sata_nv: fix generic, nf2/3 detection regression
[linux-2.6/mini2440.git] / drivers / cpufreq / cpufreq_ondemand.c
blob2ab3c12b88afbd733fe5fd521a8dcc98540f8f3b
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
26 * dbs is used in this file as a shortform for demandbased switching
27 * It helps to keep variable names smaller, simpler
30 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
31 #define DEF_FREQUENCY_UP_THRESHOLD (80)
32 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
33 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
34 #define MIN_FREQUENCY_UP_THRESHOLD (11)
35 #define MAX_FREQUENCY_UP_THRESHOLD (100)
38 * The polling frequency of this governor depends on the capability of
39 * the processor. Default polling frequency is 1000 times the transition
40 * latency of the processor. The governor will work on any processor with
41 * transition latency <= 10mS, using appropriate sampling
42 * rate.
43 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
44 * this governor will not work.
45 * All times here are in uS.
47 static unsigned int def_sampling_rate;
48 #define MIN_SAMPLING_RATE_RATIO (2)
49 /* for correct statistics, we need at least 10 ticks between each measure */
50 #define MIN_STAT_SAMPLING_RATE \
51 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
52 #define MIN_SAMPLING_RATE \
53 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
54 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
55 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
56 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
58 static void do_dbs_timer(struct work_struct *work);
60 /* Sampling types */
61 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
63 struct cpu_dbs_info_s {
64 cputime64_t prev_cpu_idle;
65 cputime64_t prev_cpu_wall;
66 cputime64_t prev_cpu_nice;
67 struct cpufreq_policy *cur_policy;
68 struct delayed_work work;
69 struct cpufreq_frequency_table *freq_table;
70 unsigned int freq_lo;
71 unsigned int freq_lo_jiffies;
72 unsigned int freq_hi_jiffies;
73 int cpu;
74 unsigned int enable:1,
75 sample_type:1;
77 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
79 static unsigned int dbs_enable; /* number of CPUs using this policy */
82 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
83 * lock and dbs_mutex. cpu_hotplug lock should always be held before
84 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
85 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
86 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
87 * is recursive for the same process. -Venki
89 static DEFINE_MUTEX(dbs_mutex);
91 static struct workqueue_struct *kondemand_wq;
93 static struct dbs_tuners {
94 unsigned int sampling_rate;
95 unsigned int up_threshold;
96 unsigned int down_differential;
97 unsigned int ignore_nice;
98 unsigned int powersave_bias;
99 } dbs_tuners_ins = {
100 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
101 .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
102 .ignore_nice = 0,
103 .powersave_bias = 0,
106 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
107 cputime64_t *wall)
109 cputime64_t idle_time;
110 cputime64_t cur_wall_time;
111 cputime64_t busy_time;
113 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
114 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
115 kstat_cpu(cpu).cpustat.system);
117 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
118 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
119 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
121 if (!dbs_tuners_ins.ignore_nice) {
122 busy_time = cputime64_add(busy_time,
123 kstat_cpu(cpu).cpustat.nice);
126 idle_time = cputime64_sub(cur_wall_time, busy_time);
127 if (wall)
128 *wall = cur_wall_time;
130 return idle_time;
133 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
135 u64 idle_time = get_cpu_idle_time_us(cpu, wall);
137 if (idle_time == -1ULL)
138 return get_cpu_idle_time_jiffy(cpu, wall);
140 if (dbs_tuners_ins.ignore_nice) {
141 cputime64_t cur_nice;
142 unsigned long cur_nice_jiffies;
143 struct cpu_dbs_info_s *dbs_info;
145 dbs_info = &per_cpu(cpu_dbs_info, cpu);
146 cur_nice = cputime64_sub(kstat_cpu(cpu).cpustat.nice,
147 dbs_info->prev_cpu_nice);
149 * Assumption: nice time between sampling periods will be
150 * less than 2^32 jiffies for 32 bit sys
152 cur_nice_jiffies = (unsigned long)
153 cputime64_to_jiffies64(cur_nice);
154 dbs_info->prev_cpu_nice = kstat_cpu(cpu).cpustat.nice;
155 return idle_time + jiffies_to_usecs(cur_nice_jiffies);
157 return idle_time;
161 * Find right freq to be set now with powersave_bias on.
