intelfb: support 945GME (as used in ASUS Eee 901)
[linux-2.6/mini2440.git] / drivers / video / intelfb / intelfbhw.c
blob8b26b27c2db6f5f6ed68853a1ed1f7118e9c7c4d
1 /*
2 * intelfb
4 * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
6 * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7 * 2004 Sylvain Meyer
9 * This driver consists of two parts. The first part (intelfbdrv.c) provides
10 * the basic fbdev interfaces, is derived in part from the radeonfb and
11 * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
12 * provides the code to program the hardware. Most of it is derived from
13 * the i810/i830 XFree86 driver. The HW-specific code is covered here
14 * under a dual license (GPL and MIT/XFree86 license).
16 * Author: David Dawes
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fb.h>
30 #include <linux/ioport.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/interrupt.h>
37 #include <asm/io.h>
39 #include "intelfb.h"
40 #include "intelfbhw.h"
42 struct pll_min_max {
43 int min_m, max_m, min_m1, max_m1;
44 int min_m2, max_m2, min_n, max_n;
45 int min_p, max_p, min_p1, max_p1;
46 int min_vco, max_vco, p_transition_clk, ref_clk;
47 int p_inc_lo, p_inc_hi;
50 #define PLLS_I8xx 0
51 #define PLLS_I9xx 1
52 #define PLLS_MAX 2
54 static struct pll_min_max plls[PLLS_MAX] = {
55 { 108, 140, 18, 26,
56 6, 16, 3, 16,
57 4, 128, 0, 31,
58 930000, 1400000, 165000, 48000,
59 4, 2 }, /* I8xx */
61 { 75, 120, 10, 20,
62 5, 9, 4, 7,
63 5, 80, 1, 8,
64 1400000, 2800000, 200000, 96000,
65 10, 5 } /* I9xx */
68 int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
70 u32 tmp;
71 if (!pdev || !dinfo)
72 return 1;
74 switch (pdev->device) {
75 case PCI_DEVICE_ID_INTEL_830M:
76 dinfo->name = "Intel(R) 830M";
77 dinfo->chipset = INTEL_830M;
78 dinfo->mobile = 1;
79 dinfo->pll_index = PLLS_I8xx;
80 return 0;
81 case PCI_DEVICE_ID_INTEL_845G:
82 dinfo->name = "Intel(R) 845G";
83 dinfo->chipset = INTEL_845G;
84 dinfo->mobile = 0;
85 dinfo->pll_index = PLLS_I8xx;
86 return 0;
87 case PCI_DEVICE_ID_INTEL_85XGM:
88 tmp = 0;
89 dinfo->mobile = 1;
90 dinfo->pll_index = PLLS_I8xx;
91 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
92 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
93 INTEL_85X_VARIANT_MASK) {
94 case INTEL_VAR_855GME:
95 dinfo->name = "Intel(R) 855GME";
96 dinfo->chipset = INTEL_855GME;
97 return 0;
98 case INTEL_VAR_855GM:
99 dinfo->name = "Intel(R) 855GM";
100 dinfo->chipset = INTEL_855GM;
101 return 0;
102 case INTEL_VAR_852GME:
103 dinfo->name = "Intel(R) 852GME";
104 dinfo->chipset = INTEL_852GME;
105 return 0;
106 case INTEL_VAR_852GM:
107 dinfo->name = "Intel(R) 852GM";
108 dinfo->chipset = INTEL_852GM;
109 return 0;
110 default:
111 dinfo->name = "Intel(R) 852GM/855GM";
112 dinfo->chipset = INTEL_85XGM;
113 return 0;
115 break;
116 case PCI_DEVICE_ID_INTEL_865G:
117 dinfo->name = "Intel(R) 865G";
118 dinfo->chipset = INTEL_865G;
119 dinfo->mobile = 0;
120 dinfo->pll_index = PLLS_I8xx;
121 return 0;
122 case PCI_DEVICE_ID_INTEL_915G:
123 dinfo->name = "Intel(R) 915G";
124 dinfo->chipset = INTEL_915G;
125 dinfo->mobile = 0;
126 dinfo->pll_index = PLLS_I9xx;
127 return 0;
128 case PCI_DEVICE_ID_INTEL_915GM:
129 dinfo->name = "Intel(R) 915GM";
130 dinfo->chipset = INTEL_915GM;
131 dinfo->mobile = 1;
132 dinfo->pll_index = PLLS_I9xx;
133 return 0;
134 case PCI_DEVICE_ID_INTEL_945G:
135 dinfo->name = "Intel(R) 945G";
136 dinfo->chipset = INTEL_945G;
137 dinfo->mobile = 0;
138 dinfo->pll_index = PLLS_I9xx;
139 return 0;
140 case PCI_DEVICE_ID_INTEL_945GM:
141 dinfo->name = "Intel(R) 945GM";
142 dinfo->chipset = INTEL_945GM;
143 dinfo->mobile = 1;
144 dinfo->pll_index = PLLS_I9xx;
145 return 0;
146 case PCI_DEVICE_ID_INTEL_945GME:
147 dinfo->name = "Intel(R) 945GME";
148 dinfo->chipset = INTEL_945GME;
149 dinfo->mobile = 1;
150 dinfo->pll_index = PLLS_I9xx;
151 return 0;
152 case PCI_DEVICE_ID_INTEL_965G:
153 dinfo->name = "Intel(R) 965G";
154 dinfo->chipset = INTEL_965G;
155 dinfo->mobile = 0;
156 dinfo->pll_index = PLLS_I9xx;
157 return 0;
158 case PCI_DEVICE_ID_INTEL_965GM:
159 dinfo->name = "Intel(R) 965GM";
160 dinfo->chipset = INTEL_965GM;
161 dinfo->mobile = 1;
162 dinfo->pll_index = PLLS_I9xx;
163 return 0;
164 default:
165 return 1;
169 int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
170 int *stolen_size)
172 struct pci_dev *bridge_dev;
173 u16 tmp;
174 int stolen_overhead;
176 if (!pdev || !aperture_size || !stolen_size)
177 return 1;
179 /* Find the bridge device. It is always 0:0.0 */
180 if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) {
181 ERR_MSG("cannot find bridge device\n");
182 return 1;
185 /* Get the fb aperture size and "stolen" memory amount. */
186 tmp = 0;
187 pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
188 pci_dev_put(bridge_dev);
190 switch (pdev->device) {
191 case PCI_DEVICE_ID_INTEL_915G:
192 case PCI_DEVICE_ID_INTEL_915GM:
193 case PCI_DEVICE_ID_INTEL_945G:
194 case PCI_DEVICE_ID_INTEL_945GM:
195 case PCI_DEVICE_ID_INTEL_945GME:
196 case PCI_DEVICE_ID_INTEL_965G:
197 case PCI_DEVICE_ID_INTEL_965GM:
198 /* 915, 945 and 965 chipsets support a 256MB aperture.
199 Aperture size is determined by inspected the
200 base address of the aperture. */
201 if (pci_resource_start(pdev, 2) & 0x08000000)
202 *aperture_size = MB(128);
203 else
204 *aperture_size = MB(256);
205 break;
206 default:
207 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
208 *aperture_size = MB(64);
209 else
210 *aperture_size = MB(128);
211 break;
214 /* Stolen memory size is reduced by the GTT and the popup.
