2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
5 #include <asm/uaccess.h>
6 #include <linux/string.h>
7 #include <linux/time.h>
8 #include <linux/reiserfs_fs.h>
9 #include <linux/buffer_head.h>
11 /* this is one and only function that is used outside (do_balance.c) */
12 int balance_internal(struct tree_balance
*,
13 int, int, struct item_head
*, struct buffer_head
**);
15 /* modes of internal_shift_left, internal_shift_right and internal_insert_childs */
16 #define INTERNAL_SHIFT_FROM_S_TO_L 0
17 #define INTERNAL_SHIFT_FROM_R_TO_S 1
18 #define INTERNAL_SHIFT_FROM_L_TO_S 2
19 #define INTERNAL_SHIFT_FROM_S_TO_R 3
20 #define INTERNAL_INSERT_TO_S 4
21 #define INTERNAL_INSERT_TO_L 5
22 #define INTERNAL_INSERT_TO_R 6
24 static void internal_define_dest_src_infos(int shift_mode
,
25 struct tree_balance
*tb
,
27 struct buffer_info
*dest_bi
,
28 struct buffer_info
*src_bi
,
29 int *d_key
, struct buffer_head
**cf
)
31 memset(dest_bi
, 0, sizeof(struct buffer_info
));
32 memset(src_bi
, 0, sizeof(struct buffer_info
));
33 /* define dest, src, dest parent, dest position */
35 case INTERNAL_SHIFT_FROM_S_TO_L
: /* used in internal_shift_left */
37 src_bi
->bi_bh
= PATH_H_PBUFFER(tb
->tb_path
, h
);
38 src_bi
->bi_parent
= PATH_H_PPARENT(tb
->tb_path
, h
);
39 src_bi
->bi_position
= PATH_H_POSITION(tb
->tb_path
, h
+ 1);
41 dest_bi
->bi_bh
= tb
->L
[h
];
42 dest_bi
->bi_parent
= tb
->FL
[h
];
43 dest_bi
->bi_position
= get_left_neighbor_position(tb
, h
);
47 case INTERNAL_SHIFT_FROM_L_TO_S
:
49 src_bi
->bi_bh
= tb
->L
[h
];
50 src_bi
->bi_parent
= tb
->FL
[h
];
51 src_bi
->bi_position
= get_left_neighbor_position(tb
, h
);
53 dest_bi
->bi_bh
= PATH_H_PBUFFER(tb
->tb_path
, h
);
54 dest_bi
->bi_parent
= PATH_H_PPARENT(tb
->tb_path
, h
);
55 dest_bi
->bi_position
= PATH_H_POSITION(tb
->tb_path
, h
+ 1); /* dest position is analog of dest->b_item_order */
60 case INTERNAL_SHIFT_FROM_R_TO_S
: /* used in internal_shift_left */
62 src_bi
->bi_bh
= tb
->R
[h
];
63 src_bi
->bi_parent
= tb
->FR
[h
];
64 src_bi
->bi_position
= get_right_neighbor_position(tb
, h
);
66 dest_bi
->bi_bh
= PATH_H_PBUFFER(tb
->tb_path
, h
);
67 dest_bi
->bi_parent
= PATH_H_PPARENT(tb
->tb_path
, h
);
68 dest_bi
->bi_position
= PATH_H_POSITION(tb
->tb_path
, h
+ 1);
73 case INTERNAL_SHIFT_FROM_S_TO_R
:
75 src_bi
->bi_bh
= PATH_H_PBUFFER(tb
->tb_path
, h
);
76 src_bi
->bi_parent
= PATH_H_PPARENT(tb
->tb_path
, h
);
77 src_bi
->bi_position
= PATH_H_POSITION(tb
->tb_path
, h
+ 1);
79 dest_bi
->bi_bh
= tb
->R
[h
];
80 dest_bi
->bi_parent
= tb
->FR
[h
];
81 dest_bi
->bi_position
= get_right_neighbor_position(tb
, h
);
86 case INTERNAL_INSERT_TO_L
:
88 dest_bi
->bi_bh
= tb
->L
[h
];
89 dest_bi
->bi_parent
= tb
->FL
[h
];
90 dest_bi
->bi_position
= get_left_neighbor_position(tb
, h
);
93 case INTERNAL_INSERT_TO_S
:
95 dest_bi
->bi_bh
= PATH_H_PBUFFER(tb
->tb_path
, h
);
96 dest_bi
->bi_parent
= PATH_H_PPARENT(tb
->tb_path
, h
);
97 dest_bi
->bi_position
= PATH_H_POSITION(tb
->tb_path
, h
+ 1);
100 case INTERNAL_INSERT_TO_R
:
102 dest_bi
->bi_bh
= tb
->R
[h
];
103 dest_bi
->bi_parent
= tb
->FR
[h
];
104 dest_bi
->bi_position
= get_right_neighbor_position(tb
, h
);
108 reiserfs_panic(tb
->tb_sb
, "ibalance-1",
109 "shift type is unknown (%d)",
114 /* Insert count node pointers into buffer cur before position to + 1.
115 * Insert count items into buffer cur before position to.
116 * Items and node pointers are specified by inserted and bh respectively.
