2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cgroup.h>
26 #include <linux/errno.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
31 #include <linux/mutex.h>
32 #include <linux/mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/proc_fs.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/backing-dev.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/magic.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/sort.h>
44 #include <linux/kmod.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroupstats.h>
47 #include <linux/hash.h>
48 #include <linux/namei.h>
50 #include <asm/atomic.h>
52 static DEFINE_MUTEX(cgroup_mutex
);
54 /* Generate an array of cgroup subsystem pointers */
55 #define SUBSYS(_x) &_x ## _subsys,
57 static struct cgroup_subsys
*subsys
[] = {
58 #include <linux/cgroup_subsys.h>
62 * A cgroupfs_root represents the root of a cgroup hierarchy,
63 * and may be associated with a superblock to form an active
66 struct cgroupfs_root
{
67 struct super_block
*sb
;
70 * The bitmask of subsystems intended to be attached to this
73 unsigned long subsys_bits
;
75 /* The bitmask of subsystems currently attached to this hierarchy */
76 unsigned long actual_subsys_bits
;
78 /* A list running through the attached subsystems */
79 struct list_head subsys_list
;
81 /* The root cgroup for this hierarchy */
82 struct cgroup top_cgroup
;
84 /* Tracks how many cgroups are currently defined in hierarchy.*/
85 int number_of_cgroups
;
87 /* A list running through the active hierarchies */
88 struct list_head root_list
;
90 /* Hierarchy-specific flags */
93 /* The path to use for release notifications. */
94 char release_agent_path
[PATH_MAX
];
98 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
99 * subsystems that are otherwise unattached - it never has more than a
100 * single cgroup, and all tasks are part of that cgroup.
102 static struct cgroupfs_root rootnode
;
105 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
106 * cgroup_subsys->use_id != 0.
108 #define CSS_ID_MAX (65535)
111 * The css to which this ID points. This pointer is set to valid value
112 * after cgroup is populated. If cgroup is removed, this will be NULL.
113 * This pointer is expected to be RCU-safe because destroy()
114 * is called after synchronize_rcu(). But for safe use, css_is_removed()
115 * css_tryget() should be used for avoiding race.
117 struct cgroup_subsys_state
*css
;
123 * Depth in hierarchy which this ID belongs to.
125 unsigned short depth
;
127 * ID is freed by RCU. (and lookup routine is RCU safe.)
129 struct rcu_head rcu_head
;
131 * Hierarchy of CSS ID belongs to.
133 unsigned short stack
[0]; /* Array of Length (depth+1) */
137 /* The list of hierarchy roots */
139 static LIST_HEAD(roots
);
140 static int root_count
;
142 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
143 #define dummytop (&rootnode.top_cgroup)
145 /* This flag indicates whether tasks in the fork and exit paths should
146 * check for fork/exit handlers to call. This avoids us having to do
147 * extra work in the fork/exit path if none of the subsystems need to
150 static int need_forkexit_callback __read_mostly
;
152 /* convenient tests for these bits */
153 inline int cgroup_is_removed(const struct cgroup
*cgrp
)
155 return test_bit(CGRP_REMOVED
, &cgrp
->flags
);
158 /* bits in struct cgroupfs_root flags field */
160 ROOT_NOPREFIX
, /* mounted subsystems have no named prefix */
163 static int cgroup_is_releasable(const struct cgroup
*cgrp
)
166 (1 << CGRP_RELEASABLE
) |
167 (1 << CGRP_NOTIFY_ON_RELEASE
);
168 return (cgrp
->flags
& bits
) == bits
;
171 static int notify_on_release(const struct cgroup
*cgrp
)
173 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
177 * for_each_subsys() allows you to iterate on each subsystem attached to
178 * an active hierarchy
180 #define for_each_subsys(_root, _ss) \
181 list_for_each_entry(_ss, &_root->subsys_list, sibling)
183 /* for_each_active_root() allows you to iterate across the active hierarchies */
184 #define for_each_active_root(_root) \
185 list_for_each_entry(_root, &roots, root_list)
187 /* the list of cgroups eligible for automatic release. Protected by
188 * release_list_lock */
189 static LIST_HEAD(release_list
);
190 static DEFINE_SPINLOCK(release_list_lock
);
191 static void cgroup_release_agent(struct work_struct
*work
);
192 static DECLARE_WORK(release_agent_work
, cgroup_release_agent
);
193 static void check_for_release(struct cgroup
*cgrp
);
195 /* Link structure for associating css_set objects with cgroups */
196 struct cg_cgroup_link
{
198 * List running through cg_cgroup_links associated with a
199 * cgroup, anchored on cgroup->css_sets
201 struct list_head cgrp_link_list
;
203 * List running through cg_cgroup_links pointing at a
204 * single css_set object, anchored on css_set->cg_links
206 struct list_head cg_link_list
;
210 /* The default css_set - used by init and its children prior to any
211 * hierarchies being mounted. It contains a pointer to the root state
212 * for each subsystem. Also used to anchor the list of css_sets. Not
213 * reference-counted, to improve performance when child cgroups
214 * haven't been created.
217 static struct css_set init_css_set
;
218 static struct cg_cgroup_link init_css_set_link
;
220 static int cgroup_subsys_init_idr(struct cgroup_subsys
*ss
);
222 /* css_set_lock protects the list of css_set objects, and the
223 * chain of tasks off each css_set. Nests outside task->alloc_lock
224 * due to cgroup_iter_start() */
225 static DEFINE_RWLOCK(css_set_lock
);
226 static int css_set_count
;
228 /* hash table for cgroup groups. This improves the performance to
229 * find an existing css_set */
230 #define CSS_SET_HASH_BITS 7
231 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
232 static struct hlist_head css_set_table
[CSS_SET_TABLE_SIZE
];
234 static struct hlist_head
*css_set_hash(struct cgroup_subsys_state
*css
[])
238 unsigned long tmp
= 0UL;
240 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++)
241 tmp
+= (unsigned long)css
[i
];
242 tmp
= (tmp
>> 16) ^ tmp
;
244 index
= hash_long(tmp
, CSS_SET_HASH_BITS
);
246 return &css_set_table
[index
];
249 /* We don't maintain the lists running through each css_set to its
250 * task until after the first call to cgroup_iter_start(). This
251 * reduces the fork()/exit() overhead for people who have cgroups
252 * compiled into their kernel but not actually in use */
253 static int use_task_css_set_links __read_mostly
;
255 /* When we create or destroy a css_set, the operation simply
256 * takes/releases a reference count on all the cgroups referenced
257 * by subsystems in this css_set. This can end up multiple-counting
258 * some cgroups, but that's OK - the ref-count is just a
259 * busy/not-busy indicator; ensuring that we only count each cgroup
260 * once would require taking a global lock to ensure that no
261 * subsystems moved between hierarchies while we were doing so.
263 * Possible TODO: decide at boot time based on the number of
264 * registered subsystems and the number of CPUs or NUMA nodes whether
265 * it's better for performance to ref-count every subsystem, or to
266 * take a global lock and only add one ref count to each hierarchy.
270 * unlink a css_set from the list and free it
272 static void unlink_css_set(struct css_set
*cg
)
274 struct cg_cgroup_link
*link
;
275 struct cg_cgroup_link
*saved_link
;
277 hlist_del(&cg
->hlist
);
280 list_for_each_entry_safe(link
, saved_link
, &cg
->cg_links
,
282 list_del(&link
->cg_link_list
);
283 list_del(&link
->cgrp_link_list
);
288 static void __put_css_set(struct css_set
*cg
, int taskexit
)
292 * Ensure that the refcount doesn't hit zero while any readers
293 * can see it. Similar to atomic_dec_and_lock(), but for an
296 if (atomic_add_unless(&cg
->refcount
, -1, 1))
298 write_lock(&css_set_lock
);
299 if (!atomic_dec_and_test(&cg
->refcount
)) {
300 write_unlock(&css_set_lock
);
304 write_unlock(&css_set_lock
);
307 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
308 struct cgroup
*cgrp
= rcu_dereference(cg
->subsys
[i
]->cgroup
);
309 if (atomic_dec_and_test(&cgrp
->count
) &&
310 notify_on_release(cgrp
)) {
312 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
313 check_for_release(cgrp
);
321 * refcounted get/put for css_set objects
323 static inline void get_css_set(struct css_set
*cg
)
325 atomic_inc(&cg
->refcount
);
328 static inline void put_css_set(struct css_set
*cg
)
330 __put_css_set(cg
, 0);
333 static inline void put_css_set_taskexit(struct css_set
*cg
)
335 __put_css_set(cg
, 1);
339 * find_existing_css_set() is a helper for
340 * find_css_set(), and checks to see whether an existing
341 * css_set is suitable.
343 * oldcg: the cgroup group that we're using before the cgroup
346 * cgrp: the cgroup that we're moving into
348 * template: location in which to build the desired set of subsystem
349 * state objects for the new cgroup group
351 static struct css_set
*find_existing_css_set(
352 struct css_set
*oldcg
,
354 struct cgroup_subsys_state
*template[])
357 struct cgroupfs_root
*root
= cgrp
->root
;
358 struct hlist_head
*hhead
;
359 struct hlist_node
*node
;
362 /* Built the set of subsystem state objects that we want to
363 * see in the new css_set */
364 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
365 if (root
->subsys_bits
& (1UL << i
)) {
366 /* Subsystem is in this hierarchy. So we want
367 * the subsystem state from the new
369 template[i
] = cgrp
->subsys
[i
];
371 /* Subsystem is not in this hierarchy, so we
372 * don't want to change the subsystem state */
373 template[i
] = oldcg
->subsys
[i
];
377 hhead
= css_set_hash(template);
378 hlist_for_each_entry(cg
, node
, hhead
, hlist
) {
379 if (!memcmp(template, cg
->subsys
, sizeof(cg
->subsys
))) {
380 /* All subsystems matched */
385 /* No existing cgroup group matched */
389 static void free_cg_links(struct list_head
*tmp
)
391 struct cg_cgroup_link
*link
;
392 struct cg_cgroup_link
*saved_link
;
394 list_for_each_entry_safe(link
, saved_link
, tmp
, cgrp_link_list
) {
395 list_del(&link
->cgrp_link_list
);
401 * allocate_cg_links() allocates "count" cg_cgroup_link structures
402 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
403 * success or a negative error
405 static int allocate_cg_links(int count
, struct list_head
*tmp
)
407 struct cg_cgroup_link
*link
;
410 for (i
= 0; i
< count
; i
++) {
411 link
= kmalloc(sizeof(*link
), GFP_KERNEL
);
416 list_add(&link
->cgrp_link_list
, tmp
);
422 * link_css_set - a helper function to link a css_set to a cgroup
423 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
424 * @cg: the css_set to be linked
425 * @cgrp: the destination cgroup
427 static void link_css_set(struct list_head
*tmp_cg_links
,
428 struct css_set
*cg
, struct cgroup
*cgrp
)
430 struct cg_cgroup_link
*link
;
432 BUG_ON(list_empty(tmp_cg_links
));
433 link
= list_first_entry(tmp_cg_links
, struct cg_cgroup_link
,
436 list_move(&link
->cgrp_link_list
, &cgrp
->css_sets
);
437 list_add(&link
->cg_link_list
, &cg
->cg_links
);
441 * find_css_set() takes an existing cgroup group and a
442 * cgroup object, and returns a css_set object that's
443 * equivalent to the old group, but with the given cgroup
444 * substituted into the appropriate hierarchy. Must be called with
447 static struct css_set
*find_css_set(
448 struct css_set
*oldcg
, struct cgroup
*cgrp
)
451 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
];
454 struct list_head tmp_cg_links
;
456 struct hlist_head
*hhead
;
458 /* First see if we already have a cgroup group that matches
460 read_lock(&css_set_lock
);
461 res
= find_existing_css_set(oldcg
, cgrp
, template);
464 read_unlock(&css_set_lock
);
469 res
= kmalloc(sizeof(*res
), GFP_KERNEL
);
473 /* Allocate all the cg_cgroup_link objects that we'll need */
474 if (allocate_cg_links(root_count
, &tmp_cg_links
) < 0) {
479 atomic_set(&res
->refcount
, 1);
480 INIT_LIST_HEAD(&res
->cg_links
);
481 INIT_LIST_HEAD(&res
->tasks
);
482 INIT_HLIST_NODE(&res
->hlist
);
484 /* Copy the set of subsystem state objects generated in
485 * find_existing_css_set() */
486 memcpy(res
->subsys
, template, sizeof(res
->subsys
));
488 write_lock(&css_set_lock
);
489 /* Add reference counts and links from the new css_set. */
490 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
491 struct cgroup
*cgrp
= res
->subsys
[i
]->cgroup
;
492 struct cgroup_subsys
*ss
= subsys
[i
];
493 atomic_inc(&cgrp
->count
);
495 * We want to add a link once per cgroup, so we
496 * only do it for the first subsystem in each
499 if (ss
->root
->subsys_list
.next
== &ss
->sibling
)
500 link_css_set(&tmp_cg_links
, res
, cgrp
);
502 if (list_empty(&rootnode
.subsys_list
))
503 link_css_set(&tmp_cg_links
, res
, dummytop
);
505 BUG_ON(!list_empty(&tmp_cg_links
));
509 /* Add this cgroup group to the hash table */
510 hhead
= css_set_hash(res
->subsys
);
511 hlist_add_head(&res
->hlist
, hhead
);
513 write_unlock(&css_set_lock
);
519 * There is one global cgroup mutex. We also require taking
520 * task_lock() when dereferencing a task's cgroup subsys pointers.
