[PATCH] pktcdvd: Remove useless printk statements
[linux-2.6/mini2440.git] / drivers / block / pktcdvd.c
blobfb08ae6de403d34abc0a185bece6e3a289a4ecbb
1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
5 * May be copied or modified under the terms of the GNU General Public
6 * License. See linux/COPYING for more information.
8 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
9 * DVD-RAM devices.
11 * Theory of operation:
13 * At the lowest level, there is the standard driver for the CD/DVD device,
14 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
15 * but it doesn't know anything about the special restrictions that apply to
16 * packet writing. One restriction is that write requests must be aligned to
17 * packet boundaries on the physical media, and the size of a write request
18 * must be equal to the packet size. Another restriction is that a
19 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
20 * command, if the previous command was a write.
22 * The purpose of the packet writing driver is to hide these restrictions from
23 * higher layers, such as file systems, and present a block device that can be
24 * randomly read and written using 2kB-sized blocks.
26 * The lowest layer in the packet writing driver is the packet I/O scheduler.
27 * Its data is defined by the struct packet_iosched and includes two bio
28 * queues with pending read and write requests. These queues are processed
29 * by the pkt_iosched_process_queue() function. The write requests in this
30 * queue are already properly aligned and sized. This layer is responsible for
31 * issuing the flush cache commands and scheduling the I/O in a good order.
33 * The next layer transforms unaligned write requests to aligned writes. This
34 * transformation requires reading missing pieces of data from the underlying
35 * block device, assembling the pieces to full packets and queuing them to the
36 * packet I/O scheduler.
38 * At the top layer there is a custom make_request_fn function that forwards
39 * read requests directly to the iosched queue and puts write requests in the
40 * unaligned write queue. A kernel thread performs the necessary read
41 * gathering to convert the unaligned writes to aligned writes and then feeds
42 * them to the packet I/O scheduler.
44 *************************************************************************/
46 #include <linux/pktcdvd.h>
47 #include <linux/config.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/kthread.h>
52 #include <linux/errno.h>
53 #include <linux/spinlock.h>
54 #include <linux/file.h>
55 #include <linux/proc_fs.h>
56 #include <linux/seq_file.h>
57 #include <linux/miscdevice.h>
58 #include <linux/suspend.h>
59 #include <scsi/scsi_cmnd.h>
60 #include <scsi/scsi_ioctl.h>
61 #include <scsi/scsi.h>
63 #include <asm/uaccess.h>
65 #if PACKET_DEBUG
66 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
67 #else
68 #define DPRINTK(fmt, args...)
69 #endif
71 #if PACKET_DEBUG > 1
72 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
73 #else
74 #define VPRINTK(fmt, args...)
75 #endif
77 #define MAX_SPEED 0xffff
79 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
81 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
82 static struct proc_dir_entry *pkt_proc;
83 static int pkt_major;
84 static struct semaphore ctl_mutex; /* Serialize open/close/setup/teardown */
85 static mempool_t *psd_pool;
88 static void pkt_bio_finished(struct pktcdvd_device *pd)
90 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
91 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
92 VPRINTK("pktcdvd: queue empty\n");
93 atomic_set(&pd->iosched.attention, 1);
94 wake_up(&pd->wqueue);
98 static void pkt_bio_destructor(struct bio *bio)
100 kfree(bio->bi_io_vec);
101 kfree(bio);
104 static struct bio *pkt_bio_alloc(int nr_iovecs)
106 struct bio_vec *bvl = NULL;
107 struct bio *bio;
109 bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
110 if (!bio)
111 goto no_bio;
112 bio_init(bio);
114 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
115 if (!bvl)
116 goto no_bvl;
118 bio->bi_max_vecs = nr_iovecs;
119 bio->bi_io_vec = bvl;
120 bio->bi_destructor = pkt_bio_destructor;
122 return bio;
124 no_bvl:
125 kfree(bio);
126 no_bio:
127 return NULL;
131 * Allocate a packet_data struct
133 static struct packet_data *pkt_alloc_packet_data(int frames)
135 int i;
136 struct packet_data *pkt;
138 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
139 if (!pkt)
140 goto no_pkt;
142 pkt->frames = frames;
143 pkt->w_bio = pkt_bio_alloc(frames);
144 if (!pkt->w_bio)
145 goto no_bio;
147 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
148 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
149 if (!pkt->pages[i])
150 goto no_page;
153 spin_lock_init(&pkt->lock);
155 for (i = 0; i < frames; i++) {
156 struct bio *bio = pkt_bio_alloc(1);
157 if (!bio)
158 goto no_rd_bio;
159 pkt->r_bios[i] = bio;
162 return pkt;
164 no_rd_bio:
165 for (i = 0; i < frames; i++) {
166 struct bio *bio = pkt->r_bios[i];
167 if (bio)
168 bio_put(bio);
171 no_page:
172 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
173 if (pkt->pages[i])
174 __free_page(pkt->pages[i]);
175 bio_put(pkt->w_bio);
176 no_bio:
177 kfree(pkt);
178 no_pkt:
179 return NULL;
183 * Free a packet_data struct
185 static void pkt_free_packet_data(struct packet_data *pkt)
187 int i;
189 for (i = 0; i < pkt->frames; i++) {
190 struct bio *bio = pkt->r_bios[i];
191 if (bio)
192 bio_put(bio);
194 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
195 __free_page(pkt->pages[i]);
196 bio_put(pkt->w_bio);
197 kfree(pkt);
200 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
202 struct packet_data *pkt, *next;
204 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
206 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
207 pkt_free_packet_data(pkt);
209 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
212 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
214 struct packet_data *pkt;
216 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
218 while (nr_packets > 0) {
219 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
220 if (!pkt) {
221 pkt_shrink_pktlist(pd);
222 return 0;
224 pkt->id = nr_packets;
225 pkt->pd = pd;
226 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
227 nr_packets--;
229 return 1;
232 static void *pkt_rb_alloc(gfp_t gfp_mask, void *data)
234 return kmalloc(sizeof(struct pkt_rb_node), gfp_mask);
237 static void pkt_rb_free(void *ptr, void *data)
239 kfree(ptr);
242 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
244 struct rb_node *n = rb_next(&node->rb_node);
245 if (!n)
246 return NULL;
247 return rb_entry(n, struct pkt_rb_node, rb_node);
250 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
252 rb_erase(&node->rb_node, &pd->bio_queue);
253 mempool_free(node, pd->rb_pool);
254 pd->bio_queue_size--;
255 BUG_ON(pd->bio_queue_size < 0);
259 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
261 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
263 struct rb_node *n = pd->bio_queue.rb_node;
264 struct rb_node *next;
265 struct pkt_rb_node *tmp;
267 if (!n) {
268 BUG_ON(pd->bio_queue_size > 0);
269 return NULL;
272 for (;;) {
273 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
274 if (s <= tmp->bio->bi_sector)
275 next = n->rb_left;
276 else
277 next = n->rb_right;
278 if (!next)
279 break;
280 n = next;
283 if (s > tmp->bio->bi_sector) {
284 tmp = pkt_rbtree_next(tmp);
285 if (!tmp)
286 return NULL;
288 BUG_ON(s > tmp->bio->bi_sector);
289 return tmp;
293 * Insert a node into the pd->bio_queue rb tree.
295 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
297 struct rb_node **p = &pd->bio_queue.rb_node;
298 struct rb_node *parent = NULL;
299 sector_t s = node->bio->bi_sector;
300 struct pkt_rb_node *tmp;
302 while (*p) {
303 parent = *p;
304 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
305 if (s < tmp->bio->bi_sector)
306 p = &(*p)->rb_left;
307 else
308 p = &(*p)->rb_right;
310 rb_link_node(&node->rb_node, parent, p);
311 rb_insert_color(&node->rb_node, &pd->bio_queue);
312 pd->bio_queue_size++;
316 * Add a bio to a single linked list defined by its head and tail pointers.
318 static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
320 bio->bi_next = NULL;
321 if (*list_tail) {
322 BUG_ON((*list_head) == NULL);
323 (*list_tail)->bi_next = bio;
324 (*list_tail) = bio;
325 } else {
326 BUG_ON((*list_head) != NULL);
327 (*list_head) = bio;
328 (*list_tail) = bio;
333 * Remove and return the first bio from a single linked list defined by its
334 * head and tail pointers.
336 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
338 struct bio *bio;
340 if (*list_head == NULL)
341 return NULL;
343 bio = *list_head;
344 *list_head = bio->bi_next;
345 if (*list_head == NULL)
346 *list_tail = NULL;
348 bio->bi_next = NULL;
349 return bio;
353 * Send a packet_command to the underlying block device and
354 * wait for completion.
