4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/module.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
17 #include <linux/kernel.h>
18 #include <linux/kexec.h>
19 #include <linux/workqueue.h>
20 #include <linux/capability.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/posix-timers.h>
25 #include <linux/security.h>
26 #include <linux/dcookies.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
33 #include <linux/compat.h>
34 #include <linux/syscalls.h>
35 #include <linux/kprobes.h>
37 #include <asm/uaccess.h>
39 #include <asm/unistd.h>
41 #ifndef SET_UNALIGN_CTL
42 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
44 #ifndef GET_UNALIGN_CTL
45 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
48 # define SET_FPEMU_CTL(a,b) (-EINVAL)
51 # define GET_FPEMU_CTL(a,b) (-EINVAL)
54 # define SET_FPEXC_CTL(a,b) (-EINVAL)
57 # define GET_FPEXC_CTL(a,b) (-EINVAL)
60 # define GET_ENDIAN(a,b) (-EINVAL)
63 # define SET_ENDIAN(a,b) (-EINVAL)
67 * this is where the system-wide overflow UID and GID are defined, for
68 * architectures that now have 32-bit UID/GID but didn't in the past
71 int overflowuid
= DEFAULT_OVERFLOWUID
;
72 int overflowgid
= DEFAULT_OVERFLOWGID
;
75 EXPORT_SYMBOL(overflowuid
);
76 EXPORT_SYMBOL(overflowgid
);
80 * the same as above, but for filesystems which can only store a 16-bit
81 * UID and GID. as such, this is needed on all architectures
84 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
85 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
87 EXPORT_SYMBOL(fs_overflowuid
);
88 EXPORT_SYMBOL(fs_overflowgid
);
91 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
96 EXPORT_SYMBOL(cad_pid
);
99 * Notifier list for kernel code which wants to be called
100 * at shutdown. This is used to stop any idling DMA operations
104 static BLOCKING_NOTIFIER_HEAD(reboot_notifier_list
);
107 * Notifier chain core routines. The exported routines below
108 * are layered on top of these, with appropriate locking added.
111 static int notifier_chain_register(struct notifier_block
**nl
,
112 struct notifier_block
*n
)
114 while ((*nl
) != NULL
) {
115 if (n
->priority
> (*nl
)->priority
)
120 rcu_assign_pointer(*nl
, n
);
124 static int notifier_chain_unregister(struct notifier_block
**nl
,
125 struct notifier_block
*n
)
127 while ((*nl
) != NULL
) {
129 rcu_assign_pointer(*nl
, n
->next
);
137 static int __kprobes
notifier_call_chain(struct notifier_block
**nl
,
138 unsigned long val
, void *v
)
140 int ret
= NOTIFY_DONE
;
141 struct notifier_block
*nb
, *next_nb
;
143 nb
= rcu_dereference(*nl
);
145 next_nb
= rcu_dereference(nb
->next
);
146 ret
= nb
->notifier_call(nb
, val
, v
);
147 if ((ret
& NOTIFY_STOP_MASK
) == NOTIFY_STOP_MASK
)
155 * Atomic notifier chain routines. Registration and unregistration
156 * use a mutex, and call_chain is synchronized by RCU (no locks).
160 * atomic_notifier_chain_register - Add notifier to an atomic notifier chain
161 * @nh: Pointer to head of the atomic notifier chain
162 * @n: New entry in notifier chain
164 * Adds a notifier to an atomic notifier chain.
166 * Currently always returns zero.
169 int atomic_notifier_chain_register(struct atomic_notifier_head
*nh
,
170 struct notifier_block
*n
)
175 spin_lock_irqsave(&nh
->lock
, flags
);
176 ret
= notifier_chain_register(&nh
->head
, n
);
177 spin_unlock_irqrestore(&nh
->lock
, flags
);
181 EXPORT_SYMBOL_GPL(atomic_notifier_chain_register
);
184 * atomic_notifier_chain_unregister - Remove notifier from an atomic notifier chain
185 * @nh: Pointer to head of the atomic notifier chain
186 * @n: Entry to remove from notifier chain
188 * Removes a notifier from an atomic notifier chain.
190 * Returns zero on success or %-ENOENT on failure.
192 int atomic_notifier_chain_unregister(struct atomic_notifier_head
*nh
,
193 struct notifier_block
*n
)
198 spin_lock_irqsave(&nh
->lock
, flags
);
199 ret
= notifier_chain_unregister(&nh
->head
, n
);
200 spin_unlock_irqrestore(&nh
->lock
, flags
);
205 EXPORT_SYMBOL_GPL(atomic_notifier_chain_unregister
);
208 * atomic_notifier_call_chain - Call functions in an atomic notifier chain
209 * @nh: Pointer to head of the atomic notifier chain
210 * @val: Value passed unmodified to notifier function
211 * @v: Pointer passed unmodified to notifier function
213 * Calls each function in a notifier chain in turn. The functions
214 * run in an atomic context, so they must not block.
215 * This routine uses RCU to synchronize with changes to the chain.
217 * If the return value of the notifier can be and'ed
218 * with %NOTIFY_STOP_MASK then atomic_notifier_call_chain
219 * will return immediately, with the return value of
220 * the notifier function which halted execution.
221 * Otherwise the return value is the return value
222 * of the last notifier function called.
225 int __kprobes
atomic_notifier_call_chain(struct atomic_notifier_head
*nh
,
226 unsigned long val
, void *v
)
231 ret
= notifier_call_chain(&nh
->head
, val
, v
);
236 EXPORT_SYMBOL_GPL(atomic_notifier_call_chain
);
239 * Blocking notifier chain routines. All access to the chain is
240 * synchronized by an rwsem.
244 * blocking_notifier_chain_register - Add notifier to a blocking notifier chain
245 * @nh: Pointer to head of the blocking notifier chain
246 * @n: New entry in notifier chain
248 * Adds a notifier to a blocking notifier chain.
249 * Must be called in process context.
251 * Currently always returns zero.
254 int blocking_notifier_chain_register(struct blocking_notifier_head
*nh
,
255 struct notifier_block
*n
)
260 * This code gets used during boot-up, when task switching is
261 * not yet working and interrupts must remain disabled. At
262 * such times we must not call down_write().
264 if (unlikely(system_state
== SYSTEM_BOOTING
))
265 return notifier_chain_register(&nh
->head
, n
);
267 down_write(&nh
->rwsem
);
268 ret
= notifier_chain_register(&nh
->head
, n
);
269 up_write(&nh
->rwsem
);
273 EXPORT_SYMBOL_GPL(blocking_notifier_chain_register
);
276 * blocking_notifier_chain_unregister - Remove notifier from a blocking notifier chain
277 * @nh: Pointer to head of the blocking notifier chain
278 * @n: Entry to remove from notifier chain
280 * Removes a notifier from a blocking notifier chain.
