x86, mce: initial steps to make 64bit mce code 32bit clean
[linux-2.6/mini2440.git] / drivers / ieee1394 / sbp2.c
bloba51ab233342de0f3e9fbf4be79d499ca3ab044cd
1 /*
2 * sbp2.c - SBP-2 protocol driver for IEEE-1394
4 * Copyright (C) 2000 James Goodwin, Filanet Corporation (www.filanet.com)
5 * jamesg@filanet.com (JSG)
7 * Copyright (C) 2003 Ben Collins <bcollins@debian.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software Foundation,
21 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25 * Brief Description:
27 * This driver implements the Serial Bus Protocol 2 (SBP-2) over IEEE-1394
28 * under Linux. The SBP-2 driver is implemented as an IEEE-1394 high-level
29 * driver. It also registers as a SCSI lower-level driver in order to accept
30 * SCSI commands for transport using SBP-2.
32 * You may access any attached SBP-2 (usually storage devices) as regular
33 * SCSI devices. E.g. mount /dev/sda1, fdisk, mkfs, etc..
35 * See http://www.t10.org/drafts.htm#sbp2 for the final draft of the SBP-2
36 * specification and for where to purchase the official standard.
38 * TODO:
39 * - look into possible improvements of the SCSI error handlers
40 * - handle Unit_Characteristics.mgt_ORB_timeout and .ORB_size
41 * - handle Logical_Unit_Number.ordered
42 * - handle src == 1 in status blocks
43 * - reimplement the DMA mapping in absence of physical DMA so that
44 * bus_to_virt is no longer required
45 * - debug the handling of absent physical DMA
46 * - replace CONFIG_IEEE1394_SBP2_PHYS_DMA by automatic detection
47 * (this is easy but depends on the previous two TODO items)
48 * - make the parameter serialize_io configurable per device
49 * - move all requests to fetch agent registers into non-atomic context,
50 * replace all usages of sbp2util_node_write_no_wait by true transactions
51 * Grep for inline FIXME comments below.
54 #include <linux/blkdev.h>
55 #include <linux/compiler.h>
56 #include <linux/delay.h>
57 #include <linux/device.h>
58 #include <linux/dma-mapping.h>
59 #include <linux/gfp.h>
60 #include <linux/init.h>
61 #include <linux/kernel.h>
62 #include <linux/list.h>
63 #include <linux/mm.h>
64 #include <linux/module.h>
65 #include <linux/moduleparam.h>
66 #include <linux/sched.h>
67 #include <linux/slab.h>
68 #include <linux/spinlock.h>
69 #include <linux/stat.h>
70 #include <linux/string.h>
71 #include <linux/stringify.h>
72 #include <linux/types.h>
73 #include <linux/wait.h>
74 #include <linux/workqueue.h>
75 #include <linux/scatterlist.h>
77 #include <asm/byteorder.h>
78 #include <asm/errno.h>
79 #include <asm/param.h>
80 #include <asm/system.h>
81 #include <asm/types.h>
83 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
84 #include <asm/io.h> /* for bus_to_virt */
85 #endif
87 #include <scsi/scsi.h>
88 #include <scsi/scsi_cmnd.h>
89 #include <scsi/scsi_dbg.h>
90 #include <scsi/scsi_device.h>
91 #include <scsi/scsi_host.h>
93 #include "csr1212.h"
94 #include "highlevel.h"
95 #include "hosts.h"
96 #include "ieee1394.h"
97 #include "ieee1394_core.h"
98 #include "ieee1394_hotplug.h"
99 #include "ieee1394_transactions.h"
100 #include "ieee1394_types.h"
101 #include "nodemgr.h"
102 #include "sbp2.h"
105 * Module load parameter definitions
109 * Change max_speed on module load if you have a bad IEEE-1394
110 * controller that has trouble running 2KB packets at 400mb.
112 * NOTE: On certain OHCI parts I have seen short packets on async transmit
113 * (probably due to PCI latency/throughput issues with the part). You can
114 * bump down the speed if you are running into problems.
116 static int sbp2_max_speed = IEEE1394_SPEED_MAX;
117 module_param_named(max_speed, sbp2_max_speed, int, 0644);
118 MODULE_PARM_DESC(max_speed, "Limit data transfer speed (5 <= 3200, "
119 "4 <= 1600, 3 <= 800, 2 <= 400, 1 <= 200, 0 = 100 Mb/s)");
122 * Set serialize_io to 0 or N to use dynamically appended lists of command ORBs.
123 * This is and always has been buggy in multiple subtle ways. See above TODOs.
125 static int sbp2_serialize_io = 1;
126 module_param_named(serialize_io, sbp2_serialize_io, bool, 0444);
127 MODULE_PARM_DESC(serialize_io, "Serialize requests coming from SCSI drivers "
128 "(default = Y, faster but buggy = N)");
131 * Adjust max_sectors if you'd like to influence how many sectors each SCSI
132 * command can transfer at most. Please note that some older SBP-2 bridge
133 * chips are broken for transfers greater or equal to 128KB, therefore
134 * max_sectors used to be a safe 255 sectors for many years. We now have a
135 * default of 0 here which means that we let the SCSI stack choose a limit.
137 * The SBP2_WORKAROUND_128K_MAX_TRANS flag, if set either in the workarounds
138 * module parameter or in the sbp2_workarounds_table[], will override the
139 * value of max_sectors. We should use sbp2_workarounds_table[] to cover any
140 * bridge chip which becomes known to need the 255 sectors limit.
142 static int sbp2_max_sectors;
143 module_param_named(max_sectors, sbp2_max_sectors, int, 0444);
144 MODULE_PARM_DESC(max_sectors, "Change max sectors per I/O supported "
145 "(default = 0 = use SCSI stack's default)");
148 * Exclusive login to sbp2 device? In most cases, the sbp2 driver should
149 * do an exclusive login, as it's generally unsafe to have two hosts
150 * talking to a single sbp2 device at the same time (filesystem coherency,
151 * etc.). If you're running an sbp2 device that supports multiple logins,
152 * and you're either running read-only filesystems or some sort of special
153 * filesystem supporting multiple hosts, e.g. OpenGFS, Oracle Cluster
154 * File System, or Lustre, then set exclusive_login to zero.
156 * So far only bridges from Oxford Semiconductor are known to support
157 * concurrent logins. Depending on firmware, four or two concurrent logins
158 * are possible on OXFW911 and newer Oxsemi bridges.
160 static int sbp2_exclusive_login = 1;
161 module_param_named(exclusive_login, sbp2_exclusive_login, bool, 0644);
162 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
163 "(default = Y, use N for concurrent initiators)");
166 * If any of the following workarounds is required for your device to work,
167 * please submit the kernel messages logged by sbp2 to the linux1394-devel
168 * mailing list.
170 * - 128kB max transfer
171 * Limit transfer size. Necessary for some old bridges.
173 * - 36 byte inquiry
174 * When scsi_mod probes the device, let the inquiry command look like that
175 * from MS Windows.
177 * - skip mode page 8
178 * Suppress sending of mode_sense for mode page 8 if the device pretends to
179 * support the SCSI Primary Block commands instead of Reduced Block Commands.
181 * - fix capacity
182 * Tell sd_mod to correct the last sector number reported by read_capacity.
183 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
184 * Don't use this with devices which don't have this bug.
186 * - delay inquiry
187 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
189 * - power condition
190 * Set the power condition field in the START STOP UNIT commands sent by
191 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
192 * Some disks need this to spin down or to resume properly.
194 * - override internal blacklist
195 * Instead of adding to the built-in blacklist, use only the workarounds
196 * specified in the module load parameter.
197 * Useful if a blacklist entry interfered with a non-broken device.
199 static int sbp2_default_workarounds;
200 module_param_named(workarounds, sbp2_default_workarounds, int, 0644);
201 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
202 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
203 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
204 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
205 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
206 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
207 ", set power condition in start stop unit = "
208 __stringify(SBP2_WORKAROUND_POWER_CONDITION)
209 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
210 ", or a combination)");
213 * This influences the format of the sysfs attribute
214 * /sys/bus/scsi/devices/.../ieee1394_id.
216 * The default format is like in older kernels: %016Lx:%d:%d
217 * It contains the target's EUI-64, a number given to the logical unit by
218 * the ieee1394 driver's nodemgr (starting at 0), and the LUN.
220 * The long format is: %016Lx:%06x:%04x
221 * It contains the target's EUI-64, the unit directory's directory_ID as per
222 * IEEE 1212 clause 7.7.19, and the LUN. This format comes closest to the
223 * format of SBP(-3) target port and logical unit identifier as per SAM (SCSI
224 * Architecture Model) rev.2 to 4 annex A. Therefore and because it is
225 * independent of the implementation of the ieee1394 nodemgr, the longer format
226 * is recommended for future use.
