2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <linux/kernel.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
75 int sysctl_tcp_timestamps __read_mostly
= 1;
76 int sysctl_tcp_window_scaling __read_mostly
= 1;
77 int sysctl_tcp_sack __read_mostly
= 1;
78 int sysctl_tcp_fack __read_mostly
= 1;
79 int sysctl_tcp_reordering __read_mostly
= TCP_FASTRETRANS_THRESH
;
80 int sysctl_tcp_ecn __read_mostly
= 2;
81 int sysctl_tcp_dsack __read_mostly
= 1;
82 int sysctl_tcp_app_win __read_mostly
= 31;
83 int sysctl_tcp_adv_win_scale __read_mostly
= 2;
85 int sysctl_tcp_stdurg __read_mostly
;
86 int sysctl_tcp_rfc1337 __read_mostly
;
87 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
88 int sysctl_tcp_frto __read_mostly
= 2;
89 int sysctl_tcp_frto_response __read_mostly
;
90 int sysctl_tcp_nometrics_save __read_mostly
;
92 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
93 int sysctl_tcp_abc __read_mostly
;
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
108 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
110 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
111 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
112 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
113 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
114 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
116 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
117 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119 /* Adapt the MSS value used to make delayed ack decision to the
122 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
124 struct inet_connection_sock
*icsk
= inet_csk(sk
);
125 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
128 icsk
->icsk_ack
.last_seg_size
= 0;
130 /* skb->len may jitter because of SACKs, even if peer
131 * sends good full-sized frames.
133 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
134 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
135 icsk
->icsk_ack
.rcv_mss
= len
;
137 /* Otherwise, we make more careful check taking into account,
138 * that SACKs block is variable.
140 * "len" is invariant segment length, including TCP header.
142 len
+= skb
->data
- skb_transport_header(skb
);
143 if (len
>= TCP_MIN_RCVMSS
+ sizeof(struct tcphdr
) ||
144 /* If PSH is not set, packet should be
145 * full sized, provided peer TCP is not badly broken.
146 * This observation (if it is correct 8)) allows
147 * to handle super-low mtu links fairly.
149 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
150 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
151 /* Subtract also invariant (if peer is RFC compliant),
152 * tcp header plus fixed timestamp option length.
153 * Resulting "len" is MSS free of SACK jitter.
155 len
-= tcp_sk(sk
)->tcp_header_len
;
156 icsk
->icsk_ack
.last_seg_size
= len
;
158 icsk
->icsk_ack
.rcv_mss
= len
;
162 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
163 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
164 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
168 static void tcp_incr_quickack(struct sock
*sk
)
170 struct inet_connection_sock
*icsk
= inet_csk(sk
);
171 unsigned quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
175 if (quickacks
> icsk
->icsk_ack
.quick
)
176 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
179 void tcp_enter_quickack_mode(struct sock
*sk
)
181 struct inet_connection_sock
*icsk
= inet_csk(sk
);
182 tcp_incr_quickack(sk
);
183 icsk
->icsk_ack
.pingpong
= 0;
184 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
187 /* Send ACKs quickly, if "quick" count is not exhausted
188 * and the session is not interactive.
191 static inline int tcp_in_quickack_mode(const struct sock
*sk
)
193 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
194 return icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
;
197 static inline void TCP_ECN_queue_cwr(struct tcp_sock
*tp
)
199 if (tp
->ecn_flags
& TCP_ECN_OK
)
200 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
203 static inline void TCP_ECN_accept_cwr(struct tcp_sock
*tp
, struct sk_buff
*skb
)
205 if (tcp_hdr(skb
)->cwr
)
206 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
209 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock
*tp
)
211 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
214 static inline void TCP_ECN_check_ce(struct tcp_sock
*tp
, struct sk_buff
*skb
)
216 if (tp
->ecn_flags
& TCP_ECN_OK
) {
217 if (INET_ECN_is_ce(TCP_SKB_CB(skb
)->flags
))
218 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
219 /* Funny extension: if ECT is not set on a segment,
220 * it is surely retransmit. It is not in ECN RFC,
221 * but Linux follows this rule. */
222 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb
)->flags
)))
223 tcp_enter_quickack_mode((struct sock
*)tp
);
227 static inline void TCP_ECN_rcv_synack(struct tcp_sock
*tp
, struct tcphdr
*th
)
229 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
230 tp
->ecn_flags
&= ~TCP_ECN_OK
;
233 static inline void TCP_ECN_rcv_syn(struct tcp_sock
*tp
, struct tcphdr
*th
)
235 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
236 tp
->ecn_flags
&= ~TCP_ECN_OK
;
239 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock
*tp
, struct tcphdr
*th
)
241 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
246 /* Buffer size and advertised window tuning.
