2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
49 #include <linux/highmem.h>
50 #include <linux/spinlock.h>
51 #include <linux/blkdev.h>
52 #include <linux/delay.h>
53 #include <linux/timer.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/jiffies.h>
59 #include <linux/scatterlist.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/semaphore.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
72 /* debounce timing parameters in msecs { interval, duration, timeout } */
73 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
74 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
75 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
77 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
78 u16 heads
, u16 sectors
);
79 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
80 static unsigned int ata_dev_set_feature(struct ata_device
*dev
,
81 u8 enable
, u8 feature
);
82 static void ata_dev_xfermask(struct ata_device
*dev
);
83 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
);
85 unsigned int ata_print_id
= 1;
86 static struct workqueue_struct
*ata_wq
;
88 struct workqueue_struct
*ata_aux_wq
;
90 struct ata_force_param
{
94 unsigned long xfer_mask
;
95 unsigned int horkage_on
;
96 unsigned int horkage_off
;
99 struct ata_force_ent
{
102 struct ata_force_param param
;
105 static struct ata_force_ent
*ata_force_tbl
;
106 static int ata_force_tbl_size
;
108 static char ata_force_param_buf
[PAGE_SIZE
] __initdata
;
109 /* param_buf is thrown away after initialization, disallow read */
110 module_param_string(force
, ata_force_param_buf
, sizeof(ata_force_param_buf
), 0);
111 MODULE_PARM_DESC(force
, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
113 int atapi_enabled
= 1;
114 module_param(atapi_enabled
, int, 0444);
115 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on)");
117 static int atapi_dmadir
= 0;
118 module_param(atapi_dmadir
, int, 0444);
119 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
121 int atapi_passthru16
= 1;
122 module_param(atapi_passthru16
, int, 0444);
123 MODULE_PARM_DESC(atapi_passthru16
, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
126 module_param_named(fua
, libata_fua
, int, 0444);
127 MODULE_PARM_DESC(fua
, "FUA support (0=off, 1=on)");
129 static int ata_ignore_hpa
;
130 module_param_named(ignore_hpa
, ata_ignore_hpa
, int, 0644);
131 MODULE_PARM_DESC(ignore_hpa
, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
133 static int libata_dma_mask
= ATA_DMA_MASK_ATA
|ATA_DMA_MASK_ATAPI
|ATA_DMA_MASK_CFA
;
134 module_param_named(dma
, libata_dma_mask
, int, 0444);
135 MODULE_PARM_DESC(dma
, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
137 static int ata_probe_timeout
= ATA_TMOUT_INTERNAL
/ HZ
;
138 module_param(ata_probe_timeout
, int, 0444);
139 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
141 int libata_noacpi
= 0;
142 module_param_named(noacpi
, libata_noacpi
, int, 0444);
143 MODULE_PARM_DESC(noacpi
, "Disables the use of ACPI in probe/suspend/resume when set");
145 int libata_allow_tpm
= 0;
146 module_param_named(allow_tpm
, libata_allow_tpm
, int, 0444);
147 MODULE_PARM_DESC(allow_tpm
, "Permit the use of TPM commands");
149 MODULE_AUTHOR("Jeff Garzik");
150 MODULE_DESCRIPTION("Library module for ATA devices");
151 MODULE_LICENSE("GPL");
152 MODULE_VERSION(DRV_VERSION
);
156 * ata_force_cbl - force cable type according to libata.force
157 * @ap: ATA port of interest
159 * Force cable type according to libata.force and whine about it.
160 * The last entry which has matching port number is used, so it
161 * can be specified as part of device force parameters. For
162 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
168 void ata_force_cbl(struct ata_port
*ap
)
172 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
173 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
175 if (fe
->port
!= -1 && fe
->port
!= ap
->print_id
)
178 if (fe
->param
.cbl
== ATA_CBL_NONE
)
181 ap
->cbl
= fe
->param
.cbl
;
182 ata_port_printk(ap
, KERN_NOTICE
,
183 "FORCE: cable set to %s\n", fe
->param
.name
);
189 * ata_force_spd_limit - force SATA spd limit according to libata.force
190 * @link: ATA link of interest
192 * Force SATA spd limit according to libata.force and whine about
193 * it. When only the port part is specified (e.g. 1:), the limit
194 * applies to all links connected to both the host link and all
195 * fan-out ports connected via PMP. If the device part is
196 * specified as 0 (e.g. 1.00:), it specifies the first fan-out
197 * link not the host link. Device number 15 always points to the
198 * host link whether PMP is attached or not.
203 static void ata_force_spd_limit(struct ata_link
*link
)
207 if (ata_is_host_link(link
))
212 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
213 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
215 if (fe
->port
!= -1 && fe
->port
!= link
->ap
->print_id
)
218 if (fe
->device
!= -1 && fe
->device
!= linkno
)
221 if (!fe
->param
.spd_limit
)
224 link
->hw_sata_spd_limit
= (1 << fe
->param
.spd_limit
) - 1;
225 ata_link_printk(link
, KERN_NOTICE
,
226 "FORCE: PHY spd limit set to %s\n", fe
->param
.name
);
232 * ata_force_xfermask - force xfermask according to libata.force
233 * @dev: ATA device of interest
235 * Force xfer_mask according to libata.force and whine about it.
236 * For consistency with link selection, device number 15 selects
237 * the first device connected to the host link.
242 static void ata_force_xfermask(struct ata_device
*dev
)
244 int devno
= dev
->link
->pmp
+ dev
->devno
;
245 int alt_devno
= devno
;
248 /* allow n.15 for the first device attached to host port */
249 if (ata_is_host_link(dev
->link
) && devno
== 0)
252 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
253 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
254 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
256 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
259 if (fe
->device
!= -1 && fe
->device
!= devno
&&
260 fe
->device
!= alt_devno
)
263 if (!fe
->param
.xfer_mask
)
266 ata_unpack_xfermask(fe
->param
.xfer_mask
,
267 &pio_mask
, &mwdma_mask
, &udma_mask
);
269 dev
->udma_mask
= udma_mask
;
270 else if (mwdma_mask
) {
272 dev
->mwdma_mask
= mwdma_mask
;
276 dev
->pio_mask
= pio_mask
;
279 ata_dev_printk(dev
, KERN_NOTICE
,
280 "FORCE: xfer_mask set to %s\n", fe
->param
.name
);
286 * ata_force_horkage - force horkage according to libata.force
287 * @dev: ATA device of interest
289 * Force horkage according to libata.force and whine about it.
290 * For consistency with link selection, device number 15 selects
291 * the first device connected to the host link.
296 static void ata_force_horkage(struct ata_device
*dev
)
298 int devno
= dev
->link
->pmp
+ dev
->devno
;
299 int alt_devno
= devno
;
302 /* allow n.15 for the first device attached to host port */
303 if (ata_is_host_link(dev
->link
) && devno
== 0)
306 for (i
= 0; i
< ata_force_tbl_size
; i
++) {
307 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
309 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
312 if (fe
->device
!= -1 && fe
->device
!= devno
&&
313 fe
->device
!= alt_devno
)
316 if (!(~dev
->horkage
& fe
->param
.horkage_on
) &&
317 !(dev
->horkage
& fe
->param
.horkage_off
))
320 dev
->horkage
|= fe
->param
.horkage_on
;
321 dev
->horkage
&= ~fe
->param
.horkage_off
;
323 ata_dev_printk(dev
, KERN_NOTICE
,
324 "FORCE: horkage modified (%s)\n", fe
->param
.name
);
329 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
330 * @tf: Taskfile to convert
331 * @pmp: Port multiplier port
332 * @is_cmd: This FIS is for command
333 * @fis: Buffer into which data will output
335 * Converts a standard ATA taskfile to a Serial ATA
336 * FIS structure (Register - Host to Device).
339 * Inherited from caller.
341 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8 pmp
, int is_cmd
, u8
*fis
)
343 fis
[0] = 0x27; /* Register - Host to Device FIS */
344 fis
[1] = pmp
& 0xf; /* Port multiplier number*/
346 fis
[1] |= (1 << 7); /* bit 7 indicates Command FIS */
348 fis
[2] = tf
->command
;
349 fis
[3] = tf
->feature
;
356 fis
[8] = tf
->hob_lbal
;
357 fis
[9] = tf
->hob_lbam
;
358 fis
[10] = tf
->hob_lbah
;
359 fis
[11] = tf
->hob_feature
;
362 fis
[13] = tf
->hob_nsect
;
373 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
374 * @fis: Buffer from which data will be input
375 * @tf: Taskfile to output
377 * Converts a serial ATA FIS structure to a standard ATA taskfile.
380 * Inherited from caller.
383 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
385 tf
->command
= fis
[2]; /* status */
386 tf
->feature
= fis
[3]; /* error */
393 tf
->hob_lbal
= fis
[8];
394 tf
->hob_lbam
= fis
[9];
395 tf
->hob_lbah
= fis
[10];
398 tf
->hob_nsect
= fis
[13];
401 static const u8 ata_rw_cmds
[] = {
405 ATA_CMD_READ_MULTI_EXT
,
406 ATA_CMD_WRITE_MULTI_EXT
,
410 ATA_CMD_WRITE_MULTI_FUA_EXT
,
414 ATA_CMD_PIO_READ_EXT
,
415 ATA_CMD_PIO_WRITE_EXT
,
428 ATA_CMD_WRITE_FUA_EXT
432 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
433 * @tf: command to examine and configure
434 * @dev: device tf belongs to
436 * Examine the device configuration and tf->flags to calculate
437 * the proper read/write commands and protocol to use.
442 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
446 int index
, fua
, lba48
, write
;
448 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
449 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
450 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
452 if (dev
->flags
& ATA_DFLAG_PIO
) {
453 tf
->protocol
= ATA_PROT_PIO
;
454 index
= dev
->multi_count
? 0 : 8;
455 } else if (lba48
&& (dev
->link
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
456 /* Unable to use DMA due to host limitation */
457 tf
->protocol
= ATA_PROT_PIO
;
458 index
= dev
->multi_count
? 0 : 8;
460 tf
->protocol
= ATA_PROT_DMA
;
464 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
473 * ata_tf_read_block - Read block address from ATA taskfile
474 * @tf: ATA taskfile of interest
475 * @dev: ATA device @tf belongs to
480 * Read block address from @tf. This function can handle all
481 * three address formats - LBA, LBA48 and CHS. tf->protocol and
482 * flags select the address format to use.
485 * Block address read from @tf.
487 u64
ata_tf_read_block(struct ata_taskfile
*tf
, struct ata_device
*dev
)
491 if (tf
->flags
& ATA_TFLAG_LBA
) {
492 if (tf
->flags
& ATA_TFLAG_LBA48
) {
493 block
|= (u64
)tf
->hob_lbah
<< 40;
494 block
|= (u64
)tf
->hob_lbam
<< 32;
495 block
|= tf
->hob_lbal
<< 24;
497 block
|= (tf
->device
& 0xf) << 24;
499 block
|= tf
->lbah
<< 16;
500 block
|= tf
->lbam
<< 8;
505 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
506 head
= tf
->device
& 0xf;
509 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
;
516 * ata_build_rw_tf - Build ATA taskfile for given read/write request
517 * @tf: Target ATA taskfile
518 * @dev: ATA device @tf belongs to
519 * @block: Block address
520 * @n_block: Number of blocks
521 * @tf_flags: RW/FUA etc...
527 * Build ATA taskfile @tf for read/write request described by
528 * @block, @n_block, @tf_flags and @tag on @dev.
532 * 0 on success, -ERANGE if the request is too large for @dev,
533 * -EINVAL if the request is invalid.
535 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
536 u64 block
, u32 n_block
, unsigned int tf_flags
,
539 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
540 tf
->flags
|= tf_flags
;
542 if (ata_ncq_enabled(dev
) && likely(tag
!= ATA_TAG_INTERNAL
)) {
544 if (!lba_48_ok(block
, n_block
))
547 tf
->protocol
= ATA_PROT_NCQ
;
548 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
550 if (tf
->flags
& ATA_TFLAG_WRITE
)
551 tf
->command
= ATA_CMD_FPDMA_WRITE
;
553 tf
->command
= ATA_CMD_FPDMA_READ
;
555 tf
->nsect
= tag
<< 3;
556 tf
->hob_feature
= (n_block
>> 8) & 0xff;
557 tf
->feature
= n_block
& 0xff;
559 tf
->hob_lbah
= (block
>> 40) & 0xff;
560 tf
->hob_lbam
= (block
>> 32) & 0xff;
561 tf
->hob_lbal
= (block
>> 24) & 0xff;
562 tf
->lbah
= (block
>> 16) & 0xff;
563 tf
->lbam
= (block
>> 8) & 0xff;
564 tf
->lbal
= block
& 0xff;
567 if (tf
->flags
& ATA_TFLAG_FUA
)
568 tf
->device
|= 1 << 7;
569 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
570 tf
->flags
|= ATA_TFLAG_LBA
;
572 if (lba_28_ok(block
, n_block
)) {
574 tf
->device
|= (block
>> 24) & 0xf;
575 } else if (lba_48_ok(block
, n_block
)) {
576 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
580 tf
->flags
|= ATA_TFLAG_LBA48
;
582 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
584 tf
->hob_lbah
= (block
>> 40) & 0xff;
585 tf
->hob_lbam
= (block
>> 32) & 0xff;
586 tf
->hob_lbal
= (block
>> 24) & 0xff;
588 /* request too large even for LBA48 */
591 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
594 tf
->nsect
= n_block
& 0xff;
596 tf
->lbah
= (block
>> 16) & 0xff;
597 tf
->lbam
= (block
>> 8) & 0xff;
598 tf
->lbal
= block
& 0xff;
600 tf
->device
|= ATA_LBA
;
603 u32 sect
, head
, cyl
, track
;
605 /* The request -may- be too large for CHS addressing. */
606 if (!lba_28_ok(block
, n_block
))
609 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
612 /* Convert LBA to CHS */
613 track
= (u32
)block
/ dev
->sectors
;
614 cyl
= track
/ dev
->heads
;
615 head
= track
% dev
->heads
;
616 sect
= (u32
)block
% dev
->sectors
+ 1;
618 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
619 (u32
)block
, track
, cyl
, head
, sect
);
621 /* Check whether the converted CHS can fit.
625 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
628 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
639 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
640 * @pio_mask: pio_mask
641 * @mwdma_mask: mwdma_mask
642 * @udma_mask: udma_mask
644 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
645 * unsigned int xfer_mask.
653 unsigned long ata_pack_xfermask(unsigned long pio_mask
,
654 unsigned long mwdma_mask
,
655 unsigned long udma_mask
)
657 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
658 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
659 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
663 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
664 * @xfer_mask: xfer_mask to unpack
665 * @pio_mask: resulting pio_mask
666 * @mwdma_mask: resulting mwdma_mask
667 * @udma_mask: resulting udma_mask
669 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
670 * Any NULL distination masks will be ignored.
672 void ata_unpack_xfermask(unsigned long xfer_mask
, unsigned long *pio_mask
,
673 unsigned long *mwdma_mask
, unsigned long *udma_mask
)
676 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
678 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
680 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
683 static const struct ata_xfer_ent
{
687 { ATA_SHIFT_PIO
, ATA_NR_PIO_MODES
, XFER_PIO_0
},
688 { ATA_SHIFT_MWDMA
, ATA_NR_MWDMA_MODES
, XFER_MW_DMA_0
},
689 { ATA_SHIFT_UDMA
, ATA_NR_UDMA_MODES
, XFER_UDMA_0
},
694 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
695 * @xfer_mask: xfer_mask of interest
697 * Return matching XFER_* value for @xfer_mask. Only the highest
698 * bit of @xfer_mask is considered.
704 * Matching XFER_* value, 0xff if no match found.
706 u8
ata_xfer_mask2mode(unsigned long xfer_mask
)
708 int highbit
= fls(xfer_mask
) - 1;
709 const struct ata_xfer_ent
*ent
;
711 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
712 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
713 return ent
->base
+ highbit
- ent
->shift
;
718 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
719 * @xfer_mode: XFER_* of interest
721 * Return matching xfer_mask for @xfer_mode.
727 * Matching xfer_mask, 0 if no match found.
729 unsigned long ata_xfer_mode2mask(u8 xfer_mode
)
731 const struct ata_xfer_ent
*ent
;
733 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
734 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
735 return ((2 << (ent
->shift
+ xfer_mode
- ent
->base
)) - 1)
736 & ~((1 << ent
->shift
) - 1);
741 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
742 * @xfer_mode: XFER_* of interest
744 * Return matching xfer_shift for @xfer_mode.
750 * Matching xfer_shift, -1 if no match found.
752 int ata_xfer_mode2shift(unsigned long xfer_mode
)
754 const struct ata_xfer_ent
*ent
;
756 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
757 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
763 * ata_mode_string - convert xfer_mask to string
764 * @xfer_mask: mask of bits supported; only highest bit counts.
766 * Determine string which represents the highest speed
767 * (highest bit in @modemask).
773 * Constant C string representing highest speed listed in
774 * @mode_mask, or the constant C string "<n/a>".
776 const char *ata_mode_string(unsigned long xfer_mask
)
778 static const char * const xfer_mode_str
[] = {
802 highbit
= fls(xfer_mask
) - 1;
803 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
804 return xfer_mode_str
[highbit
];
808 static const char *sata_spd_string(unsigned int spd
)
810 static const char * const spd_str
[] = {
815 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
817 return spd_str
[spd
- 1];
820 void ata_dev_disable(struct ata_device
*dev
)
822 if (ata_dev_enabled(dev
)) {
823 if (ata_msg_drv(dev
->link
->ap
))
824 ata_dev_printk(dev
, KERN_WARNING
, "disabled\n");
825 ata_acpi_on_disable(dev
);
826 ata_down_xfermask_limit(dev
, ATA_DNXFER_FORCE_PIO0
|
832 static int ata_dev_set_dipm(struct ata_device
*dev
, enum link_pm policy
)
834 struct ata_link
*link
= dev
->link
;
835 struct ata_port
*ap
= link
->ap
;
837 unsigned int err_mask
;
841 * disallow DIPM for drivers which haven't set
842 * ATA_FLAG_IPM. This is because when DIPM is enabled,
843 * phy ready will be set in the interrupt status on
844 * state changes, which will cause some drivers to
845 * think there are errors - additionally drivers will
846 * need to disable hot plug.
848 if (!(ap
->flags
& ATA_FLAG_IPM
) || !ata_dev_enabled(dev
)) {
849 ap
->pm_policy
= NOT_AVAILABLE
;
854 * For DIPM, we will only enable it for the
857 * Why? Because Disks are too stupid to know that
858 * If the host rejects a request to go to SLUMBER
859 * they should retry at PARTIAL, and instead it
860 * just would give up. So, for medium_power to
861 * work at all, we need to only allow HIPM.
863 rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
869 /* no restrictions on IPM transitions */
870 scontrol
&= ~(0x3 << 8);
871 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
876 if (dev
->flags
& ATA_DFLAG_DIPM
)
877 err_mask
= ata_dev_set_feature(dev
,
878 SETFEATURES_SATA_ENABLE
, SATA_DIPM
);
881 /* allow IPM to PARTIAL */
882 scontrol
&= ~(0x1 << 8);
883 scontrol
|= (0x2 << 8);
884 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
889 * we don't have to disable DIPM since IPM flags
890 * disallow transitions to SLUMBER, which effectively
891 * disable DIPM if it does not support PARTIAL
895 case MAX_PERFORMANCE
:
896 /* disable all IPM transitions */
897 scontrol
|= (0x3 << 8);
898 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
903 * we don't have to disable DIPM since IPM flags
904 * disallow all transitions which effectively
905 * disable DIPM anyway.
910 /* FIXME: handle SET FEATURES failure */
917 * ata_dev_enable_pm - enable SATA interface power management
918 * @dev: device to enable power management
919 * @policy: the link power management policy
921 * Enable SATA Interface power management. This will enable
922 * Device Interface Power Management (DIPM) for min_power
923 * policy, and then call driver specific callbacks for
924 * enabling Host Initiated Power management.
927 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
929 void ata_dev_enable_pm(struct ata_device
*dev
, enum link_pm policy
)
932 struct ata_port
*ap
= dev
->link
->ap
;
934 /* set HIPM first, then DIPM */
935 if (ap
->ops
->enable_pm
)
936 rc
= ap
->ops
->enable_pm(ap
, policy
);
939 rc
= ata_dev_set_dipm(dev
, policy
);
943 ap
->pm_policy
= MAX_PERFORMANCE
;
945 ap
->pm_policy
= policy
;
946 return /* rc */; /* hopefully we can use 'rc' eventually */
951 * ata_dev_disable_pm - disable SATA interface power management
952 * @dev: device to disable power management
954 * Disable SATA Interface power management. This will disable
955 * Device Interface Power Management (DIPM) without changing
956 * policy, call driver specific callbacks for disabling Host
957 * Initiated Power management.
962 static void ata_dev_disable_pm(struct ata_device
*dev
)
964 struct ata_port
*ap
= dev
->link
->ap
;
966 ata_dev_set_dipm(dev
, MAX_PERFORMANCE
);
967 if (ap
->ops
->disable_pm
)
968 ap
->ops
->disable_pm(ap
);
970 #endif /* CONFIG_PM */
972 void ata_lpm_schedule(struct ata_port
*ap
, enum link_pm policy
)
974 ap
->pm_policy
= policy
;
975 ap
->link
.eh_info
.action
|= ATA_EHI_LPM
;
976 ap
->link
.eh_info
.flags
|= ATA_EHI_NO_AUTOPSY
;
977 ata_port_schedule_eh(ap
);
981 static void ata_lpm_enable(struct ata_host
*host
)
983 struct ata_link
*link
;
985 struct ata_device
*dev
;
988 for (i
= 0; i
< host
->n_ports
; i
++) {
990 ata_port_for_each_link(link
, ap
) {
991 ata_link_for_each_dev(dev
, link
)
992 ata_dev_disable_pm(dev
);
997 static void ata_lpm_disable(struct ata_host
*host
)
1001 for (i
= 0; i
< host
->n_ports
; i
++) {
1002 struct ata_port
*ap
= host
->ports
[i
];
1003 ata_lpm_schedule(ap
, ap
->pm_policy
);
1006 #endif /* CONFIG_PM */
1010 * ata_devchk - PATA device presence detection
1011 * @ap: ATA channel to examine
1012 * @device: Device to examine (starting at zero)
1014 * This technique was originally described in
1015 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1016 * later found its way into the ATA/ATAPI spec.
1018 * Write a pattern to the ATA shadow registers,
1019 * and if a device is present, it will respond by
1020 * correctly storing and echoing back the
1021 * ATA shadow register contents.
1027 static unsigned int ata_devchk(struct ata_port
*ap
, unsigned int device
)
1029 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1032 ap
->ops
->dev_select(ap
, device
);
1034 iowrite8(0x55, ioaddr
->nsect_addr
);
1035 iowrite8(0xaa, ioaddr
->lbal_addr
);
1037 iowrite8(0xaa, ioaddr
->nsect_addr
);
1038 iowrite8(0x55, ioaddr
->lbal_addr
);
1040 iowrite8(0x55, ioaddr
->nsect_addr
);
1041 iowrite8(0xaa, ioaddr
->lbal_addr
);
1043 nsect
= ioread8(ioaddr
->nsect_addr
);
1044 lbal
= ioread8(ioaddr
->lbal_addr
);
1046 if ((nsect
== 0x55) && (lbal
== 0xaa))
1047 return 1; /* we found a device */
1049 return 0; /* nothing found */
1053 * ata_dev_classify - determine device type based on ATA-spec signature
1054 * @tf: ATA taskfile register set for device to be identified
1056 * Determine from taskfile register contents whether a device is
1057 * ATA or ATAPI, as per "Signature and persistence" section
1058 * of ATA/PI spec (volume 1, sect 5.14).
1064 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1065 * %ATA_DEV_UNKNOWN the event of failure.
1067 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
1069 /* Apple's open source Darwin code hints that some devices only
1070 * put a proper signature into the LBA mid/high registers,
1071 * So, we only check those. It's sufficient for uniqueness.
1073 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1074 * signatures for ATA and ATAPI devices attached on SerialATA,
1075 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1076 * spec has never mentioned about using different signatures
1077 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1078 * Multiplier specification began to use 0x69/0x96 to identify
1079 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1080 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1081 * 0x69/0x96 shortly and described them as reserved for
1084 * We follow the current spec and consider that 0x69/0x96
1085 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1087 if ((tf
->lbam
== 0) && (tf
->lbah
== 0)) {
1088 DPRINTK("found ATA device by sig\n");
1092 if ((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) {
1093 DPRINTK("found ATAPI device by sig\n");
1094 return ATA_DEV_ATAPI
;
1097 if ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96)) {
1098 DPRINTK("found PMP device by sig\n");
1102 if ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3)) {
1103 printk(KERN_INFO
"ata: SEMB device ignored\n");
1104 return ATA_DEV_SEMB_UNSUP
; /* not yet */
1107 DPRINTK("unknown device\n");
1108 return ATA_DEV_UNKNOWN
;
1112 * ata_dev_try_classify - Parse returned ATA device signature
1113 * @dev: ATA device to classify (starting at zero)
1114 * @present: device seems present
1115 * @r_err: Value of error register on completion
1117 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1118 * an ATA/ATAPI-defined set of values is placed in the ATA
1119 * shadow registers, indicating the results of device detection
1122 * Select the ATA device, and read the values from the ATA shadow
1123 * registers. Then parse according to the Error register value,
1124 * and the spec-defined values examined by ata_dev_classify().
1130 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1132 unsigned int ata_dev_try_classify(struct ata_device
*dev
, int present
,
1135 struct ata_port
*ap
= dev
->link
->ap
;
1136 struct ata_taskfile tf
;
1140 ap
->ops
->dev_select(ap
, dev
->devno
);
1142 memset(&tf
, 0, sizeof(tf
));
1144 ap
->ops
->tf_read(ap
, &tf
);
1149 /* see if device passed diags: continue and warn later */
1151 /* diagnostic fail : do nothing _YET_ */
1152 dev
->horkage
|= ATA_HORKAGE_DIAGNOSTIC
;
1155 else if ((dev
->devno
== 0) && (err
== 0x81))
1158 return ATA_DEV_NONE
;
1160 /* determine if device is ATA or ATAPI */
1161 class = ata_dev_classify(&tf
);
1163 if (class == ATA_DEV_UNKNOWN
) {
1164 /* If the device failed diagnostic, it's likely to
1165 * have reported incorrect device signature too.
