4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
71 #include <asm/irq_regs.h>
74 * Scheduler clock - returns current time in nanosec units.
75 * This is default implementation.
76 * Architectures and sub-architectures can override this.
78 unsigned long long __attribute__((weak
)) sched_clock(void)
80 return (unsigned long long)jiffies
* (NSEC_PER_SEC
/ HZ
);
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
120 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
124 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
128 * Each time a sched group cpu_power is changed,
129 * we must compute its reciprocal value
131 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
133 sg
->__cpu_power
+= val
;
134 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
138 static inline int rt_policy(int policy
)
140 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
145 static inline int task_has_rt_policy(struct task_struct
*p
)
147 return rt_policy(p
->policy
);
151 * This is the priority-queue data structure of the RT scheduling class:
153 struct rt_prio_array
{
154 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
155 struct list_head queue
[MAX_RT_PRIO
];
158 #ifdef CONFIG_FAIR_GROUP_SCHED
160 #include <linux/cgroup.h>
164 static LIST_HEAD(task_groups
);
166 /* task group related information */
168 #ifdef CONFIG_FAIR_CGROUP_SCHED
169 struct cgroup_subsys_state css
;
171 /* schedulable entities of this group on each cpu */
172 struct sched_entity
**se
;
173 /* runqueue "owned" by this group on each cpu */
174 struct cfs_rq
**cfs_rq
;
176 struct sched_rt_entity
**rt_se
;
177 struct rt_rq
**rt_rq
;
179 unsigned int rt_ratio
;
182 * shares assigned to a task group governs how much of cpu bandwidth
183 * is allocated to the group. The more shares a group has, the more is
184 * the cpu bandwidth allocated to it.
186 * For ex, lets say that there are three task groups, A, B and C which
187 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
188 * cpu bandwidth allocated by the scheduler to task groups A, B and C
191 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
192 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
193 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
195 * The weight assigned to a task group's schedulable entities on every
196 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
197 * group's shares. For ex: lets say that task group A has been
198 * assigned shares of 1000 and there are two CPUs in a system. Then,
200 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
202 * Note: It's not necessary that each of a task's group schedulable
203 * entity have the same weight on all CPUs. If the group
204 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
205 * better distribution of weight could be:
207 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
208 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
210 * rebalance_shares() is responsible for distributing the shares of a
211 * task groups like this among the group's schedulable entities across
215 unsigned long shares
;
218 struct list_head list
;
221 /* Default task group's sched entity on each cpu */
222 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
223 /* Default task group's cfs_rq on each cpu */
224 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
226 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
227 static DEFINE_PER_CPU(struct rt_rq
, init_rt_rq
) ____cacheline_aligned_in_smp
;
229 static struct sched_entity
*init_sched_entity_p
[NR_CPUS
];
230 static struct cfs_rq
*init_cfs_rq_p
[NR_CPUS
];
232 static struct sched_rt_entity
*init_sched_rt_entity_p
[NR_CPUS
];
233 static struct rt_rq
*init_rt_rq_p
[NR_CPUS
];
235 /* task_group_mutex serializes add/remove of task groups and also changes to
236 * a task group's cpu shares.
238 static DEFINE_MUTEX(task_group_mutex
);
240 /* doms_cur_mutex serializes access to doms_cur[] array */
241 static DEFINE_MUTEX(doms_cur_mutex
);
244 /* kernel thread that runs rebalance_shares() periodically */
245 static struct task_struct
*lb_monitor_task
;
246 static int load_balance_monitor(void *unused
);
249 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
);
251 /* Default task group.
252 * Every task in system belong to this group at bootup.
254 struct task_group init_task_group
= {
255 .se
= init_sched_entity_p
,
256 .cfs_rq
= init_cfs_rq_p
,
258 .rt_se
= init_sched_rt_entity_p
,
259 .rt_rq
= init_rt_rq_p
,
262 #ifdef CONFIG_FAIR_USER_SCHED
263 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
265 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
268 #define MIN_GROUP_SHARES 2
270 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
272 /* return group to which a task belongs */
273 static inline struct task_group
*task_group(struct task_struct
*p
)
275 struct task_group
*tg
;
277 #ifdef CONFIG_FAIR_USER_SCHED
279 #elif defined(CONFIG_FAIR_CGROUP_SCHED)
280 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
281 struct task_group
, css
);
283 tg
= &init_task_group
;
288 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
289 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
291 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
292 p
->se
.parent
= task_group(p
)->se
[cpu
];
294 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
295 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
298 static inline void lock_task_group_list(void)
300 mutex_lock(&task_group_mutex
);
303 static inline void unlock_task_group_list(void)
305 mutex_unlock(&task_group_mutex
);
308 static inline void lock_doms_cur(void)
310 mutex_lock(&doms_cur_mutex
);
313 static inline void unlock_doms_cur(void)
315 mutex_unlock(&doms_cur_mutex
);
320 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
321 static inline void lock_task_group_list(void) { }
322 static inline void unlock_task_group_list(void) { }
323 static inline void lock_doms_cur(void) { }
324 static inline void unlock_doms_cur(void) { }
326 #endif /* CONFIG_FAIR_GROUP_SCHED */
328 /* CFS-related fields in a runqueue */
330 struct load_weight load
;
331 unsigned long nr_running
;
336 struct rb_root tasks_timeline
;
337 struct rb_node
*rb_leftmost
;
338 struct rb_node
*rb_load_balance_curr
;
339 /* 'curr' points to currently running entity on this cfs_rq.
340 * It is set to NULL otherwise (i.e when none are currently running).
342 struct sched_entity
*curr
;
344 unsigned long nr_spread_over
;
346 #ifdef CONFIG_FAIR_GROUP_SCHED
347 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
350 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
351 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
352 * (like users, containers etc.)
354 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
355 * list is used during load balance.
357 struct list_head leaf_cfs_rq_list
;
358 struct task_group
*tg
; /* group that "owns" this runqueue */
362 /* Real-Time classes' related field in a runqueue: */
364 struct rt_prio_array active
;
365 unsigned long rt_nr_running
;
366 #if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
367 int highest_prio
; /* highest queued rt task prio */
370 unsigned long rt_nr_migratory
;
376 #ifdef CONFIG_FAIR_GROUP_SCHED
378 struct list_head leaf_rt_rq_list
;
379 struct task_group
*tg
;
380 struct sched_rt_entity
*rt_se
;
387 * We add the notion of a root-domain which will be used to define per-domain
388 * variables. Each exclusive cpuset essentially defines an island domain by
389 * fully partitioning the member cpus from any other cpuset. Whenever a new
390 * exclusive cpuset is created, we also create and attach a new root-domain
400 * The "RT overload" flag: it gets set if a CPU has more than
401 * one runnable RT task.
408 * By default the system creates a single root-domain with all cpus as
409 * members (mimicking the global state we have today).
411 static struct root_domain def_root_domain
;
416 * This is the main, per-CPU runqueue data structure.
418 * Locking rule: those places that want to lock multiple runqueues
419 * (such as the load balancing or the thread migration code), lock
420 * acquire operations must be ordered by ascending &runqueue.
427 * nr_running and cpu_load should be in the same cacheline because
428 * remote CPUs use both these fields when doing load calculation.
430 unsigned long nr_running
;
431 #define CPU_LOAD_IDX_MAX 5
432 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
433 unsigned char idle_at_tick
;
435 unsigned char in_nohz_recently
;
437 /* capture load from *all* tasks on this cpu: */
438 struct load_weight load
;
439 unsigned long nr_load_updates
;
444 u64 rt_period_expire
;
447 #ifdef CONFIG_FAIR_GROUP_SCHED
448 /* list of leaf cfs_rq on this cpu: */
449 struct list_head leaf_cfs_rq_list
;
450 struct list_head leaf_rt_rq_list
;
454 * This is part of a global counter where only the total sum
455 * over all CPUs matters. A task can increase this counter on
456 * one CPU and if it got migrated afterwards it may decrease
457 * it on another CPU. Always updated under the runqueue lock:
459 unsigned long nr_uninterruptible
;
461 struct task_struct
*curr
, *idle
;
462 unsigned long next_balance
;
463 struct mm_struct
*prev_mm
;
465 u64 clock
, prev_clock_raw
;
468 unsigned int clock_warps
, clock_overflows
, clock_underflows
;
470 unsigned int clock_deep_idle_events
;
476 struct root_domain
*rd
;
477 struct sched_domain
*sd
;
479 /* For active balancing */
482 /* cpu of this runqueue: */
485 struct task_struct
*migration_thread
;
486 struct list_head migration_queue
;
489 #ifdef CONFIG_SCHED_HRTICK
490 unsigned long hrtick_flags
;
491 ktime_t hrtick_expire
;
492 struct hrtimer hrtick_timer
;
495 #ifdef CONFIG_SCHEDSTATS
497 struct sched_info rq_sched_info
;
499 /* sys_sched_yield() stats */
500 unsigned int yld_exp_empty
;
501 unsigned int yld_act_empty
;
502 unsigned int yld_both_empty
;
503 unsigned int yld_count
;
505 /* schedule() stats */
506 unsigned int sched_switch
;
507 unsigned int sched_count
;
508 unsigned int sched_goidle
;
510 /* try_to_wake_up() stats */
511 unsigned int ttwu_count
;
512 unsigned int ttwu_local
;
515 unsigned int bkl_count
;
517 struct lock_class_key rq_lock_key
;
520 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
522 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
524 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
527 static inline int cpu_of(struct rq
*rq
)
537 * Update the per-runqueue clock, as finegrained as the platform can give
538 * us, but without assuming monotonicity, etc.:
540 static void __update_rq_clock(struct rq
*rq
)
542 u64 prev_raw
= rq
->prev_clock_raw
;
543 u64 now
= sched_clock();
544 s64 delta
= now
- prev_raw
;
545 u64 clock
= rq
->clock
;
547 #ifdef CONFIG_SCHED_DEBUG
548 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
551 * Protect against sched_clock() occasionally going backwards:
553 if (unlikely(delta
< 0)) {
558 * Catch too large forward jumps too:
560 if (unlikely(clock
+ delta
> rq
->tick_timestamp
+ TICK_NSEC
)) {
561 if (clock
< rq
->tick_timestamp
+ TICK_NSEC
)
562 clock
= rq
->tick_timestamp
+ TICK_NSEC
;
565 rq
->clock_overflows
++;
567 if (unlikely(delta
> rq
->clock_max_delta
))
568 rq
->clock_max_delta
= delta
;
573 rq
->prev_clock_raw
= now
;
577 static void update_rq_clock(struct rq
*rq
)
579 if (likely(smp_processor_id() == cpu_of(rq
)))
580 __update_rq_clock(rq
);
584 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
585 * See detach_destroy_domains: synchronize_sched for details.
587 * The domain tree of any CPU may only be accessed from within
588 * preempt-disabled sections.
590 #define for_each_domain(cpu, __sd) \
591 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
593 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
594 #define this_rq() (&__get_cpu_var(runqueues))
595 #define task_rq(p) cpu_rq(task_cpu(p))
596 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
598 unsigned long rt_needs_cpu(int cpu
)
600 struct rq
*rq
= cpu_rq(cpu
);
603 if (!rq
->rt_throttled
)
606 if (rq
->clock
> rq
->rt_period_expire
)
609 delta
= rq
->rt_period_expire
- rq
->clock
;
610 do_div(delta
, NSEC_PER_SEC
/ HZ
);
612 return (unsigned long)delta
;
616 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
618 #ifdef CONFIG_SCHED_DEBUG
619 # define const_debug __read_mostly
621 # define const_debug static const
625 * Debugging: various feature bits
628 SCHED_FEAT_NEW_FAIR_SLEEPERS
= 1,
629 SCHED_FEAT_WAKEUP_PREEMPT
= 2,
630 SCHED_FEAT_START_DEBIT
= 4,
631 SCHED_FEAT_TREE_AVG
= 8,
632 SCHED_FEAT_APPROX_AVG
= 16,
633 SCHED_FEAT_HRTICK
= 32,
634 SCHED_FEAT_DOUBLE_TICK
= 64,
637 const_debug
unsigned int sysctl_sched_features
=
638 SCHED_FEAT_NEW_FAIR_SLEEPERS
* 1 |
639 SCHED_FEAT_WAKEUP_PREEMPT
* 1 |
640 SCHED_FEAT_START_DEBIT
* 1 |
641 SCHED_FEAT_TREE_AVG
* 0 |
642 SCHED_FEAT_APPROX_AVG
* 0 |
643 SCHED_FEAT_HRTICK
* 1 |
644 SCHED_FEAT_DOUBLE_TICK
* 0;
646 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
649 * Number of tasks to iterate in a single balance run.
650 * Limited because this is done with IRQs disabled.
652 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
655 * period over which we measure -rt task cpu usage in ms.
658 const_debug
unsigned int sysctl_sched_rt_period
= 1000;
660 #define SCHED_RT_FRAC_SHIFT 16
661 #define SCHED_RT_FRAC (1UL << SCHED_RT_FRAC_SHIFT)
664 * ratio of time -rt tasks may consume.
667 const_debug
unsigned int sysctl_sched_rt_ratio
= 62259;
670 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
671 * clock constructed from sched_clock():
673 unsigned long long cpu_clock(int cpu
)
675 unsigned long long now
;
679 local_irq_save(flags
);
682 * Only call sched_clock() if the scheduler has already been
683 * initialized (some code might call cpu_clock() very early):
688 local_irq_restore(flags
);
692 EXPORT_SYMBOL_GPL(cpu_clock
);
694 #ifndef prepare_arch_switch
695 # define prepare_arch_switch(next) do { } while (0)
697 #ifndef finish_arch_switch
698 # define finish_arch_switch(prev) do { } while (0)
701 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
703 return rq
->curr
== p
;
706 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
707 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
709 return task_current(rq
, p
);
712 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
716 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
718 #ifdef CONFIG_DEBUG_SPINLOCK
719 /* this is a valid case when another task releases the spinlock */
720 rq
->lock
.owner
= current
;
723 * If we are tracking spinlock dependencies then we have to
724 * fix up the runqueue lock - which gets 'carried over' from
727 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
729 spin_unlock_irq(&rq
->lock
);
732 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
733 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
738 return task_current(rq
, p
);
742 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
746 * We can optimise this out completely for !SMP, because the
747 * SMP rebalancing from interrupt is the only thing that cares
752 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
753 spin_unlock_irq(&rq
->lock
);
755 spin_unlock(&rq
->lock
);
759 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
763 * After ->oncpu is cleared, the task can be moved to a different CPU.
764 * We must ensure this doesn't happen until the switch is completely
770 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
774 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
777 * __task_rq_lock - lock the runqueue a given task resides on.
778 * Must be called interrupts disabled.
780 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
784 struct rq
*rq
= task_rq(p
);
785 spin_lock(&rq
->lock
);
786 if (likely(rq
== task_rq(p
)))
788 spin_unlock(&rq
->lock
);
793 * task_rq_lock - lock the runqueue a given task resides on and disable
794 * interrupts. Note the ordering: we can safely lookup the task_rq without
795 * explicitly disabling preemption.
797 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
803 local_irq_save(*flags
);
805 spin_lock(&rq
->lock
);
806 if (likely(rq
== task_rq(p
)))
808 spin_unlock_irqrestore(&rq
->lock
, *flags
);
812 static void __task_rq_unlock(struct rq
*rq
)
815 spin_unlock(&rq
->lock
);
818 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
821 spin_unlock_irqrestore(&rq
->lock
, *flags
);
825 * this_rq_lock - lock this runqueue and disable interrupts.
827 static struct rq
*this_rq_lock(void)
834 spin_lock(&rq
->lock
);
840 * We are going deep-idle (irqs are disabled):
842 void sched_clock_idle_sleep_event(void)
844 struct rq
*rq
= cpu_rq(smp_processor_id());
846 spin_lock(&rq
->lock
);
847 __update_rq_clock(rq
);
848 spin_unlock(&rq
->lock
);
849 rq
->clock_deep_idle_events
++;
851 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
854 * We just idled delta nanoseconds (called with irqs disabled):
856 void sched_clock_idle_wakeup_event(u64 delta_ns
)
858 struct rq
*rq
= cpu_rq(smp_processor_id());
859 u64 now
= sched_clock();
861 rq
->idle_clock
+= delta_ns
;
863 * Override the previous timestamp and ignore all
864 * sched_clock() deltas that occured while we idled,
865 * and use the PM-provided delta_ns to advance the
868 spin_lock(&rq
->lock
);
869 rq
->prev_clock_raw
= now
;
870 rq
->clock
+= delta_ns
;
871 spin_unlock(&rq
->lock
);
872 touch_softlockup_watchdog();
874 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
876 static void __resched_task(struct task_struct
*p
, int tif_bit
);
878 static inline void resched_task(struct task_struct
*p
)
880 __resched_task(p
, TIF_NEED_RESCHED
);
883 #ifdef CONFIG_SCHED_HRTICK
885 * Use HR-timers to deliver accurate preemption points.
887 * Its all a bit involved since we cannot program an hrt while holding the
888 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
891 * When we get rescheduled we reprogram the hrtick_timer outside of the
894 static inline void resched_hrt(struct task_struct
*p
)
896 __resched_task(p
, TIF_HRTICK_RESCHED
);
899 static inline void resched_rq(struct rq
*rq
)
903 spin_lock_irqsave(&rq
->lock
, flags
);
904 resched_task(rq
->curr
);
905 spin_unlock_irqrestore(&rq
->lock
, flags
);
909 HRTICK_SET
, /* re-programm hrtick_timer */
910 HRTICK_RESET
, /* not a new slice */
915 * - enabled by features
916 * - hrtimer is actually high res
918 static inline int hrtick_enabled(struct rq
*rq
)
920 if (!sched_feat(HRTICK
))
922 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
926 * Called to set the hrtick timer state.
928 * called with rq->lock held and irqs disabled
930 static void hrtick_start(struct rq
*rq
, u64 delay
, int reset
)
932 assert_spin_locked(&rq
->lock
);
935 * preempt at: now + delay
938 ktime_add_ns(rq
->hrtick_timer
.base
->get_time(), delay
);
940 * indicate we need to program the timer
942 __set_bit(HRTICK_SET
, &rq
->hrtick_flags
);
944 __set_bit(HRTICK_RESET
, &rq
->hrtick_flags
);
947 * New slices are called from the schedule path and don't need a
951 resched_hrt(rq
->curr
);
954 static void hrtick_clear(struct rq
*rq
)
956 if (hrtimer_active(&rq
->hrtick_timer
))
957 hrtimer_cancel(&rq
->hrtick_timer
);
961 * Update the timer from the possible pending state.
963 static void hrtick_set(struct rq
*rq
)
969 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
971 spin_lock_irqsave(&rq
->lock
, flags
);
972 set
= __test_and_clear_bit(HRTICK_SET
, &rq
->hrtick_flags
);
973 reset
= __test_and_clear_bit(HRTICK_RESET
, &rq
->hrtick_flags
);
974 time
= rq
->hrtick_expire
;
975 clear_thread_flag(TIF_HRTICK_RESCHED
);
976 spin_unlock_irqrestore(&rq
->lock
, flags
);
979 hrtimer_start(&rq
->hrtick_timer
, time
, HRTIMER_MODE_ABS
);
980 if (reset
&& !hrtimer_active(&rq
->hrtick_timer
))
987 * High-resolution timer tick.
988 * Runs from hardirq context with interrupts disabled.
990 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
992 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
994 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
996 spin_lock(&rq
->lock
);
997 __update_rq_clock(rq
);
998 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
999 spin_unlock(&rq
->lock
);
1001 return HRTIMER_NORESTART
;
1004 static inline void init_rq_hrtick(struct rq
*rq
)
1006 rq
->hrtick_flags
= 0;
1007 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1008 rq
->hrtick_timer
.function
= hrtick
;
1009 rq
->hrtick_timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
;
1012 void hrtick_resched(void)
1015 unsigned long flags
;
1017 if (!test_thread_flag(TIF_HRTICK_RESCHED
))
1020 local_irq_save(flags
);
1021 rq
= cpu_rq(smp_processor_id());
1023 local_irq_restore(flags
);
1026 static inline void hrtick_clear(struct rq
*rq
)
1030 static inline void hrtick_set(struct rq
*rq
)
1034 static inline void init_rq_hrtick(struct rq
*rq
)
1038 void hrtick_resched(void)
1044 * resched_task - mark a task 'to be rescheduled now'.
1046 * On UP this means the setting of the need_resched flag, on SMP it
1047 * might also involve a cross-CPU call to trigger the scheduler on
1052 #ifndef tsk_is_polling
1053 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1056 static void __resched_task(struct task_struct
*p
, int tif_bit
)
1060 assert_spin_locked(&task_rq(p
)->lock
);
1062 if (unlikely(test_tsk_thread_flag(p
, tif_bit
)))
1065 set_tsk_thread_flag(p
, tif_bit
);
1068 if (cpu
== smp_processor_id())
1071 /* NEED_RESCHED must be visible before we test polling */
1073 if (!tsk_is_polling(p
))
1074 smp_send_reschedule(cpu
);
1077 static void resched_cpu(int cpu
)
1079 struct rq
*rq
= cpu_rq(cpu
);
1080 unsigned long flags
;
1082 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1084 resched_task(cpu_curr(cpu
));
1085 spin_unlock_irqrestore(&rq
->lock
, flags
);
1088 static void __resched_task(struct task_struct
*p
, int tif_bit
)
1090 assert_spin_locked(&task_rq(p
)->lock
);
1091 set_tsk_thread_flag(p
, tif_bit
);
1095 #if BITS_PER_LONG == 32
1096 # define WMULT_CONST (~0UL)
1098 # define WMULT_CONST (1UL << 32)
1101 #define WMULT_SHIFT 32
1104 * Shift right and round:
1106 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1108 static unsigned long
1109 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1110 struct load_weight
*lw
)
1114 if (unlikely(!lw
->inv_weight
))
1115 lw
->inv_weight
= (WMULT_CONST
- lw
->weight
/2) / lw
->weight
+ 1;
1117 tmp
= (u64
)delta_exec
* weight
;
1119 * Check whether we'd overflow the 64-bit multiplication:
1121 if (unlikely(tmp
> WMULT_CONST
))
1122 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1125 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1127 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1130 static inline unsigned long
1131 calc_delta_fair(unsigned long delta_exec
, struct load_weight
*lw
)
1133 return calc_delta_mine(delta_exec
, NICE_0_LOAD
, lw
);
1136 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1141 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1147 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1148 * of tasks with abnormal "nice" values across CPUs the contribution that
1149 * each task makes to its run queue's load is weighted according to its
1150 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1151 * scaled version of the new time slice allocation that they receive on time
1155 #define WEIGHT_IDLEPRIO 2
1156 #define WMULT_IDLEPRIO (1 << 31)
1159 * Nice levels are multiplicative, with a gentle 10% change for every
1160 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1161 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1162 * that remained on nice 0.