521 * See "The task_lock() exception", at the end of this comment.
523 * A task must hold cgroup_mutex to modify cgroups.
525 * Any task can increment and decrement the count field without lock.
526 * So in general, code holding cgroup_mutex can't rely on the count
527 * field not changing. However, if the count goes to zero, then only
528 * cgroup_attach_task() can increment it again. Because a count of zero
529 * means that no tasks are currently attached, therefore there is no
530 * way a task attached to that cgroup can fork (the other way to
531 * increment the count). So code holding cgroup_mutex can safely
532 * assume that if the count is zero, it will stay zero. Similarly, if
533 * a task holds cgroup_mutex on a cgroup with zero count, it
534 * knows that the cgroup won't be removed, as cgroup_rmdir()
537 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
538 * (usually) take cgroup_mutex. These are the two most performance
539 * critical pieces of code here. The exception occurs on cgroup_exit(),
540 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
541 * is taken, and if the cgroup count is zero, a usermode call made
542 * to the release agent with the name of the cgroup (path relative to
543 * the root of cgroup file system) as the argument.
545 * A cgroup can only be deleted if both its 'count' of using tasks
546 * is zero, and its list of 'children' cgroups is empty. Since all
547 * tasks in the system use _some_ cgroup, and since there is always at
548 * least one task in the system (init, pid == 1), therefore, top_cgroup
549 * always has either children cgroups and/or using tasks. So we don't
550 * need a special hack to ensure that top_cgroup cannot be deleted.
552 * The task_lock() exception
554 * The need for this exception arises from the action of
555 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
556 * another. It does so using cgroup_mutex, however there are
557 * several performance critical places that need to reference
558 * task->cgroup without the expense of grabbing a system global
559 * mutex. Therefore except as noted below, when dereferencing or, as
560 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
561 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
562 * the task_struct routinely used for such matters.
564 * P.S. One more locking exception. RCU is used to guard the
565 * update of a tasks cgroup pointer by cgroup_attach_task()
569 * cgroup_lock - lock out any changes to cgroup structures
572 void cgroup_lock(void)
574 mutex_lock(&cgroup_mutex
);
578 * cgroup_unlock - release lock on cgroup changes
580 * Undo the lock taken in a previous cgroup_lock() call.
582 void cgroup_unlock(void)
584 mutex_unlock(&cgroup_mutex
);
588 * A couple of forward declarations required, due to cyclic reference loop:
589 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
590 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
594 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
);
595 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
);
596 static int cgroup_populate_dir(struct cgroup
*cgrp
);
597 static struct inode_operations cgroup_dir_inode_operations
;
598 static struct file_operations proc_cgroupstats_operations
;
600 static struct backing_dev_info cgroup_backing_dev_info
= {
601 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
,
604 static int alloc_css_id(struct cgroup_subsys
*ss
,
605 struct cgroup
*parent
, struct cgroup
*child
);
607 static struct inode
*cgroup_new_inode(mode_t mode
, struct super_block
*sb
)
609 struct inode
*inode
= new_inode(sb
);
612 inode
->i_mode
= mode
;
613 inode
->i_uid
= current_fsuid();
614 inode
->i_gid
= current_fsgid();
615 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
616 inode
->i_mapping
->backing_dev_info
= &cgroup_backing_dev_info
;
622 * Call subsys's pre_destroy handler.
623 * This is called before css refcnt check.
625 static int cgroup_call_pre_destroy(struct cgroup
*cgrp
)
627 struct cgroup_subsys
*ss
;
630 for_each_subsys(cgrp
->root
, ss
)
631 if (ss
->pre_destroy
) {
632 ret
= ss
->pre_destroy(ss
, cgrp
);
639 static void free_cgroup_rcu(struct rcu_head
*obj
)
641 struct cgroup
*cgrp
= container_of(obj
, struct cgroup
, rcu_head
);
646 static void cgroup_diput(struct dentry
*dentry
, struct inode
*inode
)
648 /* is dentry a directory ? if so, kfree() associated cgroup */
649 if (S_ISDIR(inode
->i_mode
)) {
650 struct cgroup
*cgrp
= dentry
->d_fsdata
;
651 struct cgroup_subsys
*ss
;
652 BUG_ON(!(cgroup_is_removed(cgrp
)));
653 /* It's possible for external users to be holding css
654 * reference counts on a cgroup; css_put() needs to
655 * be able to access the cgroup after decrementing
656 * the reference count in order to know if it needs to
657 * queue the cgroup to be handled by the release
661 mutex_lock(&cgroup_mutex
);
663 * Release the subsystem state objects.
665 for_each_subsys(cgrp
->root
, ss
)
666 ss
->destroy(ss
, cgrp
);
668 cgrp
->root
->number_of_cgroups
--;
669 mutex_unlock(&cgroup_mutex
);
672 * Drop the active superblock reference that we took when we
675 deactivate_super(cgrp
->root
->sb
);
677 call_rcu(&cgrp
->rcu_head
, free_cgroup_rcu
);
682 static void remove_dir(struct dentry
*d
)
684 struct dentry
*parent
= dget(d
->d_parent
);
687 simple_rmdir(parent
->d_inode
, d
);
691 static void cgroup_clear_directory(struct dentry
*dentry
)
693 struct list_head
*node
;
695 BUG_ON(!mutex_is_locked(&dentry
->d_inode
->i_mutex
));
696 spin_lock(&dcache_lock
);
697 node
= dentry
->d_subdirs
.next
;
698 while (node
!= &dentry
->d_subdirs
) {
699 struct dentry
*d
= list_entry(node
, struct dentry
, d_u
.d_child
);
702 /* This should never be called on a cgroup
703 * directory with child cgroups */
704 BUG_ON(d
->d_inode
->i_mode
& S_IFDIR
);
706 spin_unlock(&dcache_lock
);
708 simple_unlink(dentry
->d_inode
, d
);
710 spin_lock(&dcache_lock
);
712 node
= dentry
->d_subdirs
.next
;
714 spin_unlock(&dcache_lock
);
718 * NOTE : the dentry must have been dget()'ed
720 static void cgroup_d_remove_dir(struct dentry
*dentry
)
722 cgroup_clear_directory(dentry
);
724 spin_lock(&dcache_lock
);
725 list_del_init(&dentry
->d_u
.d_child
);
726 spin_unlock(&dcache_lock
);
731 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
732 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
733 * reference to css->refcnt. In general, this refcnt is expected to goes down
736 * CGRP_WAIT_ON_RMDIR flag is modified under cgroup's inode->i_mutex;
738 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq
);
740 static void cgroup_wakeup_rmdir_waiters(const struct cgroup
*cgrp
)
742 if (unlikely(test_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
)))
743 wake_up_all(&cgroup_rmdir_waitq
);
746 static int rebind_subsystems(struct cgroupfs_root
*root
,
747 unsigned long final_bits
)
749 unsigned long added_bits
, removed_bits
;
750 struct cgroup
*cgrp
= &root
->top_cgroup
;
753 removed_bits
= root
->actual_subsys_bits
& ~final_bits
;
754 added_bits
= final_bits
& ~root
->actual_subsys_bits
;
755 /* Check that any added subsystems are currently free */
756 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
757 unsigned long bit
= 1UL << i
;
758 struct cgroup_subsys
*ss
= subsys
[i
];
759 if (!(bit
& added_bits
))
761 if (ss
->root
!= &rootnode
) {
762 /* Subsystem isn't free */
767 /* Currently we don't handle adding/removing subsystems when
768 * any child cgroups exist. This is theoretically supportable
769 * but involves complex error handling, so it's being left until
771 if (root
->number_of_cgroups
> 1)
774 /* Process each subsystem */
775 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
776 struct cgroup_subsys
*ss
= subsys
[i
];
777 unsigned long bit
= 1UL << i
;
778 if (bit
& added_bits
) {
779 /* We're binding this subsystem to this hierarchy */
780 BUG_ON(cgrp
->subsys
[i
]);
781 BUG_ON(!dummytop
->subsys
[i
]);
782 BUG_ON(dummytop
->subsys
[i
]->cgroup
!= dummytop
);
783 mutex_lock(&ss
->hierarchy_mutex
);
784 cgrp
->subsys
[i
] = dummytop
->subsys
[i
];
785 cgrp
->subsys
[i
]->cgroup
= cgrp
;
786 list_move(&ss
->sibling
, &root
->subsys_list
);
790 mutex_unlock(&ss
->hierarchy_mutex
);
791 } else if (bit
& removed_bits
) {
792 /* We're removing this subsystem */
793 BUG_ON(cgrp
->subsys
[i
] != dummytop
->subsys
[i
]);
794 BUG_ON(cgrp
->subsys
[i
]->cgroup
!= cgrp
);
795 mutex_lock(&ss
->hierarchy_mutex
);
797 ss
->bind(ss
, dummytop
);
798 dummytop
->subsys
[i
]->cgroup
= dummytop
;
799 cgrp
->subsys
[i
] = NULL
;
800 subsys
[i
]->root
= &rootnode
;
801 list_move(&ss
->sibling
, &rootnode
.subsys_list
);
802 mutex_unlock(&ss
->hierarchy_mutex
);
803 } else if (bit
& final_bits
) {
804 /* Subsystem state should already exist */
805 BUG_ON(!cgrp
->subsys
[i
]);
807 /* Subsystem state shouldn't exist */
808 BUG_ON(cgrp
->subsys
[i
]);
811 root
->subsys_bits
= root
->actual_subsys_bits
= final_bits
;
817 static int cgroup_show_options(struct seq_file
*seq
, struct vfsmount
*vfs
)
819 struct cgroupfs_root
*root
= vfs
->mnt_sb
->s_fs_info
;
820 struct cgroup_subsys
*ss
;
822 mutex_lock(&cgroup_mutex
);
823 for_each_subsys(root
, ss
)
824 seq_printf(seq
, ",%s", ss
->name
);
825 if (test_bit(ROOT_NOPREFIX
, &root
->flags
))
826 seq_puts(seq
, ",noprefix");
827 if (strlen(root
->release_agent_path
))
828 seq_printf(seq
, ",release_agent=%s", root
->release_agent_path
);
829 mutex_unlock(&cgroup_mutex
);
833 struct cgroup_sb_opts
{
834 unsigned long subsys_bits
;
839 /* Convert a hierarchy specifier into a bitmask of subsystems and
841 static int parse_cgroupfs_options(char *data
,
842 struct cgroup_sb_opts
*opts
)
844 char *token
, *o
= data
?: "all";
846 opts
->subsys_bits
= 0;
848 opts
->release_agent
= NULL
;
850 while ((token
= strsep(&o
, ",")) != NULL
) {
853 if (!strcmp(token
, "all")) {
854 /* Add all non-disabled subsystems */
856 opts
->subsys_bits
= 0;
857 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
858 struct cgroup_subsys
*ss
= subsys
[i
];
860 opts
->subsys_bits
|= 1ul << i
;
862 } else if (!strcmp(token
, "noprefix")) {
863 set_bit(ROOT_NOPREFIX
, &opts
->flags
);
864 } else if (!strncmp(token
, "release_agent=", 14)) {