215 GTT is 1K per MB of aperture size, and popup is 4K. */
216 stolen_overhead = (*aperture_size / MB(1)) + 4;
217 switch(pdev->device) {
218 case PCI_DEVICE_ID_INTEL_830M:
219 case PCI_DEVICE_ID_INTEL_845G:
220 switch (tmp & INTEL_830_GMCH_GMS_MASK) {
221 case INTEL_830_GMCH_GMS_STOLEN_512:
222 *stolen_size = KB(512) - KB(stolen_overhead);
223 return 0;
224 case INTEL_830_GMCH_GMS_STOLEN_1024:
225 *stolen_size = MB(1) - KB(stolen_overhead);
226 return 0;
227 case INTEL_830_GMCH_GMS_STOLEN_8192:
228 *stolen_size = MB(8) - KB(stolen_overhead);
229 return 0;
230 case INTEL_830_GMCH_GMS_LOCAL:
231 ERR_MSG("only local memory found\n");
232 return 1;
233 case INTEL_830_GMCH_GMS_DISABLED:
234 ERR_MSG("video memory is disabled\n");
235 return 1;
236 default:
237 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
238 tmp & INTEL_830_GMCH_GMS_MASK);
239 return 1;
241 break;
242 default:
243 switch (tmp & INTEL_855_GMCH_GMS_MASK) {
244 case INTEL_855_GMCH_GMS_STOLEN_1M:
245 *stolen_size = MB(1) - KB(stolen_overhead);
246 return 0;
247 case INTEL_855_GMCH_GMS_STOLEN_4M:
248 *stolen_size = MB(4) - KB(stolen_overhead);
249 return 0;
250 case INTEL_855_GMCH_GMS_STOLEN_8M:
251 *stolen_size = MB(8) - KB(stolen_overhead);
252 return 0;
253 case INTEL_855_GMCH_GMS_STOLEN_16M:
254 *stolen_size = MB(16) - KB(stolen_overhead);
255 return 0;
256 case INTEL_855_GMCH_GMS_STOLEN_32M:
257 *stolen_size = MB(32) - KB(stolen_overhead);
258 return 0;
259 case INTEL_915G_GMCH_GMS_STOLEN_48M:
260 *stolen_size = MB(48) - KB(stolen_overhead);
261 return 0;
262 case INTEL_915G_GMCH_GMS_STOLEN_64M:
263 *stolen_size = MB(64) - KB(stolen_overhead);
264 return 0;
265 case INTEL_855_GMCH_GMS_DISABLED:
266 ERR_MSG("video memory is disabled\n");
267 return 0;
268 default:
269 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
270 tmp & INTEL_855_GMCH_GMS_MASK);
271 return 1;
276 int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
278 int dvo = 0;
280 if (INREG(LVDS) & PORT_ENABLE)
281 dvo |= LVDS_PORT;
282 if (INREG(DVOA) & PORT_ENABLE)
283 dvo |= DVOA_PORT;
284 if (INREG(DVOB) & PORT_ENABLE)
285 dvo |= DVOB_PORT;
286 if (INREG(DVOC) & PORT_ENABLE)
287 dvo |= DVOC_PORT;
289 return dvo;
292 const char * intelfbhw_dvo_to_string(int dvo)
294 if (dvo & DVOA_PORT)
295 return "DVO port A";
296 else if (dvo & DVOB_PORT)
297 return "DVO port B";
298 else if (dvo & DVOC_PORT)
299 return "DVO port C";
300 else if (dvo & LVDS_PORT)
301 return "LVDS port";
302 else
303 return NULL;
307 int intelfbhw_validate_mode(struct intelfb_info *dinfo,
308 struct fb_var_screeninfo *var)
310 int bytes_per_pixel;
311 int tmp;
313 #if VERBOSE > 0
314 DBG_MSG("intelfbhw_validate_mode\n");
315 #endif
317 bytes_per_pixel = var->bits_per_pixel / 8;
318 if (bytes_per_pixel == 3)
319 bytes_per_pixel = 4;
321 /* Check if enough video memory. */
322 tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
323 if (tmp > dinfo->fb.size) {
324 WRN_MSG("Not enough video ram for mode "
325 "(%d KByte vs %d KByte).\n",
326 BtoKB(tmp), BtoKB(dinfo->fb.size));
327 return 1;
330 /* Check if x/y limits are OK. */
331 if (var->xres - 1 > HACTIVE_MASK) {
332 WRN_MSG("X resolution too large (%d vs %d).\n",
333 var->xres, HACTIVE_MASK + 1);
334 return 1;
336 if (var->yres - 1 > VACTIVE_MASK) {
337 WRN_MSG("Y resolution too large (%d vs %d).\n",
338 var->yres, VACTIVE_MASK + 1);
339 return 1;
341 if (var->xres < 4) {
342 WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
343 return 1;
345 if (var->yres < 4) {
346 WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
347 return 1;
350 /* Check for doublescan modes. */
351 if (var->vmode & FB_VMODE_DOUBLE) {
352 WRN_MSG("Mode is double-scan.\n");
353 return 1;
356 if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
357 WRN_MSG("Odd number of lines in interlaced mode\n");
358 return 1;
361 /* Check if clock is OK. */
362 tmp = 1000000000 / var->pixclock;
363 if (tmp < MIN_CLOCK) {
364 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
365 (tmp + 500) / 1000, MIN_CLOCK / 1000);
366 return 1;
368 if (tmp > MAX_CLOCK) {
369 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
370 (tmp + 500) / 1000, MAX_CLOCK / 1000);
371 return 1;
374 return 0;
377 int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
379 struct intelfb_info *dinfo = GET_DINFO(info);
380 u32 offset, xoffset, yoffset;
382 #if VERBOSE > 0
383 DBG_MSG("intelfbhw_pan_display\n");
384 #endif
386 xoffset = ROUND_DOWN_TO(var->xoffset, 8);
387 yoffset = var->yoffset;
389 if ((xoffset + var->xres > var->xres_virtual) ||
390 (yoffset + var->yres > var->yres_virtual))
391 return -EINVAL;
393 offset = (yoffset * dinfo->pitch) +
394 (xoffset * var->bits_per_pixel) / 8;
396 offset += dinfo->fb.offset << 12;
398 dinfo->vsync.pan_offset = offset;
399 if ((var->activate & FB_ACTIVATE_VBL) &&
400 !intelfbhw_enable_irq(dinfo))
401 dinfo->vsync.pan_display = 1;
402 else {
403 dinfo->vsync.pan_display = 0;
404 OUTREG(DSPABASE, offset);
407 return 0;
410 /* Blank the screen. */
411 void intelfbhw_do_blank(int blank, struct fb_info *info)
413 struct intelfb_info *dinfo = GET_DINFO(info);
414 u32 tmp;
416 #if VERBOSE > 0
417 DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
418 #endif
420 /* Turn plane A on or off */
421 tmp = INREG(DSPACNTR);
422 if (blank)
423 tmp &= ~DISPPLANE_PLANE_ENABLE;
424 else
425 tmp |= DISPPLANE_PLANE_ENABLE;
426 OUTREG(DSPACNTR, tmp);
427 /* Flush */
428 tmp = INREG(DSPABASE);
429 OUTREG(DSPABASE, tmp);
431 /* Turn off/on the HW cursor */
432 #if VERBOSE > 0
433 DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
434 #endif
435 if (dinfo->cursor_on) {
436 if (blank)
437 intelfbhw_cursor_hide(dinfo);
438 else
439 intelfbhw_cursor_show(dinfo);
440 dinfo->cursor_on = 1;
442 dinfo->cursor_blanked = blank;
444 /* Set DPMS level */
445 tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
446 switch (blank) {
447 case FB_BLANK_UNBLANK:
448 case FB_BLANK_NORMAL:
449 tmp |= ADPA_DPMS_D0;
450 break;
451 case FB_BLANK_VSYNC_SUSPEND:
452 tmp |= ADPA_DPMS_D1;
453 break;
454 case FB_BLANK_HSYNC_SUSPEND:
455 tmp |= ADPA_DPMS_D2;
456 break;
457 case FB_BLANK_POWERDOWN:
458 tmp |= ADPA_DPMS_D3;
459 break;
461 OUTREG(ADPA, tmp);
463 return;
467 void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
468 unsigned red, unsigned green, unsigned blue,
469 unsigned transp)
471 u32 palette_reg = (dinfo->pipe == PIPE_A) ?