356 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
358 char sense[SCSI_SENSE_BUFFERSIZE];
359 request_queue_t *q;
360 struct request *rq;
361 DECLARE_COMPLETION(wait);
362 int err = 0;
364 q = bdev_get_queue(pd->bdev);
366 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? WRITE : READ,
367 __GFP_WAIT);
368 rq->errors = 0;
369 rq->rq_disk = pd->bdev->bd_disk;
370 rq->bio = NULL;
371 rq->buffer = NULL;
372 rq->timeout = 60*HZ;
373 rq->data = cgc->buffer;
374 rq->data_len = cgc->buflen;
375 rq->sense = sense;
376 memset(sense, 0, sizeof(sense));
377 rq->sense_len = 0;
378 rq->flags |= REQ_BLOCK_PC | REQ_HARDBARRIER;
379 if (cgc->quiet)
380 rq->flags |= REQ_QUIET;
381 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
382 if (sizeof(rq->cmd) > CDROM_PACKET_SIZE)
383 memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE);
384 rq->cmd_len = COMMAND_SIZE(rq->cmd[0]);
386 rq->ref_count++;
387 rq->flags |= REQ_NOMERGE;
388 rq->waiting = &wait;
389 rq->end_io = blk_end_sync_rq;
390 elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
391 generic_unplug_device(q);
392 wait_for_completion(&wait);
394 if (rq->errors)
395 err = -EIO;
397 blk_put_request(rq);
398 return err;
402 * A generic sense dump / resolve mechanism should be implemented across
403 * all ATAPI + SCSI devices.
405 static void pkt_dump_sense(struct packet_command *cgc)
407 static char *info[9] = { "No sense", "Recovered error", "Not ready",
408 "Medium error", "Hardware error", "Illegal request",
409 "Unit attention", "Data protect", "Blank check" };
410 int i;
411 struct request_sense *sense = cgc->sense;
413 printk("pktcdvd:");
414 for (i = 0; i < CDROM_PACKET_SIZE; i++)
415 printk(" %02x", cgc->cmd[i]);
416 printk(" - ");
418 if (sense == NULL) {
419 printk("no sense\n");
420 return;
423 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
425 if (sense->sense_key > 8) {
426 printk(" (INVALID)\n");
427 return;
430 printk(" (%s)\n", info[sense->sense_key]);
434 * flush the drive cache to media
436 static int pkt_flush_cache(struct pktcdvd_device *pd)
438 struct packet_command cgc;
440 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
441 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
442 cgc.quiet = 1;
445 * the IMMED bit -- we default to not setting it, although that
446 * would allow a much faster close, this is safer
448 #if 0
449 cgc.cmd[1] = 1 << 1;
450 #endif
451 return pkt_generic_packet(pd, &cgc);
455 * speed is given as the normal factor, e.g. 4 for 4x
457 static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed)
459 struct packet_command cgc;
460 struct request_sense sense;
461 int ret;
463 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
464 cgc.sense = &sense;
465 cgc.cmd[0] = GPCMD_SET_SPEED;
466 cgc.cmd[2] = (read_speed >> 8) & 0xff;
467 cgc.cmd[3] = read_speed & 0xff;
468 cgc.cmd[4] = (write_speed >> 8) & 0xff;
469 cgc.cmd[5] = write_speed & 0xff;
471 if ((ret = pkt_generic_packet(pd, &cgc)))
472 pkt_dump_sense(&cgc);
474 return ret;
478 * Queue a bio for processing by the low-level CD device. Must be called
479 * from process context.
481 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
483 spin_lock(&pd->iosched.lock);
484 if (bio_data_dir(bio) == READ) {
485 pkt_add_list_last(bio, &pd->iosched.read_queue,
486 &pd->iosched.read_queue_tail);
487 } else {
488 pkt_add_list_last(bio, &pd->iosched.write_queue,
489 &pd->iosched.write_queue_tail);
491 spin_unlock(&pd->iosched.lock);
493 atomic_set(&pd->iosched.attention, 1);
494 wake_up(&pd->wqueue);
498 * Process the queued read/write requests. This function handles special
499 * requirements for CDRW drives:
500 * - A cache flush command must be inserted before a read request if the
501 * previous request was a write.
502 * - Switching between reading and writing is slow, so don't do it more often
503 * than necessary.
504 * - Optimize for throughput at the expense of latency. This means that streaming
505 * writes will never be interrupted by a read, but if the drive has to seek
506 * before the next write, switch to reading instead if there are any pending
507 * read requests.
508 * - Set the read speed according to current usage pattern. When only reading
509 * from the device, it's best to use the highest possible read speed, but
510 * when switching often between reading and writing, it's better to have the
511 * same read and write speeds.
513 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
516 if (atomic_read(&pd->iosched.attention) == 0)
517 return;
518 atomic_set(&pd->iosched.attention, 0);
520 for (;;) {
521 struct bio *bio;
522 int reads_queued, writes_queued;
524 spin_lock(&pd->iosched.lock);
525 reads_queued = (pd->iosched.read_queue != NULL);
526 writes_queued = (pd->iosched.write_queue != NULL);
527 spin_unlock(&pd->iosched.lock);
529 if (!reads_queued && !writes_queued)
530 break;
532 if (pd->iosched.writing) {
533 int need_write_seek = 1;
534 spin_lock(&pd->iosched.lock);
535 bio = pd->iosched.write_queue;
536 spin_unlock(&pd->iosched.lock);
537 if (bio && (bio->bi_sector == pd->iosched.last_write))
538 need_write_seek = 0;
539 if (need_write_seek && reads_queued) {
540 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
541 VPRINTK("pktcdvd: write, waiting\n");
542 break;
544 pkt_flush_cache(pd);
545 pd->iosched.writing = 0;
547 } else {
548 if (!reads_queued && writes_queued) {
549 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
550 VPRINTK("pktcdvd: read, waiting\n");
551 break;
553 pd->iosched.writing = 1;
557 spin_lock(&pd->iosched.lock);
558 if (pd->iosched.writing) {
559 bio = pkt_get_list_first(&pd->iosched.write_queue,
560 &pd->iosched.write_queue_tail);
561 } else {
562 bio = pkt_get_list_first(&pd->iosched.read_queue,
563 &pd->iosched.read_queue_tail);
565 spin_unlock(&pd->iosched.lock);
567 if (!bio)
568 continue;
570 if (bio_data_dir(bio) == READ)
571 pd->iosched.successive_reads += bio->bi_size >> 10;
572 else {
573 pd->iosched.successive_reads = 0;
574 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
576 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
577 if (pd->read_speed == pd->write_speed) {
578 pd->read_speed = MAX_SPEED;
579 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
581 } else {
582 if (pd->read_speed != pd->write_speed) {
583 pd->read_speed = pd->write_speed;
584 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
588 atomic_inc(&pd->cdrw.pending_bios);
589 generic_make_request(bio);
594 * Special care is needed if the underlying block device has a small
595 * max_phys_segments value.
597 static int pkt_set_segment_merging(struct pktcdvd_device *pd, request_queue_t *q)
599 if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
601 * The cdrom device can handle one segment/frame
603 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
604 return 0;
605 } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
607 * We can handle this case at the expense of some extra memory
608 * copies during write operations
610 set_bit(PACKET_MERGE_SEGS, &pd->flags);
611 return 0;
612 } else {
613 printk("pktcdvd: cdrom max_phys_segments too small\n");
614 return -EIO;
619 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
621 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
623 unsigned int copy_size = CD_FRAMESIZE;
625 while (copy_size > 0) {
626 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
627 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
628 src_bvl->bv_offset + offs;
629 void *vto = page_address(dst_page) + dst_offs;
630 int len = min_t(int, copy_size, src_bvl->bv_len - offs);
632 BUG_ON(len < 0);
633 memcpy(vto, vfrom, len);
634 kunmap_atomic(vfrom, KM_USER0);
636 seg++;
637 offs = 0;
638 dst_offs += len;
639 copy_size -= len;
644 * Copy all data for this packet to pkt->pages[], so that
645 * a) The number of required segments for the write bio is minimized, which
646 * is necessary for some scsi controllers.
647 * b) The data can be used as cache to avoid read requests if we receive a
648 * new write request for the same zone.
