sched: remove PREEMPT_RESTRICT
[linux-2.6/mini2440.git] / drivers / md / dm-table.c
blob5a7eb650181e140b85d0ba8367e9f82c0e492923
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/mutex.h>
18 #include <asm/atomic.h>
20 #define DM_MSG_PREFIX "table"
22 #define MAX_DEPTH 16
23 #define NODE_SIZE L1_CACHE_BYTES
24 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
25 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
27 struct dm_table {
28 struct mapped_device *md;
29 atomic_t holders;
31 /* btree table */
32 unsigned int depth;
33 unsigned int counts[MAX_DEPTH]; /* in nodes */
34 sector_t *index[MAX_DEPTH];
36 unsigned int num_targets;
37 unsigned int num_allocated;
38 sector_t *highs;
39 struct dm_target *targets;
42 * Indicates the rw permissions for the new logical
43 * device. This should be a combination of FMODE_READ
44 * and FMODE_WRITE.
46 int mode;
48 /* a list of devices used by this table */
49 struct list_head devices;
52 * These are optimistic limits taken from all the
53 * targets, some targets will need smaller limits.
55 struct io_restrictions limits;
57 /* events get handed up using this callback */
58 void (*event_fn)(void *);
59 void *event_context;
63 * Similar to ceiling(log_size(n))
65 static unsigned int int_log(unsigned int n, unsigned int base)
67 int result = 0;
69 while (n > 1) {
70 n = dm_div_up(n, base);
71 result++;
74 return result;
78 * Returns the minimum that is _not_ zero, unless both are zero.
80 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
83 * Combine two io_restrictions, always taking the lower value.
85 static void combine_restrictions_low(struct io_restrictions *lhs,
86 struct io_restrictions *rhs)
88 lhs->max_sectors =
89 min_not_zero(lhs->max_sectors, rhs->max_sectors);
91 lhs->max_phys_segments =
92 min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments);
94 lhs->max_hw_segments =
95 min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments);
97 lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size);
99 lhs->max_segment_size =
100 min_not_zero(lhs->max_segment_size, rhs->max_segment_size);
102 lhs->seg_boundary_mask =
103 min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask);
105 lhs->bounce_pfn = min_not_zero(lhs->bounce_pfn, rhs->bounce_pfn);
107 lhs->no_cluster |= rhs->no_cluster;
111 * Calculate the index of the child node of the n'th node k'th key.
113 static inline unsigned int get_child(unsigned int n, unsigned int k)
115 return (n * CHILDREN_PER_NODE) + k;
119 * Return the n'th node of level l from table t.
121 static inline sector_t *get_node(struct dm_table *t,
122 unsigned int l, unsigned int n)
124 return t->index[l] + (n * KEYS_PER_NODE);
128 * Return the highest key that you could lookup from the n'th
129 * node on level l of the btree.
131 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
133 for (; l < t->depth - 1; l++)
134 n = get_child(n, CHILDREN_PER_NODE - 1);
136 if (n >= t->counts[l])
137 return (sector_t) - 1;
139 return get_node(t, l, n)[KEYS_PER_NODE - 1];
143 * Fills in a level of the btree based on the highs of the level
144 * below it.
146 static int setup_btree_index(unsigned int l, struct dm_table *t)
148 unsigned int n, k;
149 sector_t *node;
151 for (n = 0U; n < t->counts[l]; n++) {
152 node = get_node(t, l, n);
154 for (k = 0U; k < KEYS_PER_NODE; k++)
155 node[k] = high(t, l + 1, get_child(n, k));
158 return 0;
161 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
163 unsigned long size;
164 void *addr;
167 * Check that we're not going to overflow.
169 if (nmemb > (ULONG_MAX / elem_size))
170 return NULL;
172 size = nmemb * elem_size;
173 addr = vmalloc(size);
174 if (addr)
175 memset(addr, 0, size);
177 return addr;
181 * highs, and targets are managed as dynamic arrays during a
182 * table load.
184 static int alloc_targets(struct dm_table *t, unsigned int num)
186 sector_t *n_highs;
187 struct dm_target *n_targets;
188 int n = t->num_targets;
191 * Allocate both the target array and offset array at once.
