slub: use size and objsize orders to disable debug flags
[linux-2.6/mini2440.git] / mm / slub.c
bloba465c0a09fb5e54ba55a3afaa15382130c5a7947
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 */
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/kmemleak.h>
25 #include <linux/mempolicy.h>
26 #include <linux/ctype.h>
27 #include <linux/debugobjects.h>
28 #include <linux/kallsyms.h>
29 #include <linux/memory.h>
30 #include <linux/math64.h>
31 #include <linux/fault-inject.h>
34 * Lock order:
35 * 1. slab_lock(page)
36 * 2. slab->list_lock
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
55 * the list lock.
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
67 * a partial slab. A new slab has noone operating on it and thus there is
68 * no danger of cacheline contention.
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
88 * Overloading of page flags that are otherwise used for LRU management.
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
102 * freelist that allows lockless access to
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
108 * the fast path and disables lockless freelists.
111 #ifdef CONFIG_SLUB_DEBUG
112 #define SLABDEBUG 1
113 #else
114 #define SLABDEBUG 0
115 #endif
118 * Issues still to be resolved:
120 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
122 * - Variable sizing of the per node arrays
125 /* Enable to test recovery from slab corruption on boot */
126 #undef SLUB_RESILIENCY_TEST
129 * Mininum number of partial slabs. These will be left on the partial
130 * lists even if they are empty. kmem_cache_shrink may reclaim them.
132 #define MIN_PARTIAL 5
135 * Maximum number of desirable partial slabs.
136 * The existence of more partial slabs makes kmem_cache_shrink
137 * sort the partial list by the number of objects in the.
139 #define MAX_PARTIAL 10
141 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
142 SLAB_POISON | SLAB_STORE_USER)
145 * Debugging flags that require metadata to be stored in the slab. These get
146 * disabled when slub_debug=O is used and a cache's min order increases with
147 * metadata.
149 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
152 * Set of flags that will prevent slab merging
154 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
155 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
157 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
158 SLAB_CACHE_DMA | SLAB_NOTRACK)
160 #ifndef ARCH_KMALLOC_MINALIGN
161 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
162 #endif
164 #ifndef ARCH_SLAB_MINALIGN
165 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
166 #endif
168 #define OO_SHIFT 16
169 #define OO_MASK ((1 << OO_SHIFT) - 1)
170 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
172 /* Internal SLUB flags */
173 #define __OBJECT_POISON 0x80000000 /* Poison object */
174 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
176 static int kmem_size = sizeof(struct kmem_cache);
178 #ifdef CONFIG_SMP
179 static struct notifier_block slab_notifier;
180 #endif
182 static enum {
183 DOWN, /* No slab functionality available */
184 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
185 UP, /* Everything works but does not show up in sysfs */
186 SYSFS /* Sysfs up */
187 } slab_state = DOWN;
189 /* A list of all slab caches on the system */
190 static DECLARE_RWSEM(slub_lock);
191 static LIST_HEAD(slab_caches);
194 * Tracking user of a slab.
196 struct track {
197 unsigned long addr; /* Called from address */
198 int cpu; /* Was running on cpu */
199 int pid; /* Pid context */
200 unsigned long when; /* When did the operation occur */
203 enum track_item { TRACK_ALLOC, TRACK_FREE };
205 #ifdef CONFIG_SLUB_DEBUG
206 static int sysfs_slab_add(struct kmem_cache *);
207 static int sysfs_slab_alias(struct kmem_cache *, const char *);
208 static void sysfs_slab_remove(struct kmem_cache *);
210 #else
211 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
212 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
213 { return 0; }
214 static inline void sysfs_slab_remove(struct kmem_cache *s)
216 kfree(s);
219 #endif
221 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
223 #ifdef CONFIG_SLUB_STATS
224 c->stat[si]++;
225 #endif
228 /********************************************************************
229 * Core slab cache functions
230 *******************************************************************/
232 int slab_is_available(void)
234 return slab_state >= UP;
237 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
239 #ifdef CONFIG_NUMA
240 return s->node[node];
241 #else
242 return &s->local_node;
243 #endif
246 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
248 #ifdef CONFIG_SMP
249 return s->cpu_slab[cpu];
250 #else
251 return &s->cpu_slab;
252 #endif
255 /* Verify that a pointer has an address that is valid within a slab page */
256 static inline int check_valid_pointer(struct kmem_cache *s,
257 struct page *page, const void *object)
259 void *base;
261 if (!object)
262 return 1;
264 base = page_address(page);
265 if (object < base || object >= base + page->objects * s->size ||
266 (object - base) % s->size) {
267 return 0;
270 return 1;
274 * Slow version of get and set free pointer.
276 * This version requires touching the cache lines of kmem_cache which
277 * we avoid to do in the fast alloc free paths. There we obtain the offset
278 * from the page struct.
280 static inline void *get_freepointer(struct kmem_cache *s, void *object)
282 return *(void **)(object + s->offset);
285 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
287 *(void **)(object + s->offset) = fp;
290 /* Loop over all objects in a slab */
291 #define for_each_object(__p, __s, __addr, __objects) \
292 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
293 __p += (__s)->size)
295 /* Scan freelist */
296 #define for_each_free_object(__p, __s, __free) \
297 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
299 /* Determine object index from a given position */
300 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
302 return (p - addr) / s->size;
305 static inline struct kmem_cache_order_objects oo_make(int order,
306 unsigned long size)
308 struct kmem_cache_order_objects x = {
309 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
312 return x;
315 static inline int oo_order(struct kmem_cache_order_objects x)
317 return x.x >> OO_SHIFT;
320 static inline int oo_objects(struct kmem_cache_order_objects x)
322 return x.x & OO_MASK;
325 #ifdef CONFIG_SLUB_DEBUG
327 * Debug settings:
329 #ifdef CONFIG_SLUB_DEBUG_ON
330 static int slub_debug = DEBUG_DEFAULT_FLAGS;
331 #else
332 static int slub_debug;
333 #endif
335 static char *slub_debug_slabs;
336 static int disable_higher_order_debug;
339 * Object debugging
341 static void print_section(char *text, u8 *addr, unsigned int length)
343 int i, offset;
344 int newline = 1;
345 char ascii[17];
347 ascii[16] = 0;
349 for (i = 0; i < length; i++) {
350 if (newline) {
351 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
352 newline = 0;
354 printk(KERN_CONT " %02x", addr[i]);
355 offset = i % 16;
356 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
357 if (offset == 15) {
358 printk(KERN_CONT " %s\n", ascii);
359 newline = 1;
362 if (!newline) {
363 i %= 16;
364 while (i < 16) {
365 printk(KERN_CONT " ");
366 ascii[i] = ' ';
367 i++;
369 printk(KERN_CONT " %s\n", ascii);
373 static struct track *get_track(struct kmem_cache *s, void *object,
374 enum track_item alloc)
376 struct track *p;
378 if (s->offset)
379 p = object + s->offset + sizeof(void *);
380 else
381 p = object + s->inuse;
383 return p + alloc;
386 static void set_track(struct kmem_cache *s, void *object,
387 enum track_item alloc, unsigned long addr)
389 struct track *p = get_track(s, object, alloc);
391 if (addr) {
392 p->addr = addr;
393 p->cpu = smp_processor_id();
394 p->pid = current->pid;
395 p->when = jiffies;
396 } else
397 memset(p, 0, sizeof(struct track));
400 static void init_tracking(struct kmem_cache *s, void *object)
402 if (!(s->flags & SLAB_STORE_USER))
403 return;
405 set_track(s, object, TRACK_FREE, 0UL);
406 set_track(s, object, TRACK_ALLOC, 0UL);
409 static void print_track(const char *s, struct track *t)
411 if (!t->addr)
412 return;
414 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
415 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
418 static void print_tracking(struct kmem_cache *s, void *object)
420 if (!(s->flags & SLAB_STORE_USER))
421 return;
423 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
424 print_track("Freed", get_track(s, object, TRACK_FREE));
427 static void print_page_info(struct page *page)
429 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
430 page, page->objects, page->inuse, page->freelist, page->flags);
434 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
436 va_list args;
437 char buf[100];
439 va_start(args, fmt);
440 vsnprintf(buf, sizeof(buf), fmt, args);
441 va_end(args);
442 printk(KERN_ERR "========================================"
443 "=====================================\n");
444 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
445 printk(KERN_ERR "----------------------------------------"
446 "-------------------------------------\n\n");
449 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
451 va_list args;
452 char buf[100];
454 va_start(args, fmt);
455 vsnprintf(buf, sizeof(buf), fmt, args);
456 va_end(args);
457 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
460 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
462 unsigned int off; /* Offset of last byte */
463 u8 *addr = page_address(page);
465 print_tracking(s, p);
467 print_page_info(page);
469 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
470 p, p - addr, get_freepointer(s, p));
472 if (p > addr + 16)
473 print_section("Bytes b4", p - 16, 16);
475 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
477 if (s->flags & SLAB_RED_ZONE)
478 print_section("Redzone", p + s->objsize,
479 s->inuse - s->objsize);
481 if (s->offset)
482 off = s->offset + sizeof(void *);
483 else
484 off = s->inuse;
486 if (s->flags & SLAB_STORE_USER)
487 off += 2 * sizeof(struct track);
489 if (off != s->size)
490 /* Beginning of the filler is the free pointer */
491 print_section("Padding", p + off, s->size - off);
493 dump_stack();
496 static void object_err(struct kmem_cache *s, struct page *page,
497 u8 *object, char *reason)
499 slab_bug(s, "%s", reason);
500 print_trailer(s, page, object);
503 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
505 va_list args;
506 char buf[100];
508 va_start(args, fmt);
509 vsnprintf(buf, sizeof(buf), fmt, args);
510 va_end(args);
511 slab_bug(s, "%s", buf);
512 print_page_info(page);
513 dump_stack();
516 static void init_object(struct kmem_cache *s, void *object, int active)
518 u8 *p = object;
520 if (s->flags & __OBJECT_POISON) {
521 memset(p, POISON_FREE, s->objsize - 1);
522 p[s->objsize - 1] = POISON_END;
525 if (s->flags & SLAB_RED_ZONE)
526 memset(p + s->objsize,
527 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
528 s->inuse - s->objsize);
531 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
533 while (bytes) {
534 if (*start != (u8)value)
535 return start;
536 start++;
537 bytes--;
539 return NULL;
542 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
543 void *from, void *to)
545 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
546 memset(from, data, to - from);
549 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
550 u8 *object, char *what,
551 u8 *start, unsigned int value, unsigned int bytes)
553 u8 *fault;
554 u8 *end;
556 fault = check_bytes(start, value, bytes);
557 if (!fault)
558 return 1;
560 end = start + bytes;
561 while (end > fault && end[-1] == value)
562 end--;
564 slab_bug(s, "%s overwritten", what);
565 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
566 fault, end - 1, fault[0], value);
567 print_trailer(s, page, object);
569 restore_bytes(s, what, value, fault, end);
570 return 0;
574 * Object layout:
576 * object address
577 * Bytes of the object to be managed.
578 * If the freepointer may overlay the object then the free
579 * pointer is the first word of the object.
581 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
582 * 0xa5 (POISON_END)
584 * object + s->objsize
585 * Padding to reach word boundary. This is also used for Redzoning.
586 * Padding is extended by another word if Redzoning is enabled and
587 * objsize == inuse.
589 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
590 * 0xcc (RED_ACTIVE) for objects in use.
592 * object + s->inuse
593 * Meta data starts here.
595 * A. Free pointer (if we cannot overwrite object on free)
596 * B. Tracking data for SLAB_STORE_USER
597 * C. Padding to reach required alignment boundary or at mininum
598 * one word if debugging is on to be able to detect writes
599 * before the word boundary.
601 * Padding is done using 0x5a (POISON_INUSE)
603 * object + s->size
604 * Nothing is used beyond s->size.
606 * If slabcaches are merged then the objsize and inuse boundaries are mostly
607 * ignored. And therefore no slab options that rely on these boundaries
608 * may be used with merged slabcaches.
611 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
613 unsigned long off = s->inuse; /* The end of info */
615 if (s->offset)
616 /* Freepointer is placed after the object. */
617 off += sizeof(void *);
619 if (s->flags & SLAB_STORE_USER)
620 /* We also have user information there */
621 off += 2 * sizeof(struct track);
623 if (s->size == off)
624 return 1;
626 return check_bytes_and_report(s, page, p, "Object padding",
627 p + off, POISON_INUSE, s->size - off);
630 /* Check the pad bytes at the end of a slab page */
631 static int slab_pad_check(struct kmem_cache *s, struct page *page)
633 u8 *start;
634 u8 *fault;
635 u8 *end;
636 int length;
637 int remainder;
639 if (!(s->flags & SLAB_POISON))
640 return 1;
642 start = page_address(page);
643 length = (PAGE_SIZE << compound_order(page));
644 end = start + length;
645 remainder = length % s->size;
646 if (!remainder)
647 return 1;
649 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
650 if (!fault)
651 return 1;
652 while (end > fault && end[-1] == POISON_INUSE)
653 end--;
655 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
656 print_section("Padding", end - remainder, remainder);
658 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
659 return 0;
662 static int check_object(struct kmem_cache *s, struct page *page,
663 void *object, int active)
665 u8 *p = object;
666 u8 *endobject = object + s->objsize;
668 if (s->flags & SLAB_RED_ZONE) {
669 unsigned int red =
670 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
672 if (!check_bytes_and_report(s, page, object, "Redzone",
673 endobject, red, s->inuse - s->objsize))
674 return 0;
675 } else {
676 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
677 check_bytes_and_report(s, page, p, "Alignment padding",
678 endobject, POISON_INUSE, s->inuse - s->objsize);
682 if (s->flags & SLAB_POISON) {
683 if (!active && (s->flags & __OBJECT_POISON) &&
684 (!check_bytes_and_report(s, page, p, "Poison", p,
685 POISON_FREE, s->objsize - 1) ||
686 !check_bytes_and_report(s, page, p, "Poison",
687 p + s->objsize - 1, POISON_END, 1)))
688 return 0;
690 * check_pad_bytes cleans up on its own.
692 check_pad_bytes(s, page, p);
695 if (!s->offset && active)
697 * Object and freepointer overlap. Cannot check
698 * freepointer while object is allocated.
700 return 1;
702 /* Check free pointer validity */
703 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
704 object_err(s, page, p, "Freepointer corrupt");
706 * No choice but to zap it and thus lose the remainder
707 * of the free objects in this slab. May cause
708 * another error because the object count is now wrong.