228 static int sbp2_long_sysfs_ieee1394_id;
229 module_param_named(long_ieee1394_id, sbp2_long_sysfs_ieee1394_id, bool, 0644);
230 MODULE_PARM_DESC(long_ieee1394_id, "8+3+2 bytes format of ieee1394_id in sysfs "
231 "(default = backwards-compatible = N, SAM-conforming = Y)");
234 #define SBP2_INFO(fmt, args...) HPSB_INFO("sbp2: "fmt, ## args)
235 #define SBP2_ERR(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args)
238 * Globals
240 static void sbp2scsi_complete_all_commands(struct sbp2_lu *, u32);
241 static void sbp2scsi_complete_command(struct sbp2_lu *, u32, struct scsi_cmnd *,
242 void (*)(struct scsi_cmnd *));
243 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *);
244 static int sbp2_start_device(struct sbp2_lu *);
245 static void sbp2_remove_device(struct sbp2_lu *);
246 static int sbp2_login_device(struct sbp2_lu *);
247 static int sbp2_reconnect_device(struct sbp2_lu *);
248 static int sbp2_logout_device(struct sbp2_lu *);
249 static void sbp2_host_reset(struct hpsb_host *);
250 static int sbp2_handle_status_write(struct hpsb_host *, int, int, quadlet_t *,
251 u64, size_t, u16);
252 static int sbp2_agent_reset(struct sbp2_lu *, int);
253 static void sbp2_parse_unit_directory(struct sbp2_lu *,
254 struct unit_directory *);
255 static int sbp2_set_busy_timeout(struct sbp2_lu *);
256 static int sbp2_max_speed_and_size(struct sbp2_lu *);
259 static const u8 sbp2_speedto_max_payload[] = { 0x7, 0x8, 0x9, 0xa, 0xa, 0xa };
261 static DEFINE_RWLOCK(sbp2_hi_logical_units_lock);
263 static struct hpsb_highlevel sbp2_highlevel = {
264 .name = SBP2_DEVICE_NAME,
265 .host_reset = sbp2_host_reset,
268 static const struct hpsb_address_ops sbp2_ops = {
269 .write = sbp2_handle_status_write
272 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
273 static int sbp2_handle_physdma_write(struct hpsb_host *, int, int, quadlet_t *,
274 u64, size_t, u16);
275 static int sbp2_handle_physdma_read(struct hpsb_host *, int, quadlet_t *, u64,
276 size_t, u16);
278 static const struct hpsb_address_ops sbp2_physdma_ops = {
279 .read = sbp2_handle_physdma_read,
280 .write = sbp2_handle_physdma_write,
282 #endif
286 * Interface to driver core and IEEE 1394 core
288 static const struct ieee1394_device_id sbp2_id_table[] = {
290 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION,
291 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY & 0xffffff,
292 .version = SBP2_SW_VERSION_ENTRY & 0xffffff},
295 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
297 static int sbp2_probe(struct device *);
298 static int sbp2_remove(struct device *);
299 static int sbp2_update(struct unit_directory *);
301 static struct hpsb_protocol_driver sbp2_driver = {
302 .name = SBP2_DEVICE_NAME,
303 .id_table = sbp2_id_table,
304 .update = sbp2_update,
305 .driver = {
306 .probe = sbp2_probe,
307 .remove = sbp2_remove,
313 * Interface to SCSI core
315 static int sbp2scsi_queuecommand(struct scsi_cmnd *,
316 void (*)(struct scsi_cmnd *));
317 static int sbp2scsi_abort(struct scsi_cmnd *);
318 static int sbp2scsi_reset(struct scsi_cmnd *);
319 static int sbp2scsi_slave_alloc(struct scsi_device *);
320 static int sbp2scsi_slave_configure(struct scsi_device *);
321 static void sbp2scsi_slave_destroy(struct scsi_device *);
322 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *,
323 struct device_attribute *, char *);
325 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
327 static struct device_attribute *sbp2_sysfs_sdev_attrs[] = {
328 &dev_attr_ieee1394_id,
329 NULL
332 static struct scsi_host_template sbp2_shost_template = {
333 .module = THIS_MODULE,
334 .name = "SBP-2 IEEE-1394",
335 .proc_name = SBP2_DEVICE_NAME,
336 .queuecommand = sbp2scsi_queuecommand,
337 .eh_abort_handler = sbp2scsi_abort,
338 .eh_device_reset_handler = sbp2scsi_reset,
339 .slave_alloc = sbp2scsi_slave_alloc,
340 .slave_configure = sbp2scsi_slave_configure,
341 .slave_destroy = sbp2scsi_slave_destroy,
342 .this_id = -1,
343 .sg_tablesize = SG_ALL,
344 .use_clustering = ENABLE_CLUSTERING,
345 .cmd_per_lun = SBP2_MAX_CMDS,
346 .can_queue = SBP2_MAX_CMDS,
347 .sdev_attrs = sbp2_sysfs_sdev_attrs,
350 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */
351 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */
354 * List of devices with known bugs.
356 * The firmware_revision field, masked with 0xffff00, is the best indicator
357 * for the type of bridge chip of a device. It yields a few false positives
358 * but this did not break correctly behaving devices so far.
360 static const struct {
361 u32 firmware_revision;
362 u32 model;
363 unsigned workarounds;
364 } sbp2_workarounds_table[] = {
365 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
366 .firmware_revision = 0x002800,
367 .model = 0x001010,
368 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
369 SBP2_WORKAROUND_MODE_SENSE_8 |
370 SBP2_WORKAROUND_POWER_CONDITION,
372 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
373 .firmware_revision = 0x002800,
374 .model = 0x000000,
375 .workarounds = SBP2_WORKAROUND_DELAY_INQUIRY |
376 SBP2_WORKAROUND_POWER_CONDITION,
378 /* Initio bridges, actually only needed for some older ones */ {
379 .firmware_revision = 0x000200,
380 .model = SBP2_ROM_VALUE_WILDCARD,
381 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
383 /* PL-3507 bridge with Prolific firmware */ {
384 .firmware_revision = 0x012800,
385 .model = SBP2_ROM_VALUE_WILDCARD,
386 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
388 /* Symbios bridge */ {
389 .firmware_revision = 0xa0b800,
390 .model = SBP2_ROM_VALUE_WILDCARD,
391 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
393 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
394 .firmware_revision = 0x002600,
395 .model = SBP2_ROM_VALUE_WILDCARD,
396 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
399 * iPod 2nd generation: needs 128k max transfer size workaround
400 * iPod 3rd generation: needs fix capacity workaround
403 .firmware_revision = 0x0a2700,
404 .model = 0x000000,
405 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS |
406 SBP2_WORKAROUND_FIX_CAPACITY,
408 /* iPod 4th generation */ {
409 .firmware_revision = 0x0a2700,
410 .model = 0x000021,
411 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
413 /* iPod mini */ {
414 .firmware_revision = 0x0a2700,
415 .model = 0x000022,
416 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
418 /* iPod mini */ {
419 .firmware_revision = 0x0a2700,
420 .model = 0x000023,
421 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
423 /* iPod Photo */ {
424 .firmware_revision = 0x0a2700,
425 .model = 0x00007e,
426 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
430 /**************************************
431 * General utility functions
432 **************************************/
434 #ifndef __BIG_ENDIAN
436 * Converts a buffer from be32 to cpu byte ordering. Length is in bytes.
438 static inline void sbp2util_be32_to_cpu_buffer(void *buffer, int length)
440 u32 *temp = buffer;
442 for (length = (length >> 2); length--; )
443 temp[length] = be32_to_cpu(temp[length]);
447 * Converts a buffer from cpu to be32 byte ordering. Length is in bytes.
449 static inline void sbp2util_cpu_to_be32_buffer(void *buffer, int length)
451 u32 *temp = buffer;
453 for (length = (length >> 2); length--; )
454 temp[length] = cpu_to_be32(temp[length]);
456 #else /* BIG_ENDIAN */
457 /* Why waste the cpu cycles? */
458 #define sbp2util_be32_to_cpu_buffer(x,y) do {} while (0)
459 #define sbp2util_cpu_to_be32_buffer(x,y) do {} while (0)
460 #endif
462 static DECLARE_WAIT_QUEUE_HEAD(sbp2_access_wq);
465 * Waits for completion of an SBP-2 access request.
466 * Returns nonzero if timed out or prematurely interrupted.
468 static int sbp2util_access_timeout(struct sbp2_lu *lu, int timeout)
470 long leftover;
472 leftover = wait_event_interruptible_timeout(
473 sbp2_access_wq, lu->access_complete, timeout);
474 lu->access_complete = 0;
475 return leftover <= 0;
478 static void sbp2_free_packet(void *packet)
480 hpsb_free_tlabel(packet);
481 hpsb_free_packet(packet);
485 * This is much like hpsb_node_write(), except it ignores the response
486 * subaction and returns immediately. Can be used from atomic context.