248 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251 static void tcp_fixup_sndbuf(struct sock
*sk
)
253 int sndmem
= tcp_sk(sk
)->rx_opt
.mss_clamp
+ MAX_TCP_HEADER
+ 16 +
254 sizeof(struct sk_buff
);
256 if (sk
->sk_sndbuf
< 3 * sndmem
)
257 sk
->sk_sndbuf
= min(3 * sndmem
, sysctl_tcp_wmem
[2]);
260 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
262 * All tcp_full_space() is split to two parts: "network" buffer, allocated
263 * forward and advertised in receiver window (tp->rcv_wnd) and
264 * "application buffer", required to isolate scheduling/application
265 * latencies from network.
266 * window_clamp is maximal advertised window. It can be less than
267 * tcp_full_space(), in this case tcp_full_space() - window_clamp
268 * is reserved for "application" buffer. The less window_clamp is
269 * the smoother our behaviour from viewpoint of network, but the lower
270 * throughput and the higher sensitivity of the connection to losses. 8)
272 * rcv_ssthresh is more strict window_clamp used at "slow start"
273 * phase to predict further behaviour of this connection.
274 * It is used for two goals:
275 * - to enforce header prediction at sender, even when application
276 * requires some significant "application buffer". It is check #1.
277 * - to prevent pruning of receive queue because of misprediction
278 * of receiver window. Check #2.
280 * The scheme does not work when sender sends good segments opening
281 * window and then starts to feed us spaghetti. But it should work
282 * in common situations. Otherwise, we have to rely on queue collapsing.
285 /* Slow part of check#2. */
286 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
288 struct tcp_sock
*tp
= tcp_sk(sk
);
290 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
291 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
293 while (tp
->rcv_ssthresh
<= window
) {
294 if (truesize
<= skb
->len
)
295 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
303 static void tcp_grow_window(struct sock
*sk
, struct sk_buff
*skb
)
305 struct tcp_sock
*tp
= tcp_sk(sk
);
308 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
309 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
310 !tcp_memory_pressure
) {
313 /* Check #2. Increase window, if skb with such overhead
314 * will fit to rcvbuf in future.
316 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
317 incr
= 2 * tp
->advmss
;
319 incr
= __tcp_grow_window(sk
, skb
);
322 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
324 inet_csk(sk
)->icsk_ack
.quick
|= 1;
329 /* 3. Tuning rcvbuf, when connection enters established state. */
331 static void tcp_fixup_rcvbuf(struct sock
*sk
)
333 struct tcp_sock
*tp
= tcp_sk(sk
);
334 int rcvmem
= tp
->advmss
+ MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
);
336 /* Try to select rcvbuf so that 4 mss-sized segments
337 * will fit to window and corresponding skbs will fit to our rcvbuf.
338 * (was 3; 4 is minimum to allow fast retransmit to work.)
340 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
342 if (sk
->sk_rcvbuf
< 4 * rcvmem
)
343 sk
->sk_rcvbuf
= min(4 * rcvmem
, sysctl_tcp_rmem
[2]);
346 /* 4. Try to fixup all. It is made immediately after connection enters
349 static void tcp_init_buffer_space(struct sock
*sk
)
351 struct tcp_sock
*tp
= tcp_sk(sk
);
354 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
355 tcp_fixup_rcvbuf(sk
);
356 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
357 tcp_fixup_sndbuf(sk
);
359 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
361 maxwin
= tcp_full_space(sk
);
363 if (tp
->window_clamp
>= maxwin
) {
364 tp
->window_clamp
= maxwin
;
366 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
367 tp
->window_clamp
= max(maxwin
-
368 (maxwin
>> sysctl_tcp_app_win
),
372 /* Force reservation of one segment. */
373 if (sysctl_tcp_app_win
&&
374 tp
->window_clamp
> 2 * tp
->advmss
&&
375 tp
->window_clamp
+ tp
->advmss
> maxwin
)
376 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
378 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
379 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
382 /* 5. Recalculate window clamp after socket hit its memory bounds. */
383 static void tcp_clamp_window(struct sock
*sk
)
385 struct tcp_sock
*tp
= tcp_sk(sk
);
386 struct inet_connection_sock
*icsk
= inet_csk(sk
);
388 icsk
->icsk_ack
.quick
= 0;
390 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
391 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
392 !tcp_memory_pressure
&&
393 atomic_read(&tcp_memory_allocated
) < sysctl_tcp_mem
[0]) {
394 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
397 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
398 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
401 /* Initialize RCV_MSS value.
402 * RCV_MSS is an our guess about MSS used by the peer.
403 * We haven't any direct information about the MSS.
404 * It's better to underestimate the RCV_MSS rather than overestimate.
405 * Overestimations make us ACKing less frequently than needed.