710 set_freepointer(s, p, NULL);
711 return 0;
713 return 1;
716 static int check_slab(struct kmem_cache *s, struct page *page)
718 int maxobj;
720 VM_BUG_ON(!irqs_disabled());
722 if (!PageSlab(page)) {
723 slab_err(s, page, "Not a valid slab page");
724 return 0;
727 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
728 if (page->objects > maxobj) {
729 slab_err(s, page, "objects %u > max %u",
730 s->name, page->objects, maxobj);
731 return 0;
733 if (page->inuse > page->objects) {
734 slab_err(s, page, "inuse %u > max %u",
735 s->name, page->inuse, page->objects);
736 return 0;
738 /* Slab_pad_check fixes things up after itself */
739 slab_pad_check(s, page);
740 return 1;
744 * Determine if a certain object on a page is on the freelist. Must hold the
745 * slab lock to guarantee that the chains are in a consistent state.
747 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
749 int nr = 0;
750 void *fp = page->freelist;
751 void *object = NULL;
752 unsigned long max_objects;
754 while (fp && nr <= page->objects) {
755 if (fp == search)
756 return 1;
757 if (!check_valid_pointer(s, page, fp)) {
758 if (object) {
759 object_err(s, page, object,
760 "Freechain corrupt");
761 set_freepointer(s, object, NULL);
762 break;
763 } else {
764 slab_err(s, page, "Freepointer corrupt");
765 page->freelist = NULL;
766 page->inuse = page->objects;
767 slab_fix(s, "Freelist cleared");
768 return 0;
770 break;
772 object = fp;
773 fp = get_freepointer(s, object);
774 nr++;
777 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
778 if (max_objects > MAX_OBJS_PER_PAGE)
779 max_objects = MAX_OBJS_PER_PAGE;
781 if (page->objects != max_objects) {
782 slab_err(s, page, "Wrong number of objects. Found %d but "
783 "should be %d", page->objects, max_objects);
784 page->objects = max_objects;
785 slab_fix(s, "Number of objects adjusted.");
787 if (page->inuse != page->objects - nr) {
788 slab_err(s, page, "Wrong object count. Counter is %d but "
789 "counted were %d", page->inuse, page->objects - nr);
790 page->inuse = page->objects - nr;
791 slab_fix(s, "Object count adjusted.");
793 return search == NULL;
796 static void trace(struct kmem_cache *s, struct page *page, void *object,
797 int alloc)
799 if (s->flags & SLAB_TRACE) {
800 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
801 s->name,
802 alloc ? "alloc" : "free",
803 object, page->inuse,
804 page->freelist);
806 if (!alloc)
807 print_section("Object", (void *)object, s->objsize);
809 dump_stack();
814 * Tracking of fully allocated slabs for debugging purposes.
816 static void add_full(struct kmem_cache_node *n, struct page *page)
818 spin_lock(&n->list_lock);
819 list_add(&page->lru, &n->full);
820 spin_unlock(&n->list_lock);
823 static void remove_full(struct kmem_cache *s, struct page *page)
825 struct kmem_cache_node *n;
827 if (!(s->flags & SLAB_STORE_USER))
828 return;
830 n = get_node(s, page_to_nid(page));
832 spin_lock(&n->list_lock);
833 list_del(&page->lru);
834 spin_unlock(&n->list_lock);
837 /* Tracking of the number of slabs for debugging purposes */
838 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
840 struct kmem_cache_node *n = get_node(s, node);
842 return atomic_long_read(&n->nr_slabs);
845 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
847 return atomic_long_read(&n->nr_slabs);
850 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
852 struct kmem_cache_node *n = get_node(s, node);
855 * May be called early in order to allocate a slab for the
856 * kmem_cache_node structure. Solve the chicken-egg
857 * dilemma by deferring the increment of the count during
858 * bootstrap (see early_kmem_cache_node_alloc).
860 if (!NUMA_BUILD || n) {
861 atomic_long_inc(&n->nr_slabs);
862 atomic_long_add(objects, &n->total_objects);
865 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
867 struct kmem_cache_node *n = get_node(s, node);
869 atomic_long_dec(&n->nr_slabs);
870 atomic_long_sub(objects, &n->total_objects);
873 /* Object debug checks for alloc/free paths */
874 static void setup_object_debug(struct kmem_cache *s, struct page *page,
875 void *object)
877 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
878 return;
880 init_object(s, object, 0);
881 init_tracking(s, object);
884 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
885 void *object, unsigned long addr)
887 if (!check_slab(s, page))
888 goto bad;
890 if (!on_freelist(s, page, object)) {
891 object_err(s, page, object, "Object already allocated");
892 goto bad;
895 if (!check_valid_pointer(s, page, object)) {
896 object_err(s, page, object, "Freelist Pointer check fails");
897 goto bad;
900 if (!check_object(s, page, object, 0))
901 goto bad;
903 /* Success perform special debug activities for allocs */
904 if (s->flags & SLAB_STORE_USER)
905 set_track(s, object, TRACK_ALLOC, addr);
906 trace(s, page, object, 1);
907 init_object(s, object, 1);
908 return 1;
910 bad:
911 if (PageSlab(page)) {
913 * If this is a slab page then lets do the best we can
914 * to avoid issues in the future. Marking all objects
915 * as used avoids touching the remaining objects.
917 slab_fix(s, "Marking all objects used");
918 page->inuse = page->objects;
919 page->freelist = NULL;
921 return 0;
924 static int free_debug_processing(struct kmem_cache *s, struct page *page,
925 void *object, unsigned long addr)
927 if (!check_slab(s, page))
928 goto fail;
930 if (!check_valid_pointer(s, page, object)) {
931 slab_err(s, page, "Invalid object pointer 0x%p", object);
932 goto fail;
935 if (on_freelist(s, page, object)) {
936 object_err(s, page, object, "Object already free");
937 goto fail;
940 if (!check_object(s, page, object, 1))
941 return 0;
943 if (unlikely(s != page->slab)) {
944 if (!PageSlab(page)) {
945 slab_err(s, page, "Attempt to free object(0x%p) "
946 "outside of slab", object);
947 } else if (!page->slab) {
948 printk(KERN_ERR
949 "SLUB <none>: no slab for object 0x%p.\n",
950 object);
951 dump_stack();
952 } else
953 object_err(s, page, object,
954 "page slab pointer corrupt.");
955 goto fail;
958 /* Special debug activities for freeing objects */
959 if (!PageSlubFrozen(page) && !page->freelist)
960 remove_full(s, page);
961 if (s->flags & SLAB_STORE_USER)
962 set_track(s, object, TRACK_FREE, addr);
963 trace(s, page, object, 0);
964 init_object(s, object, 0);
965 return 1;
967 fail:
968 slab_fix(s, "Object at 0x%p not freed", object);
969 return 0;
972 static int __init setup_slub_debug(char *str)
974 slub_debug = DEBUG_DEFAULT_FLAGS;
975 if (*str++ != '=' || !*str)
977 * No options specified. Switch on full debugging.
979 goto out;
981 if (*str == ',')
983 * No options but restriction on slabs. This means full
984 * debugging for slabs matching a pattern.
986 goto check_slabs;
988 if (tolower(*str) == 'o') {
990 * Avoid enabling debugging on caches if its minimum order
991 * would increase as a result.
993 disable_higher_order_debug = 1;
994 goto out;
997 slub_debug = 0;
998 if (*str == '-')
1000 * Switch off all debugging measures.
1002 goto out;
1005 * Determine which debug features should be switched on
1007 for (; *str && *str != ','; str++) {
1008 switch (tolower(*str)) {
1009 case 'f':
1010 slub_debug |= SLAB_DEBUG_FREE;
1011 break;
1012 case 'z':
1013 slub_debug |= SLAB_RED_ZONE;
1014 break;
1015 case 'p':
1016 slub_debug |= SLAB_POISON;
1017 break;
1018 case 'u':
1019 slub_debug |= SLAB_STORE_USER;
1020 break;
1021 case 't':
1022 slub_debug |= SLAB_TRACE;
1023 break;
1024 default:
1025 printk(KERN_ERR "slub_debug option '%c' "
1026 "unknown. skipped\n", *str);
1030 check_slabs:
1031 if (*str == ',')
1032 slub_debug_slabs = str + 1;
1033 out:
1034 return 1;
1037 __setup("slub_debug", setup_slub_debug);
1039 static unsigned long kmem_cache_flags(unsigned long objsize,
1040 unsigned long flags, const char *name,
1041 void (*ctor)(void *))
1044 * Enable debugging if selected on the kernel commandline.
1046 if (slub_debug && (!slub_debug_slabs ||
1047 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1048 flags |= slub_debug;
1050 return flags;
1052 #else
1053 static inline void setup_object_debug(struct kmem_cache *s,
1054 struct page *page, void *object) {}
1056 static inline int alloc_debug_processing(struct kmem_cache *s,
1057 struct page *page, void *object, unsigned long addr) { return 0; }
1059 static inline int free_debug_processing(struct kmem_cache *s,
1060 struct page *page, void *object, unsigned long addr) { return 0; }
1062 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1063 { return 1; }
1064 static inline int check_object(struct kmem_cache *s, struct page *page,
1065 void *object, int active) { return 1; }
1066 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1067 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1068 unsigned long flags, const char *name,
1069 void (*ctor)(void *))
1071 return flags;
1073 #define slub_debug 0
1075 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1076 { return 0; }
1077 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1078 { return 0; }
1079 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1080 int objects) {}
1081 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1082 int objects) {}
1083 #endif
1086 * Slab allocation and freeing
1088 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1089 struct kmem_cache_order_objects oo)
1091 int order = oo_order(oo);
1093 flags |= __GFP_NOTRACK;
1095 if (node == -1)
1096 return alloc_pages(flags, order);
1097 else
1098 return alloc_pages_node(node, flags, order);
1101 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1103 struct page *page;
1104 struct kmem_cache_order_objects oo = s->oo;
1105 gfp_t alloc_gfp;
1107 flags |= s->allocflags;
1110 * Let the initial higher-order allocation fail under memory pressure
1111 * so we fall-back to the minimum order allocation.
1113 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1115 page = alloc_slab_page(alloc_gfp, node, oo);
1116 if (unlikely(!page)) {
1117 oo = s->min;
1119 * Allocation may have failed due to fragmentation.
1120 * Try a lower order alloc if possible
1122 page = alloc_slab_page(flags, node, oo);
1123 if (!page)
1124 return NULL;
1126 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1129 if (kmemcheck_enabled
1130 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS)))
1132 int pages = 1 << oo_order(oo);
1134 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1137 * Objects from caches that have a constructor don't get
1138 * cleared when they're allocated, so we need to do it here.
1140 if (s->ctor)
1141 kmemcheck_mark_uninitialized_pages(page, pages);
1142 else
1143 kmemcheck_mark_unallocated_pages(page, pages);
1146 page->objects = oo_objects(oo);
1147 mod_zone_page_state(page_zone(page),
1148 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1149 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1150 1 << oo_order(oo));
1152 return page;
1155 static void setup_object(struct kmem_cache *s, struct page *page,
1156 void *object)
1158 setup_object_debug(s, page, object);
1159 if (unlikely(s->ctor))
1160 s->ctor(object);
1163 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1165 struct page *page;
1166 void *start;
1167 void *last;
1168 void *p;
1170 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1172 page = allocate_slab(s,
1173 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1174 if (!page)
1175 goto out;
1177 inc_slabs_node(s, page_to_nid(page), page->objects);
1178 page->slab = s;
1179 page->flags |= 1 << PG_slab;
1180 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1181 SLAB_STORE_USER | SLAB_TRACE))
1182 __SetPageSlubDebug(page);
1184 start = page_address(page);
1186 if (unlikely(s->flags & SLAB_POISON))
1187 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1189 last = start;
1190 for_each_object(p, s, start, page->objects) {
1191 setup_object(s, page, last);
1192 set_freepointer(s, last, p);
1193 last = p;
1195 setup_object(s, page, last);
1196 set_freepointer(s, last, NULL);
1198 page->freelist = start;
1199 page->inuse = 0;
1200 out:
1201 return page;
1204 static void __free_slab(struct kmem_cache *s, struct page *page)
1206 int order = compound_order(page);
1207 int pages = 1 << order;
1209 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1210 void *p;
1212 slab_pad_check(s, page);
1213 for_each_object(p, s, page_address(page),
1214 page->objects)
1215 check_object(s, page, p, 0);
1216 __ClearPageSlubDebug(page);
1219 kmemcheck_free_shadow(page, compound_order(page));
1221 mod_zone_page_state(page_zone(page),
1222 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1223 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1224 -pages);
1226 __ClearPageSlab(page);
1227 reset_page_mapcount(page);
1228 if (current->reclaim_state)
1229 current->reclaim_state->reclaimed_slab += pages;
1230 __free_pages(page, order);
1233 static void rcu_free_slab(struct rcu_head *h)
1235 struct page *page;
1237 page = container_of((struct list_head *)h, struct page, lru);
1238 __free_slab(page->slab, page);
1241 static void free_slab(struct kmem_cache *s, struct page *page)
1243 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1245 * RCU free overloads the RCU head over the LRU
1247 struct rcu_head *head = (void *)&page->lru;
1249 call_rcu(head, rcu_free_slab);
1250 } else
1251 __free_slab(s, page);
1254 static void discard_slab(struct kmem_cache *s, struct page *page)
1256 dec_slabs_node(s, page_to_nid(page), page->objects);
1257 free_slab(s, page);
1261 * Per slab locking using the pagelock
1263 static __always_inline void slab_lock(struct page *page)
1265 bit_spin_lock(PG_locked, &page->flags);
1268 static __always_inline void slab_unlock(struct page *page)
1270 __bit_spin_unlock(PG_locked, &page->flags);
1273 static __always_inline int slab_trylock(struct page *page)
1275 int rc = 1;
1277 rc = bit_spin_trylock(PG_locked, &page->flags);
1278 return rc;
1282 * Management of partially allocated slabs
1284 static void add_partial(struct kmem_cache_node *n,
1285 struct page *page, int tail)
1287 spin_lock(&n->list_lock);
1288 n->nr_partial++;
1289 if (tail)
1290 list_add_tail(&page->lru, &n->partial);
1291 else
1292 list_add(&page->lru, &n->partial);
1293 spin_unlock(&n->list_lock);
1296 static void remove_partial(struct kmem_cache *s, struct page *page)
1298 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1300 spin_lock(&n->list_lock);
1301 list_del(&page->lru);
1302 n->nr_partial--;
1303 spin_unlock(&n->list_lock);
1307 * Lock slab and remove from the partial list.
1309 * Must hold list_lock.
1311 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1312 struct page *page)
1314 if (slab_trylock(page)) {
1315 list_del(&page->lru);
1316 n->nr_partial--;
1317 __SetPageSlubFrozen(page);
1318 return 1;
1320 return 0;
1324 * Try to allocate a partial slab from a specific node.