1164 * The "10% effect" is relative and cumulative: from _any_ nice level,
1165 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1166 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1167 * If a task goes up by ~10% and another task goes down by ~10% then
1168 * the relative distance between them is ~25%.)
1170 static const int prio_to_weight
[40] = {
1171 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1172 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1173 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1174 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1175 /* 0 */ 1024, 820, 655, 526, 423,
1176 /* 5 */ 335, 272, 215, 172, 137,
1177 /* 10 */ 110, 87, 70, 56, 45,
1178 /* 15 */ 36, 29, 23, 18, 15,
1182 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1184 * In cases where the weight does not change often, we can use the
1185 * precalculated inverse to speed up arithmetics by turning divisions
1186 * into multiplications:
1188 static const u32 prio_to_wmult
[40] = {
1189 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1190 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1191 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1192 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1193 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1194 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1195 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1196 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1199 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1202 * runqueue iterator, to support SMP load-balancing between different
1203 * scheduling classes, without having to expose their internal data
1204 * structures to the load-balancing proper:
1206 struct rq_iterator
{
1208 struct task_struct
*(*start
)(void *);
1209 struct task_struct
*(*next
)(void *);
1213 static unsigned long
1214 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1215 unsigned long max_load_move
, struct sched_domain
*sd
,
1216 enum cpu_idle_type idle
, int *all_pinned
,
1217 int *this_best_prio
, struct rq_iterator
*iterator
);
1220 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1221 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1222 struct rq_iterator
*iterator
);
1225 #ifdef CONFIG_CGROUP_CPUACCT
1226 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1228 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1231 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1233 update_load_add(&rq
->load
, load
);
1236 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1238 update_load_sub(&rq
->load
, load
);
1242 static unsigned long source_load(int cpu
, int type
);
1243 static unsigned long target_load(int cpu
, int type
);
1244 static unsigned long cpu_avg_load_per_task(int cpu
);
1245 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1246 #endif /* CONFIG_SMP */
1248 #include "sched_stats.h"
1249 #include "sched_idletask.c"
1250 #include "sched_fair.c"
1251 #include "sched_rt.c"
1252 #ifdef CONFIG_SCHED_DEBUG
1253 # include "sched_debug.c"
1256 #define sched_class_highest (&rt_sched_class)
1258 static void inc_nr_running(struct rq
*rq
)
1263 static void dec_nr_running(struct rq
*rq
)
1268 static void set_load_weight(struct task_struct
*p
)
1270 if (task_has_rt_policy(p
)) {
1271 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1272 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1277 * SCHED_IDLE tasks get minimal weight:
1279 if (p
->policy
== SCHED_IDLE
) {
1280 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1281 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1285 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1286 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1289 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1291 sched_info_queued(p
);
1292 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1296 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1298 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1303 * __normal_prio - return the priority that is based on the static prio
1305 static inline int __normal_prio(struct task_struct
*p
)
1307 return p
->static_prio
;
1311 * Calculate the expected normal priority: i.e. priority
1312 * without taking RT-inheritance into account. Might be
1313 * boosted by interactivity modifiers. Changes upon fork,
1314 * setprio syscalls, and whenever the interactivity
1315 * estimator recalculates.
1317 static inline int normal_prio(struct task_struct
*p
)
1321 if (task_has_rt_policy(p
))
1322 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1324 prio
= __normal_prio(p
);
1329 * Calculate the current priority, i.e. the priority
1330 * taken into account by the scheduler. This value might
1331 * be boosted by RT tasks, or might be boosted by
1332 * interactivity modifiers. Will be RT if the task got
1333 * RT-boosted. If not then it returns p->normal_prio.
1335 static int effective_prio(struct task_struct
*p
)
1337 p
->normal_prio
= normal_prio(p
);
1339 * If we are RT tasks or we were boosted to RT priority,
1340 * keep the priority unchanged. Otherwise, update priority
1341 * to the normal priority:
1343 if (!rt_prio(p
->prio
))
1344 return p
->normal_prio
;
1349 * activate_task - move a task to the runqueue.
1351 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1353 if (task_contributes_to_load(p
))
1354 rq
->nr_uninterruptible
--;
1356 enqueue_task(rq
, p
, wakeup
);
1361 * deactivate_task - remove a task from the runqueue.
1363 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1365 if (task_contributes_to_load(p
))
1366 rq
->nr_uninterruptible
++;
1368 dequeue_task(rq
, p
, sleep
);
1373 * task_curr - is this task currently executing on a CPU?
1374 * @p: the task in question.
1376 inline int task_curr(const struct task_struct
*p
)
1378 return cpu_curr(task_cpu(p
)) == p
;
1381 /* Used instead of source_load when we know the type == 0 */
1382 unsigned long weighted_cpuload(const int cpu
)
1384 return cpu_rq(cpu
)->load
.weight
;
1387 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1389 set_task_rq(p
, cpu
);
1392 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1393 * successfuly executed on another CPU. We must ensure that updates of
1394 * per-task data have been completed by this moment.
1397 task_thread_info(p
)->cpu
= cpu
;
1401 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1402 const struct sched_class
*prev_class
,
1403 int oldprio
, int running
)
1405 if (prev_class
!= p
->sched_class
) {
1406 if (prev_class
->switched_from
)
1407 prev_class
->switched_from(rq
, p
, running
);
1408 p
->sched_class
->switched_to(rq
, p
, running
);
1410 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1416 * Is this task likely cache-hot:
1419 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1423 if (p
->sched_class
!= &fair_sched_class
)
1426 if (sysctl_sched_migration_cost
== -1)
1428 if (sysctl_sched_migration_cost
== 0)
1431 delta
= now
- p
->se
.exec_start
;
1433 return delta
< (s64
)sysctl_sched_migration_cost
;
1437 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1439 int old_cpu
= task_cpu(p
);
1440 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1441 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1442 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1445 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1447 #ifdef CONFIG_SCHEDSTATS
1448 if (p
->se
.wait_start
)
1449 p
->se
.wait_start
-= clock_offset
;
1450 if (p
->se
.sleep_start
)
1451 p
->se
.sleep_start
-= clock_offset
;
1452 if (p
->se
.block_start
)
1453 p
->se
.block_start
-= clock_offset
;
1454 if (old_cpu
!= new_cpu
) {
1455 schedstat_inc(p
, se
.nr_migrations
);
1456 if (task_hot(p
, old_rq
->clock
, NULL
))
1457 schedstat_inc(p
, se
.nr_forced2_migrations
);
1460 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1461 new_cfsrq
->min_vruntime
;
1463 __set_task_cpu(p
, new_cpu
);
1466 struct migration_req
{
1467 struct list_head list
;
1469 struct task_struct
*task
;
1472 struct completion done
;
1476 * The task's runqueue lock must be held.
1477 * Returns true if you have to wait for migration thread.
1480 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1482 struct rq
*rq
= task_rq(p
);
1485 * If the task is not on a runqueue (and not running), then
1486 * it is sufficient to simply update the task's cpu field.
1488 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1489 set_task_cpu(p
, dest_cpu
);
1493 init_completion(&req
->done
);
1495 req
->dest_cpu
= dest_cpu
;
1496 list_add(&req
->list
, &rq
->migration_queue
);
1502 * wait_task_inactive - wait for a thread to unschedule.
1504 * The caller must ensure that the task *will* unschedule sometime soon,
1505 * else this function might spin for a *long* time. This function can't
1506 * be called with interrupts off, or it may introduce deadlock with
1507 * smp_call_function() if an IPI is sent by the same process we are
1508 * waiting to become inactive.
1510 void wait_task_inactive(struct task_struct
*p
)
1512 unsigned long flags
;
1518 * We do the initial early heuristics without holding
1519 * any task-queue locks at all. We'll only try to get
1520 * the runqueue lock when things look like they will
1526 * If the task is actively running on another CPU
1527 * still, just relax and busy-wait without holding
1530 * NOTE! Since we don't hold any locks, it's not
1531 * even sure that "rq" stays as the right runqueue!
1532 * But we don't care, since "task_running()" will
1533 * return false if the runqueue has changed and p
1534 * is actually now running somewhere else!
1536 while (task_running(rq
, p
))
1540 * Ok, time to look more closely! We need the rq
1541 * lock now, to be *sure*. If we're wrong, we'll
1542 * just go back and repeat.
1544 rq
= task_rq_lock(p
, &flags
);
1545 running
= task_running(rq
, p
);
1546 on_rq
= p
->se
.on_rq
;
1547 task_rq_unlock(rq
, &flags
);
1550 * Was it really running after all now that we
1551 * checked with the proper locks actually held?
1553 * Oops. Go back and try again..
1555 if (unlikely(running
)) {
1561 * It's not enough that it's not actively running,
1562 * it must be off the runqueue _entirely_, and not
1565 * So if it wa still runnable (but just not actively
1566 * running right now), it's preempted, and we should
1567 * yield - it could be a while.
1569 if (unlikely(on_rq
)) {
1570 schedule_timeout_uninterruptible(1);
1575 * Ahh, all good. It wasn't running, and it wasn't
1576 * runnable, which means that it will never become
1577 * running in the future either. We're all done!
1584 * kick_process - kick a running thread to enter/exit the kernel
1585 * @p: the to-be-kicked thread
1587 * Cause a process which is running on another CPU to enter
1588 * kernel-mode, without any delay. (to get signals handled.)
1590 * NOTE: this function doesnt have to take the runqueue lock,
1591 * because all it wants to ensure is that the remote task enters
1592 * the kernel. If the IPI races and the task has been migrated
1593 * to another CPU then no harm is done and the purpose has been
1596 void kick_process(struct task_struct
*p
)
1602 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1603 smp_send_reschedule(cpu
);
1608 * Return a low guess at the load of a migration-source cpu weighted
1609 * according to the scheduling class and "nice" value.
1611 * We want to under-estimate the load of migration sources, to
1612 * balance conservatively.
1614 static unsigned long source_load(int cpu
, int type
)
1616 struct rq
*rq
= cpu_rq(cpu
);
1617 unsigned long total
= weighted_cpuload(cpu
);
1622 return min(rq
->cpu_load
[type
-1], total
);
1626 * Return a high guess at the load of a migration-target cpu weighted
1627 * according to the scheduling class and "nice" value.
1629 static unsigned long target_load(int cpu
, int type
)
1631 struct rq
*rq
= cpu_rq(cpu
);
1632 unsigned long total
= weighted_cpuload(cpu
);
1637 return max(rq
->cpu_load
[type
-1], total
);
1641 * Return the average load per task on the cpu's run queue
1643 static unsigned long cpu_avg_load_per_task(int cpu
)
1645 struct rq
*rq
= cpu_rq(cpu
);
1646 unsigned long total
= weighted_cpuload(cpu
);
1647 unsigned long n
= rq
->nr_running
;
1649 return n
? total
/ n
: SCHED_LOAD_SCALE
;
1653 * find_idlest_group finds and returns the least busy CPU group within the
1656 static struct sched_group
*
1657 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1659 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1660 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1661 int load_idx
= sd
->forkexec_idx
;
1662 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1665 unsigned long load
, avg_load
;
1669 /* Skip over this group if it has no CPUs allowed */
1670 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1673 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1675 /* Tally up the load of all CPUs in the group */
1678 for_each_cpu_mask(i
, group
->cpumask
) {
1679 /* Bias balancing toward cpus of our domain */
1681 load
= source_load(i
, load_idx
);
1683 load
= target_load(i
, load_idx
);
1688 /* Adjust by relative CPU power of the group */
1689 avg_load
= sg_div_cpu_power(group
,
1690 avg_load
* SCHED_LOAD_SCALE
);
1693 this_load
= avg_load
;
1695 } else if (avg_load
< min_load
) {
1696 min_load
= avg_load
;
1699 } while (group
= group
->next
, group
!= sd
->groups
);
1701 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1707 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1710 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1713 unsigned long load
, min_load
= ULONG_MAX
;
1717 /* Traverse only the allowed CPUs */
1718 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1720 for_each_cpu_mask(i
, tmp
) {
1721 load
= weighted_cpuload(i
);
1723 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1733 * sched_balance_self: balance the current task (running on cpu) in domains
1734 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1737 * Balance, ie. select the least loaded group.
1739 * Returns the target CPU number, or the same CPU if no balancing is needed.
1741 * preempt must be disabled.
1743 static int sched_balance_self(int cpu
, int flag
)
1745 struct task_struct
*t
= current
;
1746 struct sched_domain
*tmp
, *sd
= NULL
;
1748 for_each_domain(cpu
, tmp
) {
1750 * If power savings logic is enabled for a domain, stop there.
1752 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1754 if (tmp
->flags
& flag
)
1760 struct sched_group
*group
;
1761 int new_cpu
, weight
;
1763 if (!(sd
->flags
& flag
)) {
1769 group
= find_idlest_group(sd
, t
, cpu
);
1775 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1776 if (new_cpu
== -1 || new_cpu
== cpu
) {
1777 /* Now try balancing at a lower domain level of cpu */
1782 /* Now try balancing at a lower domain level of new_cpu */
1785 weight
= cpus_weight(span
);
1786 for_each_domain(cpu
, tmp
) {
1787 if (weight
<= cpus_weight(tmp
->span
))
1789 if (tmp
->flags
& flag
)
1792 /* while loop will break here if sd == NULL */
1798 #endif /* CONFIG_SMP */
1801 * try_to_wake_up - wake up a thread
1802 * @p: the to-be-woken-up thread
1803 * @state: the mask of task states that can be woken
1804 * @sync: do a synchronous wakeup?
1806 * Put it on the run-queue if it's not already there. The "current"
1807 * thread is always on the run-queue (except when the actual
1808 * re-schedule is in progress), and as such you're allowed to do
1809 * the simpler "current->state = TASK_RUNNING" to mark yourself
1810 * runnable without the overhead of this.
1812 * returns failure only if the task is already active.
1814 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
1816 int cpu
, orig_cpu
, this_cpu
, success
= 0;
1817 unsigned long flags
;
1821 rq
= task_rq_lock(p
, &flags
);
1822 old_state
= p
->state
;
1823 if (!(old_state
& state
))
1831 this_cpu
= smp_processor_id();
1834 if (unlikely(task_running(rq
, p
)))
1837 cpu
= p
->sched_class
->select_task_rq(p
, sync
);
1838 if (cpu
!= orig_cpu
) {
1839 set_task_cpu(p
, cpu
);
1840 task_rq_unlock(rq
, &flags
);
1841 /* might preempt at this point */
1842 rq
= task_rq_lock(p
, &flags
);
1843 old_state
= p
->state
;
1844 if (!(old_state
& state
))
1849 this_cpu
= smp_processor_id();
1853 #ifdef CONFIG_SCHEDSTATS
1854 schedstat_inc(rq
, ttwu_count
);
1855 if (cpu
== this_cpu
)
1856 schedstat_inc(rq
, ttwu_local
);
1858 struct sched_domain
*sd
;
1859 for_each_domain(this_cpu
, sd
) {
1860 if (cpu_isset(cpu
, sd
->span
)) {
1861 schedstat_inc(sd
, ttwu_wake_remote
);
1869 #endif /* CONFIG_SMP */
1870 schedstat_inc(p
, se
.nr_wakeups
);
1872 schedstat_inc(p
, se
.nr_wakeups_sync
);
1873 if (orig_cpu
!= cpu
)
1874 schedstat_inc(p
, se
.nr_wakeups_migrate
);
1875 if (cpu
== this_cpu
)
1876 schedstat_inc(p
, se
.nr_wakeups_local
);
1878 schedstat_inc(p
, se
.nr_wakeups_remote
);
1879 update_rq_clock(rq
);
1880 activate_task(rq
, p
, 1);
1881 check_preempt_curr(rq
, p
);
1885 p
->state
= TASK_RUNNING
;
1887 if (p
->sched_class
->task_wake_up
)
1888 p
->sched_class
->task_wake_up(rq
, p
);
1891 task_rq_unlock(rq
, &flags
);
1896 int fastcall
wake_up_process(struct task_struct
*p
)
1898 return try_to_wake_up(p
, TASK_ALL
, 0);
1900 EXPORT_SYMBOL(wake_up_process
);
1902 int fastcall
wake_up_state(struct task_struct
*p
, unsigned int state
)
1904 return try_to_wake_up(p
, state
, 0);
1908 * Perform scheduler related setup for a newly forked process p.
1909 * p is forked by current.
1911 * __sched_fork() is basic setup used by init_idle() too:
1913 static void __sched_fork(struct task_struct
*p
)
1915 p
->se
.exec_start
= 0;
1916 p
->se
.sum_exec_runtime
= 0;
1917 p
->se
.prev_sum_exec_runtime
= 0;
1919 #ifdef CONFIG_SCHEDSTATS
1920 p
->se
.wait_start
= 0;
1921 p
->se
.sum_sleep_runtime
= 0;
1922 p
->se
.sleep_start
= 0;
1923 p
->se
.block_start
= 0;
1924 p
->se
.sleep_max
= 0;
1925 p
->se
.block_max
= 0;
1927 p
->se
.slice_max
= 0;
1931 INIT_LIST_HEAD(&p
->rt
.run_list
);
1934 #ifdef CONFIG_PREEMPT_NOTIFIERS
1935 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1939 * We mark the process as running here, but have not actually
1940 * inserted it onto the runqueue yet. This guarantees that
1941 * nobody will actually run it, and a signal or other external
1942 * event cannot wake it up and insert it on the runqueue either.
1944 p
->state
= TASK_RUNNING
;
1948 * fork()/clone()-time setup:
1950 void sched_fork(struct task_struct
*p
, int clone_flags
)
1952 int cpu
= get_cpu();
1957 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1959 set_task_cpu(p
, cpu
);
1962 * Make sure we do not leak PI boosting priority to the child:
1964 p
->prio
= current
->normal_prio
;
1965 if (!rt_prio(p
->prio
))
1966 p
->sched_class
= &fair_sched_class
;
1968 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1969 if (likely(sched_info_on()))
1970 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1972 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1975 #ifdef CONFIG_PREEMPT
1976 /* Want to start with kernel preemption disabled. */
1977 task_thread_info(p
)->preempt_count
= 1;
1983 * wake_up_new_task - wake up a newly created task for the first time.
1985 * This function will do some initial scheduler statistics housekeeping
1986 * that must be done for every newly created context, then puts the task
1987 * on the runqueue and wakes it.
1989 void fastcall
wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
1991 unsigned long flags
;
1994 rq
= task_rq_lock(p
, &flags
);
1995 BUG_ON(p
->state
!= TASK_RUNNING
);
1996 update_rq_clock(rq
);
1998 p
->prio
= effective_prio(p
);
2000 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2001 activate_task(rq
, p
, 0);
2004 * Let the scheduling class do new task startup
2005 * management (if any):
2007 p
->sched_class
->task_new(rq
, p
);
2010 check_preempt_curr(rq
, p
);
2012 if (p
->sched_class
->task_wake_up
)
2013 p
->sched_class
->task_wake_up(rq
, p
);
2015 task_rq_unlock(rq
, &flags
);
2018 #ifdef CONFIG_PREEMPT_NOTIFIERS
2021 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2022 * @notifier: notifier struct to register
2024 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2026 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2028 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2031 * preempt_notifier_unregister - no longer interested in preemption notifications
2032 * @notifier: notifier struct to unregister
2034 * This is safe to call from within a preemption notifier.
2036 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2038 hlist_del(¬ifier
->link
);
2040 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2042 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2044 struct preempt_notifier
*notifier
;
2045 struct hlist_node
*node
;
2047 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2048 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2052 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2053 struct task_struct
*next
)
2055 struct preempt_notifier
*notifier
;
2056 struct hlist_node
*node
;
2058 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2059 notifier
->ops
->sched_out(notifier
, next
);
2064 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2069 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2070 struct task_struct
*next
)
2077 * prepare_task_switch - prepare to switch tasks
2078 * @rq: the runqueue preparing to switch
2079 * @prev: the current task that is being switched out
2080 * @next: the task we are going to switch to.
2082 * This is called with the rq lock held and interrupts off. It must
2083 * be paired with a subsequent finish_task_switch after the context
2086 * prepare_task_switch sets up locking and calls architecture specific
2090 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2091 struct task_struct
*next
)
2093 fire_sched_out_preempt_notifiers(prev
, next
);
2094 prepare_lock_switch(rq
, next
);
2095 prepare_arch_switch(next
);
2099 * finish_task_switch - clean up after a task-switch
2100 * @rq: runqueue associated with task-switch
2101 * @prev: the thread we just switched away from.
2103 * finish_task_switch must be called after the context switch, paired
2104 * with a prepare_task_switch call before the context switch.
2105 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2106 * and do any other architecture-specific cleanup actions.
2108 * Note that we may have delayed dropping an mm in context_switch(). If
2109 * so, we finish that here outside of the runqueue lock. (Doing it
2110 * with the lock held can cause deadlocks; see schedule() for
2113 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2114 __releases(rq
->lock
)
2116 struct mm_struct
*mm
= rq
->prev_mm
;
2122 * A task struct has one reference for the use as "current".
2123 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2124 * schedule one last time. The schedule call will never return, and
2125 * the scheduled task must drop that reference.
2126 * The test for TASK_DEAD must occur while the runqueue locks are
2127 * still held, otherwise prev could be scheduled on another cpu, die
2128 * there before we look at prev->state, and then the reference would
2130 * Manfred Spraul <manfred@colorfullife.com>
2132 prev_state
= prev
->state
;
2133 finish_arch_switch(prev
);
2134 finish_lock_switch(rq
, prev
);
2136 if (current
->sched_class
->post_schedule
)
2137 current
->sched_class
->post_schedule(rq
);
2140 fire_sched_in_preempt_notifiers(current
);
2143 if (unlikely(prev_state
== TASK_DEAD
)) {
2145 * Remove function-return probe instances associated with this
2146 * task and put them back on the free list.
2148 kprobe_flush_task(prev
);
2149 put_task_struct(prev
);
2154 * schedule_tail - first thing a freshly forked thread must call.
2155 * @prev: the thread we just switched away from.
2157 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2158 __releases(rq
->lock
)
2160 struct rq
*rq
= this_rq();
2162 finish_task_switch(rq
, prev
);
2163 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2164 /* In this case, finish_task_switch does not reenable preemption */
2167 if (current
->set_child_tid
)
2168 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2172 * context_switch - switch to the new MM and the new
2173 * thread's register state.
