2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/kernel.h>
34 #include <linux/pci.h>
35 #include <linux/dma-mapping.h>
36 #include <rdma/rdma_cm.h>
41 static struct kmem_cache
*rds_iw_incoming_slab
;
42 static struct kmem_cache
*rds_iw_frag_slab
;
43 static atomic_t rds_iw_allocation
= ATOMIC_INIT(0);
45 static void rds_iw_frag_drop_page(struct rds_page_frag
*frag
)
47 rdsdebug("frag %p page %p\n", frag
, frag
->f_page
);
48 __free_page(frag
->f_page
);
52 static void rds_iw_frag_free(struct rds_page_frag
*frag
)
54 rdsdebug("frag %p page %p\n", frag
, frag
->f_page
);
55 BUG_ON(frag
->f_page
!= NULL
);
56 kmem_cache_free(rds_iw_frag_slab
, frag
);
60 * We map a page at a time. Its fragments are posted in order. This
61 * is called in fragment order as the fragments get send completion events.
62 * Only the last frag in the page performs the unmapping.
64 * It's OK for ring cleanup to call this in whatever order it likes because
65 * DMA is not in flight and so we can unmap while other ring entries still
66 * hold page references in their frags.
68 static void rds_iw_recv_unmap_page(struct rds_iw_connection
*ic
,
69 struct rds_iw_recv_work
*recv
)
71 struct rds_page_frag
*frag
= recv
->r_frag
;
73 rdsdebug("recv %p frag %p page %p\n", recv
, frag
, frag
->f_page
);
75 ib_dma_unmap_page(ic
->i_cm_id
->device
,
77 RDS_FRAG_SIZE
, DMA_FROM_DEVICE
);
81 void rds_iw_recv_init_ring(struct rds_iw_connection
*ic
)
83 struct rds_iw_recv_work
*recv
;
86 for (i
= 0, recv
= ic
->i_recvs
; i
< ic
->i_recv_ring
.w_nr
; i
++, recv
++) {
92 recv
->r_wr
.next
= NULL
;
94 recv
->r_wr
.sg_list
= recv
->r_sge
;
95 recv
->r_wr
.num_sge
= RDS_IW_RECV_SGE
;
97 sge
= rds_iw_data_sge(ic
, recv
->r_sge
);
99 sge
->length
= RDS_FRAG_SIZE
;
102 sge
= rds_iw_header_sge(ic
, recv
->r_sge
);
103 sge
->addr
= ic
->i_recv_hdrs_dma
+ (i
* sizeof(struct rds_header
));
104 sge
->length
= sizeof(struct rds_header
);
109 static void rds_iw_recv_clear_one(struct rds_iw_connection
*ic
,
110 struct rds_iw_recv_work
*recv
)
113 rds_inc_put(&recv
->r_iwinc
->ii_inc
);
114 recv
->r_iwinc
= NULL
;
117 rds_iw_recv_unmap_page(ic
, recv
);
118 if (recv
->r_frag
->f_page
)
119 rds_iw_frag_drop_page(recv
->r_frag
);
120 rds_iw_frag_free(recv
->r_frag
);
125 void rds_iw_recv_clear_ring(struct rds_iw_connection
*ic
)
129 for (i
= 0; i
< ic
->i_recv_ring
.w_nr
; i
++)
130 rds_iw_recv_clear_one(ic
, &ic
->i_recvs
[i
]);
132 if (ic
->i_frag
.f_page
)
133 rds_iw_frag_drop_page(&ic
->i_frag
);
136 static int rds_iw_recv_refill_one(struct rds_connection
*conn
,
137 struct rds_iw_recv_work
*recv
,
138 gfp_t kptr_gfp
, gfp_t page_gfp
)
140 struct rds_iw_connection
*ic
= conn
->c_transport_data
;
145 if (recv
->r_iwinc
== NULL
) {
146 if (atomic_read(&rds_iw_allocation
) >= rds_iw_sysctl_max_recv_allocation
) {
147 rds_iw_stats_inc(s_iw_rx_alloc_limit
);
150 recv
->r_iwinc
= kmem_cache_alloc(rds_iw_incoming_slab
,
152 if (recv
->r_iwinc
== NULL
)
154 atomic_inc(&rds_iw_allocation
);
155 INIT_LIST_HEAD(&recv
->r_iwinc
->ii_frags
);
156 rds_inc_init(&recv
->r_iwinc
->ii_inc
, conn
, conn
->c_faddr
);
159 if (recv
->r_frag
== NULL
) {
160 recv
->r_frag
= kmem_cache_alloc(rds_iw_frag_slab
, kptr_gfp
);
161 if (recv
->r_frag
== NULL
)
163 INIT_LIST_HEAD(&recv
->r_frag
->f_item
);
164 recv
->r_frag
->f_page
= NULL
;
167 if (ic
->i_frag
.f_page
== NULL
) {
168 ic
->i_frag
.f_page
= alloc_page(page_gfp
);
169 if (ic
->i_frag
.f_page
== NULL
)
171 ic
->i_frag
.f_offset
= 0;
174 dma_addr
= ib_dma_map_page(ic
->i_cm_id
->device
,
179 if (ib_dma_mapping_error(ic
->i_cm_id
->device
, dma_addr
))
183 * Once we get the RDS_PAGE_LAST_OFF frag then rds_iw_frag_unmap()
184 * must be called on this recv. This happens as completions hit
185 * in order or on connection shutdown.