1326 static struct page *get_partial_node(struct kmem_cache_node *n)
1328 struct page *page;
1331 * Racy check. If we mistakenly see no partial slabs then we
1332 * just allocate an empty slab. If we mistakenly try to get a
1333 * partial slab and there is none available then get_partials()
1334 * will return NULL.
1336 if (!n || !n->nr_partial)
1337 return NULL;
1339 spin_lock(&n->list_lock);
1340 list_for_each_entry(page, &n->partial, lru)
1341 if (lock_and_freeze_slab(n, page))
1342 goto out;
1343 page = NULL;
1344 out:
1345 spin_unlock(&n->list_lock);
1346 return page;
1350 * Get a page from somewhere. Search in increasing NUMA distances.
1352 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1354 #ifdef CONFIG_NUMA
1355 struct zonelist *zonelist;
1356 struct zoneref *z;
1357 struct zone *zone;
1358 enum zone_type high_zoneidx = gfp_zone(flags);
1359 struct page *page;
1362 * The defrag ratio allows a configuration of the tradeoffs between
1363 * inter node defragmentation and node local allocations. A lower
1364 * defrag_ratio increases the tendency to do local allocations
1365 * instead of attempting to obtain partial slabs from other nodes.
1367 * If the defrag_ratio is set to 0 then kmalloc() always
1368 * returns node local objects. If the ratio is higher then kmalloc()
1369 * may return off node objects because partial slabs are obtained
1370 * from other nodes and filled up.
1372 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1373 * defrag_ratio = 1000) then every (well almost) allocation will
1374 * first attempt to defrag slab caches on other nodes. This means
1375 * scanning over all nodes to look for partial slabs which may be
1376 * expensive if we do it every time we are trying to find a slab
1377 * with available objects.
1379 if (!s->remote_node_defrag_ratio ||
1380 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1381 return NULL;
1383 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1384 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1385 struct kmem_cache_node *n;
1387 n = get_node(s, zone_to_nid(zone));
1389 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1390 n->nr_partial > s->min_partial) {
1391 page = get_partial_node(n);
1392 if (page)
1393 return page;
1396 #endif
1397 return NULL;
1401 * Get a partial page, lock it and return it.
1403 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1405 struct page *page;
1406 int searchnode = (node == -1) ? numa_node_id() : node;
1408 page = get_partial_node(get_node(s, searchnode));
1409 if (page || (flags & __GFP_THISNODE))
1410 return page;
1412 return get_any_partial(s, flags);
1416 * Move a page back to the lists.
1418 * Must be called with the slab lock held.
1420 * On exit the slab lock will have been dropped.
1422 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1424 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1425 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1427 __ClearPageSlubFrozen(page);
1428 if (page->inuse) {
1430 if (page->freelist) {
1431 add_partial(n, page, tail);
1432 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1433 } else {
1434 stat(c, DEACTIVATE_FULL);
1435 if (SLABDEBUG && PageSlubDebug(page) &&
1436 (s->flags & SLAB_STORE_USER))
1437 add_full(n, page);
1439 slab_unlock(page);
1440 } else {
1441 stat(c, DEACTIVATE_EMPTY);
1442 if (n->nr_partial < s->min_partial) {
1444 * Adding an empty slab to the partial slabs in order
1445 * to avoid page allocator overhead. This slab needs
1446 * to come after the other slabs with objects in
1447 * so that the others get filled first. That way the
1448 * size of the partial list stays small.
1450 * kmem_cache_shrink can reclaim any empty slabs from
1451 * the partial list.
1453 add_partial(n, page, 1);
1454 slab_unlock(page);
1455 } else {
1456 slab_unlock(page);
1457 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1458 discard_slab(s, page);
1464 * Remove the cpu slab
1466 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1468 struct page *page = c->page;
1469 int tail = 1;
1471 if (page->freelist)
1472 stat(c, DEACTIVATE_REMOTE_FREES);
1474 * Merge cpu freelist into slab freelist. Typically we get here
1475 * because both freelists are empty. So this is unlikely
1476 * to occur.
1478 while (unlikely(c->freelist)) {
1479 void **object;
1481 tail = 0; /* Hot objects. Put the slab first */
1483 /* Retrieve object from cpu_freelist */
1484 object = c->freelist;
1485 c->freelist = c->freelist[c->offset];
1487 /* And put onto the regular freelist */
1488 object[c->offset] = page->freelist;
1489 page->freelist = object;
1490 page->inuse--;
1492 c->page = NULL;
1493 unfreeze_slab(s, page, tail);
1496 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1498 stat(c, CPUSLAB_FLUSH);
1499 slab_lock(c->page);
1500 deactivate_slab(s, c);
1504 * Flush cpu slab.
1506 * Called from IPI handler with interrupts disabled.
1508 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1510 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1512 if (likely(c && c->page))
1513 flush_slab(s, c);
1516 static void flush_cpu_slab(void *d)
1518 struct kmem_cache *s = d;
1520 __flush_cpu_slab(s, smp_processor_id());
1523 static void flush_all(struct kmem_cache *s)
1525 on_each_cpu(flush_cpu_slab, s, 1);
1529 * Check if the objects in a per cpu structure fit numa
1530 * locality expectations.
1532 static inline int node_match(struct kmem_cache_cpu *c, int node)
1534 #ifdef CONFIG_NUMA
1535 if (node != -1 && c->node != node)
1536 return 0;
1537 #endif
1538 return 1;
1541 static int count_free(struct page *page)
1543 return page->objects - page->inuse;
1546 static unsigned long count_partial(struct kmem_cache_node *n,
1547 int (*get_count)(struct page *))
1549 unsigned long flags;
1550 unsigned long x = 0;
1551 struct page *page;
1553 spin_lock_irqsave(&n->list_lock, flags);
1554 list_for_each_entry(page, &n->partial, lru)
1555 x += get_count(page);
1556 spin_unlock_irqrestore(&n->list_lock, flags);
1557 return x;
1560 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1562 #ifdef CONFIG_SLUB_DEBUG
1563 return atomic_long_read(&n->total_objects);
1564 #else
1565 return 0;
1566 #endif
1569 static noinline void
1570 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1572 int node;
1574 printk(KERN_WARNING
1575 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1576 nid, gfpflags);
1577 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1578 "default order: %d, min order: %d\n", s->name, s->objsize,
1579 s->size, oo_order(s->oo), oo_order(s->min));
1581 if (oo_order(s->min) > get_order(s->objsize))
1582 printk(KERN_WARNING " %s debugging increased min order, use "
1583 "slub_debug=O to disable.\n", s->name);
1585 for_each_online_node(node) {
1586 struct kmem_cache_node *n = get_node(s, node);
1587 unsigned long nr_slabs;
1588 unsigned long nr_objs;
1589 unsigned long nr_free;
1591 if (!n)
1592 continue;
1594 nr_free = count_partial(n, count_free);
1595 nr_slabs = node_nr_slabs(n);
1596 nr_objs = node_nr_objs(n);
1598 printk(KERN_WARNING
1599 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1600 node, nr_slabs, nr_objs, nr_free);
1605 * Slow path. The lockless freelist is empty or we need to perform
1606 * debugging duties.
1608 * Interrupts are disabled.
1610 * Processing is still very fast if new objects have been freed to the
1611 * regular freelist. In that case we simply take over the regular freelist
1612 * as the lockless freelist and zap the regular freelist.
1614 * If that is not working then we fall back to the partial lists. We take the
1615 * first element of the freelist as the object to allocate now and move the
1616 * rest of the freelist to the lockless freelist.
1618 * And if we were unable to get a new slab from the partial slab lists then
1619 * we need to allocate a new slab. This is the slowest path since it involves
1620 * a call to the page allocator and the setup of a new slab.
1622 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1623 unsigned long addr, struct kmem_cache_cpu *c)
1625 void **object;
1626 struct page *new;
1628 /* We handle __GFP_ZERO in the caller */
1629 gfpflags &= ~__GFP_ZERO;
1631 if (!c->page)
1632 goto new_slab;
1634 slab_lock(c->page);
1635 if (unlikely(!node_match(c, node)))
1636 goto another_slab;
1638 stat(c, ALLOC_REFILL);
1640 load_freelist:
1641 object = c->page->freelist;
1642 if (unlikely(!object))
1643 goto another_slab;
1644 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1645 goto debug;
1647 c->freelist = object[c->offset];
1648 c->page->inuse = c->page->objects;
1649 c->page->freelist = NULL;
1650 c->node = page_to_nid(c->page);
1651 unlock_out:
1652 slab_unlock(c->page);
1653 stat(c, ALLOC_SLOWPATH);
1654 return object;
1656 another_slab:
1657 deactivate_slab(s, c);
1659 new_slab:
1660 new = get_partial(s, gfpflags, node);
1661 if (new) {
1662 c->page = new;
1663 stat(c, ALLOC_FROM_PARTIAL);
1664 goto load_freelist;
1667 if (gfpflags & __GFP_WAIT)
1668 local_irq_enable();
1670 new = new_slab(s, gfpflags, node);
1672 if (gfpflags & __GFP_WAIT)
1673 local_irq_disable();
1675 if (new) {
1676 c = get_cpu_slab(s, smp_processor_id());
1677 stat(c, ALLOC_SLAB);
1678 if (c->page)
1679 flush_slab(s, c);
1680 slab_lock(new);
1681 __SetPageSlubFrozen(new);
1682 c->page = new;
1683 goto load_freelist;
1685 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1686 slab_out_of_memory(s, gfpflags, node);
1687 return NULL;
1688 debug:
1689 if (!alloc_debug_processing(s, c->page, object, addr))
1690 goto another_slab;
1692 c->page->inuse++;
1693 c->page->freelist = object[c->offset];
1694 c->node = -1;
1695 goto unlock_out;
1699 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1700 * have the fastpath folded into their functions. So no function call
1701 * overhead for requests that can be satisfied on the fastpath.
1703 * The fastpath works by first checking if the lockless freelist can be used.
1704 * If not then __slab_alloc is called for slow processing.
1706 * Otherwise we can simply pick the next object from the lockless free list.
1708 static __always_inline void *slab_alloc(struct kmem_cache *s,
1709 gfp_t gfpflags, int node, unsigned long addr)
1711 void **object;
1712 struct kmem_cache_cpu *c;
1713 unsigned long flags;
1714 unsigned int objsize;
1716 gfpflags &= gfp_allowed_mask;
1718 lockdep_trace_alloc(gfpflags);
1719 might_sleep_if(gfpflags & __GFP_WAIT);
1721 if (should_failslab(s->objsize, gfpflags))
1722 return NULL;
1724 local_irq_save(flags);
1725 c = get_cpu_slab(s, smp_processor_id());
1726 objsize = c->objsize;
1727 if (unlikely(!c->freelist || !node_match(c, node)))
1729 object = __slab_alloc(s, gfpflags, node, addr, c);
1731 else {
1732 object = c->freelist;
1733 c->freelist = object[c->offset];
1734 stat(c, ALLOC_FASTPATH);
1736 local_irq_restore(flags);
1738 if (unlikely((gfpflags & __GFP_ZERO) && object))
1739 memset(object, 0, objsize);
1741 kmemcheck_slab_alloc(s, gfpflags, object, c->objsize);
1742 kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
1744 return object;
1747 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1749 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1751 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1753 return ret;
1755 EXPORT_SYMBOL(kmem_cache_alloc);
1757 #ifdef CONFIG_KMEMTRACE
1758 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1760 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1762 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1763 #endif
1765 #ifdef CONFIG_NUMA
1766 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1768 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1770 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1771 s->objsize, s->size, gfpflags, node);
1773 return ret;
1775 EXPORT_SYMBOL(kmem_cache_alloc_node);
1776 #endif
1778 #ifdef CONFIG_KMEMTRACE
1779 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1780 gfp_t gfpflags,
1781 int node)
1783 return slab_alloc(s, gfpflags, node, _RET_IP_);
1785 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1786 #endif
1789 * Slow patch handling. This may still be called frequently since objects
1790 * have a longer lifetime than the cpu slabs in most processing loads.
1792 * So we still attempt to reduce cache line usage. Just take the slab
1793 * lock and free the item. If there is no additional partial page
1794 * handling required then we can return immediately.
1796 static void __slab_free(struct kmem_cache *s, struct page *page,
1797 void *x, unsigned long addr, unsigned int offset)
1799 void *prior;
1800 void **object = (void *)x;
1801 struct kmem_cache_cpu *c;
1803 c = get_cpu_slab(s, raw_smp_processor_id());
1804 stat(c, FREE_SLOWPATH);
1805 slab_lock(page);
1807 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1808 goto debug;
1810 checks_ok:
1811 prior = object[offset] = page->freelist;
1812 page->freelist = object;
1813 page->inuse--;
1815 if (unlikely(PageSlubFrozen(page))) {
1816 stat(c, FREE_FROZEN);
1817 goto out_unlock;
1820 if (unlikely(!page->inuse))
1821 goto slab_empty;
1824 * Objects left in the slab. If it was not on the partial list before
1825 * then add it.
1827 if (unlikely(!prior)) {
1828 add_partial(get_node(s, page_to_nid(page)), page, 1);
1829 stat(c, FREE_ADD_PARTIAL);
1832 out_unlock:
1833 slab_unlock(page);
1834 return;
1836 slab_empty:
1837 if (prior) {
1839 * Slab still on the partial list.
1841 remove_partial(s, page);
1842 stat(c, FREE_REMOVE_PARTIAL);
1844 slab_unlock(page);
1845 stat(c, FREE_SLAB);
1846 discard_slab(s, page);
1847 return;
1849 debug:
1850 if (!free_debug_processing(s, page, x, addr))
1851 goto out_unlock;
1852 goto checks_ok;
1856 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1857 * can perform fastpath freeing without additional function calls.
1859 * The fastpath is only possible if we are freeing to the current cpu slab
1860 * of this processor. This typically the case if we have just allocated
1861 * the item before.
1863 * If fastpath is not possible then fall back to __slab_free where we deal
1864 * with all sorts of special processing.