2176 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2177 struct task_struct
*next
)
2179 struct mm_struct
*mm
, *oldmm
;
2181 prepare_task_switch(rq
, prev
, next
);
2183 oldmm
= prev
->active_mm
;
2185 * For paravirt, this is coupled with an exit in switch_to to
2186 * combine the page table reload and the switch backend into
2189 arch_enter_lazy_cpu_mode();
2191 if (unlikely(!mm
)) {
2192 next
->active_mm
= oldmm
;
2193 atomic_inc(&oldmm
->mm_count
);
2194 enter_lazy_tlb(oldmm
, next
);
2196 switch_mm(oldmm
, mm
, next
);
2198 if (unlikely(!prev
->mm
)) {
2199 prev
->active_mm
= NULL
;
2200 rq
->prev_mm
= oldmm
;
2203 * Since the runqueue lock will be released by the next
2204 * task (which is an invalid locking op but in the case
2205 * of the scheduler it's an obvious special-case), so we
2206 * do an early lockdep release here:
2208 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2209 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2212 /* Here we just switch the register state and the stack. */
2213 switch_to(prev
, next
, prev
);
2217 * this_rq must be evaluated again because prev may have moved
2218 * CPUs since it called schedule(), thus the 'rq' on its stack
2219 * frame will be invalid.
2221 finish_task_switch(this_rq(), prev
);
2225 * nr_running, nr_uninterruptible and nr_context_switches:
2227 * externally visible scheduler statistics: current number of runnable
2228 * threads, current number of uninterruptible-sleeping threads, total
2229 * number of context switches performed since bootup.
2231 unsigned long nr_running(void)
2233 unsigned long i
, sum
= 0;
2235 for_each_online_cpu(i
)
2236 sum
+= cpu_rq(i
)->nr_running
;
2241 unsigned long nr_uninterruptible(void)
2243 unsigned long i
, sum
= 0;
2245 for_each_possible_cpu(i
)
2246 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2249 * Since we read the counters lockless, it might be slightly
2250 * inaccurate. Do not allow it to go below zero though:
2252 if (unlikely((long)sum
< 0))
2258 unsigned long long nr_context_switches(void)
2261 unsigned long long sum
= 0;
2263 for_each_possible_cpu(i
)
2264 sum
+= cpu_rq(i
)->nr_switches
;
2269 unsigned long nr_iowait(void)
2271 unsigned long i
, sum
= 0;
2273 for_each_possible_cpu(i
)
2274 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2279 unsigned long nr_active(void)
2281 unsigned long i
, running
= 0, uninterruptible
= 0;
2283 for_each_online_cpu(i
) {
2284 running
+= cpu_rq(i
)->nr_running
;
2285 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2288 if (unlikely((long)uninterruptible
< 0))
2289 uninterruptible
= 0;
2291 return running
+ uninterruptible
;
2295 * Update rq->cpu_load[] statistics. This function is usually called every
2296 * scheduler tick (TICK_NSEC).
2298 static void update_cpu_load(struct rq
*this_rq
)
2300 unsigned long this_load
= this_rq
->load
.weight
;
2303 this_rq
->nr_load_updates
++;
2305 /* Update our load: */
2306 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2307 unsigned long old_load
, new_load
;
2309 /* scale is effectively 1 << i now, and >> i divides by scale */
2311 old_load
= this_rq
->cpu_load
[i
];
2312 new_load
= this_load
;
2314 * Round up the averaging division if load is increasing. This
2315 * prevents us from getting stuck on 9 if the load is 10, for
2318 if (new_load
> old_load
)
2319 new_load
+= scale
-1;
2320 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2327 * double_rq_lock - safely lock two runqueues
2329 * Note this does not disable interrupts like task_rq_lock,
2330 * you need to do so manually before calling.
2332 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2333 __acquires(rq1
->lock
)
2334 __acquires(rq2
->lock
)
2336 BUG_ON(!irqs_disabled());
2338 spin_lock(&rq1
->lock
);
2339 __acquire(rq2
->lock
); /* Fake it out ;) */
2342 spin_lock(&rq1
->lock
);
2343 spin_lock(&rq2
->lock
);
2345 spin_lock(&rq2
->lock
);
2346 spin_lock(&rq1
->lock
);
2349 update_rq_clock(rq1
);
2350 update_rq_clock(rq2
);
2354 * double_rq_unlock - safely unlock two runqueues
2356 * Note this does not restore interrupts like task_rq_unlock,
2357 * you need to do so manually after calling.
2359 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2360 __releases(rq1
->lock
)
2361 __releases(rq2
->lock
)
2363 spin_unlock(&rq1
->lock
);
2365 spin_unlock(&rq2
->lock
);
2367 __release(rq2
->lock
);
2371 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2373 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2374 __releases(this_rq
->lock
)
2375 __acquires(busiest
->lock
)
2376 __acquires(this_rq
->lock
)
2380 if (unlikely(!irqs_disabled())) {
2381 /* printk() doesn't work good under rq->lock */
2382 spin_unlock(&this_rq
->lock
);
2385 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2386 if (busiest
< this_rq
) {
2387 spin_unlock(&this_rq
->lock
);
2388 spin_lock(&busiest
->lock
);
2389 spin_lock(&this_rq
->lock
);
2392 spin_lock(&busiest
->lock
);
2398 * If dest_cpu is allowed for this process, migrate the task to it.
2399 * This is accomplished by forcing the cpu_allowed mask to only
2400 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2401 * the cpu_allowed mask is restored.
2403 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2405 struct migration_req req
;
2406 unsigned long flags
;
2409 rq
= task_rq_lock(p
, &flags
);
2410 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2411 || unlikely(cpu_is_offline(dest_cpu
)))
2414 /* force the process onto the specified CPU */
2415 if (migrate_task(p
, dest_cpu
, &req
)) {
2416 /* Need to wait for migration thread (might exit: take ref). */
2417 struct task_struct
*mt
= rq
->migration_thread
;
2419 get_task_struct(mt
);
2420 task_rq_unlock(rq
, &flags
);
2421 wake_up_process(mt
);
2422 put_task_struct(mt
);
2423 wait_for_completion(&req
.done
);
2428 task_rq_unlock(rq
, &flags
);
2432 * sched_exec - execve() is a valuable balancing opportunity, because at
2433 * this point the task has the smallest effective memory and cache footprint.
2435 void sched_exec(void)
2437 int new_cpu
, this_cpu
= get_cpu();
2438 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2440 if (new_cpu
!= this_cpu
)
2441 sched_migrate_task(current
, new_cpu
);
2445 * pull_task - move a task from a remote runqueue to the local runqueue.
2446 * Both runqueues must be locked.
2448 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2449 struct rq
*this_rq
, int this_cpu
)
2451 deactivate_task(src_rq
, p
, 0);
2452 set_task_cpu(p
, this_cpu
);
2453 activate_task(this_rq
, p
, 0);
2455 * Note that idle threads have a prio of MAX_PRIO, for this test
2456 * to be always true for them.
2458 check_preempt_curr(this_rq
, p
);
2462 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2465 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2466 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2470 * We do not migrate tasks that are:
2471 * 1) running (obviously), or
2472 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2473 * 3) are cache-hot on their current CPU.
2475 if (!cpu_isset(this_cpu
, p
->cpus_allowed
)) {
2476 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
2481 if (task_running(rq
, p
)) {
2482 schedstat_inc(p
, se
.nr_failed_migrations_running
);
2487 * Aggressive migration if:
2488 * 1) task is cache cold, or
2489 * 2) too many balance attempts have failed.
2492 if (!task_hot(p
, rq
->clock
, sd
) ||
2493 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2494 #ifdef CONFIG_SCHEDSTATS
2495 if (task_hot(p
, rq
->clock
, sd
)) {
2496 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2497 schedstat_inc(p
, se
.nr_forced_migrations
);
2503 if (task_hot(p
, rq
->clock
, sd
)) {
2504 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
2510 static unsigned long
2511 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2512 unsigned long max_load_move
, struct sched_domain
*sd
,
2513 enum cpu_idle_type idle
, int *all_pinned
,
2514 int *this_best_prio
, struct rq_iterator
*iterator
)
2516 int loops
= 0, pulled
= 0, pinned
= 0, skip_for_load
;
2517 struct task_struct
*p
;
2518 long rem_load_move
= max_load_move
;
2520 if (max_load_move
== 0)
2526 * Start the load-balancing iterator:
2528 p
= iterator
->start(iterator
->arg
);
2530 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
2533 * To help distribute high priority tasks across CPUs we don't
2534 * skip a task if it will be the highest priority task (i.e. smallest
2535 * prio value) on its new queue regardless of its load weight
2537 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
2538 SCHED_LOAD_SCALE_FUZZ
;
2539 if ((skip_for_load
&& p
->prio
>= *this_best_prio
) ||
2540 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2541 p
= iterator
->next(iterator
->arg
);
2545 pull_task(busiest
, p
, this_rq
, this_cpu
);
2547 rem_load_move
-= p
->se
.load
.weight
;
2550 * We only want to steal up to the prescribed amount of weighted load.
2552 if (rem_load_move
> 0) {
2553 if (p
->prio
< *this_best_prio
)
2554 *this_best_prio
= p
->prio
;
2555 p
= iterator
->next(iterator
->arg
);
2560 * Right now, this is one of only two places pull_task() is called,
2561 * so we can safely collect pull_task() stats here rather than
2562 * inside pull_task().
2564 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2567 *all_pinned
= pinned
;
2569 return max_load_move
- rem_load_move
;
2573 * move_tasks tries to move up to max_load_move weighted load from busiest to
2574 * this_rq, as part of a balancing operation within domain "sd".
2575 * Returns 1 if successful and 0 otherwise.
2577 * Called with both runqueues locked.
2579 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2580 unsigned long max_load_move
,
2581 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2584 const struct sched_class
*class = sched_class_highest
;
2585 unsigned long total_load_moved
= 0;
2586 int this_best_prio
= this_rq
->curr
->prio
;
2590 class->load_balance(this_rq
, this_cpu
, busiest
,
2591 max_load_move
- total_load_moved
,
2592 sd
, idle
, all_pinned
, &this_best_prio
);
2593 class = class->next
;
2594 } while (class && max_load_move
> total_load_moved
);
2596 return total_load_moved
> 0;
2600 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2601 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2602 struct rq_iterator
*iterator
)
2604 struct task_struct
*p
= iterator
->start(iterator
->arg
);
2608 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2609 pull_task(busiest
, p
, this_rq
, this_cpu
);
2611 * Right now, this is only the second place pull_task()
2612 * is called, so we can safely collect pull_task()
2613 * stats here rather than inside pull_task().
2615 schedstat_inc(sd
, lb_gained
[idle
]);
2619 p
= iterator
->next(iterator
->arg
);
2626 * move_one_task tries to move exactly one task from busiest to this_rq, as
2627 * part of active balancing operations within "domain".
2628 * Returns 1 if successful and 0 otherwise.
2630 * Called with both runqueues locked.
2632 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2633 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2635 const struct sched_class
*class;
2637 for (class = sched_class_highest
; class; class = class->next
)
2638 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
2645 * find_busiest_group finds and returns the busiest CPU group within the
2646 * domain. It calculates and returns the amount of weighted load which
2647 * should be moved to restore balance via the imbalance parameter.
2649 static struct sched_group
*
2650 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2651 unsigned long *imbalance
, enum cpu_idle_type idle
,
2652 int *sd_idle
, cpumask_t
*cpus
, int *balance
)
2654 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2655 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2656 unsigned long max_pull
;
2657 unsigned long busiest_load_per_task
, busiest_nr_running
;
2658 unsigned long this_load_per_task
, this_nr_running
;
2659 int load_idx
, group_imb
= 0;
2660 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2661 int power_savings_balance
= 1;
2662 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
2663 unsigned long min_nr_running
= ULONG_MAX
;
2664 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
2667 max_load
= this_load
= total_load
= total_pwr
= 0;
2668 busiest_load_per_task
= busiest_nr_running
= 0;
2669 this_load_per_task
= this_nr_running
= 0;
2670 if (idle
== CPU_NOT_IDLE
)
2671 load_idx
= sd
->busy_idx
;
2672 else if (idle
== CPU_NEWLY_IDLE
)
2673 load_idx
= sd
->newidle_idx
;
2675 load_idx
= sd
->idle_idx
;
2678 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
2681 int __group_imb
= 0;
2682 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2683 unsigned long sum_nr_running
, sum_weighted_load
;
2685 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2688 balance_cpu
= first_cpu(group
->cpumask
);
2690 /* Tally up the load of all CPUs in the group */
2691 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
2693 min_cpu_load
= ~0UL;
2695 for_each_cpu_mask(i
, group
->cpumask
) {
2698 if (!cpu_isset(i
, *cpus
))
2703 if (*sd_idle
&& rq
->nr_running
)
2706 /* Bias balancing toward cpus of our domain */
2708 if (idle_cpu(i
) && !first_idle_cpu
) {
2713 load
= target_load(i
, load_idx
);
2715 load
= source_load(i
, load_idx
);
2716 if (load
> max_cpu_load
)
2717 max_cpu_load
= load
;
2718 if (min_cpu_load
> load
)
2719 min_cpu_load
= load
;
2723 sum_nr_running
+= rq
->nr_running
;
2724 sum_weighted_load
+= weighted_cpuload(i
);
2728 * First idle cpu or the first cpu(busiest) in this sched group
2729 * is eligible for doing load balancing at this and above
2730 * domains. In the newly idle case, we will allow all the cpu's
2731 * to do the newly idle load balance.
2733 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
2734 balance_cpu
!= this_cpu
&& balance
) {
2739 total_load
+= avg_load
;
2740 total_pwr
+= group
->__cpu_power
;
2742 /* Adjust by relative CPU power of the group */
2743 avg_load
= sg_div_cpu_power(group
,
2744 avg_load
* SCHED_LOAD_SCALE
);
2746 if ((max_cpu_load
- min_cpu_load
) > SCHED_LOAD_SCALE
)
2749 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
2752 this_load
= avg_load
;
2754 this_nr_running
= sum_nr_running
;
2755 this_load_per_task
= sum_weighted_load
;
2756 } else if (avg_load
> max_load
&&
2757 (sum_nr_running
> group_capacity
|| __group_imb
)) {
2758 max_load
= avg_load
;
2760 busiest_nr_running
= sum_nr_running
;
2761 busiest_load_per_task
= sum_weighted_load
;
2762 group_imb
= __group_imb
;
2765 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2767 * Busy processors will not participate in power savings
2770 if (idle
== CPU_NOT_IDLE
||
2771 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2775 * If the local group is idle or completely loaded
2776 * no need to do power savings balance at this domain
2778 if (local_group
&& (this_nr_running
>= group_capacity
||
2780 power_savings_balance
= 0;
2783 * If a group is already running at full capacity or idle,
2784 * don't include that group in power savings calculations
2786 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
2791 * Calculate the group which has the least non-idle load.
2792 * This is the group from where we need to pick up the load
2795 if ((sum_nr_running
< min_nr_running
) ||
2796 (sum_nr_running
== min_nr_running
&&
2797 first_cpu(group
->cpumask
) <
2798 first_cpu(group_min
->cpumask
))) {
2800 min_nr_running
= sum_nr_running
;
2801 min_load_per_task
= sum_weighted_load
/
2806 * Calculate the group which is almost near its
2807 * capacity but still has some space to pick up some load
2808 * from other group and save more power
2810 if (sum_nr_running
<= group_capacity
- 1) {
2811 if (sum_nr_running
> leader_nr_running
||
2812 (sum_nr_running
== leader_nr_running
&&
2813 first_cpu(group
->cpumask
) >
2814 first_cpu(group_leader
->cpumask
))) {
2815 group_leader
= group
;
2816 leader_nr_running
= sum_nr_running
;
2821 group
= group
->next
;
2822 } while (group
!= sd
->groups
);
2824 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
2827 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2829 if (this_load
>= avg_load
||
2830 100*max_load
<= sd
->imbalance_pct
*this_load
)
2833 busiest_load_per_task
/= busiest_nr_running
;
2835 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
2838 * We're trying to get all the cpus to the average_load, so we don't
2839 * want to push ourselves above the average load, nor do we wish to
2840 * reduce the max loaded cpu below the average load, as either of these
2841 * actions would just result in more rebalancing later, and ping-pong
2842 * tasks around. Thus we look for the minimum possible imbalance.
2843 * Negative imbalances (*we* are more loaded than anyone else) will
2844 * be counted as no imbalance for these purposes -- we can't fix that
2845 * by pulling tasks to us. Be careful of negative numbers as they'll
2846 * appear as very large values with unsigned longs.
2848 if (max_load
<= busiest_load_per_task
)
2852 * In the presence of smp nice balancing, certain scenarios can have
2853 * max load less than avg load(as we skip the groups at or below
2854 * its cpu_power, while calculating max_load..)
2856 if (max_load
< avg_load
) {
2858 goto small_imbalance
;
2861 /* Don't want to pull so many tasks that a group would go idle */
2862 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
2864 /* How much load to actually move to equalise the imbalance */
2865 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
2866 (avg_load
- this_load
) * this->__cpu_power
)
2870 * if *imbalance is less than the average load per runnable task
2871 * there is no gaurantee that any tasks will be moved so we'll have
2872 * a think about bumping its value to force at least one task to be
2875 if (*imbalance
< busiest_load_per_task
) {
2876 unsigned long tmp
, pwr_now
, pwr_move
;
2880 pwr_move
= pwr_now
= 0;
2882 if (this_nr_running
) {
2883 this_load_per_task
/= this_nr_running
;
2884 if (busiest_load_per_task
> this_load_per_task
)
2887 this_load_per_task
= SCHED_LOAD_SCALE
;
2889 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
2890 busiest_load_per_task
* imbn
) {
2891 *imbalance
= busiest_load_per_task
;
2896 * OK, we don't have enough imbalance to justify moving tasks,
2897 * however we may be able to increase total CPU power used by
2901 pwr_now
+= busiest
->__cpu_power
*
2902 min(busiest_load_per_task
, max_load
);
2903 pwr_now
+= this->__cpu_power
*
2904 min(this_load_per_task
, this_load
);
2905 pwr_now
/= SCHED_LOAD_SCALE
;
2907 /* Amount of load we'd subtract */
2908 tmp
= sg_div_cpu_power(busiest
,
2909 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2911 pwr_move
+= busiest
->__cpu_power
*
2912 min(busiest_load_per_task
, max_load
- tmp
);
2914 /* Amount of load we'd add */
2915 if (max_load
* busiest
->__cpu_power
<
2916 busiest_load_per_task
* SCHED_LOAD_SCALE
)
2917 tmp
= sg_div_cpu_power(this,
2918 max_load
* busiest
->__cpu_power
);
2920 tmp
= sg_div_cpu_power(this,
2921 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2922 pwr_move
+= this->__cpu_power
*
2923 min(this_load_per_task
, this_load
+ tmp
);
2924 pwr_move
/= SCHED_LOAD_SCALE
;
2926 /* Move if we gain throughput */
2927 if (pwr_move
> pwr_now
)
2928 *imbalance
= busiest_load_per_task
;
2934 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2935 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2938 if (this == group_leader
&& group_leader
!= group_min
) {
2939 *imbalance
= min_load_per_task
;
2949 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2952 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
2953 unsigned long imbalance
, cpumask_t
*cpus
)
2955 struct rq
*busiest
= NULL
, *rq
;
2956 unsigned long max_load
= 0;
2959 for_each_cpu_mask(i
, group
->cpumask
) {
2962 if (!cpu_isset(i
, *cpus
))
2966 wl
= weighted_cpuload(i
);
2968 if (rq
->nr_running
== 1 && wl
> imbalance
)
2971 if (wl
> max_load
) {
2981 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2982 * so long as it is large enough.
2984 #define MAX_PINNED_INTERVAL 512
2987 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2988 * tasks if there is an imbalance.
2990 static int load_balance(int this_cpu
, struct rq
*this_rq
,
2991 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2994 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
2995 struct sched_group
*group
;
2996 unsigned long imbalance
;
2998 cpumask_t cpus
= CPU_MASK_ALL
;
2999 unsigned long flags
;
3002 * When power savings policy is enabled for the parent domain, idle
3003 * sibling can pick up load irrespective of busy siblings. In this case,
3004 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3005 * portraying it as CPU_NOT_IDLE.
3007 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3008 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3011 schedstat_inc(sd
, lb_count
[idle
]);
3014 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
3021 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3025 busiest
= find_busiest_queue(group
, idle
, imbalance
, &cpus
);
3027 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3031 BUG_ON(busiest
== this_rq
);
3033 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3036 if (busiest
->nr_running
> 1) {
3038 * Attempt to move tasks. If find_busiest_group has found
3039 * an imbalance but busiest->nr_running <= 1, the group is
3040 * still unbalanced. ld_moved simply stays zero, so it is
3041 * correctly treated as an imbalance.
3043 local_irq_save(flags
);
3044 double_rq_lock(this_rq
, busiest
);
3045 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3046 imbalance
, sd
, idle
, &all_pinned
);
3047 double_rq_unlock(this_rq
, busiest
);
3048 local_irq_restore(flags
);
3051 * some other cpu did the load balance for us.
3053 if (ld_moved
&& this_cpu
!= smp_processor_id())
3054 resched_cpu(this_cpu
);
3056 /* All tasks on this runqueue were pinned by CPU affinity */
3057 if (unlikely(all_pinned
)) {
3058 cpu_clear(cpu_of(busiest
), cpus
);
3059 if (!cpus_empty(cpus
))
3066 schedstat_inc(sd
, lb_failed
[idle
]);
3067 sd
->nr_balance_failed
++;
3069 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
3071 spin_lock_irqsave(&busiest
->lock
, flags
);
3073 /* don't kick the migration_thread, if the curr
3074 * task on busiest cpu can't be moved to this_cpu
3076 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
3077 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3079 goto out_one_pinned
;
3082 if (!busiest
->active_balance
) {
3083 busiest
->active_balance
= 1;
3084 busiest
->push_cpu
= this_cpu
;
3087 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3089 wake_up_process(busiest
->migration_thread
);
3092 * We've kicked active balancing, reset the failure
3095 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3098 sd
->nr_balance_failed
= 0;
3100 if (likely(!active_balance
)) {
3101 /* We were unbalanced, so reset the balancing interval */
3102 sd
->balance_interval
= sd
->min_interval
;
3105 * If we've begun active balancing, start to back off. This
3106 * case may not be covered by the all_pinned logic if there
3107 * is only 1 task on the busy runqueue (because we don't call
3110 if (sd
->balance_interval
< sd
->max_interval
)
3111 sd
->balance_interval
*= 2;
3114 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3115 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3120 schedstat_inc(sd
, lb_balanced
[idle
]);
3122 sd
->nr_balance_failed
= 0;
3125 /* tune up the balancing interval */
3126 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3127 (sd
->balance_interval
< sd
->max_interval
))
3128 sd
->balance_interval
*= 2;
3130 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3131 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3137 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3138 * tasks if there is an imbalance.