865 /* Specifying two release agents is forbidden */
866 if (opts
->release_agent
)
868 opts
->release_agent
= kzalloc(PATH_MAX
, GFP_KERNEL
);
869 if (!opts
->release_agent
)
871 strncpy(opts
->release_agent
, token
+ 14, PATH_MAX
- 1);
872 opts
->release_agent
[PATH_MAX
- 1] = 0;
874 struct cgroup_subsys
*ss
;
876 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
878 if (!strcmp(token
, ss
->name
)) {
880 set_bit(i
, &opts
->subsys_bits
);
884 if (i
== CGROUP_SUBSYS_COUNT
)
889 /* We can't have an empty hierarchy */
890 if (!opts
->subsys_bits
)
896 static int cgroup_remount(struct super_block
*sb
, int *flags
, char *data
)
899 struct cgroupfs_root
*root
= sb
->s_fs_info
;
900 struct cgroup
*cgrp
= &root
->top_cgroup
;
901 struct cgroup_sb_opts opts
;
903 mutex_lock(&cgrp
->dentry
->d_inode
->i_mutex
);
904 mutex_lock(&cgroup_mutex
);
906 /* See what subsystems are wanted */
907 ret
= parse_cgroupfs_options(data
, &opts
);
911 /* Don't allow flags to change at remount */
912 if (opts
.flags
!= root
->flags
) {
917 ret
= rebind_subsystems(root
, opts
.subsys_bits
);
921 /* (re)populate subsystem files */
922 cgroup_populate_dir(cgrp
);
924 if (opts
.release_agent
)
925 strcpy(root
->release_agent_path
, opts
.release_agent
);
927 kfree(opts
.release_agent
);
928 mutex_unlock(&cgroup_mutex
);
929 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
933 static struct super_operations cgroup_ops
= {
934 .statfs
= simple_statfs
,
935 .drop_inode
= generic_delete_inode
,
936 .show_options
= cgroup_show_options
,
937 .remount_fs
= cgroup_remount
,
940 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
942 INIT_LIST_HEAD(&cgrp
->sibling
);
943 INIT_LIST_HEAD(&cgrp
->children
);
944 INIT_LIST_HEAD(&cgrp
->css_sets
);
945 INIT_LIST_HEAD(&cgrp
->release_list
);
946 init_rwsem(&cgrp
->pids_mutex
);
948 static void init_cgroup_root(struct cgroupfs_root
*root
)
950 struct cgroup
*cgrp
= &root
->top_cgroup
;
951 INIT_LIST_HEAD(&root
->subsys_list
);
952 INIT_LIST_HEAD(&root
->root_list
);
953 root
->number_of_cgroups
= 1;
955 cgrp
->top_cgroup
= cgrp
;
956 init_cgroup_housekeeping(cgrp
);
959 static int cgroup_test_super(struct super_block
*sb
, void *data
)
961 struct cgroupfs_root
*new = data
;
962 struct cgroupfs_root
*root
= sb
->s_fs_info
;
964 /* First check subsystems */
965 if (new->subsys_bits
!= root
->subsys_bits
)
968 /* Next check flags */
969 if (new->flags
!= root
->flags
)
975 static int cgroup_set_super(struct super_block
*sb
, void *data
)
978 struct cgroupfs_root
*root
= data
;
980 ret
= set_anon_super(sb
, NULL
);
984 sb
->s_fs_info
= root
;
987 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
988 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
989 sb
->s_magic
= CGROUP_SUPER_MAGIC
;
990 sb
->s_op
= &cgroup_ops
;
995 static int cgroup_get_rootdir(struct super_block
*sb
)
997 struct inode
*inode
=
998 cgroup_new_inode(S_IFDIR
| S_IRUGO
| S_IXUGO
| S_IWUSR
, sb
);
999 struct dentry
*dentry
;
1004 inode
->i_fop
= &simple_dir_operations
;
1005 inode
->i_op
= &cgroup_dir_inode_operations
;
1006 /* directories start off with i_nlink == 2 (for "." entry) */
1008 dentry
= d_alloc_root(inode
);
1013 sb
->s_root
= dentry
;
1017 static int cgroup_get_sb(struct file_system_type
*fs_type
,
1018 int flags
, const char *unused_dev_name
,
1019 void *data
, struct vfsmount
*mnt
)
1021 struct cgroup_sb_opts opts
;
1023 struct super_block
*sb
;
1024 struct cgroupfs_root
*root
;
1025 struct list_head tmp_cg_links
;
1027 /* First find the desired set of subsystems */
1028 ret
= parse_cgroupfs_options(data
, &opts
);
1030 kfree(opts
.release_agent
);
1034 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
1036 kfree(opts
.release_agent
);
1040 init_cgroup_root(root
);
1041 root
->subsys_bits
= opts
.subsys_bits
;
1042 root
->flags
= opts
.flags
;
1043 if (opts
.release_agent
) {
1044 strcpy(root
->release_agent_path
, opts
.release_agent
);
1045 kfree(opts
.release_agent
);
1048 sb
= sget(fs_type
, cgroup_test_super
, cgroup_set_super
, root
);
1055 if (sb
->s_fs_info
!= root
) {
1056 /* Reusing an existing superblock */
1057 BUG_ON(sb
->s_root
== NULL
);
1061 /* New superblock */
1062 struct cgroup
*root_cgrp
= &root
->top_cgroup
;
1063 struct inode
*inode
;
1066 BUG_ON(sb
->s_root
!= NULL
);
1068 ret
= cgroup_get_rootdir(sb
);
1070 goto drop_new_super
;
1071 inode
= sb
->s_root
->d_inode
;
1073 mutex_lock(&inode
->i_mutex
);
1074 mutex_lock(&cgroup_mutex
);
1077 * We're accessing css_set_count without locking
1078 * css_set_lock here, but that's OK - it can only be
1079 * increased by someone holding cgroup_lock, and
1080 * that's us. The worst that can happen is that we
1081 * have some link structures left over
1083 ret
= allocate_cg_links(css_set_count
, &tmp_cg_links
);
1085 mutex_unlock(&cgroup_mutex
);
1086 mutex_unlock(&inode
->i_mutex
);
1087 goto drop_new_super
;
1090 ret
= rebind_subsystems(root
, root
->subsys_bits
);
1091 if (ret
== -EBUSY
) {
1092 mutex_unlock(&cgroup_mutex
);
1093 mutex_unlock(&inode
->i_mutex
);
1097 /* EBUSY should be the only error here */
1100 list_add(&root
->root_list
, &roots
);
1103 sb
->s_root
->d_fsdata
= root_cgrp
;
1104 root
->top_cgroup
.dentry
= sb
->s_root
;
1106 /* Link the top cgroup in this hierarchy into all
1107 * the css_set objects */
1108 write_lock(&css_set_lock
);
1109 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++) {
1110 struct hlist_head
*hhead
= &css_set_table
[i
];
1111 struct hlist_node
*node
;
1114 hlist_for_each_entry(cg
, node
, hhead
, hlist
)
1115 link_css_set(&tmp_cg_links
, cg
, root_cgrp
);
1117 write_unlock(&css_set_lock
);
1119 free_cg_links(&tmp_cg_links
);
1121 BUG_ON(!list_empty(&root_cgrp
->sibling
));
1122 BUG_ON(!list_empty(&root_cgrp
->children
));
1123 BUG_ON(root
->number_of_cgroups
!= 1);
1125 cgroup_populate_dir(root_cgrp
);
1126 mutex_unlock(&inode
->i_mutex
);
1127 mutex_unlock(&cgroup_mutex
);
1130 simple_set_mnt(mnt
, sb
);
1134 free_cg_links(&tmp_cg_links
);
1136 up_write(&sb
->s_umount
);
1137 deactivate_super(sb
);
1141 static void cgroup_kill_sb(struct super_block
*sb
) {
1142 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1143 struct cgroup
*cgrp
= &root
->top_cgroup
;
1145 struct cg_cgroup_link
*link
;
1146 struct cg_cgroup_link
*saved_link
;
1150 BUG_ON(root
->number_of_cgroups
!= 1);
1151 BUG_ON(!list_empty(&cgrp
->children
));
1152 BUG_ON(!list_empty(&cgrp
->sibling
));
1154 mutex_lock(&cgroup_mutex
);
1156 /* Rebind all subsystems back to the default hierarchy */
1157 ret
= rebind_subsystems(root
, 0);
1158 /* Shouldn't be able to fail ... */
1162 * Release all the links from css_sets to this hierarchy's
1165 write_lock(&css_set_lock
);
1167 list_for_each_entry_safe(link
, saved_link
, &cgrp
->css_sets
,
1169 list_del(&link
->cg_link_list
);
1170 list_del(&link
->cgrp_link_list
);
1173 write_unlock(&css_set_lock
);
1175 if (!list_empty(&root
->root_list
)) {
1176 list_del(&root
->root_list
);
1180 mutex_unlock(&cgroup_mutex
);
1182 kill_litter_super(sb
);
1186 static struct file_system_type cgroup_fs_type
= {
1188 .get_sb
= cgroup_get_sb
,
1189 .kill_sb
= cgroup_kill_sb
,
1192 static inline struct cgroup
*__d_cgrp(struct dentry
*dentry
)
1194 return dentry
->d_fsdata
;
1197 static inline struct cftype
*__d_cft(struct dentry
*dentry
)
1199 return dentry
->d_fsdata
;
1203 * cgroup_path - generate the path of a cgroup
1204 * @cgrp: the cgroup in question
1205 * @buf: the buffer to write the path into
1206 * @buflen: the length of the buffer
1208 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1209 * reference. Writes path of cgroup into buf. Returns 0 on success,
1212 int cgroup_path(const struct cgroup
*cgrp
, char *buf
, int buflen
)
1215 struct dentry
*dentry
= rcu_dereference(cgrp
->dentry
);
1217 if (!dentry
|| cgrp
== dummytop
) {
1219 * Inactive subsystems have no dentry for their root
1226 start
= buf
+ buflen
;
1230 int len
= dentry
->d_name
.len
;
1231 if ((start
-= len
) < buf
)
1232 return -ENAMETOOLONG
;
1233 memcpy(start
, cgrp
->dentry
->d_name
.name
, len
);
1234 cgrp
= cgrp
->parent
;
1237 dentry
= rcu_dereference(cgrp
->dentry
);
1241 return -ENAMETOOLONG
;
1244 memmove(buf
, start
, buf
+ buflen
- start
);
1249 * Return the first subsystem attached to a cgroup's hierarchy, and
1253 static void get_first_subsys(const struct cgroup
*cgrp
,
1254 struct cgroup_subsys_state
**css
, int *subsys_id
)
1256 const struct cgroupfs_root
*root
= cgrp
->root
;
1257 const struct cgroup_subsys
*test_ss
;
1258 BUG_ON(list_empty(&root
->subsys_list
));
1259 test_ss
= list_entry(root
->subsys_list
.next
,
1260 struct cgroup_subsys
, sibling
);
1262 *css
= cgrp
->subsys
[test_ss
->subsys_id
];
1266 *subsys_id
= test_ss
->subsys_id
;
1270 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1271 * @cgrp: the cgroup the task is attaching to
1272 * @tsk: the task to be attached
1274 * Call holding cgroup_mutex. May take task_lock of
1275 * the task 'tsk' during call.
1277 int cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
1280 struct cgroup_subsys
*ss
;
1281 struct cgroup
*oldcgrp
;
1283 struct css_set
*newcg
;
1284 struct cgroupfs_root
*root
= cgrp
->root
;
1287 get_first_subsys(cgrp
, NULL
, &subsys_id
);
1289 /* Nothing to do if the task is already in that cgroup */
1290 oldcgrp
= task_cgroup(tsk
, subsys_id
);
1291 if (cgrp
== oldcgrp
)
1294 for_each_subsys(root
, ss
) {
1295 if (ss
->can_attach
) {
1296 retval
= ss
->can_attach(ss
, cgrp
, tsk
);
1307 * Locate or allocate a new css_set for this task,
1308 * based on its final set of cgroups
1310 newcg
= find_css_set(cg
, cgrp
);
1316 if (tsk
->flags
& PF_EXITING
) {
1321 rcu_assign_pointer(tsk
->cgroups
, newcg
);
1324 /* Update the css_set linked lists if we're using them */
1325 write_lock(&css_set_lock
);
1326 if (!list_empty(&tsk
->cg_list
)) {
1327 list_del(&tsk
->cg_list
);
1328 list_add(&tsk
->cg_list
, &newcg
->tasks
);
1330 write_unlock(&css_set_lock
);
1332 for_each_subsys(root
, ss
) {
1334 ss
->attach(ss
, cgrp
, oldcgrp
, tsk
);
1336 set_bit(CGRP_RELEASABLE
, &oldcgrp
->flags
);
1341 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1342 * is no longer empty.
