2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/kmemleak.h>
25 #include <linux/mempolicy.h>
26 #include <linux/ctype.h>
27 #include <linux/debugobjects.h>
28 #include <linux/kallsyms.h>
29 #include <linux/memory.h>
30 #include <linux/math64.h>
31 #include <linux/fault-inject.h>
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
67 * a partial slab. A new slab has noone operating on it and thus there is
68 * no danger of cacheline contention.
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
88 * Overloading of page flags that are otherwise used for LRU management.
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
102 * freelist that allows lockless access to
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
108 * the fast path and disables lockless freelists.
111 #ifdef CONFIG_SLUB_DEBUG
118 * Issues still to be resolved:
120 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
122 * - Variable sizing of the per node arrays
125 /* Enable to test recovery from slab corruption on boot */
126 #undef SLUB_RESILIENCY_TEST
129 * Mininum number of partial slabs. These will be left on the partial
130 * lists even if they are empty. kmem_cache_shrink may reclaim them.
132 #define MIN_PARTIAL 5
135 * Maximum number of desirable partial slabs.
136 * The existence of more partial slabs makes kmem_cache_shrink
137 * sort the partial list by the number of objects in the.
139 #define MAX_PARTIAL 10
141 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
142 SLAB_POISON | SLAB_STORE_USER)
145 * Debugging flags that require metadata to be stored in the slab. These get
146 * disabled when slub_debug=O is used and a cache's min order increases with
149 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
152 * Set of flags that will prevent slab merging
154 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
155 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
157 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
158 SLAB_CACHE_DMA | SLAB_NOTRACK)
160 #ifndef ARCH_KMALLOC_MINALIGN
161 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
164 #ifndef ARCH_SLAB_MINALIGN
165 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
169 #define OO_MASK ((1 << OO_SHIFT) - 1)
170 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
172 /* Internal SLUB flags */
173 #define __OBJECT_POISON 0x80000000 /* Poison object */
174 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
176 static int kmem_size
= sizeof(struct kmem_cache
);
179 static struct notifier_block slab_notifier
;
183 DOWN
, /* No slab functionality available */
184 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
185 UP
, /* Everything works but does not show up in sysfs */
189 /* A list of all slab caches on the system */
190 static DECLARE_RWSEM(slub_lock
);
191 static LIST_HEAD(slab_caches
);
194 * Tracking user of a slab.
197 unsigned long addr
; /* Called from address */
198 int cpu
; /* Was running on cpu */
199 int pid
; /* Pid context */
200 unsigned long when
; /* When did the operation occur */
203 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
205 #ifdef CONFIG_SLUB_DEBUG
206 static int sysfs_slab_add(struct kmem_cache
*);
207 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
208 static void sysfs_slab_remove(struct kmem_cache
*);
211 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
212 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
214 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
221 static inline void stat(struct kmem_cache_cpu
*c
, enum stat_item si
)
223 #ifdef CONFIG_SLUB_STATS
228 /********************************************************************
229 * Core slab cache functions
230 *******************************************************************/
232 int slab_is_available(void)
234 return slab_state
>= UP
;
237 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
240 return s
->node
[node
];
242 return &s
->local_node
;
246 static inline struct kmem_cache_cpu
*get_cpu_slab(struct kmem_cache
*s
, int cpu
)
249 return s
->cpu_slab
[cpu
];
255 /* Verify that a pointer has an address that is valid within a slab page */
256 static inline int check_valid_pointer(struct kmem_cache
*s
,
257 struct page
*page
, const void *object
)
264 base
= page_address(page
);
265 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
266 (object
- base
) % s
->size
) {
274 * Slow version of get and set free pointer.
276 * This version requires touching the cache lines of kmem_cache which
277 * we avoid to do in the fast alloc free paths. There we obtain the offset
278 * from the page struct.
280 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
282 return *(void **)(object
+ s
->offset
);
285 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
287 *(void **)(object
+ s
->offset
) = fp
;
290 /* Loop over all objects in a slab */
291 #define for_each_object(__p, __s, __addr, __objects) \
292 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
296 #define for_each_free_object(__p, __s, __free) \
297 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
299 /* Determine object index from a given position */
300 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
302 return (p
- addr
) / s
->size
;
305 static inline struct kmem_cache_order_objects
oo_make(int order
,
308 struct kmem_cache_order_objects x
= {
309 (order
<< OO_SHIFT
) + (PAGE_SIZE
<< order
) / size
315 static inline int oo_order(struct kmem_cache_order_objects x
)
317 return x
.x
>> OO_SHIFT
;
320 static inline int oo_objects(struct kmem_cache_order_objects x
)
322 return x
.x
& OO_MASK
;
325 #ifdef CONFIG_SLUB_DEBUG
329 #ifdef CONFIG_SLUB_DEBUG_ON
330 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
332 static int slub_debug
;
335 static char *slub_debug_slabs
;
336 static int disable_higher_order_debug
;
341 static void print_section(char *text
, u8
*addr
, unsigned int length
)
349 for (i
= 0; i
< length
; i
++) {
351 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
354 printk(KERN_CONT
" %02x", addr
[i
]);
356 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
358 printk(KERN_CONT
" %s\n", ascii
);
365 printk(KERN_CONT
" ");
369 printk(KERN_CONT
" %s\n", ascii
);
373 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
374 enum track_item alloc
)
379 p
= object
+ s
->offset
+ sizeof(void *);
381 p
= object
+ s
->inuse
;
386 static void set_track(struct kmem_cache
*s
, void *object
,
387 enum track_item alloc
, unsigned long addr
)
389 struct track
*p
= get_track(s
, object
, alloc
);
393 p
->cpu
= smp_processor_id();
394 p
->pid
= current
->pid
;
397 memset(p
, 0, sizeof(struct track
));
400 static void init_tracking(struct kmem_cache
*s
, void *object
)
402 if (!(s
->flags
& SLAB_STORE_USER
))
405 set_track(s
, object
, TRACK_FREE
, 0UL);
406 set_track(s
, object
, TRACK_ALLOC
, 0UL);
409 static void print_track(const char *s
, struct track
*t
)
414 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
415 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
418 static void print_tracking(struct kmem_cache
*s
, void *object
)
420 if (!(s
->flags
& SLAB_STORE_USER
))
423 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
424 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
427 static void print_page_info(struct page
*page
)
429 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
430 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
434 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
440 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
442 printk(KERN_ERR
"========================================"
443 "=====================================\n");
444 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
445 printk(KERN_ERR
"----------------------------------------"
446 "-------------------------------------\n\n");
449 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
455 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
457 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
460 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
462 unsigned int off
; /* Offset of last byte */
463 u8
*addr
= page_address(page
);
465 print_tracking(s
, p
);
467 print_page_info(page
);
469 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
470 p
, p
- addr
, get_freepointer(s
, p
));
473 print_section("Bytes b4", p
- 16, 16);
475 print_section("Object", p
, min_t(unsigned long, s
->objsize
, PAGE_SIZE
));
477 if (s
->flags
& SLAB_RED_ZONE
)
478 print_section("Redzone", p
+ s
->objsize
,
479 s
->inuse
- s
->objsize
);
482 off
= s
->offset
+ sizeof(void *);
486 if (s
->flags
& SLAB_STORE_USER
)
487 off
+= 2 * sizeof(struct track
);
490 /* Beginning of the filler is the free pointer */
491 print_section("Padding", p
+ off
, s
->size
- off
);
496 static void object_err(struct kmem_cache
*s
, struct page
*page
,
497 u8
*object
, char *reason
)
499 slab_bug(s
, "%s", reason
);
500 print_trailer(s
, page
, object
);
503 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
509 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
511 slab_bug(s
, "%s", buf
);
512 print_page_info(page
);
516 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
520 if (s
->flags
& __OBJECT_POISON
) {
521 memset(p
, POISON_FREE
, s
->objsize
- 1);
522 p
[s
->objsize
- 1] = POISON_END
;
525 if (s
->flags
& SLAB_RED_ZONE
)
526 memset(p
+ s
->objsize
,
527 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
528 s
->inuse
- s
->objsize
);
531 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
534 if (*start
!= (u8
)value
)
542 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
543 void *from
, void *to
)
545 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
546 memset(from
, data
, to
- from
);
549 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
550 u8
*object
, char *what
,
551 u8
*start
, unsigned int value
, unsigned int bytes
)
556 fault
= check_bytes(start
, value
, bytes
);
561 while (end
> fault
&& end
[-1] == value
)
564 slab_bug(s
, "%s overwritten", what
);
565 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
566 fault
, end
- 1, fault
[0], value
);
567 print_trailer(s
, page
, object
);
569 restore_bytes(s
, what
, value
, fault
, end
);
577 * Bytes of the object to be managed.
578 * If the freepointer may overlay the object then the free
579 * pointer is the first word of the object.
581 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
584 * object + s->objsize
585 * Padding to reach word boundary. This is also used for Redzoning.
586 * Padding is extended by another word if Redzoning is enabled and
589 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
590 * 0xcc (RED_ACTIVE) for objects in use.
593 * Meta data starts here.
595 * A. Free pointer (if we cannot overwrite object on free)
596 * B. Tracking data for SLAB_STORE_USER
597 * C. Padding to reach required alignment boundary or at mininum
598 * one word if debugging is on to be able to detect writes
599 * before the word boundary.
601 * Padding is done using 0x5a (POISON_INUSE)
604 * Nothing is used beyond s->size.
606 * If slabcaches are merged then the objsize and inuse boundaries are mostly
607 * ignored. And therefore no slab options that rely on these boundaries
608 * may be used with merged slabcaches.
611 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
613 unsigned long off
= s
->inuse
; /* The end of info */
616 /* Freepointer is placed after the object. */
617 off
+= sizeof(void *);
619 if (s
->flags
& SLAB_STORE_USER
)
620 /* We also have user information there */
621 off
+= 2 * sizeof(struct track
);
626 return check_bytes_and_report(s
, page
, p
, "Object padding",
627 p
+ off
, POISON_INUSE
, s
->size
- off
);
630 /* Check the pad bytes at the end of a slab page */
631 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
639 if (!(s
->flags
& SLAB_POISON
))
642 start
= page_address(page
);
643 length
= (PAGE_SIZE
<< compound_order(page
));
644 end
= start
+ length
;
645 remainder
= length
% s
->size
;
649 fault
= check_bytes(end
- remainder
, POISON_INUSE
, remainder
);
652 while (end
> fault
&& end
[-1] == POISON_INUSE
)
655 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
656 print_section("Padding", end
- remainder
, remainder
);
658 restore_bytes(s
, "slab padding", POISON_INUSE
, start
, end
);
662 static int check_object(struct kmem_cache
*s
, struct page
*page
,
663 void *object
, int active
)
666 u8
*endobject
= object
+ s
->objsize
;
668 if (s
->flags
& SLAB_RED_ZONE
) {
670 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
672 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
673 endobject
, red
, s
->inuse
- s
->objsize
))
676 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
677 check_bytes_and_report(s
, page
, p
, "Alignment padding",
678 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
682 if (s
->flags
& SLAB_POISON
) {
683 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
684 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
685 POISON_FREE
, s
->objsize
- 1) ||
686 !check_bytes_and_report(s
, page
, p
, "Poison",
687 p
+ s
->objsize
- 1, POISON_END
, 1)))
690 * check_pad_bytes cleans up on its own.
692 check_pad_bytes(s
, page
, p
);
695 if (!s
->offset
&& active
)
697 * Object and freepointer overlap. Cannot check
698 * freepointer while object is allocated.
702 /* Check free pointer validity */
703 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
704 object_err(s
, page
, p
, "Freepointer corrupt");
706 * No choice but to zap it and thus lose the remainder
707 * of the free objects in this slab. May cause
708 * another error because the object count is now wrong.
710 set_freepointer(s
, p
, NULL
);
716 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
720 VM_BUG_ON(!irqs_disabled());
722 if (!PageSlab(page
)) {
723 slab_err(s
, page
, "Not a valid slab page");
727 maxobj
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
728 if (page
->objects
> maxobj
) {
729 slab_err(s
, page
, "objects %u > max %u",
730 s
->name
, page
->objects
, maxobj
);
733 if (page
->inuse
> page
->objects
) {
734 slab_err(s
, page
, "inuse %u > max %u",
735 s
->name
, page
->inuse
, page
->objects
);
738 /* Slab_pad_check fixes things up after itself */
739 slab_pad_check(s
, page
);
744 * Determine if a certain object on a page is on the freelist. Must hold the
745 * slab lock to guarantee that the chains are in a consistent state.