3140 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3141 * this_rq is locked.
3144 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
3146 struct sched_group
*group
;
3147 struct rq
*busiest
= NULL
;
3148 unsigned long imbalance
;
3152 cpumask_t cpus
= CPU_MASK_ALL
;
3155 * When power savings policy is enabled for the parent domain, idle
3156 * sibling can pick up load irrespective of busy siblings. In this case,
3157 * let the state of idle sibling percolate up as IDLE, instead of
3158 * portraying it as CPU_NOT_IDLE.
3160 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
3161 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3164 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
3166 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
3167 &sd_idle
, &cpus
, NULL
);
3169 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
3173 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
,
3176 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
3180 BUG_ON(busiest
== this_rq
);
3182 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
3185 if (busiest
->nr_running
> 1) {
3186 /* Attempt to move tasks */
3187 double_lock_balance(this_rq
, busiest
);
3188 /* this_rq->clock is already updated */
3189 update_rq_clock(busiest
);
3190 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3191 imbalance
, sd
, CPU_NEWLY_IDLE
,
3193 spin_unlock(&busiest
->lock
);
3195 if (unlikely(all_pinned
)) {
3196 cpu_clear(cpu_of(busiest
), cpus
);
3197 if (!cpus_empty(cpus
))
3203 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
3204 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3205 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3208 sd
->nr_balance_failed
= 0;
3213 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
3214 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3215 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3217 sd
->nr_balance_failed
= 0;
3223 * idle_balance is called by schedule() if this_cpu is about to become
3224 * idle. Attempts to pull tasks from other CPUs.
3226 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3228 struct sched_domain
*sd
;
3229 int pulled_task
= -1;
3230 unsigned long next_balance
= jiffies
+ HZ
;
3232 for_each_domain(this_cpu
, sd
) {
3233 unsigned long interval
;
3235 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3238 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
3239 /* If we've pulled tasks over stop searching: */
3240 pulled_task
= load_balance_newidle(this_cpu
,
3243 interval
= msecs_to_jiffies(sd
->balance_interval
);
3244 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3245 next_balance
= sd
->last_balance
+ interval
;
3249 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3251 * We are going idle. next_balance may be set based on
3252 * a busy processor. So reset next_balance.
3254 this_rq
->next_balance
= next_balance
;
3259 * active_load_balance is run by migration threads. It pushes running tasks
3260 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3261 * running on each physical CPU where possible, and avoids physical /
3262 * logical imbalances.
3264 * Called with busiest_rq locked.
3266 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3268 int target_cpu
= busiest_rq
->push_cpu
;
3269 struct sched_domain
*sd
;
3270 struct rq
*target_rq
;
3272 /* Is there any task to move? */
3273 if (busiest_rq
->nr_running
<= 1)
3276 target_rq
= cpu_rq(target_cpu
);
3279 * This condition is "impossible", if it occurs
3280 * we need to fix it. Originally reported by
3281 * Bjorn Helgaas on a 128-cpu setup.
3283 BUG_ON(busiest_rq
== target_rq
);
3285 /* move a task from busiest_rq to target_rq */
3286 double_lock_balance(busiest_rq
, target_rq
);
3287 update_rq_clock(busiest_rq
);
3288 update_rq_clock(target_rq
);
3290 /* Search for an sd spanning us and the target CPU. */
3291 for_each_domain(target_cpu
, sd
) {
3292 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3293 cpu_isset(busiest_cpu
, sd
->span
))
3298 schedstat_inc(sd
, alb_count
);
3300 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3302 schedstat_inc(sd
, alb_pushed
);
3304 schedstat_inc(sd
, alb_failed
);
3306 spin_unlock(&target_rq
->lock
);
3311 atomic_t load_balancer
;
3313 } nohz ____cacheline_aligned
= {
3314 .load_balancer
= ATOMIC_INIT(-1),
3315 .cpu_mask
= CPU_MASK_NONE
,
3319 * This routine will try to nominate the ilb (idle load balancing)
3320 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3321 * load balancing on behalf of all those cpus. If all the cpus in the system
3322 * go into this tickless mode, then there will be no ilb owner (as there is
3323 * no need for one) and all the cpus will sleep till the next wakeup event
3326 * For the ilb owner, tick is not stopped. And this tick will be used
3327 * for idle load balancing. ilb owner will still be part of
3330 * While stopping the tick, this cpu will become the ilb owner if there
3331 * is no other owner. And will be the owner till that cpu becomes busy
3332 * or if all cpus in the system stop their ticks at which point
3333 * there is no need for ilb owner.
3335 * When the ilb owner becomes busy, it nominates another owner, during the
3336 * next busy scheduler_tick()
3338 int select_nohz_load_balancer(int stop_tick
)
3340 int cpu
= smp_processor_id();
3343 cpu_set(cpu
, nohz
.cpu_mask
);
3344 cpu_rq(cpu
)->in_nohz_recently
= 1;
3347 * If we are going offline and still the leader, give up!
3349 if (cpu_is_offline(cpu
) &&
3350 atomic_read(&nohz
.load_balancer
) == cpu
) {
3351 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3356 /* time for ilb owner also to sleep */
3357 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3358 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3359 atomic_set(&nohz
.load_balancer
, -1);
3363 if (atomic_read(&nohz
.load_balancer
) == -1) {
3364 /* make me the ilb owner */
3365 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3367 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3370 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
3373 cpu_clear(cpu
, nohz
.cpu_mask
);
3375 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3376 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3383 static DEFINE_SPINLOCK(balancing
);
3386 * It checks each scheduling domain to see if it is due to be balanced,
3387 * and initiates a balancing operation if so.
3389 * Balancing parameters are set up in arch_init_sched_domains.
3391 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3394 struct rq
*rq
= cpu_rq(cpu
);
3395 unsigned long interval
;
3396 struct sched_domain
*sd
;
3397 /* Earliest time when we have to do rebalance again */
3398 unsigned long next_balance
= jiffies
+ 60*HZ
;
3399 int update_next_balance
= 0;
3401 for_each_domain(cpu
, sd
) {
3402 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3405 interval
= sd
->balance_interval
;
3406 if (idle
!= CPU_IDLE
)
3407 interval
*= sd
->busy_factor
;
3409 /* scale ms to jiffies */
3410 interval
= msecs_to_jiffies(interval
);
3411 if (unlikely(!interval
))
3413 if (interval
> HZ
*NR_CPUS
/10)
3414 interval
= HZ
*NR_CPUS
/10;
3417 if (sd
->flags
& SD_SERIALIZE
) {
3418 if (!spin_trylock(&balancing
))
3422 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3423 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3425 * We've pulled tasks over so either we're no
3426 * longer idle, or one of our SMT siblings is
3429 idle
= CPU_NOT_IDLE
;
3431 sd
->last_balance
= jiffies
;
3433 if (sd
->flags
& SD_SERIALIZE
)
3434 spin_unlock(&balancing
);
3436 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3437 next_balance
= sd
->last_balance
+ interval
;
3438 update_next_balance
= 1;
3442 * Stop the load balance at this level. There is another
3443 * CPU in our sched group which is doing load balancing more
3451 * next_balance will be updated only when there is a need.
3452 * When the cpu is attached to null domain for ex, it will not be
3455 if (likely(update_next_balance
))
3456 rq
->next_balance
= next_balance
;
3460 * run_rebalance_domains is triggered when needed from the scheduler tick.
3461 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3462 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3464 static void run_rebalance_domains(struct softirq_action
*h
)
3466 int this_cpu
= smp_processor_id();
3467 struct rq
*this_rq
= cpu_rq(this_cpu
);
3468 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3469 CPU_IDLE
: CPU_NOT_IDLE
;
3471 rebalance_domains(this_cpu
, idle
);
3475 * If this cpu is the owner for idle load balancing, then do the
3476 * balancing on behalf of the other idle cpus whose ticks are
3479 if (this_rq
->idle_at_tick
&&
3480 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3481 cpumask_t cpus
= nohz
.cpu_mask
;
3485 cpu_clear(this_cpu
, cpus
);
3486 for_each_cpu_mask(balance_cpu
, cpus
) {
3488 * If this cpu gets work to do, stop the load balancing
3489 * work being done for other cpus. Next load
3490 * balancing owner will pick it up.
3495 rebalance_domains(balance_cpu
, CPU_IDLE
);
3497 rq
= cpu_rq(balance_cpu
);
3498 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3499 this_rq
->next_balance
= rq
->next_balance
;
3506 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3508 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3509 * idle load balancing owner or decide to stop the periodic load balancing,
3510 * if the whole system is idle.
3512 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3516 * If we were in the nohz mode recently and busy at the current
3517 * scheduler tick, then check if we need to nominate new idle
3520 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3521 rq
->in_nohz_recently
= 0;
3523 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3524 cpu_clear(cpu
, nohz
.cpu_mask
);
3525 atomic_set(&nohz
.load_balancer
, -1);
3528 if (atomic_read(&nohz
.load_balancer
) == -1) {
3530 * simple selection for now: Nominate the
3531 * first cpu in the nohz list to be the next
3534 * TBD: Traverse the sched domains and nominate
3535 * the nearest cpu in the nohz.cpu_mask.
3537 int ilb
= first_cpu(nohz
.cpu_mask
);
3545 * If this cpu is idle and doing idle load balancing for all the
3546 * cpus with ticks stopped, is it time for that to stop?
3548 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3549 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3555 * If this cpu is idle and the idle load balancing is done by
3556 * someone else, then no need raise the SCHED_SOFTIRQ
3558 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3559 cpu_isset(cpu
, nohz
.cpu_mask
))
3562 if (time_after_eq(jiffies
, rq
->next_balance
))
3563 raise_softirq(SCHED_SOFTIRQ
);
3566 #else /* CONFIG_SMP */
3569 * on UP we do not need to balance between CPUs:
3571 static inline void idle_balance(int cpu
, struct rq
*rq
)
3577 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3579 EXPORT_PER_CPU_SYMBOL(kstat
);
3582 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3583 * that have not yet been banked in case the task is currently running.
3585 unsigned long long task_sched_runtime(struct task_struct
*p
)
3587 unsigned long flags
;
3591 rq
= task_rq_lock(p
, &flags
);
3592 ns
= p
->se
.sum_exec_runtime
;
3593 if (task_current(rq
, p
)) {
3594 update_rq_clock(rq
);
3595 delta_exec
= rq
->clock
- p
->se
.exec_start
;
3596 if ((s64
)delta_exec
> 0)
3599 task_rq_unlock(rq
, &flags
);
3605 * Account user cpu time to a process.
3606 * @p: the process that the cpu time gets accounted to
3607 * @cputime: the cpu time spent in user space since the last update
3609 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
3611 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3614 p
->utime
= cputime_add(p
->utime
, cputime
);
3616 /* Add user time to cpustat. */
3617 tmp
= cputime_to_cputime64(cputime
);
3618 if (TASK_NICE(p
) > 0)
3619 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3621 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3625 * Account guest cpu time to a process.
3626 * @p: the process that the cpu time gets accounted to
3627 * @cputime: the cpu time spent in virtual machine since the last update
3629 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
)
3632 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3634 tmp
= cputime_to_cputime64(cputime
);
3636 p
->utime
= cputime_add(p
->utime
, cputime
);
3637 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3639 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3640 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3644 * Account scaled user cpu time to a process.
3645 * @p: the process that the cpu time gets accounted to
3646 * @cputime: the cpu time spent in user space since the last update
3648 void account_user_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3650 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime
);
3654 * Account system cpu time to a process.
3655 * @p: the process that the cpu time gets accounted to
3656 * @hardirq_offset: the offset to subtract from hardirq_count()
3657 * @cputime: the cpu time spent in kernel space since the last update
3659 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3662 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3663 struct rq
*rq
= this_rq();
3666 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0))
3667 return account_guest_time(p
, cputime
);
3669 p
->stime
= cputime_add(p
->stime
, cputime
);
3671 /* Add system time to cpustat. */
3672 tmp
= cputime_to_cputime64(cputime
);
3673 if (hardirq_count() - hardirq_offset
)
3674 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3675 else if (softirq_count())
3676 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3677 else if (p
!= rq
->idle
)
3678 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3679 else if (atomic_read(&rq
->nr_iowait
) > 0)
3680 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3682 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3683 /* Account for system time used */
3684 acct_update_integrals(p
);
3688 * Account scaled system cpu time to a process.
3689 * @p: the process that the cpu time gets accounted to
3690 * @hardirq_offset: the offset to subtract from hardirq_count()
3691 * @cputime: the cpu time spent in kernel space since the last update
3693 void account_system_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3695 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime
);
3699 * Account for involuntary wait time.
3700 * @p: the process from which the cpu time has been stolen
3701 * @steal: the cpu time spent in involuntary wait
3703 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
3705 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3706 cputime64_t tmp
= cputime_to_cputime64(steal
);
3707 struct rq
*rq
= this_rq();
3709 if (p
== rq
->idle
) {
3710 p
->stime
= cputime_add(p
->stime
, steal
);
3711 if (atomic_read(&rq
->nr_iowait
) > 0)
3712 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3714 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3716 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
3720 * This function gets called by the timer code, with HZ frequency.
3721 * We call it with interrupts disabled.
3723 * It also gets called by the fork code, when changing the parent's
3726 void scheduler_tick(void)
3728 int cpu
= smp_processor_id();
3729 struct rq
*rq
= cpu_rq(cpu
);
3730 struct task_struct
*curr
= rq
->curr
;
3731 u64 next_tick
= rq
->tick_timestamp
+ TICK_NSEC
;
3733 spin_lock(&rq
->lock
);
3734 __update_rq_clock(rq
);
3736 * Let rq->clock advance by at least TICK_NSEC:
3738 if (unlikely(rq
->clock
< next_tick
)) {
3739 rq
->clock
= next_tick
;
3740 rq
->clock_underflows
++;
3742 rq
->tick_timestamp
= rq
->clock
;
3743 update_cpu_load(rq
);
3744 curr
->sched_class
->task_tick(rq
, curr
, 0);
3745 update_sched_rt_period(rq
);
3746 spin_unlock(&rq
->lock
);
3749 rq
->idle_at_tick
= idle_cpu(cpu
);
3750 trigger_load_balance(rq
, cpu
);
3754 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3756 void fastcall
add_preempt_count(int val
)
3761 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3763 preempt_count() += val
;
3765 * Spinlock count overflowing soon?
3767 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3770 EXPORT_SYMBOL(add_preempt_count
);
3772 void fastcall
sub_preempt_count(int val
)
3777 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3780 * Is the spinlock portion underflowing?
3782 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3783 !(preempt_count() & PREEMPT_MASK
)))
3786 preempt_count() -= val
;
3788 EXPORT_SYMBOL(sub_preempt_count
);
3793 * Print scheduling while atomic bug:
3795 static noinline
void __schedule_bug(struct task_struct
*prev
)
3797 struct pt_regs
*regs
= get_irq_regs();
3799 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3800 prev
->comm
, prev
->pid
, preempt_count());
3802 debug_show_held_locks(prev
);
3803 if (irqs_disabled())
3804 print_irqtrace_events(prev
);
3813 * Various schedule()-time debugging checks and statistics:
3815 static inline void schedule_debug(struct task_struct
*prev
)
3818 * Test if we are atomic. Since do_exit() needs to call into
3819 * schedule() atomically, we ignore that path for now.
3820 * Otherwise, whine if we are scheduling when we should not be.
3822 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
3823 __schedule_bug(prev
);
3825 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3827 schedstat_inc(this_rq(), sched_count
);
3828 #ifdef CONFIG_SCHEDSTATS
3829 if (unlikely(prev
->lock_depth
>= 0)) {
3830 schedstat_inc(this_rq(), bkl_count
);
3831 schedstat_inc(prev
, sched_info
.bkl_count
);
3837 * Pick up the highest-prio task:
3839 static inline struct task_struct
*
3840 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
3842 const struct sched_class
*class;
3843 struct task_struct
*p
;
3846 * Optimization: we know that if all tasks are in
3847 * the fair class we can call that function directly:
3849 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3850 p
= fair_sched_class
.pick_next_task(rq
);
3855 class = sched_class_highest
;
3857 p
= class->pick_next_task(rq
);
3861 * Will never be NULL as the idle class always
3862 * returns a non-NULL p:
3864 class = class->next
;
3869 * schedule() is the main scheduler function.
3871 asmlinkage
void __sched
schedule(void)
3873 struct task_struct
*prev
, *next
;
3880 cpu
= smp_processor_id();
3884 switch_count
= &prev
->nivcsw
;
3886 release_kernel_lock(prev
);
3887 need_resched_nonpreemptible
:
3889 schedule_debug(prev
);
3894 * Do the rq-clock update outside the rq lock:
3896 local_irq_disable();
3897 __update_rq_clock(rq
);
3898 spin_lock(&rq
->lock
);
3899 clear_tsk_need_resched(prev
);
3901 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3902 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
3903 unlikely(signal_pending(prev
)))) {
3904 prev
->state
= TASK_RUNNING
;
3906 deactivate_task(rq
, prev
, 1);
3908 switch_count
= &prev
->nvcsw
;
3912 if (prev
->sched_class
->pre_schedule
)
3913 prev
->sched_class
->pre_schedule(rq
, prev
);
3916 if (unlikely(!rq
->nr_running
))
3917 idle_balance(cpu
, rq
);
3919 prev
->sched_class
->put_prev_task(rq
, prev
);
3920 next
= pick_next_task(rq
, prev
);
3922 sched_info_switch(prev
, next
);
3924 if (likely(prev
!= next
)) {
3929 context_switch(rq
, prev
, next
); /* unlocks the rq */
3931 * the context switch might have flipped the stack from under
3932 * us, hence refresh the local variables.
3934 cpu
= smp_processor_id();
3937 spin_unlock_irq(&rq
->lock
);
3941 if (unlikely(reacquire_kernel_lock(current
) < 0))
3942 goto need_resched_nonpreemptible
;
3944 preempt_enable_no_resched();
3945 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3948 EXPORT_SYMBOL(schedule
);
3950 #ifdef CONFIG_PREEMPT
3952 * this is the entry point to schedule() from in-kernel preemption
3953 * off of preempt_enable. Kernel preemptions off return from interrupt
3954 * occur there and call schedule directly.
3956 asmlinkage
void __sched
preempt_schedule(void)
3958 struct thread_info
*ti
= current_thread_info();
3959 struct task_struct
*task
= current
;
3960 int saved_lock_depth
;
3963 * If there is a non-zero preempt_count or interrupts are disabled,
3964 * we do not want to preempt the current task. Just return..
3966 if (likely(ti
->preempt_count
|| irqs_disabled()))
3970 add_preempt_count(PREEMPT_ACTIVE
);
3973 * We keep the big kernel semaphore locked, but we
3974 * clear ->lock_depth so that schedule() doesnt
3975 * auto-release the semaphore:
3977 saved_lock_depth
= task
->lock_depth
;
3978 task
->lock_depth
= -1;
3980 task
->lock_depth
= saved_lock_depth
;
3981 sub_preempt_count(PREEMPT_ACTIVE
);
3984 * Check again in case we missed a preemption opportunity
3985 * between schedule and now.
3988 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
3990 EXPORT_SYMBOL(preempt_schedule
);
3993 * this is the entry point to schedule() from kernel preemption
3994 * off of irq context.
3995 * Note, that this is called and return with irqs disabled. This will
3996 * protect us against recursive calling from irq.
3998 asmlinkage
void __sched
preempt_schedule_irq(void)
4000 struct thread_info
*ti
= current_thread_info();
4001 struct task_struct
*task
= current
;
4002 int saved_lock_depth
;
4004 /* Catch callers which need to be fixed */
4005 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4008 add_preempt_count(PREEMPT_ACTIVE
);
4011 * We keep the big kernel semaphore locked, but we
4012 * clear ->lock_depth so that schedule() doesnt
4013 * auto-release the semaphore:
4015 saved_lock_depth
= task
->lock_depth
;
4016 task
->lock_depth
= -1;
4019 local_irq_disable();
4020 task
->lock_depth
= saved_lock_depth
;
4021 sub_preempt_count(PREEMPT_ACTIVE
);
4024 * Check again in case we missed a preemption opportunity
4025 * between schedule and now.
4028 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4031 #endif /* CONFIG_PREEMPT */
4033 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
4036 return try_to_wake_up(curr
->private, mode
, sync
);
4038 EXPORT_SYMBOL(default_wake_function
);
4041 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4042 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4043 * number) then we wake all the non-exclusive tasks and one exclusive task.
4045 * There are circumstances in which we can try to wake a task which has already
4046 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4047 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4049 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4050 int nr_exclusive
, int sync
, void *key
)
4052 wait_queue_t
*curr
, *next
;
4054 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4055 unsigned flags
= curr
->flags
;
4057 if (curr
->func(curr
, mode
, sync
, key
) &&
4058 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4064 * __wake_up - wake up threads blocked on a waitqueue.
4066 * @mode: which threads
4067 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4068 * @key: is directly passed to the wakeup function
4070 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4071 int nr_exclusive
, void *key
)
4073 unsigned long flags
;
4075 spin_lock_irqsave(&q
->lock
, flags
);
4076 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4077 spin_unlock_irqrestore(&q
->lock
, flags
);
4079 EXPORT_SYMBOL(__wake_up
);
4082 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4084 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4086 __wake_up_common(q
, mode
, 1, 0, NULL
);
4090 * __wake_up_sync - wake up threads blocked on a waitqueue.
4092 * @mode: which threads
4093 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4095 * The sync wakeup differs that the waker knows that it will schedule
4096 * away soon, so while the target thread will be woken up, it will not
4097 * be migrated to another CPU - ie. the two threads are 'synchronized'
4098 * with each other. This can prevent needless bouncing between CPUs.
4100 * On UP it can prevent extra preemption.
