;
2556 tp->snd_cwnd_cnt = 0;
2557 tp->snd_cwnd_stamp = tcp_time_stamp;
2558 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2560 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2561 icsk->icsk_mtup.probe_size = 0;
2562 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2565 /* Process an event, which can update packets-in-flight not trivially.
2566 * Main goal of this function is to calculate new estimate for left_out,
2567 * taking into account both packets sitting in receiver's buffer and
2568 * packets lost by network.
2570 * Besides that it does CWND reduction, when packet loss is detected
2571 * and changes state of machine.
2573 * It does _not_ decide what to send, it is made in function
2574 * tcp_xmit_retransmit_queue().
2576 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2578 struct inet_connection_sock *icsk = inet_csk(sk);
2579 struct tcp_sock *tp = tcp_sk(sk);
2580 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2581 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2582 (tcp_fackets_out(tp) > tp->reordering));
2583 int fast_rexmit = 0, mib_idx;
2585 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2586 tp->sacked_out = 0;
2587 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2588 tp->fackets_out = 0;
2590 /* Now state machine starts.
2591 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2592 if (flag & FLAG_ECE)
2593 tp->prior_ssthresh = 0;
2595 /* B. In all the states check for reneging SACKs. */
2596 if (tcp_check_sack_reneging(sk, flag))
2597 return;
2599 /* C. Process data loss notification, provided it is valid. */
2600 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2601 before(tp->snd_una, tp->high_seq) &&
2602 icsk->icsk_ca_state != TCP_CA_Open &&
2603 tp->fackets_out > tp->reordering) {
2604 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2605 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2608 /* D. Check consistency of the current state. */
2609 tcp_verify_left_out(tp);
2611 /* E. Check state exit conditions. State can be terminated
2612 * when high_seq is ACKed. */
2613 if (icsk->icsk_ca_state == TCP_CA_Open) {
2614 WARN_ON(tp->retrans_out != 0);
2615 tp->retrans_stamp = 0;
2616 } else if (!before(tp->snd_una, tp->high_seq)) {
2617 switch (icsk->icsk_ca_state) {
2618 case TCP_CA_Loss:
2619 icsk->icsk_retransmits = 0;
2620 if (tcp_try_undo_recovery(sk))
2621 return;
2622 break;
2624 case TCP_CA_CWR:
2625 /* CWR is to be held something *above* high_seq
2626 * is ACKed for CWR bit to reach receiver. */
2627 if (tp->snd_una != tp->high_seq) {
2628 tcp_complete_cwr(sk);
2629 tcp_set_ca_state(sk, TCP_CA_Open);
2631 break;
2633 case TCP_CA_Disorder:
2634 tcp_try_undo_dsack(sk);
2635 if (!tp->undo_marker ||
2636 /* For SACK case do not Open to allow to undo
2637 * catching for all duplicate ACKs. */
2638 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2639 tp->undo_marker = 0;
2640 tcp_set_ca_state(sk, TCP_CA_Open);
2642 break;
2644 case TCP_CA_Recovery:
2645 if (tcp_is_reno(tp))
2646 tcp_reset_reno_sack(tp);
2647 if (tcp_try_undo_recovery(sk))
2648 return;
2649 tcp_complete_cwr(sk);
2650 break;
2654 /* F. Process state. */
2655 switch (icsk->icsk_ca_state) {
2656 case TCP_CA_Recovery:
2657 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2658 if (tcp_is_reno(tp) && is_dupack)
2659 tcp_add_reno_sack(sk);
2660 } else
2661 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2662 break;
2663 case TCP_CA_Loss:
2664 if (flag & FLAG_DATA_ACKED)
2665 icsk->icsk_retransmits = 0;
2666 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2667 tcp_reset_reno_sack(tp);
2668 if (!tcp_try_undo_loss(sk)) {
2669 tcp_moderate_cwnd(tp);
2670 tcp_xmit_retransmit_queue(sk);
2671 return;
2673 if (icsk->icsk_ca_state != TCP_CA_Open)
2674 return;
2675 /* Loss is undone; fall through to processing in Open state. */
2676 default:
2677 if (tcp_is_reno(tp)) {
2678 if (flag & FLAG_SND_UNA_ADVANCED)
2679 tcp_reset_reno_sack(tp);
2680 if (is_dupack)
2681 tcp_add_reno_sack(sk);
2684 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2685 tcp_try_undo_dsack(sk);
2687 if (!tcp_time_to_recover(sk)) {
2688 tcp_try_to_open(sk, flag);
2689 return;
2692 /* MTU probe failure: don't reduce cwnd */
2693 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2694 icsk->icsk_mtup.probe_size &&
2695 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2696 tcp_mtup_probe_failed(sk);
2697 /* Restores the reduction we did in tcp_mtup_probe() */
2698 tp->snd_cwnd++;
2699 tcp_simple_retransmit(sk);
2700 return;
2703 /* Otherwise enter Recovery state */
2705 if (tcp_is_reno(tp))
2706 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2707 else
2708 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2710 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2712 tp->high_seq = tp->snd_nxt;
2713 tp->prior_ssthresh = 0;
2714 tp->undo_marker = tp->snd_una;
2715 tp->undo_retrans = tp->retrans_out;
2717 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2718 if (!(flag & FLAG_ECE))
2719 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2720 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2721 TCP_ECN_queue_cwr(tp);
2724 tp->bytes_acked = 0;
2725 tp->snd_cwnd_cnt = 0;
2726 tcp_set_ca_state(sk, TCP_CA_Recovery);
2727 fast_rexmit = 1;
2730 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2731 tcp_update_scoreboard(sk, fast_rexmit);
2732 tcp_cwnd_down(sk, flag);
2733 tcp_xmit_retransmit_queue(sk);
2736 /* Read draft-ietf-tcplw-high-performance before mucking
2737 * with this code. (Supersedes RFC1323)
2739 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2741 /* RTTM Rule: A TSecr value received in a segment is used to
2742 * update the averaged RTT measurement only if the segment
2743 * acknowledges some new data, i.e., only if it advances the
2744 * left edge of the send window.
2746 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2747 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2749 * Changed: reset backoff as soon as we see the first valid sample.
2750 * If we do not, we get strongly overestimated rto. With timestamps
2751 * samples are accepted even from very old segments: f.e., when rtt=1
2752 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2753 * answer arrives rto becomes 120 seconds! If at least one of segments
2754 * in window is lost... Voila. --ANK (010210)
2756 struct tcp_sock *tp = tcp_sk(sk);
2757 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2758 tcp_rtt_estimator(sk, seq_rtt);
2759 tcp_set_rto(sk);
2760 inet_csk(sk)->icsk_backoff = 0;
2761 tcp_bound_rto(sk);
2764 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2766 /* We don't have a timestamp. Can only use
2767 * packets that are not retransmitted to determine
2768 * rtt estimates. Also, we must not reset the
2769 * backoff for rto until we get a non-retransmitted
2770 * packet. This allows us to deal with a situation
2771 * where the network delay has increased suddenly.
2772 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2775 if (flag & FLAG_RETRANS_DATA_ACKED)
2776 return;
2778 tcp_rtt_estimator(sk, seq_rtt);
2779 tcp_set_rto(sk);
2780 inet_csk(sk)->icsk_backoff = 0;
2781 tcp_bound_rto(sk);
2784 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2785 const s32 seq_rtt)
2787 const struct tcp_sock *tp = tcp_sk(sk);
2788 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2789 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2790 tcp_ack_saw_tstamp(sk, flag);
2791 else if (seq_rtt >= 0)
2792 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2795 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2797 const struct inet_connection_sock *icsk = inet_csk(sk);
2798 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2799 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2802 /* Restart timer after forward progress on connection.
2803 * RFC2988 recommends to restart timer to now+rto.
2805 static void tcp_rearm_rto(struct sock *sk)
2807 struct tcp_sock *tp = tcp_sk(sk);
2809 if (!tp->packets_out) {
2810 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2811 } else {
2812 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2813 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2817 /* If we get here, the whole TSO packet has not been acked. */
2818 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2820 struct tcp_sock *tp = tcp_sk(sk);
2821 u32 packets_acked;
2823 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2825 packets_acked = tcp_skb_pcount(skb);
2826 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2827 return 0;
2828 packets_acked -= tcp_skb_pcount(skb);
2830 if (packets_acked) {
2831 BUG_ON(tcp_skb_pcount(skb) == 0);
2832 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2835 return packets_acked;
2838 /* Remove acknowledged frames from the retransmission queue. If our packet
2839 * is before the ack sequence we can discard it as it's confirmed to have
2840 * arrived at the other end.
2842 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2844 struct tcp_sock *tp = tcp_sk(sk);
2845 const struct inet_connection_sock *icsk = inet_csk(sk);
2846 struct sk_buff *skb;
2847 u32 now = tcp_time_stamp;
2848 int fully_acked = 1;
2849 int flag = 0;
2850 u32 pkts_acked = 0;
2851 u32 reord = tp->packets_out;
2852 s32 seq_rtt = -1;
2853 s32 ca_seq_rtt = -1;
2854 ktime_t last_ackt = net_invalid_timestamp();
2856 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2857 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2858 u32 end_seq;
2859 u32 acked_pcount;
2860 u8 sacked = scb->sacked;
2862 /* Determine how many packets and what bytes were acked, tso and else */
2863 if (after(scb->end_seq, tp->snd_una)) {
2864 if (tcp_skb_pcount(skb) == 1 ||
2865 !after(tp->snd_una, scb->seq))
2866 break;
2868 acked_pcount = tcp_tso_acked(sk, skb);
2869 if (!acked_pcount)
2870 break;
2872 fully_acked = 0;
2873 end_seq = tp->snd_una;
2874 } else {
2875 acked_pcount = tcp_skb_pcount(skb);
2876 end_seq = scb->end_seq;
2879 /* MTU probing checks */
2880 if (fully_acked && icsk->icsk_mtup.probe_size &&
2881 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2882 tcp_mtup_probe_success(sk, skb);
2885 if (sacked & TCPCB_RETRANS) {
2886 if (sacked & TCPCB_SACKED_RETRANS)
2887 tp->retrans_out -= acked_pcount;
2888 flag |= FLAG_RETRANS_DATA_ACKED;
2889 ca_seq_rtt = -1;
2890 seq_rtt = -1;
2891 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2892 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2893 } else {
2894 ca_seq_rtt = now - scb->when;
2895 last_ackt = skb->tstamp;
2896 if (seq_rtt < 0) {
2897 seq_rtt = ca_seq_rtt;
2899 if (!(sacked & TCPCB_SACKED_ACKED))
2900 reord = min(pkts_acked, reord);
2903 if (sacked & TCPCB_SACKED_ACKED)
2904 tp->sacked_out -= acked_pcount;
2905 if (sacked & TCPCB_LOST)
2906 tp->lost_out -= acked_pcount;
2908 if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
2909 tp->urg_mode = 0;
2911 tp->packets_out -= acked_pcount;
2912 pkts_acked += acked_pcount;
2914 /* Initial outgoing SYN's get put onto the write_queue
2915 * just like anything else we transmit. It is not
2916 * true data, and if we misinform our callers that
2917 * this ACK acks real data, we will erroneously exit
2918 * connection startup slow start one packet too
2919 * quickly. This is severely frowned upon behavior.