1166 * Assume ATA device if the device seems present but
1167 * device signature is invalid with diagnostic
1170 if (present
&& (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
))
1171 class = ATA_DEV_ATA
;
1173 class = ATA_DEV_NONE
;
1174 } else if ((class == ATA_DEV_ATA
) && (ata_chk_status(ap
) == 0))
1175 class = ATA_DEV_NONE
;
1181 * ata_id_string - Convert IDENTIFY DEVICE page into string
1182 * @id: IDENTIFY DEVICE results we will examine
1183 * @s: string into which data is output
1184 * @ofs: offset into identify device page
1185 * @len: length of string to return. must be an even number.
1187 * The strings in the IDENTIFY DEVICE page are broken up into
1188 * 16-bit chunks. Run through the string, and output each
1189 * 8-bit chunk linearly, regardless of platform.
1195 void ata_id_string(const u16
*id
, unsigned char *s
,
1196 unsigned int ofs
, unsigned int len
)
1215 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1216 * @id: IDENTIFY DEVICE results we will examine
1217 * @s: string into which data is output
1218 * @ofs: offset into identify device page
1219 * @len: length of string to return. must be an odd number.
1221 * This function is identical to ata_id_string except that it
1222 * trims trailing spaces and terminates the resulting string with
1223 * null. @len must be actual maximum length (even number) + 1.
1228 void ata_id_c_string(const u16
*id
, unsigned char *s
,
1229 unsigned int ofs
, unsigned int len
)
1233 WARN_ON(!(len
& 1));
1235 ata_id_string(id
, s
, ofs
, len
- 1);
1237 p
= s
+ strnlen(s
, len
- 1);
1238 while (p
> s
&& p
[-1] == ' ')
1243 static u64
ata_id_n_sectors(const u16
*id
)
1245 if (ata_id_has_lba(id
)) {
1246 if (ata_id_has_lba48(id
))
1247 return ata_id_u64(id
, 100);
1249 return ata_id_u32(id
, 60);
1251 if (ata_id_current_chs_valid(id
))
1252 return ata_id_u32(id
, 57);
1254 return id
[1] * id
[3] * id
[6];
1258 static u64
ata_tf_to_lba48(struct ata_taskfile
*tf
)
1262 sectors
|= ((u64
)(tf
->hob_lbah
& 0xff)) << 40;
1263 sectors
|= ((u64
)(tf
->hob_lbam
& 0xff)) << 32;
1264 sectors
|= (tf
->hob_lbal
& 0xff) << 24;
1265 sectors
|= (tf
->lbah
& 0xff) << 16;
1266 sectors
|= (tf
->lbam
& 0xff) << 8;
1267 sectors
|= (tf
->lbal
& 0xff);
1272 static u64
ata_tf_to_lba(struct ata_taskfile
*tf
)
1276 sectors
|= (tf
->device
& 0x0f) << 24;
1277 sectors
|= (tf
->lbah
& 0xff) << 16;
1278 sectors
|= (tf
->lbam
& 0xff) << 8;
1279 sectors
|= (tf
->lbal
& 0xff);
1285 * ata_read_native_max_address - Read native max address
1286 * @dev: target device
1287 * @max_sectors: out parameter for the result native max address
1289 * Perform an LBA48 or LBA28 native size query upon the device in
1293 * 0 on success, -EACCES if command is aborted by the drive.
1294 * -EIO on other errors.
1296 static int ata_read_native_max_address(struct ata_device
*dev
, u64
*max_sectors
)
1298 unsigned int err_mask
;
1299 struct ata_taskfile tf
;
1300 int lba48
= ata_id_has_lba48(dev
->id
);
1302 ata_tf_init(dev
, &tf
);
1304 /* always clear all address registers */
1305 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1308 tf
.command
= ATA_CMD_READ_NATIVE_MAX_EXT
;
1309 tf
.flags
|= ATA_TFLAG_LBA48
;
1311 tf
.command
= ATA_CMD_READ_NATIVE_MAX
;
1313 tf
.protocol
|= ATA_PROT_NODATA
;
1314 tf
.device
|= ATA_LBA
;
1316 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1318 ata_dev_printk(dev
, KERN_WARNING
, "failed to read native "
1319 "max address (err_mask=0x%x)\n", err_mask
);
1320 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
1326 *max_sectors
= ata_tf_to_lba48(&tf
);
1328 *max_sectors
= ata_tf_to_lba(&tf
);
1329 if (dev
->horkage
& ATA_HORKAGE_HPA_SIZE
)
1335 * ata_set_max_sectors - Set max sectors
1336 * @dev: target device
1337 * @new_sectors: new max sectors value to set for the device
1339 * Set max sectors of @dev to @new_sectors.
1342 * 0 on success, -EACCES if command is aborted or denied (due to
1343 * previous non-volatile SET_MAX) by the drive. -EIO on other
1346 static int ata_set_max_sectors(struct ata_device
*dev
, u64 new_sectors
)
1348 unsigned int err_mask
;
1349 struct ata_taskfile tf
;
1350 int lba48
= ata_id_has_lba48(dev
->id
);
1354 ata_tf_init(dev
, &tf
);
1356 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1359 tf
.command
= ATA_CMD_SET_MAX_EXT
;
1360 tf
.flags
|= ATA_TFLAG_LBA48
;
1362 tf
.hob_lbal
= (new_sectors
>> 24) & 0xff;
1363 tf
.hob_lbam
= (new_sectors
>> 32) & 0xff;
1364 tf
.hob_lbah
= (new_sectors
>> 40) & 0xff;
1366 tf
.command
= ATA_CMD_SET_MAX
;
1368 tf
.device
|= (new_sectors
>> 24) & 0xf;
1371 tf
.protocol
|= ATA_PROT_NODATA
;
1372 tf
.device
|= ATA_LBA
;
1374 tf
.lbal
= (new_sectors
>> 0) & 0xff;
1375 tf
.lbam
= (new_sectors
>> 8) & 0xff;
1376 tf
.lbah
= (new_sectors
>> 16) & 0xff;
1378 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1380 ata_dev_printk(dev
, KERN_WARNING
, "failed to set "
1381 "max address (err_mask=0x%x)\n", err_mask
);
1382 if (err_mask
== AC_ERR_DEV
&&
1383 (tf
.feature
& (ATA_ABORTED
| ATA_IDNF
)))
1392 * ata_hpa_resize - Resize a device with an HPA set
1393 * @dev: Device to resize
1395 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1396 * it if required to the full size of the media. The caller must check
1397 * the drive has the HPA feature set enabled.
1400 * 0 on success, -errno on failure.
1402 static int ata_hpa_resize(struct ata_device
*dev
)
1404 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
1405 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
1406 u64 sectors
= ata_id_n_sectors(dev
->id
);
1410 /* do we need to do it? */
1411 if (dev
->class != ATA_DEV_ATA
||
1412 !ata_id_has_lba(dev
->id
) || !ata_id_hpa_enabled(dev
->id
) ||
1413 (dev
->horkage
& ATA_HORKAGE_BROKEN_HPA
))
1416 /* read native max address */
1417 rc
= ata_read_native_max_address(dev
, &native_sectors
);
1419 /* If HPA isn't going to be unlocked, skip HPA
1420 * resizing from the next try.
1422 if (!ata_ignore_hpa
) {
1423 ata_dev_printk(dev
, KERN_WARNING
, "HPA support seems "
1424 "broken, will skip HPA handling\n");
1425 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1427 /* we can continue if device aborted the command */
1435 /* nothing to do? */
1436 if (native_sectors
<= sectors
|| !ata_ignore_hpa
) {
1437 if (!print_info
|| native_sectors
== sectors
)
1440 if (native_sectors
> sectors
)
1441 ata_dev_printk(dev
, KERN_INFO
,
1442 "HPA detected: current %llu, native %llu\n",
1443 (unsigned long long)sectors
,
1444 (unsigned long long)native_sectors
);
1445 else if (native_sectors
< sectors
)
1446 ata_dev_printk(dev
, KERN_WARNING
,
1447 "native sectors (%llu) is smaller than "
1449 (unsigned long long)native_sectors
,
1450 (unsigned long long)sectors
);
1454 /* let's unlock HPA */
1455 rc
= ata_set_max_sectors(dev
, native_sectors
);
1456 if (rc
== -EACCES
) {
1457 /* if device aborted the command, skip HPA resizing */
1458 ata_dev_printk(dev
, KERN_WARNING
, "device aborted resize "
1459 "(%llu -> %llu), skipping HPA handling\n",
1460 (unsigned long long)sectors
,
1461 (unsigned long long)native_sectors
);
1462 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1467 /* re-read IDENTIFY data */
1468 rc
= ata_dev_reread_id(dev
, 0);
1470 ata_dev_printk(dev
, KERN_ERR
, "failed to re-read IDENTIFY "
1471 "data after HPA resizing\n");
1476 u64 new_sectors
= ata_id_n_sectors(dev
->id
);
1477 ata_dev_printk(dev
, KERN_INFO
,
1478 "HPA unlocked: %llu -> %llu, native %llu\n",
1479 (unsigned long long)sectors
,
1480 (unsigned long long)new_sectors
,
1481 (unsigned long long)native_sectors
);
1488 * ata_noop_dev_select - Select device 0/1 on ATA bus
1489 * @ap: ATA channel to manipulate
1490 * @device: ATA device (numbered from zero) to select
1492 * This function performs no actual function.
1494 * May be used as the dev_select() entry in ata_port_operations.
1499 void ata_noop_dev_select(struct ata_port
*ap
, unsigned int device
)
1505 * ata_std_dev_select - Select device 0/1 on ATA bus
1506 * @ap: ATA channel to manipulate
1507 * @device: ATA device (numbered from zero) to select
1509 * Use the method defined in the ATA specification to
1510 * make either device 0, or device 1, active on the
1511 * ATA channel. Works with both PIO and MMIO.
1513 * May be used as the dev_select() entry in ata_port_operations.
1519 void ata_std_dev_select(struct ata_port
*ap
, unsigned int device
)
1524 tmp
= ATA_DEVICE_OBS
;
1526 tmp
= ATA_DEVICE_OBS
| ATA_DEV1
;
1528 iowrite8(tmp
, ap
->ioaddr
.device_addr
);
1529 ata_pause(ap
); /* needed; also flushes, for mmio */
1533 * ata_dev_select - Select device 0/1 on ATA bus
1534 * @ap: ATA channel to manipulate
1535 * @device: ATA device (numbered from zero) to select
1536 * @wait: non-zero to wait for Status register BSY bit to clear
1537 * @can_sleep: non-zero if context allows sleeping
1539 * Use the method defined in the ATA specification to
1540 * make either device 0, or device 1, active on the
1543 * This is a high-level version of ata_std_dev_select(),
1544 * which additionally provides the services of inserting
1545 * the proper pauses and status polling, where needed.
1551 void ata_dev_select(struct ata_port
*ap
, unsigned int device
,
1552 unsigned int wait
, unsigned int can_sleep
)
1554 if (ata_msg_probe(ap
))
1555 ata_port_printk(ap
, KERN_INFO
, "ata_dev_select: ENTER, "
1556 "device %u, wait %u\n", device
, wait
);
1561 ap
->ops
->dev_select(ap
, device
);
1564 if (can_sleep
&& ap
->link
.device
[device
].class == ATA_DEV_ATAPI
)
1571 * ata_dump_id - IDENTIFY DEVICE info debugging output
1572 * @id: IDENTIFY DEVICE page to dump
1574 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1581 static inline void ata_dump_id(const u16
*id
)
1583 DPRINTK("49==0x%04x "
1593 DPRINTK("80==0x%04x "
1603 DPRINTK("88==0x%04x "
1610 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1611 * @id: IDENTIFY data to compute xfer mask from
1613 * Compute the xfermask for this device. This is not as trivial
1614 * as it seems if we must consider early devices correctly.
1616 * FIXME: pre IDE drive timing (do we care ?).
1624 unsigned long ata_id_xfermask(const u16
*id
)
1626 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
1628 /* Usual case. Word 53 indicates word 64 is valid */
1629 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
1630 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
1634 /* If word 64 isn't valid then Word 51 high byte holds
1635 * the PIO timing number for the maximum. Turn it into
1638 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
1639 if (mode
< 5) /* Valid PIO range */
1640 pio_mask
= (2 << mode
) - 1;
1644 /* But wait.. there's more. Design your standards by
1645 * committee and you too can get a free iordy field to
1646 * process. However its the speeds not the modes that
1647 * are supported... Note drivers using the timing API
1648 * will get this right anyway
1652 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
1654 if (ata_id_is_cfa(id
)) {
1656 * Process compact flash extended modes
1658 int pio
= id
[163] & 0x7;
1659 int dma
= (id
[163] >> 3) & 7;
1662 pio_mask
|= (1 << 5);
1664 pio_mask
|= (1 << 6);
1666 mwdma_mask
|= (1 << 3);
1668 mwdma_mask
|= (1 << 4);
1672 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1673 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1675 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1679 * ata_pio_queue_task - Queue port_task
1680 * @ap: The ata_port to queue port_task for
1681 * @fn: workqueue function to be scheduled
1682 * @data: data for @fn to use
1683 * @delay: delay time for workqueue function
1685 * Schedule @fn(@data) for execution after @delay jiffies using
1686 * port_task. There is one port_task per port and it's the
1687 * user(low level driver)'s responsibility to make sure that only
1688 * one task is active at any given time.
1690 * libata core layer takes care of synchronization between
1691 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1695 * Inherited from caller.
1697 static void ata_pio_queue_task(struct ata_port
*ap
, void *data
,
1698 unsigned long delay
)
1700 ap
->port_task_data
= data
;
1702 /* may fail if ata_port_flush_task() in progress */
1703 queue_delayed_work(ata_wq
, &ap
->port_task
, delay
);
1707 * ata_port_flush_task - Flush port_task
1708 * @ap: The ata_port to flush port_task for
1710 * After this function completes, port_task is guranteed not to
1711 * be running or scheduled.
1714 * Kernel thread context (may sleep)
1716 void ata_port_flush_task(struct ata_port
*ap
)
1720 cancel_rearming_delayed_work(&ap
->port_task
);
1722 if (ata_msg_ctl(ap
))
1723 ata_port_printk(ap
, KERN_DEBUG
, "%s: EXIT\n", __func__
);
1726 static void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1728 struct completion
*waiting
= qc
->private_data
;
1734 * ata_exec_internal_sg - execute libata internal command
1735 * @dev: Device to which the command is sent
1736 * @tf: Taskfile registers for the command and the result
1737 * @cdb: CDB for packet command
1738 * @dma_dir: Data tranfer direction of the command
1739 * @sgl: sg list for the data buffer of the command
1740 * @n_elem: Number of sg entries
1741 * @timeout: Timeout in msecs (0 for default)
1743 * Executes libata internal command with timeout. @tf contains
1744 * command on entry and result on return. Timeout and error
1745 * conditions are reported via return value. No recovery action
1746 * is taken after a command times out. It's caller's duty to
1747 * clean up after timeout.
1750 * None. Should be called with kernel context, might sleep.
1753 * Zero on success, AC_ERR_* mask on failure
1755 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1756 struct ata_taskfile
*tf
, const u8
*cdb
,
1757 int dma_dir
, struct scatterlist
*sgl
,
1758 unsigned int n_elem
, unsigned long timeout
)
1760 struct ata_link
*link
= dev
->link
;
1761 struct ata_port
*ap
= link
->ap
;
1762 u8 command
= tf
->command
;
1763 struct ata_queued_cmd
*qc
;
1764 unsigned int tag
, preempted_tag
;
1765 u32 preempted_sactive
, preempted_qc_active
;
1766 int preempted_nr_active_links
;
1767 DECLARE_COMPLETION_ONSTACK(wait
);
1768 unsigned long flags
;
1769 unsigned int err_mask
;
1772 spin_lock_irqsave(ap
->lock
, flags
);
1774 /* no internal command while frozen */
1775 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1776 spin_unlock_irqrestore(ap
->lock
, flags
);
1777 return AC_ERR_SYSTEM
;
1780 /* initialize internal qc */
1782 /* XXX: Tag 0 is used for drivers with legacy EH as some
1783 * drivers choke if any other tag is given. This breaks
1784 * ata_tag_internal() test for those drivers. Don't use new
1785 * EH stuff without converting to it.
1787 if (ap
->ops
->error_handler
)
1788 tag
= ATA_TAG_INTERNAL
;
1792 if (test_and_set_bit(tag
, &ap
->qc_allocated
))
1794 qc
= __ata_qc_from_tag(ap
, tag
);
1802 preempted_tag
= link
->active_tag
;
1803 preempted_sactive
= link
->sactive
;
1804 preempted_qc_active
= ap
->qc_active
;
1805 preempted_nr_active_links
= ap
->nr_active_links
;
1806 link
->active_tag
= ATA_TAG_POISON
;
1809 ap
->nr_active_links
= 0;
1811 /* prepare & issue qc */
1814 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1815 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1816 qc
->dma_dir
= dma_dir
;
1817 if (dma_dir
!= DMA_NONE
) {
1818 unsigned int i
, buflen
= 0;
1819 struct scatterlist
*sg
;
1821 for_each_sg(sgl
, sg
, n_elem
, i
)
1822 buflen
+= sg
->length
;
1824 ata_sg_init(qc
, sgl
, n_elem
);
1825 qc
->nbytes
= buflen
;
1828 qc
->private_data
= &wait
;
1829 qc
->complete_fn
= ata_qc_complete_internal
;
1833 spin_unlock_irqrestore(ap
->lock
, flags
);
1836 timeout
= ata_probe_timeout
* 1000 / HZ
;
1838 rc
= wait_for_completion_timeout(&wait
, msecs_to_jiffies(timeout
));
1840 ata_port_flush_task(ap
);
1843 spin_lock_irqsave(ap
->lock
, flags
);
1845 /* We're racing with irq here. If we lose, the
1846 * following test prevents us from completing the qc
1847 * twice. If we win, the port is frozen and will be
1848 * cleaned up by ->post_internal_cmd().
1850 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1851 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1853 if (ap
->ops
->error_handler
)
1854 ata_port_freeze(ap
);
1856 ata_qc_complete(qc
);
1858 if (ata_msg_warn(ap
))
1859 ata_dev_printk(dev
, KERN_WARNING
,
1860 "qc timeout (cmd 0x%x)\n", command
);
1863 spin_unlock_irqrestore(ap
->lock
, flags
);
1866 /* do post_internal_cmd */
1867 if (ap
->ops
->post_internal_cmd
)
1868 ap
->ops
->post_internal_cmd(qc
);
1870 /* perform minimal error analysis */
1871 if (qc
->flags
& ATA_QCFLAG_FAILED
) {
1872 if (qc
->result_tf
.command
& (ATA_ERR
| ATA_DF
))
1873 qc
->err_mask
|= AC_ERR_DEV
;
1876 qc
->err_mask
|= AC_ERR_OTHER
;
1878 if (qc
->err_mask
& ~AC_ERR_OTHER
)
1879 qc
->err_mask
&= ~AC_ERR_OTHER
;
1883 spin_lock_irqsave(ap
->lock
, flags
);
1885 *tf
= qc
->result_tf
;
1886 err_mask
= qc
->err_mask
;
1889 link
->active_tag
= preempted_tag
;
1890 link
->sactive
= preempted_sactive
;
1891 ap
->qc_active
= preempted_qc_active
;
1892 ap
->nr_active_links
= preempted_nr_active_links
;
1894 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1895 * Until those drivers are fixed, we detect the condition
1896 * here, fail the command with AC_ERR_SYSTEM and reenable the
1899 * Note that this doesn't change any behavior as internal
1900 * command failure results in disabling the device in the
1901 * higher layer for LLDDs without new reset/EH callbacks.
1903 * Kill the following code as soon as those drivers are fixed.
1905 if (ap
->flags
& ATA_FLAG_DISABLED
) {
1906 err_mask
|= AC_ERR_SYSTEM
;
1910 spin_unlock_irqrestore(ap
->lock
, flags
);
1916 * ata_exec_internal - execute libata internal command
1917 * @dev: Device to which the command is sent
1918 * @tf: Taskfile registers for the command and the result
1919 * @cdb: CDB for packet command
1920 * @dma_dir: Data tranfer direction of the command
1921 * @buf: Data buffer of the command
1922 * @buflen: Length of data buffer
1923 * @timeout: Timeout in msecs (0 for default)
1925 * Wrapper around ata_exec_internal_sg() which takes simple
1926 * buffer instead of sg list.
1929 * None. Should be called with kernel context, might sleep.
1932 * Zero on success, AC_ERR_* mask on failure
1934 unsigned ata_exec_internal(struct ata_device
*dev
,
1935 struct ata_taskfile
*tf
, const u8
*cdb
,
1936 int dma_dir
, void *buf
, unsigned int buflen
,
1937 unsigned long timeout
)
1939 struct scatterlist
*psg
= NULL
, sg
;
1940 unsigned int n_elem
= 0;
1942 if (dma_dir
!= DMA_NONE
) {
1944 sg_init_one(&sg
, buf
, buflen
);
1949 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
,
1954 * ata_do_simple_cmd - execute simple internal command
1955 * @dev: Device to which the command is sent
1956 * @cmd: Opcode to execute
1958 * Execute a 'simple' command, that only consists of the opcode
1959 * 'cmd' itself, without filling any other registers
1962 * Kernel thread context (may sleep).
1965 * Zero on success, AC_ERR_* mask on failure
1967 unsigned int ata_do_simple_cmd(struct ata_device
*dev
, u8 cmd
)
1969 struct ata_taskfile tf
;
1971 ata_tf_init(dev
, &tf
);
1974 tf
.flags
|= ATA_TFLAG_DEVICE
;
1975 tf
.protocol
= ATA_PROT_NODATA
;
1977 return ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1981 * ata_pio_need_iordy - check if iordy needed
1984 * Check if the current speed of the device requires IORDY. Used
1985 * by various controllers for chip configuration.
1988 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1990 /* Controller doesn't support IORDY. Probably a pointless check
1991 as the caller should know this */
1992 if (adev
->link
->ap
->flags
& ATA_FLAG_NO_IORDY
)
1994 /* PIO3 and higher it is mandatory */
1995 if (adev
->pio_mode
> XFER_PIO_2
)
1997 /* We turn it on when possible */
1998 if (ata_id_has_iordy(adev
->id
))
2004 * ata_pio_mask_no_iordy - Return the non IORDY mask
2007 * Compute the highest mode possible if we are not using iordy. Return
2008 * -1 if no iordy mode is available.
2011 static u32
ata_pio_mask_no_iordy(const struct ata_device
*adev
)
2013 /* If we have no drive specific rule, then PIO 2 is non IORDY */
2014 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
2015 u16 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
2016 /* Is the speed faster than the drive allows non IORDY ? */
2018 /* This is cycle times not frequency - watch the logic! */
2019 if (pio
> 240) /* PIO2 is 240nS per cycle */
2020 return 3 << ATA_SHIFT_PIO
;
2021 return 7 << ATA_SHIFT_PIO
;
2024 return 3 << ATA_SHIFT_PIO
;
2028 * ata_dev_read_id - Read ID data from the specified device
2029 * @dev: target device
2030 * @p_class: pointer to class of the target device (may be changed)
2031 * @flags: ATA_READID_* flags
2032 * @id: buffer to read IDENTIFY data into
2034 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2035 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2036 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2037 * for pre-ATA4 drives.
2039 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2040 * now we abort if we hit that case.
2043 * Kernel thread context (may sleep)
2046 * 0 on success, -errno otherwise.
2048 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
2049 unsigned int flags
, u16
*id
)
2051 struct ata_port
*ap
= dev
->link
->ap
;
2052 unsigned int class = *p_class
;
2053 struct ata_taskfile tf
;
2054 unsigned int err_mask
= 0;
2056 int may_fallback
= 1, tried_spinup
= 0;
2059 if (ata_msg_ctl(ap
))
2060 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __func__
);
2062 ata_dev_select(ap
, dev
->devno
, 1, 1); /* select device 0/1 */
2064 ata_tf_init(dev
, &tf
);
2068 tf
.command
= ATA_CMD_ID_ATA
;
2071 tf
.command
= ATA_CMD_ID_ATAPI
;
2075 reason
= "unsupported class";
2079 tf
.protocol
= ATA_PROT_PIO
;
2081 /* Some devices choke if TF registers contain garbage. Make
2082 * sure those are properly initialized.
2084 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
2086 /* Device presence detection is unreliable on some
2087 * controllers. Always poll IDENTIFY if available.
2089 tf
.flags
|= ATA_TFLAG_POLLING
;
2091 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_FROM_DEVICE
,
2092 id
, sizeof(id
[0]) * ATA_ID_WORDS
, 0);
2094 if (err_mask
& AC_ERR_NODEV_HINT
) {
2095 DPRINTK("ata%u.%d: NODEV after polling detection\n",
2096 ap
->print_id
, dev
->devno
);
2100 /* Device or controller might have reported the wrong
2101 * device class. Give a shot at the other IDENTIFY if
2102 * the current one is aborted by the device.
2105 (err_mask
== AC_ERR_DEV
) && (tf
.feature
& ATA_ABORTED
)) {
2108 if (class == ATA_DEV_ATA
)
2109 class = ATA_DEV_ATAPI
;
2111 class = ATA_DEV_ATA
;
2116 reason
= "I/O error";
2120 /* Falling back doesn't make sense if ID data was read
2121 * successfully at least once.
2125 swap_buf_le16(id
, ATA_ID_WORDS
);
2129 reason
= "device reports invalid type";
2131 if (class == ATA_DEV_ATA
) {
2132 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
2135 if (ata_id_is_ata(id
))
2139 if (!tried_spinup
&& (id
[2] == 0x37c8 || id
[2] == 0x738c)) {
2142 * Drive powered-up in standby mode, and requires a specific
2143 * SET_FEATURES spin-up subcommand before it will accept
2144 * anything other than the original IDENTIFY command.