472 PALETTE_A : PALETTE_B;
474 #if VERBOSE > 0
475 DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
476 regno, red, green, blue);
477 #endif
479 OUTREG(palette_reg + (regno << 2),
480 (red << PALETTE_8_RED_SHIFT) |
481 (green << PALETTE_8_GREEN_SHIFT) |
482 (blue << PALETTE_8_BLUE_SHIFT));
486 int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
487 struct intelfb_hwstate *hw, int flag)
489 int i;
491 #if VERBOSE > 0
492 DBG_MSG("intelfbhw_read_hw_state\n");
493 #endif
495 if (!hw || !dinfo)
496 return -1;
498 /* Read in as much of the HW state as possible. */
499 hw->vga0_divisor = INREG(VGA0_DIVISOR);
500 hw->vga1_divisor = INREG(VGA1_DIVISOR);
501 hw->vga_pd = INREG(VGAPD);
502 hw->dpll_a = INREG(DPLL_A);
503 hw->dpll_b = INREG(DPLL_B);
504 hw->fpa0 = INREG(FPA0);
505 hw->fpa1 = INREG(FPA1);
506 hw->fpb0 = INREG(FPB0);
507 hw->fpb1 = INREG(FPB1);
509 if (flag == 1)
510 return flag;
512 #if 0
513 /* This seems to be a problem with the 852GM/855GM */
514 for (i = 0; i < PALETTE_8_ENTRIES; i++) {
515 hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
516 hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
518 #endif
520 if (flag == 2)
521 return flag;
523 hw->htotal_a = INREG(HTOTAL_A);
524 hw->hblank_a = INREG(HBLANK_A);
525 hw->hsync_a = INREG(HSYNC_A);
526 hw->vtotal_a = INREG(VTOTAL_A);
527 hw->vblank_a = INREG(VBLANK_A);
528 hw->vsync_a = INREG(VSYNC_A);
529 hw->src_size_a = INREG(SRC_SIZE_A);
530 hw->bclrpat_a = INREG(BCLRPAT_A);
531 hw->htotal_b = INREG(HTOTAL_B);
532 hw->hblank_b = INREG(HBLANK_B);
533 hw->hsync_b = INREG(HSYNC_B);
534 hw->vtotal_b = INREG(VTOTAL_B);
535 hw->vblank_b = INREG(VBLANK_B);
536 hw->vsync_b = INREG(VSYNC_B);
537 hw->src_size_b = INREG(SRC_SIZE_B);
538 hw->bclrpat_b = INREG(BCLRPAT_B);
540 if (flag == 3)
541 return flag;
543 hw->adpa = INREG(ADPA);
544 hw->dvoa = INREG(DVOA);
545 hw->dvob = INREG(DVOB);
546 hw->dvoc = INREG(DVOC);
547 hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
548 hw->dvob_srcdim = INREG(DVOB_SRCDIM);
549 hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
550 hw->lvds = INREG(LVDS);
552 if (flag == 4)
553 return flag;
555 hw->pipe_a_conf = INREG(PIPEACONF);
556 hw->pipe_b_conf = INREG(PIPEBCONF);
557 hw->disp_arb = INREG(DISPARB);
559 if (flag == 5)
560 return flag;
562 hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
563 hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
564 hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
565 hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
567 if (flag == 6)
568 return flag;
570 for (i = 0; i < 4; i++) {
571 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
572 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
575 if (flag == 7)
576 return flag;
578 hw->cursor_size = INREG(CURSOR_SIZE);
580 if (flag == 8)
581 return flag;
583 hw->disp_a_ctrl = INREG(DSPACNTR);
584 hw->disp_b_ctrl = INREG(DSPBCNTR);
585 hw->disp_a_base = INREG(DSPABASE);
586 hw->disp_b_base = INREG(DSPBBASE);
587 hw->disp_a_stride = INREG(DSPASTRIDE);
588 hw->disp_b_stride = INREG(DSPBSTRIDE);
590 if (flag == 9)
591 return flag;
593 hw->vgacntrl = INREG(VGACNTRL);
595 if (flag == 10)
596 return flag;
598 hw->add_id = INREG(ADD_ID);
600 if (flag == 11)
601 return flag;
603 for (i = 0; i < 7; i++) {
604 hw->swf0x[i] = INREG(SWF00 + (i << 2));
605 hw->swf1x[i] = INREG(SWF10 + (i << 2));
606 if (i < 3)
607 hw->swf3x[i] = INREG(SWF30 + (i << 2));
610 for (i = 0; i < 8; i++)
611 hw->fence[i] = INREG(FENCE + (i << 2));
613 hw->instpm = INREG(INSTPM);
614 hw->mem_mode = INREG(MEM_MODE);
615 hw->fw_blc_0 = INREG(FW_BLC_0);
616 hw->fw_blc_1 = INREG(FW_BLC_1);
618 hw->hwstam = INREG16(HWSTAM);
619 hw->ier = INREG16(IER);
620 hw->iir = INREG16(IIR);
621 hw->imr = INREG16(IMR);
623 return 0;
627 static int calc_vclock3(int index, int m, int n, int p)
629 if (p == 0 || n == 0)
630 return 0;
631 return plls[index].ref_clk * m / n / p;
634 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
635 int lvds)
637 struct pll_min_max *pll = &plls[index];
638 u32 m, vco, p;
640 m = (5 * (m1 + 2)) + (m2 + 2);
641 n += 2;
642 vco = pll->ref_clk * m / n;
644 if (index == PLLS_I8xx)
645 p = ((p1 + 2) * (1 << (p2 + 1)));
646 else
647 p = ((p1) * (p2 ? 5 : 10));
648 return vco / p;
651 #if REGDUMP
652 static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
653 int *o_p1, int *o_p2)
655 int p1, p2;
657 if (IS_I9XX(dinfo)) {
658 if (dpll & DPLL_P1_FORCE_DIV2)
659 p1 = 1;
660 else
661 p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
663 p1 = ffs(p1);
665 p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
666 } else {
667 if (dpll & DPLL_P1_FORCE_DIV2)
668 p1 = 0;
669 else
670 p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
671 p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
674 *o_p1 = p1;
675 *o_p2 = p2;
677 #endif
680 void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
681 struct intelfb_hwstate *hw)
683 #if REGDUMP
684 int i, m1, m2, n, p1, p2;
685 int index = dinfo->pll_index;
686 DBG_MSG("intelfbhw_print_hw_state\n");
688 if (!hw)
689 return;
690 /* Read in as much of the HW state as possible. */
691 printk("hw state dump start\n");
692 printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
693 printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
694 printk(" VGAPD: 0x%08x\n", hw->vga_pd);
695 n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
696 m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
697 m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
699 intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
701 printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
702 m1, m2, n, p1, p2);
703 printk(" VGA0: clock is %d\n",
704 calc_vclock(index, m1, m2, n, p1, p2, 0));
706 n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
707 m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
708 m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
710 intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
711 printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
712 m1, m2, n, p1, p2);
713 printk(" VGA1: clock is %d\n",
714 calc_vclock(index, m1, m2, n, p1, p2, 0));
716 printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
717 printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
718 printk(" FPA0: 0x%08x\n", hw->fpa0);
719 printk(" FPA1: 0x%08x\n", hw->fpa1);
720 printk(" FPB0: 0x%08x\n", hw->fpb0);
721 printk(" FPB1: 0x%08x\n", hw->fpb1);
723 n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
724 m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
725 m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
727 intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
729 printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
730 m1, m2, n, p1, p2);
731 printk(" PLLA0: clock is %d\n",
732 calc_vclock(index, m1, m2, n, p1, p2, 0));
734 n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
735 m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
736 m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
738 intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
740 printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
741 m1, m2, n, p1, p2);
742 printk(" PLLA1: clock is %d\n",
743 calc_vclock(index, m1, m2, n, p1, p2, 0));
745 #if 0
746 printk(" PALETTE_A:\n");
747 for (i = 0; i < PALETTE_8_ENTRIES)
748 printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
749 printk(" PALETTE_B:\n");
750 for (i = 0; i < PALETTE_8_ENTRIES)
751 printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
752 #endif
754 printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
755 printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