488 static int sbp2util_node_write_no_wait(struct node_entry *ne, u64 addr,
489 quadlet_t *buf, size_t len)
491 struct hpsb_packet *packet;
493 packet = hpsb_make_writepacket(ne->host, ne->nodeid, addr, buf, len);
494 if (!packet)
495 return -ENOMEM;
497 hpsb_set_packet_complete_task(packet, sbp2_free_packet, packet);
498 hpsb_node_fill_packet(ne, packet);
499 if (hpsb_send_packet(packet) < 0) {
500 sbp2_free_packet(packet);
501 return -EIO;
503 return 0;
506 static void sbp2util_notify_fetch_agent(struct sbp2_lu *lu, u64 offset,
507 quadlet_t *data, size_t len)
509 /* There is a small window after a bus reset within which the node
510 * entry's generation is current but the reconnect wasn't completed. */
511 if (unlikely(atomic_read(&lu->state) == SBP2LU_STATE_IN_RESET))
512 return;
514 if (hpsb_node_write(lu->ne, lu->command_block_agent_addr + offset,
515 data, len))
516 SBP2_ERR("sbp2util_notify_fetch_agent failed.");
518 /* Now accept new SCSI commands, unless a bus reset happended during
519 * hpsb_node_write. */
520 if (likely(atomic_read(&lu->state) != SBP2LU_STATE_IN_RESET))
521 scsi_unblock_requests(lu->shost);
524 static void sbp2util_write_orb_pointer(struct work_struct *work)
526 struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
527 quadlet_t data[2];
529 data[0] = ORB_SET_NODE_ID(lu->hi->host->node_id);
530 data[1] = lu->last_orb_dma;
531 sbp2util_cpu_to_be32_buffer(data, 8);
532 sbp2util_notify_fetch_agent(lu, SBP2_ORB_POINTER_OFFSET, data, 8);
535 static void sbp2util_write_doorbell(struct work_struct *work)
537 struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
539 sbp2util_notify_fetch_agent(lu, SBP2_DOORBELL_OFFSET, NULL, 4);
542 static int sbp2util_create_command_orb_pool(struct sbp2_lu *lu)
544 struct sbp2_command_info *cmd;
545 struct device *dmadev = lu->hi->host->device.parent;
546 int i, orbs = sbp2_serialize_io ? 2 : SBP2_MAX_CMDS;
548 for (i = 0; i < orbs; i++) {
549 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
550 if (!cmd)
551 goto failed_alloc;
553 cmd->command_orb_dma =
554 dma_map_single(dmadev, &cmd->command_orb,
555 sizeof(struct sbp2_command_orb),
556 DMA_TO_DEVICE);
557 if (dma_mapping_error(dmadev, cmd->command_orb_dma))
558 goto failed_orb;
560 cmd->sge_dma =
561 dma_map_single(dmadev, &cmd->scatter_gather_element,
562 sizeof(cmd->scatter_gather_element),
563 DMA_TO_DEVICE);
564 if (dma_mapping_error(dmadev, cmd->sge_dma))
565 goto failed_sge;
567 INIT_LIST_HEAD(&cmd->list);
568 list_add_tail(&cmd->list, &lu->cmd_orb_completed);
570 return 0;
572 failed_sge:
573 dma_unmap_single(dmadev, cmd->command_orb_dma,
574 sizeof(struct sbp2_command_orb), DMA_TO_DEVICE);
575 failed_orb:
576 kfree(cmd);
577 failed_alloc:
578 return -ENOMEM;
581 static void sbp2util_remove_command_orb_pool(struct sbp2_lu *lu,
582 struct hpsb_host *host)
584 struct list_head *lh, *next;
585 struct sbp2_command_info *cmd;
586 unsigned long flags;
588 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
589 if (!list_empty(&lu->cmd_orb_completed))
590 list_for_each_safe(lh, next, &lu->cmd_orb_completed) {
591 cmd = list_entry(lh, struct sbp2_command_info, list);
592 dma_unmap_single(host->device.parent,
593 cmd->command_orb_dma,
594 sizeof(struct sbp2_command_orb),
595 DMA_TO_DEVICE);
596 dma_unmap_single(host->device.parent, cmd->sge_dma,
597 sizeof(cmd->scatter_gather_element),
598 DMA_TO_DEVICE);
599 kfree(cmd);
601 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
602 return;
606 * Finds the sbp2_command for a given outstanding command ORB.
607 * Only looks at the in-use list.
609 static struct sbp2_command_info *sbp2util_find_command_for_orb(
610 struct sbp2_lu *lu, dma_addr_t orb)
612 struct sbp2_command_info *cmd;
613 unsigned long flags;
615 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
616 if (!list_empty(&lu->cmd_orb_inuse))
617 list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
618 if (cmd->command_orb_dma == orb) {
619 spin_unlock_irqrestore(
620 &lu->cmd_orb_lock, flags);
621 return cmd;
623 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
624 return NULL;
628 * Finds the sbp2_command for a given outstanding SCpnt.
629 * Only looks at the in-use list.
630 * Must be called with lu->cmd_orb_lock held.
632 static struct sbp2_command_info *sbp2util_find_command_for_SCpnt(
633 struct sbp2_lu *lu, void *SCpnt)
635 struct sbp2_command_info *cmd;
637 if (!list_empty(&lu->cmd_orb_inuse))
638 list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
639 if (cmd->Current_SCpnt == SCpnt)
640 return cmd;
641 return NULL;
644 static struct sbp2_command_info *sbp2util_allocate_command_orb(
645 struct sbp2_lu *lu,
646 struct scsi_cmnd *Current_SCpnt,
647 void (*Current_done)(struct scsi_cmnd *))
649 struct list_head *lh;
650 struct sbp2_command_info *cmd = NULL;
651 unsigned long flags;
653 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
654 if (!list_empty(&lu->cmd_orb_completed)) {
655 lh = lu->cmd_orb_completed.next;
656 list_del(lh);
657 cmd = list_entry(lh, struct sbp2_command_info, list);
658 cmd->Current_done = Current_done;
659 cmd->Current_SCpnt = Current_SCpnt;
660 list_add_tail(&cmd->list, &lu->cmd_orb_inuse);
661 } else
662 SBP2_ERR("%s: no orbs available", __func__);
663 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
664 return cmd;
668 * Unmaps the DMAs of a command and moves the command to the completed ORB list.
669 * Must be called with lu->cmd_orb_lock held.
671 static void sbp2util_mark_command_completed(struct sbp2_lu *lu,
672 struct sbp2_command_info *cmd)
674 if (scsi_sg_count(cmd->Current_SCpnt))
675 dma_unmap_sg(lu->ud->ne->host->device.parent,
676 scsi_sglist(cmd->Current_SCpnt),
677 scsi_sg_count(cmd->Current_SCpnt),
678 cmd->Current_SCpnt->sc_data_direction);
679 list_move_tail(&cmd->list, &lu->cmd_orb_completed);
683 * Is lu valid? Is the 1394 node still present?
685 static inline int sbp2util_node_is_available(struct sbp2_lu *lu)
687 return lu && lu->ne && !lu->ne->in_limbo;
690 /*********************************************
691 * IEEE-1394 core driver stack related section
692 *********************************************/
694 static int sbp2_probe(struct device *dev)
696 struct unit_directory *ud;
697 struct sbp2_lu *lu;
699 ud = container_of(dev, struct unit_directory, device);
701 /* Don't probe UD's that have the LUN flag. We'll probe the LUN(s)
702 * instead. */
703 if (ud->flags & UNIT_DIRECTORY_HAS_LUN_DIRECTORY)
704 return -ENODEV;
706 lu = sbp2_alloc_device(ud);
707 if (!lu)
708 return -ENOMEM;
710 sbp2_parse_unit_directory(lu, ud);
711 return sbp2_start_device(lu);
714 static int sbp2_remove(struct device *dev)
716 struct unit_directory *ud;
717 struct sbp2_lu *lu;
718 struct scsi_device *sdev;
720 ud = container_of(dev, struct unit_directory, device);
721 lu = ud->device.driver_data;
722 if (!lu)
723 return 0;
725 if (lu->shost) {
726 /* Get rid of enqueued commands if there is no chance to
727 * send them. */
728 if (!sbp2util_node_is_available(lu))
729 sbp2scsi_complete_all_commands(lu, DID_NO_CONNECT);
730 /* scsi_remove_device() may trigger shutdown functions of SCSI
731 * highlevel drivers which would deadlock if blocked. */
732 atomic_set(&lu->state, SBP2LU_STATE_IN_SHUTDOWN);
733 scsi_unblock_requests(lu->shost);
735 sdev = lu->sdev;
736 if (sdev) {
737 lu->sdev = NULL;
738 scsi_remove_device(sdev);
741 sbp2_logout_device(lu);
742 sbp2_remove_device(lu);
744 return 0;
747 static int sbp2_update(struct unit_directory *ud)
749 struct sbp2_lu *lu = ud->device.driver_data;
751 if (sbp2_reconnect_device(lu) != 0) {
753 * Reconnect failed. If another bus reset happened,
754 * let nodemgr proceed and call sbp2_update again later
755 * (or sbp2_remove if this node went away).
757 if (!hpsb_node_entry_valid(lu->ne))
758 return 0;
760 * Or the target rejected the reconnect because we weren't
761 * fast enough. Try a regular login, but first log out
762 * just in case of any weirdness.
764 sbp2_logout_device(lu);
766 if (sbp2_login_device(lu) != 0) {
767 if (!hpsb_node_entry_valid(lu->ne))
768 return 0;
770 /* Maybe another initiator won the login. */
771 SBP2_ERR("Failed to reconnect to sbp2 device!");
772 return -EBUSY;
776 sbp2_set_busy_timeout(lu);
777 sbp2_agent_reset(lu, 1);
778 sbp2_max_speed_and_size(lu);
780 /* Complete any pending commands with busy (so they get retried)
781 * and remove them from our queue. */
782 sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
784 /* Accept new commands unless there was another bus reset in the
785 * meantime. */
786 if (hpsb_node_entry_valid(lu->ne)) {
787 atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
788 scsi_unblock_requests(lu->shost);
790 return 0;
793 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *ud)
795 struct sbp2_fwhost_info *hi;
796 struct Scsi_Host *shost = NULL;
797 struct sbp2_lu *lu = NULL;
798 unsigned long flags;
800 lu = kzalloc(sizeof(*lu), GFP_KERNEL);
801 if (!lu) {
802 SBP2_ERR("failed to create lu");
803 goto failed_alloc;
806 lu->ne = ud->ne;
807 lu->ud = ud;
808 lu->speed_code = IEEE1394_SPEED_100;
809 lu->max_payload_size = sbp2_speedto_max_payload[IEEE1394_SPEED_100];
810 lu->status_fifo_addr = CSR1212_INVALID_ADDR_SPACE;
811 INIT_LIST_HEAD(&lu->cmd_orb_inuse);
812 INIT_LIST_HEAD(&lu->cmd_orb_completed);
813 INIT_LIST_HEAD(&lu->lu_list);
814 spin_lock_init(&lu->cmd_orb_lock);
815 atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
816 INIT_WORK(&lu->protocol_work, NULL);
818 ud->device.driver_data = lu;
820 hi = hpsb_get_hostinfo(&sbp2_highlevel, ud->ne->host);
821 if (!hi) {
822 hi = hpsb_create_hostinfo(&sbp2_highlevel, ud->ne->host,
823 sizeof(*hi));
824 if (!hi) {
825 SBP2_ERR("failed to allocate hostinfo");
826 goto failed_alloc;
828 hi->host = ud->ne->host;
829 INIT_LIST_HEAD(&hi->logical_units);
831 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
832 /* Handle data movement if physical dma is not
833 * enabled or not supported on host controller */
834 if (!hpsb_register_addrspace(&sbp2_highlevel, ud->ne->host,
835 &sbp2_physdma_ops,
836 0x0ULL, 0xfffffffcULL)) {
837 SBP2_ERR("failed to register lower 4GB address range");
838 goto failed_alloc;
840 #endif
843 if (dma_get_max_seg_size(hi->host->device.parent) > SBP2_MAX_SEG_SIZE)
844 BUG_ON(dma_set_max_seg_size(hi->host->device.parent,
845 SBP2_MAX_SEG_SIZE));
847 /* Prevent unloading of the 1394 host */
848 if (!try_module_get(hi->host->driver->owner)) {
849 SBP2_ERR("failed to get a reference on 1394 host driver");
850 goto failed_alloc;
853 lu->hi = hi;
855 write_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
856 list_add_tail(&lu->lu_list, &hi->logical_units);
857 write_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
859 /* Register the status FIFO address range. We could use the same FIFO
860 * for targets at different nodes. However we need different FIFOs per
861 * target in order to support multi-unit devices.