193 n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
194 sizeof(sector_t));
195 if (!n_highs)
196 return -ENOMEM;
198 n_targets = (struct dm_target *) (n_highs + num);
200 if (n) {
201 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
202 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
205 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
206 vfree(t->highs);
208 t->num_allocated = num;
209 t->highs = n_highs;
210 t->targets = n_targets;
212 return 0;
215 int dm_table_create(struct dm_table **result, int mode,
216 unsigned num_targets, struct mapped_device *md)
218 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
220 if (!t)
221 return -ENOMEM;
223 INIT_LIST_HEAD(&t->devices);
224 atomic_set(&t->holders, 1);
226 if (!num_targets)
227 num_targets = KEYS_PER_NODE;
229 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
231 if (alloc_targets(t, num_targets)) {
232 kfree(t);
233 t = NULL;
234 return -ENOMEM;
237 t->mode = mode;
238 t->md = md;
239 *result = t;
240 return 0;
243 int dm_create_error_table(struct dm_table **result, struct mapped_device *md)
245 struct dm_table *t;
246 sector_t dev_size = 1;
247 int r;
250 * Find current size of device.
251 * Default to 1 sector if inactive.
253 t = dm_get_table(md);
254 if (t) {
255 dev_size = dm_table_get_size(t);
256 dm_table_put(t);
259 r = dm_table_create(&t, FMODE_READ, 1, md);
260 if (r)
261 return r;
263 r = dm_table_add_target(t, "error", 0, dev_size, NULL);
264 if (r)
265 goto out;
267 r = dm_table_complete(t);
268 if (r)
269 goto out;
271 *result = t;
273 out:
274 if (r)
275 dm_table_put(t);
277 return r;
279 EXPORT_SYMBOL_GPL(dm_create_error_table);
281 static void free_devices(struct list_head *devices)
283 struct list_head *tmp, *next;
285 for (tmp = devices->next; tmp != devices; tmp = next) {
286 struct dm_dev *dd = list_entry(tmp, struct dm_dev, list);
287 next = tmp->next;
288 kfree(dd);
292 static void table_destroy(struct dm_table *t)
294 unsigned int i;
296 /* free the indexes (see dm_table_complete) */
297 if (t->depth >= 2)
298 vfree(t->index[t->depth - 2]);
300 /* free the targets */
301 for (i = 0; i < t->num_targets; i++) {
302 struct dm_target *tgt = t->targets + i;
304 if (tgt->type->dtr)
305 tgt->type->dtr(tgt);
307 dm_put_target_type(tgt->type);
310 vfree(t->highs);
312 /* free the device list */
313 if (t->devices.next != &t->devices) {
314 DMWARN("devices still present during destroy: "
315 "dm_table_remove_device calls missing");
317 free_devices(&t->devices);
320 kfree(t);
323 void dm_table_get(struct dm_table *t)
325 atomic_inc(&t->holders);
328 void dm_table_put(struct dm_table *t)
330 if (!t)
331 return;
333 if (atomic_dec_and_test(&t->holders))
334 table_destroy(t);
338 * Checks to see if we need to extend highs or targets.
340 static inline int check_space(struct dm_table *t)
342 if (t->num_targets >= t->num_allocated)
343 return alloc_targets(t, t->num_allocated * 2);
345 return 0;
349 * Convert a device path to a dev_t.
351 static int lookup_device(const char *path, dev_t *dev)
353 int r;
354 struct nameidata nd;
355 struct inode *inode;
357 if ((r = path_lookup(path, LOOKUP_FOLLOW, &nd)))
358 return r;
360 inode = nd.dentry->d_inode;
361 if (!inode) {
362 r = -ENOENT;
363 goto out;
366 if (!S_ISBLK(inode->i_mode)) {
367 r = -ENOTBLK;
368 goto out;
371 *dev = inode->i_rdev;
373 out:
374 path_release(&nd);
375 return r;
379 * See if we've already got a device in the list.