756 printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
757 printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
758 printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
759 printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
760 printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
761 printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
762 printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
763 printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
764 printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
765 printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
766 printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
767 printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
768 printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
769 printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
771 printk(" ADPA: 0x%08x\n", hw->adpa);
772 printk(" DVOA: 0x%08x\n", hw->dvoa);
773 printk(" DVOB: 0x%08x\n", hw->dvob);
774 printk(" DVOC: 0x%08x\n", hw->dvoc);
775 printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
776 printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
777 printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
778 printk(" LVDS: 0x%08x\n", hw->lvds);
780 printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
781 printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
782 printk(" DISPARB: 0x%08x\n", hw->disp_arb);
784 printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
785 printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
786 printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
787 printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
789 printk(" CURSOR_A_PALETTE: ");
790 for (i = 0; i < 4; i++) {
791 printk("0x%08x", hw->cursor_a_palette[i]);
792 if (i < 3)
793 printk(", ");
795 printk("\n");
796 printk(" CURSOR_B_PALETTE: ");
797 for (i = 0; i < 4; i++) {
798 printk("0x%08x", hw->cursor_b_palette[i]);
799 if (i < 3)
800 printk(", ");
802 printk("\n");
804 printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
806 printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
807 printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
808 printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
809 printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
810 printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
811 printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
813 printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
814 printk(" ADD_ID: 0x%08x\n", hw->add_id);
816 for (i = 0; i < 7; i++) {
817 printk(" SWF0%d 0x%08x\n", i,
818 hw->swf0x[i]);
820 for (i = 0; i < 7; i++) {
821 printk(" SWF1%d 0x%08x\n", i,
822 hw->swf1x[i]);
824 for (i = 0; i < 3; i++) {
825 printk(" SWF3%d 0x%08x\n", i,
826 hw->swf3x[i]);
828 for (i = 0; i < 8; i++)
829 printk(" FENCE%d 0x%08x\n", i,
830 hw->fence[i]);
832 printk(" INSTPM 0x%08x\n", hw->instpm);
833 printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
834 printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
835 printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
837 printk(" HWSTAM 0x%04x\n", hw->hwstam);
838 printk(" IER 0x%04x\n", hw->ier);
839 printk(" IIR 0x%04x\n", hw->iir);
840 printk(" IMR 0x%04x\n", hw->imr);
841 printk("hw state dump end\n");
842 #endif
847 /* Split the M parameter into M1 and M2. */
848 static int splitm(int index, unsigned int m, unsigned int *retm1,
849 unsigned int *retm2)
851 int m1, m2;
852 int testm;
853 struct pll_min_max *pll = &plls[index];
855 /* no point optimising too much - brute force m */
856 for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
857 for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
858 testm = (5 * (m1 + 2)) + (m2 + 2);
859 if (testm == m) {
860 *retm1 = (unsigned int)m1;
861 *retm2 = (unsigned int)m2;
862 return 0;
866 return 1;
869 /* Split the P parameter into P1 and P2. */
870 static int splitp(int index, unsigned int p, unsigned int *retp1,
871 unsigned int *retp2)
873 int p1, p2;
874 struct pll_min_max *pll = &plls[index];
876 if (index == PLLS_I9xx) {
877 p2 = (p % 10) ? 1 : 0;
879 p1 = p / (p2 ? 5 : 10);
881 *retp1 = (unsigned int)p1;
882 *retp2 = (unsigned int)p2;
883 return 0;
886 if (p % 4 == 0)
887 p2 = 1;
888 else
889 p2 = 0;
890 p1 = (p / (1 << (p2 + 1))) - 2;
891 if (p % 4 == 0 && p1 < pll->min_p1) {
892 p2 = 0;
893 p1 = (p / (1 << (p2 + 1))) - 2;
895 if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
896 (p1 + 2) * (1 << (p2 + 1)) != p) {
897 return 1;
898 } else {
899 *retp1 = (unsigned int)p1;
900 *retp2 = (unsigned int)p2;
901 return 0;
905 static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
906 u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
908 u32 m1, m2, n, p1, p2, n1, testm;
909 u32 f_vco, p, p_best = 0, m, f_out = 0;
910 u32 err_max, err_target, err_best = 10000000;
911 u32 n_best = 0, m_best = 0, f_best, f_err;
912 u32 p_min, p_max, p_inc, div_max;
913 struct pll_min_max *pll = &plls[index];
915 /* Accept 0.5% difference, but aim for 0.1% */
916 err_max = 5 * clock / 1000;
917 err_target = clock / 1000;
919 DBG_MSG("Clock is %d\n", clock);
921 div_max = pll->max_vco / clock;
923 p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
924 p_min = p_inc;
925 p_max = ROUND_DOWN_TO(div_max, p_inc);
926 if (p_min < pll->min_p)
927 p_min = pll->min_p;
928 if (p_max > pll->max_p)
929 p_max = pll->max_p;
931 DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
933 p = p_min;
934 do {
935 if (splitp(index, p, &p1, &p2)) {
936 WRN_MSG("cannot split p = %d\n", p);
937 p += p_inc;
938 continue;
940 n = pll->min_n;
941 f_vco = clock * p;
943 do {
944 m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
945 if (m < pll->min_m)
946 m = pll->min_m + 1;
947 if (m > pll->max_m)
948 m = pll->max_m - 1;
949 for (testm = m - 1; testm <= m; testm++) {
950 f_out = calc_vclock3(index, testm, n, p);
951 if (splitm(index, testm, &m1, &m2)) {
952 WRN_MSG("cannot split m = %d\n",
953 testm);
954 continue;
956 if (clock > f_out)
957 f_err = clock - f_out;
958 else/* slightly bias the error for bigger clocks */
959 f_err = f_out - clock + 1;
961 if (f_err < err_best) {
962 m_best = testm;
963 n_best = n;
964 p_best = p;
965 f_best = f_out;
966 err_best = f_err;
969 n++;
970 } while ((n <= pll->max_n) && (f_out >= clock));
971 p += p_inc;
972 } while ((p <= p_max));
974 if (!m_best) {
975 WRN_MSG("cannot find parameters for clock %d\n", clock);
976 return 1;
978 m = m_best;
979 n = n_best;
980 p = p_best;
981 splitm(index, m, &m1, &m2);
982 splitp(index, p, &p1, &p2);
983 n1 = n - 2;
985 DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
986 "f: %d (%d), VCO: %d\n",
987 m, m1, m2, n, n1, p, p1, p2,
988 calc_vclock3(index, m, n, p),
989 calc_vclock(index, m1, m2, n1, p1, p2, 0),
990 calc_vclock3(index, m, n, p) * p);
991 *retm1 = m1;
992 *retm2 = m2;
993 *retn = n1;
994 *retp1 = p1;
995 *retp2 = p2;
996 *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
998 return 0;
1001 static __inline__ int check_overflow(u32 value, u32 limit,
1002 const char *description)
1004 if (value > limit) {
1005 WRN_MSG("%s value %d exceeds limit %d\n",
1006 description, value, limit);
1007 return 1;
1009 return 0;
1012 /* It is assumed that hw is filled in with the initial state information. */
1013 int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
1014 struct intelfb_hwstate *hw,
1015 struct fb_var_screeninfo *var)
1017 int pipe = PIPE_A;
1018 u32 *dpll, *fp0, *fp1;
1019 u32 m1, m2, n, p1, p2, clock_target, clock;
1020 u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