2921 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2922 flag |= FLAG_DATA_ACKED;
2923 } else {
2924 flag |= FLAG_SYN_ACKED;
2925 tp->retrans_stamp = 0;
2928 if (!fully_acked)
2929 break;
2931 tcp_unlink_write_queue(skb, sk);
2932 sk_wmem_free_skb(sk, skb);
2933 tcp_clear_all_retrans_hints(tp);
2936 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2937 flag |= FLAG_SACK_RENEGING;
2939 if (flag & FLAG_ACKED) {
2940 const struct tcp_congestion_ops *ca_ops
2941 = inet_csk(sk)->icsk_ca_ops;
2943 tcp_ack_update_rtt(sk, flag, seq_rtt);
2944 tcp_rearm_rto(sk);
2946 if (tcp_is_reno(tp)) {
2947 tcp_remove_reno_sacks(sk, pkts_acked);
2948 } else {
2949 /* Non-retransmitted hole got filled? That's reordering */
2950 if (reord < prior_fackets)
2951 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2954 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2956 if (ca_ops->pkts_acked) {
2957 s32 rtt_us = -1;
2959 /* Is the ACK triggering packet unambiguous? */
2960 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2961 /* High resolution needed and available? */
2962 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2963 !ktime_equal(last_ackt,
2964 net_invalid_timestamp()))
2965 rtt_us = ktime_us_delta(ktime_get_real(),
2966 last_ackt);
2967 else if (ca_seq_rtt > 0)
2968 rtt_us = jiffies_to_usecs(ca_seq_rtt);
2971 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2975 #if FASTRETRANS_DEBUG > 0
2976 WARN_ON((int)tp->sacked_out < 0);
2977 WARN_ON((int)tp->lost_out < 0);
2978 WARN_ON((int)tp->retrans_out < 0);
2979 if (!tp->packets_out && tcp_is_sack(tp)) {
2980 icsk = inet_csk(sk);
2981 if (tp->lost_out) {
2982 printk(KERN_DEBUG "Leak l=%u %d\n",
2983 tp->lost_out, icsk->icsk_ca_state);
2984 tp->lost_out = 0;
2986 if (tp->sacked_out) {
2987 printk(KERN_DEBUG "Leak s=%u %d\n",
2988 tp->sacked_out, icsk->icsk_ca_state);
2989 tp->sacked_out = 0;
2991 if (tp->retrans_out) {
2992 printk(KERN_DEBUG "Leak r=%u %d\n",
2993 tp->retrans_out, icsk->icsk_ca_state);
2994 tp->retrans_out = 0;
2997 #endif
2998 return flag;
3001 static void tcp_ack_probe(struct sock *sk)
3003 const struct tcp_sock *tp = tcp_sk(sk);
3004 struct inet_connection_sock *icsk = inet_csk(sk);
3006 /* Was it a usable window open? */
3008 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3009 icsk->icsk_backoff = 0;
3010 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3011 /* Socket must be waked up by subsequent tcp_data_snd_check().
3012 * This function is not for random using!
3014 } else {
3015 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3016 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3017 TCP_RTO_MAX);
3021 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3023 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3024 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3027 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3029 const struct tcp_sock *tp = tcp_sk(sk);
3030 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3031 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3034 /* Check that window update is acceptable.
3035 * The function assumes that snd_una<=ack<=snd_next.
3037 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3038 const u32 ack, const u32 ack_seq,
3039 const u32 nwin)
3041 return (after(ack, tp->snd_una) ||
3042 after(ack_seq, tp->snd_wl1) ||
3043 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3046 /* Update our send window.
3048 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3049 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3051 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3052 u32 ack_seq)
3054 struct tcp_sock *tp = tcp_sk(sk);
3055 int flag = 0;
3056 u32 nwin = ntohs(tcp_hdr(skb)->window);
3058 if (likely(!tcp_hdr(skb)->syn))
3059 nwin <<= tp->rx_opt.snd_wscale;
3061 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3062 flag |= FLAG_WIN_UPDATE;
3063 tcp_update_wl(tp, ack, ack_seq);
3065 if (tp->snd_wnd != nwin) {
3066 tp->snd_wnd = nwin;
3068 /* Note, it is the only place, where
3069 * fast path is recovered for sending TCP.
3071 tp->pred_flags = 0;
3072 tcp_fast_path_check(sk);
3074 if (nwin > tp->max_window) {
3075 tp->max_window = nwin;
3076 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3081 tp->snd_una = ack;
3083 return flag;
3086 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3087 * continue in congestion avoidance.
3089 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3091 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3092 tp->snd_cwnd_cnt = 0;
3093 tp->bytes_acked = 0;
3094 TCP_ECN_queue_cwr(tp);
3095 tcp_moderate_cwnd(tp);
3098 /* A conservative spurious RTO response algorithm: reduce cwnd using
3099 * rate halving and continue in congestion avoidance.
3101 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3103 tcp_enter_cwr(sk, 0);
3106 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3108 if (flag & FLAG_ECE)
3109 tcp_ratehalving_spur_to_response(sk);
3110 else
3111 tcp_undo_cwr(sk, 1);
3114 /* F-RTO spurious RTO detection algorithm (RFC4138)
3116 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3117 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3118 * window (but not to or beyond highest sequence sent before RTO):
3119 * On First ACK, send two new segments out.
3120 * On Second ACK, RTO was likely spurious. Do spurious response (response
3121 * algorithm is not part of the F-RTO detection algorithm
3122 * given in RFC4138 but can be selected separately).
3123 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3124 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3125 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3126 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3128 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3129 * original window even after we transmit two new data segments.
3131 * SACK version:
3132 * on first step, wait until first cumulative ACK arrives, then move to
3133 * the second step. In second step, the next ACK decides.
3135 * F-RTO is implemented (mainly) in four functions:
3136 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3137 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3138 * called when tcp_use_frto() showed green light
3139 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3140 * - tcp_enter_frto_loss() is called if there is not enough evidence
3141 * to prove that the RTO is indeed spurious. It transfers the control
3142 * from F-RTO to the conventional RTO recovery
3144 static int tcp_process_frto(struct sock *sk, int flag)
3146 struct tcp_sock *tp = tcp_sk(sk);
3148 tcp_verify_left_out(tp);
3150 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3151 if (flag & FLAG_DATA_ACKED)
3152 inet_csk(sk)->icsk_retransmits = 0;
3154 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3155 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3156 tp->undo_marker = 0;
3158 if (!before(tp->snd_una, tp->frto_highmark)) {
3159 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3160 return 1;
3163 if (!tcp_is_sackfrto(tp)) {
3164 /* RFC4138 shortcoming in step 2; should also have case c):
3165 * ACK isn't duplicate nor advances window, e.g., opposite dir
3166 * data, winupdate
3168 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3169 return 1;
3171 if (!(flag & FLAG_DATA_ACKED)) {
3172 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3173 flag);
3174 return 1;
3176 } else {
3177 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3178 /* Prevent sending of new data. */
3179 tp->snd_cwnd = min(tp->snd_cwnd,
3180 tcp_packets_in_flight(tp));
3181 return 1;
3184 if ((tp->frto_counter >= 2) &&
3185 (!(flag & FLAG_FORWARD_PROGRESS) ||
3186 ((flag & FLAG_DATA_SACKED) &&
3187 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3188 /* RFC4138 shortcoming (see comment above) */
3189 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3190 (flag & FLAG_NOT_DUP))
3191 return 1;
3193 tcp_enter_frto_loss(sk, 3, flag);
3194 return 1;
3198 if (tp->frto_counter == 1) {
3199 /* tcp_may_send_now needs to see updated state */
3200 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3201 tp->frto_counter = 2;
3203 if (!tcp_may_send_now(sk))
3204 tcp_enter_frto_loss(sk, 2, flag);
3206 return 1;
3207 } else {
3208 switch (sysctl_tcp_frto_response) {
3209 case 2:
3210 tcp_undo_spur_to_response(sk, flag);
3211 break;
3212 case 1:
3213 tcp_conservative_spur_to_response(tp);
3214 break;
3215 default:
3216 tcp_ratehalving_spur_to_response(sk);
3217 break;
3219 tp->frto_counter = 0;
3220 tp->undo_marker = 0;
3221 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3223 return 0;
3226 /* This routine deals with incoming acks, but not outgoing ones. */
3227 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3229 struct inet_connection_sock *icsk = inet_csk(sk);
3230 struct tcp_sock *tp = tcp_sk(sk);
3231 u32 prior_snd_una = tp->snd_una;
3232 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3233 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3234 u32 prior_in_flight;
3235 u32 prior_fackets;
3236 int prior_packets;
3237 int frto_cwnd = 0;
3239 /* If the ack is newer than sent or older than previous acks
3240 * then we can probably ignore it.
3242 if (after(ack, tp->snd_nxt))
3243 goto uninteresting_ack;
3245 if (before(ack, prior_snd_una))
3246 goto old_ack;
3248 if (after(ack, prior_snd_una))
3249 flag |= FLAG_SND_UNA_ADVANCED;
3251 if (sysctl_tcp_abc) {
3252 if (icsk->icsk_ca_state < TCP_CA_CWR)
3253 tp->bytes_acked += ack - prior_snd_una;
3254 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3255 /* we assume just one segment left network */
3256 tp->bytes_acked += min(ack - prior_snd_una,
3257 tp->mss_cache);
3260 prior_fackets = tp->fackets_out;
3261 prior_in_flight = tcp_packets_in_flight(tp);
3263 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3264 /* Window is constant, pure forward advance.