406 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
408 void tcp_initialize_rcv_mss(struct sock
*sk
)
410 struct tcp_sock
*tp
= tcp_sk(sk
);
411 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
413 hint
= min(hint
, tp
->rcv_wnd
/ 2);
414 hint
= min(hint
, TCP_MIN_RCVMSS
);
415 hint
= max(hint
, TCP_MIN_MSS
);
417 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
420 /* Receiver "autotuning" code.
422 * The algorithm for RTT estimation w/o timestamps is based on
423 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
424 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
426 * More detail on this code can be found at
427 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
428 * though this reference is out of date. A new paper
431 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
433 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
439 if (new_sample
!= 0) {
440 /* If we sample in larger samples in the non-timestamp
441 * case, we could grossly overestimate the RTT especially
442 * with chatty applications or bulk transfer apps which
443 * are stalled on filesystem I/O.
445 * Also, since we are only going for a minimum in the
446 * non-timestamp case, we do not smooth things out
447 * else with timestamps disabled convergence takes too
451 m
-= (new_sample
>> 3);
453 } else if (m
< new_sample
)
456 /* No previous measure. */
460 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
461 tp
->rcv_rtt_est
.rtt
= new_sample
;
464 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
466 if (tp
->rcv_rtt_est
.time
== 0)
468 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
470 tcp_rcv_rtt_update(tp
, jiffies
- tp
->rcv_rtt_est
.time
, 1);
473 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
474 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
477 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
478 const struct sk_buff
*skb
)
480 struct tcp_sock
*tp
= tcp_sk(sk
);
481 if (tp
->rx_opt
.rcv_tsecr
&&
482 (TCP_SKB_CB(skb
)->end_seq
-
483 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
484 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
488 * This function should be called every time data is copied to user space.
489 * It calculates the appropriate TCP receive buffer space.
491 void tcp_rcv_space_adjust(struct sock
*sk
)
493 struct tcp_sock
*tp
= tcp_sk(sk
);
497 if (tp
->rcvq_space
.time
== 0)
500 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
501 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) || tp
->rcv_rtt_est
.rtt
== 0)
504 space
= 2 * (tp
->copied_seq
- tp
->rcvq_space
.seq
);
506 space
= max(tp
->rcvq_space
.space
, space
);
508 if (tp
->rcvq_space
.space
!= space
) {
511 tp
->rcvq_space
.space
= space
;
513 if (sysctl_tcp_moderate_rcvbuf
&&
514 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
515 int new_clamp
= space
;
517 /* Receive space grows, normalize in order to
518 * take into account packet headers and sk_buff
519 * structure overhead.
524 rcvmem
= (tp
->advmss
+ MAX_TCP_HEADER
+
525 16 + sizeof(struct sk_buff
));
526 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
529 space
= min(space
, sysctl_tcp_rmem
[2]);
530 if (space
> sk
->sk_rcvbuf
) {
531 sk
->sk_rcvbuf
= space
;
533 /* Make the window clamp follow along. */
534 tp
->window_clamp
= new_clamp
;
540 tp
->rcvq_space
.seq
= tp
->copied_seq
;
541 tp
->rcvq_space
.time
= tcp_time_stamp
;
544 /* There is something which you must keep in mind when you analyze the
545 * behavior of the tp->ato delayed ack timeout interval. When a
546 * connection starts up, we want to ack as quickly as possible. The
547 * problem is that "good" TCP's do slow start at the beginning of data
548 * transmission. The means that until we send the first few ACK's the
549 * sender will sit on his end and only queue most of his data, because
550 * he can only send snd_cwnd unacked packets at any given time. For
551 * each ACK we send, he increments snd_cwnd and transmits more of his
554 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
556 struct tcp_sock
*tp
= tcp_sk(sk
);
557 struct inet_connection_sock
*icsk
= inet_csk(sk
);
560 inet_csk_schedule_ack(sk
);
562 tcp_measure_rcv_mss(sk
, skb
);
564 tcp_rcv_rtt_measure(tp
);
566 now
= tcp_time_stamp
;
568 if (!icsk
->icsk_ack
.ato
) {
569 /* The _first_ data packet received, initialize
570 * delayed ACK engine.
572 tcp_incr_quickack(sk
);
573 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
575 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
577 if (m
<= TCP_ATO_MIN
/ 2) {
578 /* The fastest case is the first. */
579 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
580 } else if (m
< icsk
->icsk_ack
.ato
) {
581 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
582 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
583 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
584 } else if (m
> icsk
->icsk_rto
) {
585 /* Too long gap. Apparently sender failed to
586 * restart window, so that we send ACKs quickly.
588 tcp_incr_quickack(sk
);
592 icsk
->icsk_ack
.lrcvtime
= now
;
594 TCP_ECN_check_ce(tp
, skb
);
597 tcp_grow_window(sk
, skb
);
600 /* Called to compute a smoothed rtt estimate. The data fed to this
601 * routine either comes from timestamps, or from segments that were
602 * known _not_ to have been retransmitted [see Karn/Partridge
603 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
604 * piece by Van Jacobson.