1344 cgroup_wakeup_rmdir_waiters(cgrp
);
1349 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1350 * held. May take task_lock of task
1352 static int attach_task_by_pid(struct cgroup
*cgrp
, u64 pid
)
1354 struct task_struct
*tsk
;
1355 const struct cred
*cred
= current_cred(), *tcred
;
1360 tsk
= find_task_by_vpid(pid
);
1361 if (!tsk
|| tsk
->flags
& PF_EXITING
) {
1366 tcred
= __task_cred(tsk
);
1368 cred
->euid
!= tcred
->uid
&&
1369 cred
->euid
!= tcred
->suid
) {
1373 get_task_struct(tsk
);
1377 get_task_struct(tsk
);
1380 ret
= cgroup_attach_task(cgrp
, tsk
);
1381 put_task_struct(tsk
);
1385 static int cgroup_tasks_write(struct cgroup
*cgrp
, struct cftype
*cft
, u64 pid
)
1388 if (!cgroup_lock_live_group(cgrp
))
1390 ret
= attach_task_by_pid(cgrp
, pid
);
1395 /* The various types of files and directories in a cgroup file system */
1396 enum cgroup_filetype
{
1400 FILE_NOTIFY_ON_RELEASE
,
1405 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1406 * @cgrp: the cgroup to be checked for liveness
1408 * On success, returns true; the lock should be later released with
1409 * cgroup_unlock(). On failure returns false with no lock held.
1411 bool cgroup_lock_live_group(struct cgroup
*cgrp
)
1413 mutex_lock(&cgroup_mutex
);
1414 if (cgroup_is_removed(cgrp
)) {
1415 mutex_unlock(&cgroup_mutex
);
1421 static int cgroup_release_agent_write(struct cgroup
*cgrp
, struct cftype
*cft
,
1424 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
1425 if (!cgroup_lock_live_group(cgrp
))
1427 strcpy(cgrp
->root
->release_agent_path
, buffer
);
1432 static int cgroup_release_agent_show(struct cgroup
*cgrp
, struct cftype
*cft
,
1433 struct seq_file
*seq
)
1435 if (!cgroup_lock_live_group(cgrp
))
1437 seq_puts(seq
, cgrp
->root
->release_agent_path
);
1438 seq_putc(seq
, '\n');
1443 /* A buffer size big enough for numbers or short strings */
1444 #define CGROUP_LOCAL_BUFFER_SIZE 64
1446 static ssize_t
cgroup_write_X64(struct cgroup
*cgrp
, struct cftype
*cft
,
1448 const char __user
*userbuf
,
1449 size_t nbytes
, loff_t
*unused_ppos
)
1451 char buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
1457 if (nbytes
>= sizeof(buffer
))
1459 if (copy_from_user(buffer
, userbuf
, nbytes
))
1462 buffer
[nbytes
] = 0; /* nul-terminate */
1464 if (cft
->write_u64
) {
1465 u64 val
= simple_strtoull(buffer
, &end
, 0);
1468 retval
= cft
->write_u64(cgrp
, cft
, val
);
1470 s64 val
= simple_strtoll(buffer
, &end
, 0);
1473 retval
= cft
->write_s64(cgrp
, cft
, val
);
1480 static ssize_t
cgroup_write_string(struct cgroup
*cgrp
, struct cftype
*cft
,
1482 const char __user
*userbuf
,
1483 size_t nbytes
, loff_t
*unused_ppos
)
1485 char local_buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
1487 size_t max_bytes
= cft
->max_write_len
;
1488 char *buffer
= local_buffer
;
1491 max_bytes
= sizeof(local_buffer
) - 1;
1492 if (nbytes
>= max_bytes
)
1494 /* Allocate a dynamic buffer if we need one */
1495 if (nbytes
>= sizeof(local_buffer
)) {
1496 buffer
= kmalloc(nbytes
+ 1, GFP_KERNEL
);
1500 if (nbytes
&& copy_from_user(buffer
, userbuf
, nbytes
)) {
1505 buffer
[nbytes
] = 0; /* nul-terminate */
1507 retval
= cft
->write_string(cgrp
, cft
, buffer
);
1511 if (buffer
!= local_buffer
)
1516 static ssize_t
cgroup_file_write(struct file
*file
, const char __user
*buf
,
1517 size_t nbytes
, loff_t
*ppos
)
1519 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1520 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
1522 if (cgroup_is_removed(cgrp
))
1525 return cft
->write(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1526 if (cft
->write_u64
|| cft
->write_s64
)
1527 return cgroup_write_X64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1528 if (cft
->write_string
)
1529 return cgroup_write_string(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1531 int ret
= cft
->trigger(cgrp
, (unsigned int)cft
->private);
1532 return ret
? ret
: nbytes
;
1537 static ssize_t
cgroup_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
,
1539 char __user
*buf
, size_t nbytes
,
1542 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
1543 u64 val
= cft
->read_u64(cgrp
, cft
);
1544 int len
= sprintf(tmp
, "%llu\n", (unsigned long long) val
);
1546 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
1549 static ssize_t
cgroup_read_s64(struct cgroup
*cgrp
, struct cftype
*cft
,
1551 char __user
*buf
, size_t nbytes
,
1554 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
1555 s64 val
= cft
->read_s64(cgrp
, cft
);
1556 int len
= sprintf(tmp
, "%lld\n", (long long) val
);
1558 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
1561 static ssize_t
cgroup_file_read(struct file
*file
, char __user
*buf
,
1562 size_t nbytes
, loff_t
*ppos
)
1564 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1565 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
1567 if (cgroup_is_removed(cgrp
))
1571 return cft
->read(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1573 return cgroup_read_u64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1575 return cgroup_read_s64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1580 * seqfile ops/methods for returning structured data. Currently just
1581 * supports string->u64 maps, but can be extended in future.
1584 struct cgroup_seqfile_state
{
1586 struct cgroup
*cgroup
;
1589 static int cgroup_map_add(struct cgroup_map_cb
*cb
, const char *key
, u64 value
)
1591 struct seq_file
*sf
= cb
->state
;
1592 return seq_printf(sf
, "%s %llu\n", key
, (unsigned long long)value
);
1595 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
1597 struct cgroup_seqfile_state
*state
= m
->private;
1598 struct cftype
*cft
= state
->cft
;
1599 if (cft
->read_map
) {
1600 struct cgroup_map_cb cb
= {
1601 .fill
= cgroup_map_add
,
1604 return cft
->read_map(state
->cgroup
, cft
, &cb
);
1606 return cft
->read_seq_string(state
->cgroup
, cft
, m
);
1609 static int cgroup_seqfile_release(struct inode
*inode
, struct file
*file
)
1611 struct seq_file
*seq
= file
->private_data
;
1612 kfree(seq
->private);
1613 return single_release(inode
, file
);
1616 static struct file_operations cgroup_seqfile_operations
= {
1618 .write
= cgroup_file_write
,
1619 .llseek
= seq_lseek
,
1620 .release
= cgroup_seqfile_release
,
1623 static int cgroup_file_open(struct inode
*inode
, struct file
*file
)
1628 err
= generic_file_open(inode
, file
);
1631 cft
= __d_cft(file
->f_dentry
);
1633 if (cft
->read_map
|| cft
->read_seq_string
) {
1634 struct cgroup_seqfile_state
*state
=
1635 kzalloc(sizeof(*state
), GFP_USER
);
1639 state
->cgroup
= __d_cgrp(file
->f_dentry
->d_parent
);
1640 file
->f_op
= &cgroup_seqfile_operations
;
1641 err
= single_open(file
, cgroup_seqfile_show
, state
);
1644 } else if (cft
->open
)
1645 err
= cft
->open(inode
, file
);
1652 static int cgroup_file_release(struct inode
*inode
, struct file
*file
)
1654 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1656 return cft
->release(inode
, file
);
1661 * cgroup_rename - Only allow simple rename of directories in place.
1663 static int cgroup_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
1664 struct inode
*new_dir
, struct dentry
*new_dentry
)
1666 if (!S_ISDIR(old_dentry
->d_inode
->i_mode
))
1668 if (new_dentry
->d_inode
)
1670 if (old_dir
!= new_dir
)
1672 return simple_rename(old_dir
, old_dentry
, new_dir
, new_dentry
);
1675 static struct file_operations cgroup_file_operations
= {
1676 .read
= cgroup_file_read
,
1677 .write
= cgroup_file_write
,
1678 .llseek
= generic_file_llseek
,
1679 .open
= cgroup_file_open
,
1680 .release
= cgroup_file_release
,
1683 static struct inode_operations cgroup_dir_inode_operations
= {
1684 .lookup
= simple_lookup
,
1685 .mkdir
= cgroup_mkdir
,
1686 .rmdir
= cgroup_rmdir
,
1687 .rename
= cgroup_rename
,
1690 static int cgroup_create_file(struct dentry
*dentry
, mode_t mode
,
1691 struct super_block
*sb
)
1693 static const struct dentry_operations cgroup_dops
= {
1694 .d_iput
= cgroup_diput
,
1697 struct inode
*inode
;
1701 if (dentry
->d_inode
)
1704 inode
= cgroup_new_inode(mode
, sb
);
1708 if (S_ISDIR(mode
)) {
1709 inode
->i_op
= &cgroup_dir_inode_operations
;
1710 inode
->i_fop
= &simple_dir_operations
;
1712 /* start off with i_nlink == 2 (for "." entry) */
1715 /* start with the directory inode held, so that we can
1716 * populate it without racing with another mkdir */
1717 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
1718 } else if (S_ISREG(mode
)) {
1720 inode
->i_fop
= &cgroup_file_operations
;
1722 dentry
->d_op
= &cgroup_dops
;
1723 d_instantiate(dentry
, inode
);
1724 dget(dentry
); /* Extra count - pin the dentry in core */
1729 * cgroup_create_dir - create a directory for an object.
1730 * @cgrp: the cgroup we create the directory for. It must have a valid
1731 * ->parent field. And we are going to fill its ->dentry field.
1732 * @dentry: dentry of the new cgroup
1733 * @mode: mode to set on new directory.
1735 static int cgroup_create_dir(struct cgroup
*cgrp
, struct dentry
*dentry
,
1738 struct dentry
*parent
;
1741 parent
= cgrp
->parent
->dentry
;
1742 error
= cgroup_create_file(dentry
, S_IFDIR
| mode
, cgrp
->root
->sb
);
1744 dentry
->d_fsdata
= cgrp
;
1745 inc_nlink(parent
->d_inode
);
1746 rcu_assign_pointer(cgrp
->dentry
, dentry
);
1755 * cgroup_file_mode - deduce file mode of a control file
1756 * @cft: the control file in question
1758 * returns cft->mode if ->mode is not 0
1759 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1760 * returns S_IRUGO if it has only a read handler
1761 * returns S_IWUSR if it has only a write hander
1763 static mode_t
cgroup_file_mode(const struct cftype
*cft
)
1770 if (cft
->read
|| cft
->read_u64
|| cft
->read_s64
||
1771 cft
->read_map
|| cft
->read_seq_string
)
1774 if (cft
->write
|| cft
->write_u64
|| cft
->write_s64
||
1775 cft
->write_string
|| cft
->trigger
)
1781 int cgroup_add_file(struct cgroup
*cgrp
,
1782 struct cgroup_subsys
*subsys
,
1783 const struct cftype
*cft
)
1785 struct dentry
*dir
= cgrp
->dentry
;
1786 struct dentry
*dentry
;
1790 char name
[MAX_CGROUP_TYPE_NAMELEN
+ MAX_CFTYPE_NAME
+ 2] = { 0 };
1791 if (subsys
&& !test_bit(ROOT_NOPREFIX
, &cgrp
->root
->flags
)) {
1792 strcpy(name
, subsys
->name
);
1795 strcat(name
, cft
->name
);
1796 BUG_ON(!mutex_is_locked(&dir
->d_inode
->i_mutex
));
1797 dentry
= lookup_one_len(name
, dir
, strlen(name
));
1798 if (!IS_ERR(dentry
)) {
1799 mode
= cgroup_file_mode(cft
);
1800 error
= cgroup_create_file(dentry
, mode
| S_IFREG
,
1803 dentry
->d_fsdata
= (void *)cft
;
1806 error
= PTR_ERR(dentry
);
1810 int cgroup_add_files(struct cgroup
*cgrp
,
1811 struct cgroup_subsys
*subsys
,
1812 const struct cftype cft
[],
1816 for (i
= 0; i
< count
; i
++) {
1817 err
= cgroup_add_file(cgrp
, subsys
, &cft
[i
]);
1825 * cgroup_task_count - count the number of tasks in a cgroup.
1826 * @cgrp: the cgroup in question
1828 * Return the number of tasks in the cgroup.