118 static void internal_insert_childs(struct buffer_info
*cur_bi
,
120 struct item_head
*inserted
,
121 struct buffer_head
**bh
)
123 struct buffer_head
*cur
= cur_bi
->bi_bh
;
124 struct block_head
*blkh
;
126 struct reiserfs_key
*ih
;
127 struct disk_child new_dc
[2];
128 struct disk_child
*dc
;
134 blkh
= B_BLK_HEAD(cur
);
135 nr
= blkh_nr_item(blkh
);
137 RFALSE(count
> 2, "too many children (%d) are to be inserted", count
);
138 RFALSE(B_FREE_SPACE(cur
) < count
* (KEY_SIZE
+ DC_SIZE
),
139 "no enough free space (%d), needed %d bytes",
140 B_FREE_SPACE(cur
), count
* (KEY_SIZE
+ DC_SIZE
));
142 /* prepare space for count disk_child */
143 dc
= B_N_CHILD(cur
, to
+ 1);
145 memmove(dc
+ count
, dc
, (nr
+ 1 - (to
+ 1)) * DC_SIZE
);
147 /* copy to_be_insert disk children */
148 for (i
= 0; i
< count
; i
++) {
149 put_dc_size(&(new_dc
[i
]),
150 MAX_CHILD_SIZE(bh
[i
]) - B_FREE_SPACE(bh
[i
]));
151 put_dc_block_number(&(new_dc
[i
]), bh
[i
]->b_blocknr
);
153 memcpy(dc
, new_dc
, DC_SIZE
* count
);
155 /* prepare space for count items */
156 ih
= B_N_PDELIM_KEY(cur
, ((to
== -1) ? 0 : to
));
158 memmove(ih
+ count
, ih
,
159 (nr
- to
) * KEY_SIZE
+ (nr
+ 1 + count
) * DC_SIZE
);
161 /* copy item headers (keys) */
162 memcpy(ih
, inserted
, KEY_SIZE
);
164 memcpy(ih
+ 1, inserted
+ 1, KEY_SIZE
);
166 /* sizes, item number */
167 set_blkh_nr_item(blkh
, blkh_nr_item(blkh
) + count
);
168 set_blkh_free_space(blkh
,
169 blkh_free_space(blkh
) - count
* (DC_SIZE
+
172 do_balance_mark_internal_dirty(cur_bi
->tb
, cur
, 0);
174 /*&&&&&&&&&&&&&&&&&&&&&&&& */
176 /*&&&&&&&&&&&&&&&&&&&&&&&& */
178 if (cur_bi
->bi_parent
) {
179 struct disk_child
*t_dc
=
180 B_N_CHILD(cur_bi
->bi_parent
, cur_bi
->bi_position
);
182 dc_size(t_dc
) + (count
* (DC_SIZE
+ KEY_SIZE
)));
183 do_balance_mark_internal_dirty(cur_bi
->tb
, cur_bi
->bi_parent
,
186 /*&&&&&&&&&&&&&&&&&&&&&&&& */
187 check_internal(cur_bi
->bi_parent
);
188 /*&&&&&&&&&&&&&&&&&&&&&&&& */
193 /* Delete del_num items and node pointers from buffer cur starting from *
194 * the first_i'th item and first_p'th pointers respectively. */
195 static void internal_delete_pointers_items(struct buffer_info
*cur_bi
,
197 int first_i
, int del_num
)
199 struct buffer_head
*cur
= cur_bi
->bi_bh
;
201 struct block_head
*blkh
;
202 struct reiserfs_key
*key
;
203 struct disk_child
*dc
;
205 RFALSE(cur
== NULL
, "buffer is 0");
207 "negative number of items (%d) can not be deleted", del_num
);
208 RFALSE(first_p
< 0 || first_p
+ del_num
> B_NR_ITEMS(cur
) + 1
210 "first pointer order (%d) < 0 or "
211 "no so many pointers (%d), only (%d) or "
212 "first key order %d < 0", first_p
, first_p
+ del_num
,
213 B_NR_ITEMS(cur
) + 1, first_i
);
217 blkh
= B_BLK_HEAD(cur
);
218 nr
= blkh_nr_item(blkh
);
220 if (first_p
== 0 && del_num
== nr
+ 1) {
222 "1st deleted key must have order 0, not %d", first_i
);
223 make_empty_node(cur_bi
);
227 RFALSE(first_i
+ del_num
> B_NR_ITEMS(cur
),
228 "first_i = %d del_num = %d "
229 "no so many keys (%d) in the node (%b)(%z)",
230 first_i
, del_num
, first_i
+ del_num
, cur
, cur
);
233 dc
= B_N_CHILD(cur
, first_p
);
235 memmove(dc
, dc
+ del_num
, (nr
+ 1 - first_p
- del_num
) * DC_SIZE
);
236 key
= B_N_PDELIM_KEY(cur
, first_i
);
237 memmove(key
, key
+ del_num
,
238 (nr
- first_i
- del_num
) * KEY_SIZE
+ (nr
+ 1 -
241 /* sizes, item number */
242 set_blkh_nr_item(blkh
, blkh_nr_item(blkh
) - del_num
);
243 set_blkh_free_space(blkh
,
244 blkh_free_space(blkh
) +
245 (del_num
* (KEY_SIZE
+ DC_SIZE
)));
247 do_balance_mark_internal_dirty(cur_bi
->tb
, cur
, 0);
248 /*&&&&&&&&&&&&&&&&&&&&&&& */
250 /*&&&&&&&&&&&&&&&&&&&&&&& */
252 if (cur_bi
->bi_parent
) {
253 struct disk_child
*t_dc
;
254 t_dc
= B_N_CHILD(cur_bi
->bi_parent
, cur_bi
->bi_position
);