381 static struct dm_dev *find_device(struct list_head *l, dev_t dev)
383 struct dm_dev *dd;
385 list_for_each_entry (dd, l, list)
386 if (dd->bdev->bd_dev == dev)
387 return dd;
389 return NULL;
393 * Open a device so we can use it as a map destination.
395 static int open_dev(struct dm_dev *d, dev_t dev, struct mapped_device *md)
397 static char *_claim_ptr = "I belong to device-mapper";
398 struct block_device *bdev;
400 int r;
402 BUG_ON(d->bdev);
404 bdev = open_by_devnum(dev, d->mode);
405 if (IS_ERR(bdev))
406 return PTR_ERR(bdev);
407 r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md));
408 if (r)
409 blkdev_put(bdev);
410 else
411 d->bdev = bdev;
412 return r;
416 * Close a device that we've been using.
418 static void close_dev(struct dm_dev *d, struct mapped_device *md)
420 if (!d->bdev)
421 return;
423 bd_release_from_disk(d->bdev, dm_disk(md));
424 blkdev_put(d->bdev);
425 d->bdev = NULL;
429 * If possible, this checks an area of a destination device is valid.
431 static int check_device_area(struct dm_dev *dd, sector_t start, sector_t len)
433 sector_t dev_size = dd->bdev->bd_inode->i_size >> SECTOR_SHIFT;
435 if (!dev_size)
436 return 1;
438 return ((start < dev_size) && (len <= (dev_size - start)));
442 * This upgrades the mode on an already open dm_dev. Being
443 * careful to leave things as they were if we fail to reopen the
444 * device.
446 static int upgrade_mode(struct dm_dev *dd, int new_mode, struct mapped_device *md)
448 int r;
449 struct dm_dev dd_copy;
450 dev_t dev = dd->bdev->bd_dev;
452 dd_copy = *dd;
454 dd->mode |= new_mode;
455 dd->bdev = NULL;
456 r = open_dev(dd, dev, md);
457 if (!r)
458 close_dev(&dd_copy, md);
459 else
460 *dd = dd_copy;
462 return r;
466 * Add a device to the list, or just increment the usage count if
467 * it's already present.
469 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
470 const char *path, sector_t start, sector_t len,
471 int mode, struct dm_dev **result)
473 int r;
474 dev_t dev;
475 struct dm_dev *dd;
476 unsigned int major, minor;
478 BUG_ON(!t);
480 if (sscanf(path, "%u:%u", &major, &minor) == 2) {
481 /* Extract the major/minor numbers */
482 dev = MKDEV(major, minor);
483 if (MAJOR(dev) != major || MINOR(dev) != minor)
484 return -EOVERFLOW;
485 } else {
486 /* convert the path to a device */
487 if ((r = lookup_device(path, &dev)))
488 return r;
491 dd = find_device(&t->devices, dev);
492 if (!dd) {
493 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
494 if (!dd)
495 return -ENOMEM;
497 dd->mode = mode;
498 dd->bdev = NULL;
500 if ((r = open_dev(dd, dev, t->md))) {
501 kfree(dd);
502 return r;
505 format_dev_t(dd->name, dev);
507 atomic_set(&dd->count, 0);
508 list_add(&dd->list, &t->devices);
510 } else if (dd->mode != (mode | dd->mode)) {
511 r = upgrade_mode(dd, mode, t->md);
512 if (r)
513 return r;
515 atomic_inc(&dd->count);
517 if (!check_device_area(dd, start, len)) {
518 DMWARN("device %s too small for target", path);
519 dm_put_device(ti, dd);
520 return -EINVAL;
523 *result = dd;
525 return 0;
528 void dm_set_device_limits(struct dm_target *ti, struct block_device *bdev)
530 struct request_queue *q = bdev_get_queue(bdev);
531 struct io_restrictions *rs = &ti->limits;
534 * Combine the device limits low.
536 * FIXME: if we move an io_restriction struct
537 * into q this would just be a call to
538 * combine_restrictions_low()
540 rs->max_sectors =
541 min_not_zero(rs->max_sectors, q->max_sectors);
543 /* FIXME: Device-Mapper on top of RAID-0 breaks because DM
544 * currently doesn't honor MD's merge_bvec_fn routine.