650 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
652 int f, p, offs;
654 /* Copy all data to pkt->pages[] */
655 p = 0;
656 offs = 0;
657 for (f = 0; f < pkt->frames; f++) {
658 if (bvec[f].bv_page != pkt->pages[p]) {
659 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
660 void *vto = page_address(pkt->pages[p]) + offs;
661 memcpy(vto, vfrom, CD_FRAMESIZE);
662 kunmap_atomic(vfrom, KM_USER0);
663 bvec[f].bv_page = pkt->pages[p];
664 bvec[f].bv_offset = offs;
665 } else {
666 BUG_ON(bvec[f].bv_offset != offs);
668 offs += CD_FRAMESIZE;
669 if (offs >= PAGE_SIZE) {
670 offs = 0;
671 p++;
676 static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
678 struct packet_data *pkt = bio->bi_private;
679 struct pktcdvd_device *pd = pkt->pd;
680 BUG_ON(!pd);
682 if (bio->bi_size)
683 return 1;
685 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
686 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
688 if (err)
689 atomic_inc(&pkt->io_errors);
690 if (atomic_dec_and_test(&pkt->io_wait)) {
691 atomic_inc(&pkt->run_sm);
692 wake_up(&pd->wqueue);
694 pkt_bio_finished(pd);
696 return 0;
699 static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err)
701 struct packet_data *pkt = bio->bi_private;
702 struct pktcdvd_device *pd = pkt->pd;
703 BUG_ON(!pd);
705 if (bio->bi_size)
706 return 1;
708 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
710 pd->stats.pkt_ended++;
712 pkt_bio_finished(pd);
713 atomic_dec(&pkt->io_wait);
714 atomic_inc(&pkt->run_sm);
715 wake_up(&pd->wqueue);
716 return 0;
720 * Schedule reads for the holes in a packet
722 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
724 int frames_read = 0;
725 struct bio *bio;
726 int f;
727 char written[PACKET_MAX_SIZE];
729 BUG_ON(!pkt->orig_bios);
731 atomic_set(&pkt->io_wait, 0);
732 atomic_set(&pkt->io_errors, 0);
735 * Figure out which frames we need to read before we can write.
737 memset(written, 0, sizeof(written));
738 spin_lock(&pkt->lock);
739 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
740 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
741 int num_frames = bio->bi_size / CD_FRAMESIZE;
742 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
743 BUG_ON(first_frame < 0);
744 BUG_ON(first_frame + num_frames > pkt->frames);
745 for (f = first_frame; f < first_frame + num_frames; f++)
746 written[f] = 1;
748 spin_unlock(&pkt->lock);
750 if (pkt->cache_valid) {
751 VPRINTK("pkt_gather_data: zone %llx cached\n",
752 (unsigned long long)pkt->sector);
753 goto out_account;
757 * Schedule reads for missing parts of the packet.
759 for (f = 0; f < pkt->frames; f++) {
760 int p, offset;
761 if (written[f])
762 continue;
763 bio = pkt->r_bios[f];
764 bio_init(bio);
765 bio->bi_max_vecs = 1;
766 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
767 bio->bi_bdev = pd->bdev;
768 bio->bi_end_io = pkt_end_io_read;
769 bio->bi_private = pkt;
771 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
772 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
773 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
774 f, pkt->pages[p], offset);
775 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
776 BUG();
778 atomic_inc(&pkt->io_wait);
779 bio->bi_rw = READ;
780 pkt_queue_bio(pd, bio);
781 frames_read++;
784 out_account:
785 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
786 frames_read, (unsigned long long)pkt->sector);
787 pd->stats.pkt_started++;
788 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
792 * Find a packet matching zone, or the least recently used packet if
793 * there is no match.
795 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
797 struct packet_data *pkt;
799 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
800 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
801 list_del_init(&pkt->list);
802 if (pkt->sector != zone)
803 pkt->cache_valid = 0;
804 return pkt;
807 BUG();
808 return NULL;
811 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
813 if (pkt->cache_valid) {
814 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
815 } else {
816 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
821 * recover a failed write, query for relocation if possible
823 * returns 1 if recovery is possible, or 0 if not
826 static int pkt_start_recovery(struct packet_data *pkt)
829 * FIXME. We need help from the file system to implement
830 * recovery handling.
832 return 0;
833 #if 0
834 struct request *rq = pkt->rq;
835 struct pktcdvd_device *pd = rq->rq_disk->private_data;
836 struct block_device *pkt_bdev;
837 struct super_block *sb = NULL;
838 unsigned long old_block, new_block;
839 sector_t new_sector;
841 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
842 if (pkt_bdev) {
843 sb = get_super(pkt_bdev);
844 bdput(pkt_bdev);
847 if (!sb)
848 return 0;
850 if (!sb->s_op || !sb->s_op->relocate_blocks)
851 goto out;
853 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
854 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
855 goto out;
857 new_sector = new_block * (CD_FRAMESIZE >> 9);
858 pkt->sector = new_sector;
860 pkt->bio->bi_sector = new_sector;
861 pkt->bio->bi_next = NULL;
862 pkt->bio->bi_flags = 1 << BIO_UPTODATE;
863 pkt->bio->bi_idx = 0;
865 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
866 BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
867 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
868 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
869 BUG_ON(pkt->bio->bi_private != pkt);
871 drop_super(sb);
872 return 1;
874 out:
875 drop_super(sb);
876 return 0;
877 #endif
880 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
882 #if PACKET_DEBUG > 1
883 static const char *state_name[] = {
884 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
886 enum packet_data_state old_state = pkt->state;
887 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
888 state_name[old_state], state_name[state]);
889 #endif
890 pkt->state = state;
894 * Scan the work queue to see if we can start a new packet.
895 * returns non-zero if any work was done.
897 static int pkt_handle_queue(struct pktcdvd_device *pd)
899 struct packet_data *pkt, *p;
900 struct bio *bio = NULL;
901 sector_t zone = 0; /* Suppress gcc warning */
902 struct pkt_rb_node *node, *first_node;
903 struct rb_node *n;
905 VPRINTK("handle_queue\n");
907 atomic_set(&pd->scan_queue, 0);
909 if (list_empty(&pd->cdrw.pkt_free_list)) {
910 VPRINTK("handle_queue: no pkt\n");
911 return 0;
915 * Try to find a zone we are not already working on.
917 spin_lock(&pd->lock);
918 first_node = pkt_rbtree_find(pd, pd->current_sector);
919 if (!first_node) {
920 n = rb_first(&pd->bio_queue);
921 if (n)
922 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
924 node = first_node;
925 while (node) {
926 bio = node->bio;
927 zone = ZONE(bio->bi_sector, pd);
928 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
929 if (p->sector == zone) {
930 bio = NULL;
931 goto try_next_bio;
934 break;
935 try_next_bio:
936 node = pkt_rbtree_next(node);
937 if (!node) {
938 n = rb_first(&pd->bio_queue);
939 if (n)
940 node = rb_entry(n, struct pkt_rb_node, rb_node);
942 if (node == first_node)
943 node = NULL;
945 spin_unlock(&pd->lock);
946 if (!bio) {
947 VPRINTK("handle_queue: no bio\n");
948 return 0;
951 pkt = pkt_get_packet_data(pd, zone);
953 pd->current_sector = zone + pd->settings.size;
954 pkt->sector = zone;
955 BUG_ON(pkt->frames != pd->settings.size >> 2);
956 pkt->write_size = 0;
959 * Scan work queue for bios in the same zone and link them
960 * to this packet.
962 spin_lock(&pd->lock);
963 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
964 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
965 bio = node->bio;
966 VPRINTK("pkt_handle_queue: found zone=%llx\n",
967 (unsigned long long)ZONE(bio->bi_sector, pd));
968 if (ZONE(bio->bi_sector, pd) != zone)
969 break;
970 pkt_rbtree_erase(pd, node);
971 spin_lock(&pkt->lock);
972 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
973 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
974 spin_unlock(&pkt->lock);
976 spin_unlock(&pd->lock);
978 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
979 pkt_set_state(pkt, PACKET_WAITING_STATE);
980 atomic_set(&pkt->run_sm, 1);
982 spin_lock(&pd->cdrw.active_list_lock);
983 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
984 spin_unlock(&pd->cdrw.active_list_lock);
986 return 1;
990 * Assemble a bio to write one packet and queue the bio for processing
991 * by the underlying block device.
993 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
995 struct bio *bio;
996 int f;
997 int frames_write;
998 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1000 for (f = 0; f < pkt->frames; f++) {
1001 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1002 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1006 * Fill-in bvec with data from orig_bios.