3265 * No more checks are required.
3266 * Note, we use the fact that SND.UNA>=SND.WL2.
3268 tcp_update_wl(tp, ack, ack_seq);
3269 tp->snd_una = ack;
3270 flag |= FLAG_WIN_UPDATE;
3272 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3274 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3275 } else {
3276 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3277 flag |= FLAG_DATA;
3278 else
3279 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3281 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3283 if (TCP_SKB_CB(skb)->sacked)
3284 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3286 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3287 flag |= FLAG_ECE;
3289 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3292 /* We passed data and got it acked, remove any soft error
3293 * log. Something worked...
3295 sk->sk_err_soft = 0;
3296 icsk->icsk_probes_out = 0;
3297 tp->rcv_tstamp = tcp_time_stamp;
3298 prior_packets = tp->packets_out;
3299 if (!prior_packets)
3300 goto no_queue;
3302 /* See if we can take anything off of the retransmit queue. */
3303 flag |= tcp_clean_rtx_queue(sk, prior_fackets);
3305 if (tp->frto_counter)
3306 frto_cwnd = tcp_process_frto(sk, flag);
3307 /* Guarantee sacktag reordering detection against wrap-arounds */
3308 if (before(tp->frto_highmark, tp->snd_una))
3309 tp->frto_highmark = 0;
3311 if (tcp_ack_is_dubious(sk, flag)) {
3312 /* Advance CWND, if state allows this. */
3313 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3314 tcp_may_raise_cwnd(sk, flag))
3315 tcp_cong_avoid(sk, ack, prior_in_flight);
3316 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3317 flag);
3318 } else {
3319 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3320 tcp_cong_avoid(sk, ack, prior_in_flight);
3323 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3324 dst_confirm(sk->sk_dst_cache);
3326 return 1;
3328 no_queue:
3329 /* If this ack opens up a zero window, clear backoff. It was
3330 * being used to time the probes, and is probably far higher than
3331 * it needs to be for normal retransmission.
3333 if (tcp_send_head(sk))
3334 tcp_ack_probe(sk);
3335 return 1;
3337 old_ack:
3338 if (TCP_SKB_CB(skb)->sacked) {
3339 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3340 if (icsk->icsk_ca_state == TCP_CA_Open)
3341 tcp_try_keep_open(sk);
3344 uninteresting_ack:
3345 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3346 return 0;
3349 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3350 * But, this can also be called on packets in the established flow when
3351 * the fast version below fails.
3353 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3354 int estab)
3356 unsigned char *ptr;
3357 struct tcphdr *th = tcp_hdr(skb);
3358 int length = (th->doff * 4) - sizeof(struct tcphdr);
3360 ptr = (unsigned char *)(th + 1);
3361 opt_rx->saw_tstamp = 0;
3363 while (length > 0) {
3364 int opcode = *ptr++;
3365 int opsize;
3367 switch (opcode) {
3368 case TCPOPT_EOL:
3369 return;
3370 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3371 length--;
3372 continue;
3373 default:
3374 opsize = *ptr++;
3375 if (opsize < 2) /* "silly options" */
3376 return;
3377 if (opsize > length)
3378 return; /* don't parse partial options */
3379 switch (opcode) {
3380 case TCPOPT_MSS:
3381 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3382 u16 in_mss = get_unaligned_be16(ptr);
3383 if (in_mss) {
3384 if (opt_rx->user_mss &&
3385 opt_rx->user_mss < in_mss)
3386 in_mss = opt_rx->user_mss;
3387 opt_rx->mss_clamp = in_mss;
3390 break;
3391 case TCPOPT_WINDOW:
3392 if (opsize == TCPOLEN_WINDOW && th->syn &&
3393 !estab && sysctl_tcp_window_scaling) {
3394 __u8 snd_wscale = *(__u8 *)ptr;
3395 opt_rx->wscale_ok = 1;
3396 if (snd_wscale > 14) {
3397 if (net_ratelimit())
3398 printk(KERN_INFO "tcp_parse_options: Illegal window "
3399 "scaling value %d >14 received.\n",
3400 snd_wscale);
3401 snd_wscale = 14;
3403 opt_rx->snd_wscale = snd_wscale;
3405 break;
3406 case TCPOPT_TIMESTAMP:
3407 if ((opsize == TCPOLEN_TIMESTAMP) &&
3408 ((estab && opt_rx->tstamp_ok) ||
3409 (!estab && sysctl_tcp_timestamps))) {
3410 opt_rx->saw_tstamp = 1;
3411 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3412 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3414 break;
3415 case TCPOPT_SACK_PERM:
3416 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3417 !estab && sysctl_tcp_sack) {
3418 opt_rx->sack_ok = 1;
3419 tcp_sack_reset(opt_rx);
3421 break;
3423 case TCPOPT_SACK:
3424 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3425 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3426 opt_rx->sack_ok) {
3427 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3429 break;
3430 #ifdef CONFIG_TCP_MD5SIG
3431 case TCPOPT_MD5SIG:
3433 * The MD5 Hash has already been
3434 * checked (see tcp_v{4,6}_do_rcv()).
3436 break;
3437 #endif
3440 ptr += opsize-2;
3441 length -= opsize;
3446 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3448 __be32 *ptr = (__be32 *)(th + 1);
3450 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3451 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3452 tp->rx_opt.saw_tstamp = 1;
3453 ++ptr;
3454 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3455 ++ptr;
3456 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3457 return 1;
3459 return 0;
3462 /* Fast parse options. This hopes to only see timestamps.
3463 * If it is wrong it falls back on tcp_parse_options().
3465 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3466 struct tcp_sock *tp)
3468 if (th->doff == sizeof(struct tcphdr) >> 2) {
3469 tp->rx_opt.saw_tstamp = 0;
3470 return 0;
3471 } else if (tp->rx_opt.tstamp_ok &&
3472 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3473 if (tcp_parse_aligned_timestamp(tp, th))
3474 return 1;
3476 tcp_parse_options(skb, &tp->rx_opt, 1);
3477 return 1;
3480 #ifdef CONFIG_TCP_MD5SIG
3482 * Parse MD5 Signature option
3484 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3486 int length = (th->doff << 2) - sizeof (*th);
3487 u8 *ptr = (u8*)(th + 1);
3489 /* If the TCP option is too short, we can short cut */
3490 if (length < TCPOLEN_MD5SIG)
3491 return NULL;
3493 while (length > 0) {
3494 int opcode = *ptr++;
3495 int opsize;
3497 switch(opcode) {
3498 case TCPOPT_EOL:
3499 return NULL;
3500 case TCPOPT_NOP:
3501 length--;
3502 continue;
3503 default:
3504 opsize = *ptr++;
3505 if (opsize < 2 || opsize > length)
3506 return NULL;
3507 if (opcode == TCPOPT_MD5SIG)
3508 return ptr;
3510 ptr += opsize - 2;
3511 length -= opsize;
3513 return NULL;
3515 #endif
3517 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3519 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3520 tp->rx_opt.ts_recent_stamp = get_seconds();
3523 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3525 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3526 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3527 * extra check below makes sure this can only happen
3528 * for pure ACK frames. -DaveM
3530 * Not only, also it occurs for expired timestamps.
3533 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3534 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3535 tcp_store_ts_recent(tp);
3539 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3541 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3542 * it can pass through stack. So, the following predicate verifies that
3543 * this segment is not used for anything but congestion avoidance or
3544 * fast retransmit. Moreover, we even are able to eliminate most of such
3545 * second order effects, if we apply some small "replay" window (~RTO)
3546 * to timestamp space.
3548 * All these measures still do not guarantee that we reject wrapped ACKs
3549 * on networks with high bandwidth, when sequence space is recycled fastly,
3550 * but it guarantees that such events will be very rare and do not affect
3551 * connection seriously. This doesn't look nice, but alas, PAWS is really
3552 * buggy extension.
3554 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3555 * states that events when retransmit arrives after original data are rare.
3556 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3557 * the biggest problem on large power networks even with minor reordering.
3558 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3559 * up to bandwidth of 18Gigabit/sec. 8) ]
3562 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3564 struct tcp_sock *tp = tcp_sk(sk);
3565 struct tcphdr *th = tcp_hdr(skb);
3566 u32 seq = TCP_SKB_CB(skb)->seq;
3567 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3569 return (/* 1. Pure ACK with correct sequence number. */
3570 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3572 /* 2. ... and duplicate ACK. */
3573 ack == tp->snd_una &&
3575 /* 3. ... and does not update window. */
3576 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3578 /* 4. ... and sits in replay window. */
3579 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3582 static inline int tcp_paws_discard(const struct sock *sk,
3583 const struct sk_buff *skb)
3585 const struct tcp_sock *tp = tcp_sk(sk);
3586 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3587 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3588 !tcp_disordered_ack(sk, skb));
3591 /* Check segment sequence number for validity.
3593 * Segment controls are considered valid, if the segment
3594 * fits to the window after truncation to the window. Acceptability
3595 * of data (and SYN, FIN, of course) is checked separately.
3596 * See tcp_data_queue(), for example.
3598 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3599 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3600 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3601 * (borrowed from freebsd)
3604 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3606 return !before(end_seq, tp->rcv_wup) &&
3607 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3610 /* When we get a reset we do this. */
3611 static void tcp_reset(struct sock *sk)
3613 /* We want the right error as BSD sees it (and indeed as we do). */
3614 switch (sk->sk_state) {
3615 case TCP_SYN_SENT:
3616 sk->sk_err = ECONNREFUSED;
3617 break;
3618 case TCP_CLOSE_WAIT:
3619 sk->sk_err = EPIPE;
3620 break;
3621 case TCP_CLOSE:
3622 return;
3623 default:
3624 sk->sk_err = ECONNRESET;
3627 if (!sock_flag(sk, SOCK_DEAD))
3628 sk->sk_error_report(sk);
3630 tcp_done(sk);
3634 * Process the FIN bit. This now behaves as it is supposed to work
3635 * and the FIN takes effect when it is validly part of sequence
3636 * space. Not before when we get holes.
