x86_64: extract helper function from e820_register_active_regions
[linux-2.6/mini2440.git] / include / asm-i386 / timer.h
blobb371667cfdeb52a87898b4ecccb1fb85dc2ca5bb
1 #ifndef _ASMi386_TIMER_H
2 #define _ASMi386_TIMER_H
3 #include <linux/init.h>
4 #include <linux/pm.h>
6 #define TICK_SIZE (tick_nsec / 1000)
8 void setup_pit_timer(void);
9 unsigned long long native_sched_clock(void);
10 unsigned long native_calculate_cpu_khz(void);
12 extern int timer_ack;
13 extern int no_timer_check;
14 extern int recalibrate_cpu_khz(void);
16 #ifndef CONFIG_PARAVIRT
17 #define calculate_cpu_khz() native_calculate_cpu_khz()
18 #endif
20 /* Accellerators for sched_clock()
21 * convert from cycles(64bits) => nanoseconds (64bits)
22 * basic equation:
23 * ns = cycles / (freq / ns_per_sec)
24 * ns = cycles * (ns_per_sec / freq)
25 * ns = cycles * (10^9 / (cpu_khz * 10^3))
26 * ns = cycles * (10^6 / cpu_khz)
28 * Then we use scaling math (suggested by george@mvista.com) to get:
29 * ns = cycles * (10^6 * SC / cpu_khz) / SC
30 * ns = cycles * cyc2ns_scale / SC
32 * And since SC is a constant power of two, we can convert the div
33 * into a shift.
35 * We can use khz divisor instead of mhz to keep a better percision, since
36 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
37 * (mathieu.desnoyers@polymtl.ca)
39 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
41 extern unsigned long cyc2ns_scale __read_mostly;
43 #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
45 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
47 return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
51 #endif