cciss: assign PDE->data before gluing PDE into /proc tree
[linux-2.6/mini2440.git] / kernel / sched_debug.c
blob6b4a12558e88b94893afeb326c30a21da6269fbf
1 /*
2 * kernel/time/sched_debug.c
4 * Print the CFS rbtree
6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/proc_fs.h>
14 #include <linux/sched.h>
15 #include <linux/seq_file.h>
16 #include <linux/kallsyms.h>
17 #include <linux/utsname.h>
20 * This allows printing both to /proc/sched_debug and
21 * to the console
23 #define SEQ_printf(m, x...) \
24 do { \
25 if (m) \
26 seq_printf(m, x); \
27 else \
28 printk(x); \
29 } while (0)
32 * Ease the printing of nsec fields:
34 static long long nsec_high(unsigned long long nsec)
36 if ((long long)nsec < 0) {
37 nsec = -nsec;
38 do_div(nsec, 1000000);
39 return -nsec;
41 do_div(nsec, 1000000);
43 return nsec;
46 static unsigned long nsec_low(unsigned long long nsec)
48 if ((long long)nsec < 0)
49 nsec = -nsec;
51 return do_div(nsec, 1000000);
54 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
56 static void
57 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
59 if (rq->curr == p)
60 SEQ_printf(m, "R");
61 else
62 SEQ_printf(m, " ");
64 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
65 p->comm, p->pid,
66 SPLIT_NS(p->se.vruntime),
67 (long long)(p->nvcsw + p->nivcsw),
68 p->prio);
69 #ifdef CONFIG_SCHEDSTATS
70 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
71 SPLIT_NS(p->se.vruntime),
72 SPLIT_NS(p->se.sum_exec_runtime),
73 SPLIT_NS(p->se.sum_sleep_runtime));
74 #else
75 SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld",
76 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L);
77 #endif
79 #ifdef CONFIG_CGROUP_SCHED
81 char path[64];
83 cgroup_path(task_group(p)->css.cgroup, path, sizeof(path));
84 SEQ_printf(m, " %s", path);
86 #endif
87 SEQ_printf(m, "\n");
90 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
92 struct task_struct *g, *p;
93 unsigned long flags;
95 SEQ_printf(m,
96 "\nrunnable tasks:\n"
97 " task PID tree-key switches prio"
98 " exec-runtime sum-exec sum-sleep\n"
99 "------------------------------------------------------"
100 "----------------------------------------------------\n");
102 read_lock_irqsave(&tasklist_lock, flags);
104 do_each_thread(g, p) {
105 if (!p->se.on_rq || task_cpu(p) != rq_cpu)
106 continue;
108 print_task(m, rq, p);
109 } while_each_thread(g, p);
111 read_unlock_irqrestore(&tasklist_lock, flags);
114 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
116 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
117 spread, rq0_min_vruntime, spread0;
118 struct rq *rq = &per_cpu(runqueues, cpu);
119 struct sched_entity *last;
120 unsigned long flags;
122 #if !defined(CONFIG_CGROUP_SCHED) || !defined(CONFIG_USER_SCHED)
123 SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
124 #else
125 char path[128] = "";
126 struct cgroup *cgroup = NULL;
127 struct task_group *tg = cfs_rq->tg;
129 if (tg)
130 cgroup = tg->css.cgroup;
132 if (cgroup)
133 cgroup_path(cgroup, path, sizeof(path));
135 SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, path);
136 #endif
138 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
139 SPLIT_NS(cfs_rq->exec_clock));
141 spin_lock_irqsave(&rq->lock, flags);
142 if (cfs_rq->rb_leftmost)
143 MIN_vruntime = (__pick_next_entity(cfs_rq))->vruntime;
144 last = __pick_last_entity(cfs_rq);
145 if (last)
146 max_vruntime = last->vruntime;
147 min_vruntime = rq->cfs.min_vruntime;
148 rq0_min_vruntime = per_cpu(runqueues, 0).cfs.min_vruntime;
