4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/module.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/ptrace.h>
38 #include <linux/compat.h>
39 #include <linux/syscalls.h>
40 #include <linux/kprobes.h>
41 #include <linux/user_namespace.h>
43 #include <asm/uaccess.h>
45 #include <asm/unistd.h>
47 #ifndef SET_UNALIGN_CTL
48 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
50 #ifndef GET_UNALIGN_CTL
51 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
54 # define SET_FPEMU_CTL(a,b) (-EINVAL)
57 # define GET_FPEMU_CTL(a,b) (-EINVAL)
60 # define SET_FPEXC_CTL(a,b) (-EINVAL)
63 # define GET_FPEXC_CTL(a,b) (-EINVAL)
66 # define GET_ENDIAN(a,b) (-EINVAL)
69 # define SET_ENDIAN(a,b) (-EINVAL)
72 # define GET_TSC_CTL(a) (-EINVAL)
75 # define SET_TSC_CTL(a) (-EINVAL)
79 * this is where the system-wide overflow UID and GID are defined, for
80 * architectures that now have 32-bit UID/GID but didn't in the past
83 int overflowuid
= DEFAULT_OVERFLOWUID
;
84 int overflowgid
= DEFAULT_OVERFLOWGID
;
87 EXPORT_SYMBOL(overflowuid
);
88 EXPORT_SYMBOL(overflowgid
);
92 * the same as above, but for filesystems which can only store a 16-bit
93 * UID and GID. as such, this is needed on all architectures
96 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
97 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
99 EXPORT_SYMBOL(fs_overflowuid
);
100 EXPORT_SYMBOL(fs_overflowgid
);
103 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
108 EXPORT_SYMBOL(cad_pid
);
111 * If set, this is used for preparing the system to power off.
114 void (*pm_power_off_prepare
)(void);
117 * set the priority of a task
118 * - the caller must hold the RCU read lock
120 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
122 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
125 if (pcred
->uid
!= cred
->euid
&&
126 pcred
->euid
!= cred
->euid
&& !capable(CAP_SYS_NICE
)) {
130 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
134 no_nice
= security_task_setnice(p
, niceval
);
141 set_user_nice(p
, niceval
);
146 asmlinkage
long sys_setpriority(int which
, int who
, int niceval
)
148 struct task_struct
*g
, *p
;
149 struct user_struct
*user
;
150 const struct cred
*cred
= current_cred();
154 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
157 /* normalize: avoid signed division (rounding problems) */
164 read_lock(&tasklist_lock
);
168 p
= find_task_by_vpid(who
);
172 error
= set_one_prio(p
, niceval
, error
);
176 pgrp
= find_vpid(who
);
178 pgrp
= task_pgrp(current
);
179 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
180 error
= set_one_prio(p
, niceval
, error
);
181 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
184 user
= (struct user_struct
*) cred
->user
;
187 else if ((who
!= cred
->uid
) &&
188 !(user
= find_user(who
)))
189 goto out_unlock
; /* No processes for this user */
192 if (__task_cred(p
)->uid
== who
)
193 error
= set_one_prio(p
, niceval
, error
);
194 while_each_thread(g
, p
);
195 if (who
!= cred
->uid
)
196 free_uid(user
); /* For find_user() */
200 read_unlock(&tasklist_lock
);
206 * Ugh. To avoid negative return values, "getpriority()" will
207 * not return the normal nice-value, but a negated value that
208 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
209 * to stay compatible.
211 asmlinkage
long sys_getpriority(int which
, int who
)
213 struct task_struct
*g
, *p
;
214 struct user_struct
*user
;
215 const struct cred
*cred
= current_cred();
216 long niceval
, retval
= -ESRCH
;
219 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
222 read_lock(&tasklist_lock
);
226 p
= find_task_by_vpid(who
);
230 niceval
= 20 - task_nice(p
);
231 if (niceval
> retval
)
237 pgrp
= find_vpid(who
);
239 pgrp
= task_pgrp(current
);
240 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
241 niceval
= 20 - task_nice(p
);
242 if (niceval
> retval
)
244 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
247 user
= (struct user_struct
*) cred
->user
;
250 else if ((who
!= cred
->uid
) &&
251 !(user
= find_user(who
)))
252 goto out_unlock
; /* No processes for this user */
255 if (__task_cred(p
)->uid
== who
) {
256 niceval
= 20 - task_nice(p
);
257 if (niceval
> retval
)
260 while_each_thread(g
, p
);
261 if (who
!= cred
->uid
)
262 free_uid(user
); /* for find_user() */
266 read_unlock(&tasklist_lock
);
272 * emergency_restart - reboot the system
274 * Without shutting down any hardware or taking any locks
275 * reboot the system. This is called when we know we are in
276 * trouble so this is our best effort to reboot. This is
277 * safe to call in interrupt context.
279 void emergency_restart(void)
281 machine_emergency_restart();
283 EXPORT_SYMBOL_GPL(emergency_restart
);
285 void kernel_restart_prepare(char *cmd
)
287 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
288 system_state
= SYSTEM_RESTART
;
294 * kernel_restart - reboot the system
295 * @cmd: pointer to buffer containing command to execute for restart
298 * Shutdown everything and perform a clean reboot.