256 dc_size(t_dc
) - (del_num
* (KEY_SIZE
+ DC_SIZE
)));
258 do_balance_mark_internal_dirty(cur_bi
->tb
, cur_bi
->bi_parent
,
260 /*&&&&&&&&&&&&&&&&&&&&&&&& */
261 check_internal(cur_bi
->bi_parent
);
262 /*&&&&&&&&&&&&&&&&&&&&&&&& */
266 /* delete n node pointers and items starting from given position */
267 static void internal_delete_childs(struct buffer_info
*cur_bi
, int from
, int n
)
271 i_from
= (from
== 0) ? from
: from
- 1;
273 /* delete n pointers starting from `from' position in CUR;
274 delete n keys starting from 'i_from' position in CUR;
276 internal_delete_pointers_items(cur_bi
, from
, i_from
, n
);
279 /* copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest
280 * last_first == FIRST_TO_LAST means, that we copy first items from src to tail of dest
281 * last_first == LAST_TO_FIRST means, that we copy last items from src to head of dest
283 static void internal_copy_pointers_items(struct buffer_info
*dest_bi
,
284 struct buffer_head
*src
,
285 int last_first
, int cpy_num
)
287 /* ATTENTION! Number of node pointers in DEST is equal to number of items in DEST *
288 * as delimiting key have already inserted to buffer dest.*/
289 struct buffer_head
*dest
= dest_bi
->bi_bh
;
291 int dest_order
, src_order
;
292 struct block_head
*blkh
;
293 struct reiserfs_key
*key
;
294 struct disk_child
*dc
;
296 nr_src
= B_NR_ITEMS(src
);
298 RFALSE(dest
== NULL
|| src
== NULL
,
299 "src (%p) or dest (%p) buffer is 0", src
, dest
);
300 RFALSE(last_first
!= FIRST_TO_LAST
&& last_first
!= LAST_TO_FIRST
,
301 "invalid last_first parameter (%d)", last_first
);
302 RFALSE(nr_src
< cpy_num
- 1,
303 "no so many items (%d) in src (%d)", cpy_num
, nr_src
);
304 RFALSE(cpy_num
< 0, "cpy_num less than 0 (%d)", cpy_num
);
305 RFALSE(cpy_num
- 1 + B_NR_ITEMS(dest
) > (int)MAX_NR_KEY(dest
),
306 "cpy_num (%d) + item number in dest (%d) can not be > MAX_NR_KEY(%d)",
307 cpy_num
, B_NR_ITEMS(dest
), MAX_NR_KEY(dest
));
313 blkh
= B_BLK_HEAD(dest
);
314 nr_dest
= blkh_nr_item(blkh
);
316 /*dest_order = (last_first == LAST_TO_FIRST) ? 0 : nr_dest; */
317 /*src_order = (last_first == LAST_TO_FIRST) ? (nr_src - cpy_num + 1) : 0; */
318 (last_first
== LAST_TO_FIRST
) ? (dest_order
= 0, src_order
=
319 nr_src
- cpy_num
+ 1) : (dest_order
=
324 /* prepare space for cpy_num pointers */
325 dc
= B_N_CHILD(dest
, dest_order
);
327 memmove(dc
+ cpy_num
, dc
, (nr_dest
- dest_order
) * DC_SIZE
);
329 /* insert pointers */
330 memcpy(dc
, B_N_CHILD(src
, src_order
), DC_SIZE
* cpy_num
);
332 /* prepare space for cpy_num - 1 item headers */
333 key
= B_N_PDELIM_KEY(dest
, dest_order
);
334 memmove(key
+ cpy_num
- 1, key
,
335 KEY_SIZE
* (nr_dest
- dest_order
) + DC_SIZE
* (nr_dest
+
339 memcpy(key
, B_N_PDELIM_KEY(src
, src_order
), KEY_SIZE
* (cpy_num
- 1));
341 /* sizes, item number */
342 set_blkh_nr_item(blkh
, blkh_nr_item(blkh
) + (cpy_num
- 1));
343 set_blkh_free_space(blkh
,
344 blkh_free_space(blkh
) - (KEY_SIZE
* (cpy_num
- 1) +
347 do_balance_mark_internal_dirty(dest_bi
->tb
, dest
, 0);
349 /*&&&&&&&&&&&&&&&&&&&&&&&& */
350 check_internal(dest
);
351 /*&&&&&&&&&&&&&&&&&&&&&&&& */
353 if (dest_bi
->bi_parent
) {
354 struct disk_child
*t_dc
;
355 t_dc
= B_N_CHILD(dest_bi
->bi_parent
, dest_bi
->bi_position
);
357 dc_size(t_dc
) + (KEY_SIZE
* (cpy_num
- 1) +
360 do_balance_mark_internal_dirty(dest_bi
->tb
, dest_bi
->bi_parent
,
362 /*&&&&&&&&&&&&&&&&&&&&&&&& */
363 check_internal(dest_bi
->bi_parent
);
364 /*&&&&&&&&&&&&&&&&&&&&&&&& */
369 /* Copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest.
370 * Delete cpy_num - del_par items and node pointers from buffer src.
371 * last_first == FIRST_TO_LAST means, that we copy/delete first items from src.
372 * last_first == LAST_TO_FIRST means, that we copy/delete last items from src.