1830 int cgroup_task_count(const struct cgroup
*cgrp
)
1833 struct cg_cgroup_link
*link
;
1835 read_lock(&css_set_lock
);
1836 list_for_each_entry(link
, &cgrp
->css_sets
, cgrp_link_list
) {
1837 count
+= atomic_read(&link
->cg
->refcount
);
1839 read_unlock(&css_set_lock
);
1844 * Advance a list_head iterator. The iterator should be positioned at
1845 * the start of a css_set
1847 static void cgroup_advance_iter(struct cgroup
*cgrp
,
1848 struct cgroup_iter
*it
)
1850 struct list_head
*l
= it
->cg_link
;
1851 struct cg_cgroup_link
*link
;
1854 /* Advance to the next non-empty css_set */
1857 if (l
== &cgrp
->css_sets
) {
1861 link
= list_entry(l
, struct cg_cgroup_link
, cgrp_link_list
);
1863 } while (list_empty(&cg
->tasks
));
1865 it
->task
= cg
->tasks
.next
;
1869 * To reduce the fork() overhead for systems that are not actually
1870 * using their cgroups capability, we don't maintain the lists running
1871 * through each css_set to its tasks until we see the list actually
1872 * used - in other words after the first call to cgroup_iter_start().
1874 * The tasklist_lock is not held here, as do_each_thread() and
1875 * while_each_thread() are protected by RCU.
1877 static void cgroup_enable_task_cg_lists(void)
1879 struct task_struct
*p
, *g
;
1880 write_lock(&css_set_lock
);
1881 use_task_css_set_links
= 1;
1882 do_each_thread(g
, p
) {
1885 * We should check if the process is exiting, otherwise
1886 * it will race with cgroup_exit() in that the list
1887 * entry won't be deleted though the process has exited.
1889 if (!(p
->flags
& PF_EXITING
) && list_empty(&p
->cg_list
))
1890 list_add(&p
->cg_list
, &p
->cgroups
->tasks
);
1892 } while_each_thread(g
, p
);
1893 write_unlock(&css_set_lock
);
1896 void cgroup_iter_start(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
1899 * The first time anyone tries to iterate across a cgroup,
1900 * we need to enable the list linking each css_set to its
1901 * tasks, and fix up all existing tasks.
1903 if (!use_task_css_set_links
)
1904 cgroup_enable_task_cg_lists();
1906 read_lock(&css_set_lock
);
1907 it
->cg_link
= &cgrp
->css_sets
;
1908 cgroup_advance_iter(cgrp
, it
);
1911 struct task_struct
*cgroup_iter_next(struct cgroup
*cgrp
,
1912 struct cgroup_iter
*it
)
1914 struct task_struct
*res
;
1915 struct list_head
*l
= it
->task
;
1916 struct cg_cgroup_link
*link
;
1918 /* If the iterator cg is NULL, we have no tasks */
1921 res
= list_entry(l
, struct task_struct
, cg_list
);
1922 /* Advance iterator to find next entry */
1924 link
= list_entry(it
->cg_link
, struct cg_cgroup_link
, cgrp_link_list
);
1925 if (l
== &link
->cg
->tasks
) {
1926 /* We reached the end of this task list - move on to
1927 * the next cg_cgroup_link */
1928 cgroup_advance_iter(cgrp
, it
);
1935 void cgroup_iter_end(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
1937 read_unlock(&css_set_lock
);
1940 static inline int started_after_time(struct task_struct
*t1
,
1941 struct timespec
*time
,
1942 struct task_struct
*t2
)
1944 int start_diff
= timespec_compare(&t1
->start_time
, time
);
1945 if (start_diff
> 0) {
1947 } else if (start_diff
< 0) {
1951 * Arbitrarily, if two processes started at the same
1952 * time, we'll say that the lower pointer value
1953 * started first. Note that t2 may have exited by now
1954 * so this may not be a valid pointer any longer, but
1955 * that's fine - it still serves to distinguish
1956 * between two tasks started (effectively) simultaneously.
1963 * This function is a callback from heap_insert() and is used to order
1965 * In this case we order the heap in descending task start time.
1967 static inline int started_after(void *p1
, void *p2
)
1969 struct task_struct
*t1
= p1
;
1970 struct task_struct
*t2
= p2
;
1971 return started_after_time(t1
, &t2
->start_time
, t2
);
1975 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1976 * @scan: struct cgroup_scanner containing arguments for the scan
1978 * Arguments include pointers to callback functions test_task() and
1980 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1981 * and if it returns true, call process_task() for it also.
1982 * The test_task pointer may be NULL, meaning always true (select all tasks).
1983 * Effectively duplicates cgroup_iter_{start,next,end}()
1984 * but does not lock css_set_lock for the call to process_task().
1985 * The struct cgroup_scanner may be embedded in any structure of the caller's
1987 * It is guaranteed that process_task() will act on every task that
1988 * is a member of the cgroup for the duration of this call. This
1989 * function may or may not call process_task() for tasks that exit
1990 * or move to a different cgroup during the call, or are forked or
1991 * move into the cgroup during the call.
1993 * Note that test_task() may be called with locks held, and may in some
1994 * situations be called multiple times for the same task, so it should
1996 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1997 * pre-allocated and will be used for heap operations (and its "gt" member will
1998 * be overwritten), else a temporary heap will be used (allocation of which
1999 * may cause this function to fail).
2001 int cgroup_scan_tasks(struct cgroup_scanner
*scan
)
2004 struct cgroup_iter it
;
2005 struct task_struct
*p
, *dropped
;
2006 /* Never dereference latest_task, since it's not refcounted */
2007 struct task_struct
*latest_task
= NULL
;
2008 struct ptr_heap tmp_heap
;
2009 struct ptr_heap
*heap
;
2010 struct timespec latest_time
= { 0, 0 };
2013 /* The caller supplied our heap and pre-allocated its memory */
2015 heap
->gt
= &started_after
;
2017 /* We need to allocate our own heap memory */
2019 retval
= heap_init(heap
, PAGE_SIZE
, GFP_KERNEL
, &started_after
);
2021 /* cannot allocate the heap */
2027 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2028 * to determine which are of interest, and using the scanner's
2029 * "process_task" callback to process any of them that need an update.
2030 * Since we don't want to hold any locks during the task updates,
2031 * gather tasks to be processed in a heap structure.
2032 * The heap is sorted by descending task start time.
2033 * If the statically-sized heap fills up, we overflow tasks that
2034 * started later, and in future iterations only consider tasks that
2035 * started after the latest task in the previous pass. This
2036 * guarantees forward progress and that we don't miss any tasks.
2039 cgroup_iter_start(scan
->cg
, &it
);
2040 while ((p
= cgroup_iter_next(scan
->cg
, &it
))) {
2042 * Only affect tasks that qualify per the caller's callback,
2043 * if he provided one
2045 if (scan
->test_task
&& !scan
->test_task(p
, scan
))
2048 * Only process tasks that started after the last task
2051 if (!started_after_time(p
, &latest_time
, latest_task
))
2053 dropped
= heap_insert(heap
, p
);
2054 if (dropped
== NULL
) {
2056 * The new task was inserted; the heap wasn't
2060 } else if (dropped
!= p
) {
2062 * The new task was inserted, and pushed out a
2066 put_task_struct(dropped
);
2069 * Else the new task was newer than anything already in
2070 * the heap and wasn't inserted
2073 cgroup_iter_end(scan
->cg
, &it
);
2076 for (i
= 0; i
< heap
->size
; i
++) {
2077 struct task_struct
*q
= heap
->ptrs
[i
];
2079 latest_time
= q
->start_time
;
2082 /* Process the task per the caller's callback */
2083 scan
->process_task(q
, scan
);
2087 * If we had to process any tasks at all, scan again
2088 * in case some of them were in the middle of forking
2089 * children that didn't get processed.
2090 * Not the most efficient way to do it, but it avoids
2091 * having to take callback_mutex in the fork path
2095 if (heap
== &tmp_heap
)
2096 heap_free(&tmp_heap
);
2101 * Stuff for reading the 'tasks' file.
2103 * Reading this file can return large amounts of data if a cgroup has
2104 * *lots* of attached tasks. So it may need several calls to read(),
2105 * but we cannot guarantee that the information we produce is correct
2106 * unless we produce it entirely atomically.
2111 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2112 * 'cgrp'. Return actual number of pids loaded. No need to
2113 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2114 * read section, so the css_set can't go away, and is
2115 * immutable after creation.
2117 static int pid_array_load(pid_t
*pidarray
, int npids
, struct cgroup
*cgrp
)
2120 struct cgroup_iter it
;
2121 struct task_struct
*tsk
;
2122 cgroup_iter_start(cgrp
, &it
);
2123 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2124 if (unlikely(n
== npids
))
2126 pid
= task_pid_vnr(tsk
);
2128 pidarray
[n
++] = pid
;
2130 cgroup_iter_end(cgrp
, &it
);
2135 * cgroupstats_build - build and fill cgroupstats
2136 * @stats: cgroupstats to fill information into
2137 * @dentry: A dentry entry belonging to the cgroup for which stats have
2140 * Build and fill cgroupstats so that taskstats can export it to user
2143 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
2146 struct cgroup
*cgrp
;
2147 struct cgroup_iter it
;
2148 struct task_struct
*tsk
;
2151 * Validate dentry by checking the superblock operations,
2152 * and make sure it's a directory.
2154 if (dentry
->d_sb
->s_op
!= &cgroup_ops
||
2155 !S_ISDIR(dentry
->d_inode
->i_mode
))
2159 cgrp
= dentry
->d_fsdata
;
2161 cgroup_iter_start(cgrp
, &it
);
2162 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2163 switch (tsk
->state
) {
2165 stats
->nr_running
++;
2167 case TASK_INTERRUPTIBLE
:
2168 stats
->nr_sleeping
++;
2170 case TASK_UNINTERRUPTIBLE
:
2171 stats
->nr_uninterruptible
++;
2174 stats
->nr_stopped
++;
2177 if (delayacct_is_task_waiting_on_io(tsk
))
2178 stats
->nr_io_wait
++;
2182 cgroup_iter_end(cgrp
, &it
);
2188 static int cmppid(const void *a
, const void *b
)
2190 return *(pid_t
*)a
- *(pid_t
*)b
;
2195 * seq_file methods for the "tasks" file. The seq_file position is the
2196 * next pid to display; the seq_file iterator is a pointer to the pid
2197 * in the cgroup->tasks_pids array.
2200 static void *cgroup_tasks_start(struct seq_file
*s
, loff_t
*pos
)
2203 * Initially we receive a position value that corresponds to
2204 * one more than the last pid shown (or 0 on the first call or
2205 * after a seek to the start). Use a binary-search to find the
2206 * next pid to display, if any
2208 struct cgroup
*cgrp
= s
->private;
2209 int index
= 0, pid
= *pos
;
2212 down_read(&cgrp
->pids_mutex
);
2214 int end
= cgrp
->pids_length
;
2216 while (index
< end
) {
2217 int mid
= (index
+ end
) / 2;
2218 if (cgrp
->tasks_pids
[mid
] == pid
) {
2221 } else if (cgrp
->tasks_pids
[mid
] <= pid
)
2227 /* If we're off the end of the array, we're done */
2228 if (index
>= cgrp
->pids_length
)
2230 /* Update the abstract position to be the actual pid that we found */
2231 iter
= cgrp
->tasks_pids
+ index
;
2236 static void cgroup_tasks_stop(struct seq_file
*s
, void *v
)
2238 struct cgroup
*cgrp
= s
->private;
2239 up_read(&cgrp
->pids_mutex
);
2242 static void *cgroup_tasks_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
2244 struct cgroup
*cgrp
= s
->private;
2246 int *end
= cgrp
->tasks_pids
+ cgrp
->pids_length
;
2249 * Advance to the next pid in the array. If this goes off the
2261 static int cgroup_tasks_show(struct seq_file
*s
, void *v
)
2263 return seq_printf(s
, "%d\n", *(int *)v
);
2266 static struct seq_operations cgroup_tasks_seq_operations
= {
2267 .start
= cgroup_tasks_start
,
2268 .stop
= cgroup_tasks_stop
,
2269 .next
= cgroup_tasks_next
,
2270 .show
= cgroup_tasks_show
,
2273 static void release_cgroup_pid_array(struct cgroup
*cgrp
)
2275 down_write(&cgrp
->pids_mutex
);
2276 BUG_ON(!cgrp
->pids_use_count
);
2277 if (!--cgrp
->pids_use_count
) {
2278 kfree(cgrp
->tasks_pids
);
2279 cgrp
->tasks_pids
= NULL
;
2280 cgrp
->pids_length
= 0;
2282 up_write(&cgrp
->pids_mutex
);
2285 static int cgroup_tasks_release(struct inode
*inode
, struct file
*file
)
2287 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2289 if (!(file
->f_mode
& FMODE_READ
))
2292 release_cgroup_pid_array(cgrp
);
2293 return seq_release(inode
, file
);
2296 static struct file_operations cgroup_tasks_operations
= {
2298 .llseek
= seq_lseek
,
2299 .write
= cgroup_file_write
,
2300 .release
= cgroup_tasks_release
,
2304 * Handle an open on 'tasks' file. Prepare an array containing the
2305 * process id's of tasks currently attached to the cgroup being opened.