3638 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3639 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3640 * TIME-WAIT)
3642 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3643 * close and we go into CLOSING (and later onto TIME-WAIT)
3645 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3647 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3649 struct tcp_sock *tp = tcp_sk(sk);
3651 inet_csk_schedule_ack(sk);
3653 sk->sk_shutdown |= RCV_SHUTDOWN;
3654 sock_set_flag(sk, SOCK_DONE);
3656 switch (sk->sk_state) {
3657 case TCP_SYN_RECV:
3658 case TCP_ESTABLISHED:
3659 /* Move to CLOSE_WAIT */
3660 tcp_set_state(sk, TCP_CLOSE_WAIT);
3661 inet_csk(sk)->icsk_ack.pingpong = 1;
3662 break;
3664 case TCP_CLOSE_WAIT:
3665 case TCP_CLOSING:
3666 /* Received a retransmission of the FIN, do
3667 * nothing.
3669 break;
3670 case TCP_LAST_ACK:
3671 /* RFC793: Remain in the LAST-ACK state. */
3672 break;
3674 case TCP_FIN_WAIT1:
3675 /* This case occurs when a simultaneous close
3676 * happens, we must ack the received FIN and
3677 * enter the CLOSING state.
3679 tcp_send_ack(sk);
3680 tcp_set_state(sk, TCP_CLOSING);
3681 break;
3682 case TCP_FIN_WAIT2:
3683 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3684 tcp_send_ack(sk);
3685 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3686 break;
3687 default:
3688 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3689 * cases we should never reach this piece of code.
3691 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3692 __func__, sk->sk_state);
3693 break;
3696 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3697 * Probably, we should reset in this case. For now drop them.
3699 __skb_queue_purge(&tp->out_of_order_queue);
3700 if (tcp_is_sack(tp))
3701 tcp_sack_reset(&tp->rx_opt);
3702 sk_mem_reclaim(sk);
3704 if (!sock_flag(sk, SOCK_DEAD)) {
3705 sk->sk_state_change(sk);
3707 /* Do not send POLL_HUP for half duplex close. */
3708 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3709 sk->sk_state == TCP_CLOSE)
3710 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3711 else
3712 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3716 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3717 u32 end_seq)
3719 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3720 if (before(seq, sp->start_seq))
3721 sp->start_seq = seq;
3722 if (after(end_seq, sp->end_seq))
3723 sp->end_seq = end_seq;
3724 return 1;
3726 return 0;
3729 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3731 struct tcp_sock *tp = tcp_sk(sk);
3733 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3734 int mib_idx;
3736 if (before(seq, tp->rcv_nxt))
3737 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3738 else
3739 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3741 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3743 tp->rx_opt.dsack = 1;
3744 tp->duplicate_sack[0].start_seq = seq;
3745 tp->duplicate_sack[0].end_seq = end_seq;
3746 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1;
3750 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3752 struct tcp_sock *tp = tcp_sk(sk);
3754 if (!tp->rx_opt.dsack)
3755 tcp_dsack_set(sk, seq, end_seq);
3756 else
3757 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3760 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3762 struct tcp_sock *tp = tcp_sk(sk);
3764 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3765 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3766 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3767 tcp_enter_quickack_mode(sk);
3769 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3770 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3772 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3773 end_seq = tp->rcv_nxt;
3774 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3778 tcp_send_ack(sk);
3781 /* These routines update the SACK block as out-of-order packets arrive or
3782 * in-order packets close up the sequence space.
3784 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3786 int this_sack;
3787 struct tcp_sack_block *sp = &tp->selective_acks[0];
3788 struct tcp_sack_block *swalk = sp + 1;
3790 /* See if the recent change to the first SACK eats into
3791 * or hits the sequence space of other SACK blocks, if so coalesce.
3793 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3794 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3795 int i;
3797 /* Zap SWALK, by moving every further SACK up by one slot.
3798 * Decrease num_sacks.
3800 tp->rx_opt.num_sacks--;
3801 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
3802 tp->rx_opt.dsack;
3803 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3804 sp[i] = sp[i + 1];
3805 continue;
3807 this_sack++, swalk++;
3811 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3812 struct tcp_sack_block *sack2)
3814 __u32 tmp;
3816 tmp = sack1->start_seq;
3817 sack1->start_seq = sack2->start_seq;
3818 sack2->start_seq = tmp;
3820 tmp = sack1->end_seq;
3821 sack1->end_seq = sack2->end_seq;
3822 sack2->end_seq = tmp;
3825 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3827 struct tcp_sock *tp = tcp_sk(sk);
3828 struct tcp_sack_block *sp = &tp->selective_acks[0];
3829 int cur_sacks = tp->rx_opt.num_sacks;
3830 int this_sack;
3832 if (!cur_sacks)
3833 goto new_sack;
3835 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3836 if (tcp_sack_extend(sp, seq, end_seq)) {
3837 /* Rotate this_sack to the first one. */
3838 for (; this_sack > 0; this_sack--, sp--)
3839 tcp_sack_swap(sp, sp - 1);
3840 if (cur_sacks > 1)
3841 tcp_sack_maybe_coalesce(tp);
3842 return;
3846 /* Could not find an adjacent existing SACK, build a new one,
3847 * put it at the front, and shift everyone else down. We
3848 * always know there is at least one SACK present already here.
3850 * If the sack array is full, forget about the last one.
3852 if (this_sack >= TCP_NUM_SACKS) {
3853 this_sack--;
3854 tp->rx_opt.num_sacks--;
3855 sp--;
3857 for (; this_sack > 0; this_sack--, sp--)
3858 *sp = *(sp - 1);
3860 new_sack:
3861 /* Build the new head SACK, and we're done. */
3862 sp->start_seq = seq;
3863 sp->end_seq = end_seq;
3864 tp->rx_opt.num_sacks++;
3865 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
3868 /* RCV.NXT advances, some SACKs should be eaten. */
3870 static void tcp_sack_remove(struct tcp_sock *tp)
3872 struct tcp_sack_block *sp = &tp->selective_acks[0];
3873 int num_sacks = tp->rx_opt.num_sacks;
3874 int this_sack;
3876 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3877 if (skb_queue_empty(&tp->out_of_order_queue)) {
3878 tp->rx_opt.num_sacks = 0;
3879 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3880 return;
3883 for (this_sack = 0; this_sack < num_sacks;) {
3884 /* Check if the start of the sack is covered by RCV.NXT. */
3885 if (!before(tp->rcv_nxt, sp->start_seq)) {
3886 int i;
3888 /* RCV.NXT must cover all the block! */
3889 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
3891 /* Zap this SACK, by moving forward any other SACKS. */
3892 for (i=this_sack+1; i < num_sacks; i++)
3893 tp->selective_acks[i-1] = tp->selective_acks[i];
3894 num_sacks--;
3895 continue;
3897 this_sack++;
3898 sp++;
3900 if (num_sacks != tp->rx_opt.num_sacks) {
3901 tp->rx_opt.num_sacks = num_sacks;
3902 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
3903 tp->rx_opt.dsack;
3907 /* This one checks to see if we can put data from the
3908 * out_of_order queue into the receive_queue.
3910 static void tcp_ofo_queue(struct sock *sk)
3912 struct tcp_sock *tp = tcp_sk(sk);
3913 __u32 dsack_high = tp->rcv_nxt;
3914 struct sk_buff *skb;
3916 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3917 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3918 break;
3920 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3921 __u32 dsack = dsack_high;
3922 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3923 dsack_high = TCP_SKB_CB(skb)->end_seq;
3924 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
3927 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3928 SOCK_DEBUG(sk, "ofo packet was already received \n");
3929 __skb_unlink(skb, &tp->out_of_order_queue);
3930 __kfree_skb(skb);
3931 continue;
3933 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3934 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3935 TCP_SKB_CB(skb)->end_seq);
3937 __skb_unlink(skb, &tp->out_of_order_queue);
3938 __skb_queue_tail(&sk->sk_receive_queue, skb);
3939 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3940 if (tcp_hdr(skb)->fin)
3941 tcp_fin(skb, sk, tcp_hdr(skb));
3945 static int tcp_prune_ofo_queue(struct sock *sk);
3946 static int tcp_prune_queue(struct sock *sk);
3948 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
3950 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3951 !sk_rmem_schedule(sk, size)) {
3953 if (tcp_prune_queue(sk) < 0)
3954 return -1;
3956 if (!sk_rmem_schedule(sk, size)) {
3957 if (!tcp_prune_ofo_queue(sk))
3958 return -1;
3960 if (!sk_rmem_schedule(sk, size))
3961 return -1;
3964 return 0;
3967 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3969 struct tcphdr *th = tcp_hdr(skb);
3970 struct tcp_sock *tp = tcp_sk(sk);
3971 int eaten = -1;
3973 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3974 goto drop;
3976 __skb_pull(skb, th->doff * 4);
3978 TCP_ECN_accept_cwr(tp, skb);
3980 if (tp->rx_opt.dsack) {
3981 tp->rx_opt.dsack = 0;
3982 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks;
3985 /* Queue data for delivery to the user.
3986 * Packets in sequence go to the receive queue.
3987 * Out of sequence packets to the out_of_order_queue.
3989 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3990 if (tcp_receive_window(tp) == 0)
3991 goto out_of_window;
3993 /* Ok. In sequence. In window. */
3994 if (tp->ucopy.task == current &&
3995 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3996 sock_owned_by_user(sk) && !tp->urg_data) {
3997 int chunk = min_t(unsigned int, skb->len,
3998 tp->ucopy.len);
4000 __set_current_state(TASK_RUNNING);
4002 local_bh_enable();
4003 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4004 tp->ucopy.len -= chunk;
4005 tp->copied_seq += chunk;
4006 eaten = (chunk == skb->len && !th->fin);
4007 tcp_rcv_space_adjust(sk);
4009 local_bh_disable();
4012 if (eaten <= 0) {
4013 queue_and_out:
4014 if (eaten < 0 &&
4015 tcp_try_rmem_schedule(sk, skb->truesize))
4016 goto drop;
4018 skb_set_owner_r(skb, sk);
4019 __skb_queue_tail(&sk->sk_receive_queue, skb);
4021 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4022 if (skb->len)
4023 tcp_event_data_recv(sk, skb);
4024 if (th->fin)
4025 tcp_fin(skb, sk, th);
4027 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4028 tcp_ofo_queue(sk);
4030 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4031 * gap in queue is filled.