862 * The FIFO is located out of the local host controller's physical range
863 * but, if possible, within the posted write area. Status writes will
864 * then be performed as unified transactions. This slightly reduces
865 * bandwidth usage, and some Prolific based devices seem to require it.
867 lu->status_fifo_addr = hpsb_allocate_and_register_addrspace(
868 &sbp2_highlevel, ud->ne->host, &sbp2_ops,
869 sizeof(struct sbp2_status_block), sizeof(quadlet_t),
870 ud->ne->host->low_addr_space, CSR1212_ALL_SPACE_END);
871 if (lu->status_fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
872 SBP2_ERR("failed to allocate status FIFO address range");
873 goto failed_alloc;
876 shost = scsi_host_alloc(&sbp2_shost_template, sizeof(unsigned long));
877 if (!shost) {
878 SBP2_ERR("failed to register scsi host");
879 goto failed_alloc;
882 shost->hostdata[0] = (unsigned long)lu;
884 if (!scsi_add_host(shost, &ud->device)) {
885 lu->shost = shost;
886 return lu;
889 SBP2_ERR("failed to add scsi host");
890 scsi_host_put(shost);
892 failed_alloc:
893 sbp2_remove_device(lu);
894 return NULL;
897 static void sbp2_host_reset(struct hpsb_host *host)
899 struct sbp2_fwhost_info *hi;
900 struct sbp2_lu *lu;
901 unsigned long flags;
903 hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
904 if (!hi)
905 return;
907 read_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
909 list_for_each_entry(lu, &hi->logical_units, lu_list)
910 if (atomic_cmpxchg(&lu->state,
911 SBP2LU_STATE_RUNNING, SBP2LU_STATE_IN_RESET)
912 == SBP2LU_STATE_RUNNING)
913 scsi_block_requests(lu->shost);
915 read_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
918 static int sbp2_start_device(struct sbp2_lu *lu)
920 struct sbp2_fwhost_info *hi = lu->hi;
921 int error;
923 lu->login_response = dma_alloc_coherent(hi->host->device.parent,
924 sizeof(struct sbp2_login_response),
925 &lu->login_response_dma, GFP_KERNEL);
926 if (!lu->login_response)
927 goto alloc_fail;
929 lu->query_logins_orb = dma_alloc_coherent(hi->host->device.parent,
930 sizeof(struct sbp2_query_logins_orb),
931 &lu->query_logins_orb_dma, GFP_KERNEL);
932 if (!lu->query_logins_orb)
933 goto alloc_fail;
935 lu->query_logins_response = dma_alloc_coherent(hi->host->device.parent,
936 sizeof(struct sbp2_query_logins_response),
937 &lu->query_logins_response_dma, GFP_KERNEL);
938 if (!lu->query_logins_response)
939 goto alloc_fail;
941 lu->reconnect_orb = dma_alloc_coherent(hi->host->device.parent,
942 sizeof(struct sbp2_reconnect_orb),
943 &lu->reconnect_orb_dma, GFP_KERNEL);
944 if (!lu->reconnect_orb)
945 goto alloc_fail;
947 lu->logout_orb = dma_alloc_coherent(hi->host->device.parent,
948 sizeof(struct sbp2_logout_orb),
949 &lu->logout_orb_dma, GFP_KERNEL);
950 if (!lu->logout_orb)
951 goto alloc_fail;
953 lu->login_orb = dma_alloc_coherent(hi->host->device.parent,
954 sizeof(struct sbp2_login_orb),
955 &lu->login_orb_dma, GFP_KERNEL);
956 if (!lu->login_orb)
957 goto alloc_fail;
959 if (sbp2util_create_command_orb_pool(lu))
960 goto alloc_fail;
962 /* Wait a second before trying to log in. Previously logged in
963 * initiators need a chance to reconnect. */
964 if (msleep_interruptible(1000)) {
965 sbp2_remove_device(lu);
966 return -EINTR;
969 if (sbp2_login_device(lu)) {
970 sbp2_remove_device(lu);
971 return -EBUSY;
974 sbp2_set_busy_timeout(lu);
975 sbp2_agent_reset(lu, 1);
976 sbp2_max_speed_and_size(lu);
978 if (lu->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
979 ssleep(SBP2_INQUIRY_DELAY);
981 error = scsi_add_device(lu->shost, 0, lu->ud->id, 0);
982 if (error) {
983 SBP2_ERR("scsi_add_device failed");
984 sbp2_logout_device(lu);
985 sbp2_remove_device(lu);
986 return error;
989 return 0;
991 alloc_fail:
992 SBP2_ERR("Could not allocate memory for lu");
993 sbp2_remove_device(lu);
994 return -ENOMEM;
997 static void sbp2_remove_device(struct sbp2_lu *lu)
999 struct sbp2_fwhost_info *hi;
1000 unsigned long flags;
1002 if (!lu)
1003 return;
1004 hi = lu->hi;
1005 if (!hi)
1006 goto no_hi;
1008 if (lu->shost) {
1009 scsi_remove_host(lu->shost);
1010 scsi_host_put(lu->shost);
1012 flush_scheduled_work();
1013 sbp2util_remove_command_orb_pool(lu, hi->host);
1015 write_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
1016 list_del(&lu->lu_list);
1017 write_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
1019 if (lu->login_response)
1020 dma_free_coherent(hi->host->device.parent,
1021 sizeof(struct sbp2_login_response),
1022 lu->login_response,
1023 lu->login_response_dma);
1024 if (lu->login_orb)
1025 dma_free_coherent(hi->host->device.parent,
1026 sizeof(struct sbp2_login_orb),
1027 lu->login_orb,
1028 lu->login_orb_dma);
1029 if (lu->reconnect_orb)
1030 dma_free_coherent(hi->host->device.parent,
1031 sizeof(struct sbp2_reconnect_orb),
1032 lu->reconnect_orb,
1033 lu->reconnect_orb_dma);
1034 if (lu->logout_orb)
1035 dma_free_coherent(hi->host->device.parent,
1036 sizeof(struct sbp2_logout_orb),
1037 lu->logout_orb,
1038 lu->logout_orb_dma);
1039 if (lu->query_logins_orb)
1040 dma_free_coherent(hi->host->device.parent,
1041 sizeof(struct sbp2_query_logins_orb),
1042 lu->query_logins_orb,
1043 lu->query_logins_orb_dma);
1044 if (lu->query_logins_response)
1045 dma_free_coherent(hi->host->device.parent,
1046 sizeof(struct sbp2_query_logins_response),
1047 lu->query_logins_response,
1048 lu->query_logins_response_dma);
1050 if (lu->status_fifo_addr != CSR1212_INVALID_ADDR_SPACE)
1051 hpsb_unregister_addrspace(&sbp2_highlevel, hi->host,
1052 lu->status_fifo_addr);
1054 lu->ud->device.driver_data = NULL;
1056 module_put(hi->host->driver->owner);
1057 no_hi:
1058 kfree(lu);
1061 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
1063 * Deal with write requests on adapters which do not support physical DMA or
1064 * have it switched off.
1066 static int sbp2_handle_physdma_write(struct hpsb_host *host, int nodeid,
1067 int destid, quadlet_t *data, u64 addr,
1068 size_t length, u16 flags)
1070 memcpy(bus_to_virt((u32) addr), data, length);
1071 return RCODE_COMPLETE;
1075 * Deal with read requests on adapters which do not support physical DMA or
1076 * have it switched off.