2146 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SPINUP
, 0);
2147 if (err_mask
&& id
[2] != 0x738c) {
2149 reason
= "SPINUP failed";
2153 * If the drive initially returned incomplete IDENTIFY info,
2154 * we now must reissue the IDENTIFY command.
2156 if (id
[2] == 0x37c8)
2160 if ((flags
& ATA_READID_POSTRESET
) && class == ATA_DEV_ATA
) {
2162 * The exact sequence expected by certain pre-ATA4 drives is:
2164 * IDENTIFY (optional in early ATA)
2165 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2167 * Some drives were very specific about that exact sequence.
2169 * Note that ATA4 says lba is mandatory so the second check
2170 * shoud never trigger.
2172 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
2173 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
2176 reason
= "INIT_DEV_PARAMS failed";
2180 /* current CHS translation info (id[53-58]) might be
2181 * changed. reread the identify device info.
2183 flags
&= ~ATA_READID_POSTRESET
;
2193 if (ata_msg_warn(ap
))
2194 ata_dev_printk(dev
, KERN_WARNING
, "failed to IDENTIFY "
2195 "(%s, err_mask=0x%x)\n", reason
, err_mask
);
2199 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
2201 struct ata_port
*ap
= dev
->link
->ap
;
2202 return ((ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
2205 static void ata_dev_config_ncq(struct ata_device
*dev
,
2206 char *desc
, size_t desc_sz
)
2208 struct ata_port
*ap
= dev
->link
->ap
;
2209 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
2211 if (!ata_id_has_ncq(dev
->id
)) {
2215 if (dev
->horkage
& ATA_HORKAGE_NONCQ
) {
2216 snprintf(desc
, desc_sz
, "NCQ (not used)");
2219 if (ap
->flags
& ATA_FLAG_NCQ
) {
2220 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
- 1);
2221 dev
->flags
|= ATA_DFLAG_NCQ
;
2224 if (hdepth
>= ddepth
)
2225 snprintf(desc
, desc_sz
, "NCQ (depth %d)", ddepth
);
2227 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)", hdepth
, ddepth
);
2231 * ata_dev_configure - Configure the specified ATA/ATAPI device
2232 * @dev: Target device to configure
2234 * Configure @dev according to @dev->id. Generic and low-level
2235 * driver specific fixups are also applied.
2238 * Kernel thread context (may sleep)
2241 * 0 on success, -errno otherwise
2243 int ata_dev_configure(struct ata_device
*dev
)
2245 struct ata_port
*ap
= dev
->link
->ap
;
2246 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
2247 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
2248 const u16
*id
= dev
->id
;
2249 unsigned long xfer_mask
;
2250 char revbuf
[7]; /* XYZ-99\0 */
2251 char fwrevbuf
[ATA_ID_FW_REV_LEN
+1];
2252 char modelbuf
[ATA_ID_PROD_LEN
+1];
2255 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
2256 ata_dev_printk(dev
, KERN_INFO
, "%s: ENTER/EXIT -- nodev\n",
2261 if (ata_msg_probe(ap
))
2262 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __func__
);
2265 dev
->horkage
|= ata_dev_blacklisted(dev
);
2266 ata_force_horkage(dev
);
2268 /* let ACPI work its magic */
2269 rc
= ata_acpi_on_devcfg(dev
);
2273 /* massage HPA, do it early as it might change IDENTIFY data */
2274 rc
= ata_hpa_resize(dev
);
2278 /* print device capabilities */
2279 if (ata_msg_probe(ap
))
2280 ata_dev_printk(dev
, KERN_DEBUG
,
2281 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2282 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2284 id
[49], id
[82], id
[83], id
[84],
2285 id
[85], id
[86], id
[87], id
[88]);
2287 /* initialize to-be-configured parameters */
2288 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
2289 dev
->max_sectors
= 0;
2297 * common ATA, ATAPI feature tests
2300 /* find max transfer mode; for printk only */
2301 xfer_mask
= ata_id_xfermask(id
);
2303 if (ata_msg_probe(ap
))
2306 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2307 ata_id_c_string(dev
->id
, fwrevbuf
, ATA_ID_FW_REV
,
2310 ata_id_c_string(dev
->id
, modelbuf
, ATA_ID_PROD
,
2313 /* ATA-specific feature tests */
2314 if (dev
->class == ATA_DEV_ATA
) {
2315 if (ata_id_is_cfa(id
)) {
2316 if (id
[162] & 1) /* CPRM may make this media unusable */
2317 ata_dev_printk(dev
, KERN_WARNING
,
2318 "supports DRM functions and may "
2319 "not be fully accessable.\n");
2320 snprintf(revbuf
, 7, "CFA");
2322 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
2323 /* Warn the user if the device has TPM extensions */
2324 if (ata_id_has_tpm(id
))
2325 ata_dev_printk(dev
, KERN_WARNING
,
2326 "supports DRM functions and may "
2327 "not be fully accessable.\n");
2330 dev
->n_sectors
= ata_id_n_sectors(id
);
2332 if (dev
->id
[59] & 0x100)
2333 dev
->multi_count
= dev
->id
[59] & 0xff;
2335 if (ata_id_has_lba(id
)) {
2336 const char *lba_desc
;
2340 dev
->flags
|= ATA_DFLAG_LBA
;
2341 if (ata_id_has_lba48(id
)) {
2342 dev
->flags
|= ATA_DFLAG_LBA48
;
2345 if (dev
->n_sectors
>= (1UL << 28) &&
2346 ata_id_has_flush_ext(id
))
2347 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
2351 ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
2353 /* print device info to dmesg */
2354 if (ata_msg_drv(ap
) && print_info
) {
2355 ata_dev_printk(dev
, KERN_INFO
,
2356 "%s: %s, %s, max %s\n",
2357 revbuf
, modelbuf
, fwrevbuf
,
2358 ata_mode_string(xfer_mask
));
2359 ata_dev_printk(dev
, KERN_INFO
,
2360 "%Lu sectors, multi %u: %s %s\n",
2361 (unsigned long long)dev
->n_sectors
,
2362 dev
->multi_count
, lba_desc
, ncq_desc
);
2367 /* Default translation */
2368 dev
->cylinders
= id
[1];
2370 dev
->sectors
= id
[6];
2372 if (ata_id_current_chs_valid(id
)) {
2373 /* Current CHS translation is valid. */
2374 dev
->cylinders
= id
[54];
2375 dev
->heads
= id
[55];
2376 dev
->sectors
= id
[56];
2379 /* print device info to dmesg */
2380 if (ata_msg_drv(ap
) && print_info
) {
2381 ata_dev_printk(dev
, KERN_INFO
,
2382 "%s: %s, %s, max %s\n",
2383 revbuf
, modelbuf
, fwrevbuf
,
2384 ata_mode_string(xfer_mask
));
2385 ata_dev_printk(dev
, KERN_INFO
,
2386 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2387 (unsigned long long)dev
->n_sectors
,
2388 dev
->multi_count
, dev
->cylinders
,
2389 dev
->heads
, dev
->sectors
);
2396 /* ATAPI-specific feature tests */
2397 else if (dev
->class == ATA_DEV_ATAPI
) {
2398 const char *cdb_intr_string
= "";
2399 const char *atapi_an_string
= "";
2400 const char *dma_dir_string
= "";
2403 rc
= atapi_cdb_len(id
);
2404 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
2405 if (ata_msg_warn(ap
))
2406 ata_dev_printk(dev
, KERN_WARNING
,
2407 "unsupported CDB len\n");
2411 dev
->cdb_len
= (unsigned int) rc
;
2413 /* Enable ATAPI AN if both the host and device have
2414 * the support. If PMP is attached, SNTF is required
2415 * to enable ATAPI AN to discern between PHY status
2416 * changed notifications and ATAPI ANs.
2418 if ((ap
->flags
& ATA_FLAG_AN
) && ata_id_has_atapi_AN(id
) &&
2419 (!ap
->nr_pmp_links
||
2420 sata_scr_read(&ap
->link
, SCR_NOTIFICATION
, &sntf
) == 0)) {
2421 unsigned int err_mask
;
2423 /* issue SET feature command to turn this on */
2424 err_mask
= ata_dev_set_feature(dev
,
2425 SETFEATURES_SATA_ENABLE
, SATA_AN
);
2427 ata_dev_printk(dev
, KERN_ERR
,
2428 "failed to enable ATAPI AN "
2429 "(err_mask=0x%x)\n", err_mask
);
2431 dev
->flags
|= ATA_DFLAG_AN
;
2432 atapi_an_string
= ", ATAPI AN";
2436 if (ata_id_cdb_intr(dev
->id
)) {
2437 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
2438 cdb_intr_string
= ", CDB intr";
2441 if (atapi_dmadir
|| atapi_id_dmadir(dev
->id
)) {
2442 dev
->flags
|= ATA_DFLAG_DMADIR
;
2443 dma_dir_string
= ", DMADIR";
2446 /* print device info to dmesg */
2447 if (ata_msg_drv(ap
) && print_info
)
2448 ata_dev_printk(dev
, KERN_INFO
,
2449 "ATAPI: %s, %s, max %s%s%s%s\n",
2451 ata_mode_string(xfer_mask
),
2452 cdb_intr_string
, atapi_an_string
,
2456 /* determine max_sectors */
2457 dev
->max_sectors
= ATA_MAX_SECTORS
;
2458 if (dev
->flags
& ATA_DFLAG_LBA48
)
2459 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2461 if (!(dev
->horkage
& ATA_HORKAGE_IPM
)) {
2462 if (ata_id_has_hipm(dev
->id
))
2463 dev
->flags
|= ATA_DFLAG_HIPM
;
2464 if (ata_id_has_dipm(dev
->id
))
2465 dev
->flags
|= ATA_DFLAG_DIPM
;
2468 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2470 if (ata_dev_knobble(dev
)) {
2471 if (ata_msg_drv(ap
) && print_info
)
2472 ata_dev_printk(dev
, KERN_INFO
,
2473 "applying bridge limits\n");
2474 dev
->udma_mask
&= ATA_UDMA5
;
2475 dev
->max_sectors
= ATA_MAX_SECTORS
;
2478 if ((dev
->class == ATA_DEV_ATAPI
) &&
2479 (atapi_command_packet_set(id
) == TYPE_TAPE
)) {
2480 dev
->max_sectors
= ATA_MAX_SECTORS_TAPE
;
2481 dev
->horkage
|= ATA_HORKAGE_STUCK_ERR
;
2484 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_128
)
2485 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_128
,
2488 if (ata_dev_blacklisted(dev
) & ATA_HORKAGE_IPM
) {
2489 dev
->horkage
|= ATA_HORKAGE_IPM
;
2491 /* reset link pm_policy for this port to no pm */
2492 ap
->pm_policy
= MAX_PERFORMANCE
;
2495 if (ap
->ops
->dev_config
)
2496 ap
->ops
->dev_config(dev
);
2498 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
2499 /* Let the user know. We don't want to disallow opens for
2500 rescue purposes, or in case the vendor is just a blithering
2501 idiot. Do this after the dev_config call as some controllers
2502 with buggy firmware may want to avoid reporting false device
2506 ata_dev_printk(dev
, KERN_WARNING
,
2507 "Drive reports diagnostics failure. This may indicate a drive\n");
2508 ata_dev_printk(dev
, KERN_WARNING
,
2509 "fault or invalid emulation. Contact drive vendor for information.\n");
2513 if (ata_msg_probe(ap
))
2514 ata_dev_printk(dev
, KERN_DEBUG
, "%s: EXIT, drv_stat = 0x%x\n",
2515 __func__
, ata_chk_status(ap
));
2519 if (ata_msg_probe(ap
))
2520 ata_dev_printk(dev
, KERN_DEBUG
,
2521 "%s: EXIT, err\n", __func__
);
2526 * ata_cable_40wire - return 40 wire cable type
2529 * Helper method for drivers which want to hardwire 40 wire cable
2533 int ata_cable_40wire(struct ata_port
*ap
)
2535 return ATA_CBL_PATA40
;
2539 * ata_cable_80wire - return 80 wire cable type
2542 * Helper method for drivers which want to hardwire 80 wire cable
2546 int ata_cable_80wire(struct ata_port
*ap
)
2548 return ATA_CBL_PATA80
;
2552 * ata_cable_unknown - return unknown PATA cable.
2555 * Helper method for drivers which have no PATA cable detection.
2558 int ata_cable_unknown(struct ata_port
*ap
)
2560 return ATA_CBL_PATA_UNK
;
2564 * ata_cable_ignore - return ignored PATA cable.
2567 * Helper method for drivers which don't use cable type to limit
2570 int ata_cable_ignore(struct ata_port
*ap
)
2572 return ATA_CBL_PATA_IGN
;
2576 * ata_cable_sata - return SATA cable type
2579 * Helper method for drivers which have SATA cables
2582 int ata_cable_sata(struct ata_port
*ap
)
2584 return ATA_CBL_SATA
;
2588 * ata_bus_probe - Reset and probe ATA bus
2591 * Master ATA bus probing function. Initiates a hardware-dependent
2592 * bus reset, then attempts to identify any devices found on
2596 * PCI/etc. bus probe sem.
2599 * Zero on success, negative errno otherwise.
2602 int ata_bus_probe(struct ata_port
*ap
)
2604 unsigned int classes
[ATA_MAX_DEVICES
];
2605 int tries
[ATA_MAX_DEVICES
];
2607 struct ata_device
*dev
;
2611 ata_link_for_each_dev(dev
, &ap
->link
)
2612 tries
[dev
->devno
] = ATA_PROBE_MAX_TRIES
;
2615 ata_link_for_each_dev(dev
, &ap
->link
) {
2616 /* If we issue an SRST then an ATA drive (not ATAPI)
2617 * may change configuration and be in PIO0 timing. If
2618 * we do a hard reset (or are coming from power on)
2619 * this is true for ATA or ATAPI. Until we've set a
2620 * suitable controller mode we should not touch the
2621 * bus as we may be talking too fast.
2623 dev
->pio_mode
= XFER_PIO_0
;
2625 /* If the controller has a pio mode setup function
2626 * then use it to set the chipset to rights. Don't
2627 * touch the DMA setup as that will be dealt with when
2628 * configuring devices.
2630 if (ap
->ops
->set_piomode
)
2631 ap
->ops
->set_piomode(ap
, dev
);
2634 /* reset and determine device classes */
2635 ap
->ops
->phy_reset(ap
);
2637 ata_link_for_each_dev(dev
, &ap
->link
) {
2638 if (!(ap
->flags
& ATA_FLAG_DISABLED
) &&
2639 dev
->class != ATA_DEV_UNKNOWN
)
2640 classes
[dev
->devno
] = dev
->class;
2642 classes
[dev
->devno
] = ATA_DEV_NONE
;
2644 dev
->class = ATA_DEV_UNKNOWN
;
2649 /* read IDENTIFY page and configure devices. We have to do the identify
2650 specific sequence bass-ackwards so that PDIAG- is released by
2653 ata_link_for_each_dev(dev
, &ap
->link
) {
2654 if (tries
[dev
->devno
])
2655 dev
->class = classes
[dev
->devno
];
2657 if (!ata_dev_enabled(dev
))
2660 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
2666 /* Now ask for the cable type as PDIAG- should have been released */
2667 if (ap
->ops
->cable_detect
)
2668 ap
->cbl
= ap
->ops
->cable_detect(ap
);
2670 /* We may have SATA bridge glue hiding here irrespective of the
2671 reported cable types and sensed types */
2672 ata_link_for_each_dev(dev
, &ap
->link
) {
2673 if (!ata_dev_enabled(dev
))
2675 /* SATA drives indicate we have a bridge. We don't know which
2676 end of the link the bridge is which is a problem */
2677 if (ata_id_is_sata(dev
->id
))
2678 ap
->cbl
= ATA_CBL_SATA
;
2681 /* After the identify sequence we can now set up the devices. We do
2682 this in the normal order so that the user doesn't get confused */
2684 ata_link_for_each_dev(dev
, &ap
->link
) {
2685 if (!ata_dev_enabled(dev
))
2688 ap
->link
.eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
2689 rc
= ata_dev_configure(dev
);
2690 ap
->link
.eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
2695 /* configure transfer mode */
2696 rc
= ata_set_mode(&ap
->link
, &dev
);
2700 ata_link_for_each_dev(dev
, &ap
->link
)
2701 if (ata_dev_enabled(dev
))
2704 /* no device present, disable port */
2705 ata_port_disable(ap
);
2709 tries
[dev
->devno
]--;
2713 /* eeek, something went very wrong, give up */
2714 tries
[dev
->devno
] = 0;
2718 /* give it just one more chance */
2719 tries
[dev
->devno
] = min(tries
[dev
->devno
], 1);
2721 if (tries
[dev
->devno
] == 1) {
2722 /* This is the last chance, better to slow
2723 * down than lose it.
2725 sata_down_spd_limit(&ap
->link
);
2726 ata_down_xfermask_limit(dev
, ATA_DNXFER_PIO
);
2730 if (!tries
[dev
->devno
])
2731 ata_dev_disable(dev
);
2737 * ata_port_probe - Mark port as enabled
2738 * @ap: Port for which we indicate enablement
2740 * Modify @ap data structure such that the system
2741 * thinks that the entire port is enabled.
2743 * LOCKING: host lock, or some other form of
2747 void ata_port_probe(struct ata_port
*ap
)
2749 ap
->flags
&= ~ATA_FLAG_DISABLED
;
2753 * sata_print_link_status - Print SATA link status
2754 * @link: SATA link to printk link status about
2756 * This function prints link speed and status of a SATA link.
2761 void sata_print_link_status(struct ata_link
*link
)
2763 u32 sstatus
, scontrol
, tmp
;
2765 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
))
2767 sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
2769 if (ata_link_online(link
)) {
2770 tmp
= (sstatus
>> 4) & 0xf;
2771 ata_link_printk(link
, KERN_INFO
,
2772 "SATA link up %s (SStatus %X SControl %X)\n",
2773 sata_spd_string(tmp
), sstatus
, scontrol
);
2775 ata_link_printk(link
, KERN_INFO
,
2776 "SATA link down (SStatus %X SControl %X)\n",
2782 * ata_dev_pair - return other device on cable
2785 * Obtain the other device on the same cable, or if none is
2786 * present NULL is returned
2789 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
2791 struct ata_link
*link
= adev
->link
;
2792 struct ata_device
*pair
= &link
->device
[1 - adev
->devno
];
2793 if (!ata_dev_enabled(pair
))
2799 * ata_port_disable - Disable port.
2800 * @ap: Port to be disabled.
2802 * Modify @ap data structure such that the system
2803 * thinks that the entire port is disabled, and should
2804 * never attempt to probe or communicate with devices
2807 * LOCKING: host lock, or some other form of
2811 void ata_port_disable(struct ata_port
*ap
)
2813 ap
->link
.device
[0].class = ATA_DEV_NONE
;
2814 ap
->link
.device
[1].class = ATA_DEV_NONE
;
2815 ap
->flags
|= ATA_FLAG_DISABLED
;
2819 * sata_down_spd_limit - adjust SATA spd limit downward
2820 * @link: Link to adjust SATA spd limit for
2822 * Adjust SATA spd limit of @link downward. Note that this
2823 * function only adjusts the limit. The change must be applied
2824 * using sata_set_spd().
2827 * Inherited from caller.
2830 * 0 on success, negative errno on failure
2832 int sata_down_spd_limit(struct ata_link
*link
)
2834 u32 sstatus
, spd
, mask
;
2837 if (!sata_scr_valid(link
))
2840 /* If SCR can be read, use it to determine the current SPD.
2841 * If not, use cached value in link->sata_spd.
2843 rc
= sata_scr_read(link
, SCR_STATUS
, &sstatus
);
2845 spd
= (sstatus
>> 4) & 0xf;
2847 spd
= link
->sata_spd
;
2849 mask
= link
->sata_spd_limit
;
2853 /* unconditionally mask off the highest bit */
2854 highbit
= fls(mask
) - 1;
2855 mask
&= ~(1 << highbit
);
2857 /* Mask off all speeds higher than or equal to the current
2858 * one. Force 1.5Gbps if current SPD is not available.
2861 mask
&= (1 << (spd
- 1)) - 1;
2865 /* were we already at the bottom? */
2869 link
->sata_spd_limit
= mask
;
2871 ata_link_printk(link
, KERN_WARNING
, "limiting SATA link speed to %s\n",
2872 sata_spd_string(fls(mask
)));
2877 static int __sata_set_spd_needed(struct ata_link
*link
, u32
*scontrol
)
2879 struct ata_link
*host_link
= &link
->ap
->link
;
2880 u32 limit
, target
, spd
;
2882 limit
= link
->sata_spd_limit
;
2884 /* Don't configure downstream link faster than upstream link.
2885 * It doesn't speed up anything and some PMPs choke on such
2888 if (!ata_is_host_link(link
) && host_link
->sata_spd
)
2889 limit
&= (1 << host_link
->sata_spd
) - 1;
2891 if (limit
== UINT_MAX
)
2894 target
= fls(limit
);
2896 spd
= (*scontrol
>> 4) & 0xf;
2897 *scontrol
= (*scontrol
& ~0xf0) | ((target
& 0xf) << 4);
2899 return spd
!= target
;
2903 * sata_set_spd_needed - is SATA spd configuration needed
2904 * @link: Link in question
2906 * Test whether the spd limit in SControl matches
2907 * @link->sata_spd_limit. This function is used to determine
2908 * whether hardreset is necessary to apply SATA spd
2912 * Inherited from caller.
2915 * 1 if SATA spd configuration is needed, 0 otherwise.
2917 int sata_set_spd_needed(struct ata_link
*link
)
2921 if (sata_scr_read(link
, SCR_CONTROL
, &scontrol
))
2924 return __sata_set_spd_needed(link
, &scontrol
);
2928 * sata_set_spd - set SATA spd according to spd limit
2929 * @link: Link to set SATA spd for
2931 * Set SATA spd of @link according to sata_spd_limit.
2934 * Inherited from caller.
2937 * 0 if spd doesn't need to be changed, 1 if spd has been
2938 * changed. Negative errno if SCR registers are inaccessible.
2940 int sata_set_spd(struct ata_link
*link
)
2945 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
2948 if (!__sata_set_spd_needed(link
, &scontrol
))
2951 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
2958 * This mode timing computation functionality is ported over from
2959 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2962 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2963 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2964 * for UDMA6, which is currently supported only by Maxtor drives.
2966 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2969 static const struct ata_timing ata_timing
[] = {
2970 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2971 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 600, 0 },
2972 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 383, 0 },
2973 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 240, 0 },
2974 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 180, 0 },
2975 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 120, 0 },
2976 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 100, 0 },
2977 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 80, 0 },
2979 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 960, 0 },
2980 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 480, 0 },
2981 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 240, 0 },
2983 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 480, 0 },
2984 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 150, 0 },
2985 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 120, 0 },
2986 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 100, 0 },
2987 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 80, 0 },
2989 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2990 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 120 },
2991 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 80 },
2992 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 60 },
2993 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 45 },
2994 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 30 },
2995 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 20 },
2996 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 15 },
3001 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3002 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3004 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
3006 q
->setup
= EZ(t
->setup
* 1000, T
);
3007 q
->act8b
= EZ(t
->act8b
* 1000, T
);
3008 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
3009 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
3010 q
->active
= EZ(t
->active
* 1000, T
);
3011 q
->recover
= EZ(t
->recover
* 1000, T
);
3012 q
->cycle
= EZ(t
->cycle
* 1000, T
);
3013 q
->udma
= EZ(t
->udma
* 1000, UT
);
3016 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
3017 struct ata_timing
*m
, unsigned int what
)
3019 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
3020 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
3021 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
3022 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
3023 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
3024 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
3025 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
3026 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
3029 const struct ata_timing
*ata_timing_find_mode(u8 xfer_mode
)
3031 const struct ata_timing
*t
= ata_timing
;
3033 while (xfer_mode
> t
->mode
)
3036 if (xfer_mode
== t
->mode
)
3041 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
3042 struct ata_timing
*t
, int T
, int UT
)
3044 const struct ata_timing
*s
;
3045 struct ata_timing p
;
3051 if (!(s
= ata_timing_find_mode(speed
)))
3054 memcpy(t
, s
, sizeof(*s
));
3057 * If the drive is an EIDE drive, it can tell us it needs extended
3058 * PIO/MW_DMA cycle timing.
3061 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
3062 memset(&p
, 0, sizeof(p
));
3063 if (speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
3064 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO
];
3065 else p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO_IORDY
];
3066 } else if (speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
) {
3067 p
.cycle
= adev
->id
[ATA_ID_EIDE_DMA_MIN
];
3069 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
3073 * Convert the timing to bus clock counts.
3076 ata_timing_quantize(t
, t
, T
, UT
);
3079 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3080 * S.M.A.R.T * and some other commands. We have to ensure that the
3081 * DMA cycle timing is slower/equal than the fastest PIO timing.
3084 if (speed
> XFER_PIO_6
) {
3085 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
3086 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
3090 * Lengthen active & recovery time so that cycle time is correct.
3093 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
3094 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
3095 t
->rec8b
= t
->cyc8b
- t
->act8b
;
3098 if (t
->active
+ t
->recover
< t
->cycle
) {
3099 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
3100 t
->recover
= t
->cycle
- t
->active
;
3103 /* In a few cases quantisation may produce enough errors to
3104 leave t->cycle too low for the sum of active and recovery
3105 if so we must correct this */
3106 if (t
->active
+ t
->recover
> t
->cycle
)
3107 t
->cycle
= t
->active
+ t
->recover
;
3113 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3114 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3115 * @cycle: cycle duration in ns
3117 * Return matching xfer mode for @cycle. The returned mode is of
3118 * the transfer type specified by @xfer_shift. If @cycle is too
3119 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3120 * than the fastest known mode, the fasted mode is returned.
3126 * Matching xfer_mode, 0xff if no match found.