1021 u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
1022 u32 vsync_pol, hsync_pol;
1023 u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
1024 u32 stride_alignment;
1026 DBG_MSG("intelfbhw_mode_to_hw\n");
1028 /* Disable VGA */
1029 hw->vgacntrl |= VGA_DISABLE;
1031 /* Check whether pipe A or pipe B is enabled. */
1032 if (hw->pipe_a_conf & PIPECONF_ENABLE)
1033 pipe = PIPE_A;
1034 else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1035 pipe = PIPE_B;
1037 /* Set which pipe's registers will be set. */
1038 if (pipe == PIPE_B) {
1039 dpll = &hw->dpll_b;
1040 fp0 = &hw->fpb0;
1041 fp1 = &hw->fpb1;
1042 hs = &hw->hsync_b;
1043 hb = &hw->hblank_b;
1044 ht = &hw->htotal_b;
1045 vs = &hw->vsync_b;
1046 vb = &hw->vblank_b;
1047 vt = &hw->vtotal_b;
1048 ss = &hw->src_size_b;
1049 pipe_conf = &hw->pipe_b_conf;
1050 } else {
1051 dpll = &hw->dpll_a;
1052 fp0 = &hw->fpa0;
1053 fp1 = &hw->fpa1;
1054 hs = &hw->hsync_a;
1055 hb = &hw->hblank_a;
1056 ht = &hw->htotal_a;
1057 vs = &hw->vsync_a;
1058 vb = &hw->vblank_a;
1059 vt = &hw->vtotal_a;
1060 ss = &hw->src_size_a;
1061 pipe_conf = &hw->pipe_a_conf;
1064 /* Use ADPA register for sync control. */
1065 hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1067 /* sync polarity */
1068 hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1069 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1070 vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1071 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1072 hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1073 (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1074 hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1075 (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1077 /* Connect correct pipe to the analog port DAC */
1078 hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1079 hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1081 /* Set DPMS state to D0 (on) */
1082 hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1083 hw->adpa |= ADPA_DPMS_D0;
1085 hw->adpa |= ADPA_DAC_ENABLE;
1087 *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1088 *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1089 *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1091 /* Desired clock in kHz */
1092 clock_target = 1000000000 / var->pixclock;
1094 if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
1095 &n, &p1, &p2, &clock)) {
1096 WRN_MSG("calc_pll_params failed\n");
1097 return 1;
1100 /* Check for overflow. */
1101 if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1102 return 1;
1103 if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1104 return 1;
1105 if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1106 return 1;
1107 if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1108 return 1;
1109 if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1110 return 1;
1112 *dpll &= ~DPLL_P1_FORCE_DIV2;
1113 *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1114 (DPLL_P1_MASK << DPLL_P1_SHIFT));
1116 if (IS_I9XX(dinfo)) {
1117 *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
1118 *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
1119 } else
1120 *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1122 *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1123 (m1 << FP_M1_DIVISOR_SHIFT) |
1124 (m2 << FP_M2_DIVISOR_SHIFT);
1125 *fp1 = *fp0;
1127 hw->dvob &= ~PORT_ENABLE;
1128 hw->dvoc &= ~PORT_ENABLE;
1130 /* Use display plane A. */
1131 hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1132 hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1133 hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1134 switch (intelfb_var_to_depth(var)) {
1135 case 8:
1136 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1137 break;
1138 case 15:
1139 hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1140 break;
1141 case 16:
1142 hw->disp_a_ctrl |= DISPPLANE_16BPP;
1143 break;
1144 case 24:
1145 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1146 break;
1148 hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1149 hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1151 /* Set CRTC registers. */
1152 hactive = var->xres;
1153 hsync_start = hactive + var->right_margin;
1154 hsync_end = hsync_start + var->hsync_len;
1155 htotal = hsync_end + var->left_margin;
1156 hblank_start = hactive;
1157 hblank_end = htotal;
1159 DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1160 hactive, hsync_start, hsync_end, htotal, hblank_start,
1161 hblank_end);
1163 vactive = var->yres;
1164 if (var->vmode & FB_VMODE_INTERLACED)
1165 vactive--; /* the chip adds 2 halflines automatically */
1166 vsync_start = vactive + var->lower_margin;
1167 vsync_end = vsync_start + var->vsync_len;
1168 vtotal = vsync_end + var->upper_margin;
1169 vblank_start = vactive;
1170 vblank_end = vtotal;
1171 vblank_end = vsync_end + 1;
1173 DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1174 vactive, vsync_start, vsync_end, vtotal, vblank_start,
1175 vblank_end);
1177 /* Adjust for register values, and check for overflow. */
1178 hactive--;
1179 if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1180 return 1;
1181 hsync_start--;
1182 if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1183 return 1;
1184 hsync_end--;
1185 if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1186 return 1;
1187 htotal--;
1188 if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1189 return 1;
1190 hblank_start--;
1191 if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1192 return 1;
1193 hblank_end--;
1194 if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1195 return 1;
1197 vactive--;
1198 if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1199 return 1;
1200 vsync_start--;
1201 if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1202 return 1;
1203 vsync_end--;
1204 if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1205 return 1;
1206 vtotal--;
1207 if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1208 return 1;
1209 vblank_start--;
1210 if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1211 return 1;
1212 vblank_end--;
1213 if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1214 return 1;
1216 *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1217 *hb = (hblank_start << HBLANKSTART_SHIFT) |
1218 (hblank_end << HSYNCEND_SHIFT);
1219 *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1221 *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1222 *vb = (vblank_start << VBLANKSTART_SHIFT) |
1223 (vblank_end << VSYNCEND_SHIFT);
1224 *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1225 *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1226 (vactive << SRC_SIZE_VERT_SHIFT);
1228 hw->disp_a_stride = dinfo->pitch;
1229 DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1231 hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1232 var->xoffset * var->bits_per_pixel / 8;
1234 hw->disp_a_base += dinfo->fb.offset << 12;
1236 /* Check stride alignment. */
1237 stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
1238 STRIDE_ALIGNMENT;
1239 if (hw->disp_a_stride % stride_alignment != 0) {
1240 WRN_MSG("display stride %d has bad alignment %d\n",
1241 hw->disp_a_stride, stride_alignment);
1242 return 1;
1245 /* Set the palette to 8-bit mode. */
1246 *pipe_conf &= ~PIPECONF_GAMMA;
1248 if (var->vmode & FB_VMODE_INTERLACED)
1249 *pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
1250 else
1251 *pipe_conf &= ~PIPECONF_INTERLACE_MASK;
1253 return 0;
1256 /* Program a (non-VGA) video mode. */
1257 int intelfbhw_program_mode(struct intelfb_info *dinfo,