1078 static int sbp2_handle_physdma_read(struct hpsb_host *host, int nodeid,
1079 quadlet_t *data, u64 addr, size_t length,
1080 u16 flags)
1082 memcpy(data, bus_to_virt((u32) addr), length);
1083 return RCODE_COMPLETE;
1085 #endif
1087 /**************************************
1088 * SBP-2 protocol related section
1089 **************************************/
1091 static int sbp2_query_logins(struct sbp2_lu *lu)
1093 struct sbp2_fwhost_info *hi = lu->hi;
1094 quadlet_t data[2];
1095 int max_logins;
1096 int active_logins;
1098 lu->query_logins_orb->reserved1 = 0x0;
1099 lu->query_logins_orb->reserved2 = 0x0;
1101 lu->query_logins_orb->query_response_lo = lu->query_logins_response_dma;
1102 lu->query_logins_orb->query_response_hi =
1103 ORB_SET_NODE_ID(hi->host->node_id);
1104 lu->query_logins_orb->lun_misc =
1105 ORB_SET_FUNCTION(SBP2_QUERY_LOGINS_REQUEST);
1106 lu->query_logins_orb->lun_misc |= ORB_SET_NOTIFY(1);
1107 lu->query_logins_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1109 lu->query_logins_orb->reserved_resp_length =
1110 ORB_SET_QUERY_LOGINS_RESP_LENGTH(
1111 sizeof(struct sbp2_query_logins_response));
1113 lu->query_logins_orb->status_fifo_hi =
1114 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1115 lu->query_logins_orb->status_fifo_lo =
1116 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1118 sbp2util_cpu_to_be32_buffer(lu->query_logins_orb,
1119 sizeof(struct sbp2_query_logins_orb));
1121 memset(lu->query_logins_response, 0,
1122 sizeof(struct sbp2_query_logins_response));
1124 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1125 data[1] = lu->query_logins_orb_dma;
1126 sbp2util_cpu_to_be32_buffer(data, 8);
1128 hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1130 if (sbp2util_access_timeout(lu, 2*HZ)) {
1131 SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1132 return -EIO;
1135 if (lu->status_block.ORB_offset_lo != lu->query_logins_orb_dma) {
1136 SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1137 return -EIO;
1140 if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1141 SBP2_INFO("Error querying logins to SBP-2 device - failed");
1142 return -EIO;
1145 sbp2util_cpu_to_be32_buffer(lu->query_logins_response,
1146 sizeof(struct sbp2_query_logins_response));
1148 max_logins = RESPONSE_GET_MAX_LOGINS(
1149 lu->query_logins_response->length_max_logins);
1150 SBP2_INFO("Maximum concurrent logins supported: %d", max_logins);
1152 active_logins = RESPONSE_GET_ACTIVE_LOGINS(
1153 lu->query_logins_response->length_max_logins);
1154 SBP2_INFO("Number of active logins: %d", active_logins);
1156 if (active_logins >= max_logins) {
1157 return -EIO;
1160 return 0;
1163 static int sbp2_login_device(struct sbp2_lu *lu)
1165 struct sbp2_fwhost_info *hi = lu->hi;
1166 quadlet_t data[2];
1168 if (!lu->login_orb)
1169 return -EIO;
1171 if (!sbp2_exclusive_login && sbp2_query_logins(lu)) {
1172 SBP2_INFO("Device does not support any more concurrent logins");
1173 return -EIO;
1176 /* assume no password */
1177 lu->login_orb->password_hi = 0;
1178 lu->login_orb->password_lo = 0;
1180 lu->login_orb->login_response_lo = lu->login_response_dma;
1181 lu->login_orb->login_response_hi = ORB_SET_NODE_ID(hi->host->node_id);
1182 lu->login_orb->lun_misc = ORB_SET_FUNCTION(SBP2_LOGIN_REQUEST);
1184 /* one second reconnect time */
1185 lu->login_orb->lun_misc |= ORB_SET_RECONNECT(0);
1186 lu->login_orb->lun_misc |= ORB_SET_EXCLUSIVE(sbp2_exclusive_login);
1187 lu->login_orb->lun_misc |= ORB_SET_NOTIFY(1);
1188 lu->login_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1190 lu->login_orb->passwd_resp_lengths =
1191 ORB_SET_LOGIN_RESP_LENGTH(sizeof(struct sbp2_login_response));
1193 lu->login_orb->status_fifo_hi =
1194 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1195 lu->login_orb->status_fifo_lo =
1196 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1198 sbp2util_cpu_to_be32_buffer(lu->login_orb,
1199 sizeof(struct sbp2_login_orb));
1201 memset(lu->login_response, 0, sizeof(struct sbp2_login_response));
1203 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1204 data[1] = lu->login_orb_dma;
1205 sbp2util_cpu_to_be32_buffer(data, 8);
1207 hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1209 /* wait up to 20 seconds for login status */
1210 if (sbp2util_access_timeout(lu, 20*HZ)) {
1211 SBP2_ERR("Error logging into SBP-2 device - timed out");
1212 return -EIO;
1215 /* make sure that the returned status matches the login ORB */
1216 if (lu->status_block.ORB_offset_lo != lu->login_orb_dma) {
1217 SBP2_ERR("Error logging into SBP-2 device - timed out");
1218 return -EIO;
1221 if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1222 SBP2_ERR("Error logging into SBP-2 device - failed");
1223 return -EIO;
1226 sbp2util_cpu_to_be32_buffer(lu->login_response,
1227 sizeof(struct sbp2_login_response));
1228 lu->command_block_agent_addr =
1229 ((u64)lu->login_response->command_block_agent_hi) << 32;
1230 lu->command_block_agent_addr |=
1231 ((u64)lu->login_response->command_block_agent_lo);
1232 lu->command_block_agent_addr &= 0x0000ffffffffffffULL;
1234 SBP2_INFO("Logged into SBP-2 device");
1235 return 0;
1238 static int sbp2_logout_device(struct sbp2_lu *lu)
1240 struct sbp2_fwhost_info *hi = lu->hi;
1241 quadlet_t data[2];
1242 int error;
1244 lu->logout_orb->reserved1 = 0x0;
1245 lu->logout_orb->reserved2 = 0x0;
1246 lu->logout_orb->reserved3 = 0x0;
1247 lu->logout_orb->reserved4 = 0x0;
1249 lu->logout_orb->login_ID_misc = ORB_SET_FUNCTION(SBP2_LOGOUT_REQUEST);
1250 lu->logout_orb->login_ID_misc |=
1251 ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1252 lu->logout_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1254 lu->logout_orb->reserved5 = 0x0;
1255 lu->logout_orb->status_fifo_hi =
1256 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1257 lu->logout_orb->status_fifo_lo =
1258 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1260 sbp2util_cpu_to_be32_buffer(lu->logout_orb,
1261 sizeof(struct sbp2_logout_orb));
1263 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1264 data[1] = lu->logout_orb_dma;
1265 sbp2util_cpu_to_be32_buffer(data, 8);
1267 error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1268 if (error)
1269 return error;
1271 /* wait up to 1 second for the device to complete logout */
1272 if (sbp2util_access_timeout(lu, HZ))
1273 return -EIO;
1275 SBP2_INFO("Logged out of SBP-2 device");
1276 return 0;
1279 static int sbp2_reconnect_device(struct sbp2_lu *lu)
1281 struct sbp2_fwhost_info *hi = lu->hi;
1282 quadlet_t data[2];
1283 int error;
1285 lu->reconnect_orb->reserved1 = 0x0;
1286 lu->reconnect_orb->reserved2 = 0x0;
1287 lu->reconnect_orb->reserved3 = 0x0;
1288 lu->reconnect_orb->reserved4 = 0x0;
1290 lu->reconnect_orb->login_ID_misc =
1291 ORB_SET_FUNCTION(SBP2_RECONNECT_REQUEST);
1292 lu->reconnect_orb->login_ID_misc |=
1293 ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1294 lu->reconnect_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1296 lu->reconnect_orb->reserved5 = 0x0;
1297 lu->reconnect_orb->status_fifo_hi =
1298 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1299 lu->reconnect_orb->status_fifo_lo =
1300 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1302 sbp2util_cpu_to_be32_buffer(lu->reconnect_orb,
1303 sizeof(struct sbp2_reconnect_orb));
1305 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1306 data[1] = lu->reconnect_orb_dma;
1307 sbp2util_cpu_to_be32_buffer(data, 8);
1309 error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1310 if (error)
1311 return error;
1313 /* wait up to 1 second for reconnect status */
1314 if (sbp2util_access_timeout(lu, HZ)) {
1315 SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1316 return -EIO;
1319 /* make sure that the returned status matches the reconnect ORB */
1320 if (lu->status_block.ORB_offset_lo != lu->reconnect_orb_dma) {
1321 SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1322 return -EIO;
1325 if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1326 SBP2_ERR("Error reconnecting to SBP-2 device - failed");
1327 return -EIO;
1330 SBP2_INFO("Reconnected to SBP-2 device");
1331 return 0;
1335 * Set the target node's Single Phase Retry limit. Affects the target's retry
1336 * behaviour if our node is too busy to accept requests.
1338 static int sbp2_set_busy_timeout(struct sbp2_lu *lu)
1340 quadlet_t data;
1342 data = cpu_to_be32(SBP2_BUSY_TIMEOUT_VALUE);
1343 if (hpsb_node_write(lu->ne, SBP2_BUSY_TIMEOUT_ADDRESS, &data, 4))
1344 SBP2_ERR("%s error", __func__);
1345 return 0;
1348 static void sbp2_parse_unit_directory(struct sbp2_lu *lu,
1349 struct unit_directory *ud)
1351 struct csr1212_keyval *kv;
1352 struct csr1212_dentry *dentry;
1353 u64 management_agent_addr;
1354 u32 unit_characteristics, firmware_revision, model;
1355 unsigned workarounds;
1356 int i;
1358 management_agent_addr = 0;
1359 unit_characteristics = 0;
1360 firmware_revision = SBP2_ROM_VALUE_MISSING;
1361 model = ud->flags & UNIT_DIRECTORY_MODEL_ID ?
1362 ud->model_id : SBP2_ROM_VALUE_MISSING;
1364 csr1212_for_each_dir_entry(ud->ne->csr, kv, ud->ud_kv, dentry) {
1365 switch (kv->key.id) {
1366 case CSR1212_KV_ID_DEPENDENT_INFO:
1367 if (kv->key.type == CSR1212_KV_TYPE_CSR_OFFSET)
1368 management_agent_addr =
1369 CSR1212_REGISTER_SPACE_BASE +
1370 (kv->value.csr_offset << 2);
1372 else if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE)
1373 lu->lun = ORB_SET_LUN(kv->value.immediate);
1374 break;
1376 case SBP2_UNIT_CHARACTERISTICS_KEY:
1377 /* FIXME: This is ignored so far.