187 recv
->r_frag
->f_page
= ic
->i_frag
.f_page
;
188 recv
->r_frag
->f_offset
= ic
->i_frag
.f_offset
;
189 recv
->r_frag
->f_mapped
= dma_addr
;
191 sge
= rds_iw_data_sge(ic
, recv
->r_sge
);
192 sge
->addr
= dma_addr
;
193 sge
->length
= RDS_FRAG_SIZE
;
195 sge
= rds_iw_header_sge(ic
, recv
->r_sge
);
196 sge
->addr
= ic
->i_recv_hdrs_dma
+ (recv
- ic
->i_recvs
) * sizeof(struct rds_header
);
197 sge
->length
= sizeof(struct rds_header
);
199 get_page(recv
->r_frag
->f_page
);
201 if (ic
->i_frag
.f_offset
< RDS_PAGE_LAST_OFF
) {
202 ic
->i_frag
.f_offset
+= RDS_FRAG_SIZE
;
204 put_page(ic
->i_frag
.f_page
);
205 ic
->i_frag
.f_page
= NULL
;
206 ic
->i_frag
.f_offset
= 0;
215 * This tries to allocate and post unused work requests after making sure that
216 * they have all the allocations they need to queue received fragments into
217 * sockets. The i_recv_mutex is held here so that ring_alloc and _unalloc
218 * pairs don't go unmatched.
220 * -1 is returned if posting fails due to temporary resource exhaustion.
222 int rds_iw_recv_refill(struct rds_connection
*conn
, gfp_t kptr_gfp
,
223 gfp_t page_gfp
, int prefill
)
225 struct rds_iw_connection
*ic
= conn
->c_transport_data
;
226 struct rds_iw_recv_work
*recv
;
227 struct ib_recv_wr
*failed_wr
;
228 unsigned int posted
= 0;
232 while ((prefill
|| rds_conn_up(conn
))
233 && rds_iw_ring_alloc(&ic
->i_recv_ring
, 1, &pos
)) {
234 if (pos
>= ic
->i_recv_ring
.w_nr
) {
235 printk(KERN_NOTICE
"Argh - ring alloc returned pos=%u\n",
241 recv
= &ic
->i_recvs
[pos
];
242 ret
= rds_iw_recv_refill_one(conn
, recv
, kptr_gfp
, page_gfp
);
248 /* XXX when can this fail? */
249 ret
= ib_post_recv(ic
->i_cm_id
->qp
, &recv
->r_wr
, &failed_wr
);
250 rdsdebug("recv %p iwinc %p page %p addr %lu ret %d\n", recv
,
251 recv
->r_iwinc
, recv
->r_frag
->f_page
,
252 (long) recv
->r_frag
->f_mapped
, ret
);
254 rds_iw_conn_error(conn
, "recv post on "
255 "%pI4 returned %d, disconnecting and "
256 "reconnecting\n", &conn
->c_faddr
,
265 /* We're doing flow control - update the window. */
266 if (ic
->i_flowctl
&& posted
)
267 rds_iw_advertise_credits(conn
, posted
);
270 rds_iw_ring_unalloc(&ic
->i_recv_ring
, 1);
274 void rds_iw_inc_purge(struct rds_incoming
*inc
)
276 struct rds_iw_incoming
*iwinc
;
277 struct rds_page_frag
*frag
;
278 struct rds_page_frag
*pos
;
280 iwinc
= container_of(inc
, struct rds_iw_incoming
, ii_inc
);
281 rdsdebug("purging iwinc %p inc %p\n", iwinc
, inc
);
283 list_for_each_entry_safe(frag
, pos
, &iwinc
->ii_frags
, f_item
) {
284 list_del_init(&frag
->f_item
);
285 rds_iw_frag_drop_page(frag
);
286 rds_iw_frag_free(frag
);
290 void rds_iw_inc_free(struct rds_incoming
*inc
)