2308 static int cgroup_tasks_open(struct inode
*unused
, struct file
*file
)
2310 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2315 /* Nothing to do for write-only files */
2316 if (!(file
->f_mode
& FMODE_READ
))
2320 * If cgroup gets more users after we read count, we won't have
2321 * enough space - tough. This race is indistinguishable to the
2322 * caller from the case that the additional cgroup users didn't
2323 * show up until sometime later on.
2325 npids
= cgroup_task_count(cgrp
);
2326 pidarray
= kmalloc(npids
* sizeof(pid_t
), GFP_KERNEL
);
2329 npids
= pid_array_load(pidarray
, npids
, cgrp
);
2330 sort(pidarray
, npids
, sizeof(pid_t
), cmppid
, NULL
);
2333 * Store the array in the cgroup, freeing the old
2334 * array if necessary
2336 down_write(&cgrp
->pids_mutex
);
2337 kfree(cgrp
->tasks_pids
);
2338 cgrp
->tasks_pids
= pidarray
;
2339 cgrp
->pids_length
= npids
;
2340 cgrp
->pids_use_count
++;
2341 up_write(&cgrp
->pids_mutex
);
2343 file
->f_op
= &cgroup_tasks_operations
;
2345 retval
= seq_open(file
, &cgroup_tasks_seq_operations
);
2347 release_cgroup_pid_array(cgrp
);
2350 ((struct seq_file
*)file
->private_data
)->private = cgrp
;
2354 static u64
cgroup_read_notify_on_release(struct cgroup
*cgrp
,
2357 return notify_on_release(cgrp
);
2360 static int cgroup_write_notify_on_release(struct cgroup
*cgrp
,
2364 clear_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
2366 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
2368 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
2373 * for the common functions, 'private' gives the type of file
2375 static struct cftype files
[] = {
2378 .open
= cgroup_tasks_open
,
2379 .write_u64
= cgroup_tasks_write
,
2380 .release
= cgroup_tasks_release
,
2381 .private = FILE_TASKLIST
,
2382 .mode
= S_IRUGO
| S_IWUSR
,
2386 .name
= "notify_on_release",
2387 .read_u64
= cgroup_read_notify_on_release
,
2388 .write_u64
= cgroup_write_notify_on_release
,
2389 .private = FILE_NOTIFY_ON_RELEASE
,
2393 static struct cftype cft_release_agent
= {
2394 .name
= "release_agent",
2395 .read_seq_string
= cgroup_release_agent_show
,
2396 .write_string
= cgroup_release_agent_write
,
2397 .max_write_len
= PATH_MAX
,
2398 .private = FILE_RELEASE_AGENT
,
2401 static int cgroup_populate_dir(struct cgroup
*cgrp
)
2404 struct cgroup_subsys
*ss
;
2406 /* First clear out any existing files */
2407 cgroup_clear_directory(cgrp
->dentry
);
2409 err
= cgroup_add_files(cgrp
, NULL
, files
, ARRAY_SIZE(files
));
2413 if (cgrp
== cgrp
->top_cgroup
) {
2414 if ((err
= cgroup_add_file(cgrp
, NULL
, &cft_release_agent
)) < 0)
2418 for_each_subsys(cgrp
->root
, ss
) {
2419 if (ss
->populate
&& (err
= ss
->populate(ss
, cgrp
)) < 0)
2422 /* This cgroup is ready now */
2423 for_each_subsys(cgrp
->root
, ss
) {
2424 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
2426 * Update id->css pointer and make this css visible from
2427 * CSS ID functions. This pointer will be dereferened
2428 * from RCU-read-side without locks.
2431 rcu_assign_pointer(css
->id
->css
, css
);
2437 static void init_cgroup_css(struct cgroup_subsys_state
*css
,
2438 struct cgroup_subsys
*ss
,
2439 struct cgroup
*cgrp
)
2442 atomic_set(&css
->refcnt
, 1);
2445 if (cgrp
== dummytop
)
2446 set_bit(CSS_ROOT
, &css
->flags
);
2447 BUG_ON(cgrp
->subsys
[ss
->subsys_id
]);
2448 cgrp
->subsys
[ss
->subsys_id
] = css
;
2451 static void cgroup_lock_hierarchy(struct cgroupfs_root
*root
)
2453 /* We need to take each hierarchy_mutex in a consistent order */
2456 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2457 struct cgroup_subsys
*ss
= subsys
[i
];
2458 if (ss
->root
== root
)
2459 mutex_lock(&ss
->hierarchy_mutex
);
2463 static void cgroup_unlock_hierarchy(struct cgroupfs_root
*root
)
2467 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2468 struct cgroup_subsys
*ss
= subsys
[i
];
2469 if (ss
->root
== root
)
2470 mutex_unlock(&ss
->hierarchy_mutex
);
2475 * cgroup_create - create a cgroup
2476 * @parent: cgroup that will be parent of the new cgroup
2477 * @dentry: dentry of the new cgroup
2478 * @mode: mode to set on new inode
2480 * Must be called with the mutex on the parent inode held
2482 static long cgroup_create(struct cgroup
*parent
, struct dentry
*dentry
,
2485 struct cgroup
*cgrp
;
2486 struct cgroupfs_root
*root
= parent
->root
;
2488 struct cgroup_subsys
*ss
;
2489 struct super_block
*sb
= root
->sb
;
2491 cgrp
= kzalloc(sizeof(*cgrp
), GFP_KERNEL
);
2495 /* Grab a reference on the superblock so the hierarchy doesn't
2496 * get deleted on unmount if there are child cgroups. This
2497 * can be done outside cgroup_mutex, since the sb can't
2498 * disappear while someone has an open control file on the
2500 atomic_inc(&sb
->s_active
);
2502 mutex_lock(&cgroup_mutex
);
2504 init_cgroup_housekeeping(cgrp
);
2506 cgrp
->parent
= parent
;
2507 cgrp
->root
= parent
->root
;
2508 cgrp
->top_cgroup
= parent
->top_cgroup
;
2510 if (notify_on_release(parent
))
2511 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
2513 for_each_subsys(root
, ss
) {
2514 struct cgroup_subsys_state
*css
= ss
->create(ss
, cgrp
);
2519 init_cgroup_css(css
, ss
, cgrp
);
2521 if (alloc_css_id(ss
, parent
, cgrp
))
2523 /* At error, ->destroy() callback has to free assigned ID. */
2526 cgroup_lock_hierarchy(root
);
2527 list_add(&cgrp
->sibling
, &cgrp
->parent
->children
);
2528 cgroup_unlock_hierarchy(root
);
2529 root
->number_of_cgroups
++;
2531 err
= cgroup_create_dir(cgrp
, dentry
, mode
);
2535 /* The cgroup directory was pre-locked for us */
2536 BUG_ON(!mutex_is_locked(&cgrp
->dentry
->d_inode
->i_mutex
));
2538 err
= cgroup_populate_dir(cgrp
);
2539 /* If err < 0, we have a half-filled directory - oh well ;) */
2541 mutex_unlock(&cgroup_mutex
);
2542 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
2548 cgroup_lock_hierarchy(root
);
2549 list_del(&cgrp
->sibling
);
2550 cgroup_unlock_hierarchy(root
);
2551 root
->number_of_cgroups
--;
2555 for_each_subsys(root
, ss
) {
2556 if (cgrp
->subsys
[ss
->subsys_id
])
2557 ss
->destroy(ss
, cgrp
);
2560 mutex_unlock(&cgroup_mutex
);
2562 /* Release the reference count that we took on the superblock */
2563 deactivate_super(sb
);
2569 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
2571 struct cgroup
*c_parent
= dentry
->d_parent
->d_fsdata
;
2573 /* the vfs holds inode->i_mutex already */
2574 return cgroup_create(c_parent
, dentry
, mode
| S_IFDIR
);
2577 static int cgroup_has_css_refs(struct cgroup
*cgrp
)
2579 /* Check the reference count on each subsystem. Since we
2580 * already established that there are no tasks in the
2581 * cgroup, if the css refcount is also 1, then there should
2582 * be no outstanding references, so the subsystem is safe to
2583 * destroy. We scan across all subsystems rather than using
2584 * the per-hierarchy linked list of mounted subsystems since
2585 * we can be called via check_for_release() with no
2586 * synchronization other than RCU, and the subsystem linked
2587 * list isn't RCU-safe */
2589 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2590 struct cgroup_subsys
*ss
= subsys
[i
];
2591 struct cgroup_subsys_state
*css
;
2592 /* Skip subsystems not in this hierarchy */
2593 if (ss
->root
!= cgrp
->root
)
2595 css
= cgrp
->subsys
[ss
->subsys_id
];
2596 /* When called from check_for_release() it's possible
2597 * that by this point the cgroup has been removed
2598 * and the css deleted. But a false-positive doesn't
2599 * matter, since it can only happen if the cgroup
2600 * has been deleted and hence no longer needs the
2601 * release agent to be called anyway. */
2602 if (css
&& (atomic_read(&css
->refcnt
) > 1))
2609 * Atomically mark all (or else none) of the cgroup's CSS objects as
2610 * CSS_REMOVED. Return true on success, or false if the cgroup has
2611 * busy subsystems. Call with cgroup_mutex held
2614 static int cgroup_clear_css_refs(struct cgroup
*cgrp
)
2616 struct cgroup_subsys
*ss
;
2617 unsigned long flags
;
2618 bool failed
= false;
2619 local_irq_save(flags
);
2620 for_each_subsys(cgrp
->root
, ss
) {
2621 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
2624 /* We can only remove a CSS with a refcnt==1 */
2625 refcnt
= atomic_read(&css
->refcnt
);
2632 * Drop the refcnt to 0 while we check other
2633 * subsystems. This will cause any racing
2634 * css_tryget() to spin until we set the
2635 * CSS_REMOVED bits or abort
2637 if (atomic_cmpxchg(&css
->refcnt
, refcnt
, 0) == refcnt
)
2643 for_each_subsys(cgrp
->root
, ss
) {
2644 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
2647 * Restore old refcnt if we previously managed
2648 * to clear it from 1 to 0
2650 if (!atomic_read(&css
->refcnt
))
2651 atomic_set(&css
->refcnt
, 1);
2653 /* Commit the fact that the CSS is removed */
2654 set_bit(CSS_REMOVED
, &css
->flags
);
2657 local_irq_restore(flags
);
2661 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
)
2663 struct cgroup
*cgrp
= dentry
->d_fsdata
;
2665 struct cgroup
*parent
;
2669 /* the vfs holds both inode->i_mutex already */
2671 mutex_lock(&cgroup_mutex
);
2672 if (atomic_read(&cgrp
->count
) != 0) {
2673 mutex_unlock(&cgroup_mutex
);
2676 if (!list_empty(&cgrp
->children
)) {
2677 mutex_unlock(&cgroup_mutex
);
2680 mutex_unlock(&cgroup_mutex
);
2683 * Call pre_destroy handlers of subsys. Notify subsystems
2684 * that rmdir() request comes.
2686 ret
= cgroup_call_pre_destroy(cgrp
);
2690 mutex_lock(&cgroup_mutex
);
2691 parent
= cgrp
->parent
;
2692 if (atomic_read(&cgrp
->count
) || !list_empty(&cgrp
->children
)) {
2693 mutex_unlock(&cgroup_mutex
);
2697 * css_put/get is provided for subsys to grab refcnt to css. In typical
2698 * case, subsystem has no reference after pre_destroy(). But, under
2699 * hierarchy management, some *temporal* refcnt can be hold.
2700 * To avoid returning -EBUSY to a user, waitqueue is used. If subsys
2701 * is really busy, it should return -EBUSY at pre_destroy(). wake_up
2702 * is called when css_put() is called and refcnt goes down to 0.
