Merge branch 'x86/urgent' into x86/core
[linux-2.6/mini2440.git] / arch / x86 / kernel / process_32.c
blob646da41a620a6e9a8d24b398a5110084a80039b2
1 /*
2 * Copyright (C) 1995 Linus Torvalds
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
8 /*
9 * This file handles the architecture-dependent parts of process handling..
12 #include <stdarg.h>
14 #include <linux/stackprotector.h>
15 #include <linux/cpu.h>
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/elfcore.h>
22 #include <linux/smp.h>
23 #include <linux/stddef.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
26 #include <linux/user.h>
27 #include <linux/interrupt.h>
28 #include <linux/utsname.h>
29 #include <linux/delay.h>
30 #include <linux/reboot.h>
31 #include <linux/init.h>
32 #include <linux/mc146818rtc.h>
33 #include <linux/module.h>
34 #include <linux/kallsyms.h>
35 #include <linux/ptrace.h>
36 #include <linux/random.h>
37 #include <linux/personality.h>
38 #include <linux/tick.h>
39 #include <linux/percpu.h>
40 #include <linux/prctl.h>
41 #include <linux/dmi.h>
42 #include <linux/ftrace.h>
43 #include <linux/uaccess.h>
44 #include <linux/io.h>
45 #include <linux/kdebug.h>
47 #include <asm/pgtable.h>
48 #include <asm/system.h>
49 #include <asm/ldt.h>
50 #include <asm/processor.h>
51 #include <asm/i387.h>
52 #include <asm/desc.h>
53 #ifdef CONFIG_MATH_EMULATION
54 #include <asm/math_emu.h>
55 #endif
57 #include <linux/err.h>
59 #include <asm/tlbflush.h>
60 #include <asm/cpu.h>
61 #include <asm/idle.h>
62 #include <asm/syscalls.h>
63 #include <asm/ds.h>
65 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
67 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
68 EXPORT_PER_CPU_SYMBOL(current_task);
71 * Return saved PC of a blocked thread.
73 unsigned long thread_saved_pc(struct task_struct *tsk)
75 return ((unsigned long *)tsk->thread.sp)[3];
78 #ifndef CONFIG_SMP
79 static inline void play_dead(void)
81 BUG();
83 #endif
86 * The idle thread. There's no useful work to be
87 * done, so just try to conserve power and have a
88 * low exit latency (ie sit in a loop waiting for
89 * somebody to say that they'd like to reschedule)
91 void cpu_idle(void)
93 int cpu = smp_processor_id();
96 * If we're the non-boot CPU, nothing set the stack canary up
97 * for us. CPU0 already has it initialized but no harm in
98 * doing it again. This is a good place for updating it, as
99 * we wont ever return from this function (so the invalid
100 * canaries already on the stack wont ever trigger).
102 boot_init_stack_canary();
104 current_thread_info()->status |= TS_POLLING;
106 /* endless idle loop with no priority at all */
107 while (1) {
108 tick_nohz_stop_sched_tick(1);
109 while (!need_resched()) {
111 check_pgt_cache();
112 rmb();
114 if (cpu_is_offline(cpu))
115 play_dead();
117 local_irq_disable();
118 /* Don't trace irqs off for idle */
119 stop_critical_timings();
120 pm_idle();
121 start_critical_timings();
123 tick_nohz_restart_sched_tick();
124 preempt_enable_no_resched();
125 schedule();
126 preempt_disable();
130 void __show_regs(struct pt_regs *regs, int all)
132 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
133 unsigned long d0, d1, d2, d3, d6, d7;
134 unsigned long sp;
135 unsigned short ss, gs;
136 const char *board;
138 if (user_mode_vm(regs)) {
139 sp = regs->sp;
140 ss = regs->ss & 0xffff;
141 gs = get_user_gs(regs);
142 } else {
143 sp = (unsigned long) (&regs->sp);
144 savesegment(ss, ss);
145 savesegment(gs, gs);
148 printk("\n");
150 board = dmi_get_system_info(DMI_PRODUCT_NAME);
151 if (!board)
152 board = "";
153 printk("Pid: %d, comm: %s %s (%s %.*s) %s\n",
154 task_pid_nr(current), current->comm,
155 print_tainted(), init_utsname()->release,
156 (int)strcspn(init_utsname()->version, " "),
157 init_utsname()->version, board);
159 printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
160 (u16)regs->cs, regs->ip, regs->flags,
161 smp_processor_id());
162 print_symbol("EIP is at %s\n", regs->ip);
164 printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
165 regs->ax, regs->bx, regs->cx, regs->dx);
166 printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
167 regs->si, regs->di, regs->bp, sp);
168 printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
169 (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
171 if (!all)
172 return;
174 cr0 = read_cr0();
175 cr2 = read_cr2();
176 cr3 = read_cr3();
177 cr4 = read_cr4_safe();
178 printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
179 cr0, cr2, cr3, cr4);
181 get_debugreg(d0, 0);
182 get_debugreg(d1, 1);
183 get_debugreg(d2, 2);
184 get_debugreg(d3, 3);
185 printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
186 d0, d1, d2, d3);
188 get_debugreg(d6, 6);
189 get_debugreg(d7, 7);
190 printk("DR6: %08lx DR7: %08lx\n",
191 d6, d7);
194 void show_regs(struct pt_regs *regs)
196 __show_regs(regs, 1);
197 show_trace(NULL, regs, &regs->sp, regs->bp);
201 * This gets run with %bx containing the
202 * function to call, and %dx containing
203 * the "args".