1008 frames_write = 0;
1009 spin_lock(&pkt->lock);
1010 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1011 int segment = bio->bi_idx;
1012 int src_offs = 0;
1013 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1014 int num_frames = bio->bi_size / CD_FRAMESIZE;
1015 BUG_ON(first_frame < 0);
1016 BUG_ON(first_frame + num_frames > pkt->frames);
1017 for (f = first_frame; f < first_frame + num_frames; f++) {
1018 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1020 while (src_offs >= src_bvl->bv_len) {
1021 src_offs -= src_bvl->bv_len;
1022 segment++;
1023 BUG_ON(segment >= bio->bi_vcnt);
1024 src_bvl = bio_iovec_idx(bio, segment);
1027 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1028 bvec[f].bv_page = src_bvl->bv_page;
1029 bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1030 } else {
1031 pkt_copy_bio_data(bio, segment, src_offs,
1032 bvec[f].bv_page, bvec[f].bv_offset);
1034 src_offs += CD_FRAMESIZE;
1035 frames_write++;
1038 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1039 spin_unlock(&pkt->lock);
1041 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1042 frames_write, (unsigned long long)pkt->sector);
1043 BUG_ON(frames_write != pkt->write_size);
1045 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1046 pkt_make_local_copy(pkt, bvec);
1047 pkt->cache_valid = 1;
1048 } else {
1049 pkt->cache_valid = 0;
1052 /* Start the write request */
1053 bio_init(pkt->w_bio);
1054 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1055 pkt->w_bio->bi_sector = pkt->sector;
1056 pkt->w_bio->bi_bdev = pd->bdev;
1057 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1058 pkt->w_bio->bi_private = pkt;
1059 for (f = 0; f < pkt->frames; f++)
1060 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1061 BUG();
1062 VPRINTK("pktcdvd: vcnt=%d\n", pkt->w_bio->bi_vcnt);
1064 atomic_set(&pkt->io_wait, 1);
1065 pkt->w_bio->bi_rw = WRITE;
1066 pkt_queue_bio(pd, pkt->w_bio);
1069 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1071 struct bio *bio, *next;
1073 if (!uptodate)
1074 pkt->cache_valid = 0;
1076 /* Finish all bios corresponding to this packet */
1077 bio = pkt->orig_bios;
1078 while (bio) {
1079 next = bio->bi_next;
1080 bio->bi_next = NULL;
1081 bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO);
1082 bio = next;
1084 pkt->orig_bios = pkt->orig_bios_tail = NULL;
1087 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1089 int uptodate;
1091 VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1093 for (;;) {
1094 switch (pkt->state) {
1095 case PACKET_WAITING_STATE:
1096 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1097 return;
1099 pkt->sleep_time = 0;
1100 pkt_gather_data(pd, pkt);
1101 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1102 break;
1104 case PACKET_READ_WAIT_STATE:
1105 if (atomic_read(&pkt->io_wait) > 0)
1106 return;
1108 if (atomic_read(&pkt->io_errors) > 0) {
1109 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1110 } else {
1111 pkt_start_write(pd, pkt);
1113 break;
1115 case PACKET_WRITE_WAIT_STATE:
1116 if (atomic_read(&pkt->io_wait) > 0)
1117 return;
1119 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1120 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1121 } else {
1122 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1124 break;
1126 case PACKET_RECOVERY_STATE:
1127 if (pkt_start_recovery(pkt)) {
1128 pkt_start_write(pd, pkt);
1129 } else {
1130 VPRINTK("No recovery possible\n");
1131 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1133 break;
1135 case PACKET_FINISHED_STATE:
1136 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1137 pkt_finish_packet(pkt, uptodate);
1138 return;
1140 default:
1141 BUG();
1142 break;
1147 static void pkt_handle_packets(struct pktcdvd_device *pd)
1149 struct packet_data *pkt, *next;
1151 VPRINTK("pkt_handle_packets\n");
1154 * Run state machine for active packets
1156 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1157 if (atomic_read(&pkt->run_sm) > 0) {
1158 atomic_set(&pkt->run_sm, 0);
1159 pkt_run_state_machine(pd, pkt);
1164 * Move no longer active packets to the free list
1166 spin_lock(&pd->cdrw.active_list_lock);
1167 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1168 if (pkt->state == PACKET_FINISHED_STATE) {
1169 list_del(&pkt->list);
1170 pkt_put_packet_data(pd, pkt);
1171 pkt_set_state(pkt, PACKET_IDLE_STATE);
1172 atomic_set(&pd->scan_queue, 1);
1175 spin_unlock(&pd->cdrw.active_list_lock);
1178 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1180 struct packet_data *pkt;
1181 int i;
1183 for (i = 0; i < PACKET_NUM_STATES; i++)
1184 states[i] = 0;
1186 spin_lock(&pd->cdrw.active_list_lock);
1187 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1188 states[pkt->state]++;
1190 spin_unlock(&pd->cdrw.active_list_lock);
1194 * kcdrwd is woken up when writes have been queued for one of our
1195 * registered devices
1197 static int kcdrwd(void *foobar)
1199 struct pktcdvd_device *pd = foobar;
1200 struct packet_data *pkt;
1201 long min_sleep_time, residue;
1203 set_user_nice(current, -20);
1205 for (;;) {
1206 DECLARE_WAITQUEUE(wait, current);
1209 * Wait until there is something to do
1211 add_wait_queue(&pd->wqueue, &wait);
1212 for (;;) {
1213 set_current_state(TASK_INTERRUPTIBLE);
1215 /* Check if we need to run pkt_handle_queue */
1216 if (atomic_read(&pd->scan_queue) > 0)
1217 goto work_to_do;
1219 /* Check if we need to run the state machine for some packet */
1220 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1221 if (atomic_read(&pkt->run_sm) > 0)
1222 goto work_to_do;
1225 /* Check if we need to process the iosched queues */
1226 if (atomic_read(&pd->iosched.attention) != 0)
1227 goto work_to_do;
1229 /* Otherwise, go to sleep */
1230 if (PACKET_DEBUG > 1) {
1231 int states[PACKET_NUM_STATES];
1232 pkt_count_states(pd, states);
1233 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1234 states[0], states[1], states[2], states[3],
1235 states[4], states[5]);
1238 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1239 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1240 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1241 min_sleep_time = pkt->sleep_time;
1244 generic_unplug_device(bdev_get_queue(pd->bdev));
1246 VPRINTK("kcdrwd: sleeping\n");
1247 residue = schedule_timeout(min_sleep_time);
1248 VPRINTK("kcdrwd: wake up\n");
1250 /* make swsusp happy with our thread */
1251 try_to_freeze();
1253 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1254 if (!pkt->sleep_time)
1255 continue;
1256 pkt->sleep_time -= min_sleep_time - residue;
1257 if (pkt->sleep_time <= 0) {
1258 pkt->sleep_time = 0;
1259 atomic_inc(&pkt->run_sm);
1263 if (signal_pending(current)) {
1264 flush_signals(current);
1266 if (kthread_should_stop())
1267 break;
1269 work_to_do:
1270 set_current_state(TASK_RUNNING);
1271 remove_wait_queue(&pd->wqueue, &wait);
1273 if (kthread_should_stop())
1274 break;
1277 * if pkt_handle_queue returns true, we can queue
1278 * another request.
1280 while (pkt_handle_queue(pd))
1284 * Handle packet state machine
1286 pkt_handle_packets(pd);
1289 * Handle iosched queues
1291 pkt_iosched_process_queue(pd);
1294 return 0;
1297 static void pkt_print_settings(struct pktcdvd_device *pd)
1299 printk("pktcdvd: %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1300 printk("%u blocks, ", pd->settings.size >> 2);
1301 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1304 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1306 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1308 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1309 cgc->cmd[2] = page_code | (page_control << 6);
1310 cgc->cmd[7] = cgc->buflen >> 8;
1311 cgc->cmd[8] = cgc->buflen & 0xff;
1312 cgc->data_direction = CGC_DATA_READ;
1313 return pkt_generic_packet(pd, cgc);
1316 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1318 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1319 memset(cgc->buffer, 0, 2);
1320 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1321 cgc->cmd[1] = 0x10; /* PF */
1322 cgc->cmd[7] = cgc->buflen >> 8;
1323 cgc->cmd[8] = cgc->buflen & 0xff;
1324 cgc->data_direction = CGC_DATA_WRITE;
1325 return pkt_generic_packet(pd, cgc);
1328 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1330 struct packet_command cgc;
1331 int ret;
1333 /* set up command and get the disc info */
1334 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1335 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1336 cgc.cmd[8] = cgc.buflen = 2;
1337 cgc.quiet = 1;
1339 if ((ret = pkt_generic_packet(pd, &cgc)))
1340 return ret;
1342 /* not all drives have the same disc_info length, so requeue
1343 * packet with the length the drive tells us it can supply
1345 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1346 sizeof(di->disc_information_length);
1348 if (cgc.buflen > sizeof(disc_information))
1349 cgc.buflen = sizeof(disc_information);
1351 cgc.cmd[8] = cgc.buflen;
1352 return pkt_generic_packet(pd, &cgc);
1355 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1357 struct packet_command cgc;
1358 int ret;
1360 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1361 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1362 cgc.cmd[1] = type & 3;
1363 cgc.cmd[4] = (track & 0xff00) >> 8;
1364 cgc.cmd[5] = track & 0xff;
1365 cgc.cmd[8] = 8;
1366 cgc.quiet = 1;
1368 if ((ret = pkt_generic_packet(pd, &cgc)))
1369 return ret;
1371 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1372 sizeof(ti->track_information_length);
1374 if (cgc.buflen > sizeof(track_information))
1375 cgc.buflen = sizeof(track_information);
1377 cgc.cmd[8] = cgc.buflen;
1378 return pkt_generic_packet(pd, &cgc);
1381 static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written)
1383 disc_information di;
1384 track_information ti;
1385 __u32 last_track;
1386 int ret = -1;
1388 if ((ret = pkt_get_disc_info(pd, &di)))
1389 return ret;
1391 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1392 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1393 return ret;
1395 /* if this track is blank, try the previous. */
1396 if (ti.blank) {
1397 last_track--;
1398 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1399 return ret;
1402 /* if last recorded field is valid, return it. */
1403 if (ti.lra_v) {
1404 *last_written = be32_to_cpu(ti.last_rec_address);
1405 } else {
1406 /* make it up instead */
1407 *last_written = be32_to_cpu(ti.track_start) +
1408 be32_to_cpu(ti.track_size);
1409 if (ti.free_blocks)
1410 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1412 return 0;
1416 * write mode select package based on pd->settings
1418 static int pkt_set_write_settings(struct pktcdvd_device *pd)
1420 struct packet_command cgc;
1421 struct request_sense sense;
1422 write_param_page *wp;
1423 char buffer[128];
1424 int ret, size;
1426 /* doesn't apply to DVD+RW or DVD-RAM */
1427 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1428 return 0;
1430 memset(buffer, 0, sizeof(buffer));
1431 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1432 cgc.sense = &sense;
1433 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1434 pkt_dump_sense(&cgc);
1435 return ret;
1438 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1439 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1440 if (size > sizeof(buffer))
1441 size = sizeof(buffer);
1444 * now get it all
1446 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1447 cgc.sense = &sense;
1448 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1449 pkt_dump_sense(&cgc);
1450 return ret;
1454 * write page is offset header + block descriptor length
1456 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1458 wp->fp = pd->settings.fp;
1459 wp->track_mode = pd->settings.track_mode;
1460 wp->write_type = pd->settings.write_type;
1461 wp->data_block_type = pd->settings.block_mode;
1463 wp->multi_session = 0;
1465 #ifdef PACKET_USE_LS
1466 wp->link_size = 7;
1467 wp->ls_v = 1;
1468 #endif
1470 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1471 wp->session_format = 0;
1472 wp->subhdr2 = 0x20;
1473 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1474 wp->session_format = 0x20;
1475 wp->subhdr2 = 8;
1476 #if 0
1477 wp->mcn[0] = 0x80;
1478 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1479 #endif
1480 } else {
1482 * paranoia
1484 printk("pktcdvd: write mode wrong %d\n", wp->data_block_type);
1485 return 1;
1487 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1489 cgc.buflen = cgc.cmd[8] = size;
1490 if ((ret = pkt_mode_select(pd, &cgc))) {
1491 pkt_dump_sense(&cgc);
1492 return ret;
1495 pkt_print_settings(pd);
1496 return 0;
1500 * 1 -- we can write to this track, 0 -- we can't
1502 static int pkt_writable_track(track_information *ti)
1505 * only good for CD-RW at the moment, not DVD-RW
1509 * FIXME: only for FP
1511 if (ti->fp == 0)
1512 return 1;
1515 * "good" settings as per Mt Fuji.