281 * Must be called from process context.
283 * Returns zero on success or %-ENOENT on failure.
285 int blocking_notifier_chain_unregister(struct blocking_notifier_head
*nh
,
286 struct notifier_block
*n
)
291 * This code gets used during boot-up, when task switching is
292 * not yet working and interrupts must remain disabled. At
293 * such times we must not call down_write().
295 if (unlikely(system_state
== SYSTEM_BOOTING
))
296 return notifier_chain_unregister(&nh
->head
, n
);
298 down_write(&nh
->rwsem
);
299 ret
= notifier_chain_unregister(&nh
->head
, n
);
300 up_write(&nh
->rwsem
);
304 EXPORT_SYMBOL_GPL(blocking_notifier_chain_unregister
);
307 * blocking_notifier_call_chain - Call functions in a blocking notifier chain
308 * @nh: Pointer to head of the blocking notifier chain
309 * @val: Value passed unmodified to notifier function
310 * @v: Pointer passed unmodified to notifier function
312 * Calls each function in a notifier chain in turn. The functions
313 * run in a process context, so they are allowed to block.
315 * If the return value of the notifier can be and'ed
316 * with %NOTIFY_STOP_MASK then blocking_notifier_call_chain
317 * will return immediately, with the return value of
318 * the notifier function which halted execution.
319 * Otherwise the return value is the return value
320 * of the last notifier function called.
323 int blocking_notifier_call_chain(struct blocking_notifier_head
*nh
,
324 unsigned long val
, void *v
)
328 down_read(&nh
->rwsem
);
329 ret
= notifier_call_chain(&nh
->head
, val
, v
);
334 EXPORT_SYMBOL_GPL(blocking_notifier_call_chain
);
337 * Raw notifier chain routines. There is no protection;
338 * the caller must provide it. Use at your own risk!
342 * raw_notifier_chain_register - Add notifier to a raw notifier chain
343 * @nh: Pointer to head of the raw notifier chain
344 * @n: New entry in notifier chain
346 * Adds a notifier to a raw notifier chain.
347 * All locking must be provided by the caller.
349 * Currently always returns zero.
352 int raw_notifier_chain_register(struct raw_notifier_head
*nh
,
353 struct notifier_block
*n
)
355 return notifier_chain_register(&nh
->head
, n
);
358 EXPORT_SYMBOL_GPL(raw_notifier_chain_register
);
361 * raw_notifier_chain_unregister - Remove notifier from a raw notifier chain
362 * @nh: Pointer to head of the raw notifier chain
363 * @n: Entry to remove from notifier chain
365 * Removes a notifier from a raw notifier chain.
366 * All locking must be provided by the caller.
368 * Returns zero on success or %-ENOENT on failure.
370 int raw_notifier_chain_unregister(struct raw_notifier_head
*nh
,
371 struct notifier_block
*n
)
373 return notifier_chain_unregister(&nh
->head
, n
);
376 EXPORT_SYMBOL_GPL(raw_notifier_chain_unregister
);
379 * raw_notifier_call_chain - Call functions in a raw notifier chain
380 * @nh: Pointer to head of the raw notifier chain
381 * @val: Value passed unmodified to notifier function
382 * @v: Pointer passed unmodified to notifier function
384 * Calls each function in a notifier chain in turn. The functions
385 * run in an undefined context.
386 * All locking must be provided by the caller.
388 * If the return value of the notifier can be and'ed
389 * with %NOTIFY_STOP_MASK then raw_notifier_call_chain
390 * will return immediately, with the return value of
391 * the notifier function which halted execution.
392 * Otherwise the return value is the return value
393 * of the last notifier function called.
396 int raw_notifier_call_chain(struct raw_notifier_head
*nh
,
397 unsigned long val
, void *v
)
399 return notifier_call_chain(&nh
->head
, val
, v
);
402 EXPORT_SYMBOL_GPL(raw_notifier_call_chain
);
405 * register_reboot_notifier - Register function to be called at reboot time
406 * @nb: Info about notifier function to be called
408 * Registers a function with the list of functions
409 * to be called at reboot time.
411 * Currently always returns zero, as blocking_notifier_chain_register
412 * always returns zero.
415 int register_reboot_notifier(struct notifier_block
* nb
)
417 return blocking_notifier_chain_register(&reboot_notifier_list
, nb
);
420 EXPORT_SYMBOL(register_reboot_notifier
);
423 * unregister_reboot_notifier - Unregister previously registered reboot notifier
424 * @nb: Hook to be unregistered
426 * Unregisters a previously registered reboot
429 * Returns zero on success, or %-ENOENT on failure.
432 int unregister_reboot_notifier(struct notifier_block
* nb
)
434 return blocking_notifier_chain_unregister(&reboot_notifier_list
, nb
);
437 EXPORT_SYMBOL(unregister_reboot_notifier
);
439 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
443 if (p
->uid
!= current
->euid
&&
444 p
->euid
!= current
->euid
&& !capable(CAP_SYS_NICE
)) {
448 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
452 no_nice
= security_task_setnice(p
, niceval
);
459 set_user_nice(p
, niceval
);
464 asmlinkage
long sys_setpriority(int which
, int who
, int niceval
)
466 struct task_struct
*g
, *p
;
467 struct user_struct
*user
;
470 if (which
> 2 || which
< 0)
473 /* normalize: avoid signed division (rounding problems) */
480 read_lock(&tasklist_lock
);
485 p
= find_task_by_pid(who
);
487 error
= set_one_prio(p
, niceval
, error
);
491 who
= process_group(current
);
492 do_each_task_pid(who
, PIDTYPE_PGID
, p
) {
493 error
= set_one_prio(p
, niceval
, error
);
494 } while_each_task_pid(who
, PIDTYPE_PGID
, p
);
497 user
= current
->user
;
501 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
502 goto out_unlock
; /* No processes for this user */
506 error
= set_one_prio(p
, niceval
, error
);
507 while_each_thread(g
, p
);
508 if (who
!= current
->uid
)
509 free_uid(user
); /* For find_user() */
513 read_unlock(&tasklist_lock
);
519 * Ugh. To avoid negative return values, "getpriority()" will
520 * not return the normal nice-value, but a negated value that
521 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
522 * to stay compatible.