205 extern void kernel_thread_helper(void);
208 * Create a kernel thread
210 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
212 struct pt_regs regs;
214 memset(&regs, 0, sizeof(regs));
216 regs.bx = (unsigned long) fn;
217 regs.dx = (unsigned long) arg;
219 regs.ds = __USER_DS;
220 regs.es = __USER_DS;
221 regs.fs = __KERNEL_PERCPU;
222 regs.gs = __KERNEL_STACK_CANARY;
223 regs.orig_ax = -1;
224 regs.ip = (unsigned long) kernel_thread_helper;
225 regs.cs = __KERNEL_CS | get_kernel_rpl();
226 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
228 /* Ok, create the new process.. */
229 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
231 EXPORT_SYMBOL(kernel_thread);
234 * Free current thread data structures etc..
236 void exit_thread(void)
238 /* The process may have allocated an io port bitmap... nuke it. */
239 if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
240 struct task_struct *tsk = current;
241 struct thread_struct *t = &tsk->thread;
242 int cpu = get_cpu();
243 struct tss_struct *tss = &per_cpu(init_tss, cpu);
245 kfree(t->io_bitmap_ptr);
246 t->io_bitmap_ptr = NULL;
247 clear_thread_flag(TIF_IO_BITMAP);
249 * Careful, clear this in the TSS too:
251 memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
252 t->io_bitmap_max = 0;
253 tss->io_bitmap_owner = NULL;
254 tss->io_bitmap_max = 0;
255 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
256 put_cpu();
259 ds_exit_thread(current);
262 void flush_thread(void)
264 struct task_struct *tsk = current;
266 tsk->thread.debugreg0 = 0;
267 tsk->thread.debugreg1 = 0;
268 tsk->thread.debugreg2 = 0;
269 tsk->thread.debugreg3 = 0;
270 tsk->thread.debugreg6 = 0;
271 tsk->thread.debugreg7 = 0;
272 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
273 clear_tsk_thread_flag(tsk, TIF_DEBUG);
275 * Forget coprocessor state..
277 tsk->fpu_counter = 0;
278 clear_fpu(tsk);
279 clear_used_math();
282 void release_thread(struct task_struct *dead_task)
284 BUG_ON(dead_task->mm);
285 release_vm86_irqs(dead_task);
289 * This gets called before we allocate a new thread and copy
290 * the current task into it.
292 void prepare_to_copy(struct task_struct *tsk)
294 unlazy_fpu(tsk);
297 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
298 unsigned long unused,
299 struct task_struct *p, struct pt_regs *regs)
301 struct pt_regs *childregs;
302 struct task_struct *tsk;
303 int err;
305 childregs = task_pt_regs(p);
306 *childregs = *regs;
307 childregs->ax = 0;
308 childregs->sp = sp;
310 p->thread.sp = (unsigned long) childregs;
311 p->thread.sp0 = (unsigned long) (childregs+1);
313 p->thread.ip = (unsigned long) ret_from_fork;
315 task_user_gs(p) = get_user_gs(regs);
317 tsk = current;
318 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
319 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
320 IO_BITMAP_BYTES, GFP_KERNEL);
321 if (!p->thread.io_bitmap_ptr) {
322 p->thread.io_bitmap_max = 0;
323 return -ENOMEM;
325 set_tsk_thread_flag(p, TIF_IO_BITMAP);
328 err = 0;
331 * Set a new TLS for the child thread?