2704 set_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
2705 prepare_to_wait(&cgroup_rmdir_waitq
, &wait
, TASK_INTERRUPTIBLE
);
2707 if (!cgroup_clear_css_refs(cgrp
)) {
2708 mutex_unlock(&cgroup_mutex
);
2710 finish_wait(&cgroup_rmdir_waitq
, &wait
);
2711 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
2712 if (signal_pending(current
))
2716 /* NO css_tryget() can success after here. */
2717 finish_wait(&cgroup_rmdir_waitq
, &wait
);
2718 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
2720 spin_lock(&release_list_lock
);
2721 set_bit(CGRP_REMOVED
, &cgrp
->flags
);
2722 if (!list_empty(&cgrp
->release_list
))
2723 list_del(&cgrp
->release_list
);
2724 spin_unlock(&release_list_lock
);
2726 cgroup_lock_hierarchy(cgrp
->root
);
2727 /* delete this cgroup from parent->children */
2728 list_del(&cgrp
->sibling
);
2729 cgroup_unlock_hierarchy(cgrp
->root
);
2731 spin_lock(&cgrp
->dentry
->d_lock
);
2732 d
= dget(cgrp
->dentry
);
2733 spin_unlock(&d
->d_lock
);
2735 cgroup_d_remove_dir(d
);
2738 set_bit(CGRP_RELEASABLE
, &parent
->flags
);
2739 check_for_release(parent
);
2741 mutex_unlock(&cgroup_mutex
);
2745 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
)
2747 struct cgroup_subsys_state
*css
;
2749 printk(KERN_INFO
"Initializing cgroup subsys %s\n", ss
->name
);
2751 /* Create the top cgroup state for this subsystem */
2752 list_add(&ss
->sibling
, &rootnode
.subsys_list
);
2753 ss
->root
= &rootnode
;
2754 css
= ss
->create(ss
, dummytop
);
2755 /* We don't handle early failures gracefully */
2756 BUG_ON(IS_ERR(css
));
2757 init_cgroup_css(css
, ss
, dummytop
);
2759 /* Update the init_css_set to contain a subsys
2760 * pointer to this state - since the subsystem is
2761 * newly registered, all tasks and hence the
2762 * init_css_set is in the subsystem's top cgroup. */
2763 init_css_set
.subsys
[ss
->subsys_id
] = dummytop
->subsys
[ss
->subsys_id
];
2765 need_forkexit_callback
|= ss
->fork
|| ss
->exit
;
2767 /* At system boot, before all subsystems have been
2768 * registered, no tasks have been forked, so we don't
2769 * need to invoke fork callbacks here. */
2770 BUG_ON(!list_empty(&init_task
.tasks
));
2772 mutex_init(&ss
->hierarchy_mutex
);
2773 lockdep_set_class(&ss
->hierarchy_mutex
, &ss
->subsys_key
);
2778 * cgroup_init_early - cgroup initialization at system boot
2780 * Initialize cgroups at system boot, and initialize any
2781 * subsystems that request early init.
2783 int __init
cgroup_init_early(void)
2786 atomic_set(&init_css_set
.refcount
, 1);
2787 INIT_LIST_HEAD(&init_css_set
.cg_links
);
2788 INIT_LIST_HEAD(&init_css_set
.tasks
);
2789 INIT_HLIST_NODE(&init_css_set
.hlist
);
2791 init_cgroup_root(&rootnode
);
2793 init_task
.cgroups
= &init_css_set
;
2795 init_css_set_link
.cg
= &init_css_set
;
2796 list_add(&init_css_set_link
.cgrp_link_list
,
2797 &rootnode
.top_cgroup
.css_sets
);
2798 list_add(&init_css_set_link
.cg_link_list
,
2799 &init_css_set
.cg_links
);
2801 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++)
2802 INIT_HLIST_HEAD(&css_set_table
[i
]);
2804 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2805 struct cgroup_subsys
*ss
= subsys
[i
];
2808 BUG_ON(strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
);
2809 BUG_ON(!ss
->create
);
2810 BUG_ON(!ss
->destroy
);
2811 if (ss
->subsys_id
!= i
) {
2812 printk(KERN_ERR
"cgroup: Subsys %s id == %d\n",
2813 ss
->name
, ss
->subsys_id
);
2818 cgroup_init_subsys(ss
);
2824 * cgroup_init - cgroup initialization
2826 * Register cgroup filesystem and /proc file, and initialize
2827 * any subsystems that didn't request early init.
2829 int __init
cgroup_init(void)
2833 struct hlist_head
*hhead
;
2835 err
= bdi_init(&cgroup_backing_dev_info
);
2839 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2840 struct cgroup_subsys
*ss
= subsys
[i
];
2841 if (!ss
->early_init
)
2842 cgroup_init_subsys(ss
);
2844 cgroup_subsys_init_idr(ss
);
2847 /* Add init_css_set to the hash table */
2848 hhead
= css_set_hash(init_css_set
.subsys
);
2849 hlist_add_head(&init_css_set
.hlist
, hhead
);
2851 err
= register_filesystem(&cgroup_fs_type
);
2855 proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
);
2859 bdi_destroy(&cgroup_backing_dev_info
);
2865 * proc_cgroup_show()
2866 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2867 * - Used for /proc/<pid>/cgroup.
2868 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2869 * doesn't really matter if tsk->cgroup changes after we read it,
2870 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2871 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2872 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2873 * cgroup to top_cgroup.
2876 /* TODO: Use a proper seq_file iterator */
2877 static int proc_cgroup_show(struct seq_file
*m
, void *v
)
2880 struct task_struct
*tsk
;
2883 struct cgroupfs_root
*root
;
2886 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2892 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
2898 mutex_lock(&cgroup_mutex
);
2900 for_each_active_root(root
) {
2901 struct cgroup_subsys
*ss
;
2902 struct cgroup
*cgrp
;
2906 seq_printf(m
, "%lu:", root
->subsys_bits
);
2907 for_each_subsys(root
, ss
)
2908 seq_printf(m
, "%s%s", count
++ ? "," : "", ss
->name
);
2910 get_first_subsys(&root
->top_cgroup
, NULL
, &subsys_id
);
2911 cgrp
= task_cgroup(tsk
, subsys_id
);
2912 retval
= cgroup_path(cgrp
, buf
, PAGE_SIZE
);
2920 mutex_unlock(&cgroup_mutex
);
2921 put_task_struct(tsk
);
2928 static int cgroup_open(struct inode
*inode
, struct file
*file
)
2930 struct pid
*pid
= PROC_I(inode
)->pid
;
2931 return single_open(file
, proc_cgroup_show
, pid
);
2934 struct file_operations proc_cgroup_operations
= {
2935 .open
= cgroup_open
,
2937 .llseek
= seq_lseek
,
2938 .release
= single_release
,
2941 /* Display information about each subsystem and each hierarchy */
2942 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
2946 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2947 mutex_lock(&cgroup_mutex
);
2948 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2949 struct cgroup_subsys
*ss
= subsys
[i
];
2950 seq_printf(m
, "%s\t%lu\t%d\t%d\n",
2951 ss
->name
, ss
->root
->subsys_bits
,
2952 ss
->root
->number_of_cgroups
, !ss
->disabled
);
2954 mutex_unlock(&cgroup_mutex
);
2958 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
2960 return single_open(file
, proc_cgroupstats_show
, NULL
);
2963 static struct file_operations proc_cgroupstats_operations
= {
2964 .open
= cgroupstats_open
,
2966 .llseek
= seq_lseek
,
2967 .release
= single_release
,
2971 * cgroup_fork - attach newly forked task to its parents cgroup.
2972 * @child: pointer to task_struct of forking parent process.
2974 * Description: A task inherits its parent's cgroup at fork().
2976 * A pointer to the shared css_set was automatically copied in
2977 * fork.c by dup_task_struct(). However, we ignore that copy, since
2978 * it was not made under the protection of RCU or cgroup_mutex, so
2979 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
2980 * have already changed current->cgroups, allowing the previously
2981 * referenced cgroup group to be removed and freed.
2983 * At the point that cgroup_fork() is called, 'current' is the parent
2984 * task, and the passed argument 'child' points to the child task.
2986 void cgroup_fork(struct task_struct
*child
)
2989 child
->cgroups
= current
->cgroups
;
2990 get_css_set(child
->cgroups
);
2991 task_unlock(current
);
2992 INIT_LIST_HEAD(&child
->cg_list
);
2996 * cgroup_fork_callbacks - run fork callbacks
2997 * @child: the new task
2999 * Called on a new task very soon before adding it to the
3000 * tasklist. No need to take any locks since no-one can
3001 * be operating on this task.
3003 void cgroup_fork_callbacks(struct task_struct
*child
)
3005 if (need_forkexit_callback
) {
3007 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3008 struct cgroup_subsys
*ss
= subsys
[i
];
3010 ss
->fork(ss
, child
);
3016 * cgroup_post_fork - called on a new task after adding it to the task list
3017 * @child: the task in question
3019 * Adds the task to the list running through its css_set if necessary.
3020 * Has to be after the task is visible on the task list in case we race
3021 * with the first call to cgroup_iter_start() - to guarantee that the
3022 * new task ends up on its list.
3024 void cgroup_post_fork(struct task_struct
*child
)
3026 if (use_task_css_set_links
) {
3027 write_lock(&css_set_lock
);
3029 if (list_empty(&child
->cg_list
))
3030 list_add(&child
->cg_list
, &child
->cgroups
->tasks
);
3032 write_unlock(&css_set_lock
);
3036 * cgroup_exit - detach cgroup from exiting task
3037 * @tsk: pointer to task_struct of exiting process
3038 * @run_callback: run exit callbacks?
3040 * Description: Detach cgroup from @tsk and release it.
3042 * Note that cgroups marked notify_on_release force every task in
3043 * them to take the global cgroup_mutex mutex when exiting.
3044 * This could impact scaling on very large systems. Be reluctant to
3045 * use notify_on_release cgroups where very high task exit scaling
3046 * is required on large systems.
3048 * the_top_cgroup_hack:
3050 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
3052 * We call cgroup_exit() while the task is still competent to
3053 * handle notify_on_release(), then leave the task attached to the
3054 * root cgroup in each hierarchy for the remainder of its exit.
3056 * To do this properly, we would increment the reference count on
3057 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
3058 * code we would add a second cgroup function call, to drop that
3059 * reference. This would just create an unnecessary hot spot on
3060 * the top_cgroup reference count, to no avail.
3062 * Normally, holding a reference to a cgroup without bumping its
3063 * count is unsafe. The cgroup could go away, or someone could
3064 * attach us to a different cgroup, decrementing the count on
3065 * the first cgroup that we never incremented. But in this case,
3066 * top_cgroup isn't going away, and either task has PF_EXITING set,
3067 * which wards off any cgroup_attach_task() attempts, or task is a failed
3068 * fork, never visible to cgroup_attach_task.
3070 void cgroup_exit(struct task_struct
*tsk
, int run_callbacks
)
3075 if (run_callbacks
&& need_forkexit_callback
) {
3076 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3077 struct cgroup_subsys
*ss
= subsys
[i
];
3084 * Unlink from the css_set task list if necessary.
3085 * Optimistically check cg_list before taking
3088 if (!list_empty(&tsk
->cg_list
)) {
3089 write_lock(&css_set_lock
);
3090 if (!list_empty(&tsk
->cg_list
))
3091 list_del(&tsk
->cg_list
);
3092 write_unlock(&css_set_lock
);
3095 /* Reassign the task to the init_css_set. */
3098 tsk
->cgroups
= &init_css_set
;
3101 put_css_set_taskexit(cg
);
3105 * cgroup_clone - clone the cgroup the given subsystem is attached to
3106 * @tsk: the task to be moved
3107 * @subsys: the given subsystem
3108 * @nodename: the name for the new cgroup
3110 * Duplicate the current cgroup in the hierarchy that the given
3111 * subsystem is attached to, and move this task into the new
3114 int cgroup_clone(struct task_struct
*tsk
, struct cgroup_subsys
*subsys
,
3117 struct dentry
*dentry
;
3119 struct cgroup
*parent
, *child
;
3120 struct inode
*inode
;
3122 struct cgroupfs_root
*root
;
3123 struct cgroup_subsys
*ss
;
3125 /* We shouldn't be called by an unregistered subsystem */
3126 BUG_ON(!subsys
->active
);
3128 /* First figure out what hierarchy and cgroup we're dealing
3129 * with, and pin them so we can drop cgroup_mutex */
3130 mutex_lock(&cgroup_mutex
);
3132 root
= subsys
->root
;
3133 if (root
== &rootnode
) {
3134 mutex_unlock(&cgroup_mutex
);
3138 /* Pin the hierarchy */
3139 if (!atomic_inc_not_zero(&root
->sb
->s_active
)) {
3140 /* We race with the final deactivate_super() */
3141 mutex_unlock(&cgroup_mutex
);
3145 /* Keep the cgroup alive */
3147 parent
= task_cgroup(tsk
, subsys
->subsys_id
);
3152 mutex_unlock(&cgroup_mutex
);
3154 /* Now do the VFS work to create a cgroup */
3155 inode
= parent
->dentry
->d_inode
;
3157 /* Hold the parent directory mutex across this operation to
3158 * stop anyone else deleting the new cgroup */
3159 mutex_lock(&inode
->i_mutex
);
3160 dentry
= lookup_one_len(nodename
, parent
->dentry
, strlen(nodename
));
3161 if (IS_ERR(dentry
)) {
3163 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename
,
3165 ret
= PTR_ERR(dentry
);
3169 /* Create the cgroup directory, which also creates the cgroup */
3170 ret
= vfs_mkdir(inode
, dentry
, 0755);
3171 child
= __d_cgrp(dentry
);
3175 "Failed to create cgroup %s: %d\n", nodename
,
3180 /* The cgroup now exists. Retake cgroup_mutex and check
3181 * that we're still in the same state that we thought we
3183 mutex_lock(&cgroup_mutex
);
3184 if ((root
!= subsys
->root
) ||
3185 (parent
!= task_cgroup(tsk
, subsys
->subsys_id
))) {
3186 /* Aargh, we raced ... */
3187 mutex_unlock(&inode
->i_mutex
);
3190 deactivate_super(root
->sb
);
3191 /* The cgroup is still accessible in the VFS, but
3192 * we're not going to try to rmdir() it at this
3195 "Race in cgroup_clone() - leaking cgroup %s\n",
3200 /* do any required auto-setup */
3201 for_each_subsys(root
, ss
) {
3203 ss
->post_clone(ss
, child
);
3206 /* All seems fine. Finish by moving the task into the new cgroup */
3207 ret
= cgroup_attach_task(child
, tsk
);
3208 mutex_unlock(&cgroup_mutex
);
3211 mutex_unlock(&inode
->i_mutex
);
3213 mutex_lock(&cgroup_mutex
);
3215 mutex_unlock(&cgroup_mutex
);
3216 deactivate_super(root
->sb
);
3221 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
3222 * @cgrp: the cgroup in question
3223 * @task: the task in question
3225 * See if @cgrp is a descendant of @task's cgroup in the appropriate
3228 * If we are sending in dummytop, then presumably we are creating
3229 * the top cgroup in the subsystem.