374 static void internal_move_pointers_items(struct buffer_info
*dest_bi
,
375 struct buffer_info
*src_bi
,
376 int last_first
, int cpy_num
,
382 internal_copy_pointers_items(dest_bi
, src_bi
->bi_bh
, last_first
,
385 if (last_first
== FIRST_TO_LAST
) { /* shift_left occurs */
388 /* delete cpy_num - del_par pointers and keys starting for pointers with first_pointer,
389 for key - with first_item */
390 internal_delete_pointers_items(src_bi
, first_pointer
,
391 first_item
, cpy_num
- del_par
);
392 } else { /* shift_right occurs */
395 i
= (cpy_num
- del_par
==
397 B_NR_ITEMS(src_bi
->bi_bh
)) + 1) ? 0 : j
- cpy_num
+
400 internal_delete_pointers_items(src_bi
,
401 j
+ 1 - cpy_num
+ del_par
, i
,
406 /* Insert n_src'th key of buffer src before n_dest'th key of buffer dest. */
407 static void internal_insert_key(struct buffer_info
*dest_bi
, int dest_position_before
, /* insert key before key with n_dest number */
408 struct buffer_head
*src
, int src_position
)
410 struct buffer_head
*dest
= dest_bi
->bi_bh
;
412 struct block_head
*blkh
;
413 struct reiserfs_key
*key
;
415 RFALSE(dest
== NULL
|| src
== NULL
,
416 "source(%p) or dest(%p) buffer is 0", src
, dest
);
417 RFALSE(dest_position_before
< 0 || src_position
< 0,
418 "source(%d) or dest(%d) key number less than 0",
419 src_position
, dest_position_before
);
420 RFALSE(dest_position_before
> B_NR_ITEMS(dest
) ||
421 src_position
>= B_NR_ITEMS(src
),
422 "invalid position in dest (%d (key number %d)) or in src (%d (key number %d))",
423 dest_position_before
, B_NR_ITEMS(dest
),
424 src_position
, B_NR_ITEMS(src
));
425 RFALSE(B_FREE_SPACE(dest
) < KEY_SIZE
,
426 "no enough free space (%d) in dest buffer", B_FREE_SPACE(dest
));
428 blkh
= B_BLK_HEAD(dest
);
429 nr
= blkh_nr_item(blkh
);
431 /* prepare space for inserting key */
432 key
= B_N_PDELIM_KEY(dest
, dest_position_before
);
433 memmove(key
+ 1, key
,
434 (nr
- dest_position_before
) * KEY_SIZE
+ (nr
+ 1) * DC_SIZE
);
437 memcpy(key
, B_N_PDELIM_KEY(src
, src_position
), KEY_SIZE
);
439 /* Change dirt, free space, item number fields. */
441 set_blkh_nr_item(blkh
, blkh_nr_item(blkh
) + 1);
442 set_blkh_free_space(blkh
, blkh_free_space(blkh
) - KEY_SIZE
);
444 do_balance_mark_internal_dirty(dest_bi
->tb
, dest
, 0);
446 if (dest_bi
->bi_parent
) {
447 struct disk_child
*t_dc
;
448 t_dc
= B_N_CHILD(dest_bi
->bi_parent
, dest_bi
->bi_position
);
449 put_dc_size(t_dc
, dc_size(t_dc
) + KEY_SIZE
);
451 do_balance_mark_internal_dirty(dest_bi
->tb
, dest_bi
->bi_parent
,
456 /* Insert d_key'th (delimiting) key from buffer cfl to tail of dest.
457 * Copy pointer_amount node pointers and pointer_amount - 1 items from buffer src to buffer dest.
458 * Replace d_key'th key in buffer cfl.
459 * Delete pointer_amount items and node pointers from buffer src.
461 /* this can be invoked both to shift from S to L and from R to S */
462 static void internal_shift_left(int mode
, /* INTERNAL_FROM_S_TO_L | INTERNAL_FROM_R_TO_S */
463 struct tree_balance
*tb
,
464 int h
, int pointer_amount
)
466 struct buffer_info dest_bi
, src_bi
;
467 struct buffer_head
*cf
;
470 internal_define_dest_src_infos(mode
, tb
, h
, &dest_bi
, &src_bi
,
471 &d_key_position
, &cf
);
473 /*printk("pointer_amount = %d\n",pointer_amount); */
475 if (pointer_amount
) {
476 /* insert delimiting key from common father of dest and src to node dest into position B_NR_ITEM(dest) */
477 internal_insert_key(&dest_bi
, B_NR_ITEMS(dest_bi
.bi_bh
), cf
,
480 if (B_NR_ITEMS(src_bi
.bi_bh
) == pointer_amount
- 1) {
481 if (src_bi
.bi_position
/*src->b_item_order */ == 0)
482 replace_key(tb
, cf
, d_key_position
,
484 bi_parent
/*src->b_parent */ , 0);
486 replace_key(tb
, cf
, d_key_position
, src_bi
.bi_bh
,
489 /* last parameter is del_parameter */
490 internal_move_pointers_items(&dest_bi
, &src_bi
, FIRST_TO_LAST
,
495 /* Insert delimiting key to L[h].
496 * Copy n node pointers and n - 1 items from buffer S[h] to L[h].
497 * Delete n - 1 items and node pointers from buffer S[h].
499 /* it always shifts from S[h] to L[h] */
500 static void internal_shift1_left(struct tree_balance
*tb
,
501 int h
, int pointer_amount
)
503 struct buffer_info dest_bi
, src_bi
;
504 struct buffer_head
*cf
;
507 internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_L
, tb
, h
,
508 &dest_bi
, &src_bi
, &d_key_position
, &cf
);
510 if (pointer_amount
> 0) /* insert lkey[h]-th key from CFL[h] to left neighbor L[h] */
511 internal_insert_key(&dest_bi
, B_NR_ITEMS(dest_bi
.bi_bh
), cf
,
513 /* internal_insert_key (tb->L[h], B_NR_ITEM(tb->L[h]), tb->CFL[h], tb->lkey[h]); */
515 /* last parameter is del_parameter */
516 internal_move_pointers_items(&dest_bi
, &src_bi
, FIRST_TO_LAST
,
518 /* internal_move_pointers_items (tb->L[h], tb->S[h], FIRST_TO_LAST, pointer_amount, 1); */
521 /* Insert d_key'th (delimiting) key from buffer cfr to head of dest.
522 * Copy n node pointers and n - 1 items from buffer src to buffer dest.
523 * Replace d_key'th key in buffer cfr.
524 * Delete n items and node pointers from buffer src.