333 if (clone_flags & CLONE_SETTLS)
334 err = do_set_thread_area(p, -1,
335 (struct user_desc __user *)childregs->si, 0);
337 if (err && p->thread.io_bitmap_ptr) {
338 kfree(p->thread.io_bitmap_ptr);
339 p->thread.io_bitmap_max = 0;
342 ds_copy_thread(p, current);
344 clear_tsk_thread_flag(p, TIF_DEBUGCTLMSR);
345 p->thread.debugctlmsr = 0;
347 return err;
350 void
351 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
353 set_user_gs(regs, 0);
354 regs->fs = 0;
355 set_fs(USER_DS);
356 regs->ds = __USER_DS;
357 regs->es = __USER_DS;
358 regs->ss = __USER_DS;
359 regs->cs = __USER_CS;
360 regs->ip = new_ip;
361 regs->sp = new_sp;
363 * Free the old FP and other extended state
365 free_thread_xstate(current);
367 EXPORT_SYMBOL_GPL(start_thread);
369 static void hard_disable_TSC(void)
371 write_cr4(read_cr4() | X86_CR4_TSD);
374 void disable_TSC(void)
376 preempt_disable();
377 if (!test_and_set_thread_flag(TIF_NOTSC))
379 * Must flip the CPU state synchronously with
380 * TIF_NOTSC in the current running context.
382 hard_disable_TSC();
383 preempt_enable();
386 static void hard_enable_TSC(void)
388 write_cr4(read_cr4() & ~X86_CR4_TSD);
391 static void enable_TSC(void)
393 preempt_disable();
394 if (test_and_clear_thread_flag(TIF_NOTSC))
396 * Must flip the CPU state synchronously with
397 * TIF_NOTSC in the current running context.
399 hard_enable_TSC();
400 preempt_enable();
403 int get_tsc_mode(unsigned long adr)
405 unsigned int val;
407 if (test_thread_flag(TIF_NOTSC))
408 val = PR_TSC_SIGSEGV;
409 else
410 val = PR_TSC_ENABLE;
412 return put_user(val, (unsigned int __user *)adr);
415 int set_tsc_mode(unsigned int val)
417 if (val == PR_TSC_SIGSEGV)
418 disable_TSC();
419 else if (val == PR_TSC_ENABLE)
420 enable_TSC();
421 else
422 return -EINVAL;
424 return 0;
427 static noinline void
428 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
429 struct tss_struct *tss)
431 struct thread_struct *prev, *next;
433 prev = &prev_p->thread;
434 next = &next_p->thread;
436 if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
437 test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
438 ds_switch_to(prev_p, next_p);
439 else if (next->debugctlmsr != prev->debugctlmsr)
440 update_debugctlmsr(next->debugctlmsr);
442 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
443 set_debugreg(next->debugreg0, 0);
444 set_debugreg(next->debugreg1, 1);
445 set_debugreg(next->debugreg2, 2);
446 set_debugreg(next->debugreg3, 3);
447 /* no 4 and 5 */
448 set_debugreg(next->debugreg6, 6);
449 set_debugreg(next->debugreg7, 7);
452 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
453 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
454 /* prev and next are different */
455 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
456 hard_disable_TSC();
457 else
458 hard_enable_TSC();
461 if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
463 * Disable the bitmap via an invalid offset. We still cache
464 * the previous bitmap owner and the IO bitmap contents:
466 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
467 return;
470 if (likely(next == tss->io_bitmap_owner)) {
472 * Previous owner of the bitmap (hence the bitmap content)
473 * matches the next task, we dont have to do anything but
474 * to set a valid offset in the TSS:
476 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
477 return;
480 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
481 * and we let the task to get a GPF in case an I/O instruction
482 * is performed. The handler of the GPF will verify that the
483 * faulting task has a valid I/O bitmap and, it true, does the
484 * real copy and restart the instruction. This will save us
485 * redundant copies when the currently switched task does not
486 * perform any I/O during its timeslice.
488 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
492 * switch_to(x,yn) should switch tasks from x to y.
494 * We fsave/fwait so that an exception goes off at the right time
495 * (as a call from the fsave or fwait in effect) rather than to
496 * the wrong process. Lazy FP saving no longer makes any sense
497 * with modern CPU's, and this simplifies a lot of things (SMP
498 * and UP become the same).
500 * NOTE! We used to use the x86 hardware context switching. The
501 * reason for not using it any more becomes apparent when you
502 * try to recover gracefully from saved state that is no longer
503 * valid (stale segment register values in particular). With the
504 * hardware task-switch, there is no way to fix up bad state in
505 * a reasonable manner.
507 * The fact that Intel documents the hardware task-switching to
508 * be slow is a fairly red herring - this code is not noticeably
509 * faster. However, there _is_ some room for improvement here,
510 * so the performance issues may eventually be a valid point.
511 * More important, however, is the fact that this allows us much
512 * more flexibility.
514 * The return value (in %ax) will be the "prev" task after
515 * the task-switch, and shows up in ret_from_fork in entry.S,
516 * for example.
518 __notrace_funcgraph struct task_struct *
519 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
521 struct thread_struct *prev = &prev_p->thread,
522 *next = &next_p->thread;
523 int cpu = smp_processor_id();
524 struct tss_struct *tss = &per_cpu(init_tss, cpu);
526 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
528 __unlazy_fpu(prev_p);
531 /* we're going to use this soon, after a few expensive things */
532 if (next_p->fpu_counter > 5)
533 prefetch(next->xstate);
536 * Reload esp0.