4033 if (skb_queue_empty(&tp->out_of_order_queue))
4034 inet_csk(sk)->icsk_ack.pingpong = 0;
4037 if (tp->rx_opt.num_sacks)
4038 tcp_sack_remove(tp);
4040 tcp_fast_path_check(sk);
4042 if (eaten > 0)
4043 __kfree_skb(skb);
4044 else if (!sock_flag(sk, SOCK_DEAD))
4045 sk->sk_data_ready(sk, 0);
4046 return;
4049 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4050 /* A retransmit, 2nd most common case. Force an immediate ack. */
4051 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4052 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4054 out_of_window:
4055 tcp_enter_quickack_mode(sk);
4056 inet_csk_schedule_ack(sk);
4057 drop:
4058 __kfree_skb(skb);
4059 return;
4062 /* Out of window. F.e. zero window probe. */
4063 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4064 goto out_of_window;
4066 tcp_enter_quickack_mode(sk);
4068 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4069 /* Partial packet, seq < rcv_next < end_seq */
4070 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4071 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4072 TCP_SKB_CB(skb)->end_seq);
4074 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4076 /* If window is closed, drop tail of packet. But after
4077 * remembering D-SACK for its head made in previous line.
4079 if (!tcp_receive_window(tp))
4080 goto out_of_window;
4081 goto queue_and_out;
4084 TCP_ECN_check_ce(tp, skb);
4086 if (tcp_try_rmem_schedule(sk, skb->truesize))
4087 goto drop;
4089 /* Disable header prediction. */
4090 tp->pred_flags = 0;
4091 inet_csk_schedule_ack(sk);
4093 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4094 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4096 skb_set_owner_r(skb, sk);
4098 if (!skb_peek(&tp->out_of_order_queue)) {
4099 /* Initial out of order segment, build 1 SACK. */
4100 if (tcp_is_sack(tp)) {
4101 tp->rx_opt.num_sacks = 1;
4102 tp->rx_opt.dsack = 0;
4103 tp->rx_opt.eff_sacks = 1;
4104 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4105 tp->selective_acks[0].end_seq =
4106 TCP_SKB_CB(skb)->end_seq;
4108 __skb_queue_head(&tp->out_of_order_queue, skb);
4109 } else {
4110 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4111 u32 seq = TCP_SKB_CB(skb)->seq;
4112 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4114 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4115 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4117 if (!tp->rx_opt.num_sacks ||
4118 tp->selective_acks[0].end_seq != seq)
4119 goto add_sack;
4121 /* Common case: data arrive in order after hole. */
4122 tp->selective_acks[0].end_seq = end_seq;
4123 return;
4126 /* Find place to insert this segment. */
4127 do {
4128 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4129 break;
4130 } while ((skb1 = skb1->prev) !=
4131 (struct sk_buff *)&tp->out_of_order_queue);
4133 /* Do skb overlap to previous one? */
4134 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4135 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4136 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4137 /* All the bits are present. Drop. */
4138 __kfree_skb(skb);
4139 tcp_dsack_set(sk, seq, end_seq);
4140 goto add_sack;
4142 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4143 /* Partial overlap. */
4144 tcp_dsack_set(sk, seq,
4145 TCP_SKB_CB(skb1)->end_seq);
4146 } else {
4147 skb1 = skb1->prev;
4150 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4152 /* And clean segments covered by new one as whole. */
4153 while ((skb1 = skb->next) !=
4154 (struct sk_buff *)&tp->out_of_order_queue &&
4155 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4156 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4157 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4158 end_seq);
4159 break;
4161 __skb_unlink(skb1, &tp->out_of_order_queue);
4162 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4163 TCP_SKB_CB(skb1)->end_seq);
4164 __kfree_skb(skb1);
4167 add_sack:
4168 if (tcp_is_sack(tp))
4169 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4173 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4174 struct sk_buff_head *list)
4176 struct sk_buff *next = skb->next;
4178 __skb_unlink(skb, list);
4179 __kfree_skb(skb);
4180 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4182 return next;
4185 /* Collapse contiguous sequence of skbs head..tail with
4186 * sequence numbers start..end.
4187 * Segments with FIN/SYN are not collapsed (only because this
4188 * simplifies code)
4190 static void
4191 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4192 struct sk_buff *head, struct sk_buff *tail,
4193 u32 start, u32 end)
4195 struct sk_buff *skb;
4197 /* First, check that queue is collapsible and find
4198 * the point where collapsing can be useful. */
4199 for (skb = head; skb != tail;) {
4200 /* No new bits? It is possible on ofo queue. */
4201 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4202 skb = tcp_collapse_one(sk, skb, list);
4203 continue;
4206 /* The first skb to collapse is:
4207 * - not SYN/FIN and
4208 * - bloated or contains data before "start" or
4209 * overlaps to the next one.
4211 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4212 (tcp_win_from_space(skb->truesize) > skb->len ||
4213 before(TCP_SKB_CB(skb)->seq, start) ||
4214 (skb->next != tail &&
4215 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4216 break;
4218 /* Decided to skip this, advance start seq. */
4219 start = TCP_SKB_CB(skb)->end_seq;
4220 skb = skb->next;
4222 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4223 return;
4225 while (before(start, end)) {
4226 struct sk_buff *nskb;
4227 unsigned int header = skb_headroom(skb);
4228 int copy = SKB_MAX_ORDER(header, 0);
4230 /* Too big header? This can happen with IPv6. */
4231 if (copy < 0)
4232 return;
4233 if (end - start < copy)
4234 copy = end - start;
4235 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4236 if (!nskb)
4237 return;
4239 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4240 skb_set_network_header(nskb, (skb_network_header(skb) -
4241 skb->head));
4242 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4243 skb->head));
4244 skb_reserve(nskb, header);
4245 memcpy(nskb->head, skb->head, header);
4246 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4247 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4248 __skb_insert(nskb, skb->prev, skb, list);
4249 skb_set_owner_r(nskb, sk);
4251 /* Copy data, releasing collapsed skbs. */
4252 while (copy > 0) {
4253 int offset = start - TCP_SKB_CB(skb)->seq;
4254 int size = TCP_SKB_CB(skb)->end_seq - start;
4256 BUG_ON(offset < 0);
4257 if (size > 0) {
4258 size = min(copy, size);
4259 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4260 BUG();
4261 TCP_SKB_CB(nskb)->end_seq += size;
4262 copy -= size;
4263 start += size;
4265 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4266 skb = tcp_collapse_one(sk, skb, list);
4267 if (skb == tail ||
4268 tcp_hdr(skb)->syn ||
4269 tcp_hdr(skb)->fin)
4270 return;
4276 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4277 * and tcp_collapse() them until all the queue is collapsed.
4279 static void tcp_collapse_ofo_queue(struct sock *sk)
4281 struct tcp_sock *tp = tcp_sk(sk);
4282 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4283 struct sk_buff *head;
4284 u32 start, end;
4286 if (skb == NULL)
4287 return;
4289 start = TCP_SKB_CB(skb)->seq;
4290 end = TCP_SKB_CB(skb)->end_seq;
4291 head = skb;
4293 for (;;) {
4294 skb = skb->next;
4296 /* Segment is terminated when we see gap or when
4297 * we are at the end of all the queue. */
4298 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4299 after(TCP_SKB_CB(skb)->seq, end) ||
4300 before(TCP_SKB_CB(skb)->end_seq, start)) {
4301 tcp_collapse(sk, &tp->out_of_order_queue,
4302 head, skb, start, end);
4303 head = skb;
4304 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4305 break;
4306 /* Start new segment */
4307 start = TCP_SKB_CB(skb)->seq;
4308 end = TCP_SKB_CB(skb)->end_seq;
4309 } else {
4310 if (before(TCP_SKB_CB(skb)->seq, start))
4311 start = TCP_SKB_CB(skb)->seq;
4312 if (after(TCP_SKB_CB(skb)->end_seq, end))
4313 end = TCP_SKB_CB(skb)->end_seq;
4319 * Purge the out-of-order queue.
4320 * Return true if queue was pruned.
4322 static int tcp_prune_ofo_queue(struct sock *sk)
4324 struct tcp_sock *tp = tcp_sk(sk);
4325 int res = 0;
4327 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4328 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4329 __skb_queue_purge(&tp->out_of_order_queue);
4331 /* Reset SACK state. A conforming SACK implementation will
4332 * do the same at a timeout based retransmit. When a connection
4333 * is in a sad state like this, we care only about integrity
4334 * of the connection not performance.
4336 if (tp->rx_opt.sack_ok)
4337 tcp_sack_reset(&tp->rx_opt);
4338 sk_mem_reclaim(sk);
4339 res = 1;
4341 return res;
4344 /* Reduce allocated memory if we can, trying to get
4345 * the socket within its memory limits again.
4347 * Return less than zero if we should start dropping frames
4348 * until the socket owning process reads some of the data
4349 * to stabilize the situation.
4351 static int tcp_prune_queue(struct sock *sk)
4353 struct tcp_sock *tp = tcp_sk(sk);
4355 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4357 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4359 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4360 tcp_clamp_window(sk);
4361 else if (tcp_memory_pressure)
4362 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4364 tcp_collapse_ofo_queue(sk);
4365 tcp_collapse(sk, &sk->sk_receive_queue,
4366 sk->sk_receive_queue.next,
4367 (struct sk_buff *)&sk->sk_receive_queue,
4368 tp->copied_seq, tp->rcv_nxt);
4369 sk_mem_reclaim(sk);
4371 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4372 return 0;
4374 /* Collapsing did not help, destructive actions follow.
4375 * This must not ever occur. */
4377 tcp_prune_ofo_queue(sk);
4379 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4380 return 0;
4382 /* If we are really being abused, tell the caller to silently
4383 * drop receive data on the floor. It will get retransmitted
4384 * and hopefully then we'll have sufficient space.
4386 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4388 /* Massive buffer overcommit. */
4389 tp->pred_flags = 0;
4390 return -1;
4393 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4394 * As additional protections, we do not touch cwnd in retransmission phases,
4395 * and if application hit its sndbuf limit recently.