545 * In this case, we'll force DM to use PAGE_SIZE or
546 * smaller I/O, just to be safe. A better fix is in the
547 * works, but add this for the time being so it will at
548 * least operate correctly.
550 if (q->merge_bvec_fn)
551 rs->max_sectors =
552 min_not_zero(rs->max_sectors,
553 (unsigned int) (PAGE_SIZE >> 9));
555 rs->max_phys_segments =
556 min_not_zero(rs->max_phys_segments,
557 q->max_phys_segments);
559 rs->max_hw_segments =
560 min_not_zero(rs->max_hw_segments, q->max_hw_segments);
562 rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size);
564 rs->max_segment_size =
565 min_not_zero(rs->max_segment_size, q->max_segment_size);
567 rs->seg_boundary_mask =
568 min_not_zero(rs->seg_boundary_mask,
569 q->seg_boundary_mask);
571 rs->bounce_pfn = min_not_zero(rs->bounce_pfn, q->bounce_pfn);
573 rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
575 EXPORT_SYMBOL_GPL(dm_set_device_limits);
577 int dm_get_device(struct dm_target *ti, const char *path, sector_t start,
578 sector_t len, int mode, struct dm_dev **result)
580 int r = __table_get_device(ti->table, ti, path,
581 start, len, mode, result);
583 if (!r)
584 dm_set_device_limits(ti, (*result)->bdev);
586 return r;
590 * Decrement a devices use count and remove it if necessary.
592 void dm_put_device(struct dm_target *ti, struct dm_dev *dd)
594 if (atomic_dec_and_test(&dd->count)) {
595 close_dev(dd, ti->table->md);
596 list_del(&dd->list);
597 kfree(dd);
602 * Checks to see if the target joins onto the end of the table.
604 static int adjoin(struct dm_table *table, struct dm_target *ti)
606 struct dm_target *prev;
608 if (!table->num_targets)
609 return !ti->begin;
611 prev = &table->targets[table->num_targets - 1];
612 return (ti->begin == (prev->begin + prev->len));
616 * Used to dynamically allocate the arg array.
618 static char **realloc_argv(unsigned *array_size, char **old_argv)
620 char **argv;
621 unsigned new_size;
623 new_size = *array_size ? *array_size * 2 : 64;
624 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
625 if (argv) {
626 memcpy(argv, old_argv, *array_size * sizeof(*argv));
627 *array_size = new_size;
630 kfree(old_argv);
631 return argv;
635 * Destructively splits up the argument list to pass to ctr.
637 int dm_split_args(int *argc, char ***argvp, char *input)
639 char *start, *end = input, *out, **argv = NULL;
640 unsigned array_size = 0;
642 *argc = 0;
644 if (!input) {
645 *argvp = NULL;
646 return 0;
649 argv = realloc_argv(&array_size, argv);
650 if (!argv)
651 return -ENOMEM;
653 while (1) {
654 start = end;
656 /* Skip whitespace */
657 while (*start && isspace(*start))
658 start++;
660 if (!*start)
661 break; /* success, we hit the end */
663 /* 'out' is used to remove any back-quotes */
664 end = out = start;
665 while (*end) {
666 /* Everything apart from '\0' can be quoted */
667 if (*end == '\\' && *(end + 1)) {
668 *out++ = *(end + 1);
669 end += 2;
670 continue;
673 if (isspace(*end))
674 break; /* end of token */
676 *out++ = *end++;
679 /* have we already filled the array ? */
680 if ((*argc + 1) > array_size) {
681 argv = realloc_argv(&array_size, argv);
682 if (!argv)
683 return -ENOMEM;
686 /* we know this is whitespace */
687 if (*end)
688 end++;
690 /* terminate the string and put it in the array */
691 *out = '\0';
692 argv[*argc] = start;
693 (*argc)++;
696 *argvp = argv;
697 return 0;
700 static void check_for_valid_limits(struct io_restrictions *rs)
702 if (!rs->max_sectors)
703 rs->max_sectors = SAFE_MAX_SECTORS;
704 if (!rs->max_phys_segments)
705 rs->max_phys_segments = MAX_PHYS_SEGMENTS;
706 if (!rs->max_hw_segments)