299 * This is not safe to call in interrupt context.
301 void kernel_restart(char *cmd
)
303 kernel_restart_prepare(cmd
);
305 printk(KERN_EMERG
"Restarting system.\n");
307 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
308 machine_restart(cmd
);
310 EXPORT_SYMBOL_GPL(kernel_restart
);
312 static void kernel_shutdown_prepare(enum system_states state
)
314 blocking_notifier_call_chain(&reboot_notifier_list
,
315 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
316 system_state
= state
;
320 * kernel_halt - halt the system
322 * Shutdown everything and perform a clean system halt.
324 void kernel_halt(void)
326 kernel_shutdown_prepare(SYSTEM_HALT
);
328 printk(KERN_EMERG
"System halted.\n");
332 EXPORT_SYMBOL_GPL(kernel_halt
);
335 * kernel_power_off - power_off the system
337 * Shutdown everything and perform a clean system power_off.
339 void kernel_power_off(void)
341 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
342 if (pm_power_off_prepare
)
343 pm_power_off_prepare();
344 disable_nonboot_cpus();
346 printk(KERN_EMERG
"Power down.\n");
349 EXPORT_SYMBOL_GPL(kernel_power_off
);
351 * Reboot system call: for obvious reasons only root may call it,
352 * and even root needs to set up some magic numbers in the registers
353 * so that some mistake won't make this reboot the whole machine.
354 * You can also set the meaning of the ctrl-alt-del-key here.
356 * reboot doesn't sync: do that yourself before calling this.
358 asmlinkage
long sys_reboot(int magic1
, int magic2
, unsigned int cmd
, void __user
* arg
)
362 /* We only trust the superuser with rebooting the system. */
363 if (!capable(CAP_SYS_BOOT
))
366 /* For safety, we require "magic" arguments. */
367 if (magic1
!= LINUX_REBOOT_MAGIC1
||
368 (magic2
!= LINUX_REBOOT_MAGIC2
&&
369 magic2
!= LINUX_REBOOT_MAGIC2A
&&
370 magic2
!= LINUX_REBOOT_MAGIC2B
&&
371 magic2
!= LINUX_REBOOT_MAGIC2C
))
374 /* Instead of trying to make the power_off code look like
375 * halt when pm_power_off is not set do it the easy way.
377 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
378 cmd
= LINUX_REBOOT_CMD_HALT
;
382 case LINUX_REBOOT_CMD_RESTART
:
383 kernel_restart(NULL
);
386 case LINUX_REBOOT_CMD_CAD_ON
:
390 case LINUX_REBOOT_CMD_CAD_OFF
:
394 case LINUX_REBOOT_CMD_HALT
:
400 case LINUX_REBOOT_CMD_POWER_OFF
:
406 case LINUX_REBOOT_CMD_RESTART2
:
407 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
411 buffer
[sizeof(buffer
) - 1] = '\0';
413 kernel_restart(buffer
);
417 case LINUX_REBOOT_CMD_KEXEC
:
420 ret
= kernel_kexec();
426 #ifdef CONFIG_HIBERNATION
427 case LINUX_REBOOT_CMD_SW_SUSPEND
:
429 int ret
= hibernate();
443 static void deferred_cad(struct work_struct
*dummy
)
445 kernel_restart(NULL
);
449 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
450 * As it's called within an interrupt, it may NOT sync: the only choice
451 * is whether to reboot at once, or just ignore the ctrl-alt-del.
453 void ctrl_alt_del(void)
455 static DECLARE_WORK(cad_work
, deferred_cad
);
458 schedule_work(&cad_work
);
460 kill_cad_pid(SIGINT
, 1);
464 * Unprivileged users may change the real gid to the effective gid
465 * or vice versa. (BSD-style)
467 * If you set the real gid at all, or set the effective gid to a value not
468 * equal to the real gid, then the saved gid is set to the new effective gid.
470 * This makes it possible for a setgid program to completely drop its
471 * privileges, which is often a useful assertion to make when you are doing
472 * a security audit over a program.
474 * The general idea is that a program which uses just setregid() will be
475 * 100% compatible with BSD. A program which uses just setgid() will be
476 * 100% compatible with POSIX with saved IDs.
478 * SMP: There are not races, the GIDs are checked only by filesystem
479 * operations (as far as semantic preservation is concerned).
481 asmlinkage
long sys_setregid(gid_t rgid
, gid_t egid
)
483 const struct cred
*old
;
487 new = prepare_creds();
490 old
= current_cred();
492 retval
= security_task_setgid(rgid
, egid
, (gid_t
)-1, LSM_SETID_RE
);
497 if (rgid
!= (gid_t
) -1) {
498 if (old
->gid
== rgid
||
505 if (egid
!= (gid_t
) -1) {
506 if (old
->gid
== egid
||
515 if (rgid
!= (gid_t
) -1 ||
516 (egid
!= (gid_t
) -1 && egid
!= old
->gid
))
517 new->sgid
= new->egid
;
518 new->fsgid
= new->egid
;
520 return commit_creds(new);
528 * setgid() is implemented like SysV w/ SAVED_IDS
530 * SMP: Same implicit races as above.