1517 if (ti->rt == 0 && ti->blank == 0 && ti->packet == 1)
1518 return 1;
1520 if (ti->rt == 0 && ti->blank == 1 && ti->packet == 1)
1521 return 1;
1523 if (ti->rt == 1 && ti->blank == 0 && ti->packet == 1)
1524 return 1;
1526 printk("pktcdvd: bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1527 return 0;
1531 * 1 -- we can write to this disc, 0 -- we can't
1533 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1535 switch (pd->mmc3_profile) {
1536 case 0x0a: /* CD-RW */
1537 case 0xffff: /* MMC3 not supported */
1538 break;
1539 case 0x1a: /* DVD+RW */
1540 case 0x13: /* DVD-RW */
1541 case 0x12: /* DVD-RAM */
1542 return 1;
1543 default:
1544 VPRINTK("pktcdvd: Wrong disc profile (%x)\n", pd->mmc3_profile);
1545 return 0;
1549 * for disc type 0xff we should probably reserve a new track.
1550 * but i'm not sure, should we leave this to user apps? probably.
1552 if (di->disc_type == 0xff) {
1553 printk("pktcdvd: Unknown disc. No track?\n");
1554 return 0;
1557 if (di->disc_type != 0x20 && di->disc_type != 0) {
1558 printk("pktcdvd: Wrong disc type (%x)\n", di->disc_type);
1559 return 0;
1562 if (di->erasable == 0) {
1563 printk("pktcdvd: Disc not erasable\n");
1564 return 0;
1567 if (di->border_status == PACKET_SESSION_RESERVED) {
1568 printk("pktcdvd: Can't write to last track (reserved)\n");
1569 return 0;
1572 return 1;
1575 static int pkt_probe_settings(struct pktcdvd_device *pd)
1577 struct packet_command cgc;
1578 unsigned char buf[12];
1579 disc_information di;
1580 track_information ti;
1581 int ret, track;
1583 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1584 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1585 cgc.cmd[8] = 8;
1586 ret = pkt_generic_packet(pd, &cgc);
1587 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1589 memset(&di, 0, sizeof(disc_information));
1590 memset(&ti, 0, sizeof(track_information));
1592 if ((ret = pkt_get_disc_info(pd, &di))) {
1593 printk("failed get_disc\n");
1594 return ret;
1597 if (!pkt_writable_disc(pd, &di))
1598 return -ENXIO;
1600 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1602 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1603 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1604 printk("pktcdvd: failed get_track\n");
1605 return ret;
1608 if (!pkt_writable_track(&ti)) {
1609 printk("pktcdvd: can't write to this track\n");
1610 return -ENXIO;
1614 * we keep packet size in 512 byte units, makes it easier to
1615 * deal with request calculations.
1617 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1618 if (pd->settings.size == 0) {
1619 printk("pktcdvd: detected zero packet size!\n");
1620 return -ENXIO;
1622 if (pd->settings.size > PACKET_MAX_SECTORS) {
1623 printk("pktcdvd: packet size is too big\n");
1624 return -ENXIO;
1626 pd->settings.fp = ti.fp;
1627 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1629 if (ti.nwa_v) {
1630 pd->nwa = be32_to_cpu(ti.next_writable);
1631 set_bit(PACKET_NWA_VALID, &pd->flags);
1635 * in theory we could use lra on -RW media as well and just zero
1636 * blocks that haven't been written yet, but in practice that
1637 * is just a no-go. we'll use that for -R, naturally.
1639 if (ti.lra_v) {
1640 pd->lra = be32_to_cpu(ti.last_rec_address);
1641 set_bit(PACKET_LRA_VALID, &pd->flags);
1642 } else {
1643 pd->lra = 0xffffffff;
1644 set_bit(PACKET_LRA_VALID, &pd->flags);
1648 * fine for now
1650 pd->settings.link_loss = 7;
1651 pd->settings.write_type = 0; /* packet */
1652 pd->settings.track_mode = ti.track_mode;
1655 * mode1 or mode2 disc
1657 switch (ti.data_mode) {
1658 case PACKET_MODE1:
1659 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1660 break;
1661 case PACKET_MODE2:
1662 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1663 break;
1664 default:
1665 printk("pktcdvd: unknown data mode\n");
1666 return 1;
1668 return 0;
1672 * enable/disable write caching on drive
1674 static int pkt_write_caching(struct pktcdvd_device *pd, int set)
1676 struct packet_command cgc;
1677 struct request_sense sense;
1678 unsigned char buf[64];
1679 int ret;
1681 memset(buf, 0, sizeof(buf));
1682 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1683 cgc.sense = &sense;
1684 cgc.buflen = pd->mode_offset + 12;
1687 * caching mode page might not be there, so quiet this command
1689 cgc.quiet = 1;
1691 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1692 return ret;
1694 buf[pd->mode_offset + 10] |= (!!set << 2);
1696 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1697 ret = pkt_mode_select(pd, &cgc);
1698 if (ret) {
1699 printk("pktcdvd: write caching control failed\n");
1700 pkt_dump_sense(&cgc);
1701 } else if (!ret && set)
1702 printk("pktcdvd: enabled write caching on %s\n", pd->name);
1703 return ret;
1706 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1708 struct packet_command cgc;
1710 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1711 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1712 cgc.cmd[4] = lockflag ? 1 : 0;
1713 return pkt_generic_packet(pd, &cgc);
1717 * Returns drive maximum write speed
1719 static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed)
1721 struct packet_command cgc;
1722 struct request_sense sense;
1723 unsigned char buf[256+18];
1724 unsigned char *cap_buf;
1725 int ret, offset;
1727 memset(buf, 0, sizeof(buf));
1728 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1729 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1730 cgc.sense = &sense;
1732 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1733 if (ret) {
1734 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1735 sizeof(struct mode_page_header);
1736 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1737 if (ret) {
1738 pkt_dump_sense(&cgc);
1739 return ret;
1743 offset = 20; /* Obsoleted field, used by older drives */
1744 if (cap_buf[1] >= 28)
1745 offset = 28; /* Current write speed selected */
1746 if (cap_buf[1] >= 30) {
1747 /* If the drive reports at least one "Logical Unit Write
1748 * Speed Performance Descriptor Block", use the information
1749 * in the first block. (contains the highest speed)
1751 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
1752 if (num_spdb > 0)
1753 offset = 34;
1756 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
1757 return 0;
1760 /* These tables from cdrecord - I don't have orange book */
1761 /* standard speed CD-RW (1-4x) */
1762 static char clv_to_speed[16] = {
1763 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1764 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1766 /* high speed CD-RW (-10x) */
1767 static char hs_clv_to_speed[16] = {
1768 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1769 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1771 /* ultra high speed CD-RW */
1772 static char us_clv_to_speed[16] = {
1773 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1774 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
1778 * reads the maximum media speed from ATIP
1780 static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed)
1782 struct packet_command cgc;
1783 struct request_sense sense;
1784 unsigned char buf[64];
1785 unsigned int size, st, sp;
1786 int ret;
1788 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
1789 cgc.sense = &sense;
1790 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1791 cgc.cmd[1] = 2;
1792 cgc.cmd[2] = 4; /* READ ATIP */
1793 cgc.cmd[8] = 2;
1794 ret = pkt_generic_packet(pd, &cgc);
1795 if (ret) {
1796 pkt_dump_sense(&cgc);
1797 return ret;
1799 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
1800 if (size > sizeof(buf))