524 asmlinkage
long sys_getpriority(int which
, int who
)
526 struct task_struct
*g
, *p
;
527 struct user_struct
*user
;
528 long niceval
, retval
= -ESRCH
;
530 if (which
> 2 || which
< 0)
533 read_lock(&tasklist_lock
);
538 p
= find_task_by_pid(who
);
540 niceval
= 20 - task_nice(p
);
541 if (niceval
> retval
)
547 who
= process_group(current
);
548 do_each_task_pid(who
, PIDTYPE_PGID
, p
) {
549 niceval
= 20 - task_nice(p
);
550 if (niceval
> retval
)
552 } while_each_task_pid(who
, PIDTYPE_PGID
, p
);
555 user
= current
->user
;
559 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
560 goto out_unlock
; /* No processes for this user */
564 niceval
= 20 - task_nice(p
);
565 if (niceval
> retval
)
568 while_each_thread(g
, p
);
569 if (who
!= current
->uid
)
570 free_uid(user
); /* for find_user() */
574 read_unlock(&tasklist_lock
);
580 * emergency_restart - reboot the system
582 * Without shutting down any hardware or taking any locks
583 * reboot the system. This is called when we know we are in
584 * trouble so this is our best effort to reboot. This is
585 * safe to call in interrupt context.
587 void emergency_restart(void)
589 machine_emergency_restart();
591 EXPORT_SYMBOL_GPL(emergency_restart
);
593 static void kernel_restart_prepare(char *cmd
)
595 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
596 system_state
= SYSTEM_RESTART
;
601 * kernel_restart - reboot the system
602 * @cmd: pointer to buffer containing command to execute for restart
605 * Shutdown everything and perform a clean reboot.
606 * This is not safe to call in interrupt context.
608 void kernel_restart(char *cmd
)
610 kernel_restart_prepare(cmd
);
612 printk(KERN_EMERG
"Restarting system.\n");
614 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
615 machine_restart(cmd
);
617 EXPORT_SYMBOL_GPL(kernel_restart
);
620 * kernel_kexec - reboot the system
622 * Move into place and start executing a preloaded standalone
623 * executable. If nothing was preloaded return an error.
625 static void kernel_kexec(void)
628 struct kimage
*image
;
629 image
= xchg(&kexec_image
, NULL
);
632 kernel_restart_prepare(NULL
);
633 printk(KERN_EMERG
"Starting new kernel\n");
635 machine_kexec(image
);
639 void kernel_shutdown_prepare(enum system_states state
)
641 blocking_notifier_call_chain(&reboot_notifier_list
,
642 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
643 system_state
= state
;
647 * kernel_halt - halt the system
649 * Shutdown everything and perform a clean system halt.
651 void kernel_halt(void)
653 kernel_shutdown_prepare(SYSTEM_HALT
);
654 printk(KERN_EMERG
"System halted.\n");
658 EXPORT_SYMBOL_GPL(kernel_halt
);
661 * kernel_power_off - power_off the system
663 * Shutdown everything and perform a clean system power_off.
665 void kernel_power_off(void)
667 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
668 printk(KERN_EMERG
"Power down.\n");
671 EXPORT_SYMBOL_GPL(kernel_power_off
);
673 * Reboot system call: for obvious reasons only root may call it,
674 * and even root needs to set up some magic numbers in the registers
675 * so that some mistake won't make this reboot the whole machine.
676 * You can also set the meaning of the ctrl-alt-del-key here.
678 * reboot doesn't sync: do that yourself before calling this.
680 asmlinkage
long sys_reboot(int magic1
, int magic2
, unsigned int cmd
, void __user
* arg
)
684 /* We only trust the superuser with rebooting the system. */
685 if (!capable(CAP_SYS_BOOT
))
688 /* For safety, we require "magic" arguments. */
689 if (magic1
!= LINUX_REBOOT_MAGIC1
||
690 (magic2
!= LINUX_REBOOT_MAGIC2
&&
691 magic2
!= LINUX_REBOOT_MAGIC2A
&&
692 magic2
!= LINUX_REBOOT_MAGIC2B
&&
693 magic2
!= LINUX_REBOOT_MAGIC2C
))
696 /* Instead of trying to make the power_off code look like
697 * halt when pm_power_off is not set do it the easy way.
699 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
700 cmd
= LINUX_REBOOT_CMD_HALT
;
704 case LINUX_REBOOT_CMD_RESTART
:
705 kernel_restart(NULL
);
708 case LINUX_REBOOT_CMD_CAD_ON
:
712 case LINUX_REBOOT_CMD_CAD_OFF
:
716 case LINUX_REBOOT_CMD_HALT
:
722 case LINUX_REBOOT_CMD_POWER_OFF
:
728 case LINUX_REBOOT_CMD_RESTART2
:
729 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
733 buffer
[sizeof(buffer
) - 1] = '\0';
735 kernel_restart(buffer
);
738 case LINUX_REBOOT_CMD_KEXEC
:
743 #ifdef CONFIG_SOFTWARE_SUSPEND
744 case LINUX_REBOOT_CMD_SW_SUSPEND
:
746 int ret
= software_suspend();
760 static void deferred_cad(void *dummy
)
762 kernel_restart(NULL
);
766 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
767 * As it's called within an interrupt, it may NOT sync: the only choice
768 * is whether to reboot at once, or just ignore the ctrl-alt-del.
770 void ctrl_alt_del(void)
772 static DECLARE_WORK(cad_work
, deferred_cad
, NULL
);
775 schedule_work(&cad_work
);
777 kill_cad_pid(SIGINT
, 1);
781 * Unprivileged users may change the real gid to the effective gid
782 * or vice versa. (BSD-style)
784 * If you set the real gid at all, or set the effective gid to a value not
785 * equal to the real gid, then the saved gid is set to the new effective gid.
787 * This makes it possible for a setgid program to completely drop its
788 * privileges, which is often a useful assertion to make when you are doing
789 * a security audit over a program.
791 * The general idea is that a program which uses just setregid() will be
792 * 100% compatible with BSD. A program which uses just setgid() will be
793 * 100% compatible with POSIX with saved IDs.
795 * SMP: There are not races, the GIDs are checked only by filesystem
796 * operations (as far as semantic preservation is concerned).