4103 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4105 unsigned long flags
;
4111 if (unlikely(!nr_exclusive
))
4114 spin_lock_irqsave(&q
->lock
, flags
);
4115 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
4116 spin_unlock_irqrestore(&q
->lock
, flags
);
4118 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4120 void complete(struct completion
*x
)
4122 unsigned long flags
;
4124 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4126 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4127 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4129 EXPORT_SYMBOL(complete
);
4131 void complete_all(struct completion
*x
)
4133 unsigned long flags
;
4135 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4136 x
->done
+= UINT_MAX
/2;
4137 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4138 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4140 EXPORT_SYMBOL(complete_all
);
4142 static inline long __sched
4143 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4146 DECLARE_WAITQUEUE(wait
, current
);
4148 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
4149 __add_wait_queue_tail(&x
->wait
, &wait
);
4151 if ((state
== TASK_INTERRUPTIBLE
&&
4152 signal_pending(current
)) ||
4153 (state
== TASK_KILLABLE
&&
4154 fatal_signal_pending(current
))) {
4155 __remove_wait_queue(&x
->wait
, &wait
);
4156 return -ERESTARTSYS
;
4158 __set_current_state(state
);
4159 spin_unlock_irq(&x
->wait
.lock
);
4160 timeout
= schedule_timeout(timeout
);
4161 spin_lock_irq(&x
->wait
.lock
);
4163 __remove_wait_queue(&x
->wait
, &wait
);
4167 __remove_wait_queue(&x
->wait
, &wait
);
4174 wait_for_common(struct completion
*x
, long timeout
, int state
)
4178 spin_lock_irq(&x
->wait
.lock
);
4179 timeout
= do_wait_for_common(x
, timeout
, state
);
4180 spin_unlock_irq(&x
->wait
.lock
);
4184 void __sched
wait_for_completion(struct completion
*x
)
4186 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4188 EXPORT_SYMBOL(wait_for_completion
);
4190 unsigned long __sched
4191 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4193 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4195 EXPORT_SYMBOL(wait_for_completion_timeout
);
4197 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4199 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4200 if (t
== -ERESTARTSYS
)
4204 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4206 unsigned long __sched
4207 wait_for_completion_interruptible_timeout(struct completion
*x
,
4208 unsigned long timeout
)
4210 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4212 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4214 int __sched
wait_for_completion_killable(struct completion
*x
)
4216 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4217 if (t
== -ERESTARTSYS
)
4221 EXPORT_SYMBOL(wait_for_completion_killable
);
4224 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4226 unsigned long flags
;
4229 init_waitqueue_entry(&wait
, current
);
4231 __set_current_state(state
);
4233 spin_lock_irqsave(&q
->lock
, flags
);
4234 __add_wait_queue(q
, &wait
);
4235 spin_unlock(&q
->lock
);
4236 timeout
= schedule_timeout(timeout
);
4237 spin_lock_irq(&q
->lock
);
4238 __remove_wait_queue(q
, &wait
);
4239 spin_unlock_irqrestore(&q
->lock
, flags
);
4244 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4246 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4248 EXPORT_SYMBOL(interruptible_sleep_on
);
4251 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4253 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4255 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4257 void __sched
sleep_on(wait_queue_head_t
*q
)
4259 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4261 EXPORT_SYMBOL(sleep_on
);
4263 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4265 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4267 EXPORT_SYMBOL(sleep_on_timeout
);
4269 #ifdef CONFIG_RT_MUTEXES
4272 * rt_mutex_setprio - set the current priority of a task
4274 * @prio: prio value (kernel-internal form)
4276 * This function changes the 'effective' priority of a task. It does
4277 * not touch ->normal_prio like __setscheduler().
4279 * Used by the rt_mutex code to implement priority inheritance logic.
4281 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4283 unsigned long flags
;
4284 int oldprio
, on_rq
, running
;
4286 const struct sched_class
*prev_class
= p
->sched_class
;
4288 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4290 rq
= task_rq_lock(p
, &flags
);
4291 update_rq_clock(rq
);
4294 on_rq
= p
->se
.on_rq
;
4295 running
= task_current(rq
, p
);
4297 dequeue_task(rq
, p
, 0);
4299 p
->sched_class
->put_prev_task(rq
, p
);
4303 p
->sched_class
= &rt_sched_class
;
4305 p
->sched_class
= &fair_sched_class
;
4311 p
->sched_class
->set_curr_task(rq
);
4313 enqueue_task(rq
, p
, 0);
4315 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4317 task_rq_unlock(rq
, &flags
);
4322 void set_user_nice(struct task_struct
*p
, long nice
)
4324 int old_prio
, delta
, on_rq
;
4325 unsigned long flags
;
4328 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4331 * We have to be careful, if called from sys_setpriority(),
4332 * the task might be in the middle of scheduling on another CPU.
4334 rq
= task_rq_lock(p
, &flags
);
4335 update_rq_clock(rq
);
4337 * The RT priorities are set via sched_setscheduler(), but we still
4338 * allow the 'normal' nice value to be set - but as expected
4339 * it wont have any effect on scheduling until the task is
4340 * SCHED_FIFO/SCHED_RR:
4342 if (task_has_rt_policy(p
)) {
4343 p
->static_prio
= NICE_TO_PRIO(nice
);
4346 on_rq
= p
->se
.on_rq
;
4348 dequeue_task(rq
, p
, 0);
4350 p
->static_prio
= NICE_TO_PRIO(nice
);
4353 p
->prio
= effective_prio(p
);
4354 delta
= p
->prio
- old_prio
;
4357 enqueue_task(rq
, p
, 0);
4359 * If the task increased its priority or is running and
4360 * lowered its priority, then reschedule its CPU:
4362 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4363 resched_task(rq
->curr
);
4366 task_rq_unlock(rq
, &flags
);
4368 EXPORT_SYMBOL(set_user_nice
);
4371 * can_nice - check if a task can reduce its nice value
4375 int can_nice(const struct task_struct
*p
, const int nice
)
4377 /* convert nice value [19,-20] to rlimit style value [1,40] */
4378 int nice_rlim
= 20 - nice
;
4380 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4381 capable(CAP_SYS_NICE
));
4384 #ifdef __ARCH_WANT_SYS_NICE
4387 * sys_nice - change the priority of the current process.
4388 * @increment: priority increment
4390 * sys_setpriority is a more generic, but much slower function that
4391 * does similar things.
4393 asmlinkage
long sys_nice(int increment
)
4398 * Setpriority might change our priority at the same moment.
4399 * We don't have to worry. Conceptually one call occurs first
4400 * and we have a single winner.
4402 if (increment
< -40)
4407 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
4413 if (increment
< 0 && !can_nice(current
, nice
))
4416 retval
= security_task_setnice(current
, nice
);
4420 set_user_nice(current
, nice
);
4427 * task_prio - return the priority value of a given task.
4428 * @p: the task in question.
4430 * This is the priority value as seen by users in /proc.
4431 * RT tasks are offset by -200. Normal tasks are centered
4432 * around 0, value goes from -16 to +15.
4434 int task_prio(const struct task_struct
*p
)
4436 return p
->prio
- MAX_RT_PRIO
;
4440 * task_nice - return the nice value of a given task.
4441 * @p: the task in question.
4443 int task_nice(const struct task_struct
*p
)
4445 return TASK_NICE(p
);
4447 EXPORT_SYMBOL_GPL(task_nice
);
4450 * idle_cpu - is a given cpu idle currently?
4451 * @cpu: the processor in question.
4453 int idle_cpu(int cpu
)
4455 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4459 * idle_task - return the idle task for a given cpu.
4460 * @cpu: the processor in question.
4462 struct task_struct
*idle_task(int cpu
)
4464 return cpu_rq(cpu
)->idle
;
4468 * find_process_by_pid - find a process with a matching PID value.
4469 * @pid: the pid in question.
4471 static struct task_struct
*find_process_by_pid(pid_t pid
)
4473 return pid
? find_task_by_vpid(pid
) : current
;
4476 /* Actually do priority change: must hold rq lock. */
4478 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4480 BUG_ON(p
->se
.on_rq
);
4483 switch (p
->policy
) {
4487 p
->sched_class
= &fair_sched_class
;
4491 p
->sched_class
= &rt_sched_class
;
4495 p
->rt_priority
= prio
;
4496 p
->normal_prio
= normal_prio(p
);
4497 /* we are holding p->pi_lock already */
4498 p
->prio
= rt_mutex_getprio(p
);
4503 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4504 * @p: the task in question.
4505 * @policy: new policy.
4506 * @param: structure containing the new RT priority.
4508 * NOTE that the task may be already dead.
4510 int sched_setscheduler(struct task_struct
*p
, int policy
,
4511 struct sched_param
*param
)
4513 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4514 unsigned long flags
;
4515 const struct sched_class
*prev_class
= p
->sched_class
;
4518 /* may grab non-irq protected spin_locks */
4519 BUG_ON(in_interrupt());
4521 /* double check policy once rq lock held */
4523 policy
= oldpolicy
= p
->policy
;
4524 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4525 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4526 policy
!= SCHED_IDLE
)
4529 * Valid priorities for SCHED_FIFO and SCHED_RR are
4530 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4531 * SCHED_BATCH and SCHED_IDLE is 0.
4533 if (param
->sched_priority
< 0 ||
4534 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4535 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4537 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4541 * Allow unprivileged RT tasks to decrease priority:
4543 if (!capable(CAP_SYS_NICE
)) {
4544 if (rt_policy(policy
)) {
4545 unsigned long rlim_rtprio
;
4547 if (!lock_task_sighand(p
, &flags
))
4549 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4550 unlock_task_sighand(p
, &flags
);
4552 /* can't set/change the rt policy */
4553 if (policy
!= p
->policy
&& !rlim_rtprio
)
4556 /* can't increase priority */
4557 if (param
->sched_priority
> p
->rt_priority
&&
4558 param
->sched_priority
> rlim_rtprio
)
4562 * Like positive nice levels, dont allow tasks to
4563 * move out of SCHED_IDLE either:
4565 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4568 /* can't change other user's priorities */
4569 if ((current
->euid
!= p
->euid
) &&
4570 (current
->euid
!= p
->uid
))
4574 retval
= security_task_setscheduler(p
, policy
, param
);
4578 * make sure no PI-waiters arrive (or leave) while we are
4579 * changing the priority of the task:
4581 spin_lock_irqsave(&p
->pi_lock
, flags
);
4583 * To be able to change p->policy safely, the apropriate
4584 * runqueue lock must be held.
4586 rq
= __task_rq_lock(p
);
4587 /* recheck policy now with rq lock held */
4588 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4589 policy
= oldpolicy
= -1;
4590 __task_rq_unlock(rq
);
4591 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4594 update_rq_clock(rq
);
4595 on_rq
= p
->se
.on_rq
;
4596 running
= task_current(rq
, p
);
4598 deactivate_task(rq
, p
, 0);
4600 p
->sched_class
->put_prev_task(rq
, p
);
4604 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4608 p
->sched_class
->set_curr_task(rq
);
4610 activate_task(rq
, p
, 0);
4612 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4614 __task_rq_unlock(rq
);
4615 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4617 rt_mutex_adjust_pi(p
);
4621 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4624 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4626 struct sched_param lparam
;
4627 struct task_struct
*p
;
4630 if (!param
|| pid
< 0)
4632 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4637 p
= find_process_by_pid(pid
);
4639 retval
= sched_setscheduler(p
, policy
, &lparam
);
4646 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4647 * @pid: the pid in question.
4648 * @policy: new policy.
4649 * @param: structure containing the new RT priority.
4652 sys_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4654 /* negative values for policy are not valid */
4658 return do_sched_setscheduler(pid
, policy
, param
);
4662 * sys_sched_setparam - set/change the RT priority of a thread
4663 * @pid: the pid in question.
4664 * @param: structure containing the new RT priority.
4666 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
4668 return do_sched_setscheduler(pid
, -1, param
);
4672 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4673 * @pid: the pid in question.
4675 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
4677 struct task_struct
*p
;
4684 read_lock(&tasklist_lock
);
4685 p
= find_process_by_pid(pid
);
4687 retval
= security_task_getscheduler(p
);
4691 read_unlock(&tasklist_lock
);
4696 * sys_sched_getscheduler - get the RT priority of a thread
4697 * @pid: the pid in question.
4698 * @param: structure containing the RT priority.
4700 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
4702 struct sched_param lp
;
4703 struct task_struct
*p
;
4706 if (!param
|| pid
< 0)
4709 read_lock(&tasklist_lock
);
4710 p
= find_process_by_pid(pid
);
4715 retval
= security_task_getscheduler(p
);
4719 lp
.sched_priority
= p
->rt_priority
;
4720 read_unlock(&tasklist_lock
);
4723 * This one might sleep, we cannot do it with a spinlock held ...
4725 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4730 read_unlock(&tasklist_lock
);
4734 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
4736 cpumask_t cpus_allowed
;
4737 struct task_struct
*p
;
4741 read_lock(&tasklist_lock
);
4743 p
= find_process_by_pid(pid
);
4745 read_unlock(&tasklist_lock
);
4751 * It is not safe to call set_cpus_allowed with the
4752 * tasklist_lock held. We will bump the task_struct's
4753 * usage count and then drop tasklist_lock.
4756 read_unlock(&tasklist_lock
);
4759 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
4760 !capable(CAP_SYS_NICE
))
4763 retval
= security_task_setscheduler(p
, 0, NULL
);
4767 cpus_allowed
= cpuset_cpus_allowed(p
);
4768 cpus_and(new_mask
, new_mask
, cpus_allowed
);
4770 retval
= set_cpus_allowed(p
, new_mask
);
4773 cpus_allowed
= cpuset_cpus_allowed(p
);
4774 if (!cpus_subset(new_mask
, cpus_allowed
)) {
4776 * We must have raced with a concurrent cpuset
4777 * update. Just reset the cpus_allowed to the
4778 * cpuset's cpus_allowed
4780 new_mask
= cpus_allowed
;
4790 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4791 cpumask_t
*new_mask
)
4793 if (len
< sizeof(cpumask_t
)) {
4794 memset(new_mask
, 0, sizeof(cpumask_t
));
4795 } else if (len
> sizeof(cpumask_t
)) {
4796 len
= sizeof(cpumask_t
);
4798 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4802 * sys_sched_setaffinity - set the cpu affinity of a process
4803 * @pid: pid of the process
4804 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4805 * @user_mask_ptr: user-space pointer to the new cpu mask
4807 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
4808 unsigned long __user
*user_mask_ptr
)
4813 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
4817 return sched_setaffinity(pid
, new_mask
);
4821 * Represents all cpu's present in the system
4822 * In systems capable of hotplug, this map could dynamically grow
4823 * as new cpu's are detected in the system via any platform specific
4824 * method, such as ACPI for e.g.
4827 cpumask_t cpu_present_map __read_mostly
;
4828 EXPORT_SYMBOL(cpu_present_map
);
4831 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
4832 EXPORT_SYMBOL(cpu_online_map
);
4834 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
4835 EXPORT_SYMBOL(cpu_possible_map
);
4838 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
4840 struct task_struct
*p
;
4844 read_lock(&tasklist_lock
);
4847 p
= find_process_by_pid(pid
);
4851 retval
= security_task_getscheduler(p
);
4855 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
4858 read_unlock(&tasklist_lock
);
4865 * sys_sched_getaffinity - get the cpu affinity of a process
4866 * @pid: pid of the process
4867 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4868 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4870 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
4871 unsigned long __user
*user_mask_ptr
)
4876 if (len
< sizeof(cpumask_t
))
4879 ret
= sched_getaffinity(pid
, &mask
);
4883 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
4886 return sizeof(cpumask_t
);
4890 * sys_sched_yield - yield the current processor to other threads.
4892 * This function yields the current CPU to other tasks. If there are no
4893 * other threads running on this CPU then this function will return.
4895 asmlinkage
long sys_sched_yield(void)
4897 struct rq
*rq
= this_rq_lock();
4899 schedstat_inc(rq
, yld_count
);
4900 current
->sched_class
->yield_task(rq
);
4903 * Since we are going to call schedule() anyway, there's
4904 * no need to preempt or enable interrupts:
4906 __release(rq
->lock
);
4907 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4908 _raw_spin_unlock(&rq
->lock
);
4909 preempt_enable_no_resched();
4916 static void __cond_resched(void)
4918 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4919 __might_sleep(__FILE__
, __LINE__
);
4922 * The BKS might be reacquired before we have dropped
4923 * PREEMPT_ACTIVE, which could trigger a second
4924 * cond_resched() call.
4927 add_preempt_count(PREEMPT_ACTIVE
);
4929 sub_preempt_count(PREEMPT_ACTIVE
);
4930 } while (need_resched());
4933 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
4934 int __sched
_cond_resched(void)
4936 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
4937 system_state
== SYSTEM_RUNNING
) {
4943 EXPORT_SYMBOL(_cond_resched
);
4947 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4948 * call schedule, and on return reacquire the lock.
4950 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4951 * operations here to prevent schedule() from being called twice (once via
4952 * spin_unlock(), once by hand).
4954 int cond_resched_lock(spinlock_t
*lock
)
4956 int resched
= need_resched() && system_state
== SYSTEM_RUNNING
;
4959 if (spin_needbreak(lock
) || resched
) {
4961 if (resched
&& need_resched())
4970 EXPORT_SYMBOL(cond_resched_lock
);
4972 int __sched
cond_resched_softirq(void)
4974 BUG_ON(!in_softirq());
4976 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4984 EXPORT_SYMBOL(cond_resched_softirq
);
4987 * yield - yield the current processor to other threads.
4989 * This is a shortcut for kernel-space yielding - it marks the
4990 * thread runnable and calls sys_sched_yield().
4992 void __sched
yield(void)
4994 set_current_state(TASK_RUNNING
);
4997 EXPORT_SYMBOL(yield
);
5000 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5001 * that process accounting knows that this is a task in IO wait state.
5003 * But don't do that if it is a deliberate, throttling IO wait (this task
5004 * has set its backing_dev_info: the queue against which it should throttle)
5006 void __sched
io_schedule(void)
5008 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5010 delayacct_blkio_start();
5011 atomic_inc(&rq
->nr_iowait
);
5013 atomic_dec(&rq
->nr_iowait
);
5014 delayacct_blkio_end();
5016 EXPORT_SYMBOL(io_schedule
);
5018 long __sched
io_schedule_timeout(long timeout
)
5020 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5023 delayacct_blkio_start();
5024 atomic_inc(&rq
->nr_iowait
);
5025 ret
= schedule_timeout(timeout
);
5026 atomic_dec(&rq
->nr_iowait
);
5027 delayacct_blkio_end();
5032 * sys_sched_get_priority_max - return maximum RT priority.
5033 * @policy: scheduling class.
5035 * this syscall returns the maximum rt_priority that can be used
5036 * by a given scheduling class.
5038 asmlinkage
long sys_sched_get_priority_max(int policy
)
5045 ret
= MAX_USER_RT_PRIO
-1;
5057 * sys_sched_get_priority_min - return minimum RT priority.
5058 * @policy: scheduling class.
5060 * this syscall returns the minimum rt_priority that can be used
5061 * by a given scheduling class.
5063 asmlinkage
long sys_sched_get_priority_min(int policy
)
5081 * sys_sched_rr_get_interval - return the default timeslice of a process.
5082 * @pid: pid of the process.
5083 * @interval: userspace pointer to the timeslice value.
5085 * this syscall writes the default timeslice value of a given process
5086 * into the user-space timespec buffer. A value of '0' means infinity.
5089 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
5091 struct task_struct
*p
;
5092 unsigned int time_slice
;
5100 read_lock(&tasklist_lock
);
5101 p
= find_process_by_pid(pid
);
5105 retval
= security_task_getscheduler(p
);
5110 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5111 * tasks that are on an otherwise idle runqueue:
5114 if (p
->policy
== SCHED_RR
) {
5115 time_slice
= DEF_TIMESLICE
;
5117 struct sched_entity
*se
= &p
->se
;
5118 unsigned long flags
;
5121 rq
= task_rq_lock(p
, &flags
);
5122 if (rq
->cfs
.load
.weight
)
5123 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
5124 task_rq_unlock(rq
, &flags
);
5126 read_unlock(&tasklist_lock
);
5127 jiffies_to_timespec(time_slice
, &t
);
5128 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5132 read_unlock(&tasklist_lock
);
5136 static const char stat_nam
[] = "RSDTtZX";
5138 void sched_show_task(struct task_struct
*p
)
5140 unsigned long free
= 0;
5143 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5144 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5145 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5146 #if BITS_PER_LONG == 32
5147 if (state
== TASK_RUNNING
)
5148 printk(KERN_CONT
" running ");
5150 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5152 if (state
== TASK_RUNNING
)
5153 printk(KERN_CONT
" running task ");
5155 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5157 #ifdef CONFIG_DEBUG_STACK_USAGE
5159 unsigned long *n
= end_of_stack(p
);
5162 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
5165 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
5166 task_pid_nr(p
), task_pid_nr(p
->real_parent
));
5168 show_stack(p
, NULL
);
5171 void show_state_filter(unsigned long state_filter
)
5173 struct task_struct
*g
, *p
;
5175 #if BITS_PER_LONG == 32
5177 " task PC stack pid father\n");
5180 " task PC stack pid father\n");
5182 read_lock(&tasklist_lock
);
5183 do_each_thread(g
, p
) {
5185 * reset the NMI-timeout, listing all files on a slow
5186 * console might take alot of time:
5188 touch_nmi_watchdog();
5189 if (!state_filter
|| (p
->state
& state_filter
))
5191 } while_each_thread(g
, p
);
5193 touch_all_softlockup_watchdogs();
5195 #ifdef CONFIG_SCHED_DEBUG
5196 sysrq_sched_debug_show();
5198 read_unlock(&tasklist_lock
);
5200 * Only show locks if all tasks are dumped:
5202 if (state_filter
== -1)
5203 debug_show_all_locks();
5206 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5208 idle
->sched_class
= &idle_sched_class
;
5212 * init_idle - set up an idle thread for a given CPU
5213 * @idle: task in question
5214 * @cpu: cpu the idle task belongs to
5216 * NOTE: this function does not set the idle thread's NEED_RESCHED
5217 * flag, to make booting more robust.
5219 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5221 struct rq
*rq
= cpu_rq(cpu
);
5222 unsigned long flags
;
5225 idle
->se
.exec_start
= sched_clock();
5227 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
5228 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
5229 __set_task_cpu(idle
, cpu
);
5231 spin_lock_irqsave(&rq
->lock
, flags
);
5232 rq
->curr
= rq
->idle
= idle
;
5233 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5236 spin_unlock_irqrestore(&rq
->lock
, flags
);
5238 /* Set the preempt count _outside_ the spinlocks! */
5239 task_thread_info(idle
)->preempt_count
= 0;
5242 * The idle tasks have their own, simple scheduling class:
5244 idle
->sched_class
= &idle_sched_class
;
5248 * In a system that switches off the HZ timer nohz_cpu_mask
5249 * indicates which cpus entered this state. This is used
5250 * in the rcu update to wait only for active cpus. For system
5251 * which do not switch off the HZ timer nohz_cpu_mask should
5252 * always be CPU_MASK_NONE.