1258 const struct intelfb_hwstate *hw, int blank)
1260 int pipe = PIPE_A;
1261 u32 tmp;
1262 const u32 *dpll, *fp0, *fp1, *pipe_conf;
1263 const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1264 u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
1265 u32 hsync_reg, htotal_reg, hblank_reg;
1266 u32 vsync_reg, vtotal_reg, vblank_reg;
1267 u32 src_size_reg;
1268 u32 count, tmp_val[3];
1270 /* Assume single pipe, display plane A, analog CRT. */
1272 #if VERBOSE > 0
1273 DBG_MSG("intelfbhw_program_mode\n");
1274 #endif
1276 /* Disable VGA */
1277 tmp = INREG(VGACNTRL);
1278 tmp |= VGA_DISABLE;
1279 OUTREG(VGACNTRL, tmp);
1281 /* Check whether pipe A or pipe B is enabled. */
1282 if (hw->pipe_a_conf & PIPECONF_ENABLE)
1283 pipe = PIPE_A;
1284 else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1285 pipe = PIPE_B;
1287 dinfo->pipe = pipe;
1289 if (pipe == PIPE_B) {
1290 dpll = &hw->dpll_b;
1291 fp0 = &hw->fpb0;
1292 fp1 = &hw->fpb1;
1293 pipe_conf = &hw->pipe_b_conf;
1294 hs = &hw->hsync_b;
1295 hb = &hw->hblank_b;
1296 ht = &hw->htotal_b;
1297 vs = &hw->vsync_b;
1298 vb = &hw->vblank_b;
1299 vt = &hw->vtotal_b;
1300 ss = &hw->src_size_b;
1301 dpll_reg = DPLL_B;
1302 fp0_reg = FPB0;
1303 fp1_reg = FPB1;
1304 pipe_conf_reg = PIPEBCONF;
1305 pipe_stat_reg = PIPEBSTAT;
1306 hsync_reg = HSYNC_B;
1307 htotal_reg = HTOTAL_B;
1308 hblank_reg = HBLANK_B;
1309 vsync_reg = VSYNC_B;
1310 vtotal_reg = VTOTAL_B;
1311 vblank_reg = VBLANK_B;
1312 src_size_reg = SRC_SIZE_B;
1313 } else {
1314 dpll = &hw->dpll_a;
1315 fp0 = &hw->fpa0;
1316 fp1 = &hw->fpa1;
1317 pipe_conf = &hw->pipe_a_conf;
1318 hs = &hw->hsync_a;
1319 hb = &hw->hblank_a;
1320 ht = &hw->htotal_a;
1321 vs = &hw->vsync_a;
1322 vb = &hw->vblank_a;
1323 vt = &hw->vtotal_a;
1324 ss = &hw->src_size_a;
1325 dpll_reg = DPLL_A;
1326 fp0_reg = FPA0;
1327 fp1_reg = FPA1;
1328 pipe_conf_reg = PIPEACONF;
1329 pipe_stat_reg = PIPEASTAT;
1330 hsync_reg = HSYNC_A;
1331 htotal_reg = HTOTAL_A;
1332 hblank_reg = HBLANK_A;
1333 vsync_reg = VSYNC_A;
1334 vtotal_reg = VTOTAL_A;
1335 vblank_reg = VBLANK_A;
1336 src_size_reg = SRC_SIZE_A;
1339 /* turn off pipe */
1340 tmp = INREG(pipe_conf_reg);
1341 tmp &= ~PIPECONF_ENABLE;
1342 OUTREG(pipe_conf_reg, tmp);
1344 count = 0;
1345 do {
1346 tmp_val[count % 3] = INREG(PIPEA_DSL);
1347 if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
1348 break;
1349 count++;
1350 udelay(1);
1351 if (count % 200 == 0) {
1352 tmp = INREG(pipe_conf_reg);
1353 tmp &= ~PIPECONF_ENABLE;
1354 OUTREG(pipe_conf_reg, tmp);
1356 } while (count < 2000);
1358 OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1360 /* Disable planes A and B. */
1361 tmp = INREG(DSPACNTR);
1362 tmp &= ~DISPPLANE_PLANE_ENABLE;
1363 OUTREG(DSPACNTR, tmp);
1364 tmp = INREG(DSPBCNTR);
1365 tmp &= ~DISPPLANE_PLANE_ENABLE;
1366 OUTREG(DSPBCNTR, tmp);
1368 /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1369 mdelay(20);
1371 OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
1372 OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
1373 OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1375 /* Disable Sync */
1376 tmp = INREG(ADPA);
1377 tmp &= ~ADPA_DPMS_CONTROL_MASK;
1378 tmp |= ADPA_DPMS_D3;
1379 OUTREG(ADPA, tmp);
1381 /* do some funky magic - xyzzy */
1382 OUTREG(0x61204, 0xabcd0000);
1384 /* turn off PLL */
1385 tmp = INREG(dpll_reg);
1386 tmp &= ~DPLL_VCO_ENABLE;
1387 OUTREG(dpll_reg, tmp);
1389 /* Set PLL parameters */
1390 OUTREG(fp0_reg, *fp0);
1391 OUTREG(fp1_reg, *fp1);
1393 /* Enable PLL */
1394 OUTREG(dpll_reg, *dpll);
1396 /* Set DVOs B/C */
1397 OUTREG(DVOB, hw->dvob);
1398 OUTREG(DVOC, hw->dvoc);
1400 /* undo funky magic */
1401 OUTREG(0x61204, 0x00000000);
1403 /* Set ADPA */
1404 OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1405 OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1407 /* Set pipe parameters */
1408 OUTREG(hsync_reg, *hs);
1409 OUTREG(hblank_reg, *hb);
1410 OUTREG(htotal_reg, *ht);
1411 OUTREG(vsync_reg, *vs);
1412 OUTREG(vblank_reg, *vb);
1413 OUTREG(vtotal_reg, *vt);
1414 OUTREG(src_size_reg, *ss);
1416 switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
1417 FB_VMODE_ODD_FLD_FIRST)) {
1418 case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
1419 OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
1420 break;
1421 case FB_VMODE_INTERLACED: /* even lines first */
1422 OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
1423 break;
1424 default: /* non-interlaced */
1425 OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
1427 /* Enable pipe */
1428 OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1430 /* Enable sync */
1431 tmp = INREG(ADPA);
1432 tmp &= ~ADPA_DPMS_CONTROL_MASK;
1433 tmp |= ADPA_DPMS_D0;
1434 OUTREG(ADPA, tmp);
1436 /* setup display plane */
1437 if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1439 * i830M errata: the display plane must be enabled
1440 * to allow writes to the other bits in the plane
1441 * control register.
1443 tmp = INREG(DSPACNTR);
1444 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1445 tmp |= DISPPLANE_PLANE_ENABLE;
1446 OUTREG(DSPACNTR, tmp);
1447 OUTREG(DSPACNTR,
1448 hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1449 mdelay(1);
1453 OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1454 OUTREG(DSPASTRIDE, hw->disp_a_stride);
1455 OUTREG(DSPABASE, hw->disp_a_base);
1457 /* Enable plane */
1458 if (!blank) {
1459 tmp = INREG(DSPACNTR);
1460 tmp |= DISPPLANE_PLANE_ENABLE;
1461 OUTREG(DSPACNTR, tmp);
1462 OUTREG(DSPABASE, hw->disp_a_base);
1465 return 0;
1468 /* forward declarations */
1469 static void refresh_ring(struct intelfb_info *dinfo);
1470 static void reset_state(struct intelfb_info *dinfo);
1471 static void do_flush(struct intelfb_info *dinfo);
1473 static u32 get_ring_space(struct intelfb_info *dinfo)
1475 u32 ring_space;
1477 if (dinfo->ring_tail >= dinfo->ring_head)
1478 ring_space = dinfo->ring.size -
1479 (dinfo->ring_tail - dinfo->ring_head);
1480 else
1481 ring_space = dinfo->ring_head - dinfo->ring_tail;
1483 if (ring_space > RING_MIN_FREE)
1484 ring_space -= RING_MIN_FREE;
1485 else
1486 ring_space = 0;
1488 return ring_space;
1491 static int wait_ring(struct intelfb_info *dinfo, int n)
1493 int i = 0;
1494 unsigned long end;
1495 u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1497 #if VERBOSE > 0
1498 DBG_MSG("wait_ring: %d\n", n);
1499 #endif
1501 end = jiffies + (HZ * 3);
1502 while (dinfo->ring_space < n) {
1503 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1504 dinfo->ring_space = get_ring_space(dinfo);
1506 if (dinfo->ring_head != last_head) {
1507 end = jiffies + (HZ * 3);
1508 last_head = dinfo->ring_head;
1510 i++;
1511 if (time_before(end, jiffies)) {
1512 if (!i) {
1513 /* Try again */
1514 reset_state(dinfo);
1515 refresh_ring(dinfo);
1516 do_flush(dinfo);
1517 end = jiffies + (HZ * 3);
1518 i = 1;
1519 } else {
1520 WRN_MSG("ring buffer : space: %d wanted %d\n",
1521 dinfo->ring_space, n);
1522 WRN_MSG("lockup - turning off hardware "
1523 "acceleration\n");
1524 dinfo->ring_lockup = 1;
1525 break;
1528 udelay(1);
1530 return i;
1533 static void do_flush(struct intelfb_info *dinfo)
1535 START_RING(2);
1536 OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1537 OUT_RING(MI_NOOP);
1538 ADVANCE_RING();
1541 void intelfbhw_do_sync(struct intelfb_info *dinfo)
1543 #if VERBOSE > 0
1544 DBG_MSG("intelfbhw_do_sync\n");
1545 #endif
1547 if (!dinfo->accel)
1548 return;
1551 * Send a flush, then wait until the ring is empty. This is what
1552 * the XFree86 driver does, and actually it doesn't seem a lot worse
1553 * than the recommended method (both have problems).