1866 static __always_inline void slab_free(struct kmem_cache *s,
1867 struct page *page, void *x, unsigned long addr)
1869 void **object = (void *)x;
1870 struct kmem_cache_cpu *c;
1871 unsigned long flags;
1873 kmemleak_free_recursive(x, s->flags);
1874 local_irq_save(flags);
1875 c = get_cpu_slab(s, smp_processor_id());
1876 kmemcheck_slab_free(s, object, c->objsize);
1877 debug_check_no_locks_freed(object, c->objsize);
1878 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1879 debug_check_no_obj_freed(object, c->objsize);
1880 if (likely(page == c->page && c->node >= 0)) {
1881 object[c->offset] = c->freelist;
1882 c->freelist = object;
1883 stat(c, FREE_FASTPATH);
1884 } else
1885 __slab_free(s, page, x, addr, c->offset);
1887 local_irq_restore(flags);
1890 void kmem_cache_free(struct kmem_cache *s, void *x)
1892 struct page *page;
1894 page = virt_to_head_page(x);
1896 slab_free(s, page, x, _RET_IP_);
1898 trace_kmem_cache_free(_RET_IP_, x);
1900 EXPORT_SYMBOL(kmem_cache_free);
1902 /* Figure out on which slab page the object resides */
1903 static struct page *get_object_page(const void *x)
1905 struct page *page = virt_to_head_page(x);
1907 if (!PageSlab(page))
1908 return NULL;
1910 return page;
1914 * Object placement in a slab is made very easy because we always start at
1915 * offset 0. If we tune the size of the object to the alignment then we can
1916 * get the required alignment by putting one properly sized object after
1917 * another.
1919 * Notice that the allocation order determines the sizes of the per cpu
1920 * caches. Each processor has always one slab available for allocations.
1921 * Increasing the allocation order reduces the number of times that slabs
1922 * must be moved on and off the partial lists and is therefore a factor in
1923 * locking overhead.
1927 * Mininum / Maximum order of slab pages. This influences locking overhead
1928 * and slab fragmentation. A higher order reduces the number of partial slabs
1929 * and increases the number of allocations possible without having to
1930 * take the list_lock.
1932 static int slub_min_order;
1933 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1934 static int slub_min_objects;
1937 * Merge control. If this is set then no merging of slab caches will occur.
1938 * (Could be removed. This was introduced to pacify the merge skeptics.)
1940 static int slub_nomerge;
1943 * Calculate the order of allocation given an slab object size.
1945 * The order of allocation has significant impact on performance and other
1946 * system components. Generally order 0 allocations should be preferred since
1947 * order 0 does not cause fragmentation in the page allocator. Larger objects
1948 * be problematic to put into order 0 slabs because there may be too much
1949 * unused space left. We go to a higher order if more than 1/16th of the slab
1950 * would be wasted.
1952 * In order to reach satisfactory performance we must ensure that a minimum
1953 * number of objects is in one slab. Otherwise we may generate too much
1954 * activity on the partial lists which requires taking the list_lock. This is
1955 * less a concern for large slabs though which are rarely used.
1957 * slub_max_order specifies the order where we begin to stop considering the
1958 * number of objects in a slab as critical. If we reach slub_max_order then
1959 * we try to keep the page order as low as possible. So we accept more waste
1960 * of space in favor of a small page order.
1962 * Higher order allocations also allow the placement of more objects in a
1963 * slab and thereby reduce object handling overhead. If the user has
1964 * requested a higher mininum order then we start with that one instead of
1965 * the smallest order which will fit the object.
1967 static inline int slab_order(int size, int min_objects,
1968 int max_order, int fract_leftover)
1970 int order;
1971 int rem;
1972 int min_order = slub_min_order;
1974 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1975 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1977 for (order = max(min_order,
1978 fls(min_objects * size - 1) - PAGE_SHIFT);
1979 order <= max_order; order++) {
1981 unsigned long slab_size = PAGE_SIZE << order;
1983 if (slab_size < min_objects * size)
1984 continue;
1986 rem = slab_size % size;
1988 if (rem <= slab_size / fract_leftover)
1989 break;
1993 return order;
1996 static inline int calculate_order(int size)
1998 int order;
1999 int min_objects;
2000 int fraction;
2001 int max_objects;
2004 * Attempt to find best configuration for a slab. This
2005 * works by first attempting to generate a layout with
2006 * the best configuration and backing off gradually.
2008 * First we reduce the acceptable waste in a slab. Then
2009 * we reduce the minimum objects required in a slab.
2011 min_objects = slub_min_objects;
2012 if (!min_objects)
2013 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2014 max_objects = (PAGE_SIZE << slub_max_order)/size;
2015 min_objects = min(min_objects, max_objects);
2017 while (min_objects > 1) {
2018 fraction = 16;
2019 while (fraction >= 4) {
2020 order = slab_order(size, min_objects,
2021 slub_max_order, fraction);
2022 if (order <= slub_max_order)
2023 return order;
2024 fraction /= 2;
2026 min_objects --;
2030 * We were unable to place multiple objects in a slab. Now
2031 * lets see if we can place a single object there.
2033 order = slab_order(size, 1, slub_max_order, 1);
2034 if (order <= slub_max_order)
2035 return order;
2038 * Doh this slab cannot be placed using slub_max_order.
2040 order = slab_order(size, 1, MAX_ORDER, 1);
2041 if (order < MAX_ORDER)
2042 return order;
2043 return -ENOSYS;
2047 * Figure out what the alignment of the objects will be.
2049 static unsigned long calculate_alignment(unsigned long flags,
2050 unsigned long align, unsigned long size)
2053 * If the user wants hardware cache aligned objects then follow that
2054 * suggestion if the object is sufficiently large.
2056 * The hardware cache alignment cannot override the specified
2057 * alignment though. If that is greater then use it.
2059 if (flags & SLAB_HWCACHE_ALIGN) {
2060 unsigned long ralign = cache_line_size();
2061 while (size <= ralign / 2)
2062 ralign /= 2;
2063 align = max(align, ralign);
2066 if (align < ARCH_SLAB_MINALIGN)
2067 align = ARCH_SLAB_MINALIGN;
2069 return ALIGN(align, sizeof(void *));
2072 static void init_kmem_cache_cpu(struct kmem_cache *s,
2073 struct kmem_cache_cpu *c)
2075 c->page = NULL;
2076 c->freelist = NULL;
2077 c->node = 0;
2078 c->offset = s->offset / sizeof(void *);
2079 c->objsize = s->objsize;
2080 #ifdef CONFIG_SLUB_STATS
2081 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
2082 #endif
2085 static void
2086 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2088 n->nr_partial = 0;
2089 spin_lock_init(&n->list_lock);
2090 INIT_LIST_HEAD(&n->partial);
2091 #ifdef CONFIG_SLUB_DEBUG
2092 atomic_long_set(&n->nr_slabs, 0);
2093 atomic_long_set(&n->total_objects, 0);
2094 INIT_LIST_HEAD(&n->full);
2095 #endif
2098 #ifdef CONFIG_SMP
2100 * Per cpu array for per cpu structures.
2102 * The per cpu array places all kmem_cache_cpu structures from one processor
2103 * close together meaning that it becomes possible that multiple per cpu
2104 * structures are contained in one cacheline. This may be particularly
2105 * beneficial for the kmalloc caches.
2107 * A desktop system typically has around 60-80 slabs. With 100 here we are
2108 * likely able to get per cpu structures for all caches from the array defined
2109 * here. We must be able to cover all kmalloc caches during bootstrap.
2111 * If the per cpu array is exhausted then fall back to kmalloc
2112 * of individual cachelines. No sharing is possible then.
2114 #define NR_KMEM_CACHE_CPU 100
2116 static DEFINE_PER_CPU(struct kmem_cache_cpu,
2117 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
2119 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
2120 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
2122 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2123 int cpu, gfp_t flags)
2125 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2127 if (c)
2128 per_cpu(kmem_cache_cpu_free, cpu) =
2129 (void *)c->freelist;
2130 else {
2131 /* Table overflow: So allocate ourselves */
2132 c = kmalloc_node(
2133 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2134 flags, cpu_to_node(cpu));
2135 if (!c)
2136 return NULL;
2139 init_kmem_cache_cpu(s, c);
2140 return c;
2143 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2145 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2146 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2147 kfree(c);
2148 return;
2150 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2151 per_cpu(kmem_cache_cpu_free, cpu) = c;
2154 static void free_kmem_cache_cpus(struct kmem_cache *s)
2156 int cpu;
2158 for_each_online_cpu(cpu) {
2159 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2161 if (c) {
2162 s->cpu_slab[cpu] = NULL;
2163 free_kmem_cache_cpu(c, cpu);
2168 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2170 int cpu;
2172 for_each_online_cpu(cpu) {
2173 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2175 if (c)
2176 continue;
2178 c = alloc_kmem_cache_cpu(s, cpu, flags);
2179 if (!c) {
2180 free_kmem_cache_cpus(s);
2181 return 0;
2183 s->cpu_slab[cpu] = c;
2185 return 1;
2189 * Initialize the per cpu array.
2191 static void init_alloc_cpu_cpu(int cpu)
2193 int i;
2195 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
2196 return;
2198 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2199 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2201 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
2204 static void __init init_alloc_cpu(void)
2206 int cpu;
2208 for_each_online_cpu(cpu)
2209 init_alloc_cpu_cpu(cpu);
2212 #else
2213 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2214 static inline void init_alloc_cpu(void) {}
2216 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2218 init_kmem_cache_cpu(s, &s->cpu_slab);
2219 return 1;
2221 #endif
2223 #ifdef CONFIG_NUMA
2225 * No kmalloc_node yet so do it by hand. We know that this is the first
2226 * slab on the node for this slabcache. There are no concurrent accesses
2227 * possible.
2229 * Note that this function only works on the kmalloc_node_cache
2230 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2231 * memory on a fresh node that has no slab structures yet.
2233 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2235 struct page *page;
2236 struct kmem_cache_node *n;
2237 unsigned long flags;
2239 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2241 page = new_slab(kmalloc_caches, gfpflags, node);
2243 BUG_ON(!page);
2244 if (page_to_nid(page) != node) {
2245 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2246 "node %d\n", node);
2247 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2248 "in order to be able to continue\n");
2251 n = page->freelist;
2252 BUG_ON(!n);
2253 page->freelist = get_freepointer(kmalloc_caches, n);
2254 page->inuse++;
2255 kmalloc_caches->node[node] = n;
2256 #ifdef CONFIG_SLUB_DEBUG
2257 init_object(kmalloc_caches, n, 1);
2258 init_tracking(kmalloc_caches, n);
2259 #endif
2260 init_kmem_cache_node(n, kmalloc_caches);
2261 inc_slabs_node(kmalloc_caches, node, page->objects);
2264 * lockdep requires consistent irq usage for each lock
2265 * so even though there cannot be a race this early in
2266 * the boot sequence, we still disable irqs.
2268 local_irq_save(flags);
2269 add_partial(n, page, 0);
2270 local_irq_restore(flags);
2273 static void free_kmem_cache_nodes(struct kmem_cache *s)
2275 int node;
2277 for_each_node_state(node, N_NORMAL_MEMORY) {
2278 struct kmem_cache_node *n = s->node[node];
2279 if (n && n != &s->local_node)
2280 kmem_cache_free(kmalloc_caches, n);
2281 s->node[node] = NULL;
2285 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2287 int node;
2288 int local_node;
2290 if (slab_state >= UP)
2291 local_node = page_to_nid(virt_to_page(s));
2292 else
2293 local_node = 0;
2295 for_each_node_state(node, N_NORMAL_MEMORY) {
2296 struct kmem_cache_node *n;
2298 if (local_node == node)
2299 n = &s->local_node;
2300 else {
2301 if (slab_state == DOWN) {
2302 early_kmem_cache_node_alloc(gfpflags, node);
2303 continue;
2305 n = kmem_cache_alloc_node(kmalloc_caches,
2306 gfpflags, node);
2308 if (!n) {
2309 free_kmem_cache_nodes(s);
2310 return 0;
2314 s->node[node] = n;
2315 init_kmem_cache_node(n, s);
2317 return 1;
2319 #else
2320 static void free_kmem_cache_nodes(struct kmem_cache *s)
2324 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2326 init_kmem_cache_node(&s->local_node, s);
2327 return 1;
2329 #endif
2331 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2333 if (min < MIN_PARTIAL)
2334 min = MIN_PARTIAL;
2335 else if (min > MAX_PARTIAL)
2336 min = MAX_PARTIAL;
2337 s->min_partial = min;
2341 * calculate_sizes() determines the order and the distribution of data within
2342 * a slab object.
2344 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2346 unsigned long flags = s->flags;
2347 unsigned long size = s->objsize;
2348 unsigned long align = s->align;
2349 int order;
2352 * Round up object size to the next word boundary. We can only
2353 * place the free pointer at word boundaries and this determines
2354 * the possible location of the free pointer.
2356 size = ALIGN(size, sizeof(void *));
2358 #ifdef CONFIG_SLUB_DEBUG
2360 * Determine if we can poison the object itself. If the user of
2361 * the slab may touch the object after free or before allocation
2362 * then we should never poison the object itself.
2364 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2365 !s->ctor)
2366 s->flags |= __OBJECT_POISON;
2367 else
2368 s->flags &= ~__OBJECT_POISON;
2372 * If we are Redzoning then check if there is some space between the
2373 * end of the object and the free pointer. If not then add an
2374 * additional word to have some bytes to store Redzone information.
2376 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2377 size += sizeof(void *);
2378 #endif
2381 * With that we have determined the number of bytes in actual use
2382 * by the object. This is the potential offset to the free pointer.
2384 s->inuse = size;
2386 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2387 s->ctor)) {
2389 * Relocate free pointer after the object if it is not
2390 * permitted to overwrite the first word of the object on
2391 * kmem_cache_free.
2393 * This is the case if we do RCU, have a constructor or
2394 * destructor or are poisoning the objects.
2396 s->offset = size;
2397 size += sizeof(void *);
2400 #ifdef CONFIG_SLUB_DEBUG
2401 if (flags & SLAB_STORE_USER)
2403 * Need to store information about allocs and frees after
2404 * the object.
2406 size += 2 * sizeof(struct track);
2408 if (flags & SLAB_RED_ZONE)
2410 * Add some empty padding so that we can catch
2411 * overwrites from earlier objects rather than let
2412 * tracking information or the free pointer be
2413 * corrupted if a user writes before the start
2414 * of the object.
2416 size += sizeof(void *);
2417 #endif
2420 * Determine the alignment based on various parameters that the
2421 * user specified and the dynamic determination of cache line size
2422 * on bootup.
2424 align = calculate_alignment(flags, align, s->objsize);
2427 * SLUB stores one object immediately after another beginning from
2428 * offset 0. In order to align the objects we have to simply size
2429 * each object to conform to the alignment.