3128 u8
ata_timing_cycle2mode(unsigned int xfer_shift
, int cycle
)
3130 u8 base_mode
= 0xff, last_mode
= 0xff;
3131 const struct ata_xfer_ent
*ent
;
3132 const struct ata_timing
*t
;
3134 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
3135 if (ent
->shift
== xfer_shift
)
3136 base_mode
= ent
->base
;
3138 for (t
= ata_timing_find_mode(base_mode
);
3139 t
&& ata_xfer_mode2shift(t
->mode
) == xfer_shift
; t
++) {
3140 unsigned short this_cycle
;
3142 switch (xfer_shift
) {
3144 case ATA_SHIFT_MWDMA
:
3145 this_cycle
= t
->cycle
;
3147 case ATA_SHIFT_UDMA
:
3148 this_cycle
= t
->udma
;
3154 if (cycle
> this_cycle
)
3157 last_mode
= t
->mode
;
3164 * ata_down_xfermask_limit - adjust dev xfer masks downward
3165 * @dev: Device to adjust xfer masks
3166 * @sel: ATA_DNXFER_* selector
3168 * Adjust xfer masks of @dev downward. Note that this function
3169 * does not apply the change. Invoking ata_set_mode() afterwards
3170 * will apply the limit.
3173 * Inherited from caller.
3176 * 0 on success, negative errno on failure
3178 int ata_down_xfermask_limit(struct ata_device
*dev
, unsigned int sel
)
3181 unsigned long orig_mask
, xfer_mask
;
3182 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
3185 quiet
= !!(sel
& ATA_DNXFER_QUIET
);
3186 sel
&= ~ATA_DNXFER_QUIET
;
3188 xfer_mask
= orig_mask
= ata_pack_xfermask(dev
->pio_mask
,
3191 ata_unpack_xfermask(xfer_mask
, &pio_mask
, &mwdma_mask
, &udma_mask
);
3194 case ATA_DNXFER_PIO
:
3195 highbit
= fls(pio_mask
) - 1;
3196 pio_mask
&= ~(1 << highbit
);
3199 case ATA_DNXFER_DMA
:
3201 highbit
= fls(udma_mask
) - 1;
3202 udma_mask
&= ~(1 << highbit
);
3205 } else if (mwdma_mask
) {
3206 highbit
= fls(mwdma_mask
) - 1;
3207 mwdma_mask
&= ~(1 << highbit
);
3213 case ATA_DNXFER_40C
:
3214 udma_mask
&= ATA_UDMA_MASK_40C
;
3217 case ATA_DNXFER_FORCE_PIO0
:
3219 case ATA_DNXFER_FORCE_PIO
:
3228 xfer_mask
&= ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
3230 if (!(xfer_mask
& ATA_MASK_PIO
) || xfer_mask
== orig_mask
)
3234 if (xfer_mask
& (ATA_MASK_MWDMA
| ATA_MASK_UDMA
))
3235 snprintf(buf
, sizeof(buf
), "%s:%s",
3236 ata_mode_string(xfer_mask
),
3237 ata_mode_string(xfer_mask
& ATA_MASK_PIO
));
3239 snprintf(buf
, sizeof(buf
), "%s",
3240 ata_mode_string(xfer_mask
));
3242 ata_dev_printk(dev
, KERN_WARNING
,
3243 "limiting speed to %s\n", buf
);
3246 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
3252 static int ata_dev_set_mode(struct ata_device
*dev
)
3254 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
3255 const char *dev_err_whine
= "";
3256 int ign_dev_err
= 0;
3257 unsigned int err_mask
;
3260 dev
->flags
&= ~ATA_DFLAG_PIO
;
3261 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
3262 dev
->flags
|= ATA_DFLAG_PIO
;
3264 err_mask
= ata_dev_set_xfermode(dev
);
3266 if (err_mask
& ~AC_ERR_DEV
)
3270 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
3271 rc
= ata_dev_revalidate(dev
, ATA_DEV_UNKNOWN
, 0);
3272 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
3276 /* Old CFA may refuse this command, which is just fine */
3277 if (dev
->xfer_shift
== ATA_SHIFT_PIO
&& ata_id_is_cfa(dev
->id
))
3280 /* Some very old devices and some bad newer ones fail any kind of
3281 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3282 if (dev
->xfer_shift
== ATA_SHIFT_PIO
&& !ata_id_has_iordy(dev
->id
) &&
3283 dev
->pio_mode
<= XFER_PIO_2
)
3286 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3287 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3288 if (dev
->xfer_shift
== ATA_SHIFT_MWDMA
&&
3289 dev
->dma_mode
== XFER_MW_DMA_0
&&
3290 (dev
->id
[63] >> 8) & 1)
3293 /* if the device is actually configured correctly, ignore dev err */
3294 if (dev
->xfer_mode
== ata_xfer_mask2mode(ata_id_xfermask(dev
->id
)))
3297 if (err_mask
& AC_ERR_DEV
) {
3301 dev_err_whine
= " (device error ignored)";
3304 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3305 dev
->xfer_shift
, (int)dev
->xfer_mode
);
3307 ata_dev_printk(dev
, KERN_INFO
, "configured for %s%s\n",
3308 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)),
3314 ata_dev_printk(dev
, KERN_ERR
, "failed to set xfermode "
3315 "(err_mask=0x%x)\n", err_mask
);
3320 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3321 * @link: link on which timings will be programmed
3322 * @r_failed_dev: out parameter for failed device
3324 * Standard implementation of the function used to tune and set
3325 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3326 * ata_dev_set_mode() fails, pointer to the failing device is
3327 * returned in @r_failed_dev.
3330 * PCI/etc. bus probe sem.
3333 * 0 on success, negative errno otherwise
3336 int ata_do_set_mode(struct ata_link
*link
, struct ata_device
**r_failed_dev
)
3338 struct ata_port
*ap
= link
->ap
;
3339 struct ata_device
*dev
;
3340 int rc
= 0, used_dma
= 0, found
= 0;
3342 /* step 1: calculate xfer_mask */
3343 ata_link_for_each_dev(dev
, link
) {
3344 unsigned long pio_mask
, dma_mask
;
3345 unsigned int mode_mask
;
3347 if (!ata_dev_enabled(dev
))
3350 mode_mask
= ATA_DMA_MASK_ATA
;
3351 if (dev
->class == ATA_DEV_ATAPI
)
3352 mode_mask
= ATA_DMA_MASK_ATAPI
;
3353 else if (ata_id_is_cfa(dev
->id
))
3354 mode_mask
= ATA_DMA_MASK_CFA
;
3356 ata_dev_xfermask(dev
);
3357 ata_force_xfermask(dev
);
3359 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
3360 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3362 if (libata_dma_mask
& mode_mask
)
3363 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3367 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
3368 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
3371 if (dev
->dma_mode
!= 0xff)
3377 /* step 2: always set host PIO timings */
3378 ata_link_for_each_dev(dev
, link
) {
3379 if (!ata_dev_enabled(dev
))
3382 if (dev
->pio_mode
== 0xff) {
3383 ata_dev_printk(dev
, KERN_WARNING
, "no PIO support\n");
3388 dev
->xfer_mode
= dev
->pio_mode
;
3389 dev
->xfer_shift
= ATA_SHIFT_PIO
;
3390 if (ap
->ops
->set_piomode
)
3391 ap
->ops
->set_piomode(ap
, dev
);
3394 /* step 3: set host DMA timings */
3395 ata_link_for_each_dev(dev
, link
) {
3396 if (!ata_dev_enabled(dev
) || dev
->dma_mode
== 0xff)
3399 dev
->xfer_mode
= dev
->dma_mode
;
3400 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
3401 if (ap
->ops
->set_dmamode
)
3402 ap
->ops
->set_dmamode(ap
, dev
);
3405 /* step 4: update devices' xfer mode */
3406 ata_link_for_each_dev(dev
, link
) {
3407 /* don't update suspended devices' xfer mode */
3408 if (!ata_dev_enabled(dev
))
3411 rc
= ata_dev_set_mode(dev
);
3416 /* Record simplex status. If we selected DMA then the other
3417 * host channels are not permitted to do so.
3419 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
3420 ap
->host
->simplex_claimed
= ap
;
3424 *r_failed_dev
= dev
;
3429 * ata_tf_to_host - issue ATA taskfile to host controller
3430 * @ap: port to which command is being issued
3431 * @tf: ATA taskfile register set
3433 * Issues ATA taskfile register set to ATA host controller,
3434 * with proper synchronization with interrupt handler and
3438 * spin_lock_irqsave(host lock)
3441 static inline void ata_tf_to_host(struct ata_port
*ap
,
3442 const struct ata_taskfile
*tf
)
3444 ap
->ops
->tf_load(ap
, tf
);
3445 ap
->ops
->exec_command(ap
, tf
);
3449 * ata_busy_sleep - sleep until BSY clears, or timeout
3450 * @ap: port containing status register to be polled
3451 * @tmout_pat: impatience timeout
3452 * @tmout: overall timeout
3454 * Sleep until ATA Status register bit BSY clears,
3455 * or a timeout occurs.
3458 * Kernel thread context (may sleep).
3461 * 0 on success, -errno otherwise.
3463 int ata_busy_sleep(struct ata_port
*ap
,
3464 unsigned long tmout_pat
, unsigned long tmout
)
3466 unsigned long timer_start
, timeout
;
3469 status
= ata_busy_wait(ap
, ATA_BUSY
, 300);
3470 timer_start
= jiffies
;
3471 timeout
= timer_start
+ tmout_pat
;
3472 while (status
!= 0xff && (status
& ATA_BUSY
) &&
3473 time_before(jiffies
, timeout
)) {
3475 status
= ata_busy_wait(ap
, ATA_BUSY
, 3);
3478 if (status
!= 0xff && (status
& ATA_BUSY
))
3479 ata_port_printk(ap
, KERN_WARNING
,
3480 "port is slow to respond, please be patient "
3481 "(Status 0x%x)\n", status
);
3483 timeout
= timer_start
+ tmout
;
3484 while (status
!= 0xff && (status
& ATA_BUSY
) &&
3485 time_before(jiffies
, timeout
)) {
3487 status
= ata_chk_status(ap
);
3493 if (status
& ATA_BUSY
) {
3494 ata_port_printk(ap
, KERN_ERR
, "port failed to respond "
3495 "(%lu secs, Status 0x%x)\n",
3496 tmout
/ HZ
, status
);
3504 * ata_wait_after_reset - wait before checking status after reset
3505 * @ap: port containing status register to be polled
3506 * @deadline: deadline jiffies for the operation
3508 * After reset, we need to pause a while before reading status.
3509 * Also, certain combination of controller and device report 0xff
3510 * for some duration (e.g. until SATA PHY is up and running)
3511 * which is interpreted as empty port in ATA world. This
3512 * function also waits for such devices to get out of 0xff
3516 * Kernel thread context (may sleep).
3518 void ata_wait_after_reset(struct ata_port
*ap
, unsigned long deadline
)
3520 unsigned long until
= jiffies
+ ATA_TMOUT_FF_WAIT
;
3522 if (time_before(until
, deadline
))
3525 /* Spec mandates ">= 2ms" before checking status. We wait
3526 * 150ms, because that was the magic delay used for ATAPI
3527 * devices in Hale Landis's ATADRVR, for the period of time
3528 * between when the ATA command register is written, and then
3529 * status is checked. Because waiting for "a while" before
3530 * checking status is fine, post SRST, we perform this magic
3531 * delay here as well.
3533 * Old drivers/ide uses the 2mS rule and then waits for ready.
3537 /* Wait for 0xff to clear. Some SATA devices take a long time
3538 * to clear 0xff after reset. For example, HHD424020F7SV00
3539 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3542 * Note that some PATA controllers (pata_ali) explode if
3543 * status register is read more than once when there's no
3546 if (ap
->flags
& ATA_FLAG_SATA
) {
3548 u8 status
= ata_chk_status(ap
);
3550 if (status
!= 0xff || time_after(jiffies
, deadline
))
3559 * ata_wait_ready - sleep until BSY clears, or timeout
3560 * @ap: port containing status register to be polled
3561 * @deadline: deadline jiffies for the operation
3563 * Sleep until ATA Status register bit BSY clears, or timeout
3567 * Kernel thread context (may sleep).
3570 * 0 on success, -errno otherwise.
3572 int ata_wait_ready(struct ata_port
*ap
, unsigned long deadline
)
3574 unsigned long start
= jiffies
;
3578 u8 status
= ata_chk_status(ap
);
3579 unsigned long now
= jiffies
;
3581 if (!(status
& ATA_BUSY
))
3583 if (!ata_link_online(&ap
->link
) && status
== 0xff)
3585 if (time_after(now
, deadline
))
3588 if (!warned
&& time_after(now
, start
+ 5 * HZ
) &&
3589 (deadline
- now
> 3 * HZ
)) {
3590 ata_port_printk(ap
, KERN_WARNING
,
3591 "port is slow to respond, please be patient "
3592 "(Status 0x%x)\n", status
);
3600 static int ata_bus_post_reset(struct ata_port
*ap
, unsigned int devmask
,
3601 unsigned long deadline
)
3603 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3604 unsigned int dev0
= devmask
& (1 << 0);
3605 unsigned int dev1
= devmask
& (1 << 1);
3608 /* if device 0 was found in ata_devchk, wait for its
3612 rc
= ata_wait_ready(ap
, deadline
);
3620 /* if device 1 was found in ata_devchk, wait for register
3621 * access briefly, then wait for BSY to clear.
3626 ap
->ops
->dev_select(ap
, 1);
3628 /* Wait for register access. Some ATAPI devices fail
3629 * to set nsect/lbal after reset, so don't waste too
3630 * much time on it. We're gonna wait for !BSY anyway.
3632 for (i
= 0; i
< 2; i
++) {
3635 nsect
= ioread8(ioaddr
->nsect_addr
);
3636 lbal
= ioread8(ioaddr
->lbal_addr
);
3637 if ((nsect
== 1) && (lbal
== 1))
3639 msleep(50); /* give drive a breather */
3642 rc
= ata_wait_ready(ap
, deadline
);
3650 /* is all this really necessary? */
3651 ap
->ops
->dev_select(ap
, 0);
3653 ap
->ops
->dev_select(ap
, 1);
3655 ap
->ops
->dev_select(ap
, 0);
3660 static int ata_bus_softreset(struct ata_port
*ap
, unsigned int devmask
,
3661 unsigned long deadline
)
3663 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3665 DPRINTK("ata%u: bus reset via SRST\n", ap
->print_id
);
3667 /* software reset. causes dev0 to be selected */
3668 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3669 udelay(20); /* FIXME: flush */
3670 iowrite8(ap
->ctl
| ATA_SRST
, ioaddr
->ctl_addr
);
3671 udelay(20); /* FIXME: flush */
3672 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3674 /* wait a while before checking status */
3675 ata_wait_after_reset(ap
, deadline
);
3677 /* Before we perform post reset processing we want to see if
3678 * the bus shows 0xFF because the odd clown forgets the D7
3679 * pulldown resistor.
3681 if (ata_chk_status(ap
) == 0xFF)
3684 return ata_bus_post_reset(ap
, devmask
, deadline
);
3688 * ata_bus_reset - reset host port and associated ATA channel
3689 * @ap: port to reset
3691 * This is typically the first time we actually start issuing
3692 * commands to the ATA channel. We wait for BSY to clear, then
3693 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3694 * result. Determine what devices, if any, are on the channel
3695 * by looking at the device 0/1 error register. Look at the signature
3696 * stored in each device's taskfile registers, to determine if
3697 * the device is ATA or ATAPI.
3700 * PCI/etc. bus probe sem.
3701 * Obtains host lock.
3704 * Sets ATA_FLAG_DISABLED if bus reset fails.
3707 void ata_bus_reset(struct ata_port
*ap
)
3709 struct ata_device
*device
= ap
->link
.device
;
3710 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3711 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
3713 unsigned int dev0
, dev1
= 0, devmask
= 0;
3716 DPRINTK("ENTER, host %u, port %u\n", ap
->print_id
, ap
->port_no
);
3718 /* determine if device 0/1 are present */
3719 if (ap
->flags
& ATA_FLAG_SATA_RESET
)
3722 dev0
= ata_devchk(ap
, 0);
3724 dev1
= ata_devchk(ap
, 1);
3728 devmask
|= (1 << 0);
3730 devmask
|= (1 << 1);
3732 /* select device 0 again */
3733 ap
->ops
->dev_select(ap
, 0);
3735 /* issue bus reset */
3736 if (ap
->flags
& ATA_FLAG_SRST
) {
3737 rc
= ata_bus_softreset(ap
, devmask
, jiffies
+ 40 * HZ
);
3738 if (rc
&& rc
!= -ENODEV
)
3743 * determine by signature whether we have ATA or ATAPI devices
3745 device
[0].class = ata_dev_try_classify(&device
[0], dev0
, &err
);
3746 if ((slave_possible
) && (err
!= 0x81))
3747 device
[1].class = ata_dev_try_classify(&device
[1], dev1
, &err
);
3749 /* is double-select really necessary? */
3750 if (device
[1].class != ATA_DEV_NONE
)
3751 ap
->ops
->dev_select(ap
, 1);
3752 if (device
[0].class != ATA_DEV_NONE
)
3753 ap
->ops
->dev_select(ap
, 0);
3755 /* if no devices were detected, disable this port */
3756 if ((device
[0].class == ATA_DEV_NONE
) &&
3757 (device
[1].class == ATA_DEV_NONE
))
3760 if (ap
->flags
& (ATA_FLAG_SATA_RESET
| ATA_FLAG_SRST
)) {
3761 /* set up device control for ATA_FLAG_SATA_RESET */
3762 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3769 ata_port_printk(ap
, KERN_ERR
, "disabling port\n");
3770 ata_port_disable(ap
);
3776 * sata_link_debounce - debounce SATA phy status
3777 * @link: ATA link to debounce SATA phy status for
3778 * @params: timing parameters { interval, duratinon, timeout } in msec
3779 * @deadline: deadline jiffies for the operation
3781 * Make sure SStatus of @link reaches stable state, determined by
3782 * holding the same value where DET is not 1 for @duration polled
3783 * every @interval, before @timeout. Timeout constraints the
3784 * beginning of the stable state. Because DET gets stuck at 1 on
3785 * some controllers after hot unplugging, this functions waits
3786 * until timeout then returns 0 if DET is stable at 1.
3788 * @timeout is further limited by @deadline. The sooner of the
3792 * Kernel thread context (may sleep)
3795 * 0 on success, -errno on failure.
3797 int sata_link_debounce(struct ata_link
*link
, const unsigned long *params
,
3798 unsigned long deadline
)
3800 unsigned long interval_msec
= params
[0];
3801 unsigned long duration
= msecs_to_jiffies(params
[1]);
3802 unsigned long last_jiffies
, t
;
3806 t
= jiffies
+ msecs_to_jiffies(params
[2]);
3807 if (time_before(t
, deadline
))
3810 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3815 last_jiffies
= jiffies
;
3818 msleep(interval_msec
);
3819 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3825 if (cur
== 1 && time_before(jiffies
, deadline
))
3827 if (time_after(jiffies
, last_jiffies
+ duration
))
3832 /* unstable, start over */
3834 last_jiffies
= jiffies
;
3836 /* Check deadline. If debouncing failed, return
3837 * -EPIPE to tell upper layer to lower link speed.
3839 if (time_after(jiffies
, deadline
))
3845 * sata_link_resume - resume SATA link
3846 * @link: ATA link to resume SATA
3847 * @params: timing parameters { interval, duratinon, timeout } in msec
3848 * @deadline: deadline jiffies for the operation
3850 * Resume SATA phy @link and debounce it.
3853 * Kernel thread context (may sleep)
3856 * 0 on success, -errno on failure.
3858 int sata_link_resume(struct ata_link
*link
, const unsigned long *params
,
3859 unsigned long deadline
)
3864 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3867 scontrol
= (scontrol
& 0x0f0) | 0x300;
3869 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3872 /* Some PHYs react badly if SStatus is pounded immediately
3873 * after resuming. Delay 200ms before debouncing.
3877 return sata_link_debounce(link
, params
, deadline
);
3881 * ata_std_prereset - prepare for reset
3882 * @link: ATA link to be reset
3883 * @deadline: deadline jiffies for the operation
3885 * @link is about to be reset. Initialize it. Failure from
3886 * prereset makes libata abort whole reset sequence and give up
3887 * that port, so prereset should be best-effort. It does its
3888 * best to prepare for reset sequence but if things go wrong, it
3889 * should just whine, not fail.
3892 * Kernel thread context (may sleep)
3895 * 0 on success, -errno otherwise.
3897 int ata_std_prereset(struct ata_link
*link
, unsigned long deadline
)
3899 struct ata_port
*ap
= link
->ap
;
3900 struct ata_eh_context
*ehc
= &link
->eh_context
;
3901 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
3904 /* handle link resume */
3905 if ((ehc
->i
.flags
& ATA_EHI_RESUME_LINK
) &&
3906 (link
->flags
& ATA_LFLAG_HRST_TO_RESUME
))
3907 ehc
->i
.action
|= ATA_EH_HARDRESET
;
3909 /* Some PMPs don't work with only SRST, force hardreset if PMP
3912 if (ap
->flags
& ATA_FLAG_PMP
)
3913 ehc
->i
.action
|= ATA_EH_HARDRESET
;
3915 /* if we're about to do hardreset, nothing more to do */
3916 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
3919 /* if SATA, resume link */
3920 if (ap
->flags
& ATA_FLAG_SATA
) {
3921 rc
= sata_link_resume(link
, timing
, deadline
);
3922 /* whine about phy resume failure but proceed */
3923 if (rc
&& rc
!= -EOPNOTSUPP
)
3924 ata_link_printk(link
, KERN_WARNING
, "failed to resume "
3925 "link for reset (errno=%d)\n", rc
);
3928 /* Wait for !BSY if the controller can wait for the first D2H
3929 * Reg FIS and we don't know that no device is attached.
3931 if (!(link
->flags
& ATA_LFLAG_SKIP_D2H_BSY
) && !ata_link_offline(link
)) {
3932 rc
= ata_wait_ready(ap
, deadline
);
3933 if (rc
&& rc
!= -ENODEV
) {
3934 ata_link_printk(link
, KERN_WARNING
, "device not ready "
3935 "(errno=%d), forcing hardreset\n", rc
);
3936 ehc
->i
.action
|= ATA_EH_HARDRESET
;
3944 * ata_std_softreset - reset host port via ATA SRST
3945 * @link: ATA link to reset
3946 * @classes: resulting classes of attached devices
3947 * @deadline: deadline jiffies for the operation
3949 * Reset host port using ATA SRST.
3952 * Kernel thread context (may sleep)
3955 * 0 on success, -errno otherwise.
3957 int ata_std_softreset(struct ata_link
*link
, unsigned int *classes
,
3958 unsigned long deadline
)
3960 struct ata_port
*ap
= link
->ap
;
3961 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
3962 unsigned int devmask
= 0;
3968 if (ata_link_offline(link
)) {
3969 classes
[0] = ATA_DEV_NONE
;
3973 /* determine if device 0/1 are present */
3974 if (ata_devchk(ap
, 0))
3975 devmask
|= (1 << 0);
3976 if (slave_possible
&& ata_devchk(ap
, 1))
3977 devmask
|= (1 << 1);
3979 /* select device 0 again */
3980 ap
->ops
->dev_select(ap
, 0);
3982 /* issue bus reset */
3983 DPRINTK("about to softreset, devmask=%x\n", devmask
);
3984 rc
= ata_bus_softreset(ap
, devmask
, deadline
);
3985 /* if link is occupied, -ENODEV too is an error */
3986 if (rc
&& (rc
!= -ENODEV
|| sata_scr_valid(link
))) {
3987 ata_link_printk(link
, KERN_ERR
, "SRST failed (errno=%d)\n", rc
);
3991 /* determine by signature whether we have ATA or ATAPI devices */
3992 classes
[0] = ata_dev_try_classify(&link
->device
[0],
3993 devmask
& (1 << 0), &err
);
3994 if (slave_possible
&& err
!= 0x81)
3995 classes
[1] = ata_dev_try_classify(&link
->device
[1],
3996 devmask
& (1 << 1), &err
);
3999 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes
[0], classes
[1]);
4004 * sata_link_hardreset - reset link via SATA phy reset
4005 * @link: link to reset
4006 * @timing: timing parameters { interval, duratinon, timeout } in msec
4007 * @deadline: deadline jiffies for the operation
4009 * SATA phy-reset @link using DET bits of SControl register.
4012 * Kernel thread context (may sleep)
4015 * 0 on success, -errno otherwise.
4017 int sata_link_hardreset(struct ata_link
*link
, const unsigned long *timing
,
4018 unsigned long deadline
)
4025 if (sata_set_spd_needed(link
)) {
4026 /* SATA spec says nothing about how to reconfigure
4027 * spd. To be on the safe side, turn off phy during
4028 * reconfiguration. This works for at least ICH7 AHCI
4031 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
4034 scontrol
= (scontrol
& 0x0f0) | 0x304;
4036 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
4042 /* issue phy wake/reset */
4043 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
4046 scontrol
= (scontrol
& 0x0f0) | 0x301;
4048 if ((rc
= sata_scr_write_flush(link
, SCR_CONTROL
, scontrol
)))
4051 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4052 * 10.4.2 says at least 1 ms.
4056 /* bring link back */
4057 rc
= sata_link_resume(link
, timing
, deadline
);
4059 DPRINTK("EXIT, rc=%d\n", rc
);
4064 * sata_std_hardreset - reset host port via SATA phy reset
4065 * @link: link to reset
4066 * @class: resulting class of attached device
4067 * @deadline: deadline jiffies for the operation
4069 * SATA phy-reset host port using DET bits of SControl register,
4070 * wait for !BSY and classify the attached device.
4073 * Kernel thread context (may sleep)
4076 * 0 on success, -errno otherwise.
4078 int sata_std_hardreset(struct ata_link
*link
, unsigned int *class,
4079 unsigned long deadline
)
4081 struct ata_port
*ap
= link
->ap
;
4082 const unsigned long *timing
= sata_ehc_deb_timing(&link
->eh_context
);
4088 rc
= sata_link_hardreset(link
, timing
, deadline
);
4090 ata_link_printk(link
, KERN_ERR
,
4091 "COMRESET failed (errno=%d)\n", rc
);
4095 /* TODO: phy layer with polling, timeouts, etc. */
4096 if (ata_link_offline(link
)) {
4097 *class = ATA_DEV_NONE
;
4098 DPRINTK("EXIT, link offline\n");
4102 /* wait a while before checking status */
4103 ata_wait_after_reset(ap
, deadline
);
4105 /* If PMP is supported, we have to do follow-up SRST. Note
4106 * that some PMPs don't send D2H Reg FIS after hardreset at
4107 * all if the first port is empty. Wait for it just for a
4108 * second and request follow-up SRST.