1555 do_flush(dinfo);
1556 wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1557 dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1560 static void refresh_ring(struct intelfb_info *dinfo)
1562 #if VERBOSE > 0
1563 DBG_MSG("refresh_ring\n");
1564 #endif
1566 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1567 dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1568 dinfo->ring_space = get_ring_space(dinfo);
1571 static void reset_state(struct intelfb_info *dinfo)
1573 int i;
1574 u32 tmp;
1576 #if VERBOSE > 0
1577 DBG_MSG("reset_state\n");
1578 #endif
1580 for (i = 0; i < FENCE_NUM; i++)
1581 OUTREG(FENCE + (i << 2), 0);
1583 /* Flush the ring buffer if it's enabled. */
1584 tmp = INREG(PRI_RING_LENGTH);
1585 if (tmp & RING_ENABLE) {
1586 #if VERBOSE > 0
1587 DBG_MSG("reset_state: ring was enabled\n");
1588 #endif
1589 refresh_ring(dinfo);
1590 intelfbhw_do_sync(dinfo);
1591 DO_RING_IDLE();
1594 OUTREG(PRI_RING_LENGTH, 0);
1595 OUTREG(PRI_RING_HEAD, 0);
1596 OUTREG(PRI_RING_TAIL, 0);
1597 OUTREG(PRI_RING_START, 0);
1600 /* Stop the 2D engine, and turn off the ring buffer. */
1601 void intelfbhw_2d_stop(struct intelfb_info *dinfo)
1603 #if VERBOSE > 0
1604 DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
1605 dinfo->accel, dinfo->ring_active);
1606 #endif
1608 if (!dinfo->accel)
1609 return;
1611 dinfo->ring_active = 0;
1612 reset_state(dinfo);
1616 * Enable the ring buffer, and initialise the 2D engine.
1617 * It is assumed that the graphics engine has been stopped by previously
1618 * calling intelfb_2d_stop().
1620 void intelfbhw_2d_start(struct intelfb_info *dinfo)
1622 #if VERBOSE > 0
1623 DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1624 dinfo->accel, dinfo->ring_active);
1625 #endif
1627 if (!dinfo->accel)
1628 return;
1630 /* Initialise the primary ring buffer. */
1631 OUTREG(PRI_RING_LENGTH, 0);
1632 OUTREG(PRI_RING_TAIL, 0);
1633 OUTREG(PRI_RING_HEAD, 0);
1635 OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1636 OUTREG(PRI_RING_LENGTH,
1637 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1638 RING_NO_REPORT | RING_ENABLE);
1639 refresh_ring(dinfo);
1640 dinfo->ring_active = 1;
1643 /* 2D fillrect (solid fill or invert) */
1644 void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
1645 u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
1647 u32 br00, br09, br13, br14, br16;
1649 #if VERBOSE > 0
1650 DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1651 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1652 #endif
1654 br00 = COLOR_BLT_CMD;
1655 br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1656 br13 = (rop << ROP_SHIFT) | pitch;
1657 br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1658 br16 = color;
1660 switch (bpp) {
1661 case 8:
1662 br13 |= COLOR_DEPTH_8;
1663 break;
1664 case 16:
1665 br13 |= COLOR_DEPTH_16;
1666 break;
1667 case 32:
1668 br13 |= COLOR_DEPTH_32;
1669 br00 |= WRITE_ALPHA | WRITE_RGB;
1670 break;
1673 START_RING(6);
1674 OUT_RING(br00);
1675 OUT_RING(br13);
1676 OUT_RING(br14);
1677 OUT_RING(br09);
1678 OUT_RING(br16);
1679 OUT_RING(MI_NOOP);
1680 ADVANCE_RING();
1682 #if VERBOSE > 0
1683 DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1684 dinfo->ring_tail, dinfo->ring_space);
1685 #endif
1688 void
1689 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1690 u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1692 u32 br00, br09, br11, br12, br13, br22, br23, br26;
1694 #if VERBOSE > 0
1695 DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1696 curx, cury, dstx, dsty, w, h, pitch, bpp);
1697 #endif
1699 br00 = XY_SRC_COPY_BLT_CMD;
1700 br09 = dinfo->fb_start;
1701 br11 = (pitch << PITCH_SHIFT);
1702 br12 = dinfo->fb_start;
1703 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1704 br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1705 br23 = ((dstx + w) << WIDTH_SHIFT) |
1706 ((dsty + h) << HEIGHT_SHIFT);
1707 br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1709 switch (bpp) {
1710 case 8:
1711 br13 |= COLOR_DEPTH_8;
1712 break;
1713 case 16:
1714 br13 |= COLOR_DEPTH_16;
1715 break;
1716 case 32:
1717 br13 |= COLOR_DEPTH_32;
1718 br00 |= WRITE_ALPHA | WRITE_RGB;
1719 break;
1722 START_RING(8);
1723 OUT_RING(br00);
1724 OUT_RING(br13);
1725 OUT_RING(br22);
1726 OUT_RING(br23);
1727 OUT_RING(br09);
1728 OUT_RING(br26);
1729 OUT_RING(br11);
1730 OUT_RING(br12);
1731 ADVANCE_RING();
1734 int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1735 u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
1736 u32 bpp)
1738 int nbytes, ndwords, pad, tmp;
1739 u32 br00, br09, br13, br18, br19, br22, br23;
1740 int dat, ix, iy, iw;
1741 int i, j;
1743 #if VERBOSE > 0
1744 DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1745 #endif
1747 /* size in bytes of a padded scanline */
1748 nbytes = ROUND_UP_TO(w, 16) / 8;
1750 /* Total bytes of padded scanline data to write out. */
1751 nbytes = nbytes * h;
1754 * Check if the glyph data exceeds the immediate mode limit.
1755 * It would take a large font (1K pixels) to hit this limit.