2431 size = ALIGN(size, align);
2432 s->size = size;
2433 if (forced_order >= 0)
2434 order = forced_order;
2435 else
2436 order = calculate_order(size);
2438 if (order < 0)
2439 return 0;
2441 s->allocflags = 0;
2442 if (order)
2443 s->allocflags |= __GFP_COMP;
2445 if (s->flags & SLAB_CACHE_DMA)
2446 s->allocflags |= SLUB_DMA;
2448 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2449 s->allocflags |= __GFP_RECLAIMABLE;
2452 * Determine the number of objects per slab
2454 s->oo = oo_make(order, size);
2455 s->min = oo_make(get_order(size), size);
2456 if (oo_objects(s->oo) > oo_objects(s->max))
2457 s->max = s->oo;
2459 return !!oo_objects(s->oo);
2463 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2464 const char *name, size_t size,
2465 size_t align, unsigned long flags,
2466 void (*ctor)(void *))
2468 memset(s, 0, kmem_size);
2469 s->name = name;
2470 s->ctor = ctor;
2471 s->objsize = size;
2472 s->align = align;
2473 s->flags = kmem_cache_flags(size, flags, name, ctor);
2475 if (!calculate_sizes(s, -1))
2476 goto error;
2477 if (disable_higher_order_debug) {
2479 * Disable debugging flags that store metadata if the min slab
2480 * order increased.
2482 if (get_order(s->size) > get_order(s->objsize)) {
2483 s->flags &= ~DEBUG_METADATA_FLAGS;
2484 s->offset = 0;
2485 if (!calculate_sizes(s, -1))
2486 goto error;
2491 * The larger the object size is, the more pages we want on the partial
2492 * list to avoid pounding the page allocator excessively.
2494 set_min_partial(s, ilog2(s->size));
2495 s->refcount = 1;
2496 #ifdef CONFIG_NUMA
2497 s->remote_node_defrag_ratio = 1000;
2498 #endif
2499 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2500 goto error;
2502 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2503 return 1;
2504 free_kmem_cache_nodes(s);
2505 error:
2506 if (flags & SLAB_PANIC)
2507 panic("Cannot create slab %s size=%lu realsize=%u "
2508 "order=%u offset=%u flags=%lx\n",
2509 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2510 s->offset, flags);
2511 return 0;
2515 * Check if a given pointer is valid
2517 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2519 struct page *page;
2521 page = get_object_page(object);
2523 if (!page || s != page->slab)
2524 /* No slab or wrong slab */
2525 return 0;
2527 if (!check_valid_pointer(s, page, object))
2528 return 0;
2531 * We could also check if the object is on the slabs freelist.
2532 * But this would be too expensive and it seems that the main
2533 * purpose of kmem_ptr_valid() is to check if the object belongs
2534 * to a certain slab.
2536 return 1;
2538 EXPORT_SYMBOL(kmem_ptr_validate);
2541 * Determine the size of a slab object
2543 unsigned int kmem_cache_size(struct kmem_cache *s)
2545 return s->objsize;
2547 EXPORT_SYMBOL(kmem_cache_size);
2549 const char *kmem_cache_name(struct kmem_cache *s)
2551 return s->name;
2553 EXPORT_SYMBOL(kmem_cache_name);
2555 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2556 const char *text)
2558 #ifdef CONFIG_SLUB_DEBUG
2559 void *addr = page_address(page);
2560 void *p;
2561 DECLARE_BITMAP(map, page->objects);
2563 bitmap_zero(map, page->objects);
2564 slab_err(s, page, "%s", text);
2565 slab_lock(page);
2566 for_each_free_object(p, s, page->freelist)
2567 set_bit(slab_index(p, s, addr), map);
2569 for_each_object(p, s, addr, page->objects) {
2571 if (!test_bit(slab_index(p, s, addr), map)) {
2572 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2573 p, p - addr);
2574 print_tracking(s, p);
2577 slab_unlock(page);
2578 #endif
2582 * Attempt to free all partial slabs on a node.
2584 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2586 unsigned long flags;
2587 struct page *page, *h;
2589 spin_lock_irqsave(&n->list_lock, flags);
2590 list_for_each_entry_safe(page, h, &n->partial, lru) {
2591 if (!page->inuse) {
2592 list_del(&page->lru);
2593 discard_slab(s, page);
2594 n->nr_partial--;
2595 } else {
2596 list_slab_objects(s, page,
2597 "Objects remaining on kmem_cache_close()");
2600 spin_unlock_irqrestore(&n->list_lock, flags);
2604 * Release all resources used by a slab cache.
2606 static inline int kmem_cache_close(struct kmem_cache *s)
2608 int node;
2610 flush_all(s);
2612 /* Attempt to free all objects */
2613 free_kmem_cache_cpus(s);
2614 for_each_node_state(node, N_NORMAL_MEMORY) {
2615 struct kmem_cache_node *n = get_node(s, node);
2617 free_partial(s, n);
2618 if (n->nr_partial || slabs_node(s, node))
2619 return 1;
2621 free_kmem_cache_nodes(s);
2622 return 0;
2626 * Close a cache and release the kmem_cache structure
2627 * (must be used for caches created using kmem_cache_create)
2629 void kmem_cache_destroy(struct kmem_cache *s)
2631 if (s->flags & SLAB_DESTROY_BY_RCU)
2632 rcu_barrier();
2633 down_write(&slub_lock);
2634 s->refcount--;
2635 if (!s->refcount) {
2636 list_del(&s->list);
2637 up_write(&slub_lock);
2638 if (kmem_cache_close(s)) {
2639 printk(KERN_ERR "SLUB %s: %s called for cache that "
2640 "still has objects.\n", s->name, __func__);
2641 dump_stack();
2643 sysfs_slab_remove(s);
2644 } else
2645 up_write(&slub_lock);
2647 EXPORT_SYMBOL(kmem_cache_destroy);
2649 /********************************************************************
2650 * Kmalloc subsystem
2651 *******************************************************************/
2653 struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
2654 EXPORT_SYMBOL(kmalloc_caches);
2656 static int __init setup_slub_min_order(char *str)
2658 get_option(&str, &slub_min_order);
2660 return 1;
2663 __setup("slub_min_order=", setup_slub_min_order);
2665 static int __init setup_slub_max_order(char *str)
2667 get_option(&str, &slub_max_order);
2668 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2670 return 1;
2673 __setup("slub_max_order=", setup_slub_max_order);
2675 static int __init setup_slub_min_objects(char *str)
2677 get_option(&str, &slub_min_objects);
2679 return 1;
2682 __setup("slub_min_objects=", setup_slub_min_objects);
2684 static int __init setup_slub_nomerge(char *str)
2686 slub_nomerge = 1;
2687 return 1;
2690 __setup("slub_nomerge", setup_slub_nomerge);
2692 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2693 const char *name, int size, gfp_t gfp_flags)
2695 unsigned int flags = 0;
2697 if (gfp_flags & SLUB_DMA)
2698 flags = SLAB_CACHE_DMA;
2701 * This function is called with IRQs disabled during early-boot on
2702 * single CPU so there's no need to take slub_lock here.
2704 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2705 flags, NULL))
2706 goto panic;
2708 list_add(&s->list, &slab_caches);
2710 if (sysfs_slab_add(s))
2711 goto panic;
2712 return s;
2714 panic:
2715 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2718 #ifdef CONFIG_ZONE_DMA
2719 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2721 static void sysfs_add_func(struct work_struct *w)
2723 struct kmem_cache *s;
2725 down_write(&slub_lock);
2726 list_for_each_entry(s, &slab_caches, list) {
2727 if (s->flags & __SYSFS_ADD_DEFERRED) {
2728 s->flags &= ~__SYSFS_ADD_DEFERRED;
2729 sysfs_slab_add(s);
2732 up_write(&slub_lock);
2735 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2737 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2739 struct kmem_cache *s;
2740 char *text;
2741 size_t realsize;
2742 unsigned long slabflags;
2744 s = kmalloc_caches_dma[index];
2745 if (s)
2746 return s;
2748 /* Dynamically create dma cache */
2749 if (flags & __GFP_WAIT)
2750 down_write(&slub_lock);
2751 else {
2752 if (!down_write_trylock(&slub_lock))
2753 goto out;
2756 if (kmalloc_caches_dma[index])
2757 goto unlock_out;
2759 realsize = kmalloc_caches[index].objsize;
2760 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2761 (unsigned int)realsize);
2762 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2765 * Must defer sysfs creation to a workqueue because we don't know
2766 * what context we are called from. Before sysfs comes up, we don't
2767 * need to do anything because our sysfs initcall will start by
2768 * adding all existing slabs to sysfs.
2770 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
2771 if (slab_state >= SYSFS)
2772 slabflags |= __SYSFS_ADD_DEFERRED;
2774 if (!s || !text || !kmem_cache_open(s, flags, text,
2775 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2776 kfree(s);
2777 kfree(text);
2778 goto unlock_out;
2781 list_add(&s->list, &slab_caches);
2782 kmalloc_caches_dma[index] = s;
2784 if (slab_state >= SYSFS)
2785 schedule_work(&sysfs_add_work);
2787 unlock_out:
2788 up_write(&slub_lock);
2789 out:
2790 return kmalloc_caches_dma[index];
2792 #endif
2795 * Conversion table for small slabs sizes / 8 to the index in the
2796 * kmalloc array. This is necessary for slabs < 192 since we have non power
2797 * of two cache sizes there. The size of larger slabs can be determined using
2798 * fls.
2800 static s8 size_index[24] = {
2801 3, /* 8 */
2802 4, /* 16 */
2803 5, /* 24 */
2804 5, /* 32 */
2805 6, /* 40 */
2806 6, /* 48 */
2807 6, /* 56 */
2808 6, /* 64 */
2809 1, /* 72 */
2810 1, /* 80 */
2811 1, /* 88 */
2812 1, /* 96 */
2813 7, /* 104 */
2814 7, /* 112 */
2815 7, /* 120 */
2816 7, /* 128 */
2817 2, /* 136 */
2818 2, /* 144 */
2819 2, /* 152 */
2820 2, /* 160 */
2821 2, /* 168 */
2822 2, /* 176 */
2823 2, /* 184 */
2824 2 /* 192 */
2827 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2829 int index;
2831 if (size <= 192) {
2832 if (!size)
2833 return ZERO_SIZE_PTR;
2835 index = size_index[(size - 1) / 8];
2836 } else
2837 index = fls(size - 1);
2839 #ifdef CONFIG_ZONE_DMA
2840 if (unlikely((flags & SLUB_DMA)))
2841 return dma_kmalloc_cache(index, flags);
2843 #endif
2844 return &kmalloc_caches[index];
2847 void *__kmalloc(size_t size, gfp_t flags)
2849 struct kmem_cache *s;
2850 void *ret;
2852 if (unlikely(size > SLUB_MAX_SIZE))
2853 return kmalloc_large(size, flags);
2855 s = get_slab(size, flags);
2857 if (unlikely(ZERO_OR_NULL_PTR(s)))
2858 return s;
2860 ret = slab_alloc(s, flags, -1, _RET_IP_);
2862 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2864 return ret;
2866 EXPORT_SYMBOL(__kmalloc);
2868 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2870 struct page *page;
2872 flags |= __GFP_COMP | __GFP_NOTRACK;
2873 page = alloc_pages_node(node, flags, get_order(size));
2874 if (page)
2875 return page_address(page);
2876 else
2877 return NULL;
2880 #ifdef CONFIG_NUMA
2881 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2883 struct kmem_cache *s;
2884 void *ret;
2886 if (unlikely(size > SLUB_MAX_SIZE)) {
2887 ret = kmalloc_large_node(size, flags, node);
2889 trace_kmalloc_node(_RET_IP_, ret,
2890 size, PAGE_SIZE << get_order(size),
2891 flags, node);
2893 return ret;
2896 s = get_slab(size, flags);
2898 if (unlikely(ZERO_OR_NULL_PTR(s)))
2899 return s;
2901 ret = slab_alloc(s, flags, node, _RET_IP_);
2903 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2905 return ret;
2907 EXPORT_SYMBOL(__kmalloc_node);
2908 #endif
2910 size_t ksize(const void *object)
2912 struct page *page;
2913 struct kmem_cache *s;
2915 if (unlikely(object == ZERO_SIZE_PTR))
2916 return 0;
2918 page = virt_to_head_page(object);
2920 if (unlikely(!PageSlab(page))) {
2921 WARN_ON(!PageCompound(page));
2922 return PAGE_SIZE << compound_order(page);
2924 s = page->slab;
2926 #ifdef CONFIG_SLUB_DEBUG
2928 * Debugging requires use of the padding between object
2929 * and whatever may come after it.
2931 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2932 return s->objsize;
2934 #endif
2936 * If we have the need to store the freelist pointer
2937 * back there or track user information then we can
2938 * only use the space before that information.
2940 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2941 return s->inuse;
2943 * Else we can use all the padding etc for the allocation
2945 return s->size;
2947 EXPORT_SYMBOL(ksize);
2949 void kfree(const void *x)
2951 struct page *page;
2952 void *object = (void *)x;
2954 trace_kfree(_RET_IP_, x);
2956 if (unlikely(ZERO_OR_NULL_PTR(x)))
2957 return;
2959 page = virt_to_head_page(x);
2960 if (unlikely(!PageSlab(page))) {
2961 BUG_ON(!PageCompound(page));
2962 put_page(page);
2963 return;
2965 slab_free(page->slab, page, object, _RET_IP_);
2967 EXPORT_SYMBOL(kfree);
2970 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2971 * the remaining slabs by the number of items in use. The slabs with the
2972 * most items in use come first. New allocations will then fill those up
2973 * and thus they can be removed from the partial lists.
2975 * The slabs with the least items are placed last. This results in them
2976 * being allocated from last increasing the chance that the last objects
2977 * are freed in them.
2979 int kmem_cache_shrink(struct kmem_cache *s)
2981 int node;
2982 int i;
2983 struct kmem_cache_node *n;
2984 struct page *page;
2985 struct page *t;
2986 int objects = oo_objects(s->max);
2987 struct list_head *slabs_by_inuse =
2988 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2989 unsigned long flags;
2991 if (!slabs_by_inuse)
2992 return -ENOMEM;
2994 flush_all(s);
2995 for_each_node_state(node, N_NORMAL_MEMORY) {
2996 n = get_node(s, node);
2998 if (!n->nr_partial)
2999 continue;
3001 for (i = 0; i < objects; i++)
3002 INIT_LIST_HEAD(slabs_by_inuse + i);
3004 spin_lock_irqsave(&n->list_lock, flags);
3007 * Build lists indexed by the items in use in each slab.
3009 * Note that concurrent frees may occur while we hold the
3010 * list_lock. page->inuse here is the upper limit.
3012 list_for_each_entry_safe(page, t, &n->partial, lru) {
3013 if (!page->inuse && slab_trylock(page)) {
3015 * Must hold slab lock here because slab_free
3016 * may have freed the last object and be
3017 * waiting to release the slab.