4397 void tcp_cwnd_application_limited(struct sock *sk)
4399 struct tcp_sock *tp = tcp_sk(sk);
4401 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4402 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4403 /* Limited by application or receiver window. */
4404 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4405 u32 win_used = max(tp->snd_cwnd_used, init_win);
4406 if (win_used < tp->snd_cwnd) {
4407 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4408 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4410 tp->snd_cwnd_used = 0;
4412 tp->snd_cwnd_stamp = tcp_time_stamp;
4415 static int tcp_should_expand_sndbuf(struct sock *sk)
4417 struct tcp_sock *tp = tcp_sk(sk);
4419 /* If the user specified a specific send buffer setting, do
4420 * not modify it.
4422 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4423 return 0;
4425 /* If we are under global TCP memory pressure, do not expand. */
4426 if (tcp_memory_pressure)
4427 return 0;
4429 /* If we are under soft global TCP memory pressure, do not expand. */
4430 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4431 return 0;
4433 /* If we filled the congestion window, do not expand. */
4434 if (tp->packets_out >= tp->snd_cwnd)
4435 return 0;
4437 return 1;
4440 /* When incoming ACK allowed to free some skb from write_queue,
4441 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4442 * on the exit from tcp input handler.
4444 * PROBLEM: sndbuf expansion does not work well with largesend.
4446 static void tcp_new_space(struct sock *sk)
4448 struct tcp_sock *tp = tcp_sk(sk);
4450 if (tcp_should_expand_sndbuf(sk)) {
4451 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4452 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4453 demanded = max_t(unsigned int, tp->snd_cwnd,
4454 tp->reordering + 1);
4455 sndmem *= 2 * demanded;
4456 if (sndmem > sk->sk_sndbuf)
4457 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4458 tp->snd_cwnd_stamp = tcp_time_stamp;
4461 sk->sk_write_space(sk);
4464 static void tcp_check_space(struct sock *sk)
4466 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4467 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4468 if (sk->sk_socket &&
4469 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4470 tcp_new_space(sk);
4474 static inline void tcp_data_snd_check(struct sock *sk)
4476 tcp_push_pending_frames(sk);
4477 tcp_check_space(sk);
4481 * Check if sending an ack is needed.
4483 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4485 struct tcp_sock *tp = tcp_sk(sk);
4487 /* More than one full frame received... */
4488 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4489 /* ... and right edge of window advances far enough.
4490 * (tcp_recvmsg() will send ACK otherwise). Or...
4492 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4493 /* We ACK each frame or... */
4494 tcp_in_quickack_mode(sk) ||
4495 /* We have out of order data. */
4496 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4497 /* Then ack it now */
4498 tcp_send_ack(sk);
4499 } else {
4500 /* Else, send delayed ack. */
4501 tcp_send_delayed_ack(sk);
4505 static inline void tcp_ack_snd_check(struct sock *sk)
4507 if (!inet_csk_ack_scheduled(sk)) {
4508 /* We sent a data segment already. */
4509 return;
4511 __tcp_ack_snd_check(sk, 1);
4515 * This routine is only called when we have urgent data
4516 * signaled. Its the 'slow' part of tcp_urg. It could be
4517 * moved inline now as tcp_urg is only called from one
4518 * place. We handle URGent data wrong. We have to - as
4519 * BSD still doesn't use the correction from RFC961.
4520 * For 1003.1g we should support a new option TCP_STDURG to permit
4521 * either form (or just set the sysctl tcp_stdurg).
4524 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4526 struct tcp_sock *tp = tcp_sk(sk);
4527 u32 ptr = ntohs(th->urg_ptr);
4529 if (ptr && !sysctl_tcp_stdurg)
4530 ptr--;
4531 ptr += ntohl(th->seq);
4533 /* Ignore urgent data that we've already seen and read. */
4534 if (after(tp->copied_seq, ptr))
4535 return;
4537 /* Do not replay urg ptr.
4539 * NOTE: interesting situation not covered by specs.
4540 * Misbehaving sender may send urg ptr, pointing to segment,
4541 * which we already have in ofo queue. We are not able to fetch
4542 * such data and will stay in TCP_URG_NOTYET until will be eaten
4543 * by recvmsg(). Seems, we are not obliged to handle such wicked
4544 * situations. But it is worth to think about possibility of some
4545 * DoSes using some hypothetical application level deadlock.
4547 if (before(ptr, tp->rcv_nxt))
4548 return;
4550 /* Do we already have a newer (or duplicate) urgent pointer? */
4551 if (tp->urg_data && !after(ptr, tp->urg_seq))
4552 return;
4554 /* Tell the world about our new urgent pointer. */
4555 sk_send_sigurg(sk);
4557 /* We may be adding urgent data when the last byte read was
4558 * urgent. To do this requires some care. We cannot just ignore
4559 * tp->copied_seq since we would read the last urgent byte again
4560 * as data, nor can we alter copied_seq until this data arrives
4561 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4563 * NOTE. Double Dutch. Rendering to plain English: author of comment
4564 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4565 * and expect that both A and B disappear from stream. This is _wrong_.
4566 * Though this happens in BSD with high probability, this is occasional.
4567 * Any application relying on this is buggy. Note also, that fix "works"
4568 * only in this artificial test. Insert some normal data between A and B and we will
4569 * decline of BSD again. Verdict: it is better to remove to trap
4570 * buggy users.
4572 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4573 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4574 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4575 tp->copied_seq++;
4576 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4577 __skb_unlink(skb, &sk->sk_receive_queue);
4578 __kfree_skb(skb);
4582 tp->urg_data = TCP_URG_NOTYET;
4583 tp->urg_seq = ptr;
4585 /* Disable header prediction. */
4586 tp->pred_flags = 0;
4589 /* This is the 'fast' part of urgent handling. */
4590 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4592 struct tcp_sock *tp = tcp_sk(sk);
4594 /* Check if we get a new urgent pointer - normally not. */
4595 if (th->urg)
4596 tcp_check_urg(sk, th);
4598 /* Do we wait for any urgent data? - normally not... */
4599 if (tp->urg_data == TCP_URG_NOTYET) {
4600 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4601 th->syn;
4603 /* Is the urgent pointer pointing into this packet? */
4604 if (ptr < skb->len) {
4605 u8 tmp;
4606 if (skb_copy_bits(skb, ptr, &tmp, 1))
4607 BUG();
4608 tp->urg_data = TCP_URG_VALID | tmp;
4609 if (!sock_flag(sk, SOCK_DEAD))
4610 sk->sk_data_ready(sk, 0);
4615 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4617 struct tcp_sock *tp = tcp_sk(sk);
4618 int chunk = skb->len - hlen;
4619 int err;
4621 local_bh_enable();
4622 if (skb_csum_unnecessary(skb))
4623 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4624 else
4625 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4626 tp->ucopy.iov);
4628 if (!err) {
4629 tp->ucopy.len -= chunk;
4630 tp->copied_seq += chunk;
4631 tcp_rcv_space_adjust(sk);
4634 local_bh_disable();
4635 return err;
4638 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4639 struct sk_buff *skb)
4641 __sum16 result;
4643 if (sock_owned_by_user(sk)) {
4644 local_bh_enable();
4645 result = __tcp_checksum_complete(skb);
4646 local_bh_disable();
4647 } else {
4648 result = __tcp_checksum_complete(skb);
4650 return result;
4653 static inline int tcp_checksum_complete_user(struct sock *sk,
4654 struct sk_buff *skb)
4656 return !skb_csum_unnecessary(skb) &&
4657 __tcp_checksum_complete_user(sk, skb);
4660 #ifdef CONFIG_NET_DMA
4661 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4662 int hlen)
4664 struct tcp_sock *tp = tcp_sk(sk);
4665 int chunk = skb->len - hlen;
4666 int dma_cookie;
4667 int copied_early = 0;
4669 if (tp->ucopy.wakeup)
4670 return 0;
4672 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4673 tp->ucopy.dma_chan = get_softnet_dma();
4675 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4677 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4678 skb, hlen,
4679 tp->ucopy.iov, chunk,
4680 tp->ucopy.pinned_list);
4682 if (dma_cookie < 0)
4683 goto out;
4685 tp->ucopy.dma_cookie = dma_cookie;
4686 copied_early = 1;
4688 tp->ucopy.len -= chunk;
4689 tp->copied_seq += chunk;
4690 tcp_rcv_space_adjust(sk);
4692 if ((tp->ucopy.len == 0) ||
4693 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4694 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4695 tp->ucopy.wakeup = 1;
4696 sk->sk_data_ready(sk, 0);
4698 } else if (chunk > 0) {
4699 tp->ucopy.wakeup = 1;
4700 sk->sk_data_ready(sk, 0);
4702 out:
4703 return copied_early;
4705 #endif /* CONFIG_NET_DMA */
4707 /* Does PAWS and seqno based validation of an incoming segment, flags will
4708 * play significant role here.
4710 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4711 struct tcphdr *th, int syn_inerr)
4713 struct tcp_sock *tp = tcp_sk(sk);
4715 /* RFC1323: H1. Apply PAWS check first. */
4716 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4717 tcp_paws_discard(sk, skb)) {
4718 if (!th->rst) {
4719 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4720 tcp_send_dupack(sk, skb);
4721 goto discard;
4723 /* Reset is accepted even if it did not pass PAWS. */
4726 /* Step 1: check sequence number */
4727 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4728 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4729 * (RST) segments are validated by checking their SEQ-fields."
4730 * And page 69: "If an incoming segment is not acceptable,
4731 * an acknowledgment should be sent in reply (unless the RST
4732 * bit is set, if so drop the segment and return)".
4734 if (!th->rst)
4735 tcp_send_dupack(sk, skb);
4736 goto discard;
4739 /* Step 2: check RST bit */
4740 if (th->rst) {
4741 tcp_reset(sk);
4742 goto discard;
4745 /* ts_recent update must be made after we are sure that the packet
4746 * is in window.
4748 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4750 /* step 3: check security and precedence [ignored] */
4752 /* step 4: Check for a SYN in window. */
4753 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4754 if (syn_inerr)
4755 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4756 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
4757 tcp_reset(sk);
4758 return -1;
4761 return 1;
4763 discard:
4764 __kfree_skb(skb);
4765 return 0;
4769 * TCP receive function for the ESTABLISHED state.