5254 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
5257 * Increase the granularity value when there are more CPUs,
5258 * because with more CPUs the 'effective latency' as visible
5259 * to users decreases. But the relationship is not linear,
5260 * so pick a second-best guess by going with the log2 of the
5263 * This idea comes from the SD scheduler of Con Kolivas:
5265 static inline void sched_init_granularity(void)
5267 unsigned int factor
= 1 + ilog2(num_online_cpus());
5268 const unsigned long limit
= 200000000;
5270 sysctl_sched_min_granularity
*= factor
;
5271 if (sysctl_sched_min_granularity
> limit
)
5272 sysctl_sched_min_granularity
= limit
;
5274 sysctl_sched_latency
*= factor
;
5275 if (sysctl_sched_latency
> limit
)
5276 sysctl_sched_latency
= limit
;
5278 sysctl_sched_wakeup_granularity
*= factor
;
5279 sysctl_sched_batch_wakeup_granularity
*= factor
;
5284 * This is how migration works:
5286 * 1) we queue a struct migration_req structure in the source CPU's
5287 * runqueue and wake up that CPU's migration thread.
5288 * 2) we down() the locked semaphore => thread blocks.
5289 * 3) migration thread wakes up (implicitly it forces the migrated
5290 * thread off the CPU)
5291 * 4) it gets the migration request and checks whether the migrated
5292 * task is still in the wrong runqueue.
5293 * 5) if it's in the wrong runqueue then the migration thread removes
5294 * it and puts it into the right queue.
5295 * 6) migration thread up()s the semaphore.
5296 * 7) we wake up and the migration is done.
5300 * Change a given task's CPU affinity. Migrate the thread to a
5301 * proper CPU and schedule it away if the CPU it's executing on
5302 * is removed from the allowed bitmask.
5304 * NOTE: the caller must have a valid reference to the task, the
5305 * task must not exit() & deallocate itself prematurely. The
5306 * call is not atomic; no spinlocks may be held.
5308 int set_cpus_allowed(struct task_struct
*p
, cpumask_t new_mask
)
5310 struct migration_req req
;
5311 unsigned long flags
;
5315 rq
= task_rq_lock(p
, &flags
);
5316 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
5321 if (p
->sched_class
->set_cpus_allowed
)
5322 p
->sched_class
->set_cpus_allowed(p
, &new_mask
);
5324 p
->cpus_allowed
= new_mask
;
5325 p
->rt
.nr_cpus_allowed
= cpus_weight(new_mask
);
5328 /* Can the task run on the task's current CPU? If so, we're done */
5329 if (cpu_isset(task_cpu(p
), new_mask
))
5332 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
5333 /* Need help from migration thread: drop lock and wait. */
5334 task_rq_unlock(rq
, &flags
);
5335 wake_up_process(rq
->migration_thread
);
5336 wait_for_completion(&req
.done
);
5337 tlb_migrate_finish(p
->mm
);
5341 task_rq_unlock(rq
, &flags
);
5345 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
5348 * Move (not current) task off this cpu, onto dest cpu. We're doing
5349 * this because either it can't run here any more (set_cpus_allowed()
5350 * away from this CPU, or CPU going down), or because we're
5351 * attempting to rebalance this task on exec (sched_exec).
5353 * So we race with normal scheduler movements, but that's OK, as long
5354 * as the task is no longer on this CPU.
5356 * Returns non-zero if task was successfully migrated.
5358 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5360 struct rq
*rq_dest
, *rq_src
;
5363 if (unlikely(cpu_is_offline(dest_cpu
)))
5366 rq_src
= cpu_rq(src_cpu
);
5367 rq_dest
= cpu_rq(dest_cpu
);
5369 double_rq_lock(rq_src
, rq_dest
);
5370 /* Already moved. */
5371 if (task_cpu(p
) != src_cpu
)
5373 /* Affinity changed (again). */
5374 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
5377 on_rq
= p
->se
.on_rq
;
5379 deactivate_task(rq_src
, p
, 0);
5381 set_task_cpu(p
, dest_cpu
);
5383 activate_task(rq_dest
, p
, 0);
5384 check_preempt_curr(rq_dest
, p
);
5388 double_rq_unlock(rq_src
, rq_dest
);
5393 * migration_thread - this is a highprio system thread that performs
5394 * thread migration by bumping thread off CPU then 'pushing' onto
5397 static int migration_thread(void *data
)
5399 int cpu
= (long)data
;
5403 BUG_ON(rq
->migration_thread
!= current
);
5405 set_current_state(TASK_INTERRUPTIBLE
);
5406 while (!kthread_should_stop()) {
5407 struct migration_req
*req
;
5408 struct list_head
*head
;
5410 spin_lock_irq(&rq
->lock
);
5412 if (cpu_is_offline(cpu
)) {
5413 spin_unlock_irq(&rq
->lock
);
5417 if (rq
->active_balance
) {
5418 active_load_balance(rq
, cpu
);
5419 rq
->active_balance
= 0;
5422 head
= &rq
->migration_queue
;
5424 if (list_empty(head
)) {
5425 spin_unlock_irq(&rq
->lock
);
5427 set_current_state(TASK_INTERRUPTIBLE
);
5430 req
= list_entry(head
->next
, struct migration_req
, list
);
5431 list_del_init(head
->next
);
5433 spin_unlock(&rq
->lock
);
5434 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5437 complete(&req
->done
);
5439 __set_current_state(TASK_RUNNING
);
5443 /* Wait for kthread_stop */
5444 set_current_state(TASK_INTERRUPTIBLE
);
5445 while (!kthread_should_stop()) {
5447 set_current_state(TASK_INTERRUPTIBLE
);
5449 __set_current_state(TASK_RUNNING
);
5453 #ifdef CONFIG_HOTPLUG_CPU
5455 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5459 local_irq_disable();
5460 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
5466 * Figure out where task on dead CPU should go, use force if necessary.
5467 * NOTE: interrupts should be disabled by the caller
5469 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5471 unsigned long flags
;
5478 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5479 cpus_and(mask
, mask
, p
->cpus_allowed
);
5480 dest_cpu
= any_online_cpu(mask
);
5482 /* On any allowed CPU? */
5483 if (dest_cpu
== NR_CPUS
)
5484 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5486 /* No more Mr. Nice Guy. */
5487 if (dest_cpu
== NR_CPUS
) {
5488 cpumask_t cpus_allowed
= cpuset_cpus_allowed_locked(p
);
5490 * Try to stay on the same cpuset, where the
5491 * current cpuset may be a subset of all cpus.
5492 * The cpuset_cpus_allowed_locked() variant of
5493 * cpuset_cpus_allowed() will not block. It must be
5494 * called within calls to cpuset_lock/cpuset_unlock.
5496 rq
= task_rq_lock(p
, &flags
);
5497 p
->cpus_allowed
= cpus_allowed
;
5498 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5499 task_rq_unlock(rq
, &flags
);
5502 * Don't tell them about moving exiting tasks or
5503 * kernel threads (both mm NULL), since they never
5506 if (p
->mm
&& printk_ratelimit()) {
5507 printk(KERN_INFO
"process %d (%s) no "
5508 "longer affine to cpu%d\n",
5509 task_pid_nr(p
), p
->comm
, dead_cpu
);
5512 } while (!__migrate_task_irq(p
, dead_cpu
, dest_cpu
));
5516 * While a dead CPU has no uninterruptible tasks queued at this point,
5517 * it might still have a nonzero ->nr_uninterruptible counter, because
5518 * for performance reasons the counter is not stricly tracking tasks to
5519 * their home CPUs. So we just add the counter to another CPU's counter,
5520 * to keep the global sum constant after CPU-down:
5522 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5524 struct rq
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
5525 unsigned long flags
;
5527 local_irq_save(flags
);
5528 double_rq_lock(rq_src
, rq_dest
);
5529 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5530 rq_src
->nr_uninterruptible
= 0;
5531 double_rq_unlock(rq_src
, rq_dest
);
5532 local_irq_restore(flags
);
5535 /* Run through task list and migrate tasks from the dead cpu. */
5536 static void migrate_live_tasks(int src_cpu
)
5538 struct task_struct
*p
, *t
;
5540 read_lock(&tasklist_lock
);
5542 do_each_thread(t
, p
) {
5546 if (task_cpu(p
) == src_cpu
)
5547 move_task_off_dead_cpu(src_cpu
, p
);
5548 } while_each_thread(t
, p
);
5550 read_unlock(&tasklist_lock
);
5554 * Schedules idle task to be the next runnable task on current CPU.
5555 * It does so by boosting its priority to highest possible.
5556 * Used by CPU offline code.
5558 void sched_idle_next(void)
5560 int this_cpu
= smp_processor_id();
5561 struct rq
*rq
= cpu_rq(this_cpu
);
5562 struct task_struct
*p
= rq
->idle
;
5563 unsigned long flags
;
5565 /* cpu has to be offline */
5566 BUG_ON(cpu_online(this_cpu
));
5569 * Strictly not necessary since rest of the CPUs are stopped by now
5570 * and interrupts disabled on the current cpu.
5572 spin_lock_irqsave(&rq
->lock
, flags
);
5574 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5576 update_rq_clock(rq
);
5577 activate_task(rq
, p
, 0);
5579 spin_unlock_irqrestore(&rq
->lock
, flags
);
5583 * Ensures that the idle task is using init_mm right before its cpu goes
5586 void idle_task_exit(void)
5588 struct mm_struct
*mm
= current
->active_mm
;
5590 BUG_ON(cpu_online(smp_processor_id()));
5593 switch_mm(mm
, &init_mm
, current
);
5597 /* called under rq->lock with disabled interrupts */
5598 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5600 struct rq
*rq
= cpu_rq(dead_cpu
);
5602 /* Must be exiting, otherwise would be on tasklist. */
5603 BUG_ON(!p
->exit_state
);
5605 /* Cannot have done final schedule yet: would have vanished. */
5606 BUG_ON(p
->state
== TASK_DEAD
);
5611 * Drop lock around migration; if someone else moves it,
5612 * that's OK. No task can be added to this CPU, so iteration is
5615 spin_unlock_irq(&rq
->lock
);
5616 move_task_off_dead_cpu(dead_cpu
, p
);
5617 spin_lock_irq(&rq
->lock
);
5622 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5623 static void migrate_dead_tasks(unsigned int dead_cpu
)
5625 struct rq
*rq
= cpu_rq(dead_cpu
);
5626 struct task_struct
*next
;
5629 if (!rq
->nr_running
)
5631 update_rq_clock(rq
);
5632 next
= pick_next_task(rq
, rq
->curr
);
5635 migrate_dead(dead_cpu
, next
);
5639 #endif /* CONFIG_HOTPLUG_CPU */
5641 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5643 static struct ctl_table sd_ctl_dir
[] = {
5645 .procname
= "sched_domain",
5651 static struct ctl_table sd_ctl_root
[] = {
5653 .ctl_name
= CTL_KERN
,
5654 .procname
= "kernel",
5656 .child
= sd_ctl_dir
,
5661 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5663 struct ctl_table
*entry
=
5664 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5669 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5671 struct ctl_table
*entry
;
5674 * In the intermediate directories, both the child directory and
5675 * procname are dynamically allocated and could fail but the mode
5676 * will always be set. In the lowest directory the names are
5677 * static strings and all have proc handlers.
5679 for (entry
= *tablep
; entry
->mode
; entry
++) {
5681 sd_free_ctl_entry(&entry
->child
);
5682 if (entry
->proc_handler
== NULL
)
5683 kfree(entry
->procname
);
5691 set_table_entry(struct ctl_table
*entry
,
5692 const char *procname
, void *data
, int maxlen
,
5693 mode_t mode
, proc_handler
*proc_handler
)
5695 entry
->procname
= procname
;
5697 entry
->maxlen
= maxlen
;
5699 entry
->proc_handler
= proc_handler
;
5702 static struct ctl_table
*
5703 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5705 struct ctl_table
*table
= sd_alloc_ctl_entry(12);
5710 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5711 sizeof(long), 0644, proc_doulongvec_minmax
);
5712 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5713 sizeof(long), 0644, proc_doulongvec_minmax
);
5714 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5715 sizeof(int), 0644, proc_dointvec_minmax
);
5716 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5717 sizeof(int), 0644, proc_dointvec_minmax
);
5718 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5719 sizeof(int), 0644, proc_dointvec_minmax
);
5720 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5721 sizeof(int), 0644, proc_dointvec_minmax
);
5722 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5723 sizeof(int), 0644, proc_dointvec_minmax
);
5724 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5725 sizeof(int), 0644, proc_dointvec_minmax
);
5726 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5727 sizeof(int), 0644, proc_dointvec_minmax
);
5728 set_table_entry(&table
[9], "cache_nice_tries",
5729 &sd
->cache_nice_tries
,
5730 sizeof(int), 0644, proc_dointvec_minmax
);
5731 set_table_entry(&table
[10], "flags", &sd
->flags
,
5732 sizeof(int), 0644, proc_dointvec_minmax
);
5733 /* &table[11] is terminator */
5738 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5740 struct ctl_table
*entry
, *table
;
5741 struct sched_domain
*sd
;
5742 int domain_num
= 0, i
;
5745 for_each_domain(cpu
, sd
)
5747 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5752 for_each_domain(cpu
, sd
) {
5753 snprintf(buf
, 32, "domain%d", i
);
5754 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5756 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5763 static struct ctl_table_header
*sd_sysctl_header
;
5764 static void register_sched_domain_sysctl(void)
5766 int i
, cpu_num
= num_online_cpus();
5767 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5770 WARN_ON(sd_ctl_dir
[0].child
);
5771 sd_ctl_dir
[0].child
= entry
;
5776 for_each_online_cpu(i
) {
5777 snprintf(buf
, 32, "cpu%d", i
);
5778 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5780 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5784 WARN_ON(sd_sysctl_header
);
5785 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5788 /* may be called multiple times per register */
5789 static void unregister_sched_domain_sysctl(void)
5791 if (sd_sysctl_header
)
5792 unregister_sysctl_table(sd_sysctl_header
);
5793 sd_sysctl_header
= NULL
;
5794 if (sd_ctl_dir
[0].child
)
5795 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5798 static void register_sched_domain_sysctl(void)
5801 static void unregister_sched_domain_sysctl(void)
5807 * migration_call - callback that gets triggered when a CPU is added.
5808 * Here we can start up the necessary migration thread for the new CPU.
5810 static int __cpuinit
5811 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5813 struct task_struct
*p
;
5814 int cpu
= (long)hcpu
;
5815 unsigned long flags
;
5820 case CPU_UP_PREPARE
:
5821 case CPU_UP_PREPARE_FROZEN
:
5822 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
5825 kthread_bind(p
, cpu
);
5826 /* Must be high prio: stop_machine expects to yield to it. */
5827 rq
= task_rq_lock(p
, &flags
);
5828 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5829 task_rq_unlock(rq
, &flags
);
5830 cpu_rq(cpu
)->migration_thread
= p
;
5834 case CPU_ONLINE_FROZEN
:
5835 /* Strictly unnecessary, as first user will wake it. */
5836 wake_up_process(cpu_rq(cpu
)->migration_thread
);
5838 /* Update our root-domain */
5840 spin_lock_irqsave(&rq
->lock
, flags
);
5842 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
5843 cpu_set(cpu
, rq
->rd
->online
);
5845 spin_unlock_irqrestore(&rq
->lock
, flags
);
5848 #ifdef CONFIG_HOTPLUG_CPU
5849 case CPU_UP_CANCELED
:
5850 case CPU_UP_CANCELED_FROZEN
:
5851 if (!cpu_rq(cpu
)->migration_thread
)
5853 /* Unbind it from offline cpu so it can run. Fall thru. */
5854 kthread_bind(cpu_rq(cpu
)->migration_thread
,
5855 any_online_cpu(cpu_online_map
));
5856 kthread_stop(cpu_rq(cpu
)->migration_thread
);
5857 cpu_rq(cpu
)->migration_thread
= NULL
;
5861 case CPU_DEAD_FROZEN
:
5862 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5863 migrate_live_tasks(cpu
);
5865 kthread_stop(rq
->migration_thread
);
5866 rq
->migration_thread
= NULL
;
5867 /* Idle task back to normal (off runqueue, low prio) */
5868 spin_lock_irq(&rq
->lock
);
5869 update_rq_clock(rq
);
5870 deactivate_task(rq
, rq
->idle
, 0);
5871 rq
->idle
->static_prio
= MAX_PRIO
;
5872 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5873 rq
->idle
->sched_class
= &idle_sched_class
;
5874 migrate_dead_tasks(cpu
);
5875 spin_unlock_irq(&rq
->lock
);
5877 migrate_nr_uninterruptible(rq
);
5878 BUG_ON(rq
->nr_running
!= 0);
5881 * No need to migrate the tasks: it was best-effort if
5882 * they didn't take sched_hotcpu_mutex. Just wake up
5885 spin_lock_irq(&rq
->lock
);
5886 while (!list_empty(&rq
->migration_queue
)) {
5887 struct migration_req
*req
;
5889 req
= list_entry(rq
->migration_queue
.next
,
5890 struct migration_req
, list
);
5891 list_del_init(&req
->list
);
5892 complete(&req
->done
);
5894 spin_unlock_irq(&rq
->lock
);
5897 case CPU_DOWN_PREPARE
:
5898 /* Update our root-domain */
5900 spin_lock_irqsave(&rq
->lock
, flags
);
5902 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
5903 cpu_clear(cpu
, rq
->rd
->online
);
5905 spin_unlock_irqrestore(&rq
->lock
, flags
);
5912 /* Register at highest priority so that task migration (migrate_all_tasks)
5913 * happens before everything else.
5915 static struct notifier_block __cpuinitdata migration_notifier
= {
5916 .notifier_call
= migration_call
,
5920 void __init
migration_init(void)
5922 void *cpu
= (void *)(long)smp_processor_id();
5925 /* Start one for the boot CPU: */
5926 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5927 BUG_ON(err
== NOTIFY_BAD
);
5928 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5929 register_cpu_notifier(&migration_notifier
);
5935 /* Number of possible processor ids */
5936 int nr_cpu_ids __read_mostly
= NR_CPUS
;
5937 EXPORT_SYMBOL(nr_cpu_ids
);
5939 #ifdef CONFIG_SCHED_DEBUG
5941 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
)
5943 struct sched_group
*group
= sd
->groups
;
5944 cpumask_t groupmask
;
5947 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
5948 cpus_clear(groupmask
);
5950 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
5952 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5953 printk("does not load-balance\n");
5955 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5960 printk(KERN_CONT
"span %s\n", str
);
5962 if (!cpu_isset(cpu
, sd
->span
)) {
5963 printk(KERN_ERR
"ERROR: domain->span does not contain "
5966 if (!cpu_isset(cpu
, group
->cpumask
)) {
5967 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5971 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
5975 printk(KERN_ERR
"ERROR: group is NULL\n");
5979 if (!group
->__cpu_power
) {
5980 printk(KERN_CONT
"\n");
5981 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5986 if (!cpus_weight(group
->cpumask
)) {
5987 printk(KERN_CONT
"\n");
5988 printk(KERN_ERR
"ERROR: empty group\n");
5992 if (cpus_intersects(groupmask
, group
->cpumask
)) {
5993 printk(KERN_CONT
"\n");
5994 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5998 cpus_or(groupmask
, groupmask
, group
->cpumask
);
6000 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
6001 printk(KERN_CONT
" %s", str
);
6003 group
= group
->next
;
6004 } while (group
!= sd
->groups
);
6005 printk(KERN_CONT
"\n");
6007 if (!cpus_equal(sd
->span
, groupmask
))
6008 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6010 if (sd
->parent
&& !cpus_subset(groupmask
, sd
->parent
->span
))
6011 printk(KERN_ERR
"ERROR: parent span is not a superset "
6012 "of domain->span\n");
6016 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6021 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6025 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6028 if (sched_domain_debug_one(sd
, cpu
, level
))
6037 # define sched_domain_debug(sd, cpu) do { } while (0)
6040 static int sd_degenerate(struct sched_domain
*sd
)
6042 if (cpus_weight(sd
->span
) == 1)
6045 /* Following flags need at least 2 groups */
6046 if (sd
->flags
& (SD_LOAD_BALANCE
|
6047 SD_BALANCE_NEWIDLE
|
6051 SD_SHARE_PKG_RESOURCES
)) {
6052 if (sd
->groups
!= sd
->groups
->next
)
6056 /* Following flags don't use groups */
6057 if (sd
->flags
& (SD_WAKE_IDLE
|
6066 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6068 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6070 if (sd_degenerate(parent
))
6073 if (!cpus_equal(sd
->span
, parent
->span
))
6076 /* Does parent contain flags not in child? */
6077 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6078 if (cflags
& SD_WAKE_AFFINE
)
6079 pflags
&= ~SD_WAKE_BALANCE
;
6080 /* Flags needing groups don't count if only 1 group in parent */
6081 if (parent
->groups
== parent
->groups
->next
) {
6082 pflags
&= ~(SD_LOAD_BALANCE
|
6083 SD_BALANCE_NEWIDLE
|
6087 SD_SHARE_PKG_RESOURCES
);
6089 if (~cflags
& pflags
)
6095 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6097 unsigned long flags
;
6098 const struct sched_class
*class;
6100 spin_lock_irqsave(&rq
->lock
, flags
);
6103 struct root_domain
*old_rd
= rq
->rd
;
6105 for (class = sched_class_highest
; class; class = class->next
) {
6106 if (class->leave_domain
)
6107 class->leave_domain(rq
);
6110 cpu_clear(rq
->cpu
, old_rd
->span
);
6111 cpu_clear(rq
->cpu
, old_rd
->online
);
6113 if (atomic_dec_and_test(&old_rd
->refcount
))
6117 atomic_inc(&rd
->refcount
);
6120 cpu_set(rq
->cpu
, rd
->span
);
6121 if (cpu_isset(rq
->cpu
, cpu_online_map
))
6122 cpu_set(rq
->cpu
, rd
->online
);
6124 for (class = sched_class_highest
; class; class = class->next
) {
6125 if (class->join_domain
)
6126 class->join_domain(rq
);
6129 spin_unlock_irqrestore(&rq
->lock
, flags
);
6132 static void init_rootdomain(struct root_domain
*rd
)
6134 memset(rd
, 0, sizeof(*rd
));
6136 cpus_clear(rd
->span
);
6137 cpus_clear(rd
->online
);
6140 static void init_defrootdomain(void)
6142 init_rootdomain(&def_root_domain
);
6143 atomic_set(&def_root_domain
.refcount
, 1);
6146 static struct root_domain
*alloc_rootdomain(void)
6148 struct root_domain
*rd
;
6150 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6154 init_rootdomain(rd
);
6160 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6161 * hold the hotplug lock.