532 asmlinkage
long sys_setgid(gid_t gid
)
534 const struct cred
*old
;
538 new = prepare_creds();
541 old
= current_cred();
543 retval
= security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_ID
);
548 if (capable(CAP_SETGID
))
549 new->gid
= new->egid
= new->sgid
= new->fsgid
= gid
;
550 else if (gid
== old
->gid
|| gid
== old
->sgid
)
551 new->egid
= new->fsgid
= gid
;
555 return commit_creds(new);
563 * change the user struct in a credentials set to match the new UID
565 static int set_user(struct cred
*new)
567 struct user_struct
*new_user
;
569 new_user
= alloc_uid(current_user_ns(), new->uid
);
573 if (atomic_read(&new_user
->processes
) >=
574 current
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
&&
575 new_user
!= INIT_USER
) {
581 new->user
= new_user
;
586 * Unprivileged users may change the real uid to the effective uid
587 * or vice versa. (BSD-style)
589 * If you set the real uid at all, or set the effective uid to a value not
590 * equal to the real uid, then the saved uid is set to the new effective uid.
592 * This makes it possible for a setuid program to completely drop its
593 * privileges, which is often a useful assertion to make when you are doing
594 * a security audit over a program.
596 * The general idea is that a program which uses just setreuid() will be
597 * 100% compatible with BSD. A program which uses just setuid() will be
598 * 100% compatible with POSIX with saved IDs.
600 asmlinkage
long sys_setreuid(uid_t ruid
, uid_t euid
)
602 const struct cred
*old
;
606 new = prepare_creds();
609 old
= current_cred();
611 retval
= security_task_setuid(ruid
, euid
, (uid_t
)-1, LSM_SETID_RE
);
616 if (ruid
!= (uid_t
) -1) {
618 if (old
->uid
!= ruid
&&
620 !capable(CAP_SETUID
))
624 if (euid
!= (uid_t
) -1) {
626 if (old
->uid
!= euid
&&
629 !capable(CAP_SETUID
))
634 if (new->uid
!= old
->uid
&& set_user(new) < 0)
637 if (ruid
!= (uid_t
) -1 ||
638 (euid
!= (uid_t
) -1 && euid
!= old
->uid
))
639 new->suid
= new->euid
;
640 new->fsuid
= new->euid
;
642 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
646 return commit_creds(new);
654 * setuid() is implemented like SysV with SAVED_IDS
656 * Note that SAVED_ID's is deficient in that a setuid root program
657 * like sendmail, for example, cannot set its uid to be a normal
658 * user and then switch back, because if you're root, setuid() sets
659 * the saved uid too. If you don't like this, blame the bright people
660 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
661 * will allow a root program to temporarily drop privileges and be able to
662 * regain them by swapping the real and effective uid.
664 asmlinkage
long sys_setuid(uid_t uid
)
666 const struct cred
*old
;
670 new = prepare_creds();
673 old
= current_cred();
675 retval
= security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_ID
);
680 if (capable(CAP_SETUID
)) {
681 new->suid
= new->uid
= uid
;
682 if (uid
!= old
->uid
&& set_user(new) < 0) {
686 } else if (uid
!= old
->uid
&& uid
!= new->suid
) {
690 new->fsuid
= new->euid
= uid
;
692 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
696 return commit_creds(new);
705 * This function implements a generic ability to update ruid, euid,
706 * and suid. This allows you to implement the 4.4 compatible seteuid().
708 asmlinkage
long sys_setresuid(uid_t ruid
, uid_t euid
, uid_t suid
)
710 const struct cred
*old
;
714 new = prepare_creds();
718 retval
= security_task_setuid(ruid
, euid
, suid
, LSM_SETID_RES
);
721 old
= current_cred();
724 if (!capable(CAP_SETUID
)) {
725 if (ruid
!= (uid_t
) -1 && ruid
!= old
->uid
&&
726 ruid
!= old
->euid
&& ruid
!= old
->suid
)
728 if (euid
!= (uid_t
) -1 && euid
!= old
->uid
&&
729 euid
!= old
->euid
&& euid
!= old
->suid
)
731 if (suid
!= (uid_t
) -1 && suid
!= old
->uid
&&
732 suid
!= old
->euid
&& suid
!= old
->suid
)
737 if (ruid
!= (uid_t
) -1) {
739 if (ruid
!= old
->uid
&& set_user(new) < 0)
742 if (euid
!= (uid_t
) -1)
744 if (suid
!= (uid_t
) -1)
746 new->fsuid
= new->euid
;
748 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
752 return commit_creds(new);
759 asmlinkage
long sys_getresuid(uid_t __user
*ruid
, uid_t __user
*euid
, uid_t __user
*suid
)
761 const struct cred
*cred
= current_cred();
764 if (!(retval
= put_user(cred
->uid
, ruid
)) &&
765 !(retval
= put_user(cred
->euid
, euid
)))
766 retval
= put_user(cred
->suid
, suid
);
772 * Same as above, but for rgid, egid, sgid.