3019 list_del(&page->lru);
3020 n->nr_partial--;
3021 slab_unlock(page);
3022 discard_slab(s, page);
3023 } else {
3024 list_move(&page->lru,
3025 slabs_by_inuse + page->inuse);
3030 * Rebuild the partial list with the slabs filled up most
3031 * first and the least used slabs at the end.
3033 for (i = objects - 1; i >= 0; i--)
3034 list_splice(slabs_by_inuse + i, n->partial.prev);
3036 spin_unlock_irqrestore(&n->list_lock, flags);
3039 kfree(slabs_by_inuse);
3040 return 0;
3042 EXPORT_SYMBOL(kmem_cache_shrink);
3044 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
3045 static int slab_mem_going_offline_callback(void *arg)
3047 struct kmem_cache *s;
3049 down_read(&slub_lock);
3050 list_for_each_entry(s, &slab_caches, list)
3051 kmem_cache_shrink(s);
3052 up_read(&slub_lock);
3054 return 0;
3057 static void slab_mem_offline_callback(void *arg)
3059 struct kmem_cache_node *n;
3060 struct kmem_cache *s;
3061 struct memory_notify *marg = arg;
3062 int offline_node;
3064 offline_node = marg->status_change_nid;
3067 * If the node still has available memory. we need kmem_cache_node
3068 * for it yet.
3070 if (offline_node < 0)
3071 return;
3073 down_read(&slub_lock);
3074 list_for_each_entry(s, &slab_caches, list) {
3075 n = get_node(s, offline_node);
3076 if (n) {
3078 * if n->nr_slabs > 0, slabs still exist on the node
3079 * that is going down. We were unable to free them,
3080 * and offline_pages() function shoudn't call this
3081 * callback. So, we must fail.
3083 BUG_ON(slabs_node(s, offline_node));
3085 s->node[offline_node] = NULL;
3086 kmem_cache_free(kmalloc_caches, n);
3089 up_read(&slub_lock);
3092 static int slab_mem_going_online_callback(void *arg)
3094 struct kmem_cache_node *n;
3095 struct kmem_cache *s;
3096 struct memory_notify *marg = arg;
3097 int nid = marg->status_change_nid;
3098 int ret = 0;
3101 * If the node's memory is already available, then kmem_cache_node is
3102 * already created. Nothing to do.
3104 if (nid < 0)
3105 return 0;
3108 * We are bringing a node online. No memory is available yet. We must
3109 * allocate a kmem_cache_node structure in order to bring the node
3110 * online.
3112 down_read(&slub_lock);
3113 list_for_each_entry(s, &slab_caches, list) {
3115 * XXX: kmem_cache_alloc_node will fallback to other nodes
3116 * since memory is not yet available from the node that
3117 * is brought up.
3119 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
3120 if (!n) {
3121 ret = -ENOMEM;
3122 goto out;
3124 init_kmem_cache_node(n, s);
3125 s->node[nid] = n;
3127 out:
3128 up_read(&slub_lock);
3129 return ret;
3132 static int slab_memory_callback(struct notifier_block *self,
3133 unsigned long action, void *arg)
3135 int ret = 0;
3137 switch (action) {
3138 case MEM_GOING_ONLINE:
3139 ret = slab_mem_going_online_callback(arg);
3140 break;
3141 case MEM_GOING_OFFLINE:
3142 ret = slab_mem_going_offline_callback(arg);
3143 break;
3144 case MEM_OFFLINE:
3145 case MEM_CANCEL_ONLINE:
3146 slab_mem_offline_callback(arg);
3147 break;
3148 case MEM_ONLINE:
3149 case MEM_CANCEL_OFFLINE:
3150 break;
3152 if (ret)
3153 ret = notifier_from_errno(ret);
3154 else
3155 ret = NOTIFY_OK;
3156 return ret;
3159 #endif /* CONFIG_MEMORY_HOTPLUG */
3161 /********************************************************************
3162 * Basic setup of slabs
3163 *******************************************************************/
3165 void __init kmem_cache_init(void)
3167 int i;
3168 int caches = 0;
3170 init_alloc_cpu();
3172 #ifdef CONFIG_NUMA
3174 * Must first have the slab cache available for the allocations of the
3175 * struct kmem_cache_node's. There is special bootstrap code in
3176 * kmem_cache_open for slab_state == DOWN.
3178 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3179 sizeof(struct kmem_cache_node), GFP_NOWAIT);
3180 kmalloc_caches[0].refcount = -1;
3181 caches++;
3183 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3184 #endif
3186 /* Able to allocate the per node structures */
3187 slab_state = PARTIAL;
3189 /* Caches that are not of the two-to-the-power-of size */
3190 if (KMALLOC_MIN_SIZE <= 64) {
3191 create_kmalloc_cache(&kmalloc_caches[1],
3192 "kmalloc-96", 96, GFP_NOWAIT);
3193 caches++;
3194 create_kmalloc_cache(&kmalloc_caches[2],
3195 "kmalloc-192", 192, GFP_NOWAIT);
3196 caches++;
3199 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3200 create_kmalloc_cache(&kmalloc_caches[i],
3201 "kmalloc", 1 << i, GFP_NOWAIT);
3202 caches++;
3207 * Patch up the size_index table if we have strange large alignment
3208 * requirements for the kmalloc array. This is only the case for
3209 * MIPS it seems. The standard arches will not generate any code here.
3211 * Largest permitted alignment is 256 bytes due to the way we
3212 * handle the index determination for the smaller caches.
3214 * Make sure that nothing crazy happens if someone starts tinkering
3215 * around with ARCH_KMALLOC_MINALIGN
3217 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3218 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3220 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3221 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3223 if (KMALLOC_MIN_SIZE == 128) {
3225 * The 192 byte sized cache is not used if the alignment
3226 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3227 * instead.
3229 for (i = 128 + 8; i <= 192; i += 8)
3230 size_index[(i - 1) / 8] = 8;
3233 slab_state = UP;
3235 /* Provide the correct kmalloc names now that the caches are up */
3236 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3237 kmalloc_caches[i]. name =
3238 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3240 #ifdef CONFIG_SMP
3241 register_cpu_notifier(&slab_notifier);
3242 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3243 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3244 #else
3245 kmem_size = sizeof(struct kmem_cache);
3246 #endif
3248 printk(KERN_INFO
3249 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3250 " CPUs=%d, Nodes=%d\n",
3251 caches, cache_line_size(),
3252 slub_min_order, slub_max_order, slub_min_objects,
3253 nr_cpu_ids, nr_node_ids);
3256 void __init kmem_cache_init_late(void)
3261 * Find a mergeable slab cache
3263 static int slab_unmergeable(struct kmem_cache *s)
3265 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3266 return 1;
3268 if (s->ctor)
3269 return 1;
3272 * We may have set a slab to be unmergeable during bootstrap.
3274 if (s->refcount < 0)
3275 return 1;
3277 return 0;
3280 static struct kmem_cache *find_mergeable(size_t size,
3281 size_t align, unsigned long flags, const char *name,
3282 void (*ctor)(void *))
3284 struct kmem_cache *s;
3286 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3287 return NULL;
3289 if (ctor)
3290 return NULL;
3292 size = ALIGN(size, sizeof(void *));
3293 align = calculate_alignment(flags, align, size);
3294 size = ALIGN(size, align);
3295 flags = kmem_cache_flags(size, flags, name, NULL);
3297 list_for_each_entry(s, &slab_caches, list) {
3298 if (slab_unmergeable(s))
3299 continue;
3301 if (size > s->size)
3302 continue;
3304 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3305 continue;
3307 * Check if alignment is compatible.
3308 * Courtesy of Adrian Drzewiecki
3310 if ((s->size & ~(align - 1)) != s->size)
3311 continue;
3313 if (s->size - size >= sizeof(void *))
3314 continue;
3316 return s;
3318 return NULL;
3321 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3322 size_t align, unsigned long flags, void (*ctor)(void *))
3324 struct kmem_cache *s;
3326 down_write(&slub_lock);
3327 s = find_mergeable(size, align, flags, name, ctor);
3328 if (s) {
3329 int cpu;
3331 s->refcount++;
3333 * Adjust the object sizes so that we clear
3334 * the complete object on kzalloc.
3336 s->objsize = max(s->objsize, (int)size);
3339 * And then we need to update the object size in the
3340 * per cpu structures
3342 for_each_online_cpu(cpu)
3343 get_cpu_slab(s, cpu)->objsize = s->objsize;
3345 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3346 up_write(&slub_lock);
3348 if (sysfs_slab_alias(s, name)) {
3349 down_write(&slub_lock);
3350 s->refcount--;
3351 up_write(&slub_lock);
3352 goto err;
3354 return s;
3357 s = kmalloc(kmem_size, GFP_KERNEL);
3358 if (s) {
3359 if (kmem_cache_open(s, GFP_KERNEL, name,
3360 size, align, flags, ctor)) {
3361 list_add(&s->list, &slab_caches);
3362 up_write(&slub_lock);
3363 if (sysfs_slab_add(s)) {
3364 down_write(&slub_lock);
3365 list_del(&s->list);
3366 up_write(&slub_lock);
3367 kfree(s);
3368 goto err;
3370 return s;
3372 kfree(s);
3374 up_write(&slub_lock);
3376 err:
3377 if (flags & SLAB_PANIC)
3378 panic("Cannot create slabcache %s\n", name);
3379 else
3380 s = NULL;
3381 return s;
3383 EXPORT_SYMBOL(kmem_cache_create);
3385 #ifdef CONFIG_SMP
3387 * Use the cpu notifier to insure that the cpu slabs are flushed when
3388 * necessary.
3390 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3391 unsigned long action, void *hcpu)
3393 long cpu = (long)hcpu;
3394 struct kmem_cache *s;
3395 unsigned long flags;
3397 switch (action) {
3398 case CPU_UP_PREPARE:
3399 case CPU_UP_PREPARE_FROZEN:
3400 init_alloc_cpu_cpu(cpu);
3401 down_read(&slub_lock);
3402 list_for_each_entry(s, &slab_caches, list)
3403 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3404 GFP_KERNEL);
3405 up_read(&slub_lock);
3406 break;
3408 case CPU_UP_CANCELED:
3409 case CPU_UP_CANCELED_FROZEN:
3410 case CPU_DEAD:
3411 case CPU_DEAD_FROZEN:
3412 down_read(&slub_lock);
3413 list_for_each_entry(s, &slab_caches, list) {
3414 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3416 local_irq_save(flags);
3417 __flush_cpu_slab(s, cpu);
3418 local_irq_restore(flags);
3419 free_kmem_cache_cpu(c, cpu);
3420 s->cpu_slab[cpu] = NULL;
3422 up_read(&slub_lock);
3423 break;
3424 default:
3425 break;
3427 return NOTIFY_OK;
3430 static struct notifier_block __cpuinitdata slab_notifier = {
3431 .notifier_call = slab_cpuup_callback
3434 #endif
3436 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3438 struct kmem_cache *s;
3439 void *ret;
3441 if (unlikely(size > SLUB_MAX_SIZE))
3442 return kmalloc_large(size, gfpflags);
3444 s = get_slab(size, gfpflags);
3446 if (unlikely(ZERO_OR_NULL_PTR(s)))
3447 return s;
3449 ret = slab_alloc(s, gfpflags, -1, caller);
3451 /* Honor the call site pointer we recieved. */
3452 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3454 return ret;
3457 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3458 int node, unsigned long caller)
3460 struct kmem_cache *s;
3461 void *ret;
3463 if (unlikely(size > SLUB_MAX_SIZE))
3464 return kmalloc_large_node(size, gfpflags, node);
3466 s = get_slab(size, gfpflags);
3468 if (unlikely(ZERO_OR_NULL_PTR(s)))
3469 return s;
3471 ret = slab_alloc(s, gfpflags, node, caller);
3473 /* Honor the call site pointer we recieved. */
3474 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3476 return ret;
3479 #ifdef CONFIG_SLUB_DEBUG
3480 static int count_inuse(struct page *page)
3482 return page->inuse;
3485 static int count_total(struct page *page)
3487 return page->objects;
3490 static int validate_slab(struct kmem_cache *s, struct page *page,
3491 unsigned long *map)
3493 void *p;
3494 void *addr = page_address(page);
3496 if (!check_slab(s, page) ||
3497 !on_freelist(s, page, NULL))
3498 return 0;
3500 /* Now we know that a valid freelist exists */
3501 bitmap_zero(map, page->objects);
3503 for_each_free_object(p, s, page->freelist) {
3504 set_bit(slab_index(p, s, addr), map);
3505 if (!check_object(s, page, p, 0))
3506 return 0;
3509 for_each_object(p, s, addr, page->objects)
3510 if (!test_bit(slab_index(p, s, addr), map))
3511 if (!check_object(s, page, p, 1))
3512 return 0;
3513 return 1;
3516 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3517 unsigned long *map)
3519 if (slab_trylock(page)) {
3520 validate_slab(s, page, map);
3521 slab_unlock(page);
3522 } else
3523 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3524 s->name, page);
3526 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3527 if (!PageSlubDebug(page))
3528 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3529 "on slab 0x%p\n", s->name, page);
3530 } else {
3531 if (PageSlubDebug(page))
3532 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3533 "slab 0x%p\n", s->name, page);
3537 static int validate_slab_node(struct kmem_cache *s,
3538 struct kmem_cache_node *n, unsigned long *map)
3540 unsigned long count = 0;
3541 struct page *page;
3542 unsigned long flags;
3544 spin_lock_irqsave(&n->list_lock, flags);
3546 list_for_each_entry(page, &n->partial, lru) {
3547 validate_slab_slab(s, page, map);
3548 count++;
3550 if (count != n->nr_partial)
3551 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3552 "counter=%ld\n", s->name, count, n->nr_partial);
3554 if (!(s->flags & SLAB_STORE_USER))
3555 goto out;
3557 list_for_each_entry(page, &n->full, lru) {
3558 validate_slab_slab(s, page, map);
3559 count++;
3561 if (count != atomic_long_read(&n->nr_slabs))
3562 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3563 "counter=%ld\n", s->name, count,
3564 atomic_long_read(&n->nr_slabs));
3566 out:
3567 spin_unlock_irqrestore(&n->list_lock, flags);
3568 return count;
3571 static long validate_slab_cache(struct kmem_cache *s)
3573 int node;
3574 unsigned long count = 0;
3575 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3576 sizeof(unsigned long), GFP_KERNEL);
3578 if (!map)
3579 return -ENOMEM;
3581 flush_all(s);
3582 for_each_node_state(node, N_NORMAL_MEMORY) {
3583 struct kmem_cache_node *n = get_node(s, node);
3585 count += validate_slab_node(s, n, map);
3587 kfree(map);
3588 return count;
3591 #ifdef SLUB_RESILIENCY_TEST
3592 static void resiliency_test(void)
3594 u8 *p;
3596 printk(KERN_ERR "SLUB resiliency testing\n");
3597 printk(KERN_ERR "-----------------------\n");
3598 printk(KERN_ERR "A. Corruption after allocation\n");
3600 p = kzalloc(16, GFP_KERNEL);
3601 p[16] = 0x12;
3602 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3603 " 0x12->0x%p\n\n", p + 16);
3605 validate_slab_cache(kmalloc_caches + 4);
3607 /* Hmmm... The next two are dangerous */
3608 p = kzalloc(32, GFP_KERNEL);
3609 p[32 + sizeof(void *)] = 0x34;
3610 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3611 " 0x34 -> -0x%p\n", p);
3612 printk(KERN_ERR
3613 "If allocated object is overwritten then not detectable\n\n");
3615 validate_slab_cache(kmalloc_caches + 5);
3616 p = kzalloc(64, GFP_KERNEL);
3617 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3618 *p = 0x56;
3619 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3621 printk(KERN_ERR
3622 "If allocated object is overwritten then not detectable\n\n");
3623 validate_slab_cache(kmalloc_caches + 6);
3625 printk(KERN_ERR "\nB. Corruption after free\n");
3626 p = kzalloc(128, GFP_KERNEL);
3627 kfree(p);
3628 *p = 0x78;
3629 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3630 validate_slab_cache(kmalloc_caches + 7);
3632 p = kzalloc(256, GFP_KERNEL);
3633 kfree(p);
3634 p[50] = 0x9a;
3635 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3637 validate_slab_cache(kmalloc_caches + 8);
3639 p = kzalloc(512, GFP_KERNEL);
3640 kfree(p);
3641 p[512] = 0xab;
3642 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3643 validate_slab_cache(kmalloc_caches + 9);
3645 #else
3646 static void resiliency_test(void) {};
3647 #endif
3650 * Generate lists of code addresses where slabcache objects are allocated
3651 * and freed.