292 struct rds_iw_incoming
*iwinc
;
294 iwinc
= container_of(inc
, struct rds_iw_incoming
, ii_inc
);
296 rds_iw_inc_purge(inc
);
297 rdsdebug("freeing iwinc %p inc %p\n", iwinc
, inc
);
298 BUG_ON(!list_empty(&iwinc
->ii_frags
));
299 kmem_cache_free(rds_iw_incoming_slab
, iwinc
);
300 atomic_dec(&rds_iw_allocation
);
301 BUG_ON(atomic_read(&rds_iw_allocation
) < 0);
304 int rds_iw_inc_copy_to_user(struct rds_incoming
*inc
, struct iovec
*first_iov
,
307 struct rds_iw_incoming
*iwinc
;
308 struct rds_page_frag
*frag
;
309 struct iovec
*iov
= first_iov
;
310 unsigned long to_copy
;
311 unsigned long frag_off
= 0;
312 unsigned long iov_off
= 0;
317 iwinc
= container_of(inc
, struct rds_iw_incoming
, ii_inc
);
318 frag
= list_entry(iwinc
->ii_frags
.next
, struct rds_page_frag
, f_item
);
319 len
= be32_to_cpu(inc
->i_hdr
.h_len
);
321 while (copied
< size
&& copied
< len
) {
322 if (frag_off
== RDS_FRAG_SIZE
) {
323 frag
= list_entry(frag
->f_item
.next
,
324 struct rds_page_frag
, f_item
);
327 while (iov_off
== iov
->iov_len
) {
332 to_copy
= min(iov
->iov_len
- iov_off
, RDS_FRAG_SIZE
- frag_off
);
333 to_copy
= min_t(size_t, to_copy
, size
- copied
);
334 to_copy
= min_t(unsigned long, to_copy
, len
- copied
);
336 rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag "
338 to_copy
, iov
->iov_base
, iov
->iov_len
, iov_off
,
339 frag
->f_page
, frag
->f_offset
, frag_off
);
341 /* XXX needs + offset for multiple recvs per page */
342 ret
= rds_page_copy_to_user(frag
->f_page
,
343 frag
->f_offset
+ frag_off
,
344 iov
->iov_base
+ iov_off
,
359 /* ic starts out kzalloc()ed */
360 void rds_iw_recv_init_ack(struct rds_iw_connection
*ic
)
362 struct ib_send_wr
*wr
= &ic
->i_ack_wr
;
363 struct ib_sge
*sge
= &ic
->i_ack_sge
;
365 sge
->addr
= ic
->i_ack_dma
;
366 sge
->length
= sizeof(struct rds_header
);
367 sge
->lkey
= rds_iw_local_dma_lkey(ic
);
371 wr
->opcode
= IB_WR_SEND
;
372 wr
->wr_id
= RDS_IW_ACK_WR_ID
;
373 wr
->send_flags
= IB_SEND_SIGNALED
| IB_SEND_SOLICITED
;
377 * You'd think that with reliable IB connections you wouldn't need to ack
378 * messages that have been received. The problem is that IB hardware generates
379 * an ack message before it has DMAed the message into memory. This creates a
380 * potential message loss if the HCA is disabled for any reason between when it
381 * sends the ack and before the message is DMAed and processed. This is only a
382 * potential issue if another HCA is available for fail-over.
384 * When the remote host receives our ack they'll free the sent message from
385 * their send queue. To decrease the latency of this we always send an ack
386 * immediately after we've received messages.