149 spin_unlock_irqrestore(&rq->lock, flags);
150 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
151 SPLIT_NS(MIN_vruntime));
152 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
153 SPLIT_NS(min_vruntime));
154 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
155 SPLIT_NS(max_vruntime));
156 spread = max_vruntime - MIN_vruntime;
157 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
158 SPLIT_NS(spread));
159 spread0 = min_vruntime - rq0_min_vruntime;
160 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
161 SPLIT_NS(spread0));
162 SEQ_printf(m, " .%-30s: %ld\n", "nr_running", cfs_rq->nr_running);
163 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
164 #ifdef CONFIG_SCHEDSTATS
165 SEQ_printf(m, " .%-30s: %d\n", "bkl_count",
166 rq->bkl_count);
167 #endif
168 SEQ_printf(m, " .%-30s: %ld\n", "nr_spread_over",
169 cfs_rq->nr_spread_over);
170 #ifdef CONFIG_FAIR_GROUP_SCHED
171 #ifdef CONFIG_SMP
172 SEQ_printf(m, " .%-30s: %lu\n", "shares", cfs_rq->shares);
173 #endif
174 #endif
177 static void print_cpu(struct seq_file *m, int cpu)
179 struct rq *rq = &per_cpu(runqueues, cpu);
181 #ifdef CONFIG_X86
183 unsigned int freq = cpu_khz ? : 1;
185 SEQ_printf(m, "\ncpu#%d, %u.%03u MHz\n",
186 cpu, freq / 1000, (freq % 1000));
188 #else
189 SEQ_printf(m, "\ncpu#%d\n", cpu);
190 #endif
192 #define P(x) \
193 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x))
194 #define PN(x) \
195 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
197 P(nr_running);
198 SEQ_printf(m, " .%-30s: %lu\n", "load",
199 rq->load.weight);
200 P(nr_switches);
201 P(nr_load_updates);
202 P(nr_uninterruptible);
203 SEQ_printf(m, " .%-30s: %lu\n", "jiffies", jiffies);
204 PN(next_balance);
205 P(curr->pid);
206 PN(clock);
207 PN(idle_clock);
208 PN(prev_clock_raw);
209 P(clock_warps);
210 P(clock_overflows);
211 P(clock_underflows);
212 P(clock_deep_idle_events);
213 PN(clock_max_delta);
214 P(cpu_load[0]);
215 P(cpu_load[1]);
216 P(cpu_load[2]);
217 P(cpu_load[3]);
218 P(cpu_load[4]);
219 #undef P
220 #undef PN
222 print_cfs_stats(m, cpu);
224 print_rq(m, rq, cpu);
227 static int sched_debug_show(struct seq_file *m, void *v)
229 u64 now = ktime_to_ns(ktime_get());
230 int cpu;
232 SEQ_printf(m, "Sched Debug Version: v0.07, %s %.*s\n",
233 init_utsname()->release,
234 (int)strcspn(init_utsname()->version, " "),
235 init_utsname()->version);
237 SEQ_printf(m, "now at %Lu.%06ld msecs\n", SPLIT_NS(now));
239 #define P(x) \
240 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
241 #define PN(x) \
242 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
243 PN(sysctl_sched_latency);
244 PN(sysctl_sched_min_granularity);
245 PN(sysctl_sched_wakeup_granularity);
246 PN(sysctl_sched_child_runs_first);
247 P(sysctl_sched_features);
248 #undef PN
249 #undef P
251 for_each_online_cpu(cpu)
252 print_cpu(m, cpu);
254 SEQ_printf(m, "\n");
256 return 0;
259 static void sysrq_sched_debug_show(void)
261 sched_debug_show(NULL, NULL);
264 static int sched_debug_open(struct inode *inode, struct file *filp)
266 return single_open(filp, sched_debug_show, NULL);
269 static const struct file_operations sched_debug_fops = {
270 .open = sched_debug_open,
271 .read = seq_read,
272 .llseek = seq_lseek,
273 .release = single_release,
276 static int __init init_sched_debug_procfs(void)
278 struct proc_dir_entry *pe;
280 pe = proc_create("sched_debug", 0644, NULL, &sched_debug_fops);
281 if (!pe)
282 return -ENOMEM;
283 return 0;
286 __initcall(init_sched_debug_procfs);