798 asmlinkage
long sys_setregid(gid_t rgid
, gid_t egid
)
800 int old_rgid
= current
->gid
;
801 int old_egid
= current
->egid
;
802 int new_rgid
= old_rgid
;
803 int new_egid
= old_egid
;
806 retval
= security_task_setgid(rgid
, egid
, (gid_t
)-1, LSM_SETID_RE
);
810 if (rgid
!= (gid_t
) -1) {
811 if ((old_rgid
== rgid
) ||
812 (current
->egid
==rgid
) ||
818 if (egid
!= (gid_t
) -1) {
819 if ((old_rgid
== egid
) ||
820 (current
->egid
== egid
) ||
821 (current
->sgid
== egid
) ||
827 if (new_egid
!= old_egid
) {
828 current
->mm
->dumpable
= suid_dumpable
;
831 if (rgid
!= (gid_t
) -1 ||
832 (egid
!= (gid_t
) -1 && egid
!= old_rgid
))
833 current
->sgid
= new_egid
;
834 current
->fsgid
= new_egid
;
835 current
->egid
= new_egid
;
836 current
->gid
= new_rgid
;
837 key_fsgid_changed(current
);
838 proc_id_connector(current
, PROC_EVENT_GID
);
843 * setgid() is implemented like SysV w/ SAVED_IDS
845 * SMP: Same implicit races as above.
847 asmlinkage
long sys_setgid(gid_t gid
)
849 int old_egid
= current
->egid
;
852 retval
= security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_ID
);
856 if (capable(CAP_SETGID
)) {
857 if (old_egid
!= gid
) {
858 current
->mm
->dumpable
= suid_dumpable
;
861 current
->gid
= current
->egid
= current
->sgid
= current
->fsgid
= gid
;
862 } else if ((gid
== current
->gid
) || (gid
== current
->sgid
)) {
863 if (old_egid
!= gid
) {
864 current
->mm
->dumpable
= suid_dumpable
;
867 current
->egid
= current
->fsgid
= gid
;
872 key_fsgid_changed(current
);
873 proc_id_connector(current
, PROC_EVENT_GID
);
877 static int set_user(uid_t new_ruid
, int dumpclear
)
879 struct user_struct
*new_user
;
881 new_user
= alloc_uid(new_ruid
);
885 if (atomic_read(&new_user
->processes
) >=
886 current
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
&&
887 new_user
!= &root_user
) {
892 switch_uid(new_user
);
895 current
->mm
->dumpable
= suid_dumpable
;
898 current
->uid
= new_ruid
;
903 * Unprivileged users may change the real uid to the effective uid
904 * or vice versa. (BSD-style)
906 * If you set the real uid at all, or set the effective uid to a value not
907 * equal to the real uid, then the saved uid is set to the new effective uid.
909 * This makes it possible for a setuid program to completely drop its
910 * privileges, which is often a useful assertion to make when you are doing
911 * a security audit over a program.
913 * The general idea is that a program which uses just setreuid() will be
914 * 100% compatible with BSD. A program which uses just setuid() will be
915 * 100% compatible with POSIX with saved IDs.
917 asmlinkage
long sys_setreuid(uid_t ruid
, uid_t euid
)
919 int old_ruid
, old_euid
, old_suid
, new_ruid
, new_euid
;
922 retval
= security_task_setuid(ruid
, euid
, (uid_t
)-1, LSM_SETID_RE
);
926 new_ruid
= old_ruid
= current
->uid
;
927 new_euid
= old_euid
= current
->euid
;
928 old_suid
= current
->suid
;
930 if (ruid
!= (uid_t
) -1) {
932 if ((old_ruid
!= ruid
) &&
933 (current
->euid
!= ruid
) &&
934 !capable(CAP_SETUID
))
938 if (euid
!= (uid_t
) -1) {
940 if ((old_ruid
!= euid
) &&
941 (current
->euid
!= euid
) &&
942 (current
->suid
!= euid
) &&
943 !capable(CAP_SETUID
))
947 if (new_ruid
!= old_ruid
&& set_user(new_ruid
, new_euid
!= old_euid
) < 0)
950 if (new_euid
!= old_euid
) {
951 current
->mm
->dumpable
= suid_dumpable
;
954 current
->fsuid
= current
->euid
= new_euid
;
955 if (ruid
!= (uid_t
) -1 ||
956 (euid
!= (uid_t
) -1 && euid
!= old_ruid
))
957 current
->suid
= current
->euid
;
958 current
->fsuid
= current
->euid
;
960 key_fsuid_changed(current
);
961 proc_id_connector(current
, PROC_EVENT_UID
);
963 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RE
);
969 * setuid() is implemented like SysV with SAVED_IDS
971 * Note that SAVED_ID's is deficient in that a setuid root program
972 * like sendmail, for example, cannot set its uid to be a normal
973 * user and then switch back, because if you're root, setuid() sets
974 * the saved uid too. If you don't like this, blame the bright people
975 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
976 * will allow a root program to temporarily drop privileges and be able to
977 * regain them by swapping the real and effective uid.
979 asmlinkage
long sys_setuid(uid_t uid
)
981 int old_euid
= current
->euid
;
982 int old_ruid
, old_suid
, new_ruid
, new_suid
;
985 retval
= security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_ID
);
989 old_ruid
= new_ruid
= current
->uid
;
990 old_suid
= current
->suid
;
993 if (capable(CAP_SETUID
)) {
994 if (uid
!= old_ruid
&& set_user(uid
, old_euid
!= uid
) < 0)
997 } else if ((uid
!= current
->uid
) && (uid
!= new_suid
))
1000 if (old_euid
!= uid
) {
1001 current
->mm
->dumpable
= suid_dumpable
;
1004 current
->fsuid
= current
->euid
= uid
;
1005 current
->suid
= new_suid
;
1007 key_fsuid_changed(current
);
1008 proc_id_connector(current
, PROC_EVENT_UID
);
1010 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_ID
);
1015 * This function implements a generic ability to update ruid, euid,
1016 * and suid. This allows you to implement the 4.4 compatible seteuid().
1018 asmlinkage
long sys_setresuid(uid_t ruid
, uid_t euid
, uid_t suid
)
1020 int old_ruid
= current
->uid
;
1021 int old_euid
= current
->euid
;
1022 int old_suid
= current
->suid
;
1025 retval
= security_task_setuid(ruid
, euid
, suid
, LSM_SETID_RES
);
1029 if (!capable(CAP_SETUID
)) {
1030 if ((ruid
!= (uid_t
) -1) && (ruid
!= current
->uid
) &&
1031 (ruid
!= current
->euid
) && (ruid
!= current
->suid
))
1033 if ((euid
!= (uid_t
) -1) && (euid
!= current
->uid
) &&
1034 (euid
!= current
->euid
) && (euid
!= current
->suid
))
1036 if ((suid
!= (uid_t
) -1) && (suid
!= current
->uid
) &&
1037 (suid
!= current
->euid
) && (suid
!= current
->suid
))
1040 if (ruid
!= (uid_t
) -1) {
1041 if (ruid
!= current
->uid
&& set_user(ruid
, euid
!= current
->euid
) < 0)
1044 if (euid
!= (uid_t
) -1) {
1045 if (euid
!= current
->euid
) {
1046 current
->mm
->dumpable
= suid_dumpable
;
1049 current
->euid
= euid
;
1051 current
->fsuid
= current
->euid
;
1052 if (suid
!= (uid_t
) -1)
1053 current
->suid
= suid
;
1055 key_fsuid_changed(current
);
1056 proc_id_connector(current
, PROC_EVENT_UID
);
1058 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RES
);
1061 asmlinkage
long sys_getresuid(uid_t __user
*ruid
, uid_t __user
*euid
, uid_t __user
*suid
)
1065 if (!(retval
= put_user(current
->uid
, ruid
)) &&
1066 !(retval
= put_user(current
->euid
, euid
)))
1067 retval
= put_user(current
->suid
, suid
);
1073 * Same as above, but for rgid, egid, sgid.