707 rs->max_hw_segments = MAX_HW_SEGMENTS;
708 if (!rs->hardsect_size)
709 rs->hardsect_size = 1 << SECTOR_SHIFT;
710 if (!rs->max_segment_size)
711 rs->max_segment_size = MAX_SEGMENT_SIZE;
712 if (!rs->seg_boundary_mask)
713 rs->seg_boundary_mask = -1;
714 if (!rs->bounce_pfn)
715 rs->bounce_pfn = -1;
718 int dm_table_add_target(struct dm_table *t, const char *type,
719 sector_t start, sector_t len, char *params)
721 int r = -EINVAL, argc;
722 char **argv;
723 struct dm_target *tgt;
725 if ((r = check_space(t)))
726 return r;
728 tgt = t->targets + t->num_targets;
729 memset(tgt, 0, sizeof(*tgt));
731 if (!len) {
732 DMERR("%s: zero-length target", dm_device_name(t->md));
733 return -EINVAL;
736 tgt->type = dm_get_target_type(type);
737 if (!tgt->type) {
738 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
739 type);
740 return -EINVAL;
743 tgt->table = t;
744 tgt->begin = start;
745 tgt->len = len;
746 tgt->error = "Unknown error";
749 * Does this target adjoin the previous one ?
751 if (!adjoin(t, tgt)) {
752 tgt->error = "Gap in table";
753 r = -EINVAL;
754 goto bad;
757 r = dm_split_args(&argc, &argv, params);
758 if (r) {
759 tgt->error = "couldn't split parameters (insufficient memory)";
760 goto bad;
763 r = tgt->type->ctr(tgt, argc, argv);
764 kfree(argv);
765 if (r)
766 goto bad;
768 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
770 /* FIXME: the plan is to combine high here and then have
771 * the merge fn apply the target level restrictions. */
772 combine_restrictions_low(&t->limits, &tgt->limits);
773 return 0;
775 bad:
776 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
777 dm_put_target_type(tgt->type);
778 return r;
781 static int setup_indexes(struct dm_table *t)
783 int i;
784 unsigned int total = 0;
785 sector_t *indexes;
787 /* allocate the space for *all* the indexes */
788 for (i = t->depth - 2; i >= 0; i--) {
789 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
790 total += t->counts[i];
793 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
794 if (!indexes)
795 return -ENOMEM;
797 /* set up internal nodes, bottom-up */
798 for (i = t->depth - 2, total = 0; i >= 0; i--) {
799 t->index[i] = indexes;
800 indexes += (KEYS_PER_NODE * t->counts[i]);
801 setup_btree_index(i, t);
804 return 0;
808 * Builds the btree to index the map.
810 int dm_table_complete(struct dm_table *t)
812 int r = 0;
813 unsigned int leaf_nodes;
815 check_for_valid_limits(&t->limits);
817 /* how many indexes will the btree have ? */
818 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
819 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
821 /* leaf layer has already been set up */
822 t->counts[t->depth - 1] = leaf_nodes;
823 t->index[t->depth - 1] = t->highs;
825 if (t->depth >= 2)
826 r = setup_indexes(t);
828 return r;
831 static DEFINE_MUTEX(_event_lock);
832 void dm_table_event_callback(struct dm_table *t,
833 void (*fn)(void *), void *context)
835 mutex_lock(&_event_lock);
836 t->event_fn = fn;
837 t->event_context = context;
838 mutex_unlock(&_event_lock);
841 void dm_table_event(struct dm_table *t)
844 * You can no longer call dm_table_event() from interrupt
845 * context, use a bottom half instead.
847 BUG_ON(in_interrupt());
849 mutex_lock(&_event_lock);
850 if (t->event_fn)
851 t->event_fn(t->event_context);
852 mutex_unlock(&_event_lock);
855 sector_t dm_table_get_size(struct dm_table *t)
857 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
860 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
862 if (index >= t->num_targets)
863 return NULL;
865 return t->targets + index;
869 * Search the btree for the correct target.