538 load_sp0(tss, next);
541 * Save away %gs. No need to save %fs, as it was saved on the
542 * stack on entry. No need to save %es and %ds, as those are
543 * always kernel segments while inside the kernel. Doing this
544 * before setting the new TLS descriptors avoids the situation
545 * where we temporarily have non-reloadable segments in %fs
546 * and %gs. This could be an issue if the NMI handler ever
547 * used %fs or %gs (it does not today), or if the kernel is
548 * running inside of a hypervisor layer.
550 lazy_save_gs(prev->gs);
553 * Load the per-thread Thread-Local Storage descriptor.
555 load_TLS(next, cpu);
558 * Restore IOPL if needed. In normal use, the flags restore
559 * in the switch assembly will handle this. But if the kernel
560 * is running virtualized at a non-zero CPL, the popf will
561 * not restore flags, so it must be done in a separate step.
563 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
564 set_iopl_mask(next->iopl);
567 * Now maybe handle debug registers and/or IO bitmaps
569 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
570 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
571 __switch_to_xtra(prev_p, next_p, tss);
574 * Leave lazy mode, flushing any hypercalls made here.
575 * This must be done before restoring TLS segments so
576 * the GDT and LDT are properly updated, and must be
577 * done before math_state_restore, so the TS bit is up
578 * to date.
580 arch_leave_lazy_cpu_mode();
582 /* If the task has used fpu the last 5 timeslices, just do a full
583 * restore of the math state immediately to avoid the trap; the
584 * chances of needing FPU soon are obviously high now
586 * tsk_used_math() checks prevent calling math_state_restore(),
587 * which can sleep in the case of !tsk_used_math()
589 if (tsk_used_math(next_p) && next_p->fpu_counter > 5)
590 math_state_restore();
593 * Restore %gs if needed (which is common)
595 if (prev->gs | next->gs)
596 lazy_load_gs(next->gs);
598 percpu_write(current_task, next_p);
600 return prev_p;
603 int sys_fork(struct pt_regs *regs)
605 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
608 int sys_clone(struct pt_regs *regs)
610 unsigned long clone_flags;
611 unsigned long newsp;
612 int __user *parent_tidptr, *child_tidptr;
614 clone_flags = regs->bx;
615 newsp = regs->cx;
616 parent_tidptr = (int __user *)regs->dx;
617 child_tidptr = (int __user *)regs->di;
618 if (!newsp)
619 newsp = regs->sp;
620 return do_fork(clone_flags, newsp, regs, 0, parent_tidptr, child_tidptr);
624 * This is trivial, and on the face of it looks like it
625 * could equally well be done in user mode.
627 * Not so, for quite unobvious reasons - register pressure.
628 * In user mode vfork() cannot have a stack frame, and if
629 * done by calling the "clone()" system call directly, you
630 * do not have enough call-clobbered registers to hold all
631 * the information you need.
633 int sys_vfork(struct pt_regs *regs)
635 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0, NULL, NULL);
639 * sys_execve() executes a new program.
641 int sys_execve(struct pt_regs *regs)
643 int error;
644 char *filename;
646 filename = getname((char __user *) regs->bx);
647 error = PTR_ERR(filename);
648 if (IS_ERR(filename))
649 goto out;
650 error = do_execve(filename,
651 (char __user * __user *) regs->cx,
652 (char __user * __user *) regs->dx,
653 regs);
654 if (error == 0) {
655 /* Make sure we don't return using sysenter.. */
656 set_thread_flag(TIF_IRET);
658 putname(filename);
659 out:
660 return error;
663 #define top_esp (THREAD_SIZE - sizeof(unsigned long))
664 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
666 unsigned long get_wchan(struct task_struct *p)
668 unsigned long bp, sp, ip;
669 unsigned long stack_page;
670 int count = 0;
671 if (!p || p == current || p->state == TASK_RUNNING)
672 return 0;
673 stack_page = (unsigned long)task_stack_page(p);
674 sp = p->thread.sp;
675 if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
676 return 0;
677 /* include/asm-i386/system.h:switch_to() pushes bp last. */
678 bp = *(unsigned long *) sp;
679 do {
680 if (bp < stack_page || bp > top_ebp+stack_page)
681 return 0;
682 ip = *(unsigned long *) (bp+4);
683 if (!in_sched_functions(ip))
684 return ip;
685 bp = *(unsigned long *) bp;
686 } while (count++ < 16);
687 return 0;
690 unsigned long arch_align_stack(unsigned long sp)
692 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
693 sp -= get_random_int() % 8192;
694 return sp & ~0xf;
697 unsigned long arch_randomize_brk(struct mm_struct *mm)
699 unsigned long range_end = mm->brk + 0x02000000;
700 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;