1075 asmlinkage
long sys_setresgid(gid_t rgid
, gid_t egid
, gid_t sgid
)
1079 retval
= security_task_setgid(rgid
, egid
, sgid
, LSM_SETID_RES
);
1083 if (!capable(CAP_SETGID
)) {
1084 if ((rgid
!= (gid_t
) -1) && (rgid
!= current
->gid
) &&
1085 (rgid
!= current
->egid
) && (rgid
!= current
->sgid
))
1087 if ((egid
!= (gid_t
) -1) && (egid
!= current
->gid
) &&
1088 (egid
!= current
->egid
) && (egid
!= current
->sgid
))
1090 if ((sgid
!= (gid_t
) -1) && (sgid
!= current
->gid
) &&
1091 (sgid
!= current
->egid
) && (sgid
!= current
->sgid
))
1094 if (egid
!= (gid_t
) -1) {
1095 if (egid
!= current
->egid
) {
1096 current
->mm
->dumpable
= suid_dumpable
;
1099 current
->egid
= egid
;
1101 current
->fsgid
= current
->egid
;
1102 if (rgid
!= (gid_t
) -1)
1103 current
->gid
= rgid
;
1104 if (sgid
!= (gid_t
) -1)
1105 current
->sgid
= sgid
;
1107 key_fsgid_changed(current
);
1108 proc_id_connector(current
, PROC_EVENT_GID
);
1112 asmlinkage
long sys_getresgid(gid_t __user
*rgid
, gid_t __user
*egid
, gid_t __user
*sgid
)
1116 if (!(retval
= put_user(current
->gid
, rgid
)) &&
1117 !(retval
= put_user(current
->egid
, egid
)))
1118 retval
= put_user(current
->sgid
, sgid
);
1125 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
1126 * is used for "access()" and for the NFS daemon (letting nfsd stay at
1127 * whatever uid it wants to). It normally shadows "euid", except when
1128 * explicitly set by setfsuid() or for access..
1130 asmlinkage
long sys_setfsuid(uid_t uid
)
1134 old_fsuid
= current
->fsuid
;
1135 if (security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
))
1138 if (uid
== current
->uid
|| uid
== current
->euid
||
1139 uid
== current
->suid
|| uid
== current
->fsuid
||
1140 capable(CAP_SETUID
)) {
1141 if (uid
!= old_fsuid
) {
1142 current
->mm
->dumpable
= suid_dumpable
;
1145 current
->fsuid
= uid
;
1148 key_fsuid_changed(current
);
1149 proc_id_connector(current
, PROC_EVENT_UID
);
1151 security_task_post_setuid(old_fsuid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
);
1157 * Samma på svenska..
1159 asmlinkage
long sys_setfsgid(gid_t gid
)
1163 old_fsgid
= current
->fsgid
;
1164 if (security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_FS
))
1167 if (gid
== current
->gid
|| gid
== current
->egid
||
1168 gid
== current
->sgid
|| gid
== current
->fsgid
||
1169 capable(CAP_SETGID
)) {
1170 if (gid
!= old_fsgid
) {
1171 current
->mm
->dumpable
= suid_dumpable
;
1174 current
->fsgid
= gid
;
1175 key_fsgid_changed(current
);
1176 proc_id_connector(current
, PROC_EVENT_GID
);
1181 asmlinkage
long sys_times(struct tms __user
* tbuf
)
1184 * In the SMP world we might just be unlucky and have one of
1185 * the times increment as we use it. Since the value is an
1186 * atomically safe type this is just fine. Conceptually its
1187 * as if the syscall took an instant longer to occur.
1191 struct task_struct
*tsk
= current
;
1192 struct task_struct
*t
;
1193 cputime_t utime
, stime
, cutime
, cstime
;
1195 spin_lock_irq(&tsk
->sighand
->siglock
);
1196 utime
= tsk
->signal
->utime
;
1197 stime
= tsk
->signal
->stime
;
1200 utime
= cputime_add(utime
, t
->utime
);
1201 stime
= cputime_add(stime
, t
->stime
);
1205 cutime
= tsk
->signal
->cutime
;
1206 cstime
= tsk
->signal
->cstime
;
1207 spin_unlock_irq(&tsk
->sighand
->siglock
);
1209 tmp
.tms_utime
= cputime_to_clock_t(utime
);
1210 tmp
.tms_stime
= cputime_to_clock_t(stime
);
1211 tmp
.tms_cutime
= cputime_to_clock_t(cutime
);
1212 tmp
.tms_cstime
= cputime_to_clock_t(cstime
);
1213 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
1216 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1220 * This needs some heavy checking ...
1221 * I just haven't the stomach for it. I also don't fully
1222 * understand sessions/pgrp etc. Let somebody who does explain it.