605 * NOTE: the next three routines used to be one big routine.
606 * To save cycles in the RFC 1323 implementation it was better to break
607 * it up into three procedures. -- erics
609 static void tcp_rtt_estimator(struct sock
*sk
, const __u32 mrtt
)
611 struct tcp_sock
*tp
= tcp_sk(sk
);
612 long m
= mrtt
; /* RTT */
614 /* The following amusing code comes from Jacobson's
615 * article in SIGCOMM '88. Note that rtt and mdev
616 * are scaled versions of rtt and mean deviation.
617 * This is designed to be as fast as possible
618 * m stands for "measurement".
620 * On a 1990 paper the rto value is changed to:
621 * RTO = rtt + 4 * mdev
623 * Funny. This algorithm seems to be very broken.
624 * These formulae increase RTO, when it should be decreased, increase
625 * too slowly, when it should be increased quickly, decrease too quickly
626 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
627 * does not matter how to _calculate_ it. Seems, it was trap
628 * that VJ failed to avoid. 8)
633 m
-= (tp
->srtt
>> 3); /* m is now error in rtt est */
634 tp
->srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
636 m
= -m
; /* m is now abs(error) */
637 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
638 /* This is similar to one of Eifel findings.
639 * Eifel blocks mdev updates when rtt decreases.
640 * This solution is a bit different: we use finer gain
641 * for mdev in this case (alpha*beta).
642 * Like Eifel it also prevents growth of rto,
643 * but also it limits too fast rto decreases,
644 * happening in pure Eifel.
649 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
651 tp
->mdev
+= m
; /* mdev = 3/4 mdev + 1/4 new */
652 if (tp
->mdev
> tp
->mdev_max
) {
653 tp
->mdev_max
= tp
->mdev
;
654 if (tp
->mdev_max
> tp
->rttvar
)
655 tp
->rttvar
= tp
->mdev_max
;
657 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
658 if (tp
->mdev_max
< tp
->rttvar
)
659 tp
->rttvar
-= (tp
->rttvar
- tp
->mdev_max
) >> 2;
660 tp
->rtt_seq
= tp
->snd_nxt
;
661 tp
->mdev_max
= tcp_rto_min(sk
);
664 /* no previous measure. */
665 tp
->srtt
= m
<< 3; /* take the measured time to be rtt */
666 tp
->mdev
= m
<< 1; /* make sure rto = 3*rtt */
667 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
668 tp
->rtt_seq
= tp
->snd_nxt
;
672 /* Calculate rto without backoff. This is the second half of Van Jacobson's
673 * routine referred to above.
675 static inline void tcp_set_rto(struct sock
*sk
)
677 const struct tcp_sock
*tp
= tcp_sk(sk
);
678 /* Old crap is replaced with new one. 8)
681 * 1. If rtt variance happened to be less 50msec, it is hallucination.
682 * It cannot be less due to utterly erratic ACK generation made
683 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
684 * to do with delayed acks, because at cwnd>2 true delack timeout
685 * is invisible. Actually, Linux-2.4 also generates erratic
686 * ACKs in some circumstances.
688 inet_csk(sk
)->icsk_rto
= (tp
->srtt
>> 3) + tp
->rttvar
;
690 /* 2. Fixups made earlier cannot be right.
691 * If we do not estimate RTO correctly without them,
692 * all the algo is pure shit and should be replaced
693 * with correct one. It is exactly, which we pretend to do.
696 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
697 * guarantees that rto is higher.
699 if (inet_csk(sk
)->icsk_rto
> TCP_RTO_MAX
)
700 inet_csk(sk
)->icsk_rto
= TCP_RTO_MAX
;
703 /* Save metrics learned by this TCP session.
704 This function is called only, when TCP finishes successfully
705 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
707 void tcp_update_metrics(struct sock
*sk
)
709 struct tcp_sock
*tp
= tcp_sk(sk
);
710 struct dst_entry
*dst
= __sk_dst_get(sk
);
712 if (sysctl_tcp_nometrics_save
)
717 if (dst
&& (dst
->flags
& DST_HOST
)) {
718 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
722 if (icsk
->icsk_backoff
|| !tp
->srtt
) {
723 /* This session failed to estimate rtt. Why?
724 * Probably, no packets returned in time.
727 if (!(dst_metric_locked(dst
, RTAX_RTT
)))
728 dst
->metrics
[RTAX_RTT
- 1] = 0;
732 rtt
= dst_metric_rtt(dst
, RTAX_RTT
);
735 /* If newly calculated rtt larger than stored one,
736 * store new one. Otherwise, use EWMA. Remember,
737 * rtt overestimation is always better than underestimation.