774 asmlinkage
long sys_setresgid(gid_t rgid
, gid_t egid
, gid_t sgid
)
776 const struct cred
*old
;
780 new = prepare_creds();
783 old
= current_cred();
785 retval
= security_task_setgid(rgid
, egid
, sgid
, LSM_SETID_RES
);
790 if (!capable(CAP_SETGID
)) {
791 if (rgid
!= (gid_t
) -1 && rgid
!= old
->gid
&&
792 rgid
!= old
->egid
&& rgid
!= old
->sgid
)
794 if (egid
!= (gid_t
) -1 && egid
!= old
->gid
&&
795 egid
!= old
->egid
&& egid
!= old
->sgid
)
797 if (sgid
!= (gid_t
) -1 && sgid
!= old
->gid
&&
798 sgid
!= old
->egid
&& sgid
!= old
->sgid
)
802 if (rgid
!= (gid_t
) -1)
804 if (egid
!= (gid_t
) -1)
806 if (sgid
!= (gid_t
) -1)
808 new->fsgid
= new->egid
;
810 return commit_creds(new);
817 asmlinkage
long sys_getresgid(gid_t __user
*rgid
, gid_t __user
*egid
, gid_t __user
*sgid
)
819 const struct cred
*cred
= current_cred();
822 if (!(retval
= put_user(cred
->gid
, rgid
)) &&
823 !(retval
= put_user(cred
->egid
, egid
)))
824 retval
= put_user(cred
->sgid
, sgid
);
831 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
832 * is used for "access()" and for the NFS daemon (letting nfsd stay at
833 * whatever uid it wants to). It normally shadows "euid", except when
834 * explicitly set by setfsuid() or for access..
836 asmlinkage
long sys_setfsuid(uid_t uid
)
838 const struct cred
*old
;
842 new = prepare_creds();
844 return current_fsuid();
845 old
= current_cred();
846 old_fsuid
= old
->fsuid
;
848 if (security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
) < 0)
851 if (uid
== old
->uid
|| uid
== old
->euid
||
852 uid
== old
->suid
|| uid
== old
->fsuid
||
853 capable(CAP_SETUID
)) {
854 if (uid
!= old_fsuid
) {
856 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
871 * Samma på svenska..
873 asmlinkage
long sys_setfsgid(gid_t gid
)
875 const struct cred
*old
;
879 new = prepare_creds();
881 return current_fsgid();
882 old
= current_cred();
883 old_fsgid
= old
->fsgid
;
885 if (security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_FS
))
888 if (gid
== old
->gid
|| gid
== old
->egid
||
889 gid
== old
->sgid
|| gid
== old
->fsgid
||
890 capable(CAP_SETGID
)) {
891 if (gid
!= old_fsgid
) {
906 void do_sys_times(struct tms
*tms
)
908 struct task_cputime cputime
;
909 cputime_t cutime
, cstime
;
911 thread_group_cputime(current
, &cputime
);
912 spin_lock_irq(¤t
->sighand
->siglock
);
913 cutime
= current
->signal
->cutime
;
914 cstime
= current
->signal
->cstime
;
915 spin_unlock_irq(¤t
->sighand
->siglock
);
916 tms
->tms_utime
= cputime_to_clock_t(cputime
.utime
);
917 tms
->tms_stime
= cputime_to_clock_t(cputime
.stime
);
918 tms
->tms_cutime
= cputime_to_clock_t(cutime
);
919 tms
->tms_cstime
= cputime_to_clock_t(cstime
);
922 asmlinkage
long sys_times(struct tms __user
* tbuf
)
928 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
931 force_successful_syscall_return();
932 return (long) jiffies_64_to_clock_t(get_jiffies_64());
936 * This needs some heavy checking ...
937 * I just haven't the stomach for it. I also don't fully
938 * understand sessions/pgrp etc. Let somebody who does explain it.
940 * OK, I think I have the protection semantics right.... this is really
941 * only important on a multi-user system anyway, to make sure one user
942 * can't send a signal to a process owned by another. -TYT, 12/12/91
944 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
947 asmlinkage
long sys_setpgid(pid_t pid
, pid_t pgid
)
949 struct task_struct
*p
;
950 struct task_struct
*group_leader
= current
->group_leader
;
955 pid
= task_pid_vnr(group_leader
);
961 /* From this point forward we keep holding onto the tasklist lock
962 * so that our parent does not change from under us. -DaveM
964 write_lock_irq(&tasklist_lock
);
967 p
= find_task_by_vpid(pid
);
972 if (!thread_group_leader(p
))
975 if (same_thread_group(p
->real_parent
, group_leader
)) {
977 if (task_session(p
) != task_session(group_leader
))
984 if (p
!= group_leader
)
989 if (p
->signal
->leader
)
994 struct task_struct
*g
;
996 pgrp
= find_vpid(pgid
);
997 g
= pid_task(pgrp
, PIDTYPE_PGID
);
998 if (!g
|| task_session(g
) != task_session(group_leader
))
1002 err
= security_task_setpgid(p
, pgid
);
1006 if (task_pgrp(p
) != pgrp
) {
1007 change_pid(p
, PIDTYPE_PGID
, pgrp
);
1008 set_task_pgrp(p
, pid_nr(pgrp
));
1013 /* All paths lead to here, thus we are safe. -DaveM */
1014 write_unlock_irq(&tasklist_lock
);
1018 asmlinkage
long sys_getpgid(pid_t pid
)
1020 struct task_struct
*p
;
1026 grp
= task_pgrp(current
);
1029 p
= find_task_by_vpid(pid
);
1036 retval
= security_task_getpgid(p
);
1040 retval
= pid_vnr(grp
);
1046 #ifdef __ARCH_WANT_SYS_GETPGRP
1048 asmlinkage
long sys_getpgrp(void)
1050 return sys_getpgid(0);
1055 asmlinkage
long sys_getsid(pid_t pid
)
1057 struct task_struct
*p
;
1063 sid
= task_session(current
);
1066 p
= find_task_by_vpid(pid
);
1069 sid
= task_session(p
);
1073 retval
= security_task_getsid(p
);
1077 retval
= pid_vnr(sid
);
1083 asmlinkage
long sys_setsid(void)
1085 struct task_struct
*group_leader
= current
->group_leader
;
1086 struct pid
*sid
= task_pid(group_leader
);
1087 pid_t session
= pid_vnr(sid
);
1090 write_lock_irq(&tasklist_lock
);
1091 /* Fail if I am already a session leader */
1092 if (group_leader
->signal
->leader
)
1095 /* Fail if a process group id already exists that equals the
1096 * proposed session id.