4110 if (ap
->flags
& ATA_FLAG_PMP
) {
4111 ata_wait_ready(ap
, jiffies
+ HZ
);
4115 rc
= ata_wait_ready(ap
, deadline
);
4116 /* link occupied, -ENODEV too is an error */
4118 ata_link_printk(link
, KERN_ERR
,
4119 "COMRESET failed (errno=%d)\n", rc
);
4123 ap
->ops
->dev_select(ap
, 0); /* probably unnecessary */
4125 *class = ata_dev_try_classify(link
->device
, 1, NULL
);
4127 DPRINTK("EXIT, class=%u\n", *class);
4132 * ata_std_postreset - standard postreset callback
4133 * @link: the target ata_link
4134 * @classes: classes of attached devices
4136 * This function is invoked after a successful reset. Note that
4137 * the device might have been reset more than once using
4138 * different reset methods before postreset is invoked.
4141 * Kernel thread context (may sleep)
4143 void ata_std_postreset(struct ata_link
*link
, unsigned int *classes
)
4145 struct ata_port
*ap
= link
->ap
;
4150 /* print link status */
4151 sata_print_link_status(link
);
4154 if (sata_scr_read(link
, SCR_ERROR
, &serror
) == 0)
4155 sata_scr_write(link
, SCR_ERROR
, serror
);
4156 link
->eh_info
.serror
= 0;
4158 /* is double-select really necessary? */
4159 if (classes
[0] != ATA_DEV_NONE
)
4160 ap
->ops
->dev_select(ap
, 1);
4161 if (classes
[1] != ATA_DEV_NONE
)
4162 ap
->ops
->dev_select(ap
, 0);
4164 /* bail out if no device is present */
4165 if (classes
[0] == ATA_DEV_NONE
&& classes
[1] == ATA_DEV_NONE
) {
4166 DPRINTK("EXIT, no device\n");
4170 /* set up device control */
4171 if (ap
->ioaddr
.ctl_addr
)
4172 iowrite8(ap
->ctl
, ap
->ioaddr
.ctl_addr
);
4178 * ata_dev_same_device - Determine whether new ID matches configured device
4179 * @dev: device to compare against
4180 * @new_class: class of the new device
4181 * @new_id: IDENTIFY page of the new device
4183 * Compare @new_class and @new_id against @dev and determine
4184 * whether @dev is the device indicated by @new_class and
4191 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4193 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
4196 const u16
*old_id
= dev
->id
;
4197 unsigned char model
[2][ATA_ID_PROD_LEN
+ 1];
4198 unsigned char serial
[2][ATA_ID_SERNO_LEN
+ 1];
4200 if (dev
->class != new_class
) {
4201 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %d != %d\n",
4202 dev
->class, new_class
);
4206 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD
, sizeof(model
[0]));
4207 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD
, sizeof(model
[1]));
4208 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO
, sizeof(serial
[0]));
4209 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO
, sizeof(serial
[1]));
4211 if (strcmp(model
[0], model
[1])) {
4212 ata_dev_printk(dev
, KERN_INFO
, "model number mismatch "
4213 "'%s' != '%s'\n", model
[0], model
[1]);
4217 if (strcmp(serial
[0], serial
[1])) {
4218 ata_dev_printk(dev
, KERN_INFO
, "serial number mismatch "
4219 "'%s' != '%s'\n", serial
[0], serial
[1]);
4227 * ata_dev_reread_id - Re-read IDENTIFY data
4228 * @dev: target ATA device
4229 * @readid_flags: read ID flags
4231 * Re-read IDENTIFY page and make sure @dev is still attached to
4235 * Kernel thread context (may sleep)
4238 * 0 on success, negative errno otherwise
4240 int ata_dev_reread_id(struct ata_device
*dev
, unsigned int readid_flags
)
4242 unsigned int class = dev
->class;
4243 u16
*id
= (void *)dev
->link
->ap
->sector_buf
;
4247 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
4251 /* is the device still there? */
4252 if (!ata_dev_same_device(dev
, class, id
))
4255 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
4260 * ata_dev_revalidate - Revalidate ATA device
4261 * @dev: device to revalidate
4262 * @new_class: new class code
4263 * @readid_flags: read ID flags
4265 * Re-read IDENTIFY page, make sure @dev is still attached to the
4266 * port and reconfigure it according to the new IDENTIFY page.
4269 * Kernel thread context (may sleep)
4272 * 0 on success, negative errno otherwise
4274 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int new_class
,
4275 unsigned int readid_flags
)
4277 u64 n_sectors
= dev
->n_sectors
;
4280 if (!ata_dev_enabled(dev
))
4283 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4284 if (ata_class_enabled(new_class
) &&
4285 new_class
!= ATA_DEV_ATA
&& new_class
!= ATA_DEV_ATAPI
) {
4286 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %u != %u\n",
4287 dev
->class, new_class
);
4293 rc
= ata_dev_reread_id(dev
, readid_flags
);
4297 /* configure device according to the new ID */
4298 rc
= ata_dev_configure(dev
);
4302 /* verify n_sectors hasn't changed */
4303 if (dev
->class == ATA_DEV_ATA
&& n_sectors
&&
4304 dev
->n_sectors
!= n_sectors
) {
4305 ata_dev_printk(dev
, KERN_INFO
, "n_sectors mismatch "
4307 (unsigned long long)n_sectors
,
4308 (unsigned long long)dev
->n_sectors
);
4310 /* restore original n_sectors */
4311 dev
->n_sectors
= n_sectors
;
4320 ata_dev_printk(dev
, KERN_ERR
, "revalidation failed (errno=%d)\n", rc
);
4324 struct ata_blacklist_entry
{
4325 const char *model_num
;
4326 const char *model_rev
;
4327 unsigned long horkage
;
4330 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
4331 /* Devices with DMA related problems under Linux */
4332 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
4333 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
4334 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
4335 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
4336 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
4337 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
4338 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
4339 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
4340 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
4341 { "CRD-8480B", NULL
, ATA_HORKAGE_NODMA
},
4342 { "CRD-8482B", NULL
, ATA_HORKAGE_NODMA
},
4343 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
4344 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
4345 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
4346 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
4347 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
4348 { "HITACHI CDR-8335", NULL
, ATA_HORKAGE_NODMA
},
4349 { "HITACHI CDR-8435", NULL
, ATA_HORKAGE_NODMA
},
4350 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
4351 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
4352 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
4353 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
4354 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
4355 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
4356 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
4357 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
4358 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
4359 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
4360 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA
},
4361 { "Seagate STT20000A", NULL
, ATA_HORKAGE_NODMA
},
4362 /* Odd clown on sil3726/4726 PMPs */
4363 { "Config Disk", NULL
, ATA_HORKAGE_NODMA
|
4364 ATA_HORKAGE_SKIP_PM
},
4366 /* Weird ATAPI devices */
4367 { "TORiSAN DVD-ROM DRD-N216", NULL
, ATA_HORKAGE_MAX_SEC_128
},
4369 /* Devices we expect to fail diagnostics */
4371 /* Devices where NCQ should be avoided */
4373 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
4374 { "WDC WD740ADFD-00NLR1", NULL
, ATA_HORKAGE_NONCQ
, },
4375 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4376 { "FUJITSU MHT2060BH", NULL
, ATA_HORKAGE_NONCQ
},
4378 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ
},
4379 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ
},
4380 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ
},
4381 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ
},
4383 /* Blacklist entries taken from Silicon Image 3124/3132
4384 Windows driver .inf file - also several Linux problem reports */
4385 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ
, },
4386 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ
, },
4387 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ
, },
4389 /* devices which puke on READ_NATIVE_MAX */
4390 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA
, },
4391 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA
},
4392 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA
},
4393 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA
},
4395 /* Devices which report 1 sector over size HPA */
4396 { "ST340823A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4397 { "ST320413A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4398 { "ST310211A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4400 /* Devices which get the IVB wrong */
4401 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB
, },
4402 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB
, },
4403 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB
, },
4404 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB
, },
4405 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB
, },
4411 static int strn_pattern_cmp(const char *patt
, const char *name
, int wildchar
)
4417 * check for trailing wildcard: *\0
4419 p
= strchr(patt
, wildchar
);
4420 if (p
&& ((*(p
+ 1)) == 0))
4431 return strncmp(patt
, name
, len
);
4434 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
)
4436 unsigned char model_num
[ATA_ID_PROD_LEN
+ 1];
4437 unsigned char model_rev
[ATA_ID_FW_REV_LEN
+ 1];
4438 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
4440 ata_id_c_string(dev
->id
, model_num
, ATA_ID_PROD
, sizeof(model_num
));
4441 ata_id_c_string(dev
->id
, model_rev
, ATA_ID_FW_REV
, sizeof(model_rev
));
4443 while (ad
->model_num
) {
4444 if (!strn_pattern_cmp(ad
->model_num
, model_num
, '*')) {
4445 if (ad
->model_rev
== NULL
)
4447 if (!strn_pattern_cmp(ad
->model_rev
, model_rev
, '*'))
4455 static int ata_dma_blacklisted(const struct ata_device
*dev
)
4457 /* We don't support polling DMA.
4458 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4459 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4461 if ((dev
->link
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
4462 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
4464 return (dev
->horkage
& ATA_HORKAGE_NODMA
) ? 1 : 0;
4468 * ata_is_40wire - check drive side detection
4471 * Perform drive side detection decoding, allowing for device vendors
4472 * who can't follow the documentation.
4475 static int ata_is_40wire(struct ata_device
*dev
)
4477 if (dev
->horkage
& ATA_HORKAGE_IVB
)
4478 return ata_drive_40wire_relaxed(dev
->id
);
4479 return ata_drive_40wire(dev
->id
);
4483 * ata_dev_xfermask - Compute supported xfermask of the given device
4484 * @dev: Device to compute xfermask for
4486 * Compute supported xfermask of @dev and store it in
4487 * dev->*_mask. This function is responsible for applying all
4488 * known limits including host controller limits, device
4494 static void ata_dev_xfermask(struct ata_device
*dev
)
4496 struct ata_link
*link
= dev
->link
;
4497 struct ata_port
*ap
= link
->ap
;
4498 struct ata_host
*host
= ap
->host
;
4499 unsigned long xfer_mask
;
4501 /* controller modes available */
4502 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
4503 ap
->mwdma_mask
, ap
->udma_mask
);
4505 /* drive modes available */
4506 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
4507 dev
->mwdma_mask
, dev
->udma_mask
);
4508 xfer_mask
&= ata_id_xfermask(dev
->id
);
4511 * CFA Advanced TrueIDE timings are not allowed on a shared
4514 if (ata_dev_pair(dev
)) {
4515 /* No PIO5 or PIO6 */
4516 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
4517 /* No MWDMA3 or MWDMA 4 */
4518 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
4521 if (ata_dma_blacklisted(dev
)) {
4522 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4523 ata_dev_printk(dev
, KERN_WARNING
,
4524 "device is on DMA blacklist, disabling DMA\n");
4527 if ((host
->flags
& ATA_HOST_SIMPLEX
) &&
4528 host
->simplex_claimed
&& host
->simplex_claimed
!= ap
) {
4529 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4530 ata_dev_printk(dev
, KERN_WARNING
, "simplex DMA is claimed by "
4531 "other device, disabling DMA\n");
4534 if (ap
->flags
& ATA_FLAG_NO_IORDY
)
4535 xfer_mask
&= ata_pio_mask_no_iordy(dev
);
4537 if (ap
->ops
->mode_filter
)
4538 xfer_mask
= ap
->ops
->mode_filter(dev
, xfer_mask
);
4540 /* Apply cable rule here. Don't apply it early because when
4541 * we handle hot plug the cable type can itself change.
4542 * Check this last so that we know if the transfer rate was
4543 * solely limited by the cable.
4544 * Unknown or 80 wire cables reported host side are checked
4545 * drive side as well. Cases where we know a 40wire cable
4546 * is used safely for 80 are not checked here.
4548 if (xfer_mask
& (0xF8 << ATA_SHIFT_UDMA
))
4549 /* UDMA/44 or higher would be available */
4550 if ((ap
->cbl
== ATA_CBL_PATA40
) ||
4551 (ata_is_40wire(dev
) &&
4552 (ap
->cbl
== ATA_CBL_PATA_UNK
||
4553 ap
->cbl
== ATA_CBL_PATA80
))) {
4554 ata_dev_printk(dev
, KERN_WARNING
,
4555 "limited to UDMA/33 due to 40-wire cable\n");
4556 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
4559 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
4560 &dev
->mwdma_mask
, &dev
->udma_mask
);
4564 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4565 * @dev: Device to which command will be sent
4567 * Issue SET FEATURES - XFER MODE command to device @dev
4571 * PCI/etc. bus probe sem.
4574 * 0 on success, AC_ERR_* mask otherwise.
4577 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
4579 struct ata_taskfile tf
;
4580 unsigned int err_mask
;
4582 /* set up set-features taskfile */
4583 DPRINTK("set features - xfer mode\n");
4585 /* Some controllers and ATAPI devices show flaky interrupt
4586 * behavior after setting xfer mode. Use polling instead.
4588 ata_tf_init(dev
, &tf
);
4589 tf
.command
= ATA_CMD_SET_FEATURES
;
4590 tf
.feature
= SETFEATURES_XFER
;
4591 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
| ATA_TFLAG_POLLING
;
4592 tf
.protocol
= ATA_PROT_NODATA
;
4593 /* If we are using IORDY we must send the mode setting command */
4594 if (ata_pio_need_iordy(dev
))
4595 tf
.nsect
= dev
->xfer_mode
;
4596 /* If the device has IORDY and the controller does not - turn it off */
4597 else if (ata_id_has_iordy(dev
->id
))
4599 else /* In the ancient relic department - skip all of this */
4602 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4604 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4608 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4609 * @dev: Device to which command will be sent
4610 * @enable: Whether to enable or disable the feature
4611 * @feature: The sector count represents the feature to set
4613 * Issue SET FEATURES - SATA FEATURES command to device @dev
4614 * on port @ap with sector count
4617 * PCI/etc. bus probe sem.
4620 * 0 on success, AC_ERR_* mask otherwise.
4622 static unsigned int ata_dev_set_feature(struct ata_device
*dev
, u8 enable
,
4625 struct ata_taskfile tf
;
4626 unsigned int err_mask
;
4628 /* set up set-features taskfile */
4629 DPRINTK("set features - SATA features\n");
4631 ata_tf_init(dev
, &tf
);
4632 tf
.command
= ATA_CMD_SET_FEATURES
;
4633 tf
.feature
= enable
;
4634 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4635 tf
.protocol
= ATA_PROT_NODATA
;
4638 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4640 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4645 * ata_dev_init_params - Issue INIT DEV PARAMS command
4646 * @dev: Device to which command will be sent
4647 * @heads: Number of heads (taskfile parameter)
4648 * @sectors: Number of sectors (taskfile parameter)
4651 * Kernel thread context (may sleep)
4654 * 0 on success, AC_ERR_* mask otherwise.
4656 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
4657 u16 heads
, u16 sectors
)
4659 struct ata_taskfile tf
;
4660 unsigned int err_mask
;
4662 /* Number of sectors per track 1-255. Number of heads 1-16 */
4663 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
4664 return AC_ERR_INVALID
;
4666 /* set up init dev params taskfile */
4667 DPRINTK("init dev params \n");
4669 ata_tf_init(dev
, &tf
);
4670 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
4671 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4672 tf
.protocol
= ATA_PROT_NODATA
;
4674 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
4676 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4677 /* A clean abort indicates an original or just out of spec drive
4678 and we should continue as we issue the setup based on the
4679 drive reported working geometry */
4680 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
4683 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4688 * ata_sg_clean - Unmap DMA memory associated with command
4689 * @qc: Command containing DMA memory to be released
4691 * Unmap all mapped DMA memory associated with this command.
4694 * spin_lock_irqsave(host lock)
4696 void ata_sg_clean(struct ata_queued_cmd
*qc
)
4698 struct ata_port
*ap
= qc
->ap
;
4699 struct scatterlist
*sg
= qc
->sg
;
4700 int dir
= qc
->dma_dir
;
4702 WARN_ON(sg
== NULL
);
4704 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
4707 dma_unmap_sg(ap
->dev
, sg
, qc
->n_elem
, dir
);
4709 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4714 * ata_fill_sg - Fill PCI IDE PRD table
4715 * @qc: Metadata associated with taskfile to be transferred
4717 * Fill PCI IDE PRD (scatter-gather) table with segments
4718 * associated with the current disk command.
4721 * spin_lock_irqsave(host lock)
4724 static void ata_fill_sg(struct ata_queued_cmd
*qc
)
4726 struct ata_port
*ap
= qc
->ap
;
4727 struct scatterlist
*sg
;
4728 unsigned int si
, pi
;
4731 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
4735 /* determine if physical DMA addr spans 64K boundary.
4736 * Note h/w doesn't support 64-bit, so we unconditionally
4737 * truncate dma_addr_t to u32.
4739 addr
= (u32
) sg_dma_address(sg
);
4740 sg_len
= sg_dma_len(sg
);
4743 offset
= addr
& 0xffff;
4745 if ((offset
+ sg_len
) > 0x10000)
4746 len
= 0x10000 - offset
;
4748 ap
->prd
[pi
].addr
= cpu_to_le32(addr
);
4749 ap
->prd
[pi
].flags_len
= cpu_to_le32(len
& 0xffff);
4750 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi
, addr
, len
);
4758 ap
->prd
[pi
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
4762 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4763 * @qc: Metadata associated with taskfile to be transferred
4765 * Fill PCI IDE PRD (scatter-gather) table with segments
4766 * associated with the current disk command. Perform the fill
4767 * so that we avoid writing any length 64K records for
4768 * controllers that don't follow the spec.
4771 * spin_lock_irqsave(host lock)
4774 static void ata_fill_sg_dumb(struct ata_queued_cmd
*qc
)
4776 struct ata_port
*ap
= qc
->ap
;
4777 struct scatterlist
*sg
;
4778 unsigned int si
, pi
;
4781 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
4783 u32 sg_len
, len
, blen
;
4785 /* determine if physical DMA addr spans 64K boundary.
4786 * Note h/w doesn't support 64-bit, so we unconditionally
4787 * truncate dma_addr_t to u32.
4789 addr
= (u32
) sg_dma_address(sg
);
4790 sg_len
= sg_dma_len(sg
);
4793 offset
= addr
& 0xffff;
4795 if ((offset
+ sg_len
) > 0x10000)
4796 len
= 0x10000 - offset
;
4798 blen
= len
& 0xffff;
4799 ap
->prd
[pi
].addr
= cpu_to_le32(addr
);
4801 /* Some PATA chipsets like the CS5530 can't
4802 cope with 0x0000 meaning 64K as the spec says */
4803 ap
->prd
[pi
].flags_len
= cpu_to_le32(0x8000);
4805 ap
->prd
[++pi
].addr
= cpu_to_le32(addr
+ 0x8000);
4807 ap
->prd
[pi
].flags_len
= cpu_to_le32(blen
);
4808 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi
, addr
, len
);
4816 ap
->prd
[pi
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
4820 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4821 * @qc: Metadata associated with taskfile to check
4823 * Allow low-level driver to filter ATA PACKET commands, returning
4824 * a status indicating whether or not it is OK to use DMA for the
4825 * supplied PACKET command.
4828 * spin_lock_irqsave(host lock)
4830 * RETURNS: 0 when ATAPI DMA can be used
4833 int ata_check_atapi_dma(struct ata_queued_cmd
*qc
)
4835 struct ata_port
*ap
= qc
->ap
;
4837 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4838 * few ATAPI devices choke on such DMA requests.
4840 if (unlikely(qc
->nbytes
& 15))
4843 if (ap
->ops
->check_atapi_dma
)
4844 return ap
->ops
->check_atapi_dma(qc
);
4850 * ata_std_qc_defer - Check whether a qc needs to be deferred
4851 * @qc: ATA command in question
4853 * Non-NCQ commands cannot run with any other command, NCQ or
4854 * not. As upper layer only knows the queue depth, we are
4855 * responsible for maintaining exclusion. This function checks
4856 * whether a new command @qc can be issued.
4859 * spin_lock_irqsave(host lock)
4862 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4864 int ata_std_qc_defer(struct ata_queued_cmd
*qc
)
4866 struct ata_link
*link
= qc
->dev
->link
;
4868 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4869 if (!ata_tag_valid(link
->active_tag
))
4872 if (!ata_tag_valid(link
->active_tag
) && !link
->sactive
)
4876 return ATA_DEFER_LINK
;
4880 * ata_qc_prep - Prepare taskfile for submission
4881 * @qc: Metadata associated with taskfile to be prepared
4883 * Prepare ATA taskfile for submission.
4886 * spin_lock_irqsave(host lock)
4888 void ata_qc_prep(struct ata_queued_cmd
*qc
)
4890 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4897 * ata_dumb_qc_prep - Prepare taskfile for submission
4898 * @qc: Metadata associated with taskfile to be prepared
4900 * Prepare ATA taskfile for submission.
4903 * spin_lock_irqsave(host lock)
4905 void ata_dumb_qc_prep(struct ata_queued_cmd
*qc
)
4907 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4910 ata_fill_sg_dumb(qc
);
4913 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
4916 * ata_sg_init - Associate command with scatter-gather table.
4917 * @qc: Command to be associated
4918 * @sg: Scatter-gather table.
4919 * @n_elem: Number of elements in s/g table.
4921 * Initialize the data-related elements of queued_cmd @qc
4922 * to point to a scatter-gather table @sg, containing @n_elem
4926 * spin_lock_irqsave(host lock)
4928 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
4929 unsigned int n_elem
)
4932 qc
->n_elem
= n_elem
;
4937 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4938 * @qc: Command with scatter-gather table to be mapped.
4940 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4943 * spin_lock_irqsave(host lock)
4946 * Zero on success, negative on error.
4949 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
4951 struct ata_port
*ap
= qc
->ap
;
4952 unsigned int n_elem
;
4954 VPRINTK("ENTER, ata%u\n", ap
->print_id
);
4956 n_elem
= dma_map_sg(ap
->dev
, qc
->sg
, qc
->n_elem
, qc
->dma_dir
);
4960 DPRINTK("%d sg elements mapped\n", n_elem
);
4962 qc
->n_elem
= n_elem
;
4963 qc
->flags
|= ATA_QCFLAG_DMAMAP
;
4969 * swap_buf_le16 - swap halves of 16-bit words in place
4970 * @buf: Buffer to swap
4971 * @buf_words: Number of 16-bit words in buffer.
4973 * Swap halves of 16-bit words if needed to convert from
4974 * little-endian byte order to native cpu byte order, or
4978 * Inherited from caller.
4980 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
4985 for (i
= 0; i
< buf_words
; i
++)
4986 buf
[i
] = le16_to_cpu(buf
[i
]);
4987 #endif /* __BIG_ENDIAN */
4991 * ata_data_xfer - Transfer data by PIO
4992 * @dev: device to target
4994 * @buflen: buffer length
4997 * Transfer data from/to the device data register by PIO.
5000 * Inherited from caller.
5005 unsigned int ata_data_xfer(struct ata_device
*dev
, unsigned char *buf
,
5006 unsigned int buflen
, int rw
)
5008 struct ata_port
*ap
= dev
->link
->ap
;
5009 void __iomem
*data_addr
= ap
->ioaddr
.data_addr
;
5010 unsigned int words
= buflen
>> 1;
5012 /* Transfer multiple of 2 bytes */
5014 ioread16_rep(data_addr
, buf
, words
);
5016 iowrite16_rep(data_addr
, buf
, words
);
5018 /* Transfer trailing 1 byte, if any. */
5019 if (unlikely(buflen
& 0x01)) {
5020 __le16 align_buf
[1] = { 0 };
5021 unsigned char *trailing_buf
= buf
+ buflen
- 1;
5024 align_buf
[0] = cpu_to_le16(ioread16(data_addr
));
5025 memcpy(trailing_buf
, align_buf
, 1);
5027 memcpy(align_buf
, trailing_buf
, 1);
5028 iowrite16(le16_to_cpu(align_buf
[0]), data_addr
);
5037 * ata_data_xfer_noirq - Transfer data by PIO
5038 * @dev: device to target
5040 * @buflen: buffer length
5043 * Transfer data from/to the device data register by PIO. Do the
5044 * transfer with interrupts disabled.
5047 * Inherited from caller.
5052 unsigned int ata_data_xfer_noirq(struct ata_device
*dev
, unsigned char *buf
,
5053 unsigned int buflen
, int rw
)
5055 unsigned long flags
;
5056 unsigned int consumed
;
5058 local_irq_save(flags
);
5059 consumed
= ata_data_xfer(dev
, buf
, buflen
, rw
);
5060 local_irq_restore(flags
);
5067 * ata_pio_sector - Transfer a sector of data.
5068 * @qc: Command on going
5070 * Transfer qc->sect_size bytes of data from/to the ATA device.
5073 * Inherited from caller.
5076 static void ata_pio_sector(struct ata_queued_cmd
*qc
)
5078 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
5079 struct ata_port
*ap
= qc
->ap
;
5081 unsigned int offset
;
5084 if (qc
->curbytes
== qc
->nbytes
- qc
->sect_size
)
5085 ap
->hsm_task_state
= HSM_ST_LAST
;
5087 page
= sg_page(qc
->cursg
);
5088 offset
= qc
->cursg
->offset
+ qc
->cursg_ofs
;
5090 /* get the current page and offset */
5091 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
5092 offset
%= PAGE_SIZE
;
5094 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
5096 if (PageHighMem(page
)) {
5097 unsigned long flags
;
5099 /* FIXME: use a bounce buffer */
5100 local_irq_save(flags
);
5101 buf
= kmap_atomic(page
, KM_IRQ0
);
5103 /* do the actual data transfer */
5104 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
, do_write
);
5106 kunmap_atomic(buf
, KM_IRQ0
);
5107 local_irq_restore(flags
);
5109 buf
= page_address(page
);
5110 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
, do_write
);
5113 qc
->curbytes
+= qc
->sect_size
;
5114 qc
->cursg_ofs
+= qc
->sect_size
;
5116 if (qc
->cursg_ofs
== qc
->cursg
->length
) {
5117 qc
->cursg
= sg_next(qc
->cursg
);
5123 * ata_pio_sectors - Transfer one or many sectors.