4771 * It is split into a fast path and a slow path. The fast path is
4772 * disabled when:
4773 * - A zero window was announced from us - zero window probing
4774 * is only handled properly in the slow path.
4775 * - Out of order segments arrived.
4776 * - Urgent data is expected.
4777 * - There is no buffer space left
4778 * - Unexpected TCP flags/window values/header lengths are received
4779 * (detected by checking the TCP header against pred_flags)
4780 * - Data is sent in both directions. Fast path only supports pure senders
4781 * or pure receivers (this means either the sequence number or the ack
4782 * value must stay constant)
4783 * - Unexpected TCP option.
4785 * When these conditions are not satisfied it drops into a standard
4786 * receive procedure patterned after RFC793 to handle all cases.
4787 * The first three cases are guaranteed by proper pred_flags setting,
4788 * the rest is checked inline. Fast processing is turned on in
4789 * tcp_data_queue when everything is OK.
4791 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4792 struct tcphdr *th, unsigned len)
4794 struct tcp_sock *tp = tcp_sk(sk);
4795 int res;
4798 * Header prediction.
4799 * The code loosely follows the one in the famous
4800 * "30 instruction TCP receive" Van Jacobson mail.
4802 * Van's trick is to deposit buffers into socket queue
4803 * on a device interrupt, to call tcp_recv function
4804 * on the receive process context and checksum and copy
4805 * the buffer to user space. smart...
4807 * Our current scheme is not silly either but we take the
4808 * extra cost of the net_bh soft interrupt processing...
4809 * We do checksum and copy also but from device to kernel.
4812 tp->rx_opt.saw_tstamp = 0;
4814 /* pred_flags is 0xS?10 << 16 + snd_wnd
4815 * if header_prediction is to be made
4816 * 'S' will always be tp->tcp_header_len >> 2
4817 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4818 * turn it off (when there are holes in the receive
4819 * space for instance)
4820 * PSH flag is ignored.
4823 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4824 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4825 int tcp_header_len = tp->tcp_header_len;
4827 /* Timestamp header prediction: tcp_header_len
4828 * is automatically equal to th->doff*4 due to pred_flags
4829 * match.
4832 /* Check timestamp */
4833 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4834 /* No? Slow path! */
4835 if (!tcp_parse_aligned_timestamp(tp, th))
4836 goto slow_path;
4838 /* If PAWS failed, check it more carefully in slow path */
4839 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4840 goto slow_path;
4842 /* DO NOT update ts_recent here, if checksum fails
4843 * and timestamp was corrupted part, it will result
4844 * in a hung connection since we will drop all
4845 * future packets due to the PAWS test.
4849 if (len <= tcp_header_len) {
4850 /* Bulk data transfer: sender */
4851 if (len == tcp_header_len) {
4852 /* Predicted packet is in window by definition.
4853 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4854 * Hence, check seq<=rcv_wup reduces to:
4856 if (tcp_header_len ==
4857 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4858 tp->rcv_nxt == tp->rcv_wup)
4859 tcp_store_ts_recent(tp);
4861 /* We know that such packets are checksummed
4862 * on entry.
4864 tcp_ack(sk, skb, 0);
4865 __kfree_skb(skb);
4866 tcp_data_snd_check(sk);
4867 return 0;
4868 } else { /* Header too small */
4869 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4870 goto discard;
4872 } else {
4873 int eaten = 0;
4874 int copied_early = 0;
4876 if (tp->copied_seq == tp->rcv_nxt &&
4877 len - tcp_header_len <= tp->ucopy.len) {
4878 #ifdef CONFIG_NET_DMA
4879 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4880 copied_early = 1;
4881 eaten = 1;
4883 #endif
4884 if (tp->ucopy.task == current &&
4885 sock_owned_by_user(sk) && !copied_early) {
4886 __set_current_state(TASK_RUNNING);
4888 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4889 eaten = 1;
4891 if (eaten) {
4892 /* Predicted packet is in window by definition.
4893 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4894 * Hence, check seq<=rcv_wup reduces to:
4896 if (tcp_header_len ==
4897 (sizeof(struct tcphdr) +
4898 TCPOLEN_TSTAMP_ALIGNED) &&
4899 tp->rcv_nxt == tp->rcv_wup)
4900 tcp_store_ts_recent(tp);
4902 tcp_rcv_rtt_measure_ts(sk, skb);
4904 __skb_pull(skb, tcp_header_len);
4905 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4906 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
4908 if (copied_early)
4909 tcp_cleanup_rbuf(sk, skb->len);
4911 if (!eaten) {
4912 if (tcp_checksum_complete_user(sk, skb))
4913 goto csum_error;
4915 /* Predicted packet is in window by definition.
4916 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4917 * Hence, check seq<=rcv_wup reduces to:
4919 if (tcp_header_len ==
4920 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4921 tp->rcv_nxt == tp->rcv_wup)
4922 tcp_store_ts_recent(tp);
4924 tcp_rcv_rtt_measure_ts(sk, skb);
4926 if ((int)skb->truesize > sk->sk_forward_alloc)
4927 goto step5;
4929 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
4931 /* Bulk data transfer: receiver */
4932 __skb_pull(skb, tcp_header_len);
4933 __skb_queue_tail(&sk->sk_receive_queue, skb);
4934 skb_set_owner_r(skb, sk);
4935 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4938 tcp_event_data_recv(sk, skb);
4940 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4941 /* Well, only one small jumplet in fast path... */
4942 tcp_ack(sk, skb, FLAG_DATA);
4943 tcp_data_snd_check(sk);
4944 if (!inet_csk_ack_scheduled(sk))
4945 goto no_ack;
4948 __tcp_ack_snd_check(sk, 0);
4949 no_ack:
4950 #ifdef CONFIG_NET_DMA
4951 if (copied_early)
4952 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4953 else
4954 #endif
4955 if (eaten)
4956 __kfree_skb(skb);
4957 else
4958 sk->sk_data_ready(sk, 0);
4959 return 0;
4963 slow_path:
4964 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
4965 goto csum_error;
4968 * Standard slow path.
4971 res = tcp_validate_incoming(sk, skb, th, 1);
4972 if (res <= 0)
4973 return -res;
4975 step5:
4976 if (th->ack)
4977 tcp_ack(sk, skb, FLAG_SLOWPATH);
4979 tcp_rcv_rtt_measure_ts(sk, skb);
4981 /* Process urgent data. */
4982 tcp_urg(sk, skb, th);
4984 /* step 7: process the segment text */
4985 tcp_data_queue(sk, skb);
4987 tcp_data_snd_check(sk);
4988 tcp_ack_snd_check(sk);
4989 return 0;
4991 csum_error:
4992 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4994 discard:
4995 __kfree_skb(skb);
4996 return 0;
4999 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5000 struct tcphdr *th, unsigned len)
5002 struct tcp_sock *tp = tcp_sk(sk);
5003 struct inet_connection_sock *icsk = inet_csk(sk);
5004 int saved_clamp = tp->rx_opt.mss_clamp;
5006 tcp_parse_options(skb, &tp->rx_opt, 0);
5008 if (th->ack) {
5009 /* rfc793:
5010 * "If the state is SYN-SENT then
5011 * first check the ACK bit
5012 * If the ACK bit is set
5013 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5014 * a reset (unless the RST bit is set, if so drop
5015 * the segment and return)"
5017 * We do not send data with SYN, so that RFC-correct
5018 * test reduces to:
5020 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5021 goto reset_and_undo;
5023 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5024 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5025 tcp_time_stamp)) {
5026 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5027 goto reset_and_undo;
5030 /* Now ACK is acceptable.
5032 * "If the RST bit is set
5033 * If the ACK was acceptable then signal the user "error:
5034 * connection reset", drop the segment, enter CLOSED state,
5035 * delete TCB, and return."
5038 if (th->rst) {
5039 tcp_reset(sk);
5040 goto discard;
5043 /* rfc793:
5044 * "fifth, if neither of the SYN or RST bits is set then
5045 * drop the segment and return."
5047 * See note below!
5048 * --ANK(990513)
5050 if (!th->syn)
5051 goto discard_and_undo;
5053 /* rfc793:
5054 * "If the SYN bit is on ...
5055 * are acceptable then ...
5056 * (our SYN has been ACKed), change the connection
5057 * state to ESTABLISHED..."
5060 TCP_ECN_rcv_synack(tp, th);
5062 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5063 tcp_ack(sk, skb, FLAG_SLOWPATH);
5065 /* Ok.. it's good. Set up sequence numbers and
5066 * move to established.
5068 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5069 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5071 /* RFC1323: The window in SYN & SYN/ACK segments is
5072 * never scaled.
5074 tp->snd_wnd = ntohs(th->window);
5075 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5077 if (!tp->rx_opt.wscale_ok) {
5078 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5079 tp->window_clamp = min(tp->window_clamp, 65535U);
5082 if (tp->rx_opt.saw_tstamp) {
5083 tp->rx_opt.tstamp_ok = 1;
5084 tp->tcp_header_len =
5085 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5086 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5087 tcp_store_ts_recent(tp);
5088 } else {
5089 tp->tcp_header_len = sizeof(struct tcphdr);
5092 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5093 tcp_enable_fack(tp);
5095 tcp_mtup_init(sk);
5096 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5097 tcp_initialize_rcv_mss(sk);
5099 /* Remember, tcp_poll() does not lock socket!
5100 * Change state from SYN-SENT only after copied_seq
5101 * is initialized. */
5102 tp->copied_seq = tp->rcv_nxt;
5103 smp_mb();
5104 tcp_set_state(sk, TCP_ESTABLISHED);
5106 security_inet_conn_established(sk, skb);
5108 /* Make sure socket is routed, for correct metrics. */
5109 icsk->icsk_af_ops->rebuild_header(sk);
5111 tcp_init_metrics(sk);
5113 tcp_init_congestion_control(sk);
5115 /* Prevent spurious tcp_cwnd_restart() on first data
5116 * packet.
5118 tp->lsndtime = tcp_time_stamp;
5120 tcp_init_buffer_space(sk);
5122 if (sock_flag(sk, SOCK_KEEPOPEN))
5123 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5125 if (!tp->rx_opt.snd_wscale)
5126 __tcp_fast_path_on(tp, tp->snd_wnd);
5127 else
5128 tp->pred_flags = 0;
5130 if (!sock_flag(sk, SOCK_DEAD)) {
5131 sk->sk_state_change(sk);
5132 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5135 if (sk->sk_write_pending ||
5136 icsk->icsk_accept_queue.rskq_defer_accept ||
5137 icsk->icsk_ack.pingpong) {
5138 /* Save one ACK. Data will be ready after
5139 * several ticks, if write_pending is set.