162 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
163 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
165 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
166 unsigned int freq_next,
167 unsigned int relation)
169 unsigned int freq_req, freq_reduc, freq_avg;
170 unsigned int freq_hi, freq_lo;
171 unsigned int index = 0;
172 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
173 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
175 if (!dbs_info->freq_table) {
176 dbs_info->freq_lo = 0;
177 dbs_info->freq_lo_jiffies = 0;
178 return freq_next;
181 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
182 relation, &index);
183 freq_req = dbs_info->freq_table[index].frequency;
184 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
185 freq_avg = freq_req - freq_reduc;
187 /* Find freq bounds for freq_avg in freq_table */
188 index = 0;
189 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
190 CPUFREQ_RELATION_H, &index);
191 freq_lo = dbs_info->freq_table[index].frequency;
192 index = 0;
193 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
194 CPUFREQ_RELATION_L, &index);
195 freq_hi = dbs_info->freq_table[index].frequency;
197 /* Find out how long we have to be in hi and lo freqs */
198 if (freq_hi == freq_lo) {
199 dbs_info->freq_lo = 0;
200 dbs_info->freq_lo_jiffies = 0;
201 return freq_lo;
203 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
204 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
205 jiffies_hi += ((freq_hi - freq_lo) / 2);
206 jiffies_hi /= (freq_hi - freq_lo);
207 jiffies_lo = jiffies_total - jiffies_hi;
208 dbs_info->freq_lo = freq_lo;
209 dbs_info->freq_lo_jiffies = jiffies_lo;
210 dbs_info->freq_hi_jiffies = jiffies_hi;
211 return freq_hi;
214 static void ondemand_powersave_bias_init(void)
216 int i;
217 for_each_online_cpu(i) {
218 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
219 dbs_info->freq_table = cpufreq_frequency_get_table(i);
220 dbs_info->freq_lo = 0;
224 /************************** sysfs interface ************************/
225 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
227 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
230 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
232 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
235 #define define_one_ro(_name) \
236 static struct freq_attr _name = \
237 __ATTR(_name, 0444, show_##_name, NULL)
239 define_one_ro(sampling_rate_max);
240 define_one_ro(sampling_rate_min);
242 /* cpufreq_ondemand Governor Tunables */
243 #define show_one(file_name, object) \
244 static ssize_t show_##file_name \
245 (struct cpufreq_policy *unused, char *buf) \
247 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
249 show_one(sampling_rate, sampling_rate);
250 show_one(up_threshold, up_threshold);
251 show_one(ignore_nice_load, ignore_nice);
252 show_one(powersave_bias, powersave_bias);
254 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
255 const char *buf, size_t count)
257 unsigned int input;
258 int ret;
259 ret = sscanf(buf, "%u", &input);
261 mutex_lock(&dbs_mutex);
262 if (ret != 1 || input > MAX_SAMPLING_RATE
263 || input < MIN_SAMPLING_RATE) {
264 mutex_unlock(&dbs_mutex);
265 return -EINVAL;
268 dbs_tuners_ins.sampling_rate = input;
269 mutex_unlock(&dbs_mutex);
271 return count;
274 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
275 const char *buf, size_t count)
277 unsigned int input;
278 int ret;
279 ret = sscanf(buf, "%u", &input);
281 mutex_lock(&dbs_mutex);
282 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
283 input < MIN_FREQUENCY_UP_THRESHOLD) {
284 mutex_unlock(&dbs_mutex);
285 return -EINVAL;
288 dbs_tuners_ins.up_threshold = input;
289 mutex_unlock(&dbs_mutex);
291 return count;
294 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
295 const char *buf, size_t count)
297 unsigned int input;
298 int ret;
300 unsigned int j;
302 ret = sscanf(buf, "%u", &input);
303 if ( ret != 1 )
304 return -EINVAL;
306 if ( input > 1 )
307 input = 1;
309 mutex_lock(&dbs_mutex);
310 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
311 mutex_unlock(&dbs_mutex);
312 return count;
314 dbs_tuners_ins.ignore_nice = input;
316 /* we need to re-evaluate prev_cpu_idle */
317 for_each_online_cpu(j) {
318 struct cpu_dbs_info_s *dbs_info;
319 dbs_info = &per_cpu(cpu_dbs_info, j);
320 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
321 &dbs_info->prev_cpu_wall);
323 mutex_unlock(&dbs_mutex);
325 return count;
328 static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
329 const char *buf, size_t count)
331 unsigned int input;
332 int ret;
333 ret = sscanf(buf, "%u", &input);
335 if (ret != 1)
336 return -EINVAL;
338 if (input > 1000)
339 input = 1000;
341 mutex_lock(&dbs_mutex);
342 dbs_tuners_ins.powersave_bias = input;
343 ondemand_powersave_bias_init();
344 mutex_unlock(&dbs_mutex);
346 return count;
349 #define define_one_rw(_name) \
350 static struct freq_attr _name = \
351 __ATTR(_name, 0644, show_##_name, store_##_name)
353 define_one_rw(sampling_rate);
354 define_one_rw(up_threshold);
355 define_one_rw(ignore_nice_load);
356 define_one_rw(powersave_bias);
358 static struct attribute * dbs_attributes[] = {
359 &sampling_rate_max.attr,
360 &sampling_rate_min.attr,
361 &sampling_rate.attr,
362 &up_threshold.attr,
363 &ignore_nice_load.attr,
364 &powersave_bias.attr,
365 NULL
368 static struct attribute_group dbs_attr_group = {
369 .attrs = dbs_attributes,
370 .name = "ondemand",
373 /************************** sysfs end ************************/
375 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
377 unsigned int max_load_freq;
379 struct cpufreq_policy *policy;
380 unsigned int j;
382 if (!this_dbs_info->enable)
383 return;
385 this_dbs_info->freq_lo = 0;
386 policy = this_dbs_info->cur_policy;
389 * Every sampling_rate, we check, if current idle time is less
390 * than 20% (default), then we try to increase frequency
391 * Every sampling_rate, we look for a the lowest
392 * frequency which can sustain the load while keeping idle time over
393 * 30%. If such a frequency exist, we try to decrease to this frequency.