388 * For simplicity, we only have one ack in flight at a time. This puts
389 * pressure on senders to have deep enough send queues to absorb the latency of
390 * a single ack frame being in flight. This might not be good enough.
392 * This is implemented by have a long-lived send_wr and sge which point to a
393 * statically allocated ack frame. This ack wr does not fall under the ring
394 * accounting that the tx and rx wrs do. The QP attribute specifically makes
395 * room for it beyond the ring size. Send completion notices its special
396 * wr_id and avoids working with the ring in that case.
398 static void rds_iw_set_ack(struct rds_iw_connection
*ic
, u64 seq
,
401 rds_iw_set_64bit(&ic
->i_ack_next
, seq
);
403 smp_mb__before_clear_bit();
404 set_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
408 static u64
rds_iw_get_ack(struct rds_iw_connection
*ic
)
410 clear_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
411 smp_mb__after_clear_bit();
413 return ic
->i_ack_next
;
416 static void rds_iw_send_ack(struct rds_iw_connection
*ic
, unsigned int adv_credits
)
418 struct rds_header
*hdr
= ic
->i_ack
;
419 struct ib_send_wr
*failed_wr
;
423 seq
= rds_iw_get_ack(ic
);
425 rdsdebug("send_ack: ic %p ack %llu\n", ic
, (unsigned long long) seq
);
426 rds_message_populate_header(hdr
, 0, 0, 0);
427 hdr
->h_ack
= cpu_to_be64(seq
);
428 hdr
->h_credit
= adv_credits
;
429 rds_message_make_checksum(hdr
);
430 ic
->i_ack_queued
= jiffies
;
432 ret
= ib_post_send(ic
->i_cm_id
->qp
, &ic
->i_ack_wr
, &failed_wr
);
434 /* Failed to send. Release the WR, and
437 clear_bit(IB_ACK_IN_FLIGHT
, &ic
->i_ack_flags
);
438 set_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
440 rds_iw_stats_inc(s_iw_ack_send_failure
);
441 /* Need to finesse this later. */
444 rds_iw_stats_inc(s_iw_ack_sent
);
448 * There are 3 ways of getting acknowledgements to the peer:
449 * 1. We call rds_iw_attempt_ack from the recv completion handler
450 * to send an ACK-only frame.
451 * However, there can be only one such frame in the send queue
452 * at any time, so we may have to postpone it.
453 * 2. When another (data) packet is transmitted while there's
454 * an ACK in the queue, we piggyback the ACK sequence number
455 * on the data packet.
456 * 3. If the ACK WR is done sending, we get called from the
457 * send queue completion handler, and check whether there's
458 * another ACK pending (postponed because the WR was on the
459 * queue). If so, we transmit it.
461 * We maintain 2 variables:
462 * - i_ack_flags, which keeps track of whether the ACK WR
463 * is currently in the send queue or not (IB_ACK_IN_FLIGHT)
464 * - i_ack_next, which is the last sequence number we received
466 * Potentially, send queue and receive queue handlers can run concurrently.
468 * Reconnecting complicates this picture just slightly. When we
469 * reconnect, we may be seeing duplicate packets. The peer
470 * is retransmitting them, because it hasn't seen an ACK for
471 * them. It is important that we ACK these.
473 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
474 * this flag set *MUST* be acknowledged immediately.
478 * When we get here, we're called from the recv queue handler.
479 * Check whether we ought to transmit an ACK.
481 void rds_iw_attempt_ack(struct rds_iw_connection
*ic
)
483 unsigned int adv_credits
;
485 if (!test_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
))
488 if (test_and_set_bit(IB_ACK_IN_FLIGHT
, &ic
->i_ack_flags
)) {
489 rds_iw_stats_inc(s_iw_ack_send_delayed
);
493 /* Can we get a send credit? */
494 if (!rds_iw_send_grab_credits(ic
, 1, &adv_credits
, 0)) {
495 rds_iw_stats_inc(s_iw_tx_throttle
);
496 clear_bit(IB_ACK_IN_FLIGHT
, &ic
->i_ack_flags
);
500 clear_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
501 rds_iw_send_ack(ic
, adv_credits
);
505 * We get here from the send completion handler, when the
506 * adapter tells us the ACK frame was sent.