1801 size = sizeof(buf);
1803 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
1804 cgc.sense = &sense;
1805 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1806 cgc.cmd[1] = 2;
1807 cgc.cmd[2] = 4;
1808 cgc.cmd[8] = size;
1809 ret = pkt_generic_packet(pd, &cgc);
1810 if (ret) {
1811 pkt_dump_sense(&cgc);
1812 return ret;
1815 if (!buf[6] & 0x40) {
1816 printk("pktcdvd: Disc type is not CD-RW\n");
1817 return 1;
1819 if (!buf[6] & 0x4) {
1820 printk("pktcdvd: A1 values on media are not valid, maybe not CDRW?\n");
1821 return 1;
1824 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
1826 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
1828 /* Info from cdrecord */
1829 switch (st) {
1830 case 0: /* standard speed */
1831 *speed = clv_to_speed[sp];
1832 break;
1833 case 1: /* high speed */
1834 *speed = hs_clv_to_speed[sp];
1835 break;
1836 case 2: /* ultra high speed */
1837 *speed = us_clv_to_speed[sp];
1838 break;
1839 default:
1840 printk("pktcdvd: Unknown disc sub-type %d\n",st);
1841 return 1;
1843 if (*speed) {
1844 printk("pktcdvd: Max. media speed: %d\n",*speed);
1845 return 0;
1846 } else {
1847 printk("pktcdvd: Unknown speed %d for sub-type %d\n",sp,st);
1848 return 1;
1852 static int pkt_perform_opc(struct pktcdvd_device *pd)
1854 struct packet_command cgc;
1855 struct request_sense sense;
1856 int ret;
1858 VPRINTK("pktcdvd: Performing OPC\n");
1860 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1861 cgc.sense = &sense;
1862 cgc.timeout = 60*HZ;
1863 cgc.cmd[0] = GPCMD_SEND_OPC;
1864 cgc.cmd[1] = 1;
1865 if ((ret = pkt_generic_packet(pd, &cgc)))
1866 pkt_dump_sense(&cgc);
1867 return ret;
1870 static int pkt_open_write(struct pktcdvd_device *pd)
1872 int ret;
1873 unsigned int write_speed, media_write_speed, read_speed;
1875 if ((ret = pkt_probe_settings(pd))) {
1876 VPRINTK("pktcdvd: %s failed probe\n", pd->name);
1877 return -EROFS;
1880 if ((ret = pkt_set_write_settings(pd))) {
1881 DPRINTK("pktcdvd: %s failed saving write settings\n", pd->name);
1882 return -EIO;
1885 pkt_write_caching(pd, USE_WCACHING);
1887 if ((ret = pkt_get_max_speed(pd, &write_speed)))
1888 write_speed = 16 * 177;
1889 switch (pd->mmc3_profile) {
1890 case 0x13: /* DVD-RW */
1891 case 0x1a: /* DVD+RW */
1892 case 0x12: /* DVD-RAM */
1893 DPRINTK("pktcdvd: write speed %ukB/s\n", write_speed);
1894 break;
1895 default:
1896 if ((ret = pkt_media_speed(pd, &media_write_speed)))
1897 media_write_speed = 16;
1898 write_speed = min(write_speed, media_write_speed * 177);
1899 DPRINTK("pktcdvd: write speed %ux\n", write_speed / 176);
1900 break;
1902 read_speed = write_speed;
1904 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
1905 DPRINTK("pktcdvd: %s couldn't set write speed\n", pd->name);
1906 return -EIO;
1908 pd->write_speed = write_speed;
1909 pd->read_speed = read_speed;
1911 if ((ret = pkt_perform_opc(pd))) {
1912 DPRINTK("pktcdvd: %s Optimum Power Calibration failed\n", pd->name);
1915 return 0;
1919 * called at open time.
1921 static int pkt_open_dev(struct pktcdvd_device *pd, int write)
1923 int ret;
1924 long lba;
1925 request_queue_t *q;
1928 * We need to re-open the cdrom device without O_NONBLOCK to be able
1929 * to read/write from/to it. It is already opened in O_NONBLOCK mode
1930 * so bdget() can't fail.
1932 bdget(pd->bdev->bd_dev);
1933 if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY)))
1934 goto out;
1936 if ((ret = bd_claim(pd->bdev, pd)))
1937 goto out_putdev;
1939 if ((ret = pkt_get_last_written(pd, &lba))) {
1940 printk("pktcdvd: pkt_get_last_written failed\n");
1941 goto out_unclaim;
1944 set_capacity(pd->disk, lba << 2);
1945 set_capacity(pd->bdev->bd_disk, lba << 2);
1946 bd_set_size(pd->bdev, (loff_t)lba << 11);
1948 q = bdev_get_queue(pd->bdev);
1949 if (write) {
1950 if ((ret = pkt_open_write(pd)))
1951 goto out_unclaim;
1953 * Some CDRW drives can not handle writes larger than one packet,
1954 * even if the size is a multiple of the packet size.
1956 spin_lock_irq(q->queue_lock);
1957 blk_queue_max_sectors(q, pd->settings.size);
1958 spin_unlock_irq(q->queue_lock);
1959 set_bit(PACKET_WRITABLE, &pd->flags);
1960 } else {
1961 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
1962 clear_bit(PACKET_WRITABLE, &pd->flags);
1965 if ((ret = pkt_set_segment_merging(pd, q)))
1966 goto out_unclaim;
1968 if (write) {
1969 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
1970 printk("pktcdvd: not enough memory for buffers\n");
1971 ret = -ENOMEM;
1972 goto out_unclaim;
1974 printk("pktcdvd: %lukB available on disc\n", lba << 1);
1977 return 0;
1979 out_unclaim:
1980 bd_release(pd->bdev);
1981 out_putdev:
1982 blkdev_put(pd->bdev);
1983 out:
1984 return ret;
1988 * called when the device is closed. makes sure that the device flushes
1989 * the internal cache before we close.
1991 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
1993 if (flush && pkt_flush_cache(pd))
1994 DPRINTK("pktcdvd: %s not flushing cache\n", pd->name);
1996 pkt_lock_door(pd, 0);
1998 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
1999 bd_release(pd->bdev);
2000 blkdev_put(pd->bdev);
2002 pkt_shrink_pktlist(pd);
2005 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2007 if (dev_minor >= MAX_WRITERS)
2008 return NULL;
2009 return pkt_devs[dev_minor];
2012 static int pkt_open(struct inode *inode, struct file *file)
2014 struct pktcdvd_device *pd = NULL;
2015 int ret;
2017 VPRINTK("pktcdvd: entering open\n");
2019 down(&ctl_mutex);
2020 pd = pkt_find_dev_from_minor(iminor(inode));
2021 if (!pd) {
2022 ret = -ENODEV;
2023 goto out;
2025 BUG_ON(pd->refcnt < 0);
2027 pd->refcnt++;
2028 if (pd->refcnt > 1) {
2029 if ((file->f_mode & FMODE_WRITE) &&
2030 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2031 ret = -EBUSY;
2032 goto out_dec;
2034 } else {
2035 ret = pkt_open_dev(pd, file->f_mode & FMODE_WRITE);
2036 if (ret)
2037 goto out_dec;
2039 * needed here as well, since ext2 (among others) may change
2040 * the blocksize at mount time
2042 set_blocksize(inode->i_bdev, CD_FRAMESIZE);
2045 up(&ctl_mutex);
2046 return 0;
2048 out_dec:
2049 pd->refcnt--;
2050 out:
2051 VPRINTK("pktcdvd: failed open (%d)\n", ret);
2052 up(&ctl_mutex);
2053 return ret;
2056 static int pkt_close(struct inode *inode, struct file *file)
2058 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2059 int ret = 0;
2061 down(&ctl_mutex);
2062 pd->refcnt--;
2063 BUG_ON(pd->refcnt < 0);
2064 if (pd->refcnt == 0) {
2065 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2066 pkt_release_dev(pd, flush);
2068 up(&ctl_mutex);
2069 return ret;
2073 static void *psd_pool_alloc(gfp_t gfp_mask, void *data)
2075 return kmalloc(sizeof(struct packet_stacked_data), gfp_mask);
2078 static void psd_pool_free(void *ptr, void *data)
2080 kfree(ptr);
2083 static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err)
2085 struct packet_stacked_data *psd = bio->bi_private;
2086 struct pktcdvd_device *pd = psd->pd;
2088 if (bio->bi_size)
2089 return 1;
2091 bio_put(bio);
2092 bio_endio(psd->bio, psd->bio->bi_size, err);
2093 mempool_free(psd, psd_pool);
2094 pkt_bio_finished(pd);
2095 return 0;
2098 static int pkt_make_request(request_queue_t *q, struct bio *bio)
2100 struct pktcdvd_device *pd;
2101 char b[BDEVNAME_SIZE];
2102 sector_t zone;
2103 struct packet_data *pkt;
2104 int was_empty, blocked_bio;
2105 struct pkt_rb_node *node;
2107 pd = q->queuedata;
2108 if (!pd) {
2109 printk("pktcdvd: %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2110 goto end_io;
2114 * Clone READ bios so we can have our own bi_end_io callback.