747 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
750 void *fp
= page
->freelist
;
752 unsigned long max_objects
;
754 while (fp
&& nr
<= page
->objects
) {
757 if (!check_valid_pointer(s
, page
, fp
)) {
759 object_err(s
, page
, object
,
760 "Freechain corrupt");
761 set_freepointer(s
, object
, NULL
);
764 slab_err(s
, page
, "Freepointer corrupt");
765 page
->freelist
= NULL
;
766 page
->inuse
= page
->objects
;
767 slab_fix(s
, "Freelist cleared");
773 fp
= get_freepointer(s
, object
);
777 max_objects
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
778 if (max_objects
> MAX_OBJS_PER_PAGE
)
779 max_objects
= MAX_OBJS_PER_PAGE
;
781 if (page
->objects
!= max_objects
) {
782 slab_err(s
, page
, "Wrong number of objects. Found %d but "
783 "should be %d", page
->objects
, max_objects
);
784 page
->objects
= max_objects
;
785 slab_fix(s
, "Number of objects adjusted.");
787 if (page
->inuse
!= page
->objects
- nr
) {
788 slab_err(s
, page
, "Wrong object count. Counter is %d but "
789 "counted were %d", page
->inuse
, page
->objects
- nr
);
790 page
->inuse
= page
->objects
- nr
;
791 slab_fix(s
, "Object count adjusted.");
793 return search
== NULL
;
796 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
799 if (s
->flags
& SLAB_TRACE
) {
800 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
802 alloc
? "alloc" : "free",
807 print_section("Object", (void *)object
, s
->objsize
);
814 * Tracking of fully allocated slabs for debugging purposes.
816 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
818 spin_lock(&n
->list_lock
);
819 list_add(&page
->lru
, &n
->full
);
820 spin_unlock(&n
->list_lock
);
823 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
825 struct kmem_cache_node
*n
;
827 if (!(s
->flags
& SLAB_STORE_USER
))
830 n
= get_node(s
, page_to_nid(page
));
832 spin_lock(&n
->list_lock
);
833 list_del(&page
->lru
);
834 spin_unlock(&n
->list_lock
);
837 /* Tracking of the number of slabs for debugging purposes */
838 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
840 struct kmem_cache_node
*n
= get_node(s
, node
);
842 return atomic_long_read(&n
->nr_slabs
);
845 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
847 return atomic_long_read(&n
->nr_slabs
);
850 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
852 struct kmem_cache_node
*n
= get_node(s
, node
);
855 * May be called early in order to allocate a slab for the
856 * kmem_cache_node structure. Solve the chicken-egg
857 * dilemma by deferring the increment of the count during
858 * bootstrap (see early_kmem_cache_node_alloc).
860 if (!NUMA_BUILD
|| n
) {
861 atomic_long_inc(&n
->nr_slabs
);
862 atomic_long_add(objects
, &n
->total_objects
);
865 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
867 struct kmem_cache_node
*n
= get_node(s
, node
);
869 atomic_long_dec(&n
->nr_slabs
);
870 atomic_long_sub(objects
, &n
->total_objects
);
873 /* Object debug checks for alloc/free paths */
874 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
877 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
880 init_object(s
, object
, 0);
881 init_tracking(s
, object
);
884 static int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
885 void *object
, unsigned long addr
)
887 if (!check_slab(s
, page
))
890 if (!on_freelist(s
, page
, object
)) {
891 object_err(s
, page
, object
, "Object already allocated");
895 if (!check_valid_pointer(s
, page
, object
)) {
896 object_err(s
, page
, object
, "Freelist Pointer check fails");
900 if (!check_object(s
, page
, object
, 0))
903 /* Success perform special debug activities for allocs */
904 if (s
->flags
& SLAB_STORE_USER
)
905 set_track(s
, object
, TRACK_ALLOC
, addr
);
906 trace(s
, page
, object
, 1);
907 init_object(s
, object
, 1);
911 if (PageSlab(page
)) {
913 * If this is a slab page then lets do the best we can
914 * to avoid issues in the future. Marking all objects
915 * as used avoids touching the remaining objects.
917 slab_fix(s
, "Marking all objects used");
918 page
->inuse
= page
->objects
;
919 page
->freelist
= NULL
;
924 static int free_debug_processing(struct kmem_cache
*s
, struct page
*page
,
925 void *object
, unsigned long addr
)
927 if (!check_slab(s
, page
))
930 if (!check_valid_pointer(s
, page
, object
)) {
931 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
935 if (on_freelist(s
, page
, object
)) {
936 object_err(s
, page
, object
, "Object already free");
940 if (!check_object(s
, page
, object
, 1))
943 if (unlikely(s
!= page
->slab
)) {
944 if (!PageSlab(page
)) {
945 slab_err(s
, page
, "Attempt to free object(0x%p) "
946 "outside of slab", object
);
947 } else if (!page
->slab
) {
949 "SLUB <none>: no slab for object 0x%p.\n",
953 object_err(s
, page
, object
,
954 "page slab pointer corrupt.");
958 /* Special debug activities for freeing objects */
959 if (!PageSlubFrozen(page
) && !page
->freelist
)
960 remove_full(s
, page
);
961 if (s
->flags
& SLAB_STORE_USER
)
962 set_track(s
, object
, TRACK_FREE
, addr
);
963 trace(s
, page
, object
, 0);
964 init_object(s
, object
, 0);
968 slab_fix(s
, "Object at 0x%p not freed", object
);
972 static int __init
setup_slub_debug(char *str
)
974 slub_debug
= DEBUG_DEFAULT_FLAGS
;
975 if (*str
++ != '=' || !*str
)
977 * No options specified. Switch on full debugging.
983 * No options but restriction on slabs. This means full
984 * debugging for slabs matching a pattern.
988 if (tolower(*str
) == 'o') {
990 * Avoid enabling debugging on caches if its minimum order
991 * would increase as a result.
993 disable_higher_order_debug
= 1;
1000 * Switch off all debugging measures.
1005 * Determine which debug features should be switched on
1007 for (; *str
&& *str
!= ','; str
++) {
1008 switch (tolower(*str
)) {
1010 slub_debug
|= SLAB_DEBUG_FREE
;
1013 slub_debug
|= SLAB_RED_ZONE
;
1016 slub_debug
|= SLAB_POISON
;
1019 slub_debug
|= SLAB_STORE_USER
;
1022 slub_debug
|= SLAB_TRACE
;
1025 printk(KERN_ERR
"slub_debug option '%c' "
1026 "unknown. skipped\n", *str
);
1032 slub_debug_slabs
= str
+ 1;
1037 __setup("slub_debug", setup_slub_debug
);
1039 static unsigned long kmem_cache_flags(unsigned long objsize
,
1040 unsigned long flags
, const char *name
,
1041 void (*ctor
)(void *))
1044 * Enable debugging if selected on the kernel commandline.
1046 if (slub_debug
&& (!slub_debug_slabs
||
1047 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
))))
1048 flags
|= slub_debug
;
1053 static inline void setup_object_debug(struct kmem_cache
*s
,
1054 struct page
*page
, void *object
) {}
1056 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1057 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1059 static inline int free_debug_processing(struct kmem_cache
*s
,
1060 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1062 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1064 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1065 void *object
, int active
) { return 1; }
1066 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1067 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1068 unsigned long flags
, const char *name
,
1069 void (*ctor
)(void *))
1073 #define slub_debug 0
1075 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1077 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1079 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1081 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1086 * Slab allocation and freeing
1088 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1089 struct kmem_cache_order_objects oo
)
1091 int order
= oo_order(oo
);
1093 flags
|= __GFP_NOTRACK
;
1096 return alloc_pages(flags
, order
);
1098 return alloc_pages_node(node
, flags
, order
);
1101 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1104 struct kmem_cache_order_objects oo
= s
->oo
;
1107 flags
|= s
->allocflags
;
1110 * Let the initial higher-order allocation fail under memory pressure
1111 * so we fall-back to the minimum order allocation.
1113 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1115 page
= alloc_slab_page(alloc_gfp
, node
, oo
);
1116 if (unlikely(!page
)) {
1119 * Allocation may have failed due to fragmentation.
1120 * Try a lower order alloc if possible
1122 page
= alloc_slab_page(flags
, node
, oo
);
1126 stat(get_cpu_slab(s
, raw_smp_processor_id()), ORDER_FALLBACK
);
1129 if (kmemcheck_enabled
1130 && !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
)))
1132 int pages
= 1 << oo_order(oo
);
1134 kmemcheck_alloc_shadow(page
, oo_order(oo
), flags
, node
);
1137 * Objects from caches that have a constructor don't get
1138 * cleared when they're allocated, so we need to do it here.
1141 kmemcheck_mark_uninitialized_pages(page
, pages
);
1143 kmemcheck_mark_unallocated_pages(page
, pages
);
1146 page
->objects
= oo_objects(oo
);
1147 mod_zone_page_state(page_zone(page
),
1148 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1149 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1155 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1158 setup_object_debug(s
, page
, object
);
1159 if (unlikely(s
->ctor
))
1163 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1170 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1172 page
= allocate_slab(s
,
1173 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1177 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1179 page
->flags
|= 1 << PG_slab
;
1180 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
1181 SLAB_STORE_USER
| SLAB_TRACE
))
1182 __SetPageSlubDebug(page
);
1184 start
= page_address(page
);
1186 if (unlikely(s
->flags
& SLAB_POISON
))
1187 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1190 for_each_object(p
, s
, start
, page
->objects
) {
1191 setup_object(s
, page
, last
);
1192 set_freepointer(s
, last
, p
);
1195 setup_object(s
, page
, last
);
1196 set_freepointer(s
, last
, NULL
);
1198 page
->freelist
= start
;
1204 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1206 int order
= compound_order(page
);
1207 int pages
= 1 << order
;
1209 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
))) {
1212 slab_pad_check(s
, page
);
1213 for_each_object(p
, s
, page_address(page
),
1215 check_object(s
, page
, p
, 0);
1216 __ClearPageSlubDebug(page
);
1219 kmemcheck_free_shadow(page
, compound_order(page
));
1221 mod_zone_page_state(page_zone(page
),
1222 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1223 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1226 __ClearPageSlab(page
);
1227 reset_page_mapcount(page
);
1228 if (current
->reclaim_state
)
1229 current
->reclaim_state
->reclaimed_slab
+= pages
;
1230 __free_pages(page
, order
);
1233 static void rcu_free_slab(struct rcu_head
*h
)
1237 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1238 __free_slab(page
->slab
, page
);
1241 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1243 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1245 * RCU free overloads the RCU head over the LRU
1247 struct rcu_head
*head
= (void *)&page
->lru
;
1249 call_rcu(head
, rcu_free_slab
);
1251 __free_slab(s
, page
);
1254 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1256 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1261 * Per slab locking using the pagelock
1263 static __always_inline
void slab_lock(struct page
*page
)
1265 bit_spin_lock(PG_locked
, &page
->flags
);
1268 static __always_inline
void slab_unlock(struct page
*page
)
1270 __bit_spin_unlock(PG_locked
, &page
->flags
);
1273 static __always_inline
int slab_trylock(struct page
*page
)
1277 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1282 * Management of partially allocated slabs
1284 static void add_partial(struct kmem_cache_node
*n
,
1285 struct page
*page
, int tail
)
1287 spin_lock(&n
->list_lock
);
1290 list_add_tail(&page
->lru
, &n
->partial
);
1292 list_add(&page
->lru
, &n
->partial
);
1293 spin_unlock(&n
->list_lock
);
1296 static void remove_partial(struct kmem_cache
*s
, struct page
*page
)
1298 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1300 spin_lock(&n
->list_lock
);
1301 list_del(&page
->lru
);
1303 spin_unlock(&n
->list_lock
);
1307 * Lock slab and remove from the partial list.
1309 * Must hold list_lock.
1311 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
,
1314 if (slab_trylock(page
)) {
1315 list_del(&page
->lru
);
1317 __SetPageSlubFrozen(page
);
1324 * Try to allocate a partial slab from a specific node.
1326 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1331 * Racy check. If we mistakenly see no partial slabs then we
1332 * just allocate an empty slab. If we mistakenly try to get a
1333 * partial slab and there is none available then get_partials()
1336 if (!n
|| !n
->nr_partial
)
1339 spin_lock(&n
->list_lock
);
1340 list_for_each_entry(page
, &n
->partial
, lru
)
1341 if (lock_and_freeze_slab(n
, page
))
1345 spin_unlock(&n
->list_lock
);
1350 * Get a page from somewhere. Search in increasing NUMA distances.