871 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
873 unsigned int l, n = 0, k = 0;
874 sector_t *node;
876 for (l = 0; l < t->depth; l++) {
877 n = get_child(n, k);
878 node = get_node(t, l, n);
880 for (k = 0; k < KEYS_PER_NODE; k++)
881 if (node[k] >= sector)
882 break;
885 return &t->targets[(KEYS_PER_NODE * n) + k];
888 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q)
891 * Make sure we obey the optimistic sub devices
892 * restrictions.
894 blk_queue_max_sectors(q, t->limits.max_sectors);
895 q->max_phys_segments = t->limits.max_phys_segments;
896 q->max_hw_segments = t->limits.max_hw_segments;
897 q->hardsect_size = t->limits.hardsect_size;
898 q->max_segment_size = t->limits.max_segment_size;
899 q->seg_boundary_mask = t->limits.seg_boundary_mask;
900 q->bounce_pfn = t->limits.bounce_pfn;
901 if (t->limits.no_cluster)
902 q->queue_flags &= ~(1 << QUEUE_FLAG_CLUSTER);
903 else
904 q->queue_flags |= (1 << QUEUE_FLAG_CLUSTER);
908 unsigned int dm_table_get_num_targets(struct dm_table *t)
910 return t->num_targets;
913 struct list_head *dm_table_get_devices(struct dm_table *t)
915 return &t->devices;
918 int dm_table_get_mode(struct dm_table *t)
920 return t->mode;
923 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
925 int i = t->num_targets;
926 struct dm_target *ti = t->targets;
928 while (i--) {
929 if (postsuspend) {
930 if (ti->type->postsuspend)
931 ti->type->postsuspend(ti);
932 } else if (ti->type->presuspend)
933 ti->type->presuspend(ti);
935 ti++;
939 void dm_table_presuspend_targets(struct dm_table *t)
941 if (!t)
942 return;
944 return suspend_targets(t, 0);
947 void dm_table_postsuspend_targets(struct dm_table *t)
949 if (!t)
950 return;
952 return suspend_targets(t, 1);
955 int dm_table_resume_targets(struct dm_table *t)
957 int i, r = 0;
959 for (i = 0; i < t->num_targets; i++) {
960 struct dm_target *ti = t->targets + i;
962 if (!ti->type->preresume)
963 continue;
965 r = ti->type->preresume(ti);
966 if (r)
967 return r;
970 for (i = 0; i < t->num_targets; i++) {
971 struct dm_target *ti = t->targets + i;
973 if (ti->type->resume)
974 ti->type->resume(ti);
977 return 0;
980 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
982 struct list_head *d, *devices;
983 int r = 0;
985 devices = dm_table_get_devices(t);
986 for (d = devices->next; d != devices; d = d->next) {
987 struct dm_dev *dd = list_entry(d, struct dm_dev, list);
988 struct request_queue *q = bdev_get_queue(dd->bdev);
989 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
992 return r;
995 void dm_table_unplug_all(struct dm_table *t)
997 struct list_head *d, *devices = dm_table_get_devices(t);
999 for (d = devices->next; d != devices; d = d->next) {
1000 struct dm_dev *dd = list_entry(d, struct dm_dev, list);
1001 struct request_queue *q = bdev_get_queue(dd->bdev);
1003 if (q->unplug_fn)
1004 q->unplug_fn(q);
1008 struct mapped_device *dm_table_get_md(struct dm_table *t)
1010 dm_get(t->md);
1012 return t->md;
1015 EXPORT_SYMBOL(dm_vcalloc);
1016 EXPORT_SYMBOL(dm_get_device);
1017 EXPORT_SYMBOL(dm_put_device);
1018 EXPORT_SYMBOL(dm_table_event);
1019 EXPORT_SYMBOL(dm_table_get_size);
1020 EXPORT_SYMBOL(dm_table_get_mode);
1021 EXPORT_SYMBOL(dm_table_get_md);
1022 EXPORT_SYMBOL(dm_table_put);
1023 EXPORT_SYMBOL(dm_table_get);
1024 EXPORT_SYMBOL(dm_table_unplug_all);