1224 * OK, I think I have the protection semantics right.... this is really
1225 * only important on a multi-user system anyway, to make sure one user
1226 * can't send a signal to a process owned by another. -TYT, 12/12/91
1228 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1232 asmlinkage
long sys_setpgid(pid_t pid
, pid_t pgid
)
1234 struct task_struct
*p
;
1235 struct task_struct
*group_leader
= current
->group_leader
;
1239 pid
= group_leader
->pid
;
1245 /* From this point forward we keep holding onto the tasklist lock
1246 * so that our parent does not change from under us. -DaveM
1248 write_lock_irq(&tasklist_lock
);
1251 p
= find_task_by_pid(pid
);
1256 if (!thread_group_leader(p
))
1259 if (p
->real_parent
== group_leader
) {
1261 if (p
->signal
->session
!= group_leader
->signal
->session
)
1268 if (p
!= group_leader
)
1273 if (p
->signal
->leader
)
1277 struct task_struct
*p
;
1279 do_each_task_pid(pgid
, PIDTYPE_PGID
, p
) {
1280 if (p
->signal
->session
== group_leader
->signal
->session
)
1282 } while_each_task_pid(pgid
, PIDTYPE_PGID
, p
);
1287 err
= security_task_setpgid(p
, pgid
);
1291 if (process_group(p
) != pgid
) {
1292 detach_pid(p
, PIDTYPE_PGID
);
1293 p
->signal
->pgrp
= pgid
;
1294 attach_pid(p
, PIDTYPE_PGID
, pgid
);
1299 /* All paths lead to here, thus we are safe. -DaveM */
1300 write_unlock_irq(&tasklist_lock
);
1304 asmlinkage
long sys_getpgid(pid_t pid
)
1307 return process_group(current
);
1310 struct task_struct
*p
;
1312 read_lock(&tasklist_lock
);
1313 p
= find_task_by_pid(pid
);
1317 retval
= security_task_getpgid(p
);
1319 retval
= process_group(p
);
1321 read_unlock(&tasklist_lock
);
1326 #ifdef __ARCH_WANT_SYS_GETPGRP
1328 asmlinkage
long sys_getpgrp(void)
1330 /* SMP - assuming writes are word atomic this is fine */
1331 return process_group(current
);
1336 asmlinkage
long sys_getsid(pid_t pid
)
1339 return current
->signal
->session
;
1342 struct task_struct
*p
;
1344 read_lock(&tasklist_lock
);
1345 p
= find_task_by_pid(pid
);
1349 retval
= security_task_getsid(p
);
1351 retval
= p
->signal
->session
;
1353 read_unlock(&tasklist_lock
);
1358 asmlinkage
long sys_setsid(void)
1360 struct task_struct
*group_leader
= current
->group_leader
;
1364 mutex_lock(&tty_mutex
);
1365 write_lock_irq(&tasklist_lock
);
1367 /* Fail if I am already a session leader */
1368 if (group_leader
->signal
->leader
)
1371 session
= group_leader
->pid
;
1372 /* Fail if a process group id already exists that equals the
1373 * proposed session id.
1375 * Don't check if session id == 1 because kernel threads use this
1376 * session id and so the check will always fail and make it so
1377 * init cannot successfully call setsid.
1379 if (session
> 1 && find_task_by_pid_type(PIDTYPE_PGID
, session
))
1382 group_leader
->signal
->leader
= 1;
1383 __set_special_pids(session
, session
);
1384 group_leader
->signal
->tty
= NULL
;
1385 group_leader
->signal
->tty_old_pgrp
= 0;
1386 err
= process_group(group_leader
);
1388 write_unlock_irq(&tasklist_lock
);
1389 mutex_unlock(&tty_mutex
);
1394 * Supplementary group IDs
1397 /* init to 2 - one for init_task, one to ensure it is never freed */
1398 struct group_info init_groups
= { .usage
= ATOMIC_INIT(2) };
1400 struct group_info
*groups_alloc(int gidsetsize
)
1402 struct group_info
*group_info
;
1406 nblocks
= (gidsetsize
+ NGROUPS_PER_BLOCK
- 1) / NGROUPS_PER_BLOCK
;
1407 /* Make sure we always allocate at least one indirect block pointer */
1408 nblocks
= nblocks
? : 1;
1409 group_info
= kmalloc(sizeof(*group_info
) + nblocks
*sizeof(gid_t
*), GFP_USER
);
1412 group_info
->ngroups
= gidsetsize
;
1413 group_info
->nblocks
= nblocks
;
1414 atomic_set(&group_info
->usage
, 1);
1416 if (gidsetsize
<= NGROUPS_SMALL
)
1417 group_info
->blocks
[0] = group_info
->small_block
;
1419 for (i
= 0; i
< nblocks
; i
++) {
1421 b
= (void *)__get_free_page(GFP_USER
);
1423 goto out_undo_partial_alloc
;
1424 group_info
->blocks
[i
] = b
;
1429 out_undo_partial_alloc
:
1431 free_page((unsigned long)group_info
->blocks
[i
]);
1437 EXPORT_SYMBOL(groups_alloc
);
1439 void groups_free(struct group_info
*group_info
)
1441 if (group_info
->blocks
[0] != group_info
->small_block
) {
1443 for (i
= 0; i
< group_info
->nblocks
; i
++)
1444 free_page((unsigned long)group_info
->blocks
[i
]);
1449 EXPORT_SYMBOL(groups_free
);
1451 /* export the group_info to a user-space array */
1452 static int groups_to_user(gid_t __user
*grouplist
,
1453 struct group_info
*group_info
)
1456 int count
= group_info
->ngroups
;
1458 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1459 int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1460 int off
= i
* NGROUPS_PER_BLOCK
;
1461 int len
= cp_count
* sizeof(*grouplist
);
1463 if (copy_to_user(grouplist
+off
, group_info
->blocks
[i
], len
))
1471 /* fill a group_info from a user-space array - it must be allocated already */
1472 static int groups_from_user(struct group_info
*group_info
,
1473 gid_t __user
*grouplist
)
1476 int count
= group_info
->ngroups
;
1478 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1479 int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1480 int off
= i
* NGROUPS_PER_BLOCK
;
1481 int len
= cp_count
* sizeof(*grouplist
);
1483 if (copy_from_user(group_info
->blocks
[i
], grouplist
+off
, len
))
1491 /* a simple Shell sort */
1492 static void groups_sort(struct group_info
*group_info
)
1494 int base
, max
, stride
;
1495 int gidsetsize
= group_info
->ngroups
;
1497 for (stride
= 1; stride
< gidsetsize
; stride
= 3 * stride
+ 1)
1502 max
= gidsetsize
- stride
;
1503 for (base
= 0; base
< max
; base
++) {
1505 int right
= left
+ stride
;
1506 gid_t tmp
= GROUP_AT(group_info
, right
);
1508 while (left
>= 0 && GROUP_AT(group_info
, left
) > tmp
) {
1509 GROUP_AT(group_info
, right
) =
1510 GROUP_AT(group_info
, left
);
1514 GROUP_AT(group_info
, right
) = tmp
;
1520 /* a simple bsearch */
1521 int groups_search(struct group_info
*group_info
, gid_t grp
)
1523 unsigned int left
, right
;
1529 right
= group_info
->ngroups
;
1530 while (left
< right
) {
1531 unsigned int mid
= (left
+right
)/2;
1532 int cmp
= grp
- GROUP_AT(group_info
, mid
);
1543 /* validate and set current->group_info */
1544 int set_current_groups(struct group_info
*group_info
)
1547 struct group_info
*old_info
;
1549 retval
= security_task_setgroups(group_info
);
1553 groups_sort(group_info
);
1554 get_group_info(group_info
);
1557 old_info
= current
->group_info
;
1558 current
->group_info
= group_info
;
1559 task_unlock(current
);
1561 put_group_info(old_info
);
1566 EXPORT_SYMBOL(set_current_groups
);
1568 asmlinkage
long sys_getgroups(int gidsetsize
, gid_t __user
*grouplist
)
1573 * SMP: Nobody else can change our grouplist. Thus we are
1580 /* no need to grab task_lock here; it cannot change */
1581 i
= current
->group_info
->ngroups
;
1583 if (i
> gidsetsize
) {
1587 if (groups_to_user(grouplist
, current
->group_info
)) {
1597 * SMP: Our groups are copy-on-write. We can set them safely
1598 * without another task interfering.