526 static void internal_shift_right(int mode
, /* INTERNAL_FROM_S_TO_R | INTERNAL_FROM_L_TO_S */
527 struct tree_balance
*tb
,
528 int h
, int pointer_amount
)
530 struct buffer_info dest_bi
, src_bi
;
531 struct buffer_head
*cf
;
535 internal_define_dest_src_infos(mode
, tb
, h
, &dest_bi
, &src_bi
,
536 &d_key_position
, &cf
);
538 nr
= B_NR_ITEMS(src_bi
.bi_bh
);
540 if (pointer_amount
> 0) {
541 /* insert delimiting key from common father of dest and src to dest node into position 0 */
542 internal_insert_key(&dest_bi
, 0, cf
, d_key_position
);
543 if (nr
== pointer_amount
- 1) {
544 RFALSE(src_bi
.bi_bh
!= PATH_H_PBUFFER(tb
->tb_path
, h
) /*tb->S[h] */ ||
545 dest_bi
.bi_bh
!= tb
->R
[h
],
546 "src (%p) must be == tb->S[h](%p) when it disappears",
547 src_bi
.bi_bh
, PATH_H_PBUFFER(tb
->tb_path
, h
));
548 /* when S[h] disappers replace left delemiting key as well */
550 replace_key(tb
, cf
, d_key_position
, tb
->CFL
[h
],
553 replace_key(tb
, cf
, d_key_position
, src_bi
.bi_bh
,
554 nr
- pointer_amount
);
557 /* last parameter is del_parameter */
558 internal_move_pointers_items(&dest_bi
, &src_bi
, LAST_TO_FIRST
,
562 /* Insert delimiting key to R[h].
563 * Copy n node pointers and n - 1 items from buffer S[h] to R[h].
564 * Delete n - 1 items and node pointers from buffer S[h].
566 /* it always shift from S[h] to R[h] */
567 static void internal_shift1_right(struct tree_balance
*tb
,
568 int h
, int pointer_amount
)
570 struct buffer_info dest_bi
, src_bi
;
571 struct buffer_head
*cf
;
574 internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_R
, tb
, h
,
575 &dest_bi
, &src_bi
, &d_key_position
, &cf
);
577 if (pointer_amount
> 0) /* insert rkey from CFR[h] to right neighbor R[h] */
578 internal_insert_key(&dest_bi
, 0, cf
, d_key_position
);
579 /* internal_insert_key (tb->R[h], 0, tb->CFR[h], tb->rkey[h]); */
581 /* last parameter is del_parameter */
582 internal_move_pointers_items(&dest_bi
, &src_bi
, LAST_TO_FIRST
,
584 /* internal_move_pointers_items (tb->R[h], tb->S[h], LAST_TO_FIRST, pointer_amount, 1); */
587 /* Delete insert_num node pointers together with their left items
588 * and balance current node.*/
589 static void balance_internal_when_delete(struct tree_balance
*tb
,
590 int h
, int child_pos
)
594 struct buffer_head
*tbSh
= PATH_H_PBUFFER(tb
->tb_path
, h
);
595 struct buffer_info bi
;
597 insert_num
= tb
->insert_size
[h
] / ((int)(DC_SIZE
+ KEY_SIZE
));
599 /* delete child-node-pointer(s) together with their left item(s) */
602 bi
.bi_parent
= PATH_H_PPARENT(tb
->tb_path
, h
);
603 bi
.bi_position
= PATH_H_POSITION(tb
->tb_path
, h
+ 1);
605 internal_delete_childs(&bi
, child_pos
, -insert_num
);
607 RFALSE(tb
->blknum
[h
] > 1,
608 "tb->blknum[%d]=%d when insert_size < 0", h
, tb
->blknum
[h
]);
610 n
= B_NR_ITEMS(tbSh
);
612 if (tb
->lnum
[h
] == 0 && tb
->rnum
[h
] == 0) {
613 if (tb
->blknum
[h
] == 0) {
614 /* node S[h] (root of the tree) is empty now */
615 struct buffer_head
*new_root
;
618 || B_FREE_SPACE(tbSh
) !=
619 MAX_CHILD_SIZE(tbSh
) - DC_SIZE
,
620 "buffer must have only 0 keys (%d)", n
);
621 RFALSE(bi
.bi_parent
, "root has parent (%p)",
624 /* choose a new root */
625 if (!tb
->L
[h
- 1] || !B_NR_ITEMS(tb
->L
[h
- 1]))
626 new_root
= tb
->R
[h
- 1];
628 new_root
= tb
->L
[h
- 1];
629 /* switch super block's tree root block number to the new value */
630 PUT_SB_ROOT_BLOCK(tb
->tb_sb
, new_root
->b_blocknr
);
631 //REISERFS_SB(tb->tb_sb)->s_rs->s_tree_height --;
632 PUT_SB_TREE_HEIGHT(tb
->tb_sb
,
633 SB_TREE_HEIGHT(tb
->tb_sb
) - 1);
635 do_balance_mark_sb_dirty(tb
,
636 REISERFS_SB(tb
->tb_sb
)->s_sbh
,
638 /*&&&&&&&&&&&&&&&&&&&&&& */
640 /* use check_internal if new root is an internal node */
641 check_internal(new_root
);
642 /*&&&&&&&&&&&&&&&&&&&&&& */
644 /* do what is needed for buffer thrown from tree */
645 reiserfs_invalidate_buffer(tb
, tbSh
);
651 if (tb
->L
[h
] && tb
->lnum
[h
] == -B_NR_ITEMS(tb
->L
[h
]) - 1) { /* join S[h] with L[h] */
653 RFALSE(tb
->rnum
[h
] != 0,
654 "invalid tb->rnum[%d]==%d when joining S[h] with L[h]",
657 internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L
, tb
, h
, n
+ 1);
658 reiserfs_invalidate_buffer(tb
, tbSh
);
663 if (tb
->R
[h
] && tb
->rnum
[h
] == -B_NR_ITEMS(tb
->R
[h
]) - 1) { /* join S[h] with R[h] */
664 RFALSE(tb
->lnum
[h
] != 0,
665 "invalid tb->lnum[%d]==%d when joining S[h] with R[h]",
668 internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R
, tb
, h
, n
+ 1);
670 reiserfs_invalidate_buffer(tb