2116 if (bio_data_dir(bio) == READ) {
2117 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2118 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2120 psd->pd = pd;
2121 psd->bio = bio;
2122 cloned_bio->bi_bdev = pd->bdev;
2123 cloned_bio->bi_private = psd;
2124 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2125 pd->stats.secs_r += bio->bi_size >> 9;
2126 pkt_queue_bio(pd, cloned_bio);
2127 return 0;
2130 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2131 printk("pktcdvd: WRITE for ro device %s (%llu)\n",
2132 pd->name, (unsigned long long)bio->bi_sector);
2133 goto end_io;
2136 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2137 printk("pktcdvd: wrong bio size\n");
2138 goto end_io;
2141 blk_queue_bounce(q, &bio);
2143 zone = ZONE(bio->bi_sector, pd);
2144 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2145 (unsigned long long)bio->bi_sector,
2146 (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2148 /* Check if we have to split the bio */
2150 struct bio_pair *bp;
2151 sector_t last_zone;
2152 int first_sectors;
2154 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2155 if (last_zone != zone) {
2156 BUG_ON(last_zone != zone + pd->settings.size);
2157 first_sectors = last_zone - bio->bi_sector;
2158 bp = bio_split(bio, bio_split_pool, first_sectors);
2159 BUG_ON(!bp);
2160 pkt_make_request(q, &bp->bio1);
2161 pkt_make_request(q, &bp->bio2);
2162 bio_pair_release(bp);
2163 return 0;
2168 * If we find a matching packet in state WAITING or READ_WAIT, we can
2169 * just append this bio to that packet.
2171 spin_lock(&pd->cdrw.active_list_lock);
2172 blocked_bio = 0;
2173 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2174 if (pkt->sector == zone) {
2175 spin_lock(&pkt->lock);
2176 if ((pkt->state == PACKET_WAITING_STATE) ||
2177 (pkt->state == PACKET_READ_WAIT_STATE)) {
2178 pkt_add_list_last(bio, &pkt->orig_bios,
2179 &pkt->orig_bios_tail);
2180 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2181 if ((pkt->write_size >= pkt->frames) &&
2182 (pkt->state == PACKET_WAITING_STATE)) {
2183 atomic_inc(&pkt->run_sm);
2184 wake_up(&pd->wqueue);
2186 spin_unlock(&pkt->lock);
2187 spin_unlock(&pd->cdrw.active_list_lock);
2188 return 0;
2189 } else {
2190 blocked_bio = 1;
2192 spin_unlock(&pkt->lock);
2195 spin_unlock(&pd->cdrw.active_list_lock);
2198 * No matching packet found. Store the bio in the work queue.
2200 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2201 node->bio = bio;
2202 spin_lock(&pd->lock);
2203 BUG_ON(pd->bio_queue_size < 0);
2204 was_empty = (pd->bio_queue_size == 0);
2205 pkt_rbtree_insert(pd, node);
2206 spin_unlock(&pd->lock);
2209 * Wake up the worker thread.
2211 atomic_set(&pd->scan_queue, 1);
2212 if (was_empty) {
2213 /* This wake_up is required for correct operation */
2214 wake_up(&pd->wqueue);
2215 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2217 * This wake up is not required for correct operation,
2218 * but improves performance in some cases.
2220 wake_up(&pd->wqueue);
2222 return 0;
2223 end_io:
2224 bio_io_error(bio, bio->bi_size);
2225 return 0;
2230 static int pkt_merge_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *bvec)
2232 struct pktcdvd_device *pd = q->queuedata;
2233 sector_t zone = ZONE(bio->bi_sector, pd);
2234 int used = ((bio->bi_sector - zone) << 9) + bio->bi_size;
2235 int remaining = (pd->settings.size << 9) - used;
2236 int remaining2;
2239 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2240 * boundary, pkt_make_request() will split the bio.
2242 remaining2 = PAGE_SIZE - bio->bi_size;
2243 remaining = max(remaining, remaining2);
2245 BUG_ON(remaining < 0);
2246 return remaining;
2249 static void pkt_init_queue(struct pktcdvd_device *pd)
2251 request_queue_t *q = pd->disk->queue;
2253 blk_queue_make_request(q, pkt_make_request);
2254 blk_queue_hardsect_size(q, CD_FRAMESIZE);
2255 blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
2256 blk_queue_merge_bvec(q, pkt_merge_bvec);
2257 q->queuedata = pd;
2260 static int pkt_seq_show(struct seq_file *m, void *p)
2262 struct pktcdvd_device *pd = m->private;
2263 char *msg;
2264 char bdev_buf[BDEVNAME_SIZE];
2265 int states[PACKET_NUM_STATES];
2267 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2268 bdevname(pd->bdev, bdev_buf));
2270 seq_printf(m, "\nSettings:\n");
2271 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2273 if (pd->settings.write_type == 0)
2274 msg = "Packet";
2275 else
2276 msg = "Unknown";
2277 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2279 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2280 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2282 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2284 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2285 msg = "Mode 1";
2286 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2287 msg = "Mode 2";
2288 else
2289 msg = "Unknown";
2290 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2292 seq_printf(m, "\nStatistics:\n");
2293 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2294 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2295 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2296 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2297 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2299 seq_printf(m, "\nMisc:\n");
2300 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2301 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2302 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2303 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2304 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2305 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2307 seq_printf(m, "\nQueue state:\n");
2308 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2309 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2310 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2312 pkt_count_states(pd, states);
2313 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2314 states[0], states[1], states[2], states[3], states[4], states[5]);
2316 return 0;
2319 static int pkt_seq_open(struct inode *inode, struct file *file)
2321 return single_open(file, pkt_seq_show, PDE(inode)->data);
2324 static struct file_operations pkt_proc_fops = {
2325 .open = pkt_seq_open,
2326 .read = seq_read,
2327 .llseek = seq_lseek,
2328 .release = single_release
2331 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2333 int i;
2334 int ret = 0;
2335 char b[BDEVNAME_SIZE];
2336 struct proc_dir_entry *proc;
2337 struct block_device *bdev;
2339 if (pd->pkt_dev == dev) {
2340 printk("pktcdvd: Recursive setup not allowed\n");
2341 return -EBUSY;
2343 for (i = 0; i < MAX_WRITERS; i++) {
2344 struct pktcdvd_device *pd2 = pkt_devs[i];
2345 if (!pd2)
2346 continue;
2347 if (pd2->bdev->bd_dev == dev) {
2348 printk("pktcdvd: %s already setup\n", bdevname(pd2->bdev, b));
2349 return -EBUSY;
2351 if (pd2->pkt_dev == dev) {
2352 printk("pktcdvd: Can't chain pktcdvd devices\n");
2353 return -EBUSY;
2357 bdev = bdget(dev);
2358 if (!bdev)
2359 return -ENOMEM;
2360 ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK);
2361 if (ret)
2362 return ret;
2364 /* This is safe, since we have a reference from open(). */
2365 __module_get(THIS_MODULE);
2367 pd->bdev = bdev;
2368 set_blocksize(bdev, CD_FRAMESIZE);
2370 pkt_init_queue(pd);
2372 atomic_set(&pd->cdrw.pending_bios, 0);
2373 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2374 if (IS_ERR(pd->cdrw.thread)) {
2375 printk("pktcdvd: can't start kernel thread\n");
2376 ret = -ENOMEM;
2377 goto out_mem;
2380 proc = create_proc_entry(pd->name, 0, pkt_proc);
2381 if (proc) {
2382 proc->data = pd;
2383 proc->proc_fops = &pkt_proc_fops;
2385 DPRINTK("pktcdvd: writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2386 return 0;
2388 out_mem:
2389 blkdev_put(bdev);
2390 /* This is safe: open() is still holding a reference. */
2391 module_put(THIS_MODULE);
2392 return ret;
2395 static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2397 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2399 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode));
2401 switch (cmd) {
2403 * forward selected CDROM ioctls to CD-ROM, for UDF
2405 case CDROMMULTISESSION:
2406 case CDROMREADTOCENTRY:
2407 case CDROM_LAST_WRITTEN:
2408 case CDROM_SEND_PACKET:
2409 case SCSI_IOCTL_SEND_COMMAND:
2410 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2412 case CDROMEJECT:
2414 * The door gets locked when the device is opened, so we
2415 * have to unlock it or else the eject command fails.