5124 * @qc: Command on going
5126 * Transfer one or many sectors of data from/to the
5127 * ATA device for the DRQ request.
5130 * Inherited from caller.
5133 static void ata_pio_sectors(struct ata_queued_cmd
*qc
)
5135 if (is_multi_taskfile(&qc
->tf
)) {
5136 /* READ/WRITE MULTIPLE */
5139 WARN_ON(qc
->dev
->multi_count
== 0);
5141 nsect
= min((qc
->nbytes
- qc
->curbytes
) / qc
->sect_size
,
5142 qc
->dev
->multi_count
);
5148 ata_altstatus(qc
->ap
); /* flush */
5152 * atapi_send_cdb - Write CDB bytes to hardware
5153 * @ap: Port to which ATAPI device is attached.
5154 * @qc: Taskfile currently active
5156 * When device has indicated its readiness to accept
5157 * a CDB, this function is called. Send the CDB.
5163 static void atapi_send_cdb(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
5166 DPRINTK("send cdb\n");
5167 WARN_ON(qc
->dev
->cdb_len
< 12);
5169 ap
->ops
->data_xfer(qc
->dev
, qc
->cdb
, qc
->dev
->cdb_len
, 1);
5170 ata_altstatus(ap
); /* flush */
5172 switch (qc
->tf
.protocol
) {
5173 case ATAPI_PROT_PIO
:
5174 ap
->hsm_task_state
= HSM_ST
;
5176 case ATAPI_PROT_NODATA
:
5177 ap
->hsm_task_state
= HSM_ST_LAST
;
5179 case ATAPI_PROT_DMA
:
5180 ap
->hsm_task_state
= HSM_ST_LAST
;
5181 /* initiate bmdma */
5182 ap
->ops
->bmdma_start(qc
);
5188 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5189 * @qc: Command on going
5190 * @bytes: number of bytes
5192 * Transfer Transfer data from/to the ATAPI device.
5195 * Inherited from caller.
5198 static int __atapi_pio_bytes(struct ata_queued_cmd
*qc
, unsigned int bytes
)
5200 int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? WRITE
: READ
;
5201 struct ata_port
*ap
= qc
->ap
;
5202 struct ata_device
*dev
= qc
->dev
;
5203 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
5204 struct scatterlist
*sg
;
5207 unsigned int offset
, count
, consumed
;
5211 if (unlikely(!sg
)) {
5212 ata_ehi_push_desc(ehi
, "unexpected or too much trailing data "
5213 "buf=%u cur=%u bytes=%u",
5214 qc
->nbytes
, qc
->curbytes
, bytes
);
5219 offset
= sg
->offset
+ qc
->cursg_ofs
;
5221 /* get the current page and offset */
5222 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
5223 offset
%= PAGE_SIZE
;
5225 /* don't overrun current sg */
5226 count
= min(sg
->length
- qc
->cursg_ofs
, bytes
);
5228 /* don't cross page boundaries */
5229 count
= min(count
, (unsigned int)PAGE_SIZE
- offset
);
5231 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
5233 if (PageHighMem(page
)) {
5234 unsigned long flags
;
5236 /* FIXME: use bounce buffer */
5237 local_irq_save(flags
);
5238 buf
= kmap_atomic(page
, KM_IRQ0
);
5240 /* do the actual data transfer */
5241 consumed
= ap
->ops
->data_xfer(dev
, buf
+ offset
, count
, rw
);
5243 kunmap_atomic(buf
, KM_IRQ0
);
5244 local_irq_restore(flags
);
5246 buf
= page_address(page
);
5247 consumed
= ap
->ops
->data_xfer(dev
, buf
+ offset
, count
, rw
);
5250 bytes
-= min(bytes
, consumed
);
5251 qc
->curbytes
+= count
;
5252 qc
->cursg_ofs
+= count
;
5254 if (qc
->cursg_ofs
== sg
->length
) {
5255 qc
->cursg
= sg_next(qc
->cursg
);
5259 /* consumed can be larger than count only for the last transfer */
5260 WARN_ON(qc
->cursg
&& count
!= consumed
);
5268 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5269 * @qc: Command on going
5271 * Transfer Transfer data from/to the ATAPI device.
5274 * Inherited from caller.
5277 static void atapi_pio_bytes(struct ata_queued_cmd
*qc
)
5279 struct ata_port
*ap
= qc
->ap
;
5280 struct ata_device
*dev
= qc
->dev
;
5281 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
5282 unsigned int ireason
, bc_lo
, bc_hi
, bytes
;
5283 int i_write
, do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
5285 /* Abuse qc->result_tf for temp storage of intermediate TF
5286 * here to save some kernel stack usage.
5287 * For normal completion, qc->result_tf is not relevant. For
5288 * error, qc->result_tf is later overwritten by ata_qc_complete().
5289 * So, the correctness of qc->result_tf is not affected.
5291 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
5292 ireason
= qc
->result_tf
.nsect
;
5293 bc_lo
= qc
->result_tf
.lbam
;
5294 bc_hi
= qc
->result_tf
.lbah
;
5295 bytes
= (bc_hi
<< 8) | bc_lo
;
5297 /* shall be cleared to zero, indicating xfer of data */
5298 if (unlikely(ireason
& (1 << 0)))
5301 /* make sure transfer direction matches expected */
5302 i_write
= ((ireason
& (1 << 1)) == 0) ? 1 : 0;
5303 if (unlikely(do_write
!= i_write
))
5306 if (unlikely(!bytes
))
5309 VPRINTK("ata%u: xfering %d bytes\n", ap
->print_id
, bytes
);
5311 if (unlikely(__atapi_pio_bytes(qc
, bytes
)))
5313 ata_altstatus(ap
); /* flush */
5318 ata_ehi_push_desc(ehi
, "ATAPI check failed (ireason=0x%x bytes=%u)",
5321 qc
->err_mask
|= AC_ERR_HSM
;
5322 ap
->hsm_task_state
= HSM_ST_ERR
;
5326 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5327 * @ap: the target ata_port
5331 * 1 if ok in workqueue, 0 otherwise.
5334 static inline int ata_hsm_ok_in_wq(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
5336 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5339 if (ap
->hsm_task_state
== HSM_ST_FIRST
) {
5340 if (qc
->tf
.protocol
== ATA_PROT_PIO
&&
5341 (qc
->tf
.flags
& ATA_TFLAG_WRITE
))
5344 if (ata_is_atapi(qc
->tf
.protocol
) &&
5345 !(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
5353 * ata_hsm_qc_complete - finish a qc running on standard HSM
5354 * @qc: Command to complete
5355 * @in_wq: 1 if called from workqueue, 0 otherwise
5357 * Finish @qc which is running on standard HSM.
5360 * If @in_wq is zero, spin_lock_irqsave(host lock).
5361 * Otherwise, none on entry and grabs host lock.
5363 static void ata_hsm_qc_complete(struct ata_queued_cmd
*qc
, int in_wq
)
5365 struct ata_port
*ap
= qc
->ap
;
5366 unsigned long flags
;
5368 if (ap
->ops
->error_handler
) {
5370 spin_lock_irqsave(ap
->lock
, flags
);
5372 /* EH might have kicked in while host lock is
5375 qc
= ata_qc_from_tag(ap
, qc
->tag
);
5377 if (likely(!(qc
->err_mask
& AC_ERR_HSM
))) {
5378 ap
->ops
->irq_on(ap
);
5379 ata_qc_complete(qc
);
5381 ata_port_freeze(ap
);
5384 spin_unlock_irqrestore(ap
->lock
, flags
);
5386 if (likely(!(qc
->err_mask
& AC_ERR_HSM
)))
5387 ata_qc_complete(qc
);
5389 ata_port_freeze(ap
);
5393 spin_lock_irqsave(ap
->lock
, flags
);
5394 ap
->ops
->irq_on(ap
);
5395 ata_qc_complete(qc
);
5396 spin_unlock_irqrestore(ap
->lock
, flags
);
5398 ata_qc_complete(qc
);
5403 * ata_hsm_move - move the HSM to the next state.
5404 * @ap: the target ata_port
5406 * @status: current device status
5407 * @in_wq: 1 if called from workqueue, 0 otherwise
5410 * 1 when poll next status needed, 0 otherwise.
5412 int ata_hsm_move(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
5413 u8 status
, int in_wq
)
5415 unsigned long flags
= 0;
5418 WARN_ON((qc
->flags
& ATA_QCFLAG_ACTIVE
) == 0);
5420 /* Make sure ata_qc_issue_prot() does not throw things
5421 * like DMA polling into the workqueue. Notice that
5422 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5424 WARN_ON(in_wq
!= ata_hsm_ok_in_wq(ap
, qc
));
5427 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
5428 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
, status
);
5430 switch (ap
->hsm_task_state
) {
5432 /* Send first data block or PACKET CDB */
5434 /* If polling, we will stay in the work queue after
5435 * sending the data. Otherwise, interrupt handler
5436 * takes over after sending the data.
5438 poll_next
= (qc
->tf
.flags
& ATA_TFLAG_POLLING
);
5440 /* check device status */
5441 if (unlikely((status
& ATA_DRQ
) == 0)) {
5442 /* handle BSY=0, DRQ=0 as error */
5443 if (likely(status
& (ATA_ERR
| ATA_DF
)))
5444 /* device stops HSM for abort/error */
5445 qc
->err_mask
|= AC_ERR_DEV
;
5447 /* HSM violation. Let EH handle this */
5448 qc
->err_mask
|= AC_ERR_HSM
;
5450 ap
->hsm_task_state
= HSM_ST_ERR
;
5454 /* Device should not ask for data transfer (DRQ=1)
5455 * when it finds something wrong.
5456 * We ignore DRQ here and stop the HSM by
5457 * changing hsm_task_state to HSM_ST_ERR and
5458 * let the EH abort the command or reset the device.
5460 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
5461 /* Some ATAPI tape drives forget to clear the ERR bit
5462 * when doing the next command (mostly request sense).
5463 * We ignore ERR here to workaround and proceed sending
5466 if (!(qc
->dev
->horkage
& ATA_HORKAGE_STUCK_ERR
)) {
5467 ata_port_printk(ap
, KERN_WARNING
,
5468 "DRQ=1 with device error, "
5469 "dev_stat 0x%X\n", status
);
5470 qc
->err_mask
|= AC_ERR_HSM
;
5471 ap
->hsm_task_state
= HSM_ST_ERR
;
5476 /* Send the CDB (atapi) or the first data block (ata pio out).
5477 * During the state transition, interrupt handler shouldn't
5478 * be invoked before the data transfer is complete and
5479 * hsm_task_state is changed. Hence, the following locking.
5482 spin_lock_irqsave(ap
->lock
, flags
);
5484 if (qc
->tf
.protocol
== ATA_PROT_PIO
) {
5485 /* PIO data out protocol.
5486 * send first data block.
5489 /* ata_pio_sectors() might change the state
5490 * to HSM_ST_LAST. so, the state is changed here
5491 * before ata_pio_sectors().
5493 ap
->hsm_task_state
= HSM_ST
;
5494 ata_pio_sectors(qc
);
5497 atapi_send_cdb(ap
, qc
);
5500 spin_unlock_irqrestore(ap
->lock
, flags
);
5502 /* if polling, ata_pio_task() handles the rest.
5503 * otherwise, interrupt handler takes over from here.
5508 /* complete command or read/write the data register */
5509 if (qc
->tf
.protocol
== ATAPI_PROT_PIO
) {
5510 /* ATAPI PIO protocol */
5511 if ((status
& ATA_DRQ
) == 0) {
5512 /* No more data to transfer or device error.
5513 * Device error will be tagged in HSM_ST_LAST.
5515 ap
->hsm_task_state
= HSM_ST_LAST
;
5519 /* Device should not ask for data transfer (DRQ=1)
5520 * when it finds something wrong.
5521 * We ignore DRQ here and stop the HSM by
5522 * changing hsm_task_state to HSM_ST_ERR and
5523 * let the EH abort the command or reset the device.
5525 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
5526 ata_port_printk(ap
, KERN_WARNING
, "DRQ=1 with "
5527 "device error, dev_stat 0x%X\n",
5529 qc
->err_mask
|= AC_ERR_HSM
;
5530 ap
->hsm_task_state
= HSM_ST_ERR
;
5534 atapi_pio_bytes(qc
);
5536 if (unlikely(ap
->hsm_task_state
== HSM_ST_ERR
))
5537 /* bad ireason reported by device */
5541 /* ATA PIO protocol */
5542 if (unlikely((status
& ATA_DRQ
) == 0)) {
5543 /* handle BSY=0, DRQ=0 as error */
5544 if (likely(status
& (ATA_ERR
| ATA_DF
)))
5545 /* device stops HSM for abort/error */
5546 qc
->err_mask
|= AC_ERR_DEV
;
5548 /* HSM violation. Let EH handle this.
5549 * Phantom devices also trigger this
5550 * condition. Mark hint.
5552 qc
->err_mask
|= AC_ERR_HSM
|
5555 ap
->hsm_task_state
= HSM_ST_ERR
;
5559 /* For PIO reads, some devices may ask for
5560 * data transfer (DRQ=1) alone with ERR=1.
5561 * We respect DRQ here and transfer one
5562 * block of junk data before changing the
5563 * hsm_task_state to HSM_ST_ERR.
5565 * For PIO writes, ERR=1 DRQ=1 doesn't make
5566 * sense since the data block has been
5567 * transferred to the device.
5569 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
5570 /* data might be corrputed */
5571 qc
->err_mask
|= AC_ERR_DEV
;
5573 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
)) {
5574 ata_pio_sectors(qc
);
5575 status
= ata_wait_idle(ap
);
5578 if (status
& (ATA_BUSY
| ATA_DRQ
))
5579 qc
->err_mask
|= AC_ERR_HSM
;
5581 /* ata_pio_sectors() might change the
5582 * state to HSM_ST_LAST. so, the state
5583 * is changed after ata_pio_sectors().
5585 ap
->hsm_task_state
= HSM_ST_ERR
;
5589 ata_pio_sectors(qc
);
5591 if (ap
->hsm_task_state
== HSM_ST_LAST
&&
5592 (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))) {
5594 status
= ata_wait_idle(ap
);
5603 if (unlikely(!ata_ok(status
))) {
5604 qc
->err_mask
|= __ac_err_mask(status
);
5605 ap
->hsm_task_state
= HSM_ST_ERR
;
5609 /* no more data to transfer */
5610 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5611 ap
->print_id
, qc
->dev
->devno
, status
);
5613 WARN_ON(qc
->err_mask
);
5615 ap
->hsm_task_state
= HSM_ST_IDLE
;
5617 /* complete taskfile transaction */
5618 ata_hsm_qc_complete(qc
, in_wq
);
5624 /* make sure qc->err_mask is available to
5625 * know what's wrong and recover
5627 WARN_ON(qc
->err_mask
== 0);
5629 ap
->hsm_task_state
= HSM_ST_IDLE
;
5631 /* complete taskfile transaction */
5632 ata_hsm_qc_complete(qc
, in_wq
);
5644 static void ata_pio_task(struct work_struct
*work
)
5646 struct ata_port
*ap
=
5647 container_of(work
, struct ata_port
, port_task
.work
);
5648 struct ata_queued_cmd
*qc
= ap
->port_task_data
;
5653 WARN_ON(ap
->hsm_task_state
== HSM_ST_IDLE
);
5656 * This is purely heuristic. This is a fast path.
5657 * Sometimes when we enter, BSY will be cleared in
5658 * a chk-status or two. If not, the drive is probably seeking
5659 * or something. Snooze for a couple msecs, then
5660 * chk-status again. If still busy, queue delayed work.
5662 status
= ata_busy_wait(ap
, ATA_BUSY
, 5);
5663 if (status
& ATA_BUSY
) {
5665 status
= ata_busy_wait(ap
, ATA_BUSY
, 10);
5666 if (status
& ATA_BUSY
) {
5667 ata_pio_queue_task(ap
, qc
, ATA_SHORT_PAUSE
);
5673 poll_next
= ata_hsm_move(ap
, qc
, status
, 1);
5675 /* another command or interrupt handler
5676 * may be running at this point.
5683 * ata_qc_new - Request an available ATA command, for queueing
5684 * @ap: Port associated with device @dev
5685 * @dev: Device from whom we request an available command structure
5691 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
5693 struct ata_queued_cmd
*qc
= NULL
;
5696 /* no command while frozen */
5697 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
5700 /* the last tag is reserved for internal command. */
5701 for (i
= 0; i
< ATA_MAX_QUEUE
- 1; i
++)
5702 if (!test_and_set_bit(i
, &ap
->qc_allocated
)) {
5703 qc
= __ata_qc_from_tag(ap
, i
);
5714 * ata_qc_new_init - Request an available ATA command, and initialize it
5715 * @dev: Device from whom we request an available command structure
5721 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
)
5723 struct ata_port
*ap
= dev
->link
->ap
;
5724 struct ata_queued_cmd
*qc
;
5726 qc
= ata_qc_new(ap
);
5739 * ata_qc_free - free unused ata_queued_cmd
5740 * @qc: Command to complete
5742 * Designed to free unused ata_queued_cmd object
5743 * in case something prevents using it.
5746 * spin_lock_irqsave(host lock)
5748 void ata_qc_free(struct ata_queued_cmd
*qc
)
5750 struct ata_port
*ap
= qc
->ap
;
5753 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
5757 if (likely(ata_tag_valid(tag
))) {
5758 qc
->tag
= ATA_TAG_POISON
;
5759 clear_bit(tag
, &ap
->qc_allocated
);
5763 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
5765 struct ata_port
*ap
= qc
->ap
;
5766 struct ata_link
*link
= qc
->dev
->link
;
5768 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
5769 WARN_ON(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
5771 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
5774 /* command should be marked inactive atomically with qc completion */
5775 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
5776 link
->sactive
&= ~(1 << qc
->tag
);
5778 ap
->nr_active_links
--;
5780 link
->active_tag
= ATA_TAG_POISON
;
5781 ap
->nr_active_links
--;
5784 /* clear exclusive status */
5785 if (unlikely(qc
->flags
& ATA_QCFLAG_CLEAR_EXCL
&&
5786 ap
->excl_link
== link
))
5787 ap
->excl_link
= NULL
;
5789 /* atapi: mark qc as inactive to prevent the interrupt handler
5790 * from completing the command twice later, before the error handler
5791 * is called. (when rc != 0 and atapi request sense is needed)
5793 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
5794 ap
->qc_active
&= ~(1 << qc
->tag
);
5796 /* call completion callback */
5797 qc
->complete_fn(qc
);
5800 static void fill_result_tf(struct ata_queued_cmd
*qc
)
5802 struct ata_port
*ap
= qc
->ap
;
5804 qc
->result_tf
.flags
= qc
->tf
.flags
;
5805 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
5808 static void ata_verify_xfer(struct ata_queued_cmd
*qc
)
5810 struct ata_device
*dev
= qc
->dev
;
5812 if (ata_tag_internal(qc
->tag
))
5815 if (ata_is_nodata(qc
->tf
.protocol
))
5818 if ((dev
->mwdma_mask
|| dev
->udma_mask
) && ata_is_pio(qc
->tf
.protocol
))
5821 dev
->flags
&= ~ATA_DFLAG_DUBIOUS_XFER
;
5825 * ata_qc_complete - Complete an active ATA command
5826 * @qc: Command to complete
5827 * @err_mask: ATA Status register contents
5829 * Indicate to the mid and upper layers that an ATA
5830 * command has completed, with either an ok or not-ok status.
5833 * spin_lock_irqsave(host lock)
5835 void ata_qc_complete(struct ata_queued_cmd
*qc
)
5837 struct ata_port
*ap
= qc
->ap
;
5839 /* XXX: New EH and old EH use different mechanisms to
5840 * synchronize EH with regular execution path.
5842 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5843 * Normal execution path is responsible for not accessing a
5844 * failed qc. libata core enforces the rule by returning NULL
5845 * from ata_qc_from_tag() for failed qcs.
5847 * Old EH depends on ata_qc_complete() nullifying completion
5848 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5849 * not synchronize with interrupt handler. Only PIO task is
5852 if (ap
->ops
->error_handler
) {
5853 struct ata_device
*dev
= qc
->dev
;
5854 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
5856 WARN_ON(ap
->pflags
& ATA_PFLAG_FROZEN
);
5858 if (unlikely(qc
->err_mask
))
5859 qc
->flags
|= ATA_QCFLAG_FAILED
;
5861 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
5862 if (!ata_tag_internal(qc
->tag
)) {
5863 /* always fill result TF for failed qc */
5865 ata_qc_schedule_eh(qc
);
5870 /* read result TF if requested */
5871 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5874 /* Some commands need post-processing after successful
5877 switch (qc
->tf
.command
) {
5878 case ATA_CMD_SET_FEATURES
:
5879 if (qc
->tf
.feature
!= SETFEATURES_WC_ON
&&
5880 qc
->tf
.feature
!= SETFEATURES_WC_OFF
)
5883 case ATA_CMD_INIT_DEV_PARAMS
: /* CHS translation changed */
5884 case ATA_CMD_SET_MULTI
: /* multi_count changed */
5885 /* revalidate device */
5886 ehi
->dev_action
[dev
->devno
] |= ATA_EH_REVALIDATE
;
5887 ata_port_schedule_eh(ap
);
5891 dev
->flags
|= ATA_DFLAG_SLEEPING
;
5895 if (unlikely(dev
->flags
& ATA_DFLAG_DUBIOUS_XFER
))
5896 ata_verify_xfer(qc
);
5898 __ata_qc_complete(qc
);
5900 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
5903 /* read result TF if failed or requested */
5904 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5907 __ata_qc_complete(qc
);
5912 * ata_qc_complete_multiple - Complete multiple qcs successfully
5913 * @ap: port in question
5914 * @qc_active: new qc_active mask
5915 * @finish_qc: LLDD callback invoked before completing a qc
5917 * Complete in-flight commands. This functions is meant to be
5918 * called from low-level driver's interrupt routine to complete
5919 * requests normally. ap->qc_active and @qc_active is compared
5920 * and commands are completed accordingly.
5923 * spin_lock_irqsave(host lock)
5926 * Number of completed commands on success, -errno otherwise.
5928 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
,
5929 void (*finish_qc
)(struct ata_queued_cmd
*))
5935 done_mask
= ap
->qc_active
^ qc_active
;
5937 if (unlikely(done_mask
& qc_active
)) {
5938 ata_port_printk(ap
, KERN_ERR
, "illegal qc_active transition "
5939 "(%08x->%08x)\n", ap
->qc_active
, qc_active
);
5943 for (i
= 0; i
< ATA_MAX_QUEUE
; i
++) {
5944 struct ata_queued_cmd
*qc
;
5946 if (!(done_mask
& (1 << i
)))
5949 if ((qc
= ata_qc_from_tag(ap
, i
))) {
5952 ata_qc_complete(qc
);
5961 * ata_qc_issue - issue taskfile to device
5962 * @qc: command to issue to device
5964 * Prepare an ATA command to submission to device.
5965 * This includes mapping the data into a DMA-able
5966 * area, filling in the S/G table, and finally
5967 * writing the taskfile to hardware, starting the command.
5970 * spin_lock_irqsave(host lock)
5972 void ata_qc_issue(struct ata_queued_cmd
*qc
)
5974 struct ata_port
*ap
= qc
->ap
;
5975 struct ata_link
*link
= qc
->dev
->link
;
5976 u8 prot
= qc
->tf
.protocol
;
5978 /* Make sure only one non-NCQ command is outstanding. The
5979 * check is skipped for old EH because it reuses active qc to
5980 * request ATAPI sense.
5982 WARN_ON(ap
->ops
->error_handler
&& ata_tag_valid(link
->active_tag
));
5984 if (ata_is_ncq(prot
)) {
5985 WARN_ON(link
->sactive
& (1 << qc
->tag
));
5988 ap
->nr_active_links
++;
5989 link
->sactive
|= 1 << qc
->tag
;
5991 WARN_ON(link
->sactive
);
5993 ap
->nr_active_links
++;
5994 link
->active_tag
= qc
->tag
;
5997 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
5998 ap
->qc_active
|= 1 << qc
->tag
;
6000 /* We guarantee to LLDs that they will have at least one
6001 * non-zero sg if the command is a data command.
6003 BUG_ON(ata_is_data(prot
) && (!qc
->sg
|| !qc
->n_elem
|| !qc
->nbytes
));
6005 if (ata_is_dma(prot
) || (ata_is_pio(prot
) &&
6006 (ap
->flags
& ATA_FLAG_PIO_DMA
)))
6007 if (ata_sg_setup(qc
))
6010 /* if device is sleeping, schedule softreset and abort the link */
6011 if (unlikely(qc
->dev
->flags
& ATA_DFLAG_SLEEPING
)) {
6012 link
->eh_info
.action
|= ATA_EH_SOFTRESET
;
6013 ata_ehi_push_desc(&link
->eh_info
, "waking up from sleep");
6014 ata_link_abort(link
);
6018 ap
->ops
->qc_prep(qc
);
6020 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
6021 if (unlikely(qc
->err_mask
))
6026 qc
->err_mask
|= AC_ERR_SYSTEM
;
6028 ata_qc_complete(qc
);
6032 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
6033 * @qc: command to issue to device
6035 * Using various libata functions and hooks, this function
6036 * starts an ATA command. ATA commands are grouped into
6037 * classes called "protocols", and issuing each type of protocol
6038 * is slightly different.
6040 * May be used as the qc_issue() entry in ata_port_operations.