1601 asmlinkage
long sys_setgroups(int gidsetsize
, gid_t __user
*grouplist
)
1603 struct group_info
*group_info
;
1606 if (!capable(CAP_SETGID
))
1608 if ((unsigned)gidsetsize
> NGROUPS_MAX
)
1611 group_info
= groups_alloc(gidsetsize
);
1614 retval
= groups_from_user(group_info
, grouplist
);
1616 put_group_info(group_info
);
1620 retval
= set_current_groups(group_info
);
1621 put_group_info(group_info
);
1627 * Check whether we're fsgid/egid or in the supplemental group..
1629 int in_group_p(gid_t grp
)
1632 if (grp
!= current
->fsgid
)
1633 retval
= groups_search(current
->group_info
, grp
);
1637 EXPORT_SYMBOL(in_group_p
);
1639 int in_egroup_p(gid_t grp
)
1642 if (grp
!= current
->egid
)
1643 retval
= groups_search(current
->group_info
, grp
);
1647 EXPORT_SYMBOL(in_egroup_p
);
1649 DECLARE_RWSEM(uts_sem
);
1651 EXPORT_SYMBOL(uts_sem
);
1653 asmlinkage
long sys_newuname(struct new_utsname __user
* name
)
1657 down_read(&uts_sem
);
1658 if (copy_to_user(name
, utsname(), sizeof *name
))
1664 asmlinkage
long sys_sethostname(char __user
*name
, int len
)
1667 char tmp
[__NEW_UTS_LEN
];
1669 if (!capable(CAP_SYS_ADMIN
))
1671 if (len
< 0 || len
> __NEW_UTS_LEN
)
1673 down_write(&uts_sem
);
1675 if (!copy_from_user(tmp
, name
, len
)) {
1676 memcpy(utsname()->nodename
, tmp
, len
);
1677 utsname()->nodename
[len
] = 0;
1684 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1686 asmlinkage
long sys_gethostname(char __user
*name
, int len
)
1692 down_read(&uts_sem
);
1693 i
= 1 + strlen(utsname()->nodename
);
1697 if (copy_to_user(name
, utsname()->nodename
, i
))
1706 * Only setdomainname; getdomainname can be implemented by calling
1709 asmlinkage
long sys_setdomainname(char __user
*name
, int len
)
1712 char tmp
[__NEW_UTS_LEN
];
1714 if (!capable(CAP_SYS_ADMIN
))
1716 if (len
< 0 || len
> __NEW_UTS_LEN
)
1719 down_write(&uts_sem
);
1721 if (!copy_from_user(tmp
, name
, len
)) {
1722 memcpy(utsname()->domainname
, tmp
, len
);
1723 utsname()->domainname
[len
] = 0;
1730 asmlinkage
long sys_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1732 if (resource
>= RLIM_NLIMITS
)
1735 struct rlimit value
;
1736 task_lock(current
->group_leader
);
1737 value
= current
->signal
->rlim
[resource
];
1738 task_unlock(current
->group_leader
);
1739 return copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1743 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1746 * Back compatibility for getrlimit. Needed for some apps.
1749 asmlinkage
long sys_old_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1752 if (resource
>= RLIM_NLIMITS
)
1755 task_lock(current
->group_leader
);
1756 x
= current
->signal
->rlim
[resource
];
1757 task_unlock(current
->group_leader
);
1758 if (x
.rlim_cur
> 0x7FFFFFFF)
1759 x
.rlim_cur
= 0x7FFFFFFF;
1760 if (x
.rlim_max
> 0x7FFFFFFF)
1761 x
.rlim_max
= 0x7FFFFFFF;
1762 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1767 asmlinkage
long sys_setrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1769 struct rlimit new_rlim
, *old_rlim
;
1770 unsigned long it_prof_secs
;
1773 if (resource
>= RLIM_NLIMITS
)
1775 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1777 if (new_rlim
.rlim_cur
> new_rlim
.rlim_max
)
1779 old_rlim
= current
->signal
->rlim
+ resource
;
1780 if ((new_rlim
.rlim_max
> old_rlim
->rlim_max
) &&
1781 !capable(CAP_SYS_RESOURCE
))
1783 if (resource
== RLIMIT_NOFILE
&& new_rlim
.rlim_max
> NR_OPEN
)
1786 retval
= security_task_setrlimit(resource
, &new_rlim
);
1790 task_lock(current
->group_leader
);
1791 *old_rlim
= new_rlim
;
1792 task_unlock(current
->group_leader
);
1794 if (resource
!= RLIMIT_CPU
)
1798 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1799 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1800 * very long-standing error, and fixing it now risks breakage of
1801 * applications, so we live with it
1803 if (new_rlim
.rlim_cur
== RLIM_INFINITY
)
1806 it_prof_secs
= cputime_to_secs(current
->signal
->it_prof_expires
);
1807 if (it_prof_secs
== 0 || new_rlim
.rlim_cur
<= it_prof_secs
) {
1808 unsigned long rlim_cur
= new_rlim
.rlim_cur
;
1811 if (rlim_cur
== 0) {
1813 * The caller is asking for an immediate RLIMIT_CPU
1814 * expiry. But we use the zero value to mean "it was
1815 * never set". So let's cheat and make it one second
1820 cputime
= secs_to_cputime(rlim_cur
);
1821 read_lock(&tasklist_lock
);
1822 spin_lock_irq(¤t
->sighand
->siglock
);
1823 set_process_cpu_timer(current
, CPUCLOCK_PROF
, &cputime
, NULL
);
1824 spin_unlock_irq(¤t
->sighand
->siglock
);
1825 read_unlock(&tasklist_lock
);
1832 * It would make sense to put struct rusage in the task_struct,
1833 * except that would make the task_struct be *really big*. After
1834 * task_struct gets moved into malloc'ed memory, it would
1835 * make sense to do this. It will make moving the rest of the information
1836 * a lot simpler! (Which we're not doing right now because we're not
1837 * measuring them yet).