739 if (!(dst_metric_locked(dst
, RTAX_RTT
))) {
741 set_dst_metric_rtt(dst
, RTAX_RTT
, tp
->srtt
);
743 set_dst_metric_rtt(dst
, RTAX_RTT
, rtt
- (m
>> 3));
746 if (!(dst_metric_locked(dst
, RTAX_RTTVAR
))) {
751 /* Scale deviation to rttvar fixed point */
756 var
= dst_metric_rtt(dst
, RTAX_RTTVAR
);
760 var
-= (var
- m
) >> 2;
762 set_dst_metric_rtt(dst
, RTAX_RTTVAR
, var
);
765 if (tp
->snd_ssthresh
>= 0xFFFF) {
766 /* Slow start still did not finish. */
767 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
768 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
769 (tp
->snd_cwnd
>> 1) > dst_metric(dst
, RTAX_SSTHRESH
))
770 dst
->metrics
[RTAX_SSTHRESH
-1] = tp
->snd_cwnd
>> 1;
771 if (!dst_metric_locked(dst
, RTAX_CWND
) &&
772 tp
->snd_cwnd
> dst_metric(dst
, RTAX_CWND
))
773 dst
->metrics
[RTAX_CWND
- 1] = tp
->snd_cwnd
;
774 } else if (tp
->snd_cwnd
> tp
->snd_ssthresh
&&
775 icsk
->icsk_ca_state
== TCP_CA_Open
) {
776 /* Cong. avoidance phase, cwnd is reliable. */
777 if (!dst_metric_locked(dst
, RTAX_SSTHRESH
))
778 dst
->metrics
[RTAX_SSTHRESH
-1] =
779 max(tp
->snd_cwnd
>> 1, tp
->snd_ssthresh
);
780 if (!dst_metric_locked(dst
, RTAX_CWND
))
781 dst
->metrics
[RTAX_CWND
-1] = (dst_metric(dst
, RTAX_CWND
) + tp
->snd_cwnd
) >> 1;
783 /* Else slow start did not finish, cwnd is non-sense,
784 ssthresh may be also invalid.
786 if (!dst_metric_locked(dst
, RTAX_CWND
))
787 dst
->metrics
[RTAX_CWND
-1] = (dst_metric(dst
, RTAX_CWND
) + tp
->snd_ssthresh
) >> 1;
788 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
789 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
790 tp
->snd_ssthresh
> dst_metric(dst
, RTAX_SSTHRESH
))
791 dst
->metrics
[RTAX_SSTHRESH
-1] = tp
->snd_ssthresh
;
794 if (!dst_metric_locked(dst
, RTAX_REORDERING
)) {
795 if (dst_metric(dst
, RTAX_REORDERING
) < tp
->reordering
&&
796 tp
->reordering
!= sysctl_tcp_reordering
)
797 dst
->metrics
[RTAX_REORDERING
-1] = tp
->reordering
;
802 /* Numbers are taken from RFC3390.
804 * John Heffner states:
806 * The RFC specifies a window of no more than 4380 bytes
807 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
808 * is a bit misleading because they use a clamp at 4380 bytes
809 * rather than use a multiplier in the relevant range.
811 __u32
tcp_init_cwnd(struct tcp_sock
*tp
, struct dst_entry
*dst
)
813 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
816 if (tp
->mss_cache
> 1460)
819 cwnd
= (tp
->mss_cache
> 1095) ? 3 : 4;
821 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
824 /* Set slow start threshold and cwnd not falling to slow start */
825 void tcp_enter_cwr(struct sock
*sk
, const int set_ssthresh
)
827 struct tcp_sock
*tp
= tcp_sk(sk
);
828 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
830 tp
->prior_ssthresh
= 0;
832 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
835 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
836 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
837 tcp_packets_in_flight(tp
) + 1U);
838 tp
->snd_cwnd_cnt
= 0;
839 tp
->high_seq
= tp
->snd_nxt
;
840 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
841 TCP_ECN_queue_cwr(tp
);
843 tcp_set_ca_state(sk
, TCP_CA_CWR
);
848 * Packet counting of FACK is based on in-order assumptions, therefore TCP
849 * disables it when reordering is detected
851 static void tcp_disable_fack(struct tcp_sock
*tp
)
853 /* RFC3517 uses different metric in lost marker => reset on change */
855 tp
->lost_skb_hint
= NULL
;
856 tp
->rx_opt
.sack_ok
&= ~2;
859 /* Take a notice that peer is sending D-SACKs */
860 static void tcp_dsack_seen(struct tcp_sock
*tp
)
862 tp
->rx_opt
.sack_ok
|= 4;
865 /* Initialize metrics on socket. */
867 static void tcp_init_metrics(struct sock
*sk
)
869 struct tcp_sock
*tp
= tcp_sk(sk
);
870 struct dst_entry
*dst
= __sk_dst_get(sk
);
877 if (dst_metric_locked(dst
, RTAX_CWND
))
878 tp
->snd_cwnd_clamp
= dst_metric(dst
, RTAX_CWND
);
879 if (dst_metric(dst
, RTAX_SSTHRESH
)) {
880 tp
->snd_ssthresh
= dst_metric(dst
, RTAX_SSTHRESH
);
881 if (tp
->snd_ssthresh
> tp
->snd_cwnd_clamp
)
882 tp
->snd_ssthresh
= tp
->snd_cwnd_clamp
;
884 if (dst_metric(dst
, RTAX_REORDERING
) &&
885 tp
->reordering
!= dst_metric(dst
, RTAX_REORDERING
)) {
886 tcp_disable_fack(tp
);
887 tp
->reordering
= dst_metric(dst
, RTAX_REORDERING
);
890 if (dst_metric(dst
, RTAX_RTT
) == 0)
893 if (!tp
->srtt
&& dst_metric_rtt(dst
, RTAX_RTT
) < (TCP_TIMEOUT_INIT
<< 3))
896 /* Initial rtt is determined from SYN,SYN-ACK.