508 void rds_iw_ack_send_complete(struct rds_iw_connection
*ic
)
510 clear_bit(IB_ACK_IN_FLIGHT
, &ic
->i_ack_flags
);
511 rds_iw_attempt_ack(ic
);
515 * This is called by the regular xmit code when it wants to piggyback
516 * an ACK on an outgoing frame.
518 u64
rds_iw_piggyb_ack(struct rds_iw_connection
*ic
)
520 if (test_and_clear_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
))
521 rds_iw_stats_inc(s_iw_ack_send_piggybacked
);
522 return rds_iw_get_ack(ic
);
526 * It's kind of lame that we're copying from the posted receive pages into
527 * long-lived bitmaps. We could have posted the bitmaps and rdma written into
528 * them. But receiving new congestion bitmaps should be a *rare* event, so
529 * hopefully we won't need to invest that complexity in making it more
530 * efficient. By copying we can share a simpler core with TCP which has to
533 static void rds_iw_cong_recv(struct rds_connection
*conn
,
534 struct rds_iw_incoming
*iwinc
)
536 struct rds_cong_map
*map
;
537 unsigned int map_off
;
538 unsigned int map_page
;
539 struct rds_page_frag
*frag
;
540 unsigned long frag_off
;
541 unsigned long to_copy
;
542 unsigned long copied
;
543 uint64_t uncongested
= 0;
546 /* catch completely corrupt packets */
547 if (be32_to_cpu(iwinc
->ii_inc
.i_hdr
.h_len
) != RDS_CONG_MAP_BYTES
)
554 frag
= list_entry(iwinc
->ii_frags
.next
, struct rds_page_frag
, f_item
);
559 while (copied
< RDS_CONG_MAP_BYTES
) {
563 to_copy
= min(RDS_FRAG_SIZE
- frag_off
, PAGE_SIZE
- map_off
);
564 BUG_ON(to_copy
& 7); /* Must be 64bit aligned. */
566 addr
= kmap_atomic(frag
->f_page
, KM_SOFTIRQ0
);
568 src
= addr
+ frag_off
;
569 dst
= (void *)map
->m_page_addrs
[map_page
] + map_off
;
570 for (k
= 0; k
< to_copy
; k
+= 8) {
571 /* Record ports that became uncongested, ie
572 * bits that changed from 0 to 1. */
573 uncongested
|= ~(*src
) & *dst
;
576 kunmap_atomic(addr
, KM_SOFTIRQ0
);
581 if (map_off
== PAGE_SIZE
) {
587 if (frag_off
== RDS_FRAG_SIZE
) {
588 frag
= list_entry(frag
->f_item
.next
,
589 struct rds_page_frag
, f_item
);
594 /* the congestion map is in little endian order */
595 uncongested
= le64_to_cpu(uncongested
);
597 rds_cong_map_updated(map
, uncongested
);
601 * Rings are posted with all the allocations they'll need to queue the
602 * incoming message to the receiving socket so this can't fail.
603 * All fragments start with a header, so we can make sure we're not receiving
604 * garbage, and we can tell a small 8 byte fragment from an ACK frame.
606 struct rds_iw_ack_state
{
609 unsigned int ack_required
:1;
610 unsigned int ack_next_valid
:1;
611 unsigned int ack_recv_valid
:1;
614 static void rds_iw_process_recv(struct rds_connection
*conn
,
615 struct rds_iw_recv_work
*recv
, u32 byte_len
,
616 struct rds_iw_ack_state
*state
)
618 struct rds_iw_connection
*ic
= conn
->c_transport_data
;
619 struct rds_iw_incoming
*iwinc
= ic
->i_iwinc
;
620 struct rds_header
*ihdr
, *hdr
;
622 /* XXX shut down the connection if port 0,0 are seen? */
624 rdsdebug("ic %p iwinc %p recv %p byte len %u\n", ic
, iwinc
, recv
,
627 if (byte_len
< sizeof(struct rds_header
)) {
628 rds_iw_conn_error(conn
, "incoming message "
629 "from %pI4 didn't inclue a "
630 "header, disconnecting and "
635 byte_len
-= sizeof(struct rds_header
);
637 ihdr
= &ic
->i_recv_hdrs
[recv
- ic
->i_recvs
];
639 /* Validate the checksum. */
640 if (!rds_message_verify_checksum(ihdr
)) {
641 rds_iw_conn_error(conn
, "incoming message "
642 "from %pI4 has corrupted header - "
643 "forcing a reconnect\n",
645 rds_stats_inc(s_recv_drop_bad_checksum
);
649 /* Process the ACK sequence which comes with every packet */
650 state
->ack_recv
= be64_to_cpu(ihdr
->h_ack
);
651 state
->ack_recv_valid
= 1;
653 /* Process the credits update if there was one */
655 rds_iw_send_add_credits(conn
, ihdr
->h_credit
);
657 if (ihdr
->h_sport
== 0 && ihdr
->h_dport
== 0 && byte_len
== 0) {
658 /* This is an ACK-only packet. The fact that it gets
659 * special treatment here is that historically, ACKs
660 * were rather special beasts.