6043 * spin_lock_irqsave(host lock)
6046 * Zero on success, AC_ERR_* mask on failure
6049 unsigned int ata_qc_issue_prot(struct ata_queued_cmd
*qc
)
6051 struct ata_port
*ap
= qc
->ap
;
6053 /* Use polling pio if the LLD doesn't handle
6054 * interrupt driven pio and atapi CDB interrupt.
6056 if (ap
->flags
& ATA_FLAG_PIO_POLLING
) {
6057 switch (qc
->tf
.protocol
) {
6059 case ATA_PROT_NODATA
:
6060 case ATAPI_PROT_PIO
:
6061 case ATAPI_PROT_NODATA
:
6062 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
6064 case ATAPI_PROT_DMA
:
6065 if (qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)
6066 /* see ata_dma_blacklisted() */
6074 /* select the device */
6075 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
6077 /* start the command */
6078 switch (qc
->tf
.protocol
) {
6079 case ATA_PROT_NODATA
:
6080 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
6081 ata_qc_set_polling(qc
);
6083 ata_tf_to_host(ap
, &qc
->tf
);
6084 ap
->hsm_task_state
= HSM_ST_LAST
;
6086 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
6087 ata_pio_queue_task(ap
, qc
, 0);
6092 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
6094 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
6095 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
6096 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
6097 ap
->hsm_task_state
= HSM_ST_LAST
;
6101 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
6102 ata_qc_set_polling(qc
);
6104 ata_tf_to_host(ap
, &qc
->tf
);
6106 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
6107 /* PIO data out protocol */
6108 ap
->hsm_task_state
= HSM_ST_FIRST
;
6109 ata_pio_queue_task(ap
, qc
, 0);
6111 /* always send first data block using
6112 * the ata_pio_task() codepath.
6115 /* PIO data in protocol */
6116 ap
->hsm_task_state
= HSM_ST
;
6118 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
6119 ata_pio_queue_task(ap
, qc
, 0);
6121 /* if polling, ata_pio_task() handles the rest.
6122 * otherwise, interrupt handler takes over from here.
6128 case ATAPI_PROT_PIO
:
6129 case ATAPI_PROT_NODATA
:
6130 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
6131 ata_qc_set_polling(qc
);
6133 ata_tf_to_host(ap
, &qc
->tf
);
6135 ap
->hsm_task_state
= HSM_ST_FIRST
;
6137 /* send cdb by polling if no cdb interrupt */
6138 if ((!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)) ||
6139 (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
6140 ata_pio_queue_task(ap
, qc
, 0);
6143 case ATAPI_PROT_DMA
:
6144 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
6146 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
6147 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
6148 ap
->hsm_task_state
= HSM_ST_FIRST
;
6150 /* send cdb by polling if no cdb interrupt */
6151 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
6152 ata_pio_queue_task(ap
, qc
, 0);
6157 return AC_ERR_SYSTEM
;
6164 * ata_host_intr - Handle host interrupt for given (port, task)
6165 * @ap: Port on which interrupt arrived (possibly...)
6166 * @qc: Taskfile currently active in engine
6168 * Handle host interrupt for given queued command. Currently,
6169 * only DMA interrupts are handled. All other commands are
6170 * handled via polling with interrupts disabled (nIEN bit).
6173 * spin_lock_irqsave(host lock)
6176 * One if interrupt was handled, zero if not (shared irq).
6179 inline unsigned int ata_host_intr(struct ata_port
*ap
,
6180 struct ata_queued_cmd
*qc
)
6182 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
6183 u8 status
, host_stat
= 0;
6185 VPRINTK("ata%u: protocol %d task_state %d\n",
6186 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
);
6188 /* Check whether we are expecting interrupt in this state */
6189 switch (ap
->hsm_task_state
) {
6191 /* Some pre-ATAPI-4 devices assert INTRQ
6192 * at this state when ready to receive CDB.
6195 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6196 * The flag was turned on only for atapi devices. No
6197 * need to check ata_is_atapi(qc->tf.protocol) again.
6199 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
6203 if (qc
->tf
.protocol
== ATA_PROT_DMA
||
6204 qc
->tf
.protocol
== ATAPI_PROT_DMA
) {
6205 /* check status of DMA engine */
6206 host_stat
= ap
->ops
->bmdma_status(ap
);
6207 VPRINTK("ata%u: host_stat 0x%X\n",
6208 ap
->print_id
, host_stat
);
6210 /* if it's not our irq... */
6211 if (!(host_stat
& ATA_DMA_INTR
))
6214 /* before we do anything else, clear DMA-Start bit */
6215 ap
->ops
->bmdma_stop(qc
);
6217 if (unlikely(host_stat
& ATA_DMA_ERR
)) {
6218 /* error when transfering data to/from memory */
6219 qc
->err_mask
|= AC_ERR_HOST_BUS
;
6220 ap
->hsm_task_state
= HSM_ST_ERR
;
6230 /* check altstatus */
6231 status
= ata_altstatus(ap
);
6232 if (status
& ATA_BUSY
)
6235 /* check main status, clearing INTRQ */
6236 status
= ata_chk_status(ap
);
6237 if (unlikely(status
& ATA_BUSY
))
6240 /* ack bmdma irq events */
6241 ap
->ops
->irq_clear(ap
);
6243 ata_hsm_move(ap
, qc
, status
, 0);
6245 if (unlikely(qc
->err_mask
) && (qc
->tf
.protocol
== ATA_PROT_DMA
||
6246 qc
->tf
.protocol
== ATAPI_PROT_DMA
))
6247 ata_ehi_push_desc(ehi
, "BMDMA stat 0x%x", host_stat
);
6249 return 1; /* irq handled */
6252 ap
->stats
.idle_irq
++;
6255 if ((ap
->stats
.idle_irq
% 1000) == 0) {
6257 ap
->ops
->irq_clear(ap
);
6258 ata_port_printk(ap
, KERN_WARNING
, "irq trap\n");
6262 return 0; /* irq not handled */
6266 * ata_interrupt - Default ATA host interrupt handler
6267 * @irq: irq line (unused)
6268 * @dev_instance: pointer to our ata_host information structure
6270 * Default interrupt handler for PCI IDE devices. Calls
6271 * ata_host_intr() for each port that is not disabled.
6274 * Obtains host lock during operation.
6277 * IRQ_NONE or IRQ_HANDLED.
6280 irqreturn_t
ata_interrupt(int irq
, void *dev_instance
)
6282 struct ata_host
*host
= dev_instance
;
6284 unsigned int handled
= 0;
6285 unsigned long flags
;
6287 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
6288 spin_lock_irqsave(&host
->lock
, flags
);
6290 for (i
= 0; i
< host
->n_ports
; i
++) {
6291 struct ata_port
*ap
;
6293 ap
= host
->ports
[i
];
6295 !(ap
->flags
& ATA_FLAG_DISABLED
)) {
6296 struct ata_queued_cmd
*qc
;
6298 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
6299 if (qc
&& (!(qc
->tf
.flags
& ATA_TFLAG_POLLING
)) &&
6300 (qc
->flags
& ATA_QCFLAG_ACTIVE
))
6301 handled
|= ata_host_intr(ap
, qc
);
6305 spin_unlock_irqrestore(&host
->lock
, flags
);
6307 return IRQ_RETVAL(handled
);
6311 * sata_scr_valid - test whether SCRs are accessible
6312 * @link: ATA link to test SCR accessibility for
6314 * Test whether SCRs are accessible for @link.
6320 * 1 if SCRs are accessible, 0 otherwise.
6322 int sata_scr_valid(struct ata_link
*link
)
6324 struct ata_port
*ap
= link
->ap
;
6326 return (ap
->flags
& ATA_FLAG_SATA
) && ap
->ops
->scr_read
;
6330 * sata_scr_read - read SCR register of the specified port
6331 * @link: ATA link to read SCR for
6333 * @val: Place to store read value
6335 * Read SCR register @reg of @link into *@val. This function is
6336 * guaranteed to succeed if @link is ap->link, the cable type of
6337 * the port is SATA and the port implements ->scr_read.
6340 * None if @link is ap->link. Kernel thread context otherwise.
6343 * 0 on success, negative errno on failure.
6345 int sata_scr_read(struct ata_link
*link
, int reg
, u32
*val
)
6347 if (ata_is_host_link(link
)) {
6348 struct ata_port
*ap
= link
->ap
;
6350 if (sata_scr_valid(link
))
6351 return ap
->ops
->scr_read(ap
, reg
, val
);
6355 return sata_pmp_scr_read(link
, reg
, val
);
6359 * sata_scr_write - write SCR register of the specified port
6360 * @link: ATA link to write SCR for
6361 * @reg: SCR to write
6362 * @val: value to write
6364 * Write @val to SCR register @reg of @link. This function is
6365 * guaranteed to succeed if @link is ap->link, the cable type of
6366 * the port is SATA and the port implements ->scr_read.
6369 * None if @link is ap->link. Kernel thread context otherwise.
6372 * 0 on success, negative errno on failure.
6374 int sata_scr_write(struct ata_link
*link
, int reg
, u32 val
)
6376 if (ata_is_host_link(link
)) {
6377 struct ata_port
*ap
= link
->ap
;
6379 if (sata_scr_valid(link
))
6380 return ap
->ops
->scr_write(ap
, reg
, val
);
6384 return sata_pmp_scr_write(link
, reg
, val
);
6388 * sata_scr_write_flush - write SCR register of the specified port and flush
6389 * @link: ATA link to write SCR for
6390 * @reg: SCR to write
6391 * @val: value to write
6393 * This function is identical to sata_scr_write() except that this
6394 * function performs flush after writing to the register.
6397 * None if @link is ap->link. Kernel thread context otherwise.
6400 * 0 on success, negative errno on failure.
6402 int sata_scr_write_flush(struct ata_link
*link
, int reg
, u32 val
)
6404 if (ata_is_host_link(link
)) {
6405 struct ata_port
*ap
= link
->ap
;
6408 if (sata_scr_valid(link
)) {
6409 rc
= ap
->ops
->scr_write(ap
, reg
, val
);
6411 rc
= ap
->ops
->scr_read(ap
, reg
, &val
);
6417 return sata_pmp_scr_write(link
, reg
, val
);
6421 * ata_link_online - test whether the given link is online
6422 * @link: ATA link to test
6424 * Test whether @link is online. Note that this function returns
6425 * 0 if online status of @link cannot be obtained, so
6426 * ata_link_online(link) != !ata_link_offline(link).
6432 * 1 if the port online status is available and online.
6434 int ata_link_online(struct ata_link
*link
)
6438 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
6439 (sstatus
& 0xf) == 0x3)
6445 * ata_link_offline - test whether the given link is offline
6446 * @link: ATA link to test
6448 * Test whether @link is offline. Note that this function
6449 * returns 0 if offline status of @link cannot be obtained, so
6450 * ata_link_online(link) != !ata_link_offline(link).
6456 * 1 if the port offline status is available and offline.
6458 int ata_link_offline(struct ata_link
*link
)
6462 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
6463 (sstatus
& 0xf) != 0x3)
6468 int ata_flush_cache(struct ata_device
*dev
)
6470 unsigned int err_mask
;
6473 if (!ata_try_flush_cache(dev
))
6476 if (dev
->flags
& ATA_DFLAG_FLUSH_EXT
)
6477 cmd
= ATA_CMD_FLUSH_EXT
;
6479 cmd
= ATA_CMD_FLUSH
;
6481 /* This is wrong. On a failed flush we get back the LBA of the lost
6482 sector and we should (assuming it wasn't aborted as unknown) issue
6483 a further flush command to continue the writeback until it
6485 err_mask
= ata_do_simple_cmd(dev
, cmd
);
6487 ata_dev_printk(dev
, KERN_ERR
, "failed to flush cache\n");
6495 static int ata_host_request_pm(struct ata_host
*host
, pm_message_t mesg
,
6496 unsigned int action
, unsigned int ehi_flags
,
6499 unsigned long flags
;
6502 for (i
= 0; i
< host
->n_ports
; i
++) {
6503 struct ata_port
*ap
= host
->ports
[i
];
6504 struct ata_link
*link
;
6506 /* Previous resume operation might still be in
6507 * progress. Wait for PM_PENDING to clear.
6509 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
6510 ata_port_wait_eh(ap
);
6511 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
6514 /* request PM ops to EH */
6515 spin_lock_irqsave(ap
->lock
, flags
);
6520 ap
->pm_result
= &rc
;
6523 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
6524 __ata_port_for_each_link(link
, ap
) {
6525 link
->eh_info
.action
|= action
;
6526 link
->eh_info
.flags
|= ehi_flags
;
6529 ata_port_schedule_eh(ap
);
6531 spin_unlock_irqrestore(ap
->lock
, flags
);
6533 /* wait and check result */
6535 ata_port_wait_eh(ap
);
6536 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
6546 * ata_host_suspend - suspend host
6547 * @host: host to suspend
6550 * Suspend @host. Actual operation is performed by EH. This
6551 * function requests EH to perform PM operations and waits for EH
6555 * Kernel thread context (may sleep).
6558 * 0 on success, -errno on failure.
6560 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
6565 * disable link pm on all ports before requesting
6568 ata_lpm_enable(host
);
6570 rc
= ata_host_request_pm(host
, mesg
, 0, ATA_EHI_QUIET
, 1);
6572 host
->dev
->power
.power_state
= mesg
;
6577 * ata_host_resume - resume host
6578 * @host: host to resume
6580 * Resume @host. Actual operation is performed by EH. This
6581 * function requests EH to perform PM operations and returns.
6582 * Note that all resume operations are performed parallely.
6585 * Kernel thread context (may sleep).
6587 void ata_host_resume(struct ata_host
*host
)
6589 ata_host_request_pm(host
, PMSG_ON
, ATA_EH_SOFTRESET
,
6590 ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
, 0);
6591 host
->dev
->power
.power_state
= PMSG_ON
;
6593 /* reenable link pm */
6594 ata_lpm_disable(host
);
6599 * ata_port_start - Set port up for dma.
6600 * @ap: Port to initialize
6602 * Called just after data structures for each port are
6603 * initialized. Allocates space for PRD table.
6605 * May be used as the port_start() entry in ata_port_operations.
6608 * Inherited from caller.
6610 int ata_port_start(struct ata_port
*ap
)
6612 struct device
*dev
= ap
->dev
;
6614 ap
->prd
= dmam_alloc_coherent(dev
, ATA_PRD_TBL_SZ
, &ap
->prd_dma
,
6623 * ata_dev_init - Initialize an ata_device structure
6624 * @dev: Device structure to initialize
6626 * Initialize @dev in preparation for probing.
6629 * Inherited from caller.
6631 void ata_dev_init(struct ata_device
*dev
)
6633 struct ata_link
*link
= dev
->link
;
6634 struct ata_port
*ap
= link
->ap
;
6635 unsigned long flags
;
6637 /* SATA spd limit is bound to the first device */
6638 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
6641 /* High bits of dev->flags are used to record warm plug
6642 * requests which occur asynchronously. Synchronize using
6645 spin_lock_irqsave(ap
->lock
, flags
);
6646 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
6648 spin_unlock_irqrestore(ap
->lock
, flags
);
6650 memset((void *)dev
+ ATA_DEVICE_CLEAR_OFFSET
, 0,
6651 sizeof(*dev
) - ATA_DEVICE_CLEAR_OFFSET
);
6652 dev
->pio_mask
= UINT_MAX
;
6653 dev
->mwdma_mask
= UINT_MAX
;
6654 dev
->udma_mask
= UINT_MAX
;
6658 * ata_link_init - Initialize an ata_link structure
6659 * @ap: ATA port link is attached to
6660 * @link: Link structure to initialize
6661 * @pmp: Port multiplier port number
6666 * Kernel thread context (may sleep)
6668 void ata_link_init(struct ata_port
*ap
, struct ata_link
*link
, int pmp
)
6672 /* clear everything except for devices */
6673 memset(link
, 0, offsetof(struct ata_link
, device
[0]));
6677 link
->active_tag
= ATA_TAG_POISON
;
6678 link
->hw_sata_spd_limit
= UINT_MAX
;
6680 /* can't use iterator, ap isn't initialized yet */
6681 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
6682 struct ata_device
*dev
= &link
->device
[i
];
6685 dev
->devno
= dev
- link
->device
;
6691 * sata_link_init_spd - Initialize link->sata_spd_limit
6692 * @link: Link to configure sata_spd_limit for
6694 * Initialize @link->[hw_]sata_spd_limit to the currently
6698 * Kernel thread context (may sleep).
6701 * 0 on success, -errno on failure.
6703 int sata_link_init_spd(struct ata_link
*link
)
6709 rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
6713 spd
= (scontrol
>> 4) & 0xf;
6715 link
->hw_sata_spd_limit
&= (1 << spd
) - 1;
6717 ata_force_spd_limit(link
);
6719 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
6725 * ata_port_alloc - allocate and initialize basic ATA port resources
6726 * @host: ATA host this allocated port belongs to
6728 * Allocate and initialize basic ATA port resources.
6731 * Allocate ATA port on success, NULL on failure.
6734 * Inherited from calling layer (may sleep).
6736 struct ata_port
*ata_port_alloc(struct ata_host
*host
)
6738 struct ata_port
*ap
;
6742 ap
= kzalloc(sizeof(*ap
), GFP_KERNEL
);
6746 ap
->pflags
|= ATA_PFLAG_INITIALIZING
;
6747 ap
->lock
= &host
->lock
;
6748 ap
->flags
= ATA_FLAG_DISABLED
;
6750 ap
->ctl
= ATA_DEVCTL_OBS
;
6752 ap
->dev
= host
->dev
;
6753 ap
->last_ctl
= 0xFF;
6755 #if defined(ATA_VERBOSE_DEBUG)
6756 /* turn on all debugging levels */
6757 ap
->msg_enable
= 0x00FF;
6758 #elif defined(ATA_DEBUG)
6759 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
6761 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
6764 INIT_DELAYED_WORK(&ap
->port_task
, ata_pio_task
);
6765 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
6766 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
6767 INIT_LIST_HEAD(&ap
->eh_done_q
);
6768 init_waitqueue_head(&ap
->eh_wait_q
);
6769 init_timer_deferrable(&ap
->fastdrain_timer
);
6770 ap
->fastdrain_timer
.function
= ata_eh_fastdrain_timerfn
;
6771 ap
->fastdrain_timer
.data
= (unsigned long)ap
;
6773 ap
->cbl
= ATA_CBL_NONE
;
6775 ata_link_init(ap
, &ap
->link
, 0);
6778 ap
->stats
.unhandled_irq
= 1;
6779 ap
->stats
.idle_irq
= 1;
6784 static void ata_host_release(struct device
*gendev
, void *res
)
6786 struct ata_host
*host
= dev_get_drvdata(gendev
);
6789 for (i
= 0; i
< host
->n_ports
; i
++) {
6790 struct ata_port
*ap
= host
->ports
[i
];
6796 scsi_host_put(ap
->scsi_host
);
6798 kfree(ap
->pmp_link
);
6800 host
->ports
[i
] = NULL
;
6803 dev_set_drvdata(gendev
, NULL
);
6807 * ata_host_alloc - allocate and init basic ATA host resources
6808 * @dev: generic device this host is associated with
6809 * @max_ports: maximum number of ATA ports associated with this host
6811 * Allocate and initialize basic ATA host resources. LLD calls
6812 * this function to allocate a host, initializes it fully and
6813 * attaches it using ata_host_register().
6815 * @max_ports ports are allocated and host->n_ports is
6816 * initialized to @max_ports. The caller is allowed to decrease
6817 * host->n_ports before calling ata_host_register(). The unused
6818 * ports will be automatically freed on registration.
6821 * Allocate ATA host on success, NULL on failure.
6824 * Inherited from calling layer (may sleep).
6826 struct ata_host
*ata_host_alloc(struct device
*dev
, int max_ports
)
6828 struct ata_host
*host
;
6834 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
6837 /* alloc a container for our list of ATA ports (buses) */
6838 sz
= sizeof(struct ata_host
) + (max_ports
+ 1) * sizeof(void *);
6839 /* alloc a container for our list of ATA ports (buses) */
6840 host
= devres_alloc(ata_host_release
, sz
, GFP_KERNEL
);
6844 devres_add(dev
, host
);
6845 dev_set_drvdata(dev
, host
);
6847 spin_lock_init(&host
->lock
);
6849 host
->n_ports
= max_ports
;
6851 /* allocate ports bound to this host */
6852 for (i
= 0; i
< max_ports
; i
++) {
6853 struct ata_port
*ap
;
6855 ap
= ata_port_alloc(host
);
6860 host
->ports
[i
] = ap
;
6863 devres_remove_group(dev
, NULL
);
6867 devres_release_group(dev
, NULL
);
6872 * ata_host_alloc_pinfo - alloc host and init with port_info array
6873 * @dev: generic device this host is associated with
6874 * @ppi: array of ATA port_info to initialize host with
6875 * @n_ports: number of ATA ports attached to this host
6877 * Allocate ATA host and initialize with info from @ppi. If NULL
6878 * terminated, @ppi may contain fewer entries than @n_ports. The
6879 * last entry will be used for the remaining ports.
6882 * Allocate ATA host on success, NULL on failure.
6885 * Inherited from calling layer (may sleep).
6887 struct ata_host
*ata_host_alloc_pinfo(struct device
*dev
,
6888 const struct ata_port_info
* const * ppi
,
6891 const struct ata_port_info
*pi
;
6892 struct ata_host
*host
;
6895 host
= ata_host_alloc(dev
, n_ports
);
6899 for (i
= 0, j
= 0, pi
= NULL
; i
< host
->n_ports
; i
++) {
6900 struct ata_port
*ap
= host
->ports
[i
];
6905 ap
->pio_mask
= pi
->pio_mask
;
6906 ap
->mwdma_mask
= pi
->mwdma_mask
;
6907 ap
->udma_mask
= pi
->udma_mask
;
6908 ap
->flags
|= pi
->flags
;
6909 ap
->link
.flags
|= pi
->link_flags
;
6910 ap
->ops
= pi
->port_ops
;
6912 if (!host
->ops
&& (pi
->port_ops
!= &ata_dummy_port_ops
))
6913 host
->ops
= pi
->port_ops
;
6914 if (!host
->private_data
&& pi
->private_data
)
6915 host
->private_data
= pi
->private_data
;
6921 static void ata_host_stop(struct device
*gendev
, void *res
)
6923 struct ata_host
*host
= dev_get_drvdata(gendev
);
6926 WARN_ON(!(host
->flags
& ATA_HOST_STARTED
));
6928 for (i
= 0; i
< host
->n_ports
; i
++) {
6929 struct ata_port
*ap
= host
->ports
[i
];
6931 if (ap
->ops
->port_stop
)
6932 ap
->ops
->port_stop(ap
);
6935 if (host
->ops
->host_stop
)
6936 host
->ops
->host_stop(host
);
6940 * ata_host_start - start and freeze ports of an ATA host
6941 * @host: ATA host to start ports for
6943 * Start and then freeze ports of @host. Started status is
6944 * recorded in host->flags, so this function can be called
6945 * multiple times. Ports are guaranteed to get started only
6946 * once. If host->ops isn't initialized yet, its set to the
6947 * first non-dummy port ops.
6950 * Inherited from calling layer (may sleep).
6953 * 0 if all ports are started successfully, -errno otherwise.
6955 int ata_host_start(struct ata_host
*host
)
6958 void *start_dr
= NULL
;
6961 if (host
->flags
& ATA_HOST_STARTED
)
6964 for (i
= 0; i
< host
->n_ports
; i
++) {
6965 struct ata_port
*ap
= host
->ports
[i
];
6967 if (!host
->ops
&& !ata_port_is_dummy(ap
))
6968 host
->ops
= ap
->ops
;
6970 if (ap
->ops
->port_stop
)
6974 if (host
->ops
->host_stop
)
6978 start_dr
= devres_alloc(ata_host_stop
, 0, GFP_KERNEL
);
6983 for (i
= 0; i
< host
->n_ports
; i
++) {
6984 struct ata_port
*ap
= host
->ports
[i
];
6986 if (ap
->ops
->port_start
) {
6987 rc
= ap
->ops
->port_start(ap
);
6990 dev_printk(KERN_ERR
, host
->dev
,
6991 "failed to start port %d "
6992 "(errno=%d)\n", i
, rc
);
6996 ata_eh_freeze_port(ap
);
7000 devres_add(host
->dev
, start_dr
);
7001 host
->flags
|= ATA_HOST_STARTED
;
7006 struct ata_port
*ap
= host
->ports
[i
];
7008 if (ap
->ops
->port_stop
)
7009 ap
->ops
->port_stop(ap
);
7011 devres_free(start_dr
);
7016 * ata_sas_host_init - Initialize a host struct
7017 * @host: host to initialize
7018 * @dev: device host is attached to
7019 * @flags: host flags
7023 * PCI/etc. bus probe sem.
7026 /* KILLME - the only user left is ipr */
7027 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
7028 unsigned long flags
, const struct ata_port_operations
*ops
)
7030 spin_lock_init(&host
->lock
);
7032 host
->flags
= flags
;
7037 * ata_host_register - register initialized ATA host
7038 * @host: ATA host to register
7039 * @sht: template for SCSI host
7041 * Register initialized ATA host. @host is allocated using
7042 * ata_host_alloc() and fully initialized by LLD. This function
7043 * starts ports, registers @host with ATA and SCSI layers and
7044 * probe registered devices.
7047 * Inherited from calling layer (may sleep).
7050 * 0 on success, -errno otherwise.