1352 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1355 struct zonelist
*zonelist
;
1358 enum zone_type high_zoneidx
= gfp_zone(flags
);
1362 * The defrag ratio allows a configuration of the tradeoffs between
1363 * inter node defragmentation and node local allocations. A lower
1364 * defrag_ratio increases the tendency to do local allocations
1365 * instead of attempting to obtain partial slabs from other nodes.
1367 * If the defrag_ratio is set to 0 then kmalloc() always
1368 * returns node local objects. If the ratio is higher then kmalloc()
1369 * may return off node objects because partial slabs are obtained
1370 * from other nodes and filled up.
1372 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1373 * defrag_ratio = 1000) then every (well almost) allocation will
1374 * first attempt to defrag slab caches on other nodes. This means
1375 * scanning over all nodes to look for partial slabs which may be
1376 * expensive if we do it every time we are trying to find a slab
1377 * with available objects.
1379 if (!s
->remote_node_defrag_ratio
||
1380 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1383 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
1384 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1385 struct kmem_cache_node
*n
;
1387 n
= get_node(s
, zone_to_nid(zone
));
1389 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1390 n
->nr_partial
> s
->min_partial
) {
1391 page
= get_partial_node(n
);
1401 * Get a partial page, lock it and return it.
1403 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1406 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1408 page
= get_partial_node(get_node(s
, searchnode
));
1409 if (page
|| (flags
& __GFP_THISNODE
))
1412 return get_any_partial(s
, flags
);
1416 * Move a page back to the lists.
1418 * Must be called with the slab lock held.
1420 * On exit the slab lock will have been dropped.
1422 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
, int tail
)
1424 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1425 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, smp_processor_id());
1427 __ClearPageSlubFrozen(page
);
1430 if (page
->freelist
) {
1431 add_partial(n
, page
, tail
);
1432 stat(c
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1434 stat(c
, DEACTIVATE_FULL
);
1435 if (SLABDEBUG
&& PageSlubDebug(page
) &&
1436 (s
->flags
& SLAB_STORE_USER
))
1441 stat(c
, DEACTIVATE_EMPTY
);
1442 if (n
->nr_partial
< s
->min_partial
) {
1444 * Adding an empty slab to the partial slabs in order
1445 * to avoid page allocator overhead. This slab needs
1446 * to come after the other slabs with objects in
1447 * so that the others get filled first. That way the
1448 * size of the partial list stays small.
1450 * kmem_cache_shrink can reclaim any empty slabs from
1453 add_partial(n
, page
, 1);
1457 stat(get_cpu_slab(s
, raw_smp_processor_id()), FREE_SLAB
);
1458 discard_slab(s
, page
);
1464 * Remove the cpu slab
1466 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1468 struct page
*page
= c
->page
;
1472 stat(c
, DEACTIVATE_REMOTE_FREES
);
1474 * Merge cpu freelist into slab freelist. Typically we get here
1475 * because both freelists are empty. So this is unlikely
1478 while (unlikely(c
->freelist
)) {
1481 tail
= 0; /* Hot objects. Put the slab first */
1483 /* Retrieve object from cpu_freelist */
1484 object
= c
->freelist
;
1485 c
->freelist
= c
->freelist
[c
->offset
];
1487 /* And put onto the regular freelist */
1488 object
[c
->offset
] = page
->freelist
;
1489 page
->freelist
= object
;
1493 unfreeze_slab(s
, page
, tail
);
1496 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1498 stat(c
, CPUSLAB_FLUSH
);
1500 deactivate_slab(s
, c
);
1506 * Called from IPI handler with interrupts disabled.
1508 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1510 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1512 if (likely(c
&& c
->page
))
1516 static void flush_cpu_slab(void *d
)
1518 struct kmem_cache
*s
= d
;
1520 __flush_cpu_slab(s
, smp_processor_id());
1523 static void flush_all(struct kmem_cache
*s
)
1525 on_each_cpu(flush_cpu_slab
, s
, 1);
1529 * Check if the objects in a per cpu structure fit numa
1530 * locality expectations.
1532 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1535 if (node
!= -1 && c
->node
!= node
)
1541 static int count_free(struct page
*page
)
1543 return page
->objects
- page
->inuse
;
1546 static unsigned long count_partial(struct kmem_cache_node
*n
,
1547 int (*get_count
)(struct page
*))
1549 unsigned long flags
;
1550 unsigned long x
= 0;
1553 spin_lock_irqsave(&n
->list_lock
, flags
);
1554 list_for_each_entry(page
, &n
->partial
, lru
)
1555 x
+= get_count(page
);
1556 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1560 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
1562 #ifdef CONFIG_SLUB_DEBUG
1563 return atomic_long_read(&n
->total_objects
);
1569 static noinline
void
1570 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
1575 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1577 printk(KERN_WARNING
" cache: %s, object size: %d, buffer size: %d, "
1578 "default order: %d, min order: %d\n", s
->name
, s
->objsize
,
1579 s
->size
, oo_order(s
->oo
), oo_order(s
->min
));
1581 if (oo_order(s
->min
) > get_order(s
->objsize
))
1582 printk(KERN_WARNING
" %s debugging increased min order, use "
1583 "slub_debug=O to disable.\n", s
->name
);
1585 for_each_online_node(node
) {
1586 struct kmem_cache_node
*n
= get_node(s
, node
);
1587 unsigned long nr_slabs
;
1588 unsigned long nr_objs
;
1589 unsigned long nr_free
;
1594 nr_free
= count_partial(n
, count_free
);
1595 nr_slabs
= node_nr_slabs(n
);
1596 nr_objs
= node_nr_objs(n
);
1599 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1600 node
, nr_slabs
, nr_objs
, nr_free
);
1605 * Slow path. The lockless freelist is empty or we need to perform
1608 * Interrupts are disabled.
1610 * Processing is still very fast if new objects have been freed to the
1611 * regular freelist. In that case we simply take over the regular freelist
1612 * as the lockless freelist and zap the regular freelist.
1614 * If that is not working then we fall back to the partial lists. We take the
1615 * first element of the freelist as the object to allocate now and move the
1616 * rest of the freelist to the lockless freelist.
1618 * And if we were unable to get a new slab from the partial slab lists then
1619 * we need to allocate a new slab. This is the slowest path since it involves
1620 * a call to the page allocator and the setup of a new slab.
1622 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
1623 unsigned long addr
, struct kmem_cache_cpu
*c
)
1628 /* We handle __GFP_ZERO in the caller */
1629 gfpflags
&= ~__GFP_ZERO
;
1635 if (unlikely(!node_match(c
, node
)))
1638 stat(c
, ALLOC_REFILL
);
1641 object
= c
->page
->freelist
;
1642 if (unlikely(!object
))
1644 if (unlikely(SLABDEBUG
&& PageSlubDebug(c
->page
)))
1647 c
->freelist
= object
[c
->offset
];
1648 c
->page
->inuse
= c
->page
->objects
;
1649 c
->page
->freelist
= NULL
;
1650 c
->node
= page_to_nid(c
->page
);
1652 slab_unlock(c
->page
);
1653 stat(c
, ALLOC_SLOWPATH
);
1657 deactivate_slab(s
, c
);
1660 new = get_partial(s
, gfpflags
, node
);
1663 stat(c
, ALLOC_FROM_PARTIAL
);
1667 if (gfpflags
& __GFP_WAIT
)
1670 new = new_slab(s
, gfpflags
, node
);
1672 if (gfpflags
& __GFP_WAIT
)
1673 local_irq_disable();
1676 c
= get_cpu_slab(s
, smp_processor_id());
1677 stat(c
, ALLOC_SLAB
);
1681 __SetPageSlubFrozen(new);
1685 if (!(gfpflags
& __GFP_NOWARN
) && printk_ratelimit())
1686 slab_out_of_memory(s
, gfpflags
, node
);
1689 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1693 c
->page
->freelist
= object
[c
->offset
];
1699 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1700 * have the fastpath folded into their functions. So no function call
1701 * overhead for requests that can be satisfied on the fastpath.
1703 * The fastpath works by first checking if the lockless freelist can be used.
1704 * If not then __slab_alloc is called for slow processing.
1706 * Otherwise we can simply pick the next object from the lockless free list.
1708 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
1709 gfp_t gfpflags
, int node
, unsigned long addr
)
1712 struct kmem_cache_cpu
*c
;
1713 unsigned long flags
;
1714 unsigned int objsize
;
1716 gfpflags
&= gfp_allowed_mask
;
1718 lockdep_trace_alloc(gfpflags
);
1719 might_sleep_if(gfpflags
& __GFP_WAIT
);
1721 if (should_failslab(s
->objsize
, gfpflags
))
1724 local_irq_save(flags
);
1725 c
= get_cpu_slab(s
, smp_processor_id());
1726 objsize
= c
->objsize
;
1727 if (unlikely(!c
->freelist
|| !node_match(c
, node
)))
1729 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1732 object
= c
->freelist
;
1733 c
->freelist
= object
[c
->offset
];
1734 stat(c
, ALLOC_FASTPATH
);
1736 local_irq_restore(flags
);
1738 if (unlikely((gfpflags
& __GFP_ZERO
) && object
))
1739 memset(object
, 0, objsize
);
1741 kmemcheck_slab_alloc(s
, gfpflags
, object
, c
->objsize
);
1742 kmemleak_alloc_recursive(object
, objsize
, 1, s
->flags
, gfpflags
);
1747 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1749 void *ret
= slab_alloc(s
, gfpflags
, -1, _RET_IP_
);
1751 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->objsize
, s
->size
, gfpflags
);
1755 EXPORT_SYMBOL(kmem_cache_alloc
);
1757 #ifdef CONFIG_KMEMTRACE
1758 void *kmem_cache_alloc_notrace(struct kmem_cache
*s
, gfp_t gfpflags
)
1760 return slab_alloc(s
, gfpflags
, -1, _RET_IP_
);
1762 EXPORT_SYMBOL(kmem_cache_alloc_notrace
);
1766 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1768 void *ret
= slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
1770 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
1771 s
->objsize
, s
->size
, gfpflags
, node
);
1775 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1778 #ifdef CONFIG_KMEMTRACE
1779 void *kmem_cache_alloc_node_notrace(struct kmem_cache
*s
,
1783 return slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
1785 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace
);
1789 * Slow patch handling. This may still be called frequently since objects
1790 * have a longer lifetime than the cpu slabs in most processing loads.
1792 * So we still attempt to reduce cache line usage. Just take the slab
1793 * lock and free the item. If there is no additional partial page
1794 * handling required then we can return immediately.
1796 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1797 void *x
, unsigned long addr
, unsigned int offset
)
1800 void **object
= (void *)x
;
1801 struct kmem_cache_cpu
*c
;
1803 c
= get_cpu_slab(s
, raw_smp_processor_id());
1804 stat(c
, FREE_SLOWPATH
);
1807 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
)))
1811 prior
= object
[offset
] = page
->freelist
;
1812 page
->freelist
= object
;
1815 if (unlikely(PageSlubFrozen(page
))) {
1816 stat(c
, FREE_FROZEN
);
1820 if (unlikely(!page
->inuse
))
1824 * Objects left in the slab. If it was not on the partial list before
1827 if (unlikely(!prior
)) {
1828 add_partial(get_node(s
, page_to_nid(page
)), page
, 1);
1829 stat(c
, FREE_ADD_PARTIAL
);
1839 * Slab still on the partial list.
1841 remove_partial(s
, page
);
1842 stat(c
, FREE_REMOVE_PARTIAL
);
1846 discard_slab(s
, page
);
1850 if (!free_debug_processing(s
, page
, x
, addr
))
1856 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1857 * can perform fastpath freeing without additional function calls.
1859 * The fastpath is only possible if we are freeing to the current cpu slab
1860 * of this processor. This typically the case if we have just allocated
1863 * If fastpath is not possible then fall back to __slab_free where we deal
1864 * with all sorts of special processing.