6164 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6166 struct rq
*rq
= cpu_rq(cpu
);
6167 struct sched_domain
*tmp
;
6169 /* Remove the sched domains which do not contribute to scheduling. */
6170 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
6171 struct sched_domain
*parent
= tmp
->parent
;
6174 if (sd_parent_degenerate(tmp
, parent
)) {
6175 tmp
->parent
= parent
->parent
;
6177 parent
->parent
->child
= tmp
;
6181 if (sd
&& sd_degenerate(sd
)) {
6187 sched_domain_debug(sd
, cpu
);
6189 rq_attach_root(rq
, rd
);
6190 rcu_assign_pointer(rq
->sd
, sd
);
6193 /* cpus with isolated domains */
6194 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
6196 /* Setup the mask of cpus configured for isolated domains */
6197 static int __init
isolated_cpu_setup(char *str
)
6199 int ints
[NR_CPUS
], i
;
6201 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
6202 cpus_clear(cpu_isolated_map
);
6203 for (i
= 1; i
<= ints
[0]; i
++)
6204 if (ints
[i
] < NR_CPUS
)
6205 cpu_set(ints
[i
], cpu_isolated_map
);
6209 __setup("isolcpus=", isolated_cpu_setup
);
6212 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6213 * to a function which identifies what group(along with sched group) a CPU
6214 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6215 * (due to the fact that we keep track of groups covered with a cpumask_t).
6217 * init_sched_build_groups will build a circular linked list of the groups
6218 * covered by the given span, and will set each group's ->cpumask correctly,
6219 * and ->cpu_power to 0.
6222 init_sched_build_groups(cpumask_t span
, const cpumask_t
*cpu_map
,
6223 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
6224 struct sched_group
**sg
))
6226 struct sched_group
*first
= NULL
, *last
= NULL
;
6227 cpumask_t covered
= CPU_MASK_NONE
;
6230 for_each_cpu_mask(i
, span
) {
6231 struct sched_group
*sg
;
6232 int group
= group_fn(i
, cpu_map
, &sg
);
6235 if (cpu_isset(i
, covered
))
6238 sg
->cpumask
= CPU_MASK_NONE
;
6239 sg
->__cpu_power
= 0;
6241 for_each_cpu_mask(j
, span
) {
6242 if (group_fn(j
, cpu_map
, NULL
) != group
)
6245 cpu_set(j
, covered
);
6246 cpu_set(j
, sg
->cpumask
);
6257 #define SD_NODES_PER_DOMAIN 16
6262 * find_next_best_node - find the next node to include in a sched_domain
6263 * @node: node whose sched_domain we're building
6264 * @used_nodes: nodes already in the sched_domain
6266 * Find the next node to include in a given scheduling domain. Simply
6267 * finds the closest node not already in the @used_nodes map.
6269 * Should use nodemask_t.
6271 static int find_next_best_node(int node
, unsigned long *used_nodes
)
6273 int i
, n
, val
, min_val
, best_node
= 0;
6277 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6278 /* Start at @node */
6279 n
= (node
+ i
) % MAX_NUMNODES
;
6281 if (!nr_cpus_node(n
))
6284 /* Skip already used nodes */
6285 if (test_bit(n
, used_nodes
))
6288 /* Simple min distance search */
6289 val
= node_distance(node
, n
);
6291 if (val
< min_val
) {
6297 set_bit(best_node
, used_nodes
);
6302 * sched_domain_node_span - get a cpumask for a node's sched_domain
6303 * @node: node whose cpumask we're constructing
6304 * @size: number of nodes to include in this span
6306 * Given a node, construct a good cpumask for its sched_domain to span. It
6307 * should be one that prevents unnecessary balancing, but also spreads tasks
6310 static cpumask_t
sched_domain_node_span(int node
)
6312 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
6313 cpumask_t span
, nodemask
;
6317 bitmap_zero(used_nodes
, MAX_NUMNODES
);
6319 nodemask
= node_to_cpumask(node
);
6320 cpus_or(span
, span
, nodemask
);
6321 set_bit(node
, used_nodes
);
6323 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6324 int next_node
= find_next_best_node(node
, used_nodes
);
6326 nodemask
= node_to_cpumask(next_node
);
6327 cpus_or(span
, span
, nodemask
);
6334 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6337 * SMT sched-domains:
6339 #ifdef CONFIG_SCHED_SMT
6340 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
6341 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
6344 cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6347 *sg
= &per_cpu(sched_group_cpus
, cpu
);
6353 * multi-core sched-domains:
6355 #ifdef CONFIG_SCHED_MC
6356 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
6357 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
6360 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6362 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6365 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
6366 cpus_and(mask
, mask
, *cpu_map
);
6367 group
= first_cpu(mask
);
6369 *sg
= &per_cpu(sched_group_core
, group
);
6372 #elif defined(CONFIG_SCHED_MC)
6374 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6377 *sg
= &per_cpu(sched_group_core
, cpu
);
6382 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
6383 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
6386 cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6389 #ifdef CONFIG_SCHED_MC
6390 cpumask_t mask
= cpu_coregroup_map(cpu
);
6391 cpus_and(mask
, mask
, *cpu_map
);
6392 group
= first_cpu(mask
);
6393 #elif defined(CONFIG_SCHED_SMT)
6394 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
6395 cpus_and(mask
, mask
, *cpu_map
);
6396 group
= first_cpu(mask
);
6401 *sg
= &per_cpu(sched_group_phys
, group
);
6407 * The init_sched_build_groups can't handle what we want to do with node
6408 * groups, so roll our own. Now each node has its own list of groups which
6409 * gets dynamically allocated.
6411 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
6412 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
6414 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
6415 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
6417 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
6418 struct sched_group
**sg
)
6420 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(cpu
));
6423 cpus_and(nodemask
, nodemask
, *cpu_map
);
6424 group
= first_cpu(nodemask
);
6427 *sg
= &per_cpu(sched_group_allnodes
, group
);
6431 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6433 struct sched_group
*sg
= group_head
;
6439 for_each_cpu_mask(j
, sg
->cpumask
) {
6440 struct sched_domain
*sd
;
6442 sd
= &per_cpu(phys_domains
, j
);
6443 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
6445 * Only add "power" once for each
6451 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
6454 } while (sg
!= group_head
);
6459 /* Free memory allocated for various sched_group structures */
6460 static void free_sched_groups(const cpumask_t
*cpu_map
)
6464 for_each_cpu_mask(cpu
, *cpu_map
) {
6465 struct sched_group
**sched_group_nodes
6466 = sched_group_nodes_bycpu
[cpu
];
6468 if (!sched_group_nodes
)
6471 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6472 cpumask_t nodemask
= node_to_cpumask(i
);
6473 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6475 cpus_and(nodemask
, nodemask
, *cpu_map
);
6476 if (cpus_empty(nodemask
))
6486 if (oldsg
!= sched_group_nodes
[i
])
6489 kfree(sched_group_nodes
);
6490 sched_group_nodes_bycpu
[cpu
] = NULL
;
6494 static void free_sched_groups(const cpumask_t
*cpu_map
)
6500 * Initialize sched groups cpu_power.
6502 * cpu_power indicates the capacity of sched group, which is used while
6503 * distributing the load between different sched groups in a sched domain.
6504 * Typically cpu_power for all the groups in a sched domain will be same unless
6505 * there are asymmetries in the topology. If there are asymmetries, group
6506 * having more cpu_power will pickup more load compared to the group having
6509 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6510 * the maximum number of tasks a group can handle in the presence of other idle
6511 * or lightly loaded groups in the same sched domain.
6513 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6515 struct sched_domain
*child
;
6516 struct sched_group
*group
;
6518 WARN_ON(!sd
|| !sd
->groups
);
6520 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
6525 sd
->groups
->__cpu_power
= 0;
6528 * For perf policy, if the groups in child domain share resources
6529 * (for example cores sharing some portions of the cache hierarchy
6530 * or SMT), then set this domain groups cpu_power such that each group
6531 * can handle only one task, when there are other idle groups in the
6532 * same sched domain.
6534 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
6536 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
6537 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
6542 * add cpu_power of each child group to this groups cpu_power
6544 group
= child
->groups
;
6546 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
6547 group
= group
->next
;
6548 } while (group
!= child
->groups
);
6552 * Build sched domains for a given set of cpus and attach the sched domains
6553 * to the individual cpus
6555 static int build_sched_domains(const cpumask_t
*cpu_map
)
6558 struct root_domain
*rd
;
6560 struct sched_group
**sched_group_nodes
= NULL
;
6561 int sd_allnodes
= 0;
6564 * Allocate the per-node list of sched groups
6566 sched_group_nodes
= kcalloc(MAX_NUMNODES
, sizeof(struct sched_group
*),
6568 if (!sched_group_nodes
) {
6569 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6572 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
6575 rd
= alloc_rootdomain();
6577 printk(KERN_WARNING
"Cannot alloc root domain\n");
6582 * Set up domains for cpus specified by the cpu_map.
6584 for_each_cpu_mask(i
, *cpu_map
) {
6585 struct sched_domain
*sd
= NULL
, *p
;
6586 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
6588 cpus_and(nodemask
, nodemask
, *cpu_map
);
6591 if (cpus_weight(*cpu_map
) >
6592 SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
6593 sd
= &per_cpu(allnodes_domains
, i
);
6594 *sd
= SD_ALLNODES_INIT
;
6595 sd
->span
= *cpu_map
;
6596 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
);
6602 sd
= &per_cpu(node_domains
, i
);
6604 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
6608 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6612 sd
= &per_cpu(phys_domains
, i
);
6614 sd
->span
= nodemask
;
6618 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
);
6620 #ifdef CONFIG_SCHED_MC
6622 sd
= &per_cpu(core_domains
, i
);
6624 sd
->span
= cpu_coregroup_map(i
);
6625 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6628 cpu_to_core_group(i
, cpu_map
, &sd
->groups
);
6631 #ifdef CONFIG_SCHED_SMT
6633 sd
= &per_cpu(cpu_domains
, i
);
6634 *sd
= SD_SIBLING_INIT
;
6635 sd
->span
= per_cpu(cpu_sibling_map
, i
);
6636 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6639 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
);
6643 #ifdef CONFIG_SCHED_SMT
6644 /* Set up CPU (sibling) groups */
6645 for_each_cpu_mask(i
, *cpu_map
) {
6646 cpumask_t this_sibling_map
= per_cpu(cpu_sibling_map
, i
);
6647 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
6648 if (i
!= first_cpu(this_sibling_map
))
6651 init_sched_build_groups(this_sibling_map
, cpu_map
,
6656 #ifdef CONFIG_SCHED_MC
6657 /* Set up multi-core groups */
6658 for_each_cpu_mask(i
, *cpu_map
) {
6659 cpumask_t this_core_map
= cpu_coregroup_map(i
);
6660 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
6661 if (i
!= first_cpu(this_core_map
))
6663 init_sched_build_groups(this_core_map
, cpu_map
,
6664 &cpu_to_core_group
);
6668 /* Set up physical groups */
6669 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6670 cpumask_t nodemask
= node_to_cpumask(i
);
6672 cpus_and(nodemask
, nodemask
, *cpu_map
);
6673 if (cpus_empty(nodemask
))
6676 init_sched_build_groups(nodemask
, cpu_map
, &cpu_to_phys_group
);
6680 /* Set up node groups */
6682 init_sched_build_groups(*cpu_map
, cpu_map
,
6683 &cpu_to_allnodes_group
);
6685 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6686 /* Set up node groups */
6687 struct sched_group
*sg
, *prev
;
6688 cpumask_t nodemask
= node_to_cpumask(i
);
6689 cpumask_t domainspan
;
6690 cpumask_t covered
= CPU_MASK_NONE
;
6693 cpus_and(nodemask
, nodemask
, *cpu_map
);
6694 if (cpus_empty(nodemask
)) {
6695 sched_group_nodes
[i
] = NULL
;
6699 domainspan
= sched_domain_node_span(i
);
6700 cpus_and(domainspan
, domainspan
, *cpu_map
);
6702 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
6704 printk(KERN_WARNING
"Can not alloc domain group for "
6708 sched_group_nodes
[i
] = sg
;
6709 for_each_cpu_mask(j
, nodemask
) {
6710 struct sched_domain
*sd
;
6712 sd
= &per_cpu(node_domains
, j
);
6715 sg
->__cpu_power
= 0;
6716 sg
->cpumask
= nodemask
;
6718 cpus_or(covered
, covered
, nodemask
);
6721 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
6722 cpumask_t tmp
, notcovered
;
6723 int n
= (i
+ j
) % MAX_NUMNODES
;
6725 cpus_complement(notcovered
, covered
);
6726 cpus_and(tmp
, notcovered
, *cpu_map
);
6727 cpus_and(tmp
, tmp
, domainspan
);
6728 if (cpus_empty(tmp
))
6731 nodemask
= node_to_cpumask(n
);
6732 cpus_and(tmp
, tmp
, nodemask
);
6733 if (cpus_empty(tmp
))
6736 sg
= kmalloc_node(sizeof(struct sched_group
),
6740 "Can not alloc domain group for node %d\n", j
);
6743 sg
->__cpu_power
= 0;
6745 sg
->next
= prev
->next
;
6746 cpus_or(covered
, covered
, tmp
);
6753 /* Calculate CPU power for physical packages and nodes */
6754 #ifdef CONFIG_SCHED_SMT
6755 for_each_cpu_mask(i
, *cpu_map
) {
6756 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
6758 init_sched_groups_power(i
, sd
);
6761 #ifdef CONFIG_SCHED_MC
6762 for_each_cpu_mask(i
, *cpu_map
) {
6763 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
6765 init_sched_groups_power(i
, sd
);
6769 for_each_cpu_mask(i
, *cpu_map
) {
6770 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
6772 init_sched_groups_power(i
, sd
);
6776 for (i
= 0; i
< MAX_NUMNODES
; i
++)
6777 init_numa_sched_groups_power(sched_group_nodes
[i
]);
6780 struct sched_group
*sg
;
6782 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
);
6783 init_numa_sched_groups_power(sg
);
6787 /* Attach the domains */
6788 for_each_cpu_mask(i
, *cpu_map
) {
6789 struct sched_domain
*sd
;
6790 #ifdef CONFIG_SCHED_SMT
6791 sd
= &per_cpu(cpu_domains
, i
);
6792 #elif defined(CONFIG_SCHED_MC)
6793 sd
= &per_cpu(core_domains
, i
);
6795 sd
= &per_cpu(phys_domains
, i
);
6797 cpu_attach_domain(sd
, rd
, i
);
6804 free_sched_groups(cpu_map
);
6809 static cpumask_t
*doms_cur
; /* current sched domains */
6810 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
6813 * Special case: If a kmalloc of a doms_cur partition (array of
6814 * cpumask_t) fails, then fallback to a single sched domain,
6815 * as determined by the single cpumask_t fallback_doms.
6817 static cpumask_t fallback_doms
;
6820 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6821 * For now this just excludes isolated cpus, but could be used to
6822 * exclude other special cases in the future.
6824 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
6829 doms_cur
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
6831 doms_cur
= &fallback_doms
;
6832 cpus_andnot(*doms_cur
, *cpu_map
, cpu_isolated_map
);
6833 err
= build_sched_domains(doms_cur
);
6834 register_sched_domain_sysctl();
6839 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
6841 free_sched_groups(cpu_map
);
6845 * Detach sched domains from a group of cpus specified in cpu_map
6846 * These cpus will now be attached to the NULL domain
6848 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
6852 unregister_sched_domain_sysctl();
6854 for_each_cpu_mask(i
, *cpu_map
)
6855 cpu_attach_domain(NULL
, &def_root_domain
, i
);
6856 synchronize_sched();
6857 arch_destroy_sched_domains(cpu_map
);
6861 * Partition sched domains as specified by the 'ndoms_new'
6862 * cpumasks in the array doms_new[] of cpumasks. This compares
6863 * doms_new[] to the current sched domain partitioning, doms_cur[].
6864 * It destroys each deleted domain and builds each new domain.
6866 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6867 * The masks don't intersect (don't overlap.) We should setup one
6868 * sched domain for each mask. CPUs not in any of the cpumasks will
6869 * not be load balanced. If the same cpumask appears both in the
6870 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6873 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6874 * ownership of it and will kfree it when done with it. If the caller
6875 * failed the kmalloc call, then it can pass in doms_new == NULL,
6876 * and partition_sched_domains() will fallback to the single partition
6879 * Call with hotplug lock held
6881 void partition_sched_domains(int ndoms_new
, cpumask_t
*doms_new
)
6887 /* always unregister in case we don't destroy any domains */
6888 unregister_sched_domain_sysctl();
6890 if (doms_new
== NULL
) {
6892 doms_new
= &fallback_doms
;
6893 cpus_andnot(doms_new
[0], cpu_online_map
, cpu_isolated_map
);
6896 /* Destroy deleted domains */
6897 for (i
= 0; i
< ndoms_cur
; i
++) {
6898 for (j
= 0; j
< ndoms_new
; j
++) {
6899 if (cpus_equal(doms_cur
[i
], doms_new
[j
]))
6902 /* no match - a current sched domain not in new doms_new[] */
6903 detach_destroy_domains(doms_cur
+ i
);
6908 /* Build new domains */
6909 for (i
= 0; i
< ndoms_new
; i
++) {
6910 for (j
= 0; j
< ndoms_cur
; j
++) {
6911 if (cpus_equal(doms_new
[i
], doms_cur
[j
]))
6914 /* no match - add a new doms_new */
6915 build_sched_domains(doms_new
+ i
);
6920 /* Remember the new sched domains */
6921 if (doms_cur
!= &fallback_doms
)
6923 doms_cur
= doms_new
;
6924 ndoms_cur
= ndoms_new
;
6926 register_sched_domain_sysctl();
6931 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6932 static int arch_reinit_sched_domains(void)
6937 detach_destroy_domains(&cpu_online_map
);
6938 err
= arch_init_sched_domains(&cpu_online_map
);
6944 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
6948 if (buf
[0] != '0' && buf
[0] != '1')
6952 sched_smt_power_savings
= (buf
[0] == '1');
6954 sched_mc_power_savings
= (buf
[0] == '1');
6956 ret
= arch_reinit_sched_domains();
6958 return ret
? ret
: count
;
6961 #ifdef CONFIG_SCHED_MC
6962 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
6964 return sprintf(page
, "%u\n", sched_mc_power_savings
);
6966 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
6967 const char *buf
, size_t count
)
6969 return sched_power_savings_store(buf
, count
, 0);
6971 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
6972 sched_mc_power_savings_store
);
6975 #ifdef CONFIG_SCHED_SMT
6976 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
6978 return sprintf(page
, "%u\n", sched_smt_power_savings
);
6980 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
6981 const char *buf
, size_t count
)
6983 return sched_power_savings_store(buf
, count
, 1);
6985 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
6986 sched_smt_power_savings_store
);
6989 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
6993 #ifdef CONFIG_SCHED_SMT
6995 err
= sysfs_create_file(&cls
->kset
.kobj
,
6996 &attr_sched_smt_power_savings
.attr
);
6998 #ifdef CONFIG_SCHED_MC
6999 if (!err
&& mc_capable())
7000 err
= sysfs_create_file(&cls
->kset
.kobj
,
7001 &attr_sched_mc_power_savings
.attr
);
7008 * Force a reinitialization of the sched domains hierarchy. The domains
7009 * and groups cannot be updated in place without racing with the balancing
7010 * code, so we temporarily attach all running cpus to the NULL domain
7011 * which will prevent rebalancing while the sched domains are recalculated.
7013 static int update_sched_domains(struct notifier_block
*nfb
,
7014 unsigned long action
, void *hcpu
)
7017 case CPU_UP_PREPARE
:
7018 case CPU_UP_PREPARE_FROZEN
:
7019 case CPU_DOWN_PREPARE
:
7020 case CPU_DOWN_PREPARE_FROZEN
:
7021 detach_destroy_domains(&cpu_online_map
);
7024 case CPU_UP_CANCELED
:
7025 case CPU_UP_CANCELED_FROZEN
:
7026 case CPU_DOWN_FAILED
:
7027 case CPU_DOWN_FAILED_FROZEN
:
7029 case CPU_ONLINE_FROZEN
:
7031 case CPU_DEAD_FROZEN
:
7033 * Fall through and re-initialise the domains.