1098 if (pid_task(sid
, PIDTYPE_PGID
))
1101 group_leader
->signal
->leader
= 1;
1102 __set_special_pids(sid
);
1104 proc_clear_tty(group_leader
);
1108 write_unlock_irq(&tasklist_lock
);
1113 * Supplementary group IDs
1116 /* init to 2 - one for init_task, one to ensure it is never freed */
1117 struct group_info init_groups
= { .usage
= ATOMIC_INIT(2) };
1119 struct group_info
*groups_alloc(int gidsetsize
)
1121 struct group_info
*group_info
;
1125 nblocks
= (gidsetsize
+ NGROUPS_PER_BLOCK
- 1) / NGROUPS_PER_BLOCK
;
1126 /* Make sure we always allocate at least one indirect block pointer */
1127 nblocks
= nblocks
? : 1;
1128 group_info
= kmalloc(sizeof(*group_info
) + nblocks
*sizeof(gid_t
*), GFP_USER
);
1131 group_info
->ngroups
= gidsetsize
;
1132 group_info
->nblocks
= nblocks
;
1133 atomic_set(&group_info
->usage
, 1);
1135 if (gidsetsize
<= NGROUPS_SMALL
)
1136 group_info
->blocks
[0] = group_info
->small_block
;
1138 for (i
= 0; i
< nblocks
; i
++) {
1140 b
= (void *)__get_free_page(GFP_USER
);
1142 goto out_undo_partial_alloc
;
1143 group_info
->blocks
[i
] = b
;
1148 out_undo_partial_alloc
:
1150 free_page((unsigned long)group_info
->blocks
[i
]);
1156 EXPORT_SYMBOL(groups_alloc
);
1158 void groups_free(struct group_info
*group_info
)
1160 if (group_info
->blocks
[0] != group_info
->small_block
) {
1162 for (i
= 0; i
< group_info
->nblocks
; i
++)
1163 free_page((unsigned long)group_info
->blocks
[i
]);
1168 EXPORT_SYMBOL(groups_free
);
1170 /* export the group_info to a user-space array */
1171 static int groups_to_user(gid_t __user
*grouplist
,
1172 const struct group_info
*group_info
)
1175 unsigned int count
= group_info
->ngroups
;
1177 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1178 unsigned int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1179 unsigned int len
= cp_count
* sizeof(*grouplist
);
1181 if (copy_to_user(grouplist
, group_info
->blocks
[i
], len
))
1184 grouplist
+= NGROUPS_PER_BLOCK
;
1190 /* fill a group_info from a user-space array - it must be allocated already */
1191 static int groups_from_user(struct group_info
*group_info
,
1192 gid_t __user
*grouplist
)
1195 unsigned int count
= group_info
->ngroups
;
1197 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1198 unsigned int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1199 unsigned int len
= cp_count
* sizeof(*grouplist
);
1201 if (copy_from_user(group_info
->blocks
[i
], grouplist
, len
))
1204 grouplist
+= NGROUPS_PER_BLOCK
;
1210 /* a simple Shell sort */
1211 static void groups_sort(struct group_info
*group_info
)
1213 int base
, max
, stride
;
1214 int gidsetsize
= group_info
->ngroups
;
1216 for (stride
= 1; stride
< gidsetsize
; stride
= 3 * stride
+ 1)
1221 max
= gidsetsize
- stride
;
1222 for (base
= 0; base
< max
; base
++) {
1224 int right
= left
+ stride
;
1225 gid_t tmp
= GROUP_AT(group_info
, right
);
1227 while (left
>= 0 && GROUP_AT(group_info
, left
) > tmp
) {
1228 GROUP_AT(group_info
, right
) =
1229 GROUP_AT(group_info
, left
);
1233 GROUP_AT(group_info
, right
) = tmp
;
1239 /* a simple bsearch */
1240 int groups_search(const struct group_info
*group_info
, gid_t grp
)
1242 unsigned int left
, right
;
1248 right
= group_info
->ngroups
;
1249 while (left
< right
) {
1250 unsigned int mid
= (left
+right
)/2;
1251 int cmp
= grp
- GROUP_AT(group_info
, mid
);
1263 * set_groups - Change a group subscription in a set of credentials
1264 * @new: The newly prepared set of credentials to alter
1265 * @group_info: The group list to install
1267 * Validate a group subscription and, if valid, insert it into a set
1270 int set_groups(struct cred
*new, struct group_info
*group_info
)