897 * The segment is small and rtt may appear much
898 * less than real one. Use per-dst memory
899 * to make it more realistic.
901 * A bit of theory. RTT is time passed after "normal" sized packet
902 * is sent until it is ACKed. In normal circumstances sending small
903 * packets force peer to delay ACKs and calculation is correct too.
904 * The algorithm is adaptive and, provided we follow specs, it
905 * NEVER underestimate RTT. BUT! If peer tries to make some clever
906 * tricks sort of "quick acks" for time long enough to decrease RTT
907 * to low value, and then abruptly stops to do it and starts to delay
908 * ACKs, wait for troubles.
910 if (dst_metric_rtt(dst
, RTAX_RTT
) > tp
->srtt
) {
911 tp
->srtt
= dst_metric_rtt(dst
, RTAX_RTT
);
912 tp
->rtt_seq
= tp
->snd_nxt
;
914 if (dst_metric_rtt(dst
, RTAX_RTTVAR
) > tp
->mdev
) {
915 tp
->mdev
= dst_metric_rtt(dst
, RTAX_RTTVAR
);
916 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
919 if (inet_csk(sk
)->icsk_rto
< TCP_TIMEOUT_INIT
&& !tp
->rx_opt
.saw_tstamp
)
923 tp
->snd_cwnd
= tcp_init_cwnd(tp
, dst
);
924 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
928 /* Play conservative. If timestamps are not
929 * supported, TCP will fail to recalculate correct
930 * rtt, if initial rto is too small. FORGET ALL AND RESET!
932 if (!tp
->rx_opt
.saw_tstamp
&& tp
->srtt
) {
934 tp
->mdev
= tp
->mdev_max
= tp
->rttvar
= TCP_TIMEOUT_INIT
;
935 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_INIT
;
940 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
943 struct tcp_sock
*tp
= tcp_sk(sk
);
944 if (metric
> tp
->reordering
) {
947 tp
->reordering
= min(TCP_MAX_REORDERING
, metric
);
949 /* This exciting event is worth to be remembered. 8) */
951 mib_idx
= LINUX_MIB_TCPTSREORDER
;
952 else if (tcp_is_reno(tp
))
953 mib_idx
= LINUX_MIB_TCPRENOREORDER
;
954 else if (tcp_is_fack(tp
))
955 mib_idx
= LINUX_MIB_TCPFACKREORDER
;
957 mib_idx
= LINUX_MIB_TCPSACKREORDER
;
959 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
960 #if FASTRETRANS_DEBUG > 1
961 printk(KERN_DEBUG
"Disorder%d %d %u f%u s%u rr%d\n",
962 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
966 tp
->undo_marker
? tp
->undo_retrans
: 0);
968 tcp_disable_fack(tp
);
972 /* This must be called before lost_out is incremented */
973 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
975 if ((tp
->retransmit_skb_hint
== NULL
) ||
976 before(TCP_SKB_CB(skb
)->seq
,
977 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
978 tp
->retransmit_skb_hint
= skb
;
981 after(TCP_SKB_CB(skb
)->end_seq
, tp
->retransmit_high
))
982 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
985 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
987 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
988 tcp_verify_retransmit_hint(tp
, skb
);
990 tp
->lost_out
+= tcp_skb_pcount(skb
);
991 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
995 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
,
998 tcp_verify_retransmit_hint(tp
, skb
);
1000 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
1001 tp
->lost_out
+= tcp_skb_pcount(skb
);
1002 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1006 /* This procedure tags the retransmission queue when SACKs arrive.
1008 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1009 * Packets in queue with these bits set are counted in variables
1010 * sacked_out, retrans_out and lost_out, correspondingly.
1012 * Valid combinations are:
1013 * Tag InFlight Description
1014 * 0 1 - orig segment is in flight.