3231 * Called only by the ns (nsproxy) cgroup.
3233 int cgroup_is_descendant(const struct cgroup
*cgrp
, struct task_struct
*task
)
3236 struct cgroup
*target
;
3239 if (cgrp
== dummytop
)
3242 get_first_subsys(cgrp
, NULL
, &subsys_id
);
3243 target
= task_cgroup(task
, subsys_id
);
3244 while (cgrp
!= target
&& cgrp
!= cgrp
->top_cgroup
)
3245 cgrp
= cgrp
->parent
;
3246 ret
= (cgrp
== target
);
3250 static void check_for_release(struct cgroup
*cgrp
)
3252 /* All of these checks rely on RCU to keep the cgroup
3253 * structure alive */
3254 if (cgroup_is_releasable(cgrp
) && !atomic_read(&cgrp
->count
)
3255 && list_empty(&cgrp
->children
) && !cgroup_has_css_refs(cgrp
)) {
3256 /* Control Group is currently removeable. If it's not
3257 * already queued for a userspace notification, queue
3259 int need_schedule_work
= 0;
3260 spin_lock(&release_list_lock
);
3261 if (!cgroup_is_removed(cgrp
) &&
3262 list_empty(&cgrp
->release_list
)) {
3263 list_add(&cgrp
->release_list
, &release_list
);
3264 need_schedule_work
= 1;
3266 spin_unlock(&release_list_lock
);
3267 if (need_schedule_work
)
3268 schedule_work(&release_agent_work
);
3272 void __css_put(struct cgroup_subsys_state
*css
)
3274 struct cgroup
*cgrp
= css
->cgroup
;
3276 if (atomic_dec_return(&css
->refcnt
) == 1) {
3277 if (notify_on_release(cgrp
)) {
3278 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
3279 check_for_release(cgrp
);
3281 cgroup_wakeup_rmdir_waiters(cgrp
);
3287 * Notify userspace when a cgroup is released, by running the
3288 * configured release agent with the name of the cgroup (path
3289 * relative to the root of cgroup file system) as the argument.
3291 * Most likely, this user command will try to rmdir this cgroup.
3293 * This races with the possibility that some other task will be
3294 * attached to this cgroup before it is removed, or that some other
3295 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3296 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3297 * unused, and this cgroup will be reprieved from its death sentence,
3298 * to continue to serve a useful existence. Next time it's released,
3299 * we will get notified again, if it still has 'notify_on_release' set.
3301 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3302 * means only wait until the task is successfully execve()'d. The
3303 * separate release agent task is forked by call_usermodehelper(),
3304 * then control in this thread returns here, without waiting for the
3305 * release agent task. We don't bother to wait because the caller of
3306 * this routine has no use for the exit status of the release agent
3307 * task, so no sense holding our caller up for that.
3309 static void cgroup_release_agent(struct work_struct
*work
)
3311 BUG_ON(work
!= &release_agent_work
);
3312 mutex_lock(&cgroup_mutex
);
3313 spin_lock(&release_list_lock
);
3314 while (!list_empty(&release_list
)) {
3315 char *argv
[3], *envp
[3];
3317 char *pathbuf
= NULL
, *agentbuf
= NULL
;
3318 struct cgroup
*cgrp
= list_entry(release_list
.next
,
3321 list_del_init(&cgrp
->release_list
);
3322 spin_unlock(&release_list_lock
);
3323 pathbuf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3326 if (cgroup_path(cgrp
, pathbuf
, PAGE_SIZE
) < 0)
3328 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
3333 argv
[i
++] = agentbuf
;
3334 argv
[i
++] = pathbuf
;
3338 /* minimal command environment */
3339 envp
[i
++] = "HOME=/";
3340 envp
[i
++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3343 /* Drop the lock while we invoke the usermode helper,
3344 * since the exec could involve hitting disk and hence
3345 * be a slow process */
3346 mutex_unlock(&cgroup_mutex
);
3347 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
3348 mutex_lock(&cgroup_mutex
);
3352 spin_lock(&release_list_lock
);
3354 spin_unlock(&release_list_lock
);
3355 mutex_unlock(&cgroup_mutex
);
3358 static int __init
cgroup_disable(char *str
)
3363 while ((token
= strsep(&str
, ",")) != NULL
) {
3367 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3368 struct cgroup_subsys
*ss
= subsys
[i
];
3370 if (!strcmp(token
, ss
->name
)) {
3372 printk(KERN_INFO
"Disabling %s control group"
3373 " subsystem\n", ss
->name
);
3380 __setup("cgroup_disable=", cgroup_disable
);
3383 * Functons for CSS ID.
3387 *To get ID other than 0, this should be called when !cgroup_is_removed().
3389 unsigned short css_id(struct cgroup_subsys_state
*css
)
3391 struct css_id
*cssid
= rcu_dereference(css
->id
);
3398 unsigned short css_depth(struct cgroup_subsys_state
*css
)
3400 struct css_id
*cssid
= rcu_dereference(css
->id
);
3403 return cssid
->depth
;
3407 bool css_is_ancestor(struct cgroup_subsys_state
*child
,
3408 const struct cgroup_subsys_state
*root
)
3410 struct css_id
*child_id
= rcu_dereference(child
->id
);
3411 struct css_id
*root_id
= rcu_dereference(root
->id
);
3413 if (!child_id
|| !root_id
|| (child_id
->depth
< root_id
->depth
))
3415 return child_id
->stack
[root_id
->depth
] == root_id
->id
;
3418 static void __free_css_id_cb(struct rcu_head
*head
)
3422 id
= container_of(head
, struct css_id
, rcu_head
);
3426 void free_css_id(struct cgroup_subsys
*ss
, struct cgroup_subsys_state
*css
)
3428 struct css_id
*id
= css
->id
;
3429 /* When this is called before css_id initialization, id can be NULL */
3433 BUG_ON(!ss
->use_id
);
3435 rcu_assign_pointer(id
->css
, NULL
);
3436 rcu_assign_pointer(css
->id
, NULL
);
3437 spin_lock(&ss
->id_lock
);
3438 idr_remove(&ss
->idr
, id
->id
);
3439 spin_unlock(&ss
->id_lock
);
3440 call_rcu(&id
->rcu_head
, __free_css_id_cb
);
3444 * This is called by init or create(). Then, calls to this function are
3445 * always serialized (By cgroup_mutex() at create()).
3448 static struct css_id
*get_new_cssid(struct cgroup_subsys
*ss
, int depth
)
3450 struct css_id
*newid
;
3451 int myid
, error
, size
;
3453 BUG_ON(!ss
->use_id
);
3455 size
= sizeof(*newid
) + sizeof(unsigned short) * (depth
+ 1);
3456 newid
= kzalloc(size
, GFP_KERNEL
);
3458 return ERR_PTR(-ENOMEM
);
3460 if (unlikely(!idr_pre_get(&ss
->idr
, GFP_KERNEL
))) {
3464 spin_lock(&ss
->id_lock
);
3465 /* Don't use 0. allocates an ID of 1-65535 */
3466 error
= idr_get_new_above(&ss
->idr
, newid
, 1, &myid
);
3467 spin_unlock(&ss
->id_lock
);
3469 /* Returns error when there are no free spaces for new ID.*/
3474 if (myid
> CSS_ID_MAX
)
3478 newid
->depth
= depth
;
3482 spin_lock(&ss
->id_lock
);
3483 idr_remove(&ss
->idr
, myid
);
3484 spin_unlock(&ss
->id_lock
);
3487 return ERR_PTR(error
);
3491 static int __init
cgroup_subsys_init_idr(struct cgroup_subsys
*ss
)
3493 struct css_id
*newid
;
3494 struct cgroup_subsys_state
*rootcss
;
3496 spin_lock_init(&ss
->id_lock
);
3499 rootcss
= init_css_set
.subsys
[ss
->subsys_id
];
3500 newid
= get_new_cssid(ss
, 0);
3502 return PTR_ERR(newid
);
3504 newid
->stack
[0] = newid
->id
;
3505 newid
->css
= rootcss
;
3506 rootcss
->id
= newid
;
3510 static int alloc_css_id(struct cgroup_subsys
*ss
, struct cgroup
*parent
,
3511 struct cgroup
*child
)
3513 int subsys_id
, i
, depth
= 0;
3514 struct cgroup_subsys_state
*parent_css
, *child_css
;
3515 struct css_id
*child_id
, *parent_id
= NULL
;
3517 subsys_id
= ss
->subsys_id
;
3518 parent_css
= parent
->subsys
[subsys_id
];
3519 child_css
= child
->subsys
[subsys_id
];
3520 depth
= css_depth(parent_css
) + 1;
3521 parent_id
= parent_css
->id
;
3523 child_id
= get_new_cssid(ss
, depth
);
3524 if (IS_ERR(child_id
))
3525 return PTR_ERR(child_id
);
3527 for (i
= 0; i
< depth
; i
++)
3528 child_id
->stack
[i
] = parent_id
->stack
[i
];
3529 child_id
->stack
[depth
] = child_id
->id
;
3531 * child_id->css pointer will be set after this cgroup is available
3532 * see cgroup_populate_dir()
3534 rcu_assign_pointer(child_css
->id
, child_id
);
3540 * css_lookup - lookup css by id
3541 * @ss: cgroup subsys to be looked into.
3544 * Returns pointer to cgroup_subsys_state if there is valid one with id.
3545 * NULL if not. Should be called under rcu_read_lock()
3547 struct cgroup_subsys_state
*css_lookup(struct cgroup_subsys
*ss
, int id
)
3549 struct css_id
*cssid
= NULL
;
3551 BUG_ON(!ss
->use_id
);
3552 cssid
= idr_find(&ss
->idr
, id
);
3554 if (unlikely(!cssid
))
3557 return rcu_dereference(cssid
->css
);
3561 * css_get_next - lookup next cgroup under specified hierarchy.
3562 * @ss: pointer to subsystem
3563 * @id: current position of iteration.
3564 * @root: pointer to css. search tree under this.
3565 * @foundid: position of found object.
3567 * Search next css under the specified hierarchy of rootid. Calling under
3568 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
3570 struct cgroup_subsys_state
*
3571 css_get_next(struct cgroup_subsys
*ss
, int id
,
3572 struct cgroup_subsys_state
*root
, int *foundid
)
3574 struct cgroup_subsys_state
*ret
= NULL
;
3577 int rootid
= css_id(root
);
3578 int depth
= css_depth(root
);
3583 BUG_ON(!ss
->use_id
);
3584 /* fill start point for scan */
3588 * scan next entry from bitmap(tree), tmpid is updated after
3591 spin_lock(&ss
->id_lock
);
3592 tmp
= idr_get_next(&ss
->idr
, &tmpid
);
3593 spin_unlock(&ss
->id_lock
);
3597 if (tmp
->depth
>= depth
&& tmp
->stack
[depth
] == rootid
) {
3598 ret
= rcu_dereference(tmp
->css
);
3604 /* continue to scan from next id */