1274 retval
= security_task_setgroups(group_info
);
1278 put_group_info(new->group_info
);
1279 groups_sort(group_info
);
1280 get_group_info(group_info
);
1281 new->group_info
= group_info
;
1285 EXPORT_SYMBOL(set_groups
);
1288 * set_current_groups - Change current's group subscription
1289 * @group_info: The group list to impose
1291 * Validate a group subscription and, if valid, impose it upon current's task
1294 int set_current_groups(struct group_info
*group_info
)
1299 new = prepare_creds();
1303 ret
= set_groups(new, group_info
);
1309 return commit_creds(new);
1312 EXPORT_SYMBOL(set_current_groups
);
1314 asmlinkage
long sys_getgroups(int gidsetsize
, gid_t __user
*grouplist
)
1316 const struct cred
*cred
= current_cred();
1322 /* no need to grab task_lock here; it cannot change */
1323 i
= cred
->group_info
->ngroups
;
1325 if (i
> gidsetsize
) {
1329 if (groups_to_user(grouplist
, cred
->group_info
)) {
1339 * SMP: Our groups are copy-on-write. We can set them safely
1340 * without another task interfering.
1343 asmlinkage
long sys_setgroups(int gidsetsize
, gid_t __user
*grouplist
)
1345 struct group_info
*group_info
;
1348 if (!capable(CAP_SETGID
))
1350 if ((unsigned)gidsetsize
> NGROUPS_MAX
)
1353 group_info
= groups_alloc(gidsetsize
);
1356 retval
= groups_from_user(group_info
, grouplist
);
1358 put_group_info(group_info
);
1362 retval
= set_current_groups(group_info
);
1363 put_group_info(group_info
);
1369 * Check whether we're fsgid/egid or in the supplemental group..
1371 int in_group_p(gid_t grp
)
1373 const struct cred
*cred
= current_cred();
1376 if (grp
!= cred
->fsgid
)
1377 retval
= groups_search(cred
->group_info
, grp
);
1381 EXPORT_SYMBOL(in_group_p
);
1383 int in_egroup_p(gid_t grp
)
1385 const struct cred
*cred
= current_cred();
1388 if (grp
!= cred
->egid
)
1389 retval
= groups_search(cred
->group_info
, grp
);
1393 EXPORT_SYMBOL(in_egroup_p
);
1395 DECLARE_RWSEM(uts_sem
);
1397 asmlinkage
long sys_newuname(struct new_utsname __user
* name
)
1401 down_read(&uts_sem
);
1402 if (copy_to_user(name
, utsname(), sizeof *name
))
1408 asmlinkage
long sys_sethostname(char __user
*name
, int len
)
1411 char tmp
[__NEW_UTS_LEN
];
1413 if (!capable(CAP_SYS_ADMIN
))
1415 if (len
< 0 || len
> __NEW_UTS_LEN
)
1417 down_write(&uts_sem
);
1419 if (!copy_from_user(tmp
, name
, len
)) {
1420 struct new_utsname
*u
= utsname();
1422 memcpy(u
->nodename
, tmp
, len
);
1423 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1430 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1432 asmlinkage
long sys_gethostname(char __user
*name
, int len
)
1435 struct new_utsname
*u
;
1439 down_read(&uts_sem
);
1441 i
= 1 + strlen(u
->nodename
);
1445 if (copy_to_user(name
, u
->nodename
, i
))
1454 * Only setdomainname; getdomainname can be implemented by calling
1457 asmlinkage
long sys_setdomainname(char __user
*name
, int len
)
1460 char tmp
[__NEW_UTS_LEN
];
1462 if (!capable(CAP_SYS_ADMIN
))
1464 if (len
< 0 || len
> __NEW_UTS_LEN
)
1467 down_write(&uts_sem
);
1469 if (!copy_from_user(tmp
, name
, len
)) {
1470 struct new_utsname
*u
= utsname();
1472 memcpy(u
->domainname
, tmp
, len
);
1473 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1480 asmlinkage
long sys_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1482 if (resource
>= RLIM_NLIMITS
)
1485 struct rlimit value
;
1486 task_lock(current
->group_leader
);
1487 value
= current
->signal
->rlim
[resource
];
1488 task_unlock(current
->group_leader
);
1489 return copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1493 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1496 * Back compatibility for getrlimit. Needed for some apps.