662 rds_iw_stats_inc(s_iw_ack_received
);
665 * Usually the frags make their way on to incs and are then freed as
666 * the inc is freed. We don't go that route, so we have to drop the
667 * page ref ourselves. We can't just leave the page on the recv
668 * because that confuses the dma mapping of pages and each recv's use
669 * of a partial page. We can leave the frag, though, it will be
672 * FIXME: Fold this into the code path below.
674 rds_iw_frag_drop_page(recv
->r_frag
);
679 * If we don't already have an inc on the connection then this
680 * fragment has a header and starts a message.. copy its header
681 * into the inc and save the inc so we can hang upcoming fragments
685 iwinc
= recv
->r_iwinc
;
686 recv
->r_iwinc
= NULL
;
689 hdr
= &iwinc
->ii_inc
.i_hdr
;
690 memcpy(hdr
, ihdr
, sizeof(*hdr
));
691 ic
->i_recv_data_rem
= be32_to_cpu(hdr
->h_len
);
693 rdsdebug("ic %p iwinc %p rem %u flag 0x%x\n", ic
, iwinc
,
694 ic
->i_recv_data_rem
, hdr
->h_flags
);
696 hdr
= &iwinc
->ii_inc
.i_hdr
;
697 /* We can't just use memcmp here; fragments of a
698 * single message may carry different ACKs */
699 if (hdr
->h_sequence
!= ihdr
->h_sequence
700 || hdr
->h_len
!= ihdr
->h_len
701 || hdr
->h_sport
!= ihdr
->h_sport
702 || hdr
->h_dport
!= ihdr
->h_dport
) {
703 rds_iw_conn_error(conn
,
704 "fragment header mismatch; forcing reconnect\n");
709 list_add_tail(&recv
->r_frag
->f_item
, &iwinc
->ii_frags
);
712 if (ic
->i_recv_data_rem
> RDS_FRAG_SIZE
)
713 ic
->i_recv_data_rem
-= RDS_FRAG_SIZE
;
715 ic
->i_recv_data_rem
= 0;
718 if (iwinc
->ii_inc
.i_hdr
.h_flags
== RDS_FLAG_CONG_BITMAP
)
719 rds_iw_cong_recv(conn
, iwinc
);
721 rds_recv_incoming(conn
, conn
->c_faddr
, conn
->c_laddr
,
722 &iwinc
->ii_inc
, GFP_ATOMIC
,
724 state
->ack_next
= be64_to_cpu(hdr
->h_sequence
);
725 state
->ack_next_valid
= 1;
728 /* Evaluate the ACK_REQUIRED flag *after* we received
729 * the complete frame, and after bumping the next_rx
731 if (hdr
->h_flags
& RDS_FLAG_ACK_REQUIRED
) {
732 rds_stats_inc(s_recv_ack_required
);
733 state
->ack_required
= 1;
736 rds_inc_put(&iwinc
->ii_inc
);
741 * Plucking the oldest entry from the ring can be done concurrently with
742 * the thread refilling the ring. Each ring operation is protected by
743 * spinlocks and the transient state of refilling doesn't change the
744 * recording of which entry is oldest.
746 * This relies on IB only calling one cq comp_handler for each cq so that
747 * there will only be one caller of rds_recv_incoming() per RDS connection.