1378 * See SBP-2 clause 7.4.8. */
1379 unit_characteristics = kv->value.immediate;
1380 break;
1382 case SBP2_FIRMWARE_REVISION_KEY:
1383 firmware_revision = kv->value.immediate;
1384 break;
1386 default:
1387 /* FIXME: Check for SBP2_DEVICE_TYPE_AND_LUN_KEY.
1388 * Its "ordered" bit has consequences for command ORB
1389 * list handling. See SBP-2 clauses 4.6, 7.4.11, 10.2 */
1390 break;
1394 workarounds = sbp2_default_workarounds;
1396 if (!(workarounds & SBP2_WORKAROUND_OVERRIDE))
1397 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1398 if (sbp2_workarounds_table[i].firmware_revision !=
1399 SBP2_ROM_VALUE_WILDCARD &&
1400 sbp2_workarounds_table[i].firmware_revision !=
1401 (firmware_revision & 0xffff00))
1402 continue;
1403 if (sbp2_workarounds_table[i].model !=
1404 SBP2_ROM_VALUE_WILDCARD &&
1405 sbp2_workarounds_table[i].model != model)
1406 continue;
1407 workarounds |= sbp2_workarounds_table[i].workarounds;
1408 break;
1411 if (workarounds)
1412 SBP2_INFO("Workarounds for node " NODE_BUS_FMT ": 0x%x "
1413 "(firmware_revision 0x%06x, vendor_id 0x%06x,"
1414 " model_id 0x%06x)",
1415 NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1416 workarounds, firmware_revision, ud->vendor_id,
1417 model);
1419 /* We would need one SCSI host template for each target to adjust
1420 * max_sectors on the fly, therefore warn only. */
1421 if (workarounds & SBP2_WORKAROUND_128K_MAX_TRANS &&
1422 (sbp2_max_sectors * 512) > (128 * 1024))
1423 SBP2_INFO("Node " NODE_BUS_FMT ": Bridge only supports 128KB "
1424 "max transfer size. WARNING: Current max_sectors "
1425 "setting is larger than 128KB (%d sectors)",
1426 NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1427 sbp2_max_sectors);
1429 /* If this is a logical unit directory entry, process the parent
1430 * to get the values. */
1431 if (ud->flags & UNIT_DIRECTORY_LUN_DIRECTORY) {
1432 struct unit_directory *parent_ud = container_of(
1433 ud->device.parent, struct unit_directory, device);
1434 sbp2_parse_unit_directory(lu, parent_ud);
1435 } else {
1436 lu->management_agent_addr = management_agent_addr;
1437 lu->workarounds = workarounds;
1438 if (ud->flags & UNIT_DIRECTORY_HAS_LUN)
1439 lu->lun = ORB_SET_LUN(ud->lun);
1443 #define SBP2_PAYLOAD_TO_BYTES(p) (1 << ((p) + 2))
1446 * This function is called in order to determine the max speed and packet
1447 * size we can use in our ORBs. Note, that we (the driver and host) only
1448 * initiate the transaction. The SBP-2 device actually transfers the data
1449 * (by reading from the DMA area we tell it). This means that the SBP-2
1450 * device decides the actual maximum data it can transfer. We just tell it
1451 * the speed that it needs to use, and the max_rec the host supports, and
1452 * it takes care of the rest.
1454 static int sbp2_max_speed_and_size(struct sbp2_lu *lu)
1456 struct sbp2_fwhost_info *hi = lu->hi;
1457 u8 payload;
1459 lu->speed_code = hi->host->speed[NODEID_TO_NODE(lu->ne->nodeid)];
1461 if (lu->speed_code > sbp2_max_speed) {
1462 lu->speed_code = sbp2_max_speed;
1463 SBP2_INFO("Reducing speed to %s",
1464 hpsb_speedto_str[sbp2_max_speed]);
1467 /* Payload size is the lesser of what our speed supports and what
1468 * our host supports. */
1469 payload = min(sbp2_speedto_max_payload[lu->speed_code],
1470 (u8) (hi->host->csr.max_rec - 1));
1472 /* If physical DMA is off, work around limitation in ohci1394:
1473 * packet size must not exceed PAGE_SIZE */
1474 if (lu->ne->host->low_addr_space < (1ULL << 32))
1475 while (SBP2_PAYLOAD_TO_BYTES(payload) + 24 > PAGE_SIZE &&
1476 payload)
1477 payload--;
1479 SBP2_INFO("Node " NODE_BUS_FMT ": Max speed [%s] - Max payload [%u]",
1480 NODE_BUS_ARGS(hi->host, lu->ne->nodeid),
1481 hpsb_speedto_str[lu->speed_code],
1482 SBP2_PAYLOAD_TO_BYTES(payload));
1484 lu->max_payload_size = payload;
1485 return 0;
1488 static int sbp2_agent_reset(struct sbp2_lu *lu, int wait)
1490 quadlet_t data;
1491 u64 addr;
1492 int retval;
1493 unsigned long flags;
1495 /* flush lu->protocol_work */
1496 if (wait)
1497 flush_scheduled_work();
1499 data = ntohl(SBP2_AGENT_RESET_DATA);
1500 addr = lu->command_block_agent_addr + SBP2_AGENT_RESET_OFFSET;
1502 if (wait)
1503 retval = hpsb_node_write(lu->ne, addr, &data, 4);
1504 else
1505 retval = sbp2util_node_write_no_wait(lu->ne, addr, &data, 4);
1507 if (retval < 0) {
1508 SBP2_ERR("hpsb_node_write failed.\n");
1509 return -EIO;
1512 /* make sure that the ORB_POINTER is written on next command */
1513 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1514 lu->last_orb = NULL;
1515 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1517 return 0;
1520 static int sbp2_prep_command_orb_sg(struct sbp2_command_orb *orb,
1521 struct sbp2_fwhost_info *hi,
1522 struct sbp2_command_info *cmd,
1523 unsigned int sg_count,
1524 struct scatterlist *sg,
1525 u32 orb_direction,
1526 enum dma_data_direction dma_dir)
1528 struct device *dmadev = hi->host->device.parent;
1529 struct sbp2_unrestricted_page_table *pt;
1530 int i, n;
1532 n = dma_map_sg(dmadev, sg, sg_count, dma_dir);
1533 if (n == 0)
1534 return -ENOMEM;
1536 orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id);
1537 orb->misc |= ORB_SET_DIRECTION(orb_direction);
1539 /* special case if only one element (and less than 64KB in size) */
1540 if (n == 1) {
1541 orb->misc |= ORB_SET_DATA_SIZE(sg_dma_len(sg));
1542 orb->data_descriptor_lo = sg_dma_address(sg);
1543 } else {
1544 pt = &cmd->scatter_gather_element[0];
1546 dma_sync_single_for_cpu(dmadev, cmd->sge_dma,
1547 sizeof(cmd->scatter_gather_element),
1548 DMA_TO_DEVICE);
1550 for_each_sg(sg, sg, n, i) {
1551 pt[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1552 pt[i].low = cpu_to_be32(sg_dma_address(sg));
1555 orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1) |
1556 ORB_SET_DATA_SIZE(n);
1557 orb->data_descriptor_lo = cmd->sge_dma;
1559 dma_sync_single_for_device(dmadev, cmd->sge_dma,
1560 sizeof(cmd->scatter_gather_element),
1561 DMA_TO_DEVICE);
1563 return 0;
1566 static int sbp2_create_command_orb(struct sbp2_lu *lu,
1567 struct sbp2_command_info *cmd,
1568 struct scsi_cmnd *SCpnt)
1570 struct device *dmadev = lu->hi->host->device.parent;
1571 struct sbp2_command_orb *orb = &cmd->command_orb;
1572 unsigned int scsi_request_bufflen = scsi_bufflen(SCpnt);
1573 enum dma_data_direction dma_dir = SCpnt->sc_data_direction;
1574 u32 orb_direction;
1575 int ret;
1577 dma_sync_single_for_cpu(dmadev, cmd->command_orb_dma,
1578 sizeof(struct sbp2_command_orb), DMA_TO_DEVICE);
1580 * Set-up our command ORB.
1582 * NOTE: We're doing unrestricted page tables (s/g), as this is
1583 * best performance (at least with the devices I have). This means
1584 * that data_size becomes the number of s/g elements, and
1585 * page_size should be zero (for unrestricted).