, tbSh
);
674 if (tb
->lnum
[h
] < 0) { /* borrow from left neighbor L[h] */
675 RFALSE(tb
->rnum
[h
] != 0,
676 "wrong tb->rnum[%d]==%d when borrow from L[h]", h
,
678 /*internal_shift_right (tb, h, tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], -tb->lnum[h]); */
679 internal_shift_right(INTERNAL_SHIFT_FROM_L_TO_S
, tb
, h
,
684 if (tb
->rnum
[h
] < 0) { /* borrow from right neighbor R[h] */
685 RFALSE(tb
->lnum
[h
] != 0,
686 "invalid tb->lnum[%d]==%d when borrow from R[h]",
688 internal_shift_left(INTERNAL_SHIFT_FROM_R_TO_S
, tb
, h
, -tb
->rnum
[h
]); /*tb->S[h], tb->CFR[h], tb->rkey[h], tb->R[h], -tb->rnum[h]); */
692 if (tb
->lnum
[h
] > 0) { /* split S[h] into two parts and put them into neighbors */
693 RFALSE(tb
->rnum
[h
] == 0 || tb
->lnum
[h
] + tb
->rnum
[h
] != n
+ 1,
694 "invalid tb->lnum[%d]==%d or tb->rnum[%d]==%d when S[h](item number == %d) is split between them",
695 h
, tb
->lnum
[h
], h
, tb
->rnum
[h
], n
);
697 internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L
, tb
, h
, tb
->lnum
[h
]); /*tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], tb->lnum[h]); */
698 internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R
, tb
, h
,
701 reiserfs_invalidate_buffer(tb
, tbSh
);
705 reiserfs_panic(tb
->tb_sb
, "ibalance-2",
706 "unexpected tb->lnum[%d]==%d or tb->rnum[%d]==%d",
707 h
, tb
->lnum
[h
], h
, tb
->rnum
[h
]);
710 /* Replace delimiting key of buffers L[h] and S[h] by the given key.*/
711 static void replace_lkey(struct tree_balance
*tb
, int h
, struct item_head
*key
)
713 RFALSE(tb
->L
[h
] == NULL
|| tb
->CFL
[h
] == NULL
,
714 "L[h](%p) and CFL[h](%p) must exist in replace_lkey",
715 tb
->L
[h
], tb
->CFL
[h
]);
717 if (B_NR_ITEMS(PATH_H_PBUFFER(tb
->tb_path
, h
)) == 0)
720 memcpy(B_N_PDELIM_KEY(tb
->CFL
[h
], tb
->lkey
[h
]), key
, KEY_SIZE
);
722 do_balance_mark_internal_dirty(tb
, tb
->CFL
[h
], 0);
725 /* Replace delimiting key of buffers S[h] and R[h] by the given key.*/
726 static void replace_rkey(struct tree_balance
*tb
, int h
, struct item_head
*key
)
728 RFALSE(tb
->R
[h
] == NULL
|| tb
->CFR
[h
] == NULL
,
729 "R[h](%p) and CFR[h](%p) must exist in replace_rkey",
730 tb
->R
[h
], tb
->CFR
[h
]);
731 RFALSE(B_NR_ITEMS(tb
->R
[h
]) == 0,
732 "R[h] can not be empty if it exists (item number=%d)",
733 B_NR_ITEMS(tb
->R
[h
]));
735 memcpy(B_N_PDELIM_KEY(tb
->CFR
[h
], tb
->rkey
[h
]), key
, KEY_SIZE
);
737 do_balance_mark_internal_dirty(tb
, tb
->CFR
[h
], 0);
740 int balance_internal(struct tree_balance
*tb
, /* tree_balance structure */
741 int h
, /* level of the tree */
742 int child_pos
, struct item_head
*insert_key
, /* key for insertion on higher level */
743 struct buffer_head
**insert_ptr
/* node for insertion on higher level */
745 /* if inserting/pasting
747 child_pos is the position of the node-pointer in S[h] that *
748 pointed to S[h-1] before balancing of the h-1 level; *
749 this means that new pointers and items must be inserted AFTER *
754 it is the position of the leftmost pointer that must be deleted (together with
755 its corresponding key to the left of the pointer)
756 as a result of the previous level's balancing.
760 struct buffer_head
*tbSh
= PATH_H_PBUFFER(tb
->tb_path
, h
);
761 struct buffer_info bi
;
762 int order
; /* we return this: it is 0 if there is no S[h], else it is tb->S[h]->b_item_order */
763 int insert_num
, n
, k
;
764 struct buffer_head
*S_new
;
765 struct item_head new_insert_key
;
766 struct buffer_head
*new_insert_ptr
= NULL
;
767 struct item_head
*new_insert_key_addr
= insert_key
;
769 RFALSE(h
< 1, "h (%d) can not be < 1 on internal level", h
);
771 PROC_INFO_INC(tb
->tb_sb
, balance_at
[h
]);
774 (tbSh
) ? PATH_H_POSITION(tb
->tb_path
,
775 h
+ 1) /*tb->S[h]->b_item_order */ : 0;
777 /* Using insert_size[h] calculate the number insert_num of items
778 that must be inserted to or deleted from S[h]. */
779 insert_num
= tb
->insert_size
[h
] / ((int)(KEY_SIZE
+ DC_SIZE
));
781 /* Check whether insert_num is proper * */
782 RFALSE(insert_num
< -2 || insert_num
> 2,
783 "incorrect number of items inserted to the internal node (%d)",
785 RFALSE(h
> 1 && (insert_num
> 1 || insert_num
< -1),
786 "incorrect number of items (%d) inserted to the internal node on a level (h=%d) higher than last internal level",
789 /* Make balance in case insert_num < 0 */
790 if (insert_num
< 0) {
791 balance_internal_when_delete(tb
, h
, child_pos
);
796 if (tb
->lnum
[h
] > 0) {
797 /* shift lnum[h] items from S[h] to the left neighbor L[h].