1757 if (nbytes > MAX_MONO_IMM_SIZE)
1758 return 0;
1760 /* Src data is packaged a dword (32-bit) at a time. */
1761 ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1764 * Ring has to be padded to a quad word. But because the command starts
1765 with 7 bytes, pad only if there is an even number of ndwords
1767 pad = !(ndwords % 2);
1769 tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1770 br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1771 br09 = dinfo->fb_start;
1772 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1773 br18 = bg;
1774 br19 = fg;
1775 br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1776 br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1778 switch (bpp) {
1779 case 8:
1780 br13 |= COLOR_DEPTH_8;
1781 break;
1782 case 16:
1783 br13 |= COLOR_DEPTH_16;
1784 break;
1785 case 32:
1786 br13 |= COLOR_DEPTH_32;
1787 br00 |= WRITE_ALPHA | WRITE_RGB;
1788 break;
1791 START_RING(8 + ndwords);
1792 OUT_RING(br00);
1793 OUT_RING(br13);
1794 OUT_RING(br22);
1795 OUT_RING(br23);
1796 OUT_RING(br09);
1797 OUT_RING(br18);
1798 OUT_RING(br19);
1799 ix = iy = 0;
1800 iw = ROUND_UP_TO(w, 8) / 8;
1801 while (ndwords--) {
1802 dat = 0;
1803 for (j = 0; j < 2; ++j) {
1804 for (i = 0; i < 2; ++i) {
1805 if (ix != iw || i == 0)
1806 dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1808 if (ix == iw && iy != (h-1)) {
1809 ix = 0;
1810 ++iy;
1813 OUT_RING(dat);
1815 if (pad)
1816 OUT_RING(MI_NOOP);
1817 ADVANCE_RING();
1819 return 1;
1822 /* HW cursor functions. */
1823 void intelfbhw_cursor_init(struct intelfb_info *dinfo)
1825 u32 tmp;
1827 #if VERBOSE > 0
1828 DBG_MSG("intelfbhw_cursor_init\n");
1829 #endif
1831 if (dinfo->mobile || IS_I9XX(dinfo)) {
1832 if (!dinfo->cursor.physical)
1833 return;
1834 tmp = INREG(CURSOR_A_CONTROL);
1835 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1836 CURSOR_MEM_TYPE_LOCAL |
1837 (1 << CURSOR_PIPE_SELECT_SHIFT));
1838 tmp |= CURSOR_MODE_DISABLE;
1839 OUTREG(CURSOR_A_CONTROL, tmp);
1840 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1841 } else {
1842 tmp = INREG(CURSOR_CONTROL);
1843 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1844 CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1845 tmp = CURSOR_FORMAT_3C;
1846 OUTREG(CURSOR_CONTROL, tmp);
1847 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1848 tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1849 (64 << CURSOR_SIZE_V_SHIFT);
1850 OUTREG(CURSOR_SIZE, tmp);
1854 void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1856 u32 tmp;
1858 #if VERBOSE > 0
1859 DBG_MSG("intelfbhw_cursor_hide\n");
1860 #endif
1862 dinfo->cursor_on = 0;
1863 if (dinfo->mobile || IS_I9XX(dinfo)) {
1864 if (!dinfo->cursor.physical)
1865 return;
1866 tmp = INREG(CURSOR_A_CONTROL);
1867 tmp &= ~CURSOR_MODE_MASK;
1868 tmp |= CURSOR_MODE_DISABLE;
1869 OUTREG(CURSOR_A_CONTROL, tmp);
1870 /* Flush changes */
1871 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1872 } else {
1873 tmp = INREG(CURSOR_CONTROL);
1874 tmp &= ~CURSOR_ENABLE;
1875 OUTREG(CURSOR_CONTROL, tmp);
1879 void intelfbhw_cursor_show(struct intelfb_info *dinfo)
1881 u32 tmp;
1883 #if VERBOSE > 0
1884 DBG_MSG("intelfbhw_cursor_show\n");
1885 #endif
1887 dinfo->cursor_on = 1;
1889 if (dinfo->cursor_blanked)
1890 return;
1892 if (dinfo->mobile || IS_I9XX(dinfo)) {
1893 if (!dinfo->cursor.physical)
1894 return;
1895 tmp = INREG(CURSOR_A_CONTROL);
1896 tmp &= ~CURSOR_MODE_MASK;
1897 tmp |= CURSOR_MODE_64_4C_AX;
1898 OUTREG(CURSOR_A_CONTROL, tmp);
1899 /* Flush changes */
1900 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1901 } else {
1902 tmp = INREG(CURSOR_CONTROL);
1903 tmp |= CURSOR_ENABLE;
1904 OUTREG(CURSOR_CONTROL, tmp);
1908 void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1910 u32 tmp;
1912 #if VERBOSE > 0
1913 DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1914 #endif
1917 * Sets the position. The coordinates are assumed to already
1918 * have any offset adjusted. Assume that the cursor is never
1919 * completely off-screen, and that x, y are always >= 0.
1922 tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1923 ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1924 OUTREG(CURSOR_A_POSITION, tmp);
1926 if (IS_I9XX(dinfo))
1927 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1930 void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1932 #if VERBOSE > 0
1933 DBG_MSG("intelfbhw_cursor_setcolor\n");
1934 #endif
1936 OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1937 OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1938 OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1939 OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1942 void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1943 u8 *data)
1945 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1946 int i, j, w = width / 8;
1947 int mod = width % 8, t_mask, d_mask;
1949 #if VERBOSE > 0
1950 DBG_MSG("intelfbhw_cursor_load\n");
1951 #endif
1953 if (!dinfo->cursor.virtual)
1954 return;
1956 t_mask = 0xff >> mod;
1957 d_mask = ~(0xff >> mod);
1958 for (i = height; i--; ) {
1959 for (j = 0; j < w; j++) {
1960 writeb(0x00, addr + j);
1961 writeb(*(data++), addr + j+8);
1963 if (mod) {
1964 writeb(t_mask, addr + j);
1965 writeb(*(data++) & d_mask, addr + j+8);
1967 addr += 16;
1971 void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
1973 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1974 int i, j;
1976 #if VERBOSE > 0
1977 DBG_MSG("intelfbhw_cursor_reset\n");
1978 #endif
1980 if (!dinfo->cursor.virtual)
1981 return;
1983 for (i = 64; i--; ) {
1984 for (j = 0; j < 8; j++) {
1985 writeb(0xff, addr + j+0);
1986 writeb(0x00, addr + j+8);
1988 addr += 16;
1992 static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
1994 u16 tmp;
1995 struct intelfb_info *dinfo = dev_id;
1997 spin_lock(&dinfo->int_lock);
1999 tmp = INREG16(IIR);
2000 if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2001 tmp &= PIPE_A_EVENT_INTERRUPT;
2002 else
2003 tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2005 if (tmp == 0) {
2006 spin_unlock(&dinfo->int_lock);
2007 return IRQ_RETVAL(0); /* not us */
2010 /* clear status bits 0-15 ASAP and don't touch bits 16-31 */
2011 OUTREG(PIPEASTAT, INREG(PIPEASTAT));
2013 OUTREG16(IIR, tmp);
2014 if (dinfo->vsync.pan_display) {
2015 dinfo->vsync.pan_display = 0;
2016 OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2019 dinfo->vsync.count++;
2020 wake_up_interruptible(&dinfo->vsync.wait);
2022 spin_unlock(&dinfo->int_lock);
2024 return IRQ_RETVAL(1);
2027 int intelfbhw_enable_irq(struct intelfb_info *dinfo)
2029 u16 tmp;
2030 if (!test_and_set_bit(0, &dinfo->irq_flags)) {
2031 if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
2032 "intelfb", dinfo)) {
2033 clear_bit(0, &dinfo->irq_flags);
2034 return -EINVAL;
2037 spin_lock_irq(&dinfo->int_lock);
2038 OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
2039 OUTREG16(IMR, 0);
2040 } else
2041 spin_lock_irq(&dinfo->int_lock);
2043 if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2044 tmp = PIPE_A_EVENT_INTERRUPT;
2045 else
2046 tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2047 if (tmp != INREG16(IER)) {
2048 DBG_MSG("changing IER to 0x%X\n", tmp);
2049 OUTREG16(IER, tmp);
2052 spin_unlock_irq(&dinfo->int_lock);
2053 return 0;
2056 void intelfbhw_disable_irq(struct intelfb_info *dinfo)
2058 if (test_and_clear_bit(0, &dinfo->irq_flags)) {
2059 if (dinfo->vsync.pan_display) {
2060 dinfo->vsync.pan_display = 0;
2061 OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2063 spin_lock_irq(&dinfo->int_lock);
2064 OUTREG16(HWSTAM, 0xffff);
2065 OUTREG16(IMR, 0xffff);
2066 OUTREG16(IER, 0x0);
2068 OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
2069 spin_unlock_irq(&dinfo->int_lock);
2071 free_irq(dinfo->pdev->irq, dinfo);
2075 int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
2077 struct intelfb_vsync *vsync;
2078 unsigned int count;
2079 int ret;
2081 switch (pipe) {
2082 case 0:
2083 vsync = &dinfo->vsync;
2084 break;
2085 default:
2086 return -ENODEV;
2089 ret = intelfbhw_enable_irq(dinfo);
2090 if (ret)
2091 return ret;
2093 count = vsync->count;
2094 ret = wait_event_interruptible_timeout(vsync->wait,
2095 count != vsync->count, HZ / 10);
2096 if (ret < 0)
2097 return ret;
2098 if (ret == 0) {
2099 DBG_MSG("wait_for_vsync timed out!\n");
2100 return -ETIMEDOUT;
2103 return 0;