5141 * It may be deleted, but with this feature tcpdumps
5142 * look so _wonderfully_ clever, that I was not able
5143 * to stand against the temptation 8) --ANK
5145 inet_csk_schedule_ack(sk);
5146 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5147 icsk->icsk_ack.ato = TCP_ATO_MIN;
5148 tcp_incr_quickack(sk);
5149 tcp_enter_quickack_mode(sk);
5150 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5151 TCP_DELACK_MAX, TCP_RTO_MAX);
5153 discard:
5154 __kfree_skb(skb);
5155 return 0;
5156 } else {
5157 tcp_send_ack(sk);
5159 return -1;
5162 /* No ACK in the segment */
5164 if (th->rst) {
5165 /* rfc793:
5166 * "If the RST bit is set
5168 * Otherwise (no ACK) drop the segment and return."
5171 goto discard_and_undo;
5174 /* PAWS check. */
5175 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5176 tcp_paws_check(&tp->rx_opt, 0))
5177 goto discard_and_undo;
5179 if (th->syn) {
5180 /* We see SYN without ACK. It is attempt of
5181 * simultaneous connect with crossed SYNs.
5182 * Particularly, it can be connect to self.
5184 tcp_set_state(sk, TCP_SYN_RECV);
5186 if (tp->rx_opt.saw_tstamp) {
5187 tp->rx_opt.tstamp_ok = 1;
5188 tcp_store_ts_recent(tp);
5189 tp->tcp_header_len =
5190 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5191 } else {
5192 tp->tcp_header_len = sizeof(struct tcphdr);
5195 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5196 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5198 /* RFC1323: The window in SYN & SYN/ACK segments is
5199 * never scaled.
5201 tp->snd_wnd = ntohs(th->window);
5202 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5203 tp->max_window = tp->snd_wnd;
5205 TCP_ECN_rcv_syn(tp, th);
5207 tcp_mtup_init(sk);
5208 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5209 tcp_initialize_rcv_mss(sk);
5211 tcp_send_synack(sk);
5212 #if 0
5213 /* Note, we could accept data and URG from this segment.
5214 * There are no obstacles to make this.
5216 * However, if we ignore data in ACKless segments sometimes,
5217 * we have no reasons to accept it sometimes.
5218 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5219 * is not flawless. So, discard packet for sanity.
5220 * Uncomment this return to process the data.
5222 return -1;
5223 #else
5224 goto discard;
5225 #endif
5227 /* "fifth, if neither of the SYN or RST bits is set then
5228 * drop the segment and return."
5231 discard_and_undo:
5232 tcp_clear_options(&tp->rx_opt);
5233 tp->rx_opt.mss_clamp = saved_clamp;
5234 goto discard;
5236 reset_and_undo:
5237 tcp_clear_options(&tp->rx_opt);
5238 tp->rx_opt.mss_clamp = saved_clamp;
5239 return 1;
5243 * This function implements the receiving procedure of RFC 793 for
5244 * all states except ESTABLISHED and TIME_WAIT.
5245 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5246 * address independent.
5249 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5250 struct tcphdr *th, unsigned len)
5252 struct tcp_sock *tp = tcp_sk(sk);
5253 struct inet_connection_sock *icsk = inet_csk(sk);
5254 int queued = 0;
5255 int res;
5257 tp->rx_opt.saw_tstamp = 0;
5259 switch (sk->sk_state) {
5260 case TCP_CLOSE:
5261 goto discard;
5263 case TCP_LISTEN:
5264 if (th->ack)
5265 return 1;
5267 if (th->rst)
5268 goto discard;
5270 if (th->syn) {
5271 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5272 return 1;
5274 /* Now we have several options: In theory there is
5275 * nothing else in the frame. KA9Q has an option to
5276 * send data with the syn, BSD accepts data with the
5277 * syn up to the [to be] advertised window and
5278 * Solaris 2.1 gives you a protocol error. For now
5279 * we just ignore it, that fits the spec precisely
5280 * and avoids incompatibilities. It would be nice in
5281 * future to drop through and process the data.
5283 * Now that TTCP is starting to be used we ought to
5284 * queue this data.
5285 * But, this leaves one open to an easy denial of
5286 * service attack, and SYN cookies can't defend
5287 * against this problem. So, we drop the data
5288 * in the interest of security over speed unless
5289 * it's still in use.
5291 kfree_skb(skb);
5292 return 0;
5294 goto discard;
5296 case TCP_SYN_SENT:
5297 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5298 if (queued >= 0)
5299 return queued;
5301 /* Do step6 onward by hand. */
5302 tcp_urg(sk, skb, th);
5303 __kfree_skb(skb);
5304 tcp_data_snd_check(sk);
5305 return 0;
5308 res = tcp_validate_incoming(sk, skb, th, 0);
5309 if (res <= 0)
5310 return -res;
5312 /* step 5: check the ACK field */
5313 if (th->ack) {
5314 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5316 switch (sk->sk_state) {
5317 case TCP_SYN_RECV:
5318 if (acceptable) {
5319 tp->copied_seq = tp->rcv_nxt;
5320 smp_mb();
5321 tcp_set_state(sk, TCP_ESTABLISHED);
5322 sk->sk_state_change(sk);
5324 /* Note, that this wakeup is only for marginal
5325 * crossed SYN case. Passively open sockets
5326 * are not waked up, because sk->sk_sleep ==
5327 * NULL and sk->sk_socket == NULL.
5329 if (sk->sk_socket)
5330 sk_wake_async(sk,
5331 SOCK_WAKE_IO, POLL_OUT);
5333 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5334 tp->snd_wnd = ntohs(th->window) <<
5335 tp->rx_opt.snd_wscale;
5336 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5337 TCP_SKB_CB(skb)->seq);
5339 /* tcp_ack considers this ACK as duplicate
5340 * and does not calculate rtt.
5341 * Fix it at least with timestamps.
5343 if (tp->rx_opt.saw_tstamp &&
5344 tp->rx_opt.rcv_tsecr && !tp->srtt)
5345 tcp_ack_saw_tstamp(sk, 0);
5347 if (tp->rx_opt.tstamp_ok)
5348 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5350 /* Make sure socket is routed, for
5351 * correct metrics.
5353 icsk->icsk_af_ops->rebuild_header(sk);
5355 tcp_init_metrics(sk);
5357 tcp_init_congestion_control(sk);
5359 /* Prevent spurious tcp_cwnd_restart() on
5360 * first data packet.
5362 tp->lsndtime = tcp_time_stamp;
5364 tcp_mtup_init(sk);
5365 tcp_initialize_rcv_mss(sk);
5366 tcp_init_buffer_space(sk);
5367 tcp_fast_path_on(tp);
5368 } else {
5369 return 1;
5371 break;
5373 case TCP_FIN_WAIT1:
5374 if (tp->snd_una == tp->write_seq) {
5375 tcp_set_state(sk, TCP_FIN_WAIT2);
5376 sk->sk_shutdown |= SEND_SHUTDOWN;
5377 dst_confirm(sk->sk_dst_cache);
5379 if (!sock_flag(sk, SOCK_DEAD))
5380 /* Wake up lingering close() */
5381 sk->sk_state_change(sk);
5382 else {
5383 int tmo;
5385 if (tp->linger2 < 0 ||
5386 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5387 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5388 tcp_done(sk);
5389 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5390 return 1;
5393 tmo = tcp_fin_time(sk);
5394 if (tmo > TCP_TIMEWAIT_LEN) {
5395 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5396 } else if (th->fin || sock_owned_by_user(sk)) {
5397 /* Bad case. We could lose such FIN otherwise.
5398 * It is not a big problem, but it looks confusing
5399 * and not so rare event. We still can lose it now,
5400 * if it spins in bh_lock_sock(), but it is really
5401 * marginal case.
5403 inet_csk_reset_keepalive_timer(sk, tmo);
5404 } else {
5405 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5406 goto discard;
5410 break;
5412 case TCP_CLOSING:
5413 if (tp->snd_una == tp->write_seq) {
5414 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5415 goto discard;
5417 break;
5419 case TCP_LAST_ACK:
5420 if (tp->snd_una == tp->write_seq) {
5421 tcp_update_metrics(sk);
5422 tcp_done(sk);
5423 goto discard;
5425 break;
5427 } else
5428 goto discard;
5430 /* step 6: check the URG bit */
5431 tcp_urg(sk, skb, th);
5433 /* step 7: process the segment text */
5434 switch (sk->sk_state) {
5435 case TCP_CLOSE_WAIT:
5436 case TCP_CLOSING:
5437 case TCP_LAST_ACK:
5438 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5439 break;
5440 case TCP_FIN_WAIT1:
5441 case TCP_FIN_WAIT2:
5442 /* RFC 793 says to queue data in these states,
5443 * RFC 1122 says we MUST send a reset.
5444 * BSD 4.4 also does reset.
5446 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5447 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5448 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5449 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5450 tcp_reset(sk);
5451 return 1;
5454 /* Fall through */
5455 case TCP_ESTABLISHED:
5456 tcp_data_queue(sk, skb);
5457 queued = 1;
5458 break;
5461 /* tcp_data could move socket to TIME-WAIT */
5462 if (sk->sk_state != TCP_CLOSE) {
5463 tcp_data_snd_check(sk);
5464 tcp_ack_snd_check(sk);
5467 if (!queued) {
5468 discard:
5469 __kfree_skb(skb);
5471 return 0;
5474 EXPORT_SYMBOL(sysctl_tcp_ecn);
5475 EXPORT_SYMBOL(sysctl_tcp_reordering);
5476 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5477 EXPORT_SYMBOL(tcp_parse_options);
5478 #ifdef CONFIG_TCP_MD5SIG
5479 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5480 #endif
5481 EXPORT_SYMBOL(tcp_rcv_established);
5482 EXPORT_SYMBOL(tcp_rcv_state_process);
5483 EXPORT_SYMBOL(tcp_initialize_rcv_mss);