1839 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1840 * races with threads incrementing their own counters. But since word
1841 * reads are atomic, we either get new values or old values and we don't
1842 * care which for the sums. We always take the siglock to protect reading
1843 * the c* fields from p->signal from races with exit.c updating those
1844 * fields when reaping, so a sample either gets all the additions of a
1845 * given child after it's reaped, or none so this sample is before reaping.
1848 * We need to take the siglock for CHILDEREN, SELF and BOTH
1849 * for the cases current multithreaded, non-current single threaded
1850 * non-current multithreaded. Thread traversal is now safe with
1852 * Strictly speaking, we donot need to take the siglock if we are current and
1853 * single threaded, as no one else can take our signal_struct away, no one
1854 * else can reap the children to update signal->c* counters, and no one else
1855 * can race with the signal-> fields. If we do not take any lock, the
1856 * signal-> fields could be read out of order while another thread was just
1857 * exiting. So we should place a read memory barrier when we avoid the lock.
1858 * On the writer side, write memory barrier is implied in __exit_signal
1859 * as __exit_signal releases the siglock spinlock after updating the signal->
1860 * fields. But we don't do this yet to keep things simple.
1864 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1866 struct task_struct
*t
;
1867 unsigned long flags
;
1868 cputime_t utime
, stime
;
1870 memset((char *) r
, 0, sizeof *r
);
1871 utime
= stime
= cputime_zero
;
1874 if (!lock_task_sighand(p
, &flags
)) {
1881 case RUSAGE_CHILDREN
:
1882 utime
= p
->signal
->cutime
;
1883 stime
= p
->signal
->cstime
;
1884 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1885 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1886 r
->ru_minflt
= p
->signal
->cmin_flt
;
1887 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1889 if (who
== RUSAGE_CHILDREN
)
1893 utime
= cputime_add(utime
, p
->signal
->utime
);
1894 stime
= cputime_add(stime
, p
->signal
->stime
);
1895 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1896 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1897 r
->ru_minflt
+= p
->signal
->min_flt
;
1898 r
->ru_majflt
+= p
->signal
->maj_flt
;
1901 utime
= cputime_add(utime
, t
->utime
);
1902 stime
= cputime_add(stime
, t
->stime
);
1903 r
->ru_nvcsw
+= t
->nvcsw
;
1904 r
->ru_nivcsw
+= t
->nivcsw
;
1905 r
->ru_minflt
+= t
->min_flt
;
1906 r
->ru_majflt
+= t
->maj_flt
;
1915 unlock_task_sighand(p
, &flags
);
1918 cputime_to_timeval(utime
, &r
->ru_utime
);
1919 cputime_to_timeval(stime
, &r
->ru_stime
);
1922 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1925 k_getrusage(p
, who
, &r
);
1926 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1929 asmlinkage
long sys_getrusage(int who
, struct rusage __user
*ru
)
1931 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
)
1933 return getrusage(current
, who
, ru
);
1936 asmlinkage
long sys_umask(int mask
)
1938 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1942 asmlinkage
long sys_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
1943 unsigned long arg4
, unsigned long arg5
)
1947 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
1952 case PR_SET_PDEATHSIG
:
1953 if (!valid_signal(arg2
)) {
1957 current
->pdeath_signal
= arg2
;
1959 case PR_GET_PDEATHSIG
:
1960 error
= put_user(current
->pdeath_signal
, (int __user
*)arg2
);
1962 case PR_GET_DUMPABLE
:
1963 error
= current
->mm
->dumpable
;
1965 case PR_SET_DUMPABLE
:
1966 if (arg2
< 0 || arg2
> 1) {
1970 current
->mm
->dumpable
= arg2
;
1973 case PR_SET_UNALIGN
:
1974 error
= SET_UNALIGN_CTL(current
, arg2
);
1976 case PR_GET_UNALIGN
:
1977 error
= GET_UNALIGN_CTL(current
, arg2
);
1980 error
= SET_FPEMU_CTL(current
, arg2
);
1983 error
= GET_FPEMU_CTL(current
, arg2
);
1986 error
= SET_FPEXC_CTL(current
, arg2
);
1989 error
= GET_FPEXC_CTL(current
, arg2
);
1992 error
= PR_TIMING_STATISTICAL
;
1995 if (arg2
== PR_TIMING_STATISTICAL
)
2001 case PR_GET_KEEPCAPS
:
2002 if (current
->keep_capabilities
)
2005 case PR_SET_KEEPCAPS
:
2006 if (arg2
!= 0 && arg2
!= 1) {
2010 current
->keep_capabilities
= arg2
;
2013 struct task_struct
*me
= current
;
2014 unsigned char ncomm
[sizeof(me
->comm
)];
2016 ncomm
[sizeof(me
->comm
)-1] = 0;
2017 if (strncpy_from_user(ncomm
, (char __user
*)arg2
,
2018 sizeof(me
->comm
)-1) < 0)
2020 set_task_comm(me
, ncomm
);
2024 struct task_struct
*me
= current
;
2025 unsigned char tcomm
[sizeof(me
->comm
)];
2027 get_task_comm(tcomm
, me
);
2028 if (copy_to_user((char __user
*)arg2
, tcomm
, sizeof(tcomm
)))
2033 error
= GET_ENDIAN(current
, arg2
);
2036 error
= SET_ENDIAN(current
, arg2
);
2046 asmlinkage
long sys_getcpu(unsigned __user
*cpup
, unsigned __user
*nodep
,
2047 struct getcpu_cache __user
*cache
)
2050 int cpu
= raw_smp_processor_id();
2052 err
|= put_user(cpu
, cpup
);
2054 err
|= put_user(cpu_to_node(cpu
), nodep
);
2057 * The cache is not needed for this implementation,
2058 * but make sure user programs pass something
2059 * valid. vsyscall implementations can instead make
2060 * good use of the cache. Only use t0 and t1 because
2061 * these are available in both 32bit and 64bit ABI (no
2062 * need for a compat_getcpu). 32bit has enough
2065 unsigned long t0
, t1
;
2066 get_user(t0
, &cache
->blob
[0]);
2067 get_user(t1
, &cache
->blob
[1]);
2070 put_user(t0
, &cache
->blob
[0]);
2071 put_user(t1
, &cache
->blob
[1]);
2073 return err
? -EFAULT
: 0;