2417 if (pd->refcnt == 1)
2418 pkt_lock_door(pd, 0);
2419 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2421 default:
2422 VPRINTK("pktcdvd: Unknown ioctl for %s (%x)\n", pd->name, cmd);
2423 return -ENOTTY;
2426 return 0;
2429 static int pkt_media_changed(struct gendisk *disk)
2431 struct pktcdvd_device *pd = disk->private_data;
2432 struct gendisk *attached_disk;
2434 if (!pd)
2435 return 0;
2436 if (!pd->bdev)
2437 return 0;
2438 attached_disk = pd->bdev->bd_disk;
2439 if (!attached_disk)
2440 return 0;
2441 return attached_disk->fops->media_changed(attached_disk);
2444 static struct block_device_operations pktcdvd_ops = {
2445 .owner = THIS_MODULE,
2446 .open = pkt_open,
2447 .release = pkt_close,
2448 .ioctl = pkt_ioctl,
2449 .media_changed = pkt_media_changed,
2453 * Set up mapping from pktcdvd device to CD-ROM device.
2455 static int pkt_setup_dev(struct pkt_ctrl_command *ctrl_cmd)
2457 int idx;
2458 int ret = -ENOMEM;
2459 struct pktcdvd_device *pd;
2460 struct gendisk *disk;
2461 dev_t dev = new_decode_dev(ctrl_cmd->dev);
2463 for (idx = 0; idx < MAX_WRITERS; idx++)
2464 if (!pkt_devs[idx])
2465 break;
2466 if (idx == MAX_WRITERS) {
2467 printk("pktcdvd: max %d writers supported\n", MAX_WRITERS);
2468 return -EBUSY;
2471 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2472 if (!pd)
2473 return ret;
2475 pd->rb_pool = mempool_create(PKT_RB_POOL_SIZE, pkt_rb_alloc, pkt_rb_free, NULL);
2476 if (!pd->rb_pool)
2477 goto out_mem;
2479 disk = alloc_disk(1);
2480 if (!disk)
2481 goto out_mem;
2482 pd->disk = disk;
2484 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2485 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2486 spin_lock_init(&pd->cdrw.active_list_lock);
2488 spin_lock_init(&pd->lock);
2489 spin_lock_init(&pd->iosched.lock);
2490 sprintf(pd->name, "pktcdvd%d", idx);
2491 init_waitqueue_head(&pd->wqueue);
2492 pd->bio_queue = RB_ROOT;
2494 disk->major = pkt_major;
2495 disk->first_minor = idx;
2496 disk->fops = &pktcdvd_ops;
2497 disk->flags = GENHD_FL_REMOVABLE;
2498 sprintf(disk->disk_name, "pktcdvd%d", idx);
2499 disk->private_data = pd;
2500 disk->queue = blk_alloc_queue(GFP_KERNEL);
2501 if (!disk->queue)
2502 goto out_mem2;
2504 pd->pkt_dev = MKDEV(disk->major, disk->first_minor);
2505 ret = pkt_new_dev(pd, dev);
2506 if (ret)
2507 goto out_new_dev;
2509 add_disk(disk);
2510 pkt_devs[idx] = pd;
2511 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2512 return 0;
2514 out_new_dev:
2515 blk_put_queue(disk->queue);
2516 out_mem2:
2517 put_disk(disk);
2518 out_mem:
2519 if (pd->rb_pool)
2520 mempool_destroy(pd->rb_pool);
2521 kfree(pd);
2522 return ret;
2526 * Tear down mapping from pktcdvd device to CD-ROM device.
2528 static int pkt_remove_dev(struct pkt_ctrl_command *ctrl_cmd)
2530 struct pktcdvd_device *pd;
2531 int idx;
2532 dev_t pkt_dev = new_decode_dev(ctrl_cmd->pkt_dev);
2534 for (idx = 0; idx < MAX_WRITERS; idx++) {
2535 pd = pkt_devs[idx];
2536 if (pd && (pd->pkt_dev == pkt_dev))
2537 break;
2539 if (idx == MAX_WRITERS) {
2540 DPRINTK("pktcdvd: dev not setup\n");
2541 return -ENXIO;
2544 if (pd->refcnt > 0)
2545 return -EBUSY;
2547 if (!IS_ERR(pd->cdrw.thread))
2548 kthread_stop(pd->cdrw.thread);
2550 blkdev_put(pd->bdev);
2552 remove_proc_entry(pd->name, pkt_proc);
2553 DPRINTK("pktcdvd: writer %s unmapped\n", pd->name);
2555 del_gendisk(pd->disk);
2556 blk_put_queue(pd->disk->queue);
2557 put_disk(pd->disk);
2559 pkt_devs[idx] = NULL;
2560 mempool_destroy(pd->rb_pool);
2561 kfree(pd);
2563 /* This is safe: open() is still holding a reference. */
2564 module_put(THIS_MODULE);
2565 return 0;
2568 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2570 struct pktcdvd_device *pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2571 if (pd) {
2572 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2573 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2574 } else {
2575 ctrl_cmd->dev = 0;
2576 ctrl_cmd->pkt_dev = 0;
2578 ctrl_cmd->num_devices = MAX_WRITERS;
2581 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2583 void __user *argp = (void __user *)arg;
2584 struct pkt_ctrl_command ctrl_cmd;
2585 int ret = 0;
2587 if (cmd != PACKET_CTRL_CMD)
2588 return -ENOTTY;
2590 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2591 return -EFAULT;
2593 switch (ctrl_cmd.command) {
2594 case PKT_CTRL_CMD_SETUP:
2595 if (!capable(CAP_SYS_ADMIN))
2596 return -EPERM;
2597 down(&ctl_mutex);
2598 ret = pkt_setup_dev(&ctrl_cmd);
2599 up(&ctl_mutex);
2600 break;
2601 case PKT_CTRL_CMD_TEARDOWN:
2602 if (!capable(CAP_SYS_ADMIN))
2603 return -EPERM;
2604 down(&ctl_mutex);
2605 ret = pkt_remove_dev(&ctrl_cmd);
2606 up(&ctl_mutex);
2607 break;
2608 case PKT_CTRL_CMD_STATUS:
2609 down(&ctl_mutex);
2610 pkt_get_status(&ctrl_cmd);
2611 up(&ctl_mutex);
2612 break;
2613 default:
2614 return -ENOTTY;
2617 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2618 return -EFAULT;
2619 return ret;
2623 static struct file_operations pkt_ctl_fops = {
2624 .ioctl = pkt_ctl_ioctl,
2625 .owner = THIS_MODULE,
2628 static struct miscdevice pkt_misc = {
2629 .minor = MISC_DYNAMIC_MINOR,
2630 .name = "pktcdvd",
2631 .devfs_name = "pktcdvd/control",
2632 .fops = &pkt_ctl_fops
2635 static int __init pkt_init(void)
2637 int ret;
2639 psd_pool = mempool_create(PSD_POOL_SIZE, psd_pool_alloc, psd_pool_free, NULL);
2640 if (!psd_pool)
2641 return -ENOMEM;
2643 ret = register_blkdev(pkt_major, "pktcdvd");
2644 if (ret < 0) {
2645 printk("pktcdvd: Unable to register block device\n");
2646 goto out2;
2648 if (!pkt_major)
2649 pkt_major = ret;
2651 ret = misc_register(&pkt_misc);
2652 if (ret) {
2653 printk("pktcdvd: Unable to register misc device\n");
2654 goto out;
2657 init_MUTEX(&ctl_mutex);
2659 pkt_proc = proc_mkdir("pktcdvd", proc_root_driver);
2661 return 0;
2663 out:
2664 unregister_blkdev(pkt_major, "pktcdvd");
2665 out2:
2666 mempool_destroy(psd_pool);
2667 return ret;
2670 static void __exit pkt_exit(void)
2672 remove_proc_entry("pktcdvd", proc_root_driver);
2673 misc_deregister(&pkt_misc);
2674 unregister_blkdev(pkt_major, "pktcdvd");
2675 mempool_destroy(psd_pool);
2678 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2679 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2680 MODULE_LICENSE("GPL");
2682 module_init(pkt_init);
2683 module_exit(pkt_exit);