1587 orb->next_ORB_hi = ORB_SET_NULL_PTR(1);
1588 orb->next_ORB_lo = 0x0;
1589 orb->misc = ORB_SET_MAX_PAYLOAD(lu->max_payload_size);
1590 orb->misc |= ORB_SET_SPEED(lu->speed_code);
1591 orb->misc |= ORB_SET_NOTIFY(1);
1593 if (dma_dir == DMA_NONE)
1594 orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1595 else if (dma_dir == DMA_TO_DEVICE && scsi_request_bufflen)
1596 orb_direction = ORB_DIRECTION_WRITE_TO_MEDIA;
1597 else if (dma_dir == DMA_FROM_DEVICE && scsi_request_bufflen)
1598 orb_direction = ORB_DIRECTION_READ_FROM_MEDIA;
1599 else {
1600 SBP2_INFO("Falling back to DMA_NONE");
1601 orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1604 /* set up our page table stuff */
1605 if (orb_direction == ORB_DIRECTION_NO_DATA_TRANSFER) {
1606 orb->data_descriptor_hi = 0x0;
1607 orb->data_descriptor_lo = 0x0;
1608 orb->misc |= ORB_SET_DIRECTION(1);
1609 ret = 0;
1610 } else {
1611 ret = sbp2_prep_command_orb_sg(orb, lu->hi, cmd,
1612 scsi_sg_count(SCpnt),
1613 scsi_sglist(SCpnt),
1614 orb_direction, dma_dir);
1616 sbp2util_cpu_to_be32_buffer(orb, sizeof(*orb));
1618 memset(orb->cdb, 0, sizeof(orb->cdb));
1619 memcpy(orb->cdb, SCpnt->cmnd, SCpnt->cmd_len);
1621 dma_sync_single_for_device(dmadev, cmd->command_orb_dma,
1622 sizeof(struct sbp2_command_orb), DMA_TO_DEVICE);
1623 return ret;
1626 static void sbp2_link_orb_command(struct sbp2_lu *lu,
1627 struct sbp2_command_info *cmd)
1629 struct sbp2_fwhost_info *hi = lu->hi;
1630 struct sbp2_command_orb *last_orb;
1631 dma_addr_t last_orb_dma;
1632 u64 addr = lu->command_block_agent_addr;
1633 quadlet_t data[2];
1634 size_t length;
1635 unsigned long flags;
1637 /* check to see if there are any previous orbs to use */
1638 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1639 last_orb = lu->last_orb;
1640 last_orb_dma = lu->last_orb_dma;
1641 if (!last_orb) {
1643 * last_orb == NULL means: We know that the target's fetch agent
1644 * is not active right now.
1646 addr += SBP2_ORB_POINTER_OFFSET;
1647 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1648 data[1] = cmd->command_orb_dma;
1649 sbp2util_cpu_to_be32_buffer(data, 8);
1650 length = 8;
1651 } else {
1653 * last_orb != NULL means: We know that the target's fetch agent
1654 * is (very probably) not dead or in reset state right now.
1655 * We have an ORB already sent that we can append a new one to.
1656 * The target's fetch agent may or may not have read this
1657 * previous ORB yet.
1659 dma_sync_single_for_cpu(hi->host->device.parent, last_orb_dma,
1660 sizeof(struct sbp2_command_orb),
1661 DMA_TO_DEVICE);
1662 last_orb->next_ORB_lo = cpu_to_be32(cmd->command_orb_dma);
1663 wmb();
1664 /* Tells hardware that this pointer is valid */
1665 last_orb->next_ORB_hi = 0;
1666 dma_sync_single_for_device(hi->host->device.parent,
1667 last_orb_dma,
1668 sizeof(struct sbp2_command_orb),
1669 DMA_TO_DEVICE);
1670 addr += SBP2_DOORBELL_OFFSET;
1671 data[0] = 0;
1672 length = 4;
1674 lu->last_orb = &cmd->command_orb;
1675 lu->last_orb_dma = cmd->command_orb_dma;
1676 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1678 if (sbp2util_node_write_no_wait(lu->ne, addr, data, length)) {
1680 * sbp2util_node_write_no_wait failed. We certainly ran out
1681 * of transaction labels, perhaps just because there were no
1682 * context switches which gave khpsbpkt a chance to collect
1683 * free tlabels. Try again in non-atomic context. If necessary,
1684 * the workqueue job will sleep to guaranteedly get a tlabel.
1685 * We do not accept new commands until the job is over.
1687 scsi_block_requests(lu->shost);
1688 PREPARE_WORK(&lu->protocol_work,
1689 last_orb ? sbp2util_write_doorbell:
1690 sbp2util_write_orb_pointer);
1691 schedule_work(&lu->protocol_work);
1695 static int sbp2_send_command(struct sbp2_lu *lu, struct scsi_cmnd *SCpnt,
1696 void (*done)(struct scsi_cmnd *))
1698 struct sbp2_command_info *cmd;
1700 cmd = sbp2util_allocate_command_orb(lu, SCpnt, done);
1701 if (!cmd)
1702 return -EIO;
1704 if (sbp2_create_command_orb(lu, cmd, SCpnt))
1705 return -ENOMEM;
1707 sbp2_link_orb_command(lu, cmd);
1708 return 0;
1712 * Translates SBP-2 status into SCSI sense data for check conditions
1714 static unsigned int sbp2_status_to_sense_data(unchar *sbp2_status,
1715 unchar *sense_data)
1717 /* OK, it's pretty ugly... ;-) */
1718 sense_data[0] = 0x70;
1719 sense_data[1] = 0x0;
1720 sense_data[2] = sbp2_status[9];
1721 sense_data[3] = sbp2_status[12];
1722 sense_data[4] = sbp2_status[13];
1723 sense_data[5] = sbp2_status[14];
1724 sense_data[6] = sbp2_status[15];
1725 sense_data[7] = 10;
1726 sense_data[8] = sbp2_status[16];
1727 sense_data[9] = sbp2_status[17];
1728 sense_data[10] = sbp2_status[18];
1729 sense_data[11] = sbp2_status[19];
1730 sense_data[12] = sbp2_status[10];
1731 sense_data[13] = sbp2_status[11];
1732 sense_data[14] = sbp2_status[20];
1733 sense_data[15] = sbp2_status[21];
1735 return sbp2_status[8] & 0x3f;
1738 static int sbp2_handle_status_write(struct hpsb_host *host, int nodeid,
1739 int destid, quadlet_t *data, u64 addr,
1740 size_t length, u16 fl)
1742 struct sbp2_fwhost_info *hi;
1743 struct sbp2_lu *lu = NULL, *lu_tmp;
1744 struct scsi_cmnd *SCpnt = NULL;
1745 struct sbp2_status_block *sb;
1746 u32 scsi_status = SBP2_SCSI_STATUS_GOOD;
1747 struct sbp2_command_info *cmd;
1748 unsigned long flags;
1750 if (unlikely(length < 8 || length > sizeof(struct sbp2_status_block))) {
1751 SBP2_ERR("Wrong size of status block");
1752 return RCODE_ADDRESS_ERROR;
1754 if (unlikely(!host)) {
1755 SBP2_ERR("host is NULL - this is bad!");
1756 return RCODE_ADDRESS_ERROR;
1758 hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
1759 if (unlikely(!hi)) {
1760 SBP2_ERR("host info is NULL - this is bad!");
1761 return RCODE_ADDRESS_ERROR;
1764 /* Find the unit which wrote the status. */
1765 read_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
1766 list_for_each_entry(lu_tmp, &hi->logical_units, lu_list) {
1767 if (lu_tmp->ne->nodeid == nodeid &&
1768 lu_tmp->status_fifo_addr == addr) {
1769 lu = lu_tmp;
1770 break;
1773 read_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
1775 if (unlikely(!lu)) {
1776 SBP2_ERR("lu is NULL - device is gone?");
1777 return RCODE_ADDRESS_ERROR;
1780 /* Put response into lu status fifo buffer. The first two bytes
1781 * come in big endian bit order. Often the target writes only a
1782 * truncated status block, minimally the first two quadlets. The rest
1783 * is implied to be zeros. */
1784 sb = &lu->status_block;
1785 memset(sb->command_set_dependent, 0, sizeof(sb->command_set_dependent));
1786 memcpy(sb, data, length);
1787 sbp2util_be32_to_cpu_buffer(sb, 8);
1789 /* Ignore unsolicited status. Handle command ORB status. */
1790 if (unlikely(STATUS_GET_SRC(sb->ORB_offset_hi_misc) == 2))
1791 cmd = NULL;
1792 else
1793 cmd = sbp2util_find_command_for_orb(lu, sb->ORB_offset_lo);
1794 if (cmd) {
1795 /* Grab SCSI command pointers and check status. */
1797 * FIXME: If the src field in the status is 1, the ORB DMA must
1798 * not be reused until status for a subsequent ORB is received.
1800 SCpnt = cmd->Current_SCpnt;
1801 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1802 sbp2util_mark_command_completed(lu, cmd);
1803 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1805 if (SCpnt) {
1806 u32 h = sb->ORB_offset_hi_misc;
1807 u32 r = STATUS_GET_RESP(h);
1809 if (r != RESP_STATUS_REQUEST_COMPLETE) {
1810 SBP2_INFO("resp 0x%x, sbp_status 0x%x",
1811 r, STATUS_GET_SBP_STATUS(h));
1812 scsi_status =
1813 r == RESP_STATUS_TRANSPORT_FAILURE ?