395 * Any frequency increase takes it to the maximum frequency.
396 * Frequency reduction happens at minimum steps of
397 * 5% (default) of current frequency
400 /* Get Absolute Load - in terms of freq */
401 max_load_freq = 0;
403 for_each_cpu_mask_nr(j, policy->cpus) {
404 struct cpu_dbs_info_s *j_dbs_info;
405 cputime64_t cur_wall_time, cur_idle_time;
406 unsigned int idle_time, wall_time;
407 unsigned int load, load_freq;
408 int freq_avg;
410 j_dbs_info = &per_cpu(cpu_dbs_info, j);
412 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
414 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
415 j_dbs_info->prev_cpu_wall);
416 j_dbs_info->prev_cpu_wall = cur_wall_time;
418 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
419 j_dbs_info->prev_cpu_idle);
420 j_dbs_info->prev_cpu_idle = cur_idle_time;
422 if (unlikely(!wall_time || wall_time < idle_time))
423 continue;
425 load = 100 * (wall_time - idle_time) / wall_time;
427 freq_avg = __cpufreq_driver_getavg(policy, j);
428 if (freq_avg <= 0)
429 freq_avg = policy->cur;
431 load_freq = load * freq_avg;
432 if (load_freq > max_load_freq)
433 max_load_freq = load_freq;
436 /* Check for frequency increase */
437 if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
438 /* if we are already at full speed then break out early */
439 if (!dbs_tuners_ins.powersave_bias) {
440 if (policy->cur == policy->max)
441 return;
443 __cpufreq_driver_target(policy, policy->max,
444 CPUFREQ_RELATION_H);
445 } else {
446 int freq = powersave_bias_target(policy, policy->max,
447 CPUFREQ_RELATION_H);
448 __cpufreq_driver_target(policy, freq,
449 CPUFREQ_RELATION_L);
451 return;
454 /* Check for frequency decrease */
455 /* if we cannot reduce the frequency anymore, break out early */
456 if (policy->cur == policy->min)
457 return;
460 * The optimal frequency is the frequency that is the lowest that
461 * can support the current CPU usage without triggering the up
462 * policy. To be safe, we focus 10 points under the threshold.
464 if (max_load_freq <
465 (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
466 policy->cur) {
467 unsigned int freq_next;
468 freq_next = max_load_freq /
469 (dbs_tuners_ins.up_threshold -
470 dbs_tuners_ins.down_differential);
472 if (!dbs_tuners_ins.powersave_bias) {
473 __cpufreq_driver_target(policy, freq_next,
474 CPUFREQ_RELATION_L);
475 } else {
476 int freq = powersave_bias_target(policy, freq_next,
477 CPUFREQ_RELATION_L);
478 __cpufreq_driver_target(policy, freq,
479 CPUFREQ_RELATION_L);
484 static void do_dbs_timer(struct work_struct *work)
486 struct cpu_dbs_info_s *dbs_info =
487 container_of(work, struct cpu_dbs_info_s, work.work);
488 unsigned int cpu = dbs_info->cpu;
489 int sample_type = dbs_info->sample_type;
491 /* We want all CPUs to do sampling nearly on same jiffy */
492 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
494 delay -= jiffies % delay;
496 if (lock_policy_rwsem_write(cpu) < 0)
497 return;
499 if (!dbs_info->enable) {
500 unlock_policy_rwsem_write(cpu);
501 return;
504 /* Common NORMAL_SAMPLE setup */
505 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
506 if (!dbs_tuners_ins.powersave_bias ||
507 sample_type == DBS_NORMAL_SAMPLE) {
508 dbs_check_cpu(dbs_info);
509 if (dbs_info->freq_lo) {
510 /* Setup timer for SUB_SAMPLE */
511 dbs_info->sample_type = DBS_SUB_SAMPLE;
512 delay = dbs_info->freq_hi_jiffies;
514 } else {
515 __cpufreq_driver_target(dbs_info->cur_policy,
516 dbs_info->freq_lo,
517 CPUFREQ_RELATION_H);
519 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
520 unlock_policy_rwsem_write(cpu);
523 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
525 /* We want all CPUs to do sampling nearly on same jiffy */
526 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
527 delay -= jiffies % delay;
529 dbs_info->enable = 1;
530 ondemand_powersave_bias_init();
531 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
532 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