1499 asmlinkage
long sys_old_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1502 if (resource
>= RLIM_NLIMITS
)
1505 task_lock(current
->group_leader
);
1506 x
= current
->signal
->rlim
[resource
];
1507 task_unlock(current
->group_leader
);
1508 if (x
.rlim_cur
> 0x7FFFFFFF)
1509 x
.rlim_cur
= 0x7FFFFFFF;
1510 if (x
.rlim_max
> 0x7FFFFFFF)
1511 x
.rlim_max
= 0x7FFFFFFF;
1512 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1517 asmlinkage
long sys_setrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1519 struct rlimit new_rlim
, *old_rlim
;
1522 if (resource
>= RLIM_NLIMITS
)
1524 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1526 old_rlim
= current
->signal
->rlim
+ resource
;
1527 if ((new_rlim
.rlim_max
> old_rlim
->rlim_max
) &&
1528 !capable(CAP_SYS_RESOURCE
))
1531 if (resource
== RLIMIT_NOFILE
) {
1532 if (new_rlim
.rlim_max
== RLIM_INFINITY
)
1533 new_rlim
.rlim_max
= sysctl_nr_open
;
1534 if (new_rlim
.rlim_cur
== RLIM_INFINITY
)
1535 new_rlim
.rlim_cur
= sysctl_nr_open
;
1536 if (new_rlim
.rlim_max
> sysctl_nr_open
)
1540 if (new_rlim
.rlim_cur
> new_rlim
.rlim_max
)
1543 retval
= security_task_setrlimit(resource
, &new_rlim
);
1547 if (resource
== RLIMIT_CPU
&& new_rlim
.rlim_cur
== 0) {
1549 * The caller is asking for an immediate RLIMIT_CPU
1550 * expiry. But we use the zero value to mean "it was
1551 * never set". So let's cheat and make it one second
1554 new_rlim
.rlim_cur
= 1;
1557 task_lock(current
->group_leader
);
1558 *old_rlim
= new_rlim
;
1559 task_unlock(current
->group_leader
);
1561 if (resource
!= RLIMIT_CPU
)
1565 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1566 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1567 * very long-standing error, and fixing it now risks breakage of
1568 * applications, so we live with it
1570 if (new_rlim
.rlim_cur
== RLIM_INFINITY
)
1573 update_rlimit_cpu(new_rlim
.rlim_cur
);
1579 * It would make sense to put struct rusage in the task_struct,
1580 * except that would make the task_struct be *really big*. After
1581 * task_struct gets moved into malloc'ed memory, it would
1582 * make sense to do this. It will make moving the rest of the information
1583 * a lot simpler! (Which we're not doing right now because we're not
1584 * measuring them yet).
1586 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1587 * races with threads incrementing their own counters. But since word
1588 * reads are atomic, we either get new values or old values and we don't
1589 * care which for the sums. We always take the siglock to protect reading
1590 * the c* fields from p->signal from races with exit.c updating those
1591 * fields when reaping, so a sample either gets all the additions of a
1592 * given child after it's reaped, or none so this sample is before reaping.
1595 * We need to take the siglock for CHILDEREN, SELF and BOTH
1596 * for the cases current multithreaded, non-current single threaded
1597 * non-current multithreaded. Thread traversal is now safe with
1599 * Strictly speaking, we donot need to take the siglock if we are current and
1600 * single threaded, as no one else can take our signal_struct away, no one
1601 * else can reap the children to update signal->c* counters, and no one else
1602 * can race with the signal-> fields. If we do not take any lock, the
1603 * signal-> fields could be read out of order while another thread was just
1604 * exiting. So we should place a read memory barrier when we avoid the lock.
1605 * On the writer side, write memory barrier is implied in __exit_signal
1606 * as __exit_signal releases the siglock spinlock after updating the signal->
1607 * fields. But we don't do this yet to keep things simple.
1611 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1613 r
->ru_nvcsw
+= t
->nvcsw
;
1614 r
->ru_nivcsw
+= t
->nivcsw
;
1615 r
->ru_minflt
+= t
->min_flt
;
1616 r
->ru_majflt
+= t
->maj_flt
;
1617 r
->ru_inblock
+= task_io_get_inblock(t
);
1618 r
->ru_oublock
+= task_io_get_oublock(t
);
1621 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1623 struct task_struct
*t
;
1624 unsigned long flags
;
1625 cputime_t utime
, stime
;
1626 struct task_cputime cputime
;
1628 memset((char *) r
, 0, sizeof *r
);
1629 utime
= stime
= cputime_zero
;
1631 if (who
== RUSAGE_THREAD
) {
1632 utime
= task_utime(current
);
1633 stime
= task_stime(current
);
1634 accumulate_thread_rusage(p
, r
);
1638 if (!lock_task_sighand(p
, &flags
))
1643 case RUSAGE_CHILDREN
:
1644 utime
= p
->signal
->cutime
;
1645 stime
= p
->signal
->cstime
;