1866 static __always_inline
void slab_free(struct kmem_cache
*s
,
1867 struct page
*page
, void *x
, unsigned long addr
)
1869 void **object
= (void *)x
;
1870 struct kmem_cache_cpu
*c
;
1871 unsigned long flags
;
1873 kmemleak_free_recursive(x
, s
->flags
);
1874 local_irq_save(flags
);
1875 c
= get_cpu_slab(s
, smp_processor_id());
1876 kmemcheck_slab_free(s
, object
, c
->objsize
);
1877 debug_check_no_locks_freed(object
, c
->objsize
);
1878 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1879 debug_check_no_obj_freed(object
, c
->objsize
);
1880 if (likely(page
== c
->page
&& c
->node
>= 0)) {
1881 object
[c
->offset
] = c
->freelist
;
1882 c
->freelist
= object
;
1883 stat(c
, FREE_FASTPATH
);
1885 __slab_free(s
, page
, x
, addr
, c
->offset
);
1887 local_irq_restore(flags
);
1890 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1894 page
= virt_to_head_page(x
);
1896 slab_free(s
, page
, x
, _RET_IP_
);
1898 trace_kmem_cache_free(_RET_IP_
, x
);
1900 EXPORT_SYMBOL(kmem_cache_free
);
1902 /* Figure out on which slab page the object resides */
1903 static struct page
*get_object_page(const void *x
)
1905 struct page
*page
= virt_to_head_page(x
);
1907 if (!PageSlab(page
))
1914 * Object placement in a slab is made very easy because we always start at
1915 * offset 0. If we tune the size of the object to the alignment then we can
1916 * get the required alignment by putting one properly sized object after
1919 * Notice that the allocation order determines the sizes of the per cpu
1920 * caches. Each processor has always one slab available for allocations.
1921 * Increasing the allocation order reduces the number of times that slabs
1922 * must be moved on and off the partial lists and is therefore a factor in
1927 * Mininum / Maximum order of slab pages. This influences locking overhead
1928 * and slab fragmentation. A higher order reduces the number of partial slabs
1929 * and increases the number of allocations possible without having to
1930 * take the list_lock.
1932 static int slub_min_order
;
1933 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
1934 static int slub_min_objects
;
1937 * Merge control. If this is set then no merging of slab caches will occur.
1938 * (Could be removed. This was introduced to pacify the merge skeptics.)
1940 static int slub_nomerge
;
1943 * Calculate the order of allocation given an slab object size.
1945 * The order of allocation has significant impact on performance and other
1946 * system components. Generally order 0 allocations should be preferred since
1947 * order 0 does not cause fragmentation in the page allocator. Larger objects
1948 * be problematic to put into order 0 slabs because there may be too much
1949 * unused space left. We go to a higher order if more than 1/16th of the slab
1952 * In order to reach satisfactory performance we must ensure that a minimum
1953 * number of objects is in one slab. Otherwise we may generate too much
1954 * activity on the partial lists which requires taking the list_lock. This is
1955 * less a concern for large slabs though which are rarely used.
1957 * slub_max_order specifies the order where we begin to stop considering the
1958 * number of objects in a slab as critical. If we reach slub_max_order then
1959 * we try to keep the page order as low as possible. So we accept more waste
1960 * of space in favor of a small page order.
1962 * Higher order allocations also allow the placement of more objects in a
1963 * slab and thereby reduce object handling overhead. If the user has
1964 * requested a higher mininum order then we start with that one instead of
1965 * the smallest order which will fit the object.
1967 static inline int slab_order(int size
, int min_objects
,
1968 int max_order
, int fract_leftover
)
1972 int min_order
= slub_min_order
;
1974 if ((PAGE_SIZE
<< min_order
) / size
> MAX_OBJS_PER_PAGE
)
1975 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
1977 for (order
= max(min_order
,
1978 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
1979 order
<= max_order
; order
++) {
1981 unsigned long slab_size
= PAGE_SIZE
<< order
;
1983 if (slab_size
< min_objects
* size
)
1986 rem
= slab_size
% size
;
1988 if (rem
<= slab_size
/ fract_leftover
)
1996 static inline int calculate_order(int size
)
2004 * Attempt to find best configuration for a slab. This
2005 * works by first attempting to generate a layout with
2006 * the best configuration and backing off gradually.
2008 * First we reduce the acceptable waste in a slab. Then
2009 * we reduce the minimum objects required in a slab.
2011 min_objects
= slub_min_objects
;
2013 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
2014 max_objects
= (PAGE_SIZE
<< slub_max_order
)/size
;
2015 min_objects
= min(min_objects
, max_objects
);
2017 while (min_objects
> 1) {
2019 while (fraction
>= 4) {
2020 order
= slab_order(size
, min_objects
,
2021 slub_max_order
, fraction
);
2022 if (order
<= slub_max_order
)
2030 * We were unable to place multiple objects in a slab. Now
2031 * lets see if we can place a single object there.
2033 order
= slab_order(size
, 1, slub_max_order
, 1);
2034 if (order
<= slub_max_order
)
2038 * Doh this slab cannot be placed using slub_max_order.
2040 order
= slab_order(size
, 1, MAX_ORDER
, 1);
2041 if (order
< MAX_ORDER
)
2047 * Figure out what the alignment of the objects will be.
2049 static unsigned long calculate_alignment(unsigned long flags
,
2050 unsigned long align
, unsigned long size
)
2053 * If the user wants hardware cache aligned objects then follow that
2054 * suggestion if the object is sufficiently large.
2056 * The hardware cache alignment cannot override the specified
2057 * alignment though. If that is greater then use it.
2059 if (flags
& SLAB_HWCACHE_ALIGN
) {
2060 unsigned long ralign
= cache_line_size();
2061 while (size
<= ralign
/ 2)
2063 align
= max(align
, ralign
);
2066 if (align
< ARCH_SLAB_MINALIGN
)
2067 align
= ARCH_SLAB_MINALIGN
;
2069 return ALIGN(align
, sizeof(void *));
2072 static void init_kmem_cache_cpu(struct kmem_cache
*s
,
2073 struct kmem_cache_cpu
*c
)
2078 c
->offset
= s
->offset
/ sizeof(void *);
2079 c
->objsize
= s
->objsize
;
2080 #ifdef CONFIG_SLUB_STATS
2081 memset(c
->stat
, 0, NR_SLUB_STAT_ITEMS
* sizeof(unsigned));
2086 init_kmem_cache_node(struct kmem_cache_node
*n
, struct kmem_cache
*s
)
2089 spin_lock_init(&n
->list_lock
);
2090 INIT_LIST_HEAD(&n
->partial
);
2091 #ifdef CONFIG_SLUB_DEBUG
2092 atomic_long_set(&n
->nr_slabs
, 0);
2093 atomic_long_set(&n
->total_objects
, 0);
2094 INIT_LIST_HEAD(&n
->full
);
2100 * Per cpu array for per cpu structures.
2102 * The per cpu array places all kmem_cache_cpu structures from one processor
2103 * close together meaning that it becomes possible that multiple per cpu
2104 * structures are contained in one cacheline. This may be particularly
2105 * beneficial for the kmalloc caches.
2107 * A desktop system typically has around 60-80 slabs. With 100 here we are
2108 * likely able to get per cpu structures for all caches from the array defined
2109 * here. We must be able to cover all kmalloc caches during bootstrap.
2111 * If the per cpu array is exhausted then fall back to kmalloc
2112 * of individual cachelines. No sharing is possible then.
2114 #define NR_KMEM_CACHE_CPU 100
2116 static DEFINE_PER_CPU(struct kmem_cache_cpu
,
2117 kmem_cache_cpu
)[NR_KMEM_CACHE_CPU
];
2119 static DEFINE_PER_CPU(struct kmem_cache_cpu
*, kmem_cache_cpu_free
);
2120 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once
, CONFIG_NR_CPUS
);
2122 static struct kmem_cache_cpu
*alloc_kmem_cache_cpu(struct kmem_cache
*s
,
2123 int cpu
, gfp_t flags
)
2125 struct kmem_cache_cpu
*c
= per_cpu(kmem_cache_cpu_free
, cpu
);
2128 per_cpu(kmem_cache_cpu_free
, cpu
) =
2129 (void *)c
->freelist
;
2131 /* Table overflow: So allocate ourselves */
2133 ALIGN(sizeof(struct kmem_cache_cpu
), cache_line_size()),
2134 flags
, cpu_to_node(cpu
));
2139 init_kmem_cache_cpu(s
, c
);
2143 static void free_kmem_cache_cpu(struct kmem_cache_cpu
*c
, int cpu
)
2145 if (c
< per_cpu(kmem_cache_cpu
, cpu
) ||
2146 c
>= per_cpu(kmem_cache_cpu
, cpu
) + NR_KMEM_CACHE_CPU
) {
2150 c
->freelist
= (void *)per_cpu(kmem_cache_cpu_free
, cpu
);
2151 per_cpu(kmem_cache_cpu_free
, cpu
) = c
;
2154 static void free_kmem_cache_cpus(struct kmem_cache
*s
)
2158 for_each_online_cpu(cpu
) {
2159 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2162 s
->cpu_slab
[cpu
] = NULL
;
2163 free_kmem_cache_cpu(c
, cpu
);
2168 static int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2172 for_each_online_cpu(cpu
) {
2173 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2178 c
= alloc_kmem_cache_cpu(s
, cpu
, flags
);
2180 free_kmem_cache_cpus(s
);
2183 s
->cpu_slab
[cpu
] = c
;
2189 * Initialize the per cpu array.
2191 static void init_alloc_cpu_cpu(int cpu
)
2195 if (cpumask_test_cpu(cpu
, to_cpumask(kmem_cach_cpu_free_init_once
)))
2198 for (i
= NR_KMEM_CACHE_CPU
- 1; i
>= 0; i
--)
2199 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu
, cpu
)[i
], cpu
);
2201 cpumask_set_cpu(cpu
, to_cpumask(kmem_cach_cpu_free_init_once
));
2204 static void __init
init_alloc_cpu(void)
2208 for_each_online_cpu(cpu
)
2209 init_alloc_cpu_cpu(cpu
);
2213 static inline void free_kmem_cache_cpus(struct kmem_cache
*s
) {}
2214 static inline void init_alloc_cpu(void) {}
2216 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2218 init_kmem_cache_cpu(s
, &s
->cpu_slab
);
2225 * No kmalloc_node yet so do it by hand. We know that this is the first
2226 * slab on the node for this slabcache. There are no concurrent accesses
2229 * Note that this function only works on the kmalloc_node_cache
2230 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2231 * memory on a fresh node that has no slab structures yet.
2233 static void early_kmem_cache_node_alloc(gfp_t gfpflags
, int node
)
2236 struct kmem_cache_node
*n
;
2237 unsigned long flags
;
2239 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
2241 page
= new_slab(kmalloc_caches
, gfpflags
, node
);
2244 if (page_to_nid(page
) != node
) {
2245 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2247 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2248 "in order to be able to continue\n");
2253 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
2255 kmalloc_caches
->node
[node
] = n
;
2256 #ifdef CONFIG_SLUB_DEBUG
2257 init_object(kmalloc_caches
, n
, 1);
2258 init_tracking(kmalloc_caches
, n
);
2260 init_kmem_cache_node(n
, kmalloc_caches
);
2261 inc_slabs_node(kmalloc_caches
, node
, page
->objects
);
2264 * lockdep requires consistent irq usage for each lock
2265 * so even though there cannot be a race this early in
2266 * the boot sequence, we still disable irqs.
2268 local_irq_save(flags
);
2269 add_partial(n
, page
, 0);
2270 local_irq_restore(flags
);
2273 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2277 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2278 struct kmem_cache_node
*n
= s
->node
[node
];
2279 if (n
&& n
!= &s
->local_node
)
2280 kmem_cache_free(kmalloc_caches
, n
);
2281 s
->node
[node
] = NULL
;
2285 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2290 if (slab_state
>= UP
)
2291 local_node
= page_to_nid(virt_to_page(s
));
2295 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2296 struct kmem_cache_node
*n
;
2298 if (local_node
== node
)
2301 if (slab_state
== DOWN
) {
2302 early_kmem_cache_node_alloc(gfpflags
, node
);
2305 n
= kmem_cache_alloc_node(kmalloc_caches
,
2309 free_kmem_cache_nodes(s
);
2315 init_kmem_cache_node(n
, s
);
2320 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2324 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2326 init_kmem_cache_node(&s
->local_node
, s
);
2331 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
2333 if (min
< MIN_PARTIAL
)
2335 else if (min
> MAX_PARTIAL
)
2337 s
->min_partial
= min
;
2341 * calculate_sizes() determines the order and the distribution of data within
2344 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2346 unsigned long flags
= s
->flags
;
2347 unsigned long size
= s
->objsize
;
2348 unsigned long align
= s
->align
;
2352 * Round up object size to the next word boundary. We can only
2353 * place the free pointer at word boundaries and this determines
2354 * the possible location of the free pointer.
2356 size
= ALIGN(size
, sizeof(void *));
2358 #ifdef CONFIG_SLUB_DEBUG
2360 * Determine if we can poison the object itself. If the user of
2361 * the slab may touch the object after free or before allocation
2362 * then we should never poison the object itself.