798 check how many of new items fall into L[h] or CFL[h] after
800 n
= B_NR_ITEMS(tb
->L
[h
]); /* number of items in L[h] */
801 if (tb
->lnum
[h
] <= child_pos
) {
802 /* new items don't fall into L[h] or CFL[h] */
803 internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L
, tb
, h
,
805 /*internal_shift_left (tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,tb->lnum[h]); */
806 child_pos
-= tb
->lnum
[h
];
807 } else if (tb
->lnum
[h
] > child_pos
+ insert_num
) {
808 /* all new items fall into L[h] */
809 internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L
, tb
, h
,
810 tb
->lnum
[h
] - insert_num
);
811 /* internal_shift_left(tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,
812 tb->lnum[h]-insert_num);
814 /* insert insert_num keys and node-pointers into L[h] */
817 bi
.bi_parent
= tb
->FL
[h
];
818 bi
.bi_position
= get_left_neighbor_position(tb
, h
);
819 internal_insert_childs(&bi
,
820 /*tb->L[h], tb->S[h-1]->b_next */
822 insert_num
, insert_key
,
827 struct disk_child
*dc
;
829 /* some items fall into L[h] or CFL[h], but some don't fall */
830 internal_shift1_left(tb
, h
, child_pos
+ 1);
831 /* calculate number of new items that fall into L[h] */
832 k
= tb
->lnum
[h
] - child_pos
- 1;
835 bi
.bi_parent
= tb
->FL
[h
];
836 bi
.bi_position
= get_left_neighbor_position(tb
, h
);
837 internal_insert_childs(&bi
,
838 /*tb->L[h], tb->S[h-1]->b_next, */
839 n
+ child_pos
+ 1, k
,
840 insert_key
, insert_ptr
);
842 replace_lkey(tb
, h
, insert_key
+ k
);
844 /* replace the first node-ptr in S[h] by node-ptr to insert_ptr[k] */
845 dc
= B_N_CHILD(tbSh
, 0);
847 MAX_CHILD_SIZE(insert_ptr
[k
]) -
848 B_FREE_SPACE(insert_ptr
[k
]));
849 put_dc_block_number(dc
, insert_ptr
[k
]->b_blocknr
);
851 do_balance_mark_internal_dirty(tb
, tbSh
, 0);
860 /* tb->lnum[h] > 0 */
861 if (tb
->rnum
[h
] > 0) {
862 /*shift rnum[h] items from S[h] to the right neighbor R[h] */
863 /* check how many of new items fall into R or CFR after shifting */
864 n
= B_NR_ITEMS(tbSh
); /* number of items in S[h] */
865 if (n
- tb
->rnum
[h
] >= child_pos
)
866 /* new items fall into S[h] */
867 /*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],tb->rnum[h]); */
868 internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R
, tb
, h
,
870 else if (n
+ insert_num
- tb
->rnum
[h
] < child_pos
) {
871 /* all new items fall into R[h] */
872 /*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],
873 tb->rnum[h] - insert_num); */
874 internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R
, tb
, h
,
875 tb
->rnum
[h
] - insert_num
);
877 /* insert insert_num keys and node-pointers into R[h] */
880 bi
.bi_parent
= tb
->FR
[h
];
881 bi
.bi_position
= get_right_neighbor_position(tb
, h
);
882 internal_insert_childs(&bi
,
883 /*tb->R[h],tb->S[h-1]->b_next */
884 child_pos
- n
- insert_num
+
886 insert_num
, insert_key
,
890 struct disk_child
*dc
;
892 /* one of the items falls into CFR[h] */
893 internal_shift1_right(tb
, h
, n
- child_pos
+ 1);
894 /* calculate number of new items that fall into R[h] */
895 k
= tb
->rnum
[h
] - n
+ child_pos
- 1;
898 bi
.bi_parent
= tb
->FR
[h
];
899 bi
.bi_position
= get_right_neighbor_position(tb
, h
);
900 internal_insert_childs(&bi
,
901 /*tb->R[h], tb->R[h]->b_child, */
902 0, k
, insert_key
+ 1,
905 replace_rkey(tb
, h
, insert_key
+ insert_num
- k
- 1);
907 /* replace the first node-ptr in R[h] by node-ptr insert_ptr[insert_num-k-1] */
908 dc
= B_N_CHILD(tb
->R
[h
], 0);
910 MAX_CHILD_SIZE(insert_ptr
911 [insert_num
- k
- 1]) -
912 B_FREE_SPACE(insert_ptr
913 [insert_num
- k
- 1]));
914 put_dc_block_number(dc
,
915 insert_ptr
[insert_num
- k
-
918 do_balance_mark_internal_dirty(tb
, tb
->R
[h
], 0);
920 insert_num
-= (k
+ 1);
924 /** Fill new node that appears instead of S[h] **/
925 RFALSE(tb
->blknum
[h
] > 2, "blknum can not be > 2 for internal level");
926 RFALSE(tb
->blknum
[h
] < 0, "blknum can not be < 0");
928 if (!tb
->blknum
[h
]) { /* node S[h] is empty now */
929 RFALSE(!tbSh
, "S[h] is equal NULL");
931 /* do what is needed for buffer thrown from tree */
932 reiserfs_invalidate_buffer(tb
, tbSh
);
937 /* create new root */
938 struct disk_child
*dc
;
939 struct buffer_head
*tbSh_1
= PATH_H_PBUFFER(tb
->tb_path
, h
- 1);
940 struct block_head
*blkh
;
942 if (tb
->blknum
[h
] != 1)
943 reiserfs_panic(NULL