288 void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
290 unsigned long nr_switches;
291 unsigned long flags;
292 int num_threads = 1;
294 rcu_read_lock();
295 if (lock_task_sighand(p, &flags)) {
296 num_threads = atomic_read(&p->signal->count);
297 unlock_task_sighand(p, &flags);
299 rcu_read_unlock();
301 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid, num_threads);
302 SEQ_printf(m,
303 "---------------------------------------------------------\n");
304 #define __P(F) \
305 SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)F)
306 #define P(F) \
307 SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)p->F)
308 #define __PN(F) \
309 SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
310 #define PN(F) \
311 SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
313 PN(se.exec_start);
314 PN(se.vruntime);
315 PN(se.sum_exec_runtime);
316 PN(se.avg_overlap);
318 nr_switches = p->nvcsw + p->nivcsw;
320 #ifdef CONFIG_SCHEDSTATS
321 PN(se.wait_start);
322 PN(se.sleep_start);
323 PN(se.block_start);
324 PN(se.sleep_max);
325 PN(se.block_max);
326 PN(se.exec_max);
327 PN(se.slice_max);
328 PN(se.wait_max);
329 PN(se.wait_sum);
330 P(se.wait_count);
331 P(sched_info.bkl_count);
332 P(se.nr_migrations);
333 P(se.nr_migrations_cold);
334 P(se.nr_failed_migrations_affine);
335 P(se.nr_failed_migrations_running);
336 P(se.nr_failed_migrations_hot);
337 P(se.nr_forced_migrations);
338 P(se.nr_forced2_migrations);
339 P(se.nr_wakeups);
340 P(se.nr_wakeups_sync);
341 P(se.nr_wakeups_migrate);
342 P(se.nr_wakeups_local);
343 P(se.nr_wakeups_remote);
344 P(se.nr_wakeups_affine);
345 P(se.nr_wakeups_affine_attempts);
346 P(se.nr_wakeups_passive);
347 P(se.nr_wakeups_idle);
350 u64 avg_atom, avg_per_cpu;
352 avg_atom = p->se.sum_exec_runtime;
353 if (nr_switches)
354 do_div(avg_atom, nr_switches);
355 else
356 avg_atom = -1LL;
358 avg_per_cpu = p->se.sum_exec_runtime;
359 if (p->se.nr_migrations) {
360 avg_per_cpu = div64_u64(avg_per_cpu,
361 p->se.nr_migrations);
362 } else {
363 avg_per_cpu = -1LL;
366 __PN(avg_atom);
367 __PN(avg_per_cpu);
369 #endif
370 __P(nr_switches);
371 SEQ_printf(m, "%-35s:%21Ld\n",
372 "nr_voluntary_switches", (long long)p->nvcsw);
373 SEQ_printf(m, "%-35s:%21Ld\n",
374 "nr_involuntary_switches", (long long)p->nivcsw);
376 P(se.load.weight);
377 P(policy);
378 P(prio);
379 #undef PN
380 #undef __PN
381 #undef P
382 #undef __P
385 u64 t0, t1;
387 t0 = sched_clock();
388 t1 = sched_clock();
389 SEQ_printf(m, "%-35s:%21Ld\n",
390 "clock-delta", (long long)(t1-t0));
394 void proc_sched_set_task(struct task_struct *p)
396 #ifdef CONFIG_SCHEDSTATS
397 p->se.wait_max = 0;
398 p->se.wait_sum = 0;
399 p->se.wait_count = 0;
400 p->se.sleep_max = 0;
401 p->se.sum_sleep_runtime = 0;
402 p->se.block_max = 0;
403 p->se.exec_max = 0;
404 p->se.slice_max = 0;
405 p->se.nr_migrations = 0;
406 p->se.nr_migrations_cold = 0;
407 p->se.nr_failed_migrations_affine = 0;
408 p->se.nr_failed_migrations_running = 0;
409 p->se.nr_failed_migrations_hot = 0;
410 p->se.nr_forced_migrations = 0;
411 p->se.nr_forced2_migrations = 0;
412 p->se.nr_wakeups = 0;
413 p->se.nr_wakeups_sync = 0;
414 p->se.nr_wakeups_migrate = 0;
415 p->se.nr_wakeups_local = 0;
416 p->se.nr_wakeups_remote = 0;
417 p->se.nr_wakeups_affine = 0;
418 p->se.nr_wakeups_affine_attempts = 0;
419 p->se.nr_wakeups_passive = 0;
420 p->se.nr_wakeups_idle = 0;
421 p->sched_info.bkl_count = 0;
422 #endif
423 p->se.sum_exec_runtime = 0;
424 p->se.prev_sum_exec_runtime = 0;
425 p->nvcsw = 0;
426 p->nivcsw = 0;