2364 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2366 s
->flags
|= __OBJECT_POISON
;
2368 s
->flags
&= ~__OBJECT_POISON
;
2372 * If we are Redzoning then check if there is some space between the
2373 * end of the object and the free pointer. If not then add an
2374 * additional word to have some bytes to store Redzone information.
2376 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2377 size
+= sizeof(void *);
2381 * With that we have determined the number of bytes in actual use
2382 * by the object. This is the potential offset to the free pointer.
2386 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2389 * Relocate free pointer after the object if it is not
2390 * permitted to overwrite the first word of the object on
2393 * This is the case if we do RCU, have a constructor or
2394 * destructor or are poisoning the objects.
2397 size
+= sizeof(void *);
2400 #ifdef CONFIG_SLUB_DEBUG
2401 if (flags
& SLAB_STORE_USER
)
2403 * Need to store information about allocs and frees after
2406 size
+= 2 * sizeof(struct track
);
2408 if (flags
& SLAB_RED_ZONE
)
2410 * Add some empty padding so that we can catch
2411 * overwrites from earlier objects rather than let
2412 * tracking information or the free pointer be
2413 * corrupted if a user writes before the start
2416 size
+= sizeof(void *);
2420 * Determine the alignment based on various parameters that the
2421 * user specified and the dynamic determination of cache line size
2424 align
= calculate_alignment(flags
, align
, s
->objsize
);
2427 * SLUB stores one object immediately after another beginning from
2428 * offset 0. In order to align the objects we have to simply size
2429 * each object to conform to the alignment.
2431 size
= ALIGN(size
, align
);
2433 if (forced_order
>= 0)
2434 order
= forced_order
;
2436 order
= calculate_order(size
);
2443 s
->allocflags
|= __GFP_COMP
;
2445 if (s
->flags
& SLAB_CACHE_DMA
)
2446 s
->allocflags
|= SLUB_DMA
;
2448 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2449 s
->allocflags
|= __GFP_RECLAIMABLE
;
2452 * Determine the number of objects per slab
2454 s
->oo
= oo_make(order
, size
);
2455 s
->min
= oo_make(get_order(size
), size
);
2456 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
2459 return !!oo_objects(s
->oo
);
2463 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
2464 const char *name
, size_t size
,
2465 size_t align
, unsigned long flags
,
2466 void (*ctor
)(void *))
2468 memset(s
, 0, kmem_size
);
2473 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2475 if (!calculate_sizes(s
, -1))
2477 if (disable_higher_order_debug
) {
2479 * Disable debugging flags that store metadata if the min slab
2482 if (get_order(s
->size
) > get_order(s
->objsize
)) {
2483 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
2485 if (!calculate_sizes(s
, -1))
2491 * The larger the object size is, the more pages we want on the partial
2492 * list to avoid pounding the page allocator excessively.
2494 set_min_partial(s
, ilog2(s
->size
));
2497 s
->remote_node_defrag_ratio
= 1000;
2499 if (!init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
2502 if (alloc_kmem_cache_cpus(s
, gfpflags
& ~SLUB_DMA
))
2504 free_kmem_cache_nodes(s
);
2506 if (flags
& SLAB_PANIC
)
2507 panic("Cannot create slab %s size=%lu realsize=%u "
2508 "order=%u offset=%u flags=%lx\n",
2509 s
->name
, (unsigned long)size
, s
->size
, oo_order(s
->oo
),
2515 * Check if a given pointer is valid
2517 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
2521 page
= get_object_page(object
);
2523 if (!page
|| s
!= page
->slab
)
2524 /* No slab or wrong slab */
2527 if (!check_valid_pointer(s
, page
, object
))
2531 * We could also check if the object is on the slabs freelist.
2532 * But this would be too expensive and it seems that the main
2533 * purpose of kmem_ptr_valid() is to check if the object belongs
2534 * to a certain slab.
2538 EXPORT_SYMBOL(kmem_ptr_validate
);
2541 * Determine the size of a slab object
2543 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2547 EXPORT_SYMBOL(kmem_cache_size
);
2549 const char *kmem_cache_name(struct kmem_cache
*s
)
2553 EXPORT_SYMBOL(kmem_cache_name
);
2555 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
2558 #ifdef CONFIG_SLUB_DEBUG
2559 void *addr
= page_address(page
);
2561 DECLARE_BITMAP(map
, page
->objects
);
2563 bitmap_zero(map
, page
->objects
);
2564 slab_err(s
, page
, "%s", text
);
2566 for_each_free_object(p
, s
, page
->freelist
)
2567 set_bit(slab_index(p
, s
, addr
), map
);
2569 for_each_object(p
, s
, addr
, page
->objects
) {
2571 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
2572 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
2574 print_tracking(s
, p
);
2582 * Attempt to free all partial slabs on a node.
2584 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
2586 unsigned long flags
;
2587 struct page
*page
, *h
;
2589 spin_lock_irqsave(&n
->list_lock
, flags
);
2590 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
2592 list_del(&page
->lru
);
2593 discard_slab(s
, page
);
2596 list_slab_objects(s
, page
,
2597 "Objects remaining on kmem_cache_close()");
2600 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2604 * Release all resources used by a slab cache.
2606 static inline int kmem_cache_close(struct kmem_cache
*s
)
2612 /* Attempt to free all objects */
2613 free_kmem_cache_cpus(s
);
2614 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2615 struct kmem_cache_node
*n
= get_node(s
, node
);
2618 if (n
->nr_partial
|| slabs_node(s
, node
))
2621 free_kmem_cache_nodes(s
);
2626 * Close a cache and release the kmem_cache structure
2627 * (must be used for caches created using kmem_cache_create)
2629 void kmem_cache_destroy(struct kmem_cache
*s
)
2631 if (s
->flags
& SLAB_DESTROY_BY_RCU
)
2633 down_write(&slub_lock
);
2637 up_write(&slub_lock
);
2638 if (kmem_cache_close(s
)) {
2639 printk(KERN_ERR
"SLUB %s: %s called for cache that "
2640 "still has objects.\n", s
->name
, __func__
);
2643 sysfs_slab_remove(s
);
2645 up_write(&slub_lock
);
2647 EXPORT_SYMBOL(kmem_cache_destroy
);
2649 /********************************************************************
2651 *******************************************************************/
2653 struct kmem_cache kmalloc_caches
[SLUB_PAGE_SHIFT
] __cacheline_aligned
;
2654 EXPORT_SYMBOL(kmalloc_caches
);
2656 static int __init
setup_slub_min_order(char *str
)
2658 get_option(&str
, &slub_min_order
);
2663 __setup("slub_min_order=", setup_slub_min_order
);
2665 static int __init
setup_slub_max_order(char *str
)
2667 get_option(&str
, &slub_max_order
);
2668 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
2673 __setup("slub_max_order=", setup_slub_max_order
);
2675 static int __init
setup_slub_min_objects(char *str
)
2677 get_option(&str
, &slub_min_objects
);
2682 __setup("slub_min_objects=", setup_slub_min_objects
);
2684 static int __init
setup_slub_nomerge(char *str
)
2690 __setup("slub_nomerge", setup_slub_nomerge
);
2692 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
2693 const char *name
, int size
, gfp_t gfp_flags
)
2695 unsigned int flags
= 0;
2697 if (gfp_flags
& SLUB_DMA
)
2698 flags
= SLAB_CACHE_DMA
;
2701 * This function is called with IRQs disabled during early-boot on
2702 * single CPU so there's no need to take slub_lock here.
2704 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2708 list_add(&s
->list
, &slab_caches
);
2710 if (sysfs_slab_add(s
))
2715 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2718 #ifdef CONFIG_ZONE_DMA
2719 static struct kmem_cache
*kmalloc_caches_dma
[SLUB_PAGE_SHIFT
];
2721 static void sysfs_add_func(struct work_struct
*w
)
2723 struct kmem_cache
*s
;
2725 down_write(&slub_lock
);
2726 list_for_each_entry(s
, &slab_caches
, list
) {
2727 if (s
->flags
& __SYSFS_ADD_DEFERRED
) {
2728 s
->flags
&= ~__SYSFS_ADD_DEFERRED
;
2732 up_write(&slub_lock
);
2735 static DECLARE_WORK(sysfs_add_work
, sysfs_add_func
);
2737 static noinline
struct kmem_cache
*dma_kmalloc_cache(int index
, gfp_t flags
)
2739 struct kmem_cache
*s
;
2742 unsigned long slabflags
;
2744 s
= kmalloc_caches_dma
[index
];
2748 /* Dynamically create dma cache */
2749 if (flags
& __GFP_WAIT
)
2750 down_write(&slub_lock
);
2752 if (!down_write_trylock(&slub_lock
))
2756 if (kmalloc_caches_dma
[index
])
2759 realsize
= kmalloc_caches
[index
].objsize
;
2760 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d",
2761 (unsigned int)realsize
);
2762 s
= kmalloc(kmem_size
, flags
& ~SLUB_DMA
);
2765 * Must defer sysfs creation to a workqueue because we don't know
2766 * what context we are called from. Before sysfs comes up, we don't
2767 * need to do anything because our sysfs initcall will start by
2768 * adding all existing slabs to sysfs.
2770 slabflags
= SLAB_CACHE_DMA
|SLAB_NOTRACK
;
2771 if (slab_state
>= SYSFS
)
2772 slabflags
|= __SYSFS_ADD_DEFERRED
;
2774 if (!s
|| !text
|| !kmem_cache_open(s
, flags
, text
,
2775 realsize
, ARCH_KMALLOC_MINALIGN
, slabflags
, NULL
)) {
2781 list_add(&s
->list
, &slab_caches
);
2782 kmalloc_caches_dma
[index
] = s
;
2784 if (slab_state
>= SYSFS
)
2785 schedule_work(&sysfs_add_work
);
2788 up_write(&slub_lock
);
2790 return kmalloc_caches_dma
[index
];
2795 * Conversion table for small slabs sizes / 8 to the index in the
2796 * kmalloc array. This is necessary for slabs < 192 since we have non power
2797 * of two cache sizes there. The size of larger slabs can be determined using
2800 static s8 size_index
[24] = {
2827 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2833 return ZERO_SIZE_PTR
;
2835 index
= size_index
[(size
- 1) / 8];
2837 index
= fls(size
- 1);
2839 #ifdef CONFIG_ZONE_DMA
2840 if (unlikely((flags
& SLUB_DMA
)))
2841 return dma_kmalloc_cache(index
, flags
);
2844 return &kmalloc_caches
[index
];
2847 void *__kmalloc(size_t size
, gfp_t flags
)
2849 struct kmem_cache
*s
;
2852 if (unlikely(size
> SLUB_MAX_SIZE
))
2853 return kmalloc_large(size
, flags
);
2855 s
= get_slab(size
, flags
);
2857 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2860 ret
= slab_alloc(s
, flags
, -1, _RET_IP_
);
2862 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
2866 EXPORT_SYMBOL(__kmalloc
);
2868 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
2872 flags
|= __GFP_COMP
| __GFP_NOTRACK
;
2873 page
= alloc_pages_node(node
, flags
, get_order(size
));
2875 return page_address(page
);
2881 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2883 struct kmem_cache
*s
;
2886 if (unlikely(size
> SLUB_MAX_SIZE
)) {
2887 ret
= kmalloc_large_node(size
, flags
, node
);
2889 trace_kmalloc_node(_RET_IP_
, ret
,
2890 size
, PAGE_SIZE
<< get_order(size
),
2896 s
= get_slab(size
, flags
);
2898 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2901 ret
= slab_alloc(s
, flags
, node
, _RET_IP_
);
2903 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
2907 EXPORT_SYMBOL(__kmalloc_node
);
2910 size_t ksize(const void *object
)
2913 struct kmem_cache
*s
;
2915 if (unlikely(object
== ZERO_SIZE_PTR
))
2918 page
= virt_to_head_page(object
);
2920 if (unlikely(!PageSlab(page
))) {
2921 WARN_ON(!PageCompound(page
));
2922 return PAGE_SIZE
<< compound_order(page
);
2926 #ifdef CONFIG_SLUB_DEBUG
2928 * Debugging requires use of the padding between object
2929 * and whatever may come after it.
2931 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2936 * If we have the need to store the freelist pointer
2937 * back there or track user information then we can
2938 * only use the space before that information.