7040 /* The hotplug lock is already held by cpu_up/cpu_down */
7041 arch_init_sched_domains(&cpu_online_map
);
7046 void __init
sched_init_smp(void)
7048 cpumask_t non_isolated_cpus
;
7051 arch_init_sched_domains(&cpu_online_map
);
7052 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
7053 if (cpus_empty(non_isolated_cpus
))
7054 cpu_set(smp_processor_id(), non_isolated_cpus
);
7056 /* XXX: Theoretical race here - CPU may be hotplugged now */
7057 hotcpu_notifier(update_sched_domains
, 0);
7059 /* Move init over to a non-isolated CPU */
7060 if (set_cpus_allowed(current
, non_isolated_cpus
) < 0)
7062 sched_init_granularity();
7064 #ifdef CONFIG_FAIR_GROUP_SCHED
7065 if (nr_cpu_ids
== 1)
7068 lb_monitor_task
= kthread_create(load_balance_monitor
, NULL
,
7070 if (!IS_ERR(lb_monitor_task
)) {
7071 lb_monitor_task
->flags
|= PF_NOFREEZE
;
7072 wake_up_process(lb_monitor_task
);
7074 printk(KERN_ERR
"Could not create load balance monitor thread"
7075 "(error = %ld) \n", PTR_ERR(lb_monitor_task
));
7080 void __init
sched_init_smp(void)
7082 sched_init_granularity();
7084 #endif /* CONFIG_SMP */
7086 int in_sched_functions(unsigned long addr
)
7088 return in_lock_functions(addr
) ||
7089 (addr
>= (unsigned long)__sched_text_start
7090 && addr
< (unsigned long)__sched_text_end
);
7093 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7095 cfs_rq
->tasks_timeline
= RB_ROOT
;
7096 #ifdef CONFIG_FAIR_GROUP_SCHED
7099 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7102 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7104 struct rt_prio_array
*array
;
7107 array
= &rt_rq
->active
;
7108 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7109 INIT_LIST_HEAD(array
->queue
+ i
);
7110 __clear_bit(i
, array
->bitmap
);
7112 /* delimiter for bitsearch: */
7113 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7115 #if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
7116 rt_rq
->highest_prio
= MAX_RT_PRIO
;
7119 rt_rq
->rt_nr_migratory
= 0;
7120 rt_rq
->overloaded
= 0;
7124 rt_rq
->rt_throttled
= 0;
7126 #ifdef CONFIG_FAIR_GROUP_SCHED
7131 #ifdef CONFIG_FAIR_GROUP_SCHED
7132 static void init_tg_cfs_entry(struct rq
*rq
, struct task_group
*tg
,
7133 struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
7136 tg
->cfs_rq
[cpu
] = cfs_rq
;
7137 init_cfs_rq(cfs_rq
, rq
);
7140 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7143 se
->cfs_rq
= &rq
->cfs
;
7145 se
->load
.weight
= tg
->shares
;
7146 se
->load
.inv_weight
= div64_64(1ULL<<32, se
->load
.weight
);
7150 static void init_tg_rt_entry(struct rq
*rq
, struct task_group
*tg
,
7151 struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
,
7154 tg
->rt_rq
[cpu
] = rt_rq
;
7155 init_rt_rq(rt_rq
, rq
);
7157 rt_rq
->rt_se
= rt_se
;
7159 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
7161 tg
->rt_se
[cpu
] = rt_se
;
7162 rt_se
->rt_rq
= &rq
->rt
;
7163 rt_se
->my_q
= rt_rq
;
7164 rt_se
->parent
= NULL
;
7165 INIT_LIST_HEAD(&rt_se
->run_list
);
7169 void __init
sched_init(void)
7171 int highest_cpu
= 0;
7175 init_defrootdomain();
7178 #ifdef CONFIG_FAIR_GROUP_SCHED
7179 list_add(&init_task_group
.list
, &task_groups
);
7182 for_each_possible_cpu(i
) {
7186 spin_lock_init(&rq
->lock
);
7187 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
7190 init_cfs_rq(&rq
->cfs
, rq
);
7191 init_rt_rq(&rq
->rt
, rq
);
7192 #ifdef CONFIG_FAIR_GROUP_SCHED
7193 init_task_group
.shares
= init_task_group_load
;
7194 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7195 init_tg_cfs_entry(rq
, &init_task_group
,
7196 &per_cpu(init_cfs_rq
, i
),
7197 &per_cpu(init_sched_entity
, i
), i
, 1);
7199 init_task_group
.rt_ratio
= sysctl_sched_rt_ratio
; /* XXX */
7200 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
7201 init_tg_rt_entry(rq
, &init_task_group
,
7202 &per_cpu(init_rt_rq
, i
),
7203 &per_cpu(init_sched_rt_entity
, i
), i
, 1);
7205 rq
->rt_period_expire
= 0;
7206 rq
->rt_throttled
= 0;
7208 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
7209 rq
->cpu_load
[j
] = 0;
7213 rq
->active_balance
= 0;
7214 rq
->next_balance
= jiffies
;
7217 rq
->migration_thread
= NULL
;
7218 INIT_LIST_HEAD(&rq
->migration_queue
);
7219 rq_attach_root(rq
, &def_root_domain
);
7222 atomic_set(&rq
->nr_iowait
, 0);
7226 set_load_weight(&init_task
);
7228 #ifdef CONFIG_PREEMPT_NOTIFIERS
7229 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
7233 nr_cpu_ids
= highest_cpu
+ 1;
7234 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
7237 #ifdef CONFIG_RT_MUTEXES
7238 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
7242 * The boot idle thread does lazy MMU switching as well:
7244 atomic_inc(&init_mm
.mm_count
);
7245 enter_lazy_tlb(&init_mm
, current
);
7248 * Make us the idle thread. Technically, schedule() should not be
7249 * called from this thread, however somewhere below it might be,
7250 * but because we are the idle thread, we just pick up running again
7251 * when this runqueue becomes "idle".
7253 init_idle(current
, smp_processor_id());
7255 * During early bootup we pretend to be a normal task:
7257 current
->sched_class
= &fair_sched_class
;
7260 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7261 void __might_sleep(char *file
, int line
)
7264 static unsigned long prev_jiffy
; /* ratelimiting */
7266 if ((in_atomic() || irqs_disabled()) &&
7267 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
7268 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
7270 prev_jiffy
= jiffies
;
7271 printk(KERN_ERR
"BUG: sleeping function called from invalid"
7272 " context at %s:%d\n", file
, line
);
7273 printk("in_atomic():%d, irqs_disabled():%d\n",
7274 in_atomic(), irqs_disabled());
7275 debug_show_held_locks(current
);
7276 if (irqs_disabled())
7277 print_irqtrace_events(current
);
7282 EXPORT_SYMBOL(__might_sleep
);
7285 #ifdef CONFIG_MAGIC_SYSRQ
7286 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
7289 update_rq_clock(rq
);
7290 on_rq
= p
->se
.on_rq
;
7292 deactivate_task(rq
, p
, 0);
7293 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
7295 activate_task(rq
, p
, 0);
7296 resched_task(rq
->curr
);
7300 void normalize_rt_tasks(void)
7302 struct task_struct
*g
, *p
;
7303 unsigned long flags
;
7306 read_lock_irq(&tasklist_lock
);
7307 do_each_thread(g
, p
) {
7309 * Only normalize user tasks:
7314 p
->se
.exec_start
= 0;
7315 #ifdef CONFIG_SCHEDSTATS
7316 p
->se
.wait_start
= 0;
7317 p
->se
.sleep_start
= 0;
7318 p
->se
.block_start
= 0;
7320 task_rq(p
)->clock
= 0;
7324 * Renice negative nice level userspace
7327 if (TASK_NICE(p
) < 0 && p
->mm
)
7328 set_user_nice(p
, 0);
7332 spin_lock_irqsave(&p
->pi_lock
, flags
);
7333 rq
= __task_rq_lock(p
);
7335 normalize_task(rq
, p
);
7337 __task_rq_unlock(rq
);
7338 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
7339 } while_each_thread(g
, p
);
7341 read_unlock_irq(&tasklist_lock
);
7344 #endif /* CONFIG_MAGIC_SYSRQ */
7348 * These functions are only useful for the IA64 MCA handling.
7350 * They can only be called when the whole system has been
7351 * stopped - every CPU needs to be quiescent, and no scheduling
7352 * activity can take place. Using them for anything else would
7353 * be a serious bug, and as a result, they aren't even visible
7354 * under any other configuration.
7358 * curr_task - return the current task for a given cpu.
7359 * @cpu: the processor in question.
7361 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7363 struct task_struct
*curr_task(int cpu
)
7365 return cpu_curr(cpu
);
7369 * set_curr_task - set the current task for a given cpu.
7370 * @cpu: the processor in question.
7371 * @p: the task pointer to set.
7373 * Description: This function must only be used when non-maskable interrupts
7374 * are serviced on a separate stack. It allows the architecture to switch the
7375 * notion of the current task on a cpu in a non-blocking manner. This function
7376 * must be called with all CPU's synchronized, and interrupts disabled, the
7377 * and caller must save the original value of the current task (see
7378 * curr_task() above) and restore that value before reenabling interrupts and
7379 * re-starting the system.
7381 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7383 void set_curr_task(int cpu
, struct task_struct
*p
)
7390 #ifdef CONFIG_FAIR_GROUP_SCHED
7394 * distribute shares of all task groups among their schedulable entities,
7395 * to reflect load distribution across cpus.
7397 static int rebalance_shares(struct sched_domain
*sd
, int this_cpu
)
7399 struct cfs_rq
*cfs_rq
;
7400 struct rq
*rq
= cpu_rq(this_cpu
);
7401 cpumask_t sdspan
= sd
->span
;
7404 /* Walk thr' all the task groups that we have */
7405 for_each_leaf_cfs_rq(rq
, cfs_rq
) {
7407 unsigned long total_load
= 0, total_shares
;
7408 struct task_group
*tg
= cfs_rq
->tg
;
7410 /* Gather total task load of this group across cpus */
7411 for_each_cpu_mask(i
, sdspan
)
7412 total_load
+= tg
->cfs_rq
[i
]->load
.weight
;
7414 /* Nothing to do if this group has no load */
7419 * tg->shares represents the number of cpu shares the task group
7420 * is eligible to hold on a single cpu. On N cpus, it is
7421 * eligible to hold (N * tg->shares) number of cpu shares.
7423 total_shares
= tg
->shares
* cpus_weight(sdspan
);
7426 * redistribute total_shares across cpus as per the task load
7429 for_each_cpu_mask(i
, sdspan
) {
7430 unsigned long local_load
, local_shares
;
7432 local_load
= tg
->cfs_rq
[i
]->load
.weight
;
7433 local_shares
= (local_load
* total_shares
) / total_load
;
7435 local_shares
= MIN_GROUP_SHARES
;
7436 if (local_shares
== tg
->se
[i
]->load
.weight
)
7439 spin_lock_irq(&cpu_rq(i
)->lock
);
7440 set_se_shares(tg
->se
[i
], local_shares
);
7441 spin_unlock_irq(&cpu_rq(i
)->lock
);
7450 * How frequently should we rebalance_shares() across cpus?
7452 * The more frequently we rebalance shares, the more accurate is the fairness
7453 * of cpu bandwidth distribution between task groups. However higher frequency
7454 * also implies increased scheduling overhead.
7456 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7457 * consecutive calls to rebalance_shares() in the same sched domain.
7459 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7460 * consecutive calls to rebalance_shares() in the same sched domain.
7462 * These settings allows for the appropriate trade-off between accuracy of
7463 * fairness and the associated overhead.
7467 /* default: 8ms, units: milliseconds */
7468 const_debug
unsigned int sysctl_sched_min_bal_int_shares
= 8;
7470 /* default: 128ms, units: milliseconds */
7471 const_debug
unsigned int sysctl_sched_max_bal_int_shares
= 128;
7473 /* kernel thread that runs rebalance_shares() periodically */
7474 static int load_balance_monitor(void *unused
)
7476 unsigned int timeout
= sysctl_sched_min_bal_int_shares
;
7477 struct sched_param schedparm
;
7481 * We don't want this thread's execution to be limited by the shares
7482 * assigned to default group (init_task_group). Hence make it run
7483 * as a SCHED_RR RT task at the lowest priority.
7485 schedparm
.sched_priority
= 1;
7486 ret
= sched_setscheduler(current
, SCHED_RR
, &schedparm
);
7488 printk(KERN_ERR
"Couldn't set SCHED_RR policy for load balance"
7489 " monitor thread (error = %d) \n", ret
);
7491 while (!kthread_should_stop()) {
7492 int i
, cpu
, balanced
= 1;
7494 /* Prevent cpus going down or coming up */
7496 /* lockout changes to doms_cur[] array */
7499 * Enter a rcu read-side critical section to safely walk rq->sd
7500 * chain on various cpus and to walk task group list
7501 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7505 for (i
= 0; i
< ndoms_cur
; i
++) {
7506 cpumask_t cpumap
= doms_cur
[i
];
7507 struct sched_domain
*sd
= NULL
, *sd_prev
= NULL
;
7509 cpu
= first_cpu(cpumap
);
7511 /* Find the highest domain at which to balance shares */
7512 for_each_domain(cpu
, sd
) {
7513 if (!(sd
->flags
& SD_LOAD_BALANCE
))
7519 /* sd == NULL? No load balance reqd in this domain */
7523 balanced
&= rebalance_shares(sd
, cpu
);
7532 timeout
= sysctl_sched_min_bal_int_shares
;
7533 else if (timeout
< sysctl_sched_max_bal_int_shares
)
7536 msleep_interruptible(timeout
);
7541 #endif /* CONFIG_SMP */
7543 static void free_sched_group(struct task_group
*tg
)
7547 for_each_possible_cpu(i
) {
7549 kfree(tg
->cfs_rq
[i
]);
7553 kfree(tg
->rt_rq
[i
]);
7555 kfree(tg
->rt_se
[i
]);
7565 /* allocate runqueue etc for a new task group */
7566 struct task_group
*sched_create_group(void)
7568 struct task_group
*tg
;
7569 struct cfs_rq
*cfs_rq
;
7570 struct sched_entity
*se
;
7571 struct rt_rq
*rt_rq
;
7572 struct sched_rt_entity
*rt_se
;
7576 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
7578 return ERR_PTR(-ENOMEM
);
7580 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * NR_CPUS
, GFP_KERNEL
);
7583 tg
->se
= kzalloc(sizeof(se
) * NR_CPUS
, GFP_KERNEL
);
7586 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * NR_CPUS
, GFP_KERNEL
);
7589 tg
->rt_se
= kzalloc(sizeof(rt_se
) * NR_CPUS
, GFP_KERNEL
);
7593 tg
->shares
= NICE_0_LOAD
;
7594 tg
->rt_ratio
= 0; /* XXX */
7596 for_each_possible_cpu(i
) {
7599 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
),
7600 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
7604 se
= kmalloc_node(sizeof(struct sched_entity
),
7605 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
7609 rt_rq
= kmalloc_node(sizeof(struct rt_rq
),
7610 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
7614 rt_se
= kmalloc_node(sizeof(struct sched_rt_entity
),
7615 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
7619 init_tg_cfs_entry(rq
, tg
, cfs_rq
, se
, i
, 0);
7620 init_tg_rt_entry(rq
, tg
, rt_rq
, rt_se
, i
, 0);
7623 lock_task_group_list();
7624 for_each_possible_cpu(i
) {
7626 cfs_rq
= tg
->cfs_rq
[i
];
7627 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7628 rt_rq
= tg
->rt_rq
[i
];
7629 list_add_rcu(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
7631 list_add_rcu(&tg
->list
, &task_groups
);
7632 unlock_task_group_list();
7637 free_sched_group(tg
);
7638 return ERR_PTR(-ENOMEM
);
7641 /* rcu callback to free various structures associated with a task group */
7642 static void free_sched_group_rcu(struct rcu_head
*rhp
)
7644 /* now it should be safe to free those cfs_rqs */
7645 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
7648 /* Destroy runqueue etc associated with a task group */
7649 void sched_destroy_group(struct task_group
*tg
)
7651 struct cfs_rq
*cfs_rq
= NULL
;
7652 struct rt_rq
*rt_rq
= NULL
;
7655 lock_task_group_list();
7656 for_each_possible_cpu(i
) {
7657 cfs_rq
= tg
->cfs_rq
[i
];
7658 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
7659 rt_rq
= tg
->rt_rq
[i
];
7660 list_del_rcu(&rt_rq
->leaf_rt_rq_list
);
7662 list_del_rcu(&tg
->list
);
7663 unlock_task_group_list();
7667 /* wait for possible concurrent references to cfs_rqs complete */
7668 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
7671 /* change task's runqueue when it moves between groups.
7672 * The caller of this function should have put the task in its new group
7673 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7674 * reflect its new group.
7676 void sched_move_task(struct task_struct
*tsk
)
7679 unsigned long flags
;
7682 rq
= task_rq_lock(tsk
, &flags
);
7684 update_rq_clock(rq
);
7686 running
= task_current(rq
, tsk
);
7687 on_rq
= tsk
->se
.on_rq
;
7690 dequeue_task(rq
, tsk
, 0);
7691 if (unlikely(running
))
7692 tsk
->sched_class
->put_prev_task(rq
, tsk
);
7695 set_task_rq(tsk
, task_cpu(tsk
));
7698 if (unlikely(running
))
7699 tsk
->sched_class
->set_curr_task(rq
);
7700 enqueue_task(rq
, tsk
, 0);
7703 task_rq_unlock(rq
, &flags
);
7706 /* rq->lock to be locked by caller */
7707 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
7709 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
7710 struct rq
*rq
= cfs_rq
->rq
;
7714 shares
= MIN_GROUP_SHARES
;
7718 dequeue_entity(cfs_rq
, se
, 0);
7719 dec_cpu_load(rq
, se
->load
.weight
);
7722 se
->load
.weight
= shares
;
7723 se
->load
.inv_weight
= div64_64((1ULL<<32), shares
);
7726 enqueue_entity(cfs_rq
, se
, 0);
7727 inc_cpu_load(rq
, se
->load
.weight
);
7731 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
7734 struct cfs_rq
*cfs_rq
;
7737 lock_task_group_list();
7738 if (tg
->shares
== shares
)
7741 if (shares
< MIN_GROUP_SHARES
)
7742 shares
= MIN_GROUP_SHARES
;
7745 * Prevent any load balance activity (rebalance_shares,
7746 * load_balance_fair) from referring to this group first,
7747 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7749 for_each_possible_cpu(i
) {
7750 cfs_rq
= tg
->cfs_rq
[i
];
7751 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
7754 /* wait for any ongoing reference to this group to finish */
7755 synchronize_sched();
7758 * Now we are free to modify the group's share on each cpu
7759 * w/o tripping rebalance_share or load_balance_fair.
7761 tg
->shares
= shares
;
7762 for_each_possible_cpu(i
) {
7763 spin_lock_irq(&cpu_rq(i
)->lock
);
7764 set_se_shares(tg
->se
[i
], shares
);
7765 spin_unlock_irq(&cpu_rq(i
)->lock
);
7769 * Enable load balance activity on this group, by inserting it back on
7770 * each cpu's rq->leaf_cfs_rq_list.
7772 for_each_possible_cpu(i
) {
7774 cfs_rq
= tg
->cfs_rq
[i
];
7775 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7778 unlock_task_group_list();
7782 unsigned long sched_group_shares(struct task_group
*tg
)
7788 * Ensure the total rt_ratio <= sysctl_sched_rt_ratio
7790 int sched_group_set_rt_ratio(struct task_group
*tg
, unsigned long rt_ratio
)
7792 struct task_group
*tgi
;
7793 unsigned long total
= 0;
7796 list_for_each_entry_rcu(tgi
, &task_groups
, list
)
7797 total
+= tgi
->rt_ratio
;
7800 if (total
+ rt_ratio
- tg
->rt_ratio
> sysctl_sched_rt_ratio
)
7803 tg
->rt_ratio
= rt_ratio
;
7807 unsigned long sched_group_rt_ratio(struct task_group
*tg
)
7809 return tg
->rt_ratio
;
7812 #endif /* CONFIG_FAIR_GROUP_SCHED */
7814 #ifdef CONFIG_FAIR_CGROUP_SCHED
7816 /* return corresponding task_group object of a cgroup */
7817 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
7819 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
7820 struct task_group
, css
);
7823 static struct cgroup_subsys_state
*
7824 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
7826 struct task_group
*tg
;
7828 if (!cgrp
->parent
) {
7829 /* This is early initialization for the top cgroup */
7830 init_task_group
.css
.cgroup
= cgrp
;
7831 return &init_task_group
.css
;
7834 /* we support only 1-level deep hierarchical scheduler atm */
7835 if (cgrp
->parent
->parent
)
7836 return ERR_PTR(-EINVAL
);
7838 tg
= sched_create_group();
7840 return ERR_PTR(-ENOMEM
);
7842 /* Bind the cgroup to task_group object we just created */
7843 tg
->css
.cgroup
= cgrp
;
7849 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
7851 struct task_group
*tg
= cgroup_tg(cgrp
);
7853 sched_destroy_group(tg
);
7857 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
7858 struct task_struct
*tsk
)
7860 /* We don't support RT-tasks being in separate groups */
7861 if (tsk
->sched_class
!= &fair_sched_class
)
7868 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
7869 struct cgroup
*old_cont
, struct task_struct
*tsk
)
7871 sched_move_task(tsk
);
7874 static int cpu_shares_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
7877 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
7880 static u64
cpu_shares_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
7882 struct task_group
*tg
= cgroup_tg(cgrp
);
7884 return (u64
) tg
->shares
;
7887 static int cpu_rt_ratio_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
7890 return sched_group_set_rt_ratio(cgroup_tg(cgrp
), rt_ratio_val
);
7893 static u64
cpu_rt_ratio_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
7895 struct task_group
*tg
= cgroup_tg(cgrp
);
7897 return (u64
) tg
->rt_ratio
;
7900 static struct cftype cpu_files
[] = {
7903 .read_uint
= cpu_shares_read_uint
,
7904 .write_uint
= cpu_shares_write_uint
,
7908 .read_uint
= cpu_rt_ratio_read_uint
,
7909 .write_uint
= cpu_rt_ratio_write_uint
,
7913 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
7915 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
7918 struct cgroup_subsys cpu_cgroup_subsys
= {
7920 .create
= cpu_cgroup_create
,
7921 .destroy
= cpu_cgroup_destroy
,
7922 .can_attach
= cpu_cgroup_can_attach
,
7923 .attach
= cpu_cgroup_attach
,
7924 .populate
= cpu_cgroup_populate
,
7925 .subsys_id
= cpu_cgroup_subsys_id
,
7929 #endif /* CONFIG_FAIR_CGROUP_SCHED */
7931 #ifdef CONFIG_CGROUP_CPUACCT
7934 * CPU accounting code for task groups.
7936 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7937 * (balbir@in.ibm.com).
7940 /* track cpu usage of a group of tasks */
7942 struct cgroup_subsys_state css
;
7943 /* cpuusage holds pointer to a u64-type object on every cpu */
7947 struct cgroup_subsys cpuacct_subsys
;
7949 /* return cpu accounting group corresponding to this container */
7950 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cont
)
7952 return container_of(cgroup_subsys_state(cont
, cpuacct_subsys_id
),
7953 struct cpuacct
, css
);
7956 /* return cpu accounting group to which this task belongs */
7957 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
7959 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
7960 struct cpuacct
, css
);
7963 /* create a new cpu accounting group */
7964 static struct cgroup_subsys_state
*cpuacct_create(
7965 struct cgroup_subsys
*ss
, struct cgroup
*cont
)
7967 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
7970 return ERR_PTR(-ENOMEM
);
7972 ca
->cpuusage
= alloc_percpu(u64
);
7973 if (!ca
->cpuusage
) {
7975 return ERR_PTR(-ENOMEM
);
7981 /* destroy an existing cpu accounting group */
7983 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
7985 struct cpuacct
*ca
= cgroup_ca(cont
);
7987 free_percpu(ca
->cpuusage
);
7991 /* return total cpu usage (in nanoseconds) of a group */
7992 static u64
cpuusage_read(struct cgroup
*cont
, struct cftype
*cft
)
7994 struct cpuacct
*ca
= cgroup_ca(cont
);
7995 u64 totalcpuusage
= 0;
7998 for_each_possible_cpu(i
) {
7999 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
8002 * Take rq->lock to make 64-bit addition safe on 32-bit
8005 spin_lock_irq(&cpu_rq(i
)->lock
);
8006 totalcpuusage
+= *cpuusage
;
8007 spin_unlock_irq(&cpu_rq(i
)->lock
);
8010 return totalcpuusage
;
8013 static struct cftype files
[] = {
8016 .read_uint
= cpuusage_read
,
8020 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8022 return cgroup_add_files(cont
, ss
, files
, ARRAY_SIZE(files
));
8026 * charge this task's execution time to its accounting group.
8028 * called with rq->lock held.
8030 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
8034 if (!cpuacct_subsys
.active
)
8039 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, task_cpu(tsk
));
8041 *cpuusage
+= cputime
;
8045 struct cgroup_subsys cpuacct_subsys
= {
8047 .create
= cpuacct_create
,
8048 .destroy
= cpuacct_destroy
,
8049 .populate
= cpuacct_populate
,
8050 .subsys_id
= cpuacct_subsys_id
,
8052 #endif /* CONFIG_CGROUP_CPUACCT */