3654 struct location {
3655 unsigned long count;
3656 unsigned long addr;
3657 long long sum_time;
3658 long min_time;
3659 long max_time;
3660 long min_pid;
3661 long max_pid;
3662 DECLARE_BITMAP(cpus, NR_CPUS);
3663 nodemask_t nodes;
3666 struct loc_track {
3667 unsigned long max;
3668 unsigned long count;
3669 struct location *loc;
3672 static void free_loc_track(struct loc_track *t)
3674 if (t->max)
3675 free_pages((unsigned long)t->loc,
3676 get_order(sizeof(struct location) * t->max));
3679 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3681 struct location *l;
3682 int order;
3684 order = get_order(sizeof(struct location) * max);
3686 l = (void *)__get_free_pages(flags, order);
3687 if (!l)
3688 return 0;
3690 if (t->count) {
3691 memcpy(l, t->loc, sizeof(struct location) * t->count);
3692 free_loc_track(t);
3694 t->max = max;
3695 t->loc = l;
3696 return 1;
3699 static int add_location(struct loc_track *t, struct kmem_cache *s,
3700 const struct track *track)
3702 long start, end, pos;
3703 struct location *l;
3704 unsigned long caddr;
3705 unsigned long age = jiffies - track->when;
3707 start = -1;
3708 end = t->count;
3710 for ( ; ; ) {
3711 pos = start + (end - start + 1) / 2;
3714 * There is nothing at "end". If we end up there
3715 * we need to add something to before end.
3717 if (pos == end)
3718 break;
3720 caddr = t->loc[pos].addr;
3721 if (track->addr == caddr) {
3723 l = &t->loc[pos];
3724 l->count++;
3725 if (track->when) {
3726 l->sum_time += age;
3727 if (age < l->min_time)
3728 l->min_time = age;
3729 if (age > l->max_time)
3730 l->max_time = age;
3732 if (track->pid < l->min_pid)
3733 l->min_pid = track->pid;
3734 if (track->pid > l->max_pid)
3735 l->max_pid = track->pid;
3737 cpumask_set_cpu(track->cpu,
3738 to_cpumask(l->cpus));
3740 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3741 return 1;
3744 if (track->addr < caddr)
3745 end = pos;
3746 else
3747 start = pos;
3751 * Not found. Insert new tracking element.
3753 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3754 return 0;
3756 l = t->loc + pos;
3757 if (pos < t->count)
3758 memmove(l + 1, l,
3759 (t->count - pos) * sizeof(struct location));
3760 t->count++;
3761 l->count = 1;
3762 l->addr = track->addr;
3763 l->sum_time = age;
3764 l->min_time = age;
3765 l->max_time = age;
3766 l->min_pid = track->pid;
3767 l->max_pid = track->pid;
3768 cpumask_clear(to_cpumask(l->cpus));
3769 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3770 nodes_clear(l->nodes);
3771 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3772 return 1;
3775 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3776 struct page *page, enum track_item alloc)
3778 void *addr = page_address(page);
3779 DECLARE_BITMAP(map, page->objects);
3780 void *p;
3782 bitmap_zero(map, page->objects);
3783 for_each_free_object(p, s, page->freelist)
3784 set_bit(slab_index(p, s, addr), map);
3786 for_each_object(p, s, addr, page->objects)
3787 if (!test_bit(slab_index(p, s, addr), map))
3788 add_location(t, s, get_track(s, p, alloc));
3791 static int list_locations(struct kmem_cache *s, char *buf,
3792 enum track_item alloc)
3794 int len = 0;
3795 unsigned long i;
3796 struct loc_track t = { 0, 0, NULL };
3797 int node;
3799 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3800 GFP_TEMPORARY))
3801 return sprintf(buf, "Out of memory\n");
3803 /* Push back cpu slabs */
3804 flush_all(s);
3806 for_each_node_state(node, N_NORMAL_MEMORY) {
3807 struct kmem_cache_node *n = get_node(s, node);
3808 unsigned long flags;
3809 struct page *page;
3811 if (!atomic_long_read(&n->nr_slabs))
3812 continue;
3814 spin_lock_irqsave(&n->list_lock, flags);
3815 list_for_each_entry(page, &n->partial, lru)
3816 process_slab(&t, s, page, alloc);
3817 list_for_each_entry(page, &n->full, lru)
3818 process_slab(&t, s, page, alloc);
3819 spin_unlock_irqrestore(&n->list_lock, flags);
3822 for (i = 0; i < t.count; i++) {
3823 struct location *l = &t.loc[i];
3825 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3826 break;
3827 len += sprintf(buf + len, "%7ld ", l->count);
3829 if (l->addr)
3830 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3831 else
3832 len += sprintf(buf + len, "<not-available>");
3834 if (l->sum_time != l->min_time) {
3835 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3836 l->min_time,
3837 (long)div_u64(l->sum_time, l->count),
3838 l->max_time);
3839 } else
3840 len += sprintf(buf + len, " age=%ld",
3841 l->min_time);
3843 if (l->min_pid != l->max_pid)
3844 len += sprintf(buf + len, " pid=%ld-%ld",
3845 l->min_pid, l->max_pid);
3846 else
3847 len += sprintf(buf + len, " pid=%ld",
3848 l->min_pid);
3850 if (num_online_cpus() > 1 &&
3851 !cpumask_empty(to_cpumask(l->cpus)) &&
3852 len < PAGE_SIZE - 60) {
3853 len += sprintf(buf + len, " cpus=");
3854 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3855 to_cpumask(l->cpus));
3858 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3859 len < PAGE_SIZE - 60) {
3860 len += sprintf(buf + len, " nodes=");
3861 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3862 l->nodes);
3865 len += sprintf(buf + len, "\n");
3868 free_loc_track(&t);
3869 if (!t.count)
3870 len += sprintf(buf, "No data\n");
3871 return len;
3874 enum slab_stat_type {
3875 SL_ALL, /* All slabs */
3876 SL_PARTIAL, /* Only partially allocated slabs */
3877 SL_CPU, /* Only slabs used for cpu caches */
3878 SL_OBJECTS, /* Determine allocated objects not slabs */
3879 SL_TOTAL /* Determine object capacity not slabs */
3882 #define SO_ALL (1 << SL_ALL)
3883 #define SO_PARTIAL (1 << SL_PARTIAL)
3884 #define SO_CPU (1 << SL_CPU)
3885 #define SO_OBJECTS (1 << SL_OBJECTS)
3886 #define SO_TOTAL (1 << SL_TOTAL)
3888 static ssize_t show_slab_objects(struct kmem_cache *s,
3889 char *buf, unsigned long flags)
3891 unsigned long total = 0;
3892 int node;
3893 int x;
3894 unsigned long *nodes;
3895 unsigned long *per_cpu;
3897 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3898 if (!nodes)
3899 return -ENOMEM;
3900 per_cpu = nodes + nr_node_ids;
3902 if (flags & SO_CPU) {
3903 int cpu;
3905 for_each_possible_cpu(cpu) {
3906 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3908 if (!c || c->node < 0)
3909 continue;
3911 if (c->page) {
3912 if (flags & SO_TOTAL)
3913 x = c->page->objects;
3914 else if (flags & SO_OBJECTS)
3915 x = c->page->inuse;
3916 else
3917 x = 1;
3919 total += x;
3920 nodes[c->node] += x;
3922 per_cpu[c->node]++;
3926 if (flags & SO_ALL) {
3927 for_each_node_state(node, N_NORMAL_MEMORY) {
3928 struct kmem_cache_node *n = get_node(s, node);
3930 if (flags & SO_TOTAL)
3931 x = atomic_long_read(&n->total_objects);
3932 else if (flags & SO_OBJECTS)
3933 x = atomic_long_read(&n->total_objects) -
3934 count_partial(n, count_free);
3936 else
3937 x = atomic_long_read(&n->nr_slabs);
3938 total += x;
3939 nodes[node] += x;
3942 } else if (flags & SO_PARTIAL) {
3943 for_each_node_state(node, N_NORMAL_MEMORY) {
3944 struct kmem_cache_node *n = get_node(s, node);
3946 if (flags & SO_TOTAL)
3947 x = count_partial(n, count_total);
3948 else if (flags & SO_OBJECTS)
3949 x = count_partial(n, count_inuse);
3950 else
3951 x = n->nr_partial;
3952 total += x;
3953 nodes[node] += x;
3956 x = sprintf(buf, "%lu", total);
3957 #ifdef CONFIG_NUMA
3958 for_each_node_state(node, N_NORMAL_MEMORY)
3959 if (nodes[node])
3960 x += sprintf(buf + x, " N%d=%lu",
3961 node, nodes[node]);
3962 #endif
3963 kfree(nodes);
3964 return x + sprintf(buf + x, "\n");
3967 static int any_slab_objects(struct kmem_cache *s)
3969 int node;
3971 for_each_online_node(node) {
3972 struct kmem_cache_node *n = get_node(s, node);
3974 if (!n)
3975 continue;
3977 if (atomic_long_read(&n->total_objects))
3978 return 1;
3980 return 0;
3983 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3984 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3986 struct slab_attribute {
3987 struct attribute attr;
3988 ssize_t (*show)(struct kmem_cache *s, char *buf);
3989 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3992 #define SLAB_ATTR_RO(_name) \
3993 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3995 #define SLAB_ATTR(_name) \
3996 static struct slab_attribute _name##_attr = \
3997 __ATTR(_name, 0644, _name##_show, _name##_store)
3999 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4001 return sprintf(buf, "%d\n", s->size);
4003 SLAB_ATTR_RO(slab_size);
4005 static ssize_t align_show(struct kmem_cache *s, char *buf)
4007 return sprintf(buf, "%d\n", s->align);
4009 SLAB_ATTR_RO(align);
4011 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4013 return sprintf(buf, "%d\n", s->objsize);
4015 SLAB_ATTR_RO(object_size);
4017 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4019 return sprintf(buf, "%d\n", oo_objects(s->oo));
4021 SLAB_ATTR_RO(objs_per_slab);
4023 static ssize_t order_store(struct kmem_cache *s,
4024 const char *buf, size_t length)
4026 unsigned long order;
4027 int err;
4029 err = strict_strtoul(buf, 10, &order);
4030 if (err)
4031 return err;
4033 if (order > slub_max_order || order < slub_min_order)
4034 return -EINVAL;
4036 calculate_sizes(s, order);
4037 return length;
4040 static ssize_t order_show(struct kmem_cache *s, char *buf)
4042 return sprintf(buf, "%d\n", oo_order(s->oo));
4044 SLAB_ATTR(order);
4046 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4048 return sprintf(buf, "%lu\n", s->min_partial);
4051 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4052 size_t length)
4054 unsigned long min;
4055 int err;
4057 err = strict_strtoul(buf, 10, &min);
4058 if (err)
4059 return err;
4061 set_min_partial(s, min);
4062 return length;
4064 SLAB_ATTR(min_partial);
4066 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4068 if (s->ctor) {
4069 int n = sprint_symbol(buf, (unsigned long)s->ctor);
4071 return n + sprintf(buf + n, "\n");
4073 return 0;
4075 SLAB_ATTR_RO(ctor);
4077 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4079 return sprintf(buf, "%d\n", s->refcount - 1);
4081 SLAB_ATTR_RO(aliases);
4083 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4085 return show_slab_objects(s, buf, SO_ALL);
4087 SLAB_ATTR_RO(slabs);
4089 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4091 return show_slab_objects(s, buf, SO_PARTIAL);
4093 SLAB_ATTR_RO(partial);
4095 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4097 return show_slab_objects(s, buf, SO_CPU);
4099 SLAB_ATTR_RO(cpu_slabs);
4101 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4103 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4105 SLAB_ATTR_RO(objects);
4107 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4109 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4111 SLAB_ATTR_RO(objects_partial);
4113 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4115 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4117 SLAB_ATTR_RO(total_objects);
4119 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4121 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4124 static ssize_t sanity_checks_store(struct kmem_cache *s,
4125 const char *buf, size_t length)
4127 s->flags &= ~SLAB_DEBUG_FREE;
4128 if (buf[0] == '1')
4129 s->flags |= SLAB_DEBUG_FREE;
4130 return length;
4132 SLAB_ATTR(sanity_checks);
4134 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4136 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4139 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4140 size_t length)
4142 s->flags &= ~SLAB_TRACE;
4143 if (buf[0] == '1')
4144 s->flags |= SLAB_TRACE;
4145 return length;
4147 SLAB_ATTR(trace);
4149 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4151 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4154 static ssize_t reclaim_account_store(struct kmem_cache *s,
4155 const char *buf, size_t length)
4157 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4158 if (buf[0] == '1')
4159 s->flags |= SLAB_RECLAIM_ACCOUNT;
4160 return length;
4162 SLAB_ATTR(reclaim_account);
4164 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4166 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4168 SLAB_ATTR_RO(hwcache_align);
4170 #ifdef CONFIG_ZONE_DMA
4171 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4173 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4175 SLAB_ATTR_RO(cache_dma);
4176 #endif
4178 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4180 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4182 SLAB_ATTR_RO(destroy_by_rcu);
4184 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4186 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4189 static ssize_t red_zone_store(struct kmem_cache *s,
4190 const char *buf, size_t length)
4192 if (any_slab_objects(s))
4193 return -EBUSY;
4195 s->flags &= ~SLAB_RED_ZONE;
4196 if (buf[0] == '1')
4197 s->flags |= SLAB_RED_ZONE;
4198 calculate_sizes(s, -1);
4199 return length;
4201 SLAB_ATTR(red_zone);
4203 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4205 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4208 static ssize_t poison_store(struct kmem_cache *s,