2940 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2943 * Else we can use all the padding etc for the allocation
2947 EXPORT_SYMBOL(ksize
);
2949 void kfree(const void *x
)
2952 void *object
= (void *)x
;
2954 trace_kfree(_RET_IP_
, x
);
2956 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2959 page
= virt_to_head_page(x
);
2960 if (unlikely(!PageSlab(page
))) {
2961 BUG_ON(!PageCompound(page
));
2965 slab_free(page
->slab
, page
, object
, _RET_IP_
);
2967 EXPORT_SYMBOL(kfree
);
2970 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2971 * the remaining slabs by the number of items in use. The slabs with the
2972 * most items in use come first. New allocations will then fill those up
2973 * and thus they can be removed from the partial lists.
2975 * The slabs with the least items are placed last. This results in them
2976 * being allocated from last increasing the chance that the last objects
2977 * are freed in them.
2979 int kmem_cache_shrink(struct kmem_cache
*s
)
2983 struct kmem_cache_node
*n
;
2986 int objects
= oo_objects(s
->max
);
2987 struct list_head
*slabs_by_inuse
=
2988 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
2989 unsigned long flags
;
2991 if (!slabs_by_inuse
)
2995 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2996 n
= get_node(s
, node
);
3001 for (i
= 0; i
< objects
; i
++)
3002 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
3004 spin_lock_irqsave(&n
->list_lock
, flags
);
3007 * Build lists indexed by the items in use in each slab.
3009 * Note that concurrent frees may occur while we hold the
3010 * list_lock. page->inuse here is the upper limit.
3012 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3013 if (!page
->inuse
&& slab_trylock(page
)) {
3015 * Must hold slab lock here because slab_free
3016 * may have freed the last object and be
3017 * waiting to release the slab.
3019 list_del(&page
->lru
);
3022 discard_slab(s
, page
);
3024 list_move(&page
->lru
,
3025 slabs_by_inuse
+ page
->inuse
);
3030 * Rebuild the partial list with the slabs filled up most
3031 * first and the least used slabs at the end.
3033 for (i
= objects
- 1; i
>= 0; i
--)
3034 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
3036 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3039 kfree(slabs_by_inuse
);
3042 EXPORT_SYMBOL(kmem_cache_shrink
);
3044 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
3045 static int slab_mem_going_offline_callback(void *arg
)
3047 struct kmem_cache
*s
;
3049 down_read(&slub_lock
);
3050 list_for_each_entry(s
, &slab_caches
, list
)
3051 kmem_cache_shrink(s
);
3052 up_read(&slub_lock
);
3057 static void slab_mem_offline_callback(void *arg
)
3059 struct kmem_cache_node
*n
;
3060 struct kmem_cache
*s
;
3061 struct memory_notify
*marg
= arg
;
3064 offline_node
= marg
->status_change_nid
;
3067 * If the node still has available memory. we need kmem_cache_node
3070 if (offline_node
< 0)
3073 down_read(&slub_lock
);
3074 list_for_each_entry(s
, &slab_caches
, list
) {
3075 n
= get_node(s
, offline_node
);
3078 * if n->nr_slabs > 0, slabs still exist on the node
3079 * that is going down. We were unable to free them,
3080 * and offline_pages() function shoudn't call this
3081 * callback. So, we must fail.
3083 BUG_ON(slabs_node(s
, offline_node
));
3085 s
->node
[offline_node
] = NULL
;
3086 kmem_cache_free(kmalloc_caches
, n
);
3089 up_read(&slub_lock
);
3092 static int slab_mem_going_online_callback(void *arg
)
3094 struct kmem_cache_node
*n
;
3095 struct kmem_cache
*s
;
3096 struct memory_notify
*marg
= arg
;
3097 int nid
= marg
->status_change_nid
;
3101 * If the node's memory is already available, then kmem_cache_node is
3102 * already created. Nothing to do.
3108 * We are bringing a node online. No memory is available yet. We must
3109 * allocate a kmem_cache_node structure in order to bring the node
3112 down_read(&slub_lock
);
3113 list_for_each_entry(s
, &slab_caches
, list
) {
3115 * XXX: kmem_cache_alloc_node will fallback to other nodes
3116 * since memory is not yet available from the node that
3119 n
= kmem_cache_alloc(kmalloc_caches
, GFP_KERNEL
);
3124 init_kmem_cache_node(n
, s
);
3128 up_read(&slub_lock
);
3132 static int slab_memory_callback(struct notifier_block
*self
,
3133 unsigned long action
, void *arg
)
3138 case MEM_GOING_ONLINE
:
3139 ret
= slab_mem_going_online_callback(arg
);
3141 case MEM_GOING_OFFLINE
:
3142 ret
= slab_mem_going_offline_callback(arg
);
3145 case MEM_CANCEL_ONLINE
:
3146 slab_mem_offline_callback(arg
);
3149 case MEM_CANCEL_OFFLINE
:
3153 ret
= notifier_from_errno(ret
);
3159 #endif /* CONFIG_MEMORY_HOTPLUG */
3161 /********************************************************************
3162 * Basic setup of slabs
3163 *******************************************************************/
3165 void __init
kmem_cache_init(void)
3174 * Must first have the slab cache available for the allocations of the
3175 * struct kmem_cache_node's. There is special bootstrap code in
3176 * kmem_cache_open for slab_state == DOWN.
3178 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
3179 sizeof(struct kmem_cache_node
), GFP_NOWAIT
);
3180 kmalloc_caches
[0].refcount
= -1;
3183 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
3186 /* Able to allocate the per node structures */
3187 slab_state
= PARTIAL
;
3189 /* Caches that are not of the two-to-the-power-of size */
3190 if (KMALLOC_MIN_SIZE
<= 64) {
3191 create_kmalloc_cache(&kmalloc_caches
[1],
3192 "kmalloc-96", 96, GFP_NOWAIT
);
3194 create_kmalloc_cache(&kmalloc_caches
[2],
3195 "kmalloc-192", 192, GFP_NOWAIT
);
3199 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3200 create_kmalloc_cache(&kmalloc_caches
[i
],
3201 "kmalloc", 1 << i
, GFP_NOWAIT
);
3207 * Patch up the size_index table if we have strange large alignment
3208 * requirements for the kmalloc array. This is only the case for
3209 * MIPS it seems. The standard arches will not generate any code here.
3211 * Largest permitted alignment is 256 bytes due to the way we
3212 * handle the index determination for the smaller caches.
3214 * Make sure that nothing crazy happens if someone starts tinkering
3215 * around with ARCH_KMALLOC_MINALIGN
3217 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3218 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3220 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8)
3221 size_index
[(i
- 1) / 8] = KMALLOC_SHIFT_LOW
;
3223 if (KMALLOC_MIN_SIZE
== 128) {
3225 * The 192 byte sized cache is not used if the alignment
3226 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3229 for (i
= 128 + 8; i
<= 192; i
+= 8)
3230 size_index
[(i
- 1) / 8] = 8;
3235 /* Provide the correct kmalloc names now that the caches are up */
3236 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++)
3237 kmalloc_caches
[i
]. name
=
3238 kasprintf(GFP_NOWAIT
, "kmalloc-%d", 1 << i
);
3241 register_cpu_notifier(&slab_notifier
);
3242 kmem_size
= offsetof(struct kmem_cache
, cpu_slab
) +
3243 nr_cpu_ids
* sizeof(struct kmem_cache_cpu
*);
3245 kmem_size
= sizeof(struct kmem_cache
);
3249 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3250 " CPUs=%d, Nodes=%d\n",
3251 caches
, cache_line_size(),
3252 slub_min_order
, slub_max_order
, slub_min_objects
,
3253 nr_cpu_ids
, nr_node_ids
);
3256 void __init
kmem_cache_init_late(void)
3261 * Find a mergeable slab cache
3263 static int slab_unmergeable(struct kmem_cache
*s
)
3265 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3272 * We may have set a slab to be unmergeable during bootstrap.
3274 if (s
->refcount
< 0)
3280 static struct kmem_cache
*find_mergeable(size_t size
,
3281 size_t align
, unsigned long flags
, const char *name
,
3282 void (*ctor
)(void *))
3284 struct kmem_cache
*s
;
3286 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3292 size
= ALIGN(size
, sizeof(void *));
3293 align
= calculate_alignment(flags
, align
, size
);
3294 size
= ALIGN(size
, align
);
3295 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3297 list_for_each_entry(s
, &slab_caches
, list
) {
3298 if (slab_unmergeable(s
))
3304 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3307 * Check if alignment is compatible.
3308 * Courtesy of Adrian Drzewiecki
3310 if ((s
->size
& ~(align
- 1)) != s
->size
)
3313 if (s
->size
- size
>= sizeof(void *))
3321 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3322 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3324 struct kmem_cache
*s
;
3326 down_write(&slub_lock
);
3327 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3333 * Adjust the object sizes so that we clear
3334 * the complete object on kzalloc.
3336 s
->objsize
= max(s
->objsize
, (int)size
);
3339 * And then we need to update the object size in the
3340 * per cpu structures
3342 for_each_online_cpu(cpu
)
3343 get_cpu_slab(s
, cpu
)->objsize
= s
->objsize
;
3345 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3346 up_write(&slub_lock
);
3348 if (sysfs_slab_alias(s
, name
)) {
3349 down_write(&slub_lock
);
3351 up_write(&slub_lock
);
3357 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3359 if (kmem_cache_open(s
, GFP_KERNEL
, name
,
3360 size
, align
, flags
, ctor
)) {
3361 list_add(&s
->list
, &slab_caches
);
3362 up_write(&slub_lock
);
3363 if (sysfs_slab_add(s
)) {
3364 down_write(&slub_lock
);
3366 up_write(&slub_lock
);
3374 up_write(&slub_lock
);
3377 if (flags
& SLAB_PANIC
)
3378 panic("Cannot create slabcache %s\n", name
);
3383 EXPORT_SYMBOL(kmem_cache_create
);
3387 * Use the cpu notifier to insure that the cpu slabs are flushed when
3390 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3391 unsigned long action
, void *hcpu
)
3393 long cpu
= (long)hcpu
;
3394 struct kmem_cache
*s
;
3395 unsigned long flags
;
3398 case CPU_UP_PREPARE
:
3399 case CPU_UP_PREPARE_FROZEN
:
3400 init_alloc_cpu_cpu(cpu
);
3401 down_read(&slub_lock
);
3402 list_for_each_entry(s
, &slab_caches
, list
)
3403 s
->cpu_slab
[cpu
] = alloc_kmem_cache_cpu(s
, cpu
,
3405 up_read(&slub_lock
);
3408 case CPU_UP_CANCELED
:
3409 case CPU_UP_CANCELED_FROZEN
:
3411 case CPU_DEAD_FROZEN
:
3412 down_read(&slub_lock
);
3413 list_for_each_entry(s
, &slab_caches
, list
) {
3414 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3416 local_irq_save(flags
);
3417 __flush_cpu_slab(s
, cpu
);
3418 local_irq_restore(flags
);
3419 free_kmem_cache_cpu(c
, cpu
);
3420 s
->cpu_slab
[cpu
] = NULL
;
3422 up_read(&slub_lock
);
3430 static struct notifier_block __cpuinitdata slab_notifier
= {
3431 .notifier_call
= slab_cpuup_callback
3436 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
3438 struct kmem_cache
*s
;
3441 if (unlikely(size
> SLUB_MAX_SIZE
))
3442 return kmalloc_large(size
, gfpflags
);
3444 s
= get_slab(size
, gfpflags
);
3446 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3449 ret
= slab_alloc(s
, gfpflags
, -1, caller
);
3451 /* Honor the call site pointer we recieved. */
3452 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
3457 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3458 int node
, unsigned long caller
)
3460 struct kmem_cache
*s
;
3463 if (unlikely(size
> SLUB_MAX_SIZE
))
3464 return kmalloc_large_node(size
, gfpflags
, node
);
3466 s
= get_slab(size
, gfpflags
);
3468 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3471 ret
= slab_alloc(s
, gfpflags
, node
, caller
);
3473 /* Honor the call site pointer we recieved. */
3474 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
3479 #ifdef CONFIG_SLUB_DEBUG
3480 static int count_inuse(struct page
*page
)
3485 static int count_total(struct page
*page
)
3487 return page
->objects
;
3490 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3494 void *addr
= page_address(page
);
3496 if (!check_slab(s
, page
) ||
3497 !on_freelist(s
, page
, NULL
))
3500 /* Now we know that a valid freelist exists */
3501 bitmap_zero(map
, page
->objects
);
3503 for_each_free_object(p
, s
, page
->freelist
) {
3504 set_bit(slab_index(p
, s
, addr
), map
);
3505 if (!check_object(s
, page
, p
, 0))
3509 for_each_object(p
, s
, addr
, page
->objects
)
3510 if (!test_bit(slab_index(p
, s
, addr
), map
))
3511 if (!check_object(s
, page
, p
, 1))
3516 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3519 if (slab_trylock(page
)) {
3520 validate_slab(s
, page
, map
);
3523 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3526 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
3527 if (!PageSlubDebug(page
))
3528 printk(KERN_ERR
"SLUB %s: SlubDebug not set "
3529 "on slab 0x%p\n", s
->name
, page
);