1015 * S 0 - nothing flies, orig reached receiver.
1016 * L 0 - nothing flies, orig lost by net.
1017 * R 2 - both orig and retransmit are in flight.
1018 * L|R 1 - orig is lost, retransmit is in flight.
1019 * S|R 1 - orig reached receiver, retrans is still in flight.
1020 * (L|S|R is logically valid, it could occur when L|R is sacked,
1021 * but it is equivalent to plain S and code short-curcuits it to S.
1022 * L|S is logically invalid, it would mean -1 packet in flight 8))
1024 * These 6 states form finite state machine, controlled by the following events:
1025 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1026 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1027 * 3. Loss detection event of one of three flavors:
1028 * A. Scoreboard estimator decided the packet is lost.
1029 * A'. Reno "three dupacks" marks head of queue lost.
1030 * A''. Its FACK modfication, head until snd.fack is lost.
1031 * B. SACK arrives sacking data transmitted after never retransmitted
1032 * hole was sent out.
1033 * C. SACK arrives sacking SND.NXT at the moment, when the
1034 * segment was retransmitted.
1035 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1037 * It is pleasant to note, that state diagram turns out to be commutative,
1038 * so that we are allowed not to be bothered by order of our actions,
1039 * when multiple events arrive simultaneously. (see the function below).
1041 * Reordering detection.
1042 * --------------------
1043 * Reordering metric is maximal distance, which a packet can be displaced
1044 * in packet stream. With SACKs we can estimate it:
1046 * 1. SACK fills old hole and the corresponding segment was not
1047 * ever retransmitted -> reordering. Alas, we cannot use it
1048 * when segment was retransmitted.
1049 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1050 * for retransmitted and already SACKed segment -> reordering..
1051 * Both of these heuristics are not used in Loss state, when we cannot
1052 * account for retransmits accurately.
1054 * SACK block validation.
1055 * ----------------------
1057 * SACK block range validation checks that the received SACK block fits to
1058 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1059 * Note that SND.UNA is not included to the range though being valid because
1060 * it means that the receiver is rather inconsistent with itself reporting
1061 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1062 * perfectly valid, however, in light of RFC2018 which explicitly states
1063 * that "SACK block MUST reflect the newest segment. Even if the newest
1064 * segment is going to be discarded ...", not that it looks very clever
1065 * in case of head skb. Due to potentional receiver driven attacks, we
1066 * choose to avoid immediate execution of a walk in write queue due to
1067 * reneging and defer head skb's loss recovery to standard loss recovery
1068 * procedure that will eventually trigger (nothing forbids us doing this).
1070 * Implements also blockage to start_seq wrap-around. Problem lies in the
1071 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1072 * there's no guarantee that it will be before snd_nxt (n). The problem
1073 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1076 * <- outs wnd -> <- wrapzone ->
1077 * u e n u_w e_w s n_w
1079 * |<------------+------+----- TCP seqno space --------------+---------->|
1080 * ...-- <2^31 ->| |<--------...
1081 * ...---- >2^31 ------>| |<--------...
1083 * Current code wouldn't be vulnerable but it's better still to discard such
1084 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1085 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1086 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1087 * equal to the ideal case (infinite seqno space without wrap caused issues).
1089 * With D-SACK the lower bound is extended to cover sequence space below
1090 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1091 * again, D-SACK block must not to go across snd_una (for the same reason as
1092 * for the normal SACK blocks, explained above). But there all simplicity
1093 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1094 * fully below undo_marker they do not affect behavior in anyway and can
1095 * therefore be safely ignored. In rare cases (which are more or less
1096 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1097 * fragmentation and packet reordering past skb's retransmission. To consider
1098 * them correctly, the acceptable range must be extended even more though
1099 * the exact amount is rather hard to quantify. However, tp->max_window can
1100 * be used as an exaggerated estimate.
1102 static int tcp_is_sackblock_valid(struct tcp_sock
*tp
, int is_dsack
,
1103 u32 start_seq
, u32 end_seq
)
1105 /* Too far in future, or reversed (interpretation is ambiguous) */
1106 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1109 /* Nasty start_seq wrap-around check (see comments above) */
1110 if (!before(start_seq
, tp
->snd_nxt
))
1113 /* In outstanding window? ...This is valid exit for D-SACKs too.
1114 * start_seq == snd_una is non-sensical (see comments above)
1116 if (after(start_seq
, tp
->snd_una
))
1119 if (!is_dsack
|| !tp
->undo_marker
)
1122 /* ...Then it's D-SACK, and must reside below snd_una completely */
1123 if (!after(end_seq
, tp
->snd_una
))
1126 if (!before(start_seq
, tp
->undo_marker
))
1130 if (!after(end_seq
, tp
->undo_marker
))
1133 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1134 * start_seq < undo_marker and end_seq >= undo_marker.