, "ibalance-3", "One new node "
944 "required for creating the new root");
945 /* S[h] = empty buffer from the list FEB. */
947 blkh
= B_BLK_HEAD(tbSh
);
948 set_blkh_level(blkh
, h
+ 1);
950 /* Put the unique node-pointer to S[h] that points to S[h-1]. */
952 dc
= B_N_CHILD(tbSh
, 0);
953 put_dc_block_number(dc
, tbSh_1
->b_blocknr
);
955 (MAX_CHILD_SIZE(tbSh_1
) - B_FREE_SPACE(tbSh_1
)));
957 tb
->insert_size
[h
] -= DC_SIZE
;
958 set_blkh_free_space(blkh
, blkh_free_space(blkh
) - DC_SIZE
);
960 do_balance_mark_internal_dirty(tb
, tbSh
, 0);
962 /*&&&&&&&&&&&&&&&&&&&&&&&& */
963 check_internal(tbSh
);
964 /*&&&&&&&&&&&&&&&&&&&&&&&& */
966 /* put new root into path structure */
967 PATH_OFFSET_PBUFFER(tb
->tb_path
, ILLEGAL_PATH_ELEMENT_OFFSET
) =
970 /* Change root in structure super block. */
971 PUT_SB_ROOT_BLOCK(tb
->tb_sb
, tbSh
->b_blocknr
);
972 PUT_SB_TREE_HEIGHT(tb
->tb_sb
, SB_TREE_HEIGHT(tb
->tb_sb
) + 1);
973 do_balance_mark_sb_dirty(tb
, REISERFS_SB(tb
->tb_sb
)->s_sbh
, 1);
976 if (tb
->blknum
[h
] == 2) {
978 struct buffer_info dest_bi
, src_bi
;
980 /* S_new = free buffer from list FEB */
983 set_blkh_level(B_BLK_HEAD(S_new
), h
+ 1);
986 dest_bi
.bi_bh
= S_new
;
987 dest_bi
.bi_parent
= NULL
;
988 dest_bi
.bi_position
= 0;
991 src_bi
.bi_parent
= PATH_H_PPARENT(tb
->tb_path
, h
);
992 src_bi
.bi_position
= PATH_H_POSITION(tb
->tb_path
, h
+ 1);
994 n
= B_NR_ITEMS(tbSh
); /* number of items in S[h] */
995 snum
= (insert_num
+ n
+ 1) / 2;
996 if (n
- snum
>= child_pos
) {
997 /* new items don't fall into S_new */
998 /* store the delimiting key for the next level */
999 /* new_insert_key = (n - snum)'th key in S[h] */
1000 memcpy(&new_insert_key
, B_N_PDELIM_KEY(tbSh
, n
- snum
),
1002 /* last parameter is del_par */
1003 internal_move_pointers_items(&dest_bi
, &src_bi
,
1004 LAST_TO_FIRST
, snum
, 0);
1005 /* internal_move_pointers_items(S_new, tbSh, LAST_TO_FIRST, snum, 0); */
1006 } else if (n
+ insert_num
- snum
< child_pos
) {
1007 /* all new items fall into S_new */
1008 /* store the delimiting key for the next level */
1009 /* new_insert_key = (n + insert_item - snum)'th key in S[h] */
1010 memcpy(&new_insert_key
,
1011 B_N_PDELIM_KEY(tbSh
, n
+ insert_num
- snum
),
1013 /* last parameter is del_par */
1014 internal_move_pointers_items(&dest_bi
, &src_bi
,
1016 snum
- insert_num
, 0);
1017 /* internal_move_pointers_items(S_new,tbSh,1,snum - insert_num,0); */
1019 /* insert insert_num keys and node-pointers into S_new */
1020 internal_insert_childs(&dest_bi
,
1021 /*S_new,tb->S[h-1]->b_next, */
1022 child_pos
- n
- insert_num
+
1024 insert_num
, insert_key
,
1029 struct disk_child
*dc
;
1031 /* some items fall into S_new, but some don't fall */
1032 /* last parameter is del_par */
1033 internal_move_pointers_items(&dest_bi
, &src_bi
,
1035 n
- child_pos
+ 1, 1);
1036 /* internal_move_pointers_items(S_new,tbSh,1,n - child_pos + 1,1); */
1037 /* calculate number of new items that fall into S_new */
1038 k
= snum
- n
+ child_pos
- 1;
1040 internal_insert_childs(&dest_bi
, /*S_new, */ 0, k
,
1041 insert_key
+ 1, insert_ptr
+ 1);
1043 /* new_insert_key = insert_key[insert_num - k - 1] */
1044 memcpy(&new_insert_key
, insert_key
+ insert_num
- k
- 1,
1046 /* replace first node-ptr in S_new by node-ptr to insert_ptr[insert_num-k-1] */
1048 dc
= B_N_CHILD(S_new
, 0);
1051 (insert_ptr
[insert_num
- k
- 1]) -
1052 B_FREE_SPACE(insert_ptr
1053 [insert_num
- k
- 1])));
1054 put_dc_block_number(dc
,
1055 insert_ptr
[insert_num
- k
-
1058 do_balance_mark_internal_dirty(tb
, S_new
, 0);
1060 insert_num
-= (k
+ 1);
1062 /* new_insert_ptr = node_pointer to S_new */
1063 new_insert_ptr
= S_new
;
1065 RFALSE(!buffer_journaled(S_new
) || buffer_journal_dirty(S_new
)
1066 || buffer_dirty(S_new
), "cm-00001: bad S_new (%b)",
1069 // S_new is released in unfix_nodes
1072 n
= B_NR_ITEMS(tbSh
); /*number of items in S[h] */
1074 if (0 <= child_pos
&& child_pos
<= n
&& insert_num
> 0) {
1077 bi
.bi_parent
= PATH_H_PPARENT(tb
->tb_path
, h
);
1078 bi
.bi_position
= PATH_H_POSITION(tb
->tb_path
, h
+ 1);
1079 internal_insert_childs(&bi
, /*tbSh, */
1080 /* ( tb->S[h-1]->b_parent == tb->S[h] ) ? tb->S[h-1]->b_next : tb->S[h]->b_child->b_next, */
1081 child_pos
, insert_num
, insert_key
,
1085 memcpy(new_insert_key_addr
, &new_insert_key
, KEY_SIZE
);
1086 insert_ptr
[0] = new_insert_ptr
;