3531 if (PageSlubDebug(page
))
3532 printk(KERN_ERR
"SLUB %s: SlubDebug set on "
3533 "slab 0x%p\n", s
->name
, page
);
3537 static int validate_slab_node(struct kmem_cache
*s
,
3538 struct kmem_cache_node
*n
, unsigned long *map
)
3540 unsigned long count
= 0;
3542 unsigned long flags
;
3544 spin_lock_irqsave(&n
->list_lock
, flags
);
3546 list_for_each_entry(page
, &n
->partial
, lru
) {
3547 validate_slab_slab(s
, page
, map
);
3550 if (count
!= n
->nr_partial
)
3551 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3552 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3554 if (!(s
->flags
& SLAB_STORE_USER
))
3557 list_for_each_entry(page
, &n
->full
, lru
) {
3558 validate_slab_slab(s
, page
, map
);
3561 if (count
!= atomic_long_read(&n
->nr_slabs
))
3562 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3563 "counter=%ld\n", s
->name
, count
,
3564 atomic_long_read(&n
->nr_slabs
));
3567 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3571 static long validate_slab_cache(struct kmem_cache
*s
)
3574 unsigned long count
= 0;
3575 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3576 sizeof(unsigned long), GFP_KERNEL
);
3582 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3583 struct kmem_cache_node
*n
= get_node(s
, node
);
3585 count
+= validate_slab_node(s
, n
, map
);
3591 #ifdef SLUB_RESILIENCY_TEST
3592 static void resiliency_test(void)
3596 printk(KERN_ERR
"SLUB resiliency testing\n");
3597 printk(KERN_ERR
"-----------------------\n");
3598 printk(KERN_ERR
"A. Corruption after allocation\n");
3600 p
= kzalloc(16, GFP_KERNEL
);
3602 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3603 " 0x12->0x%p\n\n", p
+ 16);
3605 validate_slab_cache(kmalloc_caches
+ 4);
3607 /* Hmmm... The next two are dangerous */
3608 p
= kzalloc(32, GFP_KERNEL
);
3609 p
[32 + sizeof(void *)] = 0x34;
3610 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3611 " 0x34 -> -0x%p\n", p
);
3613 "If allocated object is overwritten then not detectable\n\n");
3615 validate_slab_cache(kmalloc_caches
+ 5);
3616 p
= kzalloc(64, GFP_KERNEL
);
3617 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3619 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3622 "If allocated object is overwritten then not detectable\n\n");
3623 validate_slab_cache(kmalloc_caches
+ 6);
3625 printk(KERN_ERR
"\nB. Corruption after free\n");
3626 p
= kzalloc(128, GFP_KERNEL
);
3629 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3630 validate_slab_cache(kmalloc_caches
+ 7);
3632 p
= kzalloc(256, GFP_KERNEL
);
3635 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3637 validate_slab_cache(kmalloc_caches
+ 8);
3639 p
= kzalloc(512, GFP_KERNEL
);
3642 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3643 validate_slab_cache(kmalloc_caches
+ 9);
3646 static void resiliency_test(void) {};
3650 * Generate lists of code addresses where slabcache objects are allocated
3655 unsigned long count
;
3662 DECLARE_BITMAP(cpus
, NR_CPUS
);
3668 unsigned long count
;
3669 struct location
*loc
;
3672 static void free_loc_track(struct loc_track
*t
)
3675 free_pages((unsigned long)t
->loc
,
3676 get_order(sizeof(struct location
) * t
->max
));
3679 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3684 order
= get_order(sizeof(struct location
) * max
);
3686 l
= (void *)__get_free_pages(flags
, order
);
3691 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3699 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3700 const struct track
*track
)
3702 long start
, end
, pos
;
3704 unsigned long caddr
;
3705 unsigned long age
= jiffies
- track
->when
;
3711 pos
= start
+ (end
- start
+ 1) / 2;
3714 * There is nothing at "end". If we end up there
3715 * we need to add something to before end.
3720 caddr
= t
->loc
[pos
].addr
;
3721 if (track
->addr
== caddr
) {
3727 if (age
< l
->min_time
)
3729 if (age
> l
->max_time
)
3732 if (track
->pid
< l
->min_pid
)
3733 l
->min_pid
= track
->pid
;
3734 if (track
->pid
> l
->max_pid
)
3735 l
->max_pid
= track
->pid
;
3737 cpumask_set_cpu(track
->cpu
,
3738 to_cpumask(l
->cpus
));
3740 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3744 if (track
->addr
< caddr
)
3751 * Not found. Insert new tracking element.
3753 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3759 (t
->count
- pos
) * sizeof(struct location
));
3762 l
->addr
= track
->addr
;
3766 l
->min_pid
= track
->pid
;
3767 l
->max_pid
= track
->pid
;
3768 cpumask_clear(to_cpumask(l
->cpus
));
3769 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
3770 nodes_clear(l
->nodes
);
3771 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3775 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3776 struct page
*page
, enum track_item alloc
)
3778 void *addr
= page_address(page
);
3779 DECLARE_BITMAP(map
, page
->objects
);
3782 bitmap_zero(map
, page
->objects
);
3783 for_each_free_object(p
, s
, page
->freelist
)
3784 set_bit(slab_index(p
, s
, addr
), map
);
3786 for_each_object(p
, s
, addr
, page
->objects
)
3787 if (!test_bit(slab_index(p
, s
, addr
), map
))
3788 add_location(t
, s
, get_track(s
, p
, alloc
));
3791 static int list_locations(struct kmem_cache
*s
, char *buf
,
3792 enum track_item alloc
)
3796 struct loc_track t
= { 0, 0, NULL
};
3799 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3801 return sprintf(buf
, "Out of memory\n");
3803 /* Push back cpu slabs */
3806 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3807 struct kmem_cache_node
*n
= get_node(s
, node
);
3808 unsigned long flags
;
3811 if (!atomic_long_read(&n
->nr_slabs
))
3814 spin_lock_irqsave(&n
->list_lock
, flags
);
3815 list_for_each_entry(page
, &n
->partial
, lru
)
3816 process_slab(&t
, s
, page
, alloc
);
3817 list_for_each_entry(page
, &n
->full
, lru
)
3818 process_slab(&t
, s
, page
, alloc
);
3819 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3822 for (i
= 0; i
< t
.count
; i
++) {
3823 struct location
*l
= &t
.loc
[i
];
3825 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
3827 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
3830 len
+= sprint_symbol(buf
+ len
, (unsigned long)l
->addr
);
3832 len
+= sprintf(buf
+ len
, "<not-available>");
3834 if (l
->sum_time
!= l
->min_time
) {
3835 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
3837 (long)div_u64(l
->sum_time
, l
->count
),
3840 len
+= sprintf(buf
+ len
, " age=%ld",
3843 if (l
->min_pid
!= l
->max_pid
)
3844 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
3845 l
->min_pid
, l
->max_pid
);
3847 len
+= sprintf(buf
+ len
, " pid=%ld",
3850 if (num_online_cpus() > 1 &&
3851 !cpumask_empty(to_cpumask(l
->cpus
)) &&
3852 len
< PAGE_SIZE
- 60) {
3853 len
+= sprintf(buf
+ len
, " cpus=");
3854 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3855 to_cpumask(l
->cpus
));
3858 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
3859 len
< PAGE_SIZE
- 60) {
3860 len
+= sprintf(buf
+ len
, " nodes=");
3861 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3865 len
+= sprintf(buf
+ len
, "\n");
3870 len
+= sprintf(buf
, "No data\n");
3874 enum slab_stat_type
{
3875 SL_ALL
, /* All slabs */
3876 SL_PARTIAL
, /* Only partially allocated slabs */
3877 SL_CPU
, /* Only slabs used for cpu caches */
3878 SL_OBJECTS
, /* Determine allocated objects not slabs */
3879 SL_TOTAL
/* Determine object capacity not slabs */
3882 #define SO_ALL (1 << SL_ALL)
3883 #define SO_PARTIAL (1 << SL_PARTIAL)
3884 #define SO_CPU (1 << SL_CPU)
3885 #define SO_OBJECTS (1 << SL_OBJECTS)
3886 #define SO_TOTAL (1 << SL_TOTAL)
3888 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
3889 char *buf
, unsigned long flags
)
3891 unsigned long total
= 0;
3894 unsigned long *nodes
;
3895 unsigned long *per_cpu
;
3897 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3900 per_cpu
= nodes
+ nr_node_ids
;
3902 if (flags
& SO_CPU
) {
3905 for_each_possible_cpu(cpu
) {
3906 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3908 if (!c
|| c
->node
< 0)
3912 if (flags
& SO_TOTAL
)
3913 x
= c
->page
->objects
;
3914 else if (flags
& SO_OBJECTS
)
3920 nodes
[c
->node
] += x
;
3926 if (flags
& SO_ALL
) {
3927 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3928 struct kmem_cache_node
*n
= get_node(s
, node
);
3930 if (flags
& SO_TOTAL
)
3931 x
= atomic_long_read(&n
->total_objects
);
3932 else if (flags
& SO_OBJECTS
)
3933 x
= atomic_long_read(&n
->total_objects
) -
3934 count_partial(n
, count_free
);
3937 x
= atomic_long_read(&n
->nr_slabs
);
3942 } else if (flags
& SO_PARTIAL
) {
3943 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3944 struct kmem_cache_node
*n
= get_node(s
, node
);
3946 if (flags
& SO_TOTAL
)
3947 x
= count_partial(n
, count_total
);
3948 else if (flags
& SO_OBJECTS
)
3949 x
= count_partial(n
, count_inuse
);
3956 x
= sprintf(buf
, "%lu", total
);
3958 for_each_node_state(node
, N_NORMAL_MEMORY
)
3960 x
+= sprintf(buf
+ x
, " N%d=%lu",
3964 return x
+ sprintf(buf
+ x
, "\n");
3967 static int any_slab_objects(struct kmem_cache
*s
)
3971 for_each_online_node(node
) {
3972 struct kmem_cache_node
*n
= get_node(s
, node
);
3977 if (atomic_long_read(&n
->total_objects
))
3983 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3984 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3986 struct slab_attribute
{
3987 struct attribute attr
;
3988 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
3989 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
3992 #define SLAB_ATTR_RO(_name) \
3993 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3995 #define SLAB_ATTR(_name) \
3996 static struct slab_attribute _name##_attr = \
3997 __ATTR(_name, 0644, _name##_show, _name##_store)
3999 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4001 return sprintf(buf
, "%d\n", s
->size
);
4003 SLAB_ATTR_RO(slab_size
);
4005 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4007 return sprintf(buf
, "%d\n", s
->align
);
4009 SLAB_ATTR_RO(align
);
4011 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4013 return sprintf(buf
, "%d\n", s
->objsize
);
4015 SLAB_ATTR_RO(object_size
);
4017 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4019 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4021 SLAB_ATTR_RO(objs_per_slab
);
4023 static ssize_t
order_store(struct kmem_cache
*s
,
4024 const char *buf
, size_t length
)
4026 unsigned long order
;
4029 err
= strict_strtoul(buf
, 10, &order
);
4033 if (order
> slub_max_order
|| order
< slub_min_order
)
4036 calculate_sizes(s
, order
);
4040 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4042 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4046 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4048 return sprintf(buf
, "%lu\n", s
->min_partial
);
4051 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4057 err
= strict_strtoul(buf
, 10, &min
);
4061 set_min_partial(s
, min
);
4064 SLAB_ATTR(min_partial
);
4066 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4069 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
4071 return n
+ sprintf(buf
+ n
, "\n");
4077 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4079 return sprintf(buf
, "%d\n", s
->refcount
- 1);
4081 SLAB_ATTR_RO(aliases
);
4083 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
4085 return show_slab_objects(s
, buf
, SO_ALL
);
4087 SLAB_ATTR_RO(slabs
);
4089 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4091 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4093 SLAB_ATTR_RO(partial
);
4095 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4097 return show_slab_objects(s
, buf
, SO_CPU
);
4099 SLAB_ATTR_RO(cpu_slabs
);
4101 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4103 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4105 SLAB_ATTR_RO(objects
);
4107 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4109 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4111 SLAB_ATTR_RO(objects_partial
);
4113 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
4115 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
4117 SLAB_ATTR_RO(total_objects
);
4119 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
4121 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
4124 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
4125 const char *buf
, size_t length
)
4127 s
->flags
&= ~SLAB_DEBUG_FREE
;
4129 s
->flags
|= SLAB_DEBUG_FREE
;
4132 SLAB_ATTR(sanity_checks
);
4134 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
4136 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
4139 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4142 s
->flags