1646 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1647 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1648 r
->ru_minflt
= p
->signal
->cmin_flt
;
1649 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1650 r
->ru_inblock
= p
->signal
->cinblock
;
1651 r
->ru_oublock
= p
->signal
->coublock
;
1653 if (who
== RUSAGE_CHILDREN
)
1657 thread_group_cputime(p
, &cputime
);
1658 utime
= cputime_add(utime
, cputime
.utime
);
1659 stime
= cputime_add(stime
, cputime
.stime
);
1660 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1661 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1662 r
->ru_minflt
+= p
->signal
->min_flt
;
1663 r
->ru_majflt
+= p
->signal
->maj_flt
;
1664 r
->ru_inblock
+= p
->signal
->inblock
;
1665 r
->ru_oublock
+= p
->signal
->oublock
;
1668 accumulate_thread_rusage(t
, r
);
1676 unlock_task_sighand(p
, &flags
);
1679 cputime_to_timeval(utime
, &r
->ru_utime
);
1680 cputime_to_timeval(stime
, &r
->ru_stime
);
1683 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1686 k_getrusage(p
, who
, &r
);
1687 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1690 asmlinkage
long sys_getrusage(int who
, struct rusage __user
*ru
)
1692 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1693 who
!= RUSAGE_THREAD
)
1695 return getrusage(current
, who
, ru
);
1698 asmlinkage
long sys_umask(int mask
)
1700 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1704 asmlinkage
long sys_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
1705 unsigned long arg4
, unsigned long arg5
)
1707 struct task_struct
*me
= current
;
1708 unsigned char comm
[sizeof(me
->comm
)];
1711 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
1712 if (error
!= -ENOSYS
)
1717 case PR_SET_PDEATHSIG
:
1718 if (!valid_signal(arg2
)) {
1722 me
->pdeath_signal
= arg2
;
1725 case PR_GET_PDEATHSIG
:
1726 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
1728 case PR_GET_DUMPABLE
:
1729 error
= get_dumpable(me
->mm
);
1731 case PR_SET_DUMPABLE
:
1732 if (arg2
< 0 || arg2
> 1) {
1736 set_dumpable(me
->mm
, arg2
);
1740 case PR_SET_UNALIGN
:
1741 error
= SET_UNALIGN_CTL(me
, arg2
);
1743 case PR_GET_UNALIGN
:
1744 error
= GET_UNALIGN_CTL(me
, arg2
);
1747 error
= SET_FPEMU_CTL(me
, arg2
);
1750 error
= GET_FPEMU_CTL(me
, arg2
);
1753 error
= SET_FPEXC_CTL(me
, arg2
);
1756 error
= GET_FPEXC_CTL(me
, arg2
);
1759 error
= PR_TIMING_STATISTICAL
;
1762 if (arg2
!= PR_TIMING_STATISTICAL
)
1769 comm
[sizeof(me
->comm
)-1] = 0;
1770 if (strncpy_from_user(comm
, (char __user
*)arg2
,
1771 sizeof(me
->comm
) - 1) < 0)
1773 set_task_comm(me
, comm
);
1776 get_task_comm(comm
, me
);
1777 if (copy_to_user((char __user
*)arg2
, comm
,
1782 error
= GET_ENDIAN(me
, arg2
);
1785 error
= SET_ENDIAN(me
, arg2
);
1788 case PR_GET_SECCOMP
:
1789 error
= prctl_get_seccomp();
1791 case PR_SET_SECCOMP
:
1792 error
= prctl_set_seccomp(arg2
);
1795 error
= GET_TSC_CTL(arg2
);
1798 error
= SET_TSC_CTL(arg2
);
1800 case PR_GET_TIMERSLACK
:
1801 error
= current
->timer_slack_ns
;
1803 case PR_SET_TIMERSLACK
:
1805 current
->timer_slack_ns
=
1806 current
->default_timer_slack_ns
;
1808 current
->timer_slack_ns
= arg2
;
1818 asmlinkage
long sys_getcpu(unsigned __user
*cpup
, unsigned __user
*nodep
,
1819 struct getcpu_cache __user
*unused
)
1822 int cpu
= raw_smp_processor_id();
1824 err
|= put_user(cpu
, cpup
);
1826 err
|= put_user(cpu_to_node(cpu
), nodep
);
1827 return err
? -EFAULT
: 0;
1830 char poweroff_cmd
[POWEROFF_CMD_PATH_LEN
] = "/sbin/poweroff";
1832 static void argv_cleanup(char **argv
, char **envp
)
1838 * orderly_poweroff - Trigger an orderly system poweroff
1839 * @force: force poweroff if command execution fails
1841 * This may be called from any context to trigger a system shutdown.
1842 * If the orderly shutdown fails, it will force an immediate shutdown.
1844 int orderly_poweroff(bool force
)
1847 char **argv
= argv_split(GFP_ATOMIC
, poweroff_cmd
, &argc
);
1848 static char *envp
[] = {
1850 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1854 struct subprocess_info
*info
;
1857 printk(KERN_WARNING
"%s failed to allocate memory for \"%s\"\n",
1858 __func__
, poweroff_cmd
);
1862 info
= call_usermodehelper_setup(argv
[0], argv
, envp
, GFP_ATOMIC
);
1868 call_usermodehelper_setcleanup(info
, argv_cleanup
);
1870 ret
= call_usermodehelper_exec(info
, UMH_NO_WAIT
);
1874 printk(KERN_WARNING
"Failed to start orderly shutdown: "
1875 "forcing the issue\n");
1877 /* I guess this should try to kick off some daemon to
1878 sync and poweroff asap. Or not even bother syncing
1879 if we're doing an emergency shutdown? */
1886 EXPORT_SYMBOL_GPL(orderly_poweroff
);