1136 return !before(start_seq
, end_seq
- tp
->max_window
);
1139 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1140 * Event "C". Later note: FACK people cheated me again 8), we have to account
1141 * for reordering! Ugly, but should help.
1143 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1144 * less than what is now known to be received by the other end (derived from
1145 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1146 * retransmitted skbs to avoid some costly processing per ACKs.
1148 static void tcp_mark_lost_retrans(struct sock
*sk
)
1150 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1151 struct tcp_sock
*tp
= tcp_sk(sk
);
1152 struct sk_buff
*skb
;
1154 u32 new_low_seq
= tp
->snd_nxt
;
1155 u32 received_upto
= tcp_highest_sack_seq(tp
);
1157 if (!tcp_is_fack(tp
) || !tp
->retrans_out
||
1158 !after(received_upto
, tp
->lost_retrans_low
) ||
1159 icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
1162 tcp_for_write_queue(skb
, sk
) {
1163 u32 ack_seq
= TCP_SKB_CB(skb
)->ack_seq
;
1165 if (skb
== tcp_send_head(sk
))
1167 if (cnt
== tp
->retrans_out
)
1169 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1172 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
))
1175 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1176 * constraint here (see above) but figuring out that at
1177 * least tp->reordering SACK blocks reside between ack_seq
1178 * and received_upto is not easy task to do cheaply with
1179 * the available datastructures.
1181 * Whether FACK should check here for tp->reordering segs
1182 * in-between one could argue for either way (it would be
1183 * rather simple to implement as we could count fack_count
1184 * during the walk and do tp->fackets_out - fack_count).
1186 if (after(received_upto
, ack_seq
)) {
1187 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1188 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1190 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
1191 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSTRETRANSMIT
);
1193 if (before(ack_seq
, new_low_seq
))
1194 new_low_seq
= ack_seq
;
1195 cnt
+= tcp_skb_pcount(skb
);
1199 if (tp
->retrans_out
)
1200 tp
->lost_retrans_low
= new_low_seq
;
1203 static int tcp_check_dsack(struct sock
*sk
, struct sk_buff
*ack_skb
,
1204 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1207 struct tcp_sock
*tp
= tcp_sk(sk
);
1208 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1209 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1212 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1215 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1216 } else if (num_sacks
> 1) {
1217 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1218 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1220 if (!after(end_seq_0
, end_seq_1
) &&
1221 !before(start_seq_0
, start_seq_1
)) {
1224 NET_INC_STATS_BH(sock_net(sk
),
1225 LINUX_MIB_TCPDSACKOFORECV
);
1229 /* D-SACK for already forgotten data... Do dumb counting. */
1231 !after(end_seq_0
, prior_snd_una
) &&
1232 after(end_seq_0
, tp
->undo_marker
))
1238 struct tcp_sacktag_state
{
1244 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1245 * the incoming SACK may not exactly match but we can find smaller MSS
1246 * aligned portion of it that matches. Therefore we might need to fragment
1247 * which may fail and creates some hassle (caller must handle error case
1250 * FIXME: this could be merged to shift decision code
1252 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1253 u32 start_seq
, u32 end_seq
)
1256 unsigned int pkt_len
;
1259 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1260 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1262 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1263 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1264 mss
= tcp_skb_mss(skb
);
1265 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1268 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1272 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1277 /* Round if necessary so that SACKs cover only full MSSes
1278 * and/or the remaining small portion (if present)
1280 if (pkt_len
> mss
) {
1281 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1282 if (!in_sack
&& new_len
< pkt_len
) {
1284 if (new_len
> skb
->len
)
1289 err
= tcp_fragment(sk
, skb
, pkt_len
, mss
);
1297 static u8
tcp_sacktag_one(struct sk_buff
*skb
, struct sock
*sk
,
1298 struct tcp_sacktag_state
*state
,
1299 int dup_sack
, int pcount
)
1301 struct tcp_sock
*tp
= tcp_sk(sk
);
1302 u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
1303 int fack_count
= state
->fack_count
;
1305 /* Account D-SACK for retransmitted packet. */
1306 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1307 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->undo_marker
))
1309 if (sacked
& TCPCB_SACKED_ACKED
)
1310 state
->reord
= min(fack_count
, state
->reord
);
1313 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1314 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1317 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1318 if (sacked
& TCPCB_SACKED_RETRANS
) {
1319 /* If the segment is not tagged as lost,
1320 * we do not clear RETRANS, believing
1321 * that retransmission is still in flight.
1323 if (sacked
& TCPCB_LOST
) {
1324 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1325 tp
->lost_out
-= pcount
;
1326 tp
->retrans_out
-= pcount
;
1329 if (!(sacked
& TCPCB_RETRANS
)) {
1330 /* New sack for not retransmitted frame,
1331 * which was in hole. It