&= ~SLAB_TRACE
;
4144 s
->flags
|= SLAB_TRACE
;
4149 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4151 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4154 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4155 const char *buf
, size_t length
)
4157 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4159 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4162 SLAB_ATTR(reclaim_account
);
4164 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4166 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4168 SLAB_ATTR_RO(hwcache_align
);
4170 #ifdef CONFIG_ZONE_DMA
4171 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4173 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4175 SLAB_ATTR_RO(cache_dma
);
4178 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4180 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4182 SLAB_ATTR_RO(destroy_by_rcu
);
4184 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4186 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4189 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4190 const char *buf
, size_t length
)
4192 if (any_slab_objects(s
))
4195 s
->flags
&= ~SLAB_RED_ZONE
;
4197 s
->flags
|= SLAB_RED_ZONE
;
4198 calculate_sizes(s
, -1);
4201 SLAB_ATTR(red_zone
);
4203 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4205 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4208 static ssize_t
poison_store(struct kmem_cache
*s
,
4209 const char *buf
, size_t length
)
4211 if (any_slab_objects(s
))
4214 s
->flags
&= ~SLAB_POISON
;
4216 s
->flags
|= SLAB_POISON
;
4217 calculate_sizes(s
, -1);
4222 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4224 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4227 static ssize_t
store_user_store(struct kmem_cache
*s
,
4228 const char *buf
, size_t length
)
4230 if (any_slab_objects(s
))
4233 s
->flags
&= ~SLAB_STORE_USER
;
4235 s
->flags
|= SLAB_STORE_USER
;
4236 calculate_sizes(s
, -1);
4239 SLAB_ATTR(store_user
);
4241 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4246 static ssize_t
validate_store(struct kmem_cache
*s
,
4247 const char *buf
, size_t length
)
4251 if (buf
[0] == '1') {
4252 ret
= validate_slab_cache(s
);
4258 SLAB_ATTR(validate
);
4260 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4265 static ssize_t
shrink_store(struct kmem_cache
*s
,
4266 const char *buf
, size_t length
)
4268 if (buf
[0] == '1') {
4269 int rc
= kmem_cache_shrink(s
);
4279 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4281 if (!(s
->flags
& SLAB_STORE_USER
))
4283 return list_locations(s
, buf
, TRACK_ALLOC
);
4285 SLAB_ATTR_RO(alloc_calls
);
4287 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4289 if (!(s
->flags
& SLAB_STORE_USER
))
4291 return list_locations(s
, buf
, TRACK_FREE
);
4293 SLAB_ATTR_RO(free_calls
);
4296 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4298 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4301 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4302 const char *buf
, size_t length
)
4304 unsigned long ratio
;
4307 err
= strict_strtoul(buf
, 10, &ratio
);
4312 s
->remote_node_defrag_ratio
= ratio
* 10;
4316 SLAB_ATTR(remote_node_defrag_ratio
);
4319 #ifdef CONFIG_SLUB_STATS
4320 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4322 unsigned long sum
= 0;
4325 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4330 for_each_online_cpu(cpu
) {
4331 unsigned x
= get_cpu_slab(s
, cpu
)->stat
[si
];
4337 len
= sprintf(buf
, "%lu", sum
);
4340 for_each_online_cpu(cpu
) {
4341 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4342 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4346 return len
+ sprintf(buf
+ len
, "\n");
4349 #define STAT_ATTR(si, text) \
4350 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4352 return show_stat(s, buf, si); \
4354 SLAB_ATTR_RO(text); \
4356 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4357 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4358 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4359 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4360 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4361 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4362 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4363 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4364 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4365 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4366 STAT_ATTR(FREE_SLAB
, free_slab
);
4367 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4368 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4369 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4370 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4371 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4372 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4373 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4376 static struct attribute
*slab_attrs
[] = {
4377 &slab_size_attr
.attr
,
4378 &object_size_attr
.attr
,
4379 &objs_per_slab_attr
.attr
,
4381 &min_partial_attr
.attr
,
4383 &objects_partial_attr
.attr
,
4384 &total_objects_attr
.attr
,
4387 &cpu_slabs_attr
.attr
,
4391 &sanity_checks_attr
.attr
,
4393 &hwcache_align_attr
.attr
,
4394 &reclaim_account_attr
.attr
,
4395 &destroy_by_rcu_attr
.attr
,
4396 &red_zone_attr
.attr
,
4398 &store_user_attr
.attr
,
4399 &validate_attr
.attr
,
4401 &alloc_calls_attr
.attr
,
4402 &free_calls_attr
.attr
,
4403 #ifdef CONFIG_ZONE_DMA
4404 &cache_dma_attr
.attr
,
4407 &remote_node_defrag_ratio_attr
.attr
,
4409 #ifdef CONFIG_SLUB_STATS
4410 &alloc_fastpath_attr
.attr
,
4411 &alloc_slowpath_attr
.attr
,
4412 &free_fastpath_attr
.attr
,
4413 &free_slowpath_attr
.attr
,
4414 &free_frozen_attr
.attr
,
4415 &free_add_partial_attr
.attr
,
4416 &free_remove_partial_attr
.attr
,
4417 &alloc_from_partial_attr
.attr
,
4418 &alloc_slab_attr
.attr
,
4419 &alloc_refill_attr
.attr
,
4420 &free_slab_attr
.attr
,
4421 &cpuslab_flush_attr
.attr
,
4422 &deactivate_full_attr
.attr
,
4423 &deactivate_empty_attr
.attr
,
4424 &deactivate_to_head_attr
.attr
,
4425 &deactivate_to_tail_attr
.attr
,
4426 &deactivate_remote_frees_attr
.attr
,
4427 &order_fallback_attr
.attr
,
4432 static struct attribute_group slab_attr_group
= {
4433 .attrs
= slab_attrs
,
4436 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4437 struct attribute
*attr
,
4440 struct slab_attribute
*attribute
;
4441 struct kmem_cache
*s
;
4444 attribute
= to_slab_attr(attr
);
4447 if (!attribute
->show
)
4450 err
= attribute
->show(s
, buf
);
4455 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4456 struct attribute
*attr
,
4457 const char *buf
, size_t len
)
4459 struct slab_attribute
*attribute
;
4460 struct kmem_cache
*s
;
4463 attribute
= to_slab_attr(attr
);
4466 if (!attribute
->store
)
4469 err
= attribute
->store(s
, buf
, len
);
4474 static void kmem_cache_release(struct kobject
*kobj
)
4476 struct kmem_cache
*s
= to_slab(kobj
);
4481 static struct sysfs_ops slab_sysfs_ops
= {
4482 .show
= slab_attr_show
,
4483 .store
= slab_attr_store
,
4486 static struct kobj_type slab_ktype
= {
4487 .sysfs_ops
= &slab_sysfs_ops
,
4488 .release
= kmem_cache_release
4491 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4493 struct kobj_type
*ktype
= get_ktype(kobj
);
4495 if (ktype
== &slab_ktype
)
4500 static struct kset_uevent_ops slab_uevent_ops
= {
4501 .filter
= uevent_filter
,
4504 static struct kset
*slab_kset
;
4506 #define ID_STR_LENGTH 64
4508 /* Create a unique string id for a slab cache:
4510 * Format :[flags-]size
4512 static char *create_unique_id(struct kmem_cache
*s
)
4514 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
4521 * First flags affecting slabcache operations. We will only
4522 * get here for aliasable slabs so we do not need to support
4523 * too many flags. The flags here must cover all flags that
4524 * are matched during merging to guarantee that the id is
4527 if (s
->flags
& SLAB_CACHE_DMA
)
4529 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4531 if (s
->flags
& SLAB_DEBUG_FREE
)
4533 if (!(s
->flags
& SLAB_NOTRACK
))
4537 p
+= sprintf(p
, "%07d", s
->size
);
4538 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4542 static int sysfs_slab_add(struct kmem_cache
*s
)
4548 if (slab_state
< SYSFS
)
4549 /* Defer until later */
4552 unmergeable
= slab_unmergeable(s
);
4555 * Slabcache can never be merged so we can use the name proper.
4556 * This is typically the case for debug situations. In that
4557 * case we can catch duplicate names easily.
4559 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
4563 * Create a unique name for the slab as a target
4566 name
= create_unique_id(s
);
4569 s
->kobj
.kset
= slab_kset
;
4570 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
4572 kobject_put(&s
->kobj
);
4576 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4579 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4581 /* Setup first alias */
4582 sysfs_slab_alias(s
, s
->name
);
4588 static void sysfs_slab_remove(struct kmem_cache
*s
)
4590 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4591 kobject_del(&s
->kobj
);
4592 kobject_put(&s
->kobj
);
4596 * Need to buffer aliases during bootup until sysfs becomes
4597 * available lest we lose that information.
4599 struct saved_alias
{
4600 struct kmem_cache
*s
;
4602 struct saved_alias
*next
;
4605 static struct saved_alias
*alias_list
;
4607 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4609 struct saved_alias
*al
;
4611 if (slab_state
== SYSFS
) {
4613 * If we have a leftover link then remove it.
4615 sysfs_remove_link(&slab_kset
->kobj
, name
);
4616 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
4619 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4625 al
->next
= alias_list
;
4630 static int __init
slab_sysfs_init(void)
4632 struct kmem_cache
*s
;
4635 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
4637 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4643 list_for_each_entry(s
, &slab_caches
, list
) {
4644 err
= sysfs_slab_add(s
);
4646 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4647 " to sysfs\n", s
->name
);
4650 while (alias_list
) {
4651 struct saved_alias
*al
= alias_list
;
4653 alias_list
= alias_list
->next
;
4654 err
= sysfs_slab_alias(al
->s
, al
->name
);
4656 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4657 " %s to sysfs\n", s
->name
);
4665 __initcall(slab_sysfs_init
);
4669 * The /proc/slabinfo ABI
4671 #ifdef CONFIG_SLABINFO
4672 static void print_slabinfo_header(struct seq_file
*m
)
4674 seq_puts(m
, "slabinfo - version: 2.1\n");
4675 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4676 "<objperslab> <pagesperslab>");
4677 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4678 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4682 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4686 down_read(&slub_lock
);
4688 print_slabinfo_header(m
);
4690 return seq_list_start(&slab_caches
, *pos
);
4693 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4695 return seq_list_next(p
, &slab_caches
, pos
);
4698 static void s_stop(struct seq_file
*m
, void *p
)
4700 up_read(&slub_lock
);
4703 static int s_show(struct seq_file
*m
, void *p
)
4705 unsigned long nr_partials
= 0;
4706 unsigned long nr_slabs
= 0;
4707 unsigned long nr_inuse
= 0;
4708 unsigned long nr_objs
= 0;
4709 unsigned long nr_free
= 0;
4710 struct kmem_cache
*s
;
4713 s
= list_entry(p
, struct kmem_cache
, list
);
4715 for_each_online_node(node
) {
4716 struct kmem_cache_node
*n
= get_node(s
, node
);
4721 nr_partials
+= n
->nr_partial
;
4722 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
4723 nr_objs
+= atomic_long_read(&n
->total_objects
);
4724 nr_free
+= count_partial(n
, count_free
);
4727 nr_inuse
= nr_objs
- nr_free
;
4729 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
4730 nr_objs
, s
->size
, oo_objects(s
->oo
),
4731 (1 << oo_order(s
->oo
)));
4732 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
4733 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
4739 static const struct seq_operations slabinfo_op
= {
4746 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4748 return seq_open(file
, &slabinfo_op
);
4751 static const struct file_operations proc_slabinfo_operations
= {
4752 .open
= slabinfo_open
,
4754 .llseek
= seq_lseek
,
4755 .release
= seq_release
,
4758 static int __init
slab_proc_init(void)
4760 proc_create("slabinfo",S_IWUSR
|S_IRUGO
,NULL
,&proc_slabinfo_operations
);
4763 module_init(slab_proc_init
);
4764 #endif /* CONFIG_SLABINFO */