1814 SBP2_SCSI_STATUS_BUSY :
1815 SBP2_SCSI_STATUS_COMMAND_TERMINATED;
1818 if (STATUS_GET_LEN(h) > 1)
1819 scsi_status = sbp2_status_to_sense_data(
1820 (unchar *)sb, SCpnt->sense_buffer);
1822 if (STATUS_TEST_DEAD(h))
1823 sbp2_agent_reset(lu, 0);
1826 /* Check here to see if there are no commands in-use. If there
1827 * are none, we know that the fetch agent left the active state
1828 * _and_ that we did not reactivate it yet. Therefore clear
1829 * last_orb so that next time we write directly to the
1830 * ORB_POINTER register. That way the fetch agent does not need
1831 * to refetch the next_ORB. */
1832 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1833 if (list_empty(&lu->cmd_orb_inuse))
1834 lu->last_orb = NULL;
1835 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1837 } else {
1838 /* It's probably status after a management request. */
1839 if ((sb->ORB_offset_lo == lu->reconnect_orb_dma) ||
1840 (sb->ORB_offset_lo == lu->login_orb_dma) ||
1841 (sb->ORB_offset_lo == lu->query_logins_orb_dma) ||
1842 (sb->ORB_offset_lo == lu->logout_orb_dma)) {
1843 lu->access_complete = 1;
1844 wake_up_interruptible(&sbp2_access_wq);
1848 if (SCpnt)
1849 sbp2scsi_complete_command(lu, scsi_status, SCpnt,
1850 cmd->Current_done);
1851 return RCODE_COMPLETE;
1854 /**************************************
1855 * SCSI interface related section
1856 **************************************/
1858 static int sbp2scsi_queuecommand(struct scsi_cmnd *SCpnt,
1859 void (*done)(struct scsi_cmnd *))
1861 struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
1862 struct sbp2_fwhost_info *hi;
1863 int result = DID_NO_CONNECT << 16;
1865 if (unlikely(!sbp2util_node_is_available(lu)))
1866 goto done;
1868 hi = lu->hi;
1870 if (unlikely(!hi)) {
1871 SBP2_ERR("sbp2_fwhost_info is NULL - this is bad!");
1872 goto done;
1875 /* Multiple units are currently represented to the SCSI core as separate
1876 * targets, not as one target with multiple LUs. Therefore return
1877 * selection time-out to any IO directed at non-zero LUNs. */
1878 if (unlikely(SCpnt->device->lun))
1879 goto done;
1881 if (unlikely(!hpsb_node_entry_valid(lu->ne))) {
1882 SBP2_ERR("Bus reset in progress - rejecting command");
1883 result = DID_BUS_BUSY << 16;
1884 goto done;
1887 /* Bidirectional commands are not yet implemented,
1888 * and unknown transfer direction not handled. */
1889 if (unlikely(SCpnt->sc_data_direction == DMA_BIDIRECTIONAL)) {
1890 SBP2_ERR("Cannot handle DMA_BIDIRECTIONAL - rejecting command");
1891 result = DID_ERROR << 16;
1892 goto done;
1895 if (sbp2_send_command(lu, SCpnt, done)) {
1896 SBP2_ERR("Error sending SCSI command");
1897 sbp2scsi_complete_command(lu,
1898 SBP2_SCSI_STATUS_SELECTION_TIMEOUT,
1899 SCpnt, done);
1901 return 0;
1903 done:
1904 SCpnt->result = result;
1905 done(SCpnt);
1906 return 0;
1909 static void sbp2scsi_complete_all_commands(struct sbp2_lu *lu, u32 status)
1911 struct list_head *lh;
1912 struct sbp2_command_info *cmd;
1913 unsigned long flags;
1915 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1916 while (!list_empty(&lu->cmd_orb_inuse)) {
1917 lh = lu->cmd_orb_inuse.next;
1918 cmd = list_entry(lh, struct sbp2_command_info, list);
1919 sbp2util_mark_command_completed(lu, cmd);
1920 if (cmd->Current_SCpnt) {
1921 cmd->Current_SCpnt->result = status << 16;
1922 cmd->Current_done(cmd->Current_SCpnt);
1925 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1927 return;
1931 * Complete a regular SCSI command. Can be called in atomic context.
1933 static void sbp2scsi_complete_command(struct sbp2_lu *lu, u32 scsi_status,
1934 struct scsi_cmnd *SCpnt,
1935 void (*done)(struct scsi_cmnd *))
1937 if (!SCpnt) {
1938 SBP2_ERR("SCpnt is NULL");
1939 return;
1942 switch (scsi_status) {
1943 case SBP2_SCSI_STATUS_GOOD:
1944 SCpnt->result = DID_OK << 16;
1945 break;
1947 case SBP2_SCSI_STATUS_BUSY:
1948 SBP2_ERR("SBP2_SCSI_STATUS_BUSY");
1949 SCpnt->result = DID_BUS_BUSY << 16;
1950 break;
1952 case SBP2_SCSI_STATUS_CHECK_CONDITION:
1953 SCpnt->result = CHECK_CONDITION << 1 | DID_OK << 16;
1954 break;
1956 case SBP2_SCSI_STATUS_SELECTION_TIMEOUT:
1957 SBP2_ERR("SBP2_SCSI_STATUS_SELECTION_TIMEOUT");
1958 SCpnt->result = DID_NO_CONNECT << 16;
1959 scsi_print_command(SCpnt);
1960 break;
1962 case SBP2_SCSI_STATUS_CONDITION_MET:
1963 case SBP2_SCSI_STATUS_RESERVATION_CONFLICT:
1964 case SBP2_SCSI_STATUS_COMMAND_TERMINATED:
1965 SBP2_ERR("Bad SCSI status = %x", scsi_status);
1966 SCpnt->result = DID_ERROR << 16;
1967 scsi_print_command(SCpnt);
1968 break;
1970 default:
1971 SBP2_ERR("Unsupported SCSI status = %x", scsi_status);
1972 SCpnt->result = DID_ERROR << 16;
1975 /* If a bus reset is in progress and there was an error, complete
1976 * the command as busy so that it will get retried. */
1977 if (!hpsb_node_entry_valid(lu->ne)
1978 && (scsi_status != SBP2_SCSI_STATUS_GOOD)) {
1979 SBP2_ERR("Completing command with busy (bus reset)");
1980 SCpnt->result = DID_BUS_BUSY << 16;
1983 /* Tell the SCSI stack that we're done with this command. */
1984 done(SCpnt);
1987 static int sbp2scsi_slave_alloc(struct scsi_device *sdev)
1989 struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
1991 if (sdev->lun != 0 || sdev->id != lu->ud->id || sdev->channel != 0)
1992 return -ENODEV;
1994 lu->sdev = sdev;
1995 sdev->allow_restart = 1;
1997 /* SBP-2 requires quadlet alignment of the data buffers. */
1998 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
2000 if (lu->workarounds & SBP2_WORKAROUND_INQUIRY_36)
2001 sdev->inquiry_len = 36;
2002 return 0;
2005 static int sbp2scsi_slave_configure(struct scsi_device *sdev)
2007 struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
2009 sdev->use_10_for_rw = 1;
2011 if (sbp2_exclusive_login)
2012 sdev->manage_start_stop = 1;
2013 if (sdev->type == TYPE_ROM)
2014 sdev->use_10_for_ms = 1;
2015 if (sdev->type == TYPE_DISK &&
2016 lu->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
2017 sdev->skip_ms_page_8 = 1;
2018 if (lu->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
2019 sdev->fix_capacity = 1;
2020 if (lu->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
2021 sdev->start_stop_pwr_cond = 1;
2022 if (lu->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
2023 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
2025 blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
2026 return 0;
2029 static void sbp2scsi_slave_destroy(struct scsi_device *sdev)
2031 ((struct sbp2_lu *)sdev->host->hostdata[0])->sdev = NULL;
2032 return;
2036 * Called by scsi stack when something has really gone wrong.
2037 * Usually called when a command has timed-out for some reason.
2039 static int sbp2scsi_abort(struct scsi_cmnd *SCpnt)
2041 struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2042 struct sbp2_command_info *cmd;
2043 unsigned long flags;
2045 SBP2_INFO("aborting sbp2 command");
2046 scsi_print_command(SCpnt);
2048 if (sbp2util_node_is_available(lu)) {
2049 sbp2_agent_reset(lu, 1);
2051 /* Return a matching command structure to the free pool. */
2052 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
2053 cmd = sbp2util_find_command_for_SCpnt(lu, SCpnt);
2054 if (cmd) {
2055 sbp2util_mark_command_completed(lu, cmd);
2056 if (cmd->Current_SCpnt) {
2057 cmd->Current_SCpnt->result = DID_ABORT << 16;
2058 cmd->Current_done(cmd->Current_SCpnt);
2061 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
2063 sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
2066 return SUCCESS;
2070 * Called by scsi stack when something has really gone wrong.
2072 static int sbp2scsi_reset(struct scsi_cmnd *SCpnt)
2074 struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2076 SBP2_INFO("reset requested");
2078 if (sbp2util_node_is_available(lu)) {
2079 SBP2_INFO("generating sbp2 fetch agent reset");
2080 sbp2_agent_reset(lu, 1);
2083 return SUCCESS;
2086 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
2087 struct device_attribute *attr,
2088 char *buf)
2090 struct scsi_device *sdev;
2091 struct sbp2_lu *lu;
2093 if (!(sdev = to_scsi_device(dev)))
2094 return 0;
2096 if (!(lu = (struct sbp2_lu *)sdev->host->hostdata[0]))
2097 return 0;
2099 if (sbp2_long_sysfs_ieee1394_id)
2100 return sprintf(buf, "%016Lx:%06x:%04x\n",
2101 (unsigned long long)lu->ne->guid,
2102 lu->ud->directory_id, ORB_SET_LUN(lu->lun));
2103 else
2104 return sprintf(buf, "%016Lx:%d:%d\n",
2105 (unsigned long long)lu->ne->guid,
2106 lu->ud->id, ORB_SET_LUN(lu->lun));
2109 MODULE_AUTHOR("Ben Collins <bcollins@debian.org>");
2110 MODULE_DESCRIPTION("IEEE-1394 SBP-2 protocol driver");
2111 MODULE_SUPPORTED_DEVICE(SBP2_DEVICE_NAME);
2112 MODULE_LICENSE("GPL");
2114 static int sbp2_module_init(void)
2116 int ret;
2118 if (sbp2_serialize_io) {
2119 sbp2_shost_template.can_queue = 1;
2120 sbp2_shost_template.cmd_per_lun = 1;
2123 sbp2_shost_template.max_sectors = sbp2_max_sectors;
2125 hpsb_register_highlevel(&sbp2_highlevel);
2126 ret = hpsb_register_protocol(&sbp2_driver);
2127 if (ret) {
2128 SBP2_ERR("Failed to register protocol");
2129 hpsb_unregister_highlevel(&sbp2_highlevel);
2130 return ret;
2132 return 0;
2135 static void __exit sbp2_module_exit(void)
2137 hpsb_unregister_protocol(&sbp2_driver);
2138 hpsb_unregister_highlevel(&sbp2_highlevel);
2141 module_init(sbp2_module_init);
2142 module_exit(sbp2_module_exit);