7052 int ata_host_register(struct ata_host
*host
, struct scsi_host_template
*sht
)
7056 /* host must have been started */
7057 if (!(host
->flags
& ATA_HOST_STARTED
)) {
7058 dev_printk(KERN_ERR
, host
->dev
,
7059 "BUG: trying to register unstarted host\n");
7064 /* Blow away unused ports. This happens when LLD can't
7065 * determine the exact number of ports to allocate at
7068 for (i
= host
->n_ports
; host
->ports
[i
]; i
++)
7069 kfree(host
->ports
[i
]);
7071 /* give ports names and add SCSI hosts */
7072 for (i
= 0; i
< host
->n_ports
; i
++)
7073 host
->ports
[i
]->print_id
= ata_print_id
++;
7075 rc
= ata_scsi_add_hosts(host
, sht
);
7079 /* associate with ACPI nodes */
7080 ata_acpi_associate(host
);
7082 /* set cable, sata_spd_limit and report */
7083 for (i
= 0; i
< host
->n_ports
; i
++) {
7084 struct ata_port
*ap
= host
->ports
[i
];
7085 unsigned long xfer_mask
;
7087 /* set SATA cable type if still unset */
7088 if (ap
->cbl
== ATA_CBL_NONE
&& (ap
->flags
& ATA_FLAG_SATA
))
7089 ap
->cbl
= ATA_CBL_SATA
;
7091 /* init sata_spd_limit to the current value */
7092 sata_link_init_spd(&ap
->link
);
7094 /* print per-port info to dmesg */
7095 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
, ap
->mwdma_mask
,
7098 if (!ata_port_is_dummy(ap
)) {
7099 ata_port_printk(ap
, KERN_INFO
,
7100 "%cATA max %s %s\n",
7101 (ap
->flags
& ATA_FLAG_SATA
) ? 'S' : 'P',
7102 ata_mode_string(xfer_mask
),
7103 ap
->link
.eh_info
.desc
);
7104 ata_ehi_clear_desc(&ap
->link
.eh_info
);
7106 ata_port_printk(ap
, KERN_INFO
, "DUMMY\n");
7109 /* perform each probe synchronously */
7110 DPRINTK("probe begin\n");
7111 for (i
= 0; i
< host
->n_ports
; i
++) {
7112 struct ata_port
*ap
= host
->ports
[i
];
7115 if (ap
->ops
->error_handler
) {
7116 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
7117 unsigned long flags
;
7121 /* kick EH for boot probing */
7122 spin_lock_irqsave(ap
->lock
, flags
);
7125 (1 << ata_link_max_devices(&ap
->link
)) - 1;
7126 ehi
->action
|= ATA_EH_SOFTRESET
;
7127 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
7129 ap
->pflags
&= ~ATA_PFLAG_INITIALIZING
;
7130 ap
->pflags
|= ATA_PFLAG_LOADING
;
7131 ata_port_schedule_eh(ap
);
7133 spin_unlock_irqrestore(ap
->lock
, flags
);
7135 /* wait for EH to finish */
7136 ata_port_wait_eh(ap
);
7138 DPRINTK("ata%u: bus probe begin\n", ap
->print_id
);
7139 rc
= ata_bus_probe(ap
);
7140 DPRINTK("ata%u: bus probe end\n", ap
->print_id
);
7143 /* FIXME: do something useful here?
7144 * Current libata behavior will
7145 * tear down everything when
7146 * the module is removed
7147 * or the h/w is unplugged.
7153 /* probes are done, now scan each port's disk(s) */
7154 DPRINTK("host probe begin\n");
7155 for (i
= 0; i
< host
->n_ports
; i
++) {
7156 struct ata_port
*ap
= host
->ports
[i
];
7158 ata_scsi_scan_host(ap
, 1);
7159 ata_lpm_schedule(ap
, ap
->pm_policy
);
7166 * ata_host_activate - start host, request IRQ and register it
7167 * @host: target ATA host
7168 * @irq: IRQ to request
7169 * @irq_handler: irq_handler used when requesting IRQ
7170 * @irq_flags: irq_flags used when requesting IRQ
7171 * @sht: scsi_host_template to use when registering the host
7173 * After allocating an ATA host and initializing it, most libata
7174 * LLDs perform three steps to activate the host - start host,
7175 * request IRQ and register it. This helper takes necessasry
7176 * arguments and performs the three steps in one go.
7178 * An invalid IRQ skips the IRQ registration and expects the host to
7179 * have set polling mode on the port. In this case, @irq_handler
7183 * Inherited from calling layer (may sleep).
7186 * 0 on success, -errno otherwise.
7188 int ata_host_activate(struct ata_host
*host
, int irq
,
7189 irq_handler_t irq_handler
, unsigned long irq_flags
,
7190 struct scsi_host_template
*sht
)
7194 rc
= ata_host_start(host
);
7198 /* Special case for polling mode */
7200 WARN_ON(irq_handler
);
7201 return ata_host_register(host
, sht
);
7204 rc
= devm_request_irq(host
->dev
, irq
, irq_handler
, irq_flags
,
7205 dev_driver_string(host
->dev
), host
);
7209 for (i
= 0; i
< host
->n_ports
; i
++)
7210 ata_port_desc(host
->ports
[i
], "irq %d", irq
);
7212 rc
= ata_host_register(host
, sht
);
7213 /* if failed, just free the IRQ and leave ports alone */
7215 devm_free_irq(host
->dev
, irq
, host
);
7221 * ata_port_detach - Detach ATA port in prepration of device removal
7222 * @ap: ATA port to be detached
7224 * Detach all ATA devices and the associated SCSI devices of @ap;
7225 * then, remove the associated SCSI host. @ap is guaranteed to
7226 * be quiescent on return from this function.
7229 * Kernel thread context (may sleep).
7231 static void ata_port_detach(struct ata_port
*ap
)
7233 unsigned long flags
;
7234 struct ata_link
*link
;
7235 struct ata_device
*dev
;
7237 if (!ap
->ops
->error_handler
)
7240 /* tell EH we're leaving & flush EH */
7241 spin_lock_irqsave(ap
->lock
, flags
);
7242 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
7243 spin_unlock_irqrestore(ap
->lock
, flags
);
7245 ata_port_wait_eh(ap
);
7247 /* EH is now guaranteed to see UNLOADING - EH context belongs
7248 * to us. Disable all existing devices.
7250 ata_port_for_each_link(link
, ap
) {
7251 ata_link_for_each_dev(dev
, link
)
7252 ata_dev_disable(dev
);
7255 /* Final freeze & EH. All in-flight commands are aborted. EH
7256 * will be skipped and retrials will be terminated with bad
7259 spin_lock_irqsave(ap
->lock
, flags
);
7260 ata_port_freeze(ap
); /* won't be thawed */
7261 spin_unlock_irqrestore(ap
->lock
, flags
);
7263 ata_port_wait_eh(ap
);
7264 cancel_rearming_delayed_work(&ap
->hotplug_task
);
7267 /* remove the associated SCSI host */
7268 scsi_remove_host(ap
->scsi_host
);
7272 * ata_host_detach - Detach all ports of an ATA host
7273 * @host: Host to detach
7275 * Detach all ports of @host.
7278 * Kernel thread context (may sleep).
7280 void ata_host_detach(struct ata_host
*host
)
7284 for (i
= 0; i
< host
->n_ports
; i
++)
7285 ata_port_detach(host
->ports
[i
]);
7287 /* the host is dead now, dissociate ACPI */
7288 ata_acpi_dissociate(host
);
7292 * ata_std_ports - initialize ioaddr with standard port offsets.
7293 * @ioaddr: IO address structure to be initialized
7295 * Utility function which initializes data_addr, error_addr,
7296 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7297 * device_addr, status_addr, and command_addr to standard offsets
7298 * relative to cmd_addr.
7300 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
7303 void ata_std_ports(struct ata_ioports
*ioaddr
)
7305 ioaddr
->data_addr
= ioaddr
->cmd_addr
+ ATA_REG_DATA
;
7306 ioaddr
->error_addr
= ioaddr
->cmd_addr
+ ATA_REG_ERR
;
7307 ioaddr
->feature_addr
= ioaddr
->cmd_addr
+ ATA_REG_FEATURE
;
7308 ioaddr
->nsect_addr
= ioaddr
->cmd_addr
+ ATA_REG_NSECT
;
7309 ioaddr
->lbal_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAL
;
7310 ioaddr
->lbam_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAM
;
7311 ioaddr
->lbah_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAH
;
7312 ioaddr
->device_addr
= ioaddr
->cmd_addr
+ ATA_REG_DEVICE
;
7313 ioaddr
->status_addr
= ioaddr
->cmd_addr
+ ATA_REG_STATUS
;
7314 ioaddr
->command_addr
= ioaddr
->cmd_addr
+ ATA_REG_CMD
;
7321 * ata_pci_remove_one - PCI layer callback for device removal
7322 * @pdev: PCI device that was removed
7324 * PCI layer indicates to libata via this hook that hot-unplug or
7325 * module unload event has occurred. Detach all ports. Resource
7326 * release is handled via devres.
7329 * Inherited from PCI layer (may sleep).
7331 void ata_pci_remove_one(struct pci_dev
*pdev
)
7333 struct device
*dev
= &pdev
->dev
;
7334 struct ata_host
*host
= dev_get_drvdata(dev
);
7336 ata_host_detach(host
);
7339 /* move to PCI subsystem */
7340 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
7342 unsigned long tmp
= 0;
7344 switch (bits
->width
) {
7347 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
7353 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
7359 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
7370 return (tmp
== bits
->val
) ? 1 : 0;
7374 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
7376 pci_save_state(pdev
);
7377 pci_disable_device(pdev
);
7379 if (mesg
.event
& PM_EVENT_SLEEP
)
7380 pci_set_power_state(pdev
, PCI_D3hot
);
7383 int ata_pci_device_do_resume(struct pci_dev
*pdev
)
7387 pci_set_power_state(pdev
, PCI_D0
);
7388 pci_restore_state(pdev
);
7390 rc
= pcim_enable_device(pdev
);
7392 dev_printk(KERN_ERR
, &pdev
->dev
,
7393 "failed to enable device after resume (%d)\n", rc
);
7397 pci_set_master(pdev
);
7401 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
7403 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
7406 rc
= ata_host_suspend(host
, mesg
);
7410 ata_pci_device_do_suspend(pdev
, mesg
);
7415 int ata_pci_device_resume(struct pci_dev
*pdev
)
7417 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
7420 rc
= ata_pci_device_do_resume(pdev
);
7422 ata_host_resume(host
);
7425 #endif /* CONFIG_PM */
7427 #endif /* CONFIG_PCI */
7429 static int __init
ata_parse_force_one(char **cur
,
7430 struct ata_force_ent
*force_ent
,
7431 const char **reason
)
7433 /* FIXME: Currently, there's no way to tag init const data and
7434 * using __initdata causes build failure on some versions of
7435 * gcc. Once __initdataconst is implemented, add const to the
7436 * following structure.
7438 static struct ata_force_param force_tbl
[] __initdata
= {
7439 { "40c", .cbl
= ATA_CBL_PATA40
},
7440 { "80c", .cbl
= ATA_CBL_PATA80
},
7441 { "short40c", .cbl
= ATA_CBL_PATA40_SHORT
},
7442 { "unk", .cbl
= ATA_CBL_PATA_UNK
},
7443 { "ign", .cbl
= ATA_CBL_PATA_IGN
},
7444 { "sata", .cbl
= ATA_CBL_SATA
},
7445 { "1.5Gbps", .spd_limit
= 1 },
7446 { "3.0Gbps", .spd_limit
= 2 },
7447 { "noncq", .horkage_on
= ATA_HORKAGE_NONCQ
},
7448 { "ncq", .horkage_off
= ATA_HORKAGE_NONCQ
},
7449 { "pio0", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 0) },
7450 { "pio1", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 1) },
7451 { "pio2", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 2) },
7452 { "pio3", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 3) },
7453 { "pio4", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 4) },
7454 { "pio5", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 5) },
7455 { "pio6", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 6) },
7456 { "mwdma0", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 0) },
7457 { "mwdma1", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 1) },
7458 { "mwdma2", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 2) },
7459 { "mwdma3", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 3) },
7460 { "mwdma4", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 4) },
7461 { "udma0", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
7462 { "udma16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
7463 { "udma/16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
7464 { "udma1", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
7465 { "udma25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
7466 { "udma/25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
7467 { "udma2", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
7468 { "udma33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
7469 { "udma/33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
7470 { "udma3", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
7471 { "udma44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
7472 { "udma/44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
7473 { "udma4", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
7474 { "udma66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
7475 { "udma/66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
7476 { "udma5", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
7477 { "udma100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
7478 { "udma/100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
7479 { "udma6", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
7480 { "udma133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
7481 { "udma/133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
7482 { "udma7", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 7) },
7484 char *start
= *cur
, *p
= *cur
;
7485 char *id
, *val
, *endp
;
7486 const struct ata_force_param
*match_fp
= NULL
;
7487 int nr_matches
= 0, i
;
7489 /* find where this param ends and update *cur */
7490 while (*p
!= '\0' && *p
!= ',')
7501 p
= strchr(start
, ':');
7503 val
= strstrip(start
);
7508 id
= strstrip(start
);
7509 val
= strstrip(p
+ 1);
7512 p
= strchr(id
, '.');
7515 force_ent
->device
= simple_strtoul(p
, &endp
, 10);
7516 if (p
== endp
|| *endp
!= '\0') {
7517 *reason
= "invalid device";
7522 force_ent
->port
= simple_strtoul(id
, &endp
, 10);
7523 if (p
== endp
|| *endp
!= '\0') {
7524 *reason
= "invalid port/link";
7529 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
7530 for (i
= 0; i
< ARRAY_SIZE(force_tbl
); i
++) {
7531 const struct ata_force_param
*fp
= &force_tbl
[i
];
7533 if (strncasecmp(val
, fp
->name
, strlen(val
)))
7539 if (strcasecmp(val
, fp
->name
) == 0) {
7546 *reason
= "unknown value";
7549 if (nr_matches
> 1) {
7550 *reason
= "ambigious value";
7554 force_ent
->param
= *match_fp
;
7559 static void __init
ata_parse_force_param(void)
7561 int idx
= 0, size
= 1;
7562 int last_port
= -1, last_device
= -1;
7563 char *p
, *cur
, *next
;
7565 /* calculate maximum number of params and allocate force_tbl */
7566 for (p
= ata_force_param_buf
; *p
; p
++)
7570 ata_force_tbl
= kzalloc(sizeof(ata_force_tbl
[0]) * size
, GFP_KERNEL
);
7571 if (!ata_force_tbl
) {
7572 printk(KERN_WARNING
"ata: failed to extend force table, "
7573 "libata.force ignored\n");
7577 /* parse and populate the table */
7578 for (cur
= ata_force_param_buf
; *cur
!= '\0'; cur
= next
) {
7579 const char *reason
= "";
7580 struct ata_force_ent te
= { .port
= -1, .device
= -1 };
7583 if (ata_parse_force_one(&next
, &te
, &reason
)) {
7584 printk(KERN_WARNING
"ata: failed to parse force "
7585 "parameter \"%s\" (%s)\n",
7590 if (te
.port
== -1) {
7591 te
.port
= last_port
;
7592 te
.device
= last_device
;
7595 ata_force_tbl
[idx
++] = te
;
7597 last_port
= te
.port
;
7598 last_device
= te
.device
;
7601 ata_force_tbl_size
= idx
;
7604 static int __init
ata_init(void)
7606 ata_probe_timeout
*= HZ
;
7608 ata_parse_force_param();
7610 ata_wq
= create_workqueue("ata");
7614 ata_aux_wq
= create_singlethread_workqueue("ata_aux");
7616 destroy_workqueue(ata_wq
);
7620 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
7624 static void __exit
ata_exit(void)
7626 kfree(ata_force_tbl
);
7627 destroy_workqueue(ata_wq
);
7628 destroy_workqueue(ata_aux_wq
);
7631 subsys_initcall(ata_init
);
7632 module_exit(ata_exit
);
7634 static unsigned long ratelimit_time
;
7635 static DEFINE_SPINLOCK(ata_ratelimit_lock
);
7637 int ata_ratelimit(void)
7640 unsigned long flags
;
7642 spin_lock_irqsave(&ata_ratelimit_lock
, flags
);
7644 if (time_after(jiffies
, ratelimit_time
)) {
7646 ratelimit_time
= jiffies
+ (HZ
/5);
7650 spin_unlock_irqrestore(&ata_ratelimit_lock
, flags
);
7656 * ata_wait_register - wait until register value changes
7657 * @reg: IO-mapped register
7658 * @mask: Mask to apply to read register value
7659 * @val: Wait condition
7660 * @interval_msec: polling interval in milliseconds
7661 * @timeout_msec: timeout in milliseconds
7663 * Waiting for some bits of register to change is a common
7664 * operation for ATA controllers. This function reads 32bit LE
7665 * IO-mapped register @reg and tests for the following condition.
7667 * (*@reg & mask) != val
7669 * If the condition is met, it returns; otherwise, the process is
7670 * repeated after @interval_msec until timeout.
7673 * Kernel thread context (may sleep)
7676 * The final register value.
7678 u32
ata_wait_register(void __iomem
*reg
, u32 mask
, u32 val
,
7679 unsigned long interval_msec
,
7680 unsigned long timeout_msec
)
7682 unsigned long timeout
;
7685 tmp
= ioread32(reg
);
7687 /* Calculate timeout _after_ the first read to make sure
7688 * preceding writes reach the controller before starting to
7689 * eat away the timeout.
7691 timeout
= jiffies
+ (timeout_msec
* HZ
) / 1000;
7693 while ((tmp
& mask
) == val
&& time_before(jiffies
, timeout
)) {
7694 msleep(interval_msec
);
7695 tmp
= ioread32(reg
);
7704 static void ata_dummy_noret(struct ata_port
*ap
) { }
7705 static int ata_dummy_ret0(struct ata_port
*ap
) { return 0; }
7706 static void ata_dummy_qc_noret(struct ata_queued_cmd
*qc
) { }
7708 static u8
ata_dummy_check_status(struct ata_port
*ap
)
7713 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
7715 return AC_ERR_SYSTEM
;
7718 const struct ata_port_operations ata_dummy_port_ops
= {
7719 .check_status
= ata_dummy_check_status
,
7720 .check_altstatus
= ata_dummy_check_status
,
7721 .dev_select
= ata_noop_dev_select
,
7722 .qc_prep
= ata_noop_qc_prep
,
7723 .qc_issue
= ata_dummy_qc_issue
,
7724 .freeze
= ata_dummy_noret
,
7725 .thaw
= ata_dummy_noret
,
7726 .error_handler
= ata_dummy_noret
,
7727 .post_internal_cmd
= ata_dummy_qc_noret
,
7728 .irq_clear
= ata_dummy_noret
,
7729 .port_start
= ata_dummy_ret0
,
7730 .port_stop
= ata_dummy_noret
,
7733 const struct ata_port_info ata_dummy_port_info
= {
7734 .port_ops
= &ata_dummy_port_ops
,
7738 * libata is essentially a library of internal helper functions for
7739 * low-level ATA host controller drivers. As such, the API/ABI is
7740 * likely to change as new drivers are added and updated.
7741 * Do not depend on ABI/API stability.
7743 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
7744 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
7745 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
7746 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
7747 EXPORT_SYMBOL_GPL(ata_dummy_port_info
);
7748 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
7749 EXPORT_SYMBOL_GPL(ata_std_ports
);
7750 EXPORT_SYMBOL_GPL(ata_host_init
);
7751 EXPORT_SYMBOL_GPL(ata_host_alloc
);
7752 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo
);
7753 EXPORT_SYMBOL_GPL(ata_host_start
);
7754 EXPORT_SYMBOL_GPL(ata_host_register
);
7755 EXPORT_SYMBOL_GPL(ata_host_activate
);
7756 EXPORT_SYMBOL_GPL(ata_host_detach
);
7757 EXPORT_SYMBOL_GPL(ata_sg_init
);
7758 EXPORT_SYMBOL_GPL(ata_hsm_move
);
7759 EXPORT_SYMBOL_GPL(ata_qc_complete
);
7760 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
7761 EXPORT_SYMBOL_GPL(ata_qc_issue_prot
);
7762 EXPORT_SYMBOL_GPL(ata_tf_load
);
7763 EXPORT_SYMBOL_GPL(ata_tf_read
);
7764 EXPORT_SYMBOL_GPL(ata_noop_dev_select
);
7765 EXPORT_SYMBOL_GPL(ata_std_dev_select
);
7766 EXPORT_SYMBOL_GPL(sata_print_link_status
);
7767 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
7768 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
7769 EXPORT_SYMBOL_GPL(ata_pack_xfermask
);
7770 EXPORT_SYMBOL_GPL(ata_unpack_xfermask
);
7771 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode
);
7772 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask
);
7773 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift
);
7774 EXPORT_SYMBOL_GPL(ata_mode_string
);
7775 EXPORT_SYMBOL_GPL(ata_id_xfermask
);
7776 EXPORT_SYMBOL_GPL(ata_check_status
);
7777 EXPORT_SYMBOL_GPL(ata_altstatus
);
7778 EXPORT_SYMBOL_GPL(ata_exec_command
);
7779 EXPORT_SYMBOL_GPL(ata_port_start
);
7780 EXPORT_SYMBOL_GPL(ata_sff_port_start
);
7781 EXPORT_SYMBOL_GPL(ata_interrupt
);
7782 EXPORT_SYMBOL_GPL(ata_do_set_mode
);
7783 EXPORT_SYMBOL_GPL(ata_data_xfer
);
7784 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq
);
7785 EXPORT_SYMBOL_GPL(ata_std_qc_defer
);
7786 EXPORT_SYMBOL_GPL(ata_qc_prep
);
7787 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep
);
7788 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
7789 EXPORT_SYMBOL_GPL(ata_bmdma_setup
);
7790 EXPORT_SYMBOL_GPL(ata_bmdma_start
);
7791 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear
);
7792 EXPORT_SYMBOL_GPL(ata_bmdma_status
);
7793 EXPORT_SYMBOL_GPL(ata_bmdma_stop
);
7794 EXPORT_SYMBOL_GPL(ata_bmdma_freeze
);
7795 EXPORT_SYMBOL_GPL(ata_bmdma_thaw
);
7796 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh
);
7797 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler
);
7798 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd
);
7799 EXPORT_SYMBOL_GPL(ata_port_probe
);
7800 EXPORT_SYMBOL_GPL(ata_dev_disable
);
7801 EXPORT_SYMBOL_GPL(sata_set_spd
);
7802 EXPORT_SYMBOL_GPL(sata_link_debounce
);
7803 EXPORT_SYMBOL_GPL(sata_link_resume
);
7804 EXPORT_SYMBOL_GPL(ata_bus_reset
);
7805 EXPORT_SYMBOL_GPL(ata_std_prereset
);
7806 EXPORT_SYMBOL_GPL(ata_std_softreset
);
7807 EXPORT_SYMBOL_GPL(sata_link_hardreset
);
7808 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
7809 EXPORT_SYMBOL_GPL(ata_std_postreset
);
7810 EXPORT_SYMBOL_GPL(ata_dev_classify
);
7811 EXPORT_SYMBOL_GPL(ata_dev_pair
);
7812 EXPORT_SYMBOL_GPL(ata_port_disable
);
7813 EXPORT_SYMBOL_GPL(ata_ratelimit
);
7814 EXPORT_SYMBOL_GPL(ata_wait_register
);
7815 EXPORT_SYMBOL_GPL(ata_busy_sleep
);
7816 EXPORT_SYMBOL_GPL(ata_wait_after_reset
);
7817 EXPORT_SYMBOL_GPL(ata_wait_ready
);
7818 EXPORT_SYMBOL_GPL(ata_scsi_ioctl
);
7819 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
7820 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
7821 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
7822 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
7823 EXPORT_SYMBOL_GPL(ata_host_intr
);
7824 EXPORT_SYMBOL_GPL(sata_scr_valid
);
7825 EXPORT_SYMBOL_GPL(sata_scr_read
);
7826 EXPORT_SYMBOL_GPL(sata_scr_write
);
7827 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
7828 EXPORT_SYMBOL_GPL(ata_link_online
);
7829 EXPORT_SYMBOL_GPL(ata_link_offline
);
7831 EXPORT_SYMBOL_GPL(ata_host_suspend
);
7832 EXPORT_SYMBOL_GPL(ata_host_resume
);
7833 #endif /* CONFIG_PM */
7834 EXPORT_SYMBOL_GPL(ata_id_string
);
7835 EXPORT_SYMBOL_GPL(ata_id_c_string
);
7836 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
7838 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
7839 EXPORT_SYMBOL_GPL(ata_timing_find_mode
);
7840 EXPORT_SYMBOL_GPL(ata_timing_compute
);
7841 EXPORT_SYMBOL_GPL(ata_timing_merge
);
7842 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode
);
7845 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
7846 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host
);
7847 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma
);
7848 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host
);
7849 EXPORT_SYMBOL_GPL(ata_pci_activate_sff_host
);
7850 EXPORT_SYMBOL_GPL(ata_pci_init_one
);
7851 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
7853 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
7854 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
7855 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
7856 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
7857 #endif /* CONFIG_PM */
7858 EXPORT_SYMBOL_GPL(ata_pci_default_filter
);
7859 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex
);
7860 #endif /* CONFIG_PCI */
7862 EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch
);
7863 EXPORT_SYMBOL_GPL(sata_pmp_std_prereset
);
7864 EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset
);
7865 EXPORT_SYMBOL_GPL(sata_pmp_std_postreset
);
7866 EXPORT_SYMBOL_GPL(sata_pmp_do_eh
);
7868 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc
);
7869 EXPORT_SYMBOL_GPL(ata_ehi_push_desc
);
7870 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc
);
7871 EXPORT_SYMBOL_GPL(ata_port_desc
);
7873 EXPORT_SYMBOL_GPL(ata_port_pbar_desc
);
7874 #endif /* CONFIG_PCI */
7875 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
7876 EXPORT_SYMBOL_GPL(ata_link_abort
);
7877 EXPORT_SYMBOL_GPL(ata_port_abort
);
7878 EXPORT_SYMBOL_GPL(ata_port_freeze
);
7879 EXPORT_SYMBOL_GPL(sata_async_notification
);
7880 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
7881 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
7882 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
7883 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
7884 EXPORT_SYMBOL_GPL(ata_do_eh
);
7885 EXPORT_SYMBOL_GPL(ata_irq_on
);
7886 EXPORT_SYMBOL_GPL(ata_dev_try_classify
);
7888 EXPORT_SYMBOL_GPL(ata_cable_40wire
);
7889 EXPORT_SYMBOL_GPL(ata_cable_80wire
);
7890 EXPORT_SYMBOL_GPL(ata_cable_unknown
);
7891 EXPORT_SYMBOL_GPL(ata_cable_ignore
);
7892 EXPORT_SYMBOL_GPL(ata_cable_sata
);