749 void rds_iw_recv_cq_comp_handler(struct ib_cq
*cq
, void *context
)
751 struct rds_connection
*conn
= context
;
752 struct rds_iw_connection
*ic
= conn
->c_transport_data
;
754 struct rds_iw_ack_state state
= { 0, };
755 struct rds_iw_recv_work
*recv
;
757 rdsdebug("conn %p cq %p\n", conn
, cq
);
759 rds_iw_stats_inc(s_iw_rx_cq_call
);
761 ib_req_notify_cq(cq
, IB_CQ_SOLICITED
);
763 while (ib_poll_cq(cq
, 1, &wc
) > 0) {
764 rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
765 (unsigned long long)wc
.wr_id
, wc
.status
, wc
.byte_len
,
766 be32_to_cpu(wc
.ex
.imm_data
));
767 rds_iw_stats_inc(s_iw_rx_cq_event
);
769 recv
= &ic
->i_recvs
[rds_iw_ring_oldest(&ic
->i_recv_ring
)];
771 rds_iw_recv_unmap_page(ic
, recv
);
774 * Also process recvs in connecting state because it is possible
775 * to get a recv completion _before_ the rdmacm ESTABLISHED
776 * event is processed.
778 if (rds_conn_up(conn
) || rds_conn_connecting(conn
)) {
779 /* We expect errors as the qp is drained during shutdown */
780 if (wc
.status
== IB_WC_SUCCESS
) {
781 rds_iw_process_recv(conn
, recv
, wc
.byte_len
, &state
);
783 rds_iw_conn_error(conn
, "recv completion on "
784 "%pI4 had status %u, disconnecting and "
785 "reconnecting\n", &conn
->c_faddr
,
790 rds_iw_ring_free(&ic
->i_recv_ring
, 1);
793 if (state
.ack_next_valid
)
794 rds_iw_set_ack(ic
, state
.ack_next
, state
.ack_required
);
795 if (state
.ack_recv_valid
&& state
.ack_recv
> ic
->i_ack_recv
) {
796 rds_send_drop_acked(conn
, state
.ack_recv
, NULL
);
797 ic
->i_ack_recv
= state
.ack_recv
;
799 if (rds_conn_up(conn
))
800 rds_iw_attempt_ack(ic
);
802 /* If we ever end up with a really empty receive ring, we're
803 * in deep trouble, as the sender will definitely see RNR
805 if (rds_iw_ring_empty(&ic
->i_recv_ring
))
806 rds_iw_stats_inc(s_iw_rx_ring_empty
);
809 * If the ring is running low, then schedule the thread to refill.
811 if (rds_iw_ring_low(&ic
->i_recv_ring
))
812 queue_delayed_work(rds_wq
, &conn
->c_recv_w
, 0);
815 int rds_iw_recv(struct rds_connection
*conn
)
817 struct rds_iw_connection
*ic
= conn
->c_transport_data
;
820 rdsdebug("conn %p\n", conn
);
823 * If we get a temporary posting failure in this context then
824 * we're really low and we want the caller to back off for a bit.
826 mutex_lock(&ic
->i_recv_mutex
);
827 if (rds_iw_recv_refill(conn
, GFP_KERNEL
, GFP_HIGHUSER
, 0))
830 rds_iw_stats_inc(s_iw_rx_refill_from_thread
);
831 mutex_unlock(&ic
->i_recv_mutex
);
833 if (rds_conn_up(conn
))
834 rds_iw_attempt_ack(ic
);
839 int __init
rds_iw_recv_init(void)
844 /* Default to 30% of all available RAM for recv memory */
846 rds_iw_sysctl_max_recv_allocation
= si
.totalram
/ 3 * PAGE_SIZE
/ RDS_FRAG_SIZE
;
848 rds_iw_incoming_slab
= kmem_cache_create("rds_iw_incoming",
849 sizeof(struct rds_iw_incoming
),
851 if (rds_iw_incoming_slab
== NULL
)
854 rds_iw_frag_slab
= kmem_cache_create("rds_iw_frag",
855 sizeof(struct rds_page_frag
),
857 if (rds_iw_frag_slab
== NULL
)
858 kmem_cache_destroy(rds_iw_incoming_slab
);
865 void rds_iw_recv_exit(void)
867 kmem_cache_destroy(rds_iw_incoming_slab
);
868 kmem_cache_destroy(rds_iw_frag_slab
);