4209 const char *buf, size_t length)
4211 if (any_slab_objects(s))
4212 return -EBUSY;
4214 s->flags &= ~SLAB_POISON;
4215 if (buf[0] == '1')
4216 s->flags |= SLAB_POISON;
4217 calculate_sizes(s, -1);
4218 return length;
4220 SLAB_ATTR(poison);
4222 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4224 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4227 static ssize_t store_user_store(struct kmem_cache *s,
4228 const char *buf, size_t length)
4230 if (any_slab_objects(s))
4231 return -EBUSY;
4233 s->flags &= ~SLAB_STORE_USER;
4234 if (buf[0] == '1')
4235 s->flags |= SLAB_STORE_USER;
4236 calculate_sizes(s, -1);
4237 return length;
4239 SLAB_ATTR(store_user);
4241 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4243 return 0;
4246 static ssize_t validate_store(struct kmem_cache *s,
4247 const char *buf, size_t length)
4249 int ret = -EINVAL;
4251 if (buf[0] == '1') {
4252 ret = validate_slab_cache(s);
4253 if (ret >= 0)
4254 ret = length;
4256 return ret;
4258 SLAB_ATTR(validate);
4260 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4262 return 0;
4265 static ssize_t shrink_store(struct kmem_cache *s,
4266 const char *buf, size_t length)
4268 if (buf[0] == '1') {
4269 int rc = kmem_cache_shrink(s);
4271 if (rc)
4272 return rc;
4273 } else
4274 return -EINVAL;
4275 return length;
4277 SLAB_ATTR(shrink);
4279 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4281 if (!(s->flags & SLAB_STORE_USER))
4282 return -ENOSYS;
4283 return list_locations(s, buf, TRACK_ALLOC);
4285 SLAB_ATTR_RO(alloc_calls);
4287 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4289 if (!(s->flags & SLAB_STORE_USER))
4290 return -ENOSYS;
4291 return list_locations(s, buf, TRACK_FREE);
4293 SLAB_ATTR_RO(free_calls);
4295 #ifdef CONFIG_NUMA
4296 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4298 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4301 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4302 const char *buf, size_t length)
4304 unsigned long ratio;
4305 int err;
4307 err = strict_strtoul(buf, 10, &ratio);
4308 if (err)
4309 return err;
4311 if (ratio <= 100)
4312 s->remote_node_defrag_ratio = ratio * 10;
4314 return length;
4316 SLAB_ATTR(remote_node_defrag_ratio);
4317 #endif
4319 #ifdef CONFIG_SLUB_STATS
4320 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4322 unsigned long sum = 0;
4323 int cpu;
4324 int len;
4325 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4327 if (!data)
4328 return -ENOMEM;
4330 for_each_online_cpu(cpu) {
4331 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4333 data[cpu] = x;
4334 sum += x;
4337 len = sprintf(buf, "%lu", sum);
4339 #ifdef CONFIG_SMP
4340 for_each_online_cpu(cpu) {
4341 if (data[cpu] && len < PAGE_SIZE - 20)
4342 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4344 #endif
4345 kfree(data);
4346 return len + sprintf(buf + len, "\n");
4349 #define STAT_ATTR(si, text) \
4350 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4352 return show_stat(s, buf, si); \
4354 SLAB_ATTR_RO(text); \
4356 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4357 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4358 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4359 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4360 STAT_ATTR(FREE_FROZEN, free_frozen);
4361 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4362 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4363 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4364 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4365 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4366 STAT_ATTR(FREE_SLAB, free_slab);
4367 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4368 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4369 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4370 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4371 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4372 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4373 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4374 #endif
4376 static struct attribute *slab_attrs[] = {
4377 &slab_size_attr.attr,
4378 &object_size_attr.attr,
4379 &objs_per_slab_attr.attr,
4380 &order_attr.attr,
4381 &min_partial_attr.attr,
4382 &objects_attr.attr,
4383 &objects_partial_attr.attr,
4384 &total_objects_attr.attr,
4385 &slabs_attr.attr,
4386 &partial_attr.attr,
4387 &cpu_slabs_attr.attr,
4388 &ctor_attr.attr,
4389 &aliases_attr.attr,
4390 &align_attr.attr,
4391 &sanity_checks_attr.attr,
4392 &trace_attr.attr,
4393 &hwcache_align_attr.attr,
4394 &reclaim_account_attr.attr,
4395 &destroy_by_rcu_attr.attr,
4396 &red_zone_attr.attr,
4397 &poison_attr.attr,
4398 &store_user_attr.attr,
4399 &validate_attr.attr,
4400 &shrink_attr.attr,
4401 &alloc_calls_attr.attr,
4402 &free_calls_attr.attr,
4403 #ifdef CONFIG_ZONE_DMA
4404 &cache_dma_attr.attr,
4405 #endif
4406 #ifdef CONFIG_NUMA
4407 &remote_node_defrag_ratio_attr.attr,
4408 #endif
4409 #ifdef CONFIG_SLUB_STATS
4410 &alloc_fastpath_attr.attr,
4411 &alloc_slowpath_attr.attr,
4412 &free_fastpath_attr.attr,
4413 &free_slowpath_attr.attr,
4414 &free_frozen_attr.attr,
4415 &free_add_partial_attr.attr,
4416 &free_remove_partial_attr.attr,
4417 &alloc_from_partial_attr.attr,
4418 &alloc_slab_attr.attr,
4419 &alloc_refill_attr.attr,
4420 &free_slab_attr.attr,
4421 &cpuslab_flush_attr.attr,
4422 &deactivate_full_attr.attr,
4423 &deactivate_empty_attr.attr,
4424 &deactivate_to_head_attr.attr,
4425 &deactivate_to_tail_attr.attr,
4426 &deactivate_remote_frees_attr.attr,
4427 &order_fallback_attr.attr,
4428 #endif
4429 NULL
4432 static struct attribute_group slab_attr_group = {
4433 .attrs = slab_attrs,
4436 static ssize_t slab_attr_show(struct kobject *kobj,
4437 struct attribute *attr,
4438 char *buf)
4440 struct slab_attribute *attribute;
4441 struct kmem_cache *s;
4442 int err;
4444 attribute = to_slab_attr(attr);
4445 s = to_slab(kobj);
4447 if (!attribute->show)
4448 return -EIO;
4450 err = attribute->show(s, buf);
4452 return err;
4455 static ssize_t slab_attr_store(struct kobject *kobj,
4456 struct attribute *attr,
4457 const char *buf, size_t len)
4459 struct slab_attribute *attribute;
4460 struct kmem_cache *s;
4461 int err;
4463 attribute = to_slab_attr(attr);
4464 s = to_slab(kobj);
4466 if (!attribute->store)
4467 return -EIO;
4469 err = attribute->store(s, buf, len);
4471 return err;
4474 static void kmem_cache_release(struct kobject *kobj)
4476 struct kmem_cache *s = to_slab(kobj);
4478 kfree(s);
4481 static struct sysfs_ops slab_sysfs_ops = {
4482 .show = slab_attr_show,
4483 .store = slab_attr_store,
4486 static struct kobj_type slab_ktype = {
4487 .sysfs_ops = &slab_sysfs_ops,
4488 .release = kmem_cache_release
4491 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4493 struct kobj_type *ktype = get_ktype(kobj);
4495 if (ktype == &slab_ktype)
4496 return 1;
4497 return 0;
4500 static struct kset_uevent_ops slab_uevent_ops = {
4501 .filter = uevent_filter,
4504 static struct kset *slab_kset;
4506 #define ID_STR_LENGTH 64
4508 /* Create a unique string id for a slab cache:
4510 * Format :[flags-]size
4512 static char *create_unique_id(struct kmem_cache *s)
4514 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4515 char *p = name;
4517 BUG_ON(!name);
4519 *p++ = ':';
4521 * First flags affecting slabcache operations. We will only
4522 * get here for aliasable slabs so we do not need to support
4523 * too many flags. The flags here must cover all flags that
4524 * are matched during merging to guarantee that the id is
4525 * unique.
4527 if (s->flags & SLAB_CACHE_DMA)
4528 *p++ = 'd';
4529 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4530 *p++ = 'a';
4531 if (s->flags & SLAB_DEBUG_FREE)
4532 *p++ = 'F';
4533 if (!(s->flags & SLAB_NOTRACK))
4534 *p++ = 't';
4535 if (p != name + 1)
4536 *p++ = '-';
4537 p += sprintf(p, "%07d", s->size);
4538 BUG_ON(p > name + ID_STR_LENGTH - 1);
4539 return name;
4542 static int sysfs_slab_add(struct kmem_cache *s)
4544 int err;
4545 const char *name;
4546 int unmergeable;
4548 if (slab_state < SYSFS)
4549 /* Defer until later */
4550 return 0;
4552 unmergeable = slab_unmergeable(s);
4553 if (unmergeable) {
4555 * Slabcache can never be merged so we can use the name proper.
4556 * This is typically the case for debug situations. In that
4557 * case we can catch duplicate names easily.
4559 sysfs_remove_link(&slab_kset->kobj, s->name);
4560 name = s->name;
4561 } else {
4563 * Create a unique name for the slab as a target
4564 * for the symlinks.
4566 name = create_unique_id(s);
4569 s->kobj.kset = slab_kset;
4570 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4571 if (err) {
4572 kobject_put(&s->kobj);
4573 return err;
4576 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4577 if (err)
4578 return err;
4579 kobject_uevent(&s->kobj, KOBJ_ADD);
4580 if (!unmergeable) {
4581 /* Setup first alias */
4582 sysfs_slab_alias(s, s->name);
4583 kfree(name);
4585 return 0;
4588 static void sysfs_slab_remove(struct kmem_cache *s)
4590 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4591 kobject_del(&s->kobj);
4592 kobject_put(&s->kobj);
4596 * Need to buffer aliases during bootup until sysfs becomes
4597 * available lest we lose that information.
4599 struct saved_alias {
4600 struct kmem_cache *s;
4601 const char *name;
4602 struct saved_alias *next;
4605 static struct saved_alias *alias_list;
4607 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4609 struct saved_alias *al;
4611 if (slab_state == SYSFS) {
4613 * If we have a leftover link then remove it.
4615 sysfs_remove_link(&slab_kset->kobj, name);
4616 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4619 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4620 if (!al)
4621 return -ENOMEM;
4623 al->s = s;
4624 al->name = name;
4625 al->next = alias_list;
4626 alias_list = al;
4627 return 0;
4630 static int __init slab_sysfs_init(void)
4632 struct kmem_cache *s;
4633 int err;
4635 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4636 if (!slab_kset) {
4637 printk(KERN_ERR "Cannot register slab subsystem.\n");
4638 return -ENOSYS;
4641 slab_state = SYSFS;
4643 list_for_each_entry(s, &slab_caches, list) {
4644 err = sysfs_slab_add(s);
4645 if (err)
4646 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4647 " to sysfs\n", s->name);
4650 while (alias_list) {
4651 struct saved_alias *al = alias_list;
4653 alias_list = alias_list->next;
4654 err = sysfs_slab_alias(al->s, al->name);
4655 if (err)
4656 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4657 " %s to sysfs\n", s->name);
4658 kfree(al);
4661 resiliency_test();
4662 return 0;
4665 __initcall(slab_sysfs_init);
4666 #endif
4669 * The /proc/slabinfo ABI
4671 #ifdef CONFIG_SLABINFO
4672 static void print_slabinfo_header(struct seq_file *m)
4674 seq_puts(m, "slabinfo - version: 2.1\n");
4675 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4676 "<objperslab> <pagesperslab>");
4677 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4678 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4679 seq_putc(m, '\n');
4682 static void *s_start(struct seq_file *m, loff_t *pos)
4684 loff_t n = *pos;
4686 down_read(&slub_lock);
4687 if (!n)
4688 print_slabinfo_header(m);
4690 return seq_list_start(&slab_caches, *pos);
4693 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4695 return seq_list_next(p, &slab_caches, pos);
4698 static void s_stop(struct seq_file *m, void *p)
4700 up_read(&slub_lock);
4703 static int s_show(struct seq_file *m, void *p)
4705 unsigned long nr_partials = 0;
4706 unsigned long nr_slabs = 0;
4707 unsigned long nr_inuse = 0;
4708 unsigned long nr_objs = 0;
4709 unsigned long nr_free = 0;
4710 struct kmem_cache *s;
4711 int node;
4713 s = list_entry(p, struct kmem_cache, list);
4715 for_each_online_node(node) {
4716 struct kmem_cache_node *n = get_node(s, node);
4718 if (!n)
4719 continue;
4721 nr_partials += n->nr_partial;
4722 nr_slabs += atomic_long_read(&n->nr_slabs);
4723 nr_objs += atomic_long_read(&n->total_objects);
4724 nr_free += count_partial(n, count_free);
4727 nr_inuse = nr_objs - nr_free;
4729 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4730 nr_objs, s->size, oo_objects(s->oo),
4731 (1 << oo_order(s->oo)));
4732 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4733 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4734 0UL);
4735 seq_putc(m, '\n');
4736 return 0;
4739 static const struct seq_operations slabinfo_op = {
4740 .start = s_start,
4741 .next = s_next,
4742 .stop = s_stop,
4743 .show = s_show,
4746 static int slabinfo_open(struct inode *inode, struct file *file)
4748 return seq_open(file, &slabinfo_op);
4751 static const struct file_operations proc_slabinfo_operations = {
4752 .open = slabinfo_open,
4753 .read = seq_read,
4754 .llseek = seq_lseek,
4755 .release = seq_release,
4758 static int __init slab_proc_init(void)
4760 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4761 return 0;
4763 module_init(slab_proc_init);
4764 #endif /* CONFIG_SLABINFO */