533 queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
534 delay);
537 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
539 dbs_info->enable = 0;
540 cancel_delayed_work(&dbs_info->work);
543 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
544 unsigned int event)
546 unsigned int cpu = policy->cpu;
547 struct cpu_dbs_info_s *this_dbs_info;
548 unsigned int j;
549 int rc;
551 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
553 switch (event) {
554 case CPUFREQ_GOV_START:
555 if ((!cpu_online(cpu)) || (!policy->cur))
556 return -EINVAL;
558 if (this_dbs_info->enable) /* Already enabled */
559 break;
561 mutex_lock(&dbs_mutex);
562 dbs_enable++;
564 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
565 if (rc) {
566 dbs_enable--;
567 mutex_unlock(&dbs_mutex);
568 return rc;
571 for_each_cpu_mask_nr(j, policy->cpus) {
572 struct cpu_dbs_info_s *j_dbs_info;
573 j_dbs_info = &per_cpu(cpu_dbs_info, j);
574 j_dbs_info->cur_policy = policy;
576 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
577 &j_dbs_info->prev_cpu_wall);
579 this_dbs_info->cpu = cpu;
581 * Start the timerschedule work, when this governor
582 * is used for first time
584 if (dbs_enable == 1) {
585 unsigned int latency;
586 /* policy latency is in nS. Convert it to uS first */
587 latency = policy->cpuinfo.transition_latency / 1000;
588 if (latency == 0)
589 latency = 1;
591 def_sampling_rate = latency *
592 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
594 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
595 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
597 dbs_tuners_ins.sampling_rate = def_sampling_rate;
599 dbs_timer_init(this_dbs_info);
601 mutex_unlock(&dbs_mutex);
602 break;
604 case CPUFREQ_GOV_STOP:
605 mutex_lock(&dbs_mutex);
606 dbs_timer_exit(this_dbs_info);
607 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
608 dbs_enable--;
609 mutex_unlock(&dbs_mutex);
611 break;
613 case CPUFREQ_GOV_LIMITS:
614 mutex_lock(&dbs_mutex);
615 if (policy->max < this_dbs_info->cur_policy->cur)
616 __cpufreq_driver_target(this_dbs_info->cur_policy,
617 policy->max,
618 CPUFREQ_RELATION_H);
619 else if (policy->min > this_dbs_info->cur_policy->cur)
620 __cpufreq_driver_target(this_dbs_info->cur_policy,
621 policy->min,
622 CPUFREQ_RELATION_L);
623 mutex_unlock(&dbs_mutex);
624 break;
626 return 0;
629 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
630 static
631 #endif
632 struct cpufreq_governor cpufreq_gov_ondemand = {
633 .name = "ondemand",
634 .governor = cpufreq_governor_dbs,
635 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
636 .owner = THIS_MODULE,
639 static int __init cpufreq_gov_dbs_init(void)
641 int err;
642 cputime64_t wall;
643 u64 idle_time;
644 int cpu = get_cpu();
646 idle_time = get_cpu_idle_time_us(cpu, &wall);
647 put_cpu();
648 if (idle_time != -1ULL) {
649 /* Idle micro accounting is supported. Use finer thresholds */
650 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
651 dbs_tuners_ins.down_differential =
652 MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
655 kondemand_wq = create_workqueue("kondemand");
656 if (!kondemand_wq) {
657 printk(KERN_ERR "Creation of kondemand failed\n");
658 return -EFAULT;
660 err = cpufreq_register_governor(&cpufreq_gov_ondemand);
661 if (err)
662 destroy_workqueue(kondemand_wq);
664 return err;
667 static void __exit cpufreq_gov_dbs_exit(void)
669 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
670 destroy_workqueue(kondemand_wq);
674 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
675 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
676 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
677 "Low Latency Frequency Transition capable processors");
678 MODULE_LICENSE("GPL");
680 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
681 fs_initcall(cpufreq_gov_dbs_init);
682 #else
683 module_init(cpufreq_gov_dbs_init);
684 #endif
685 module_exit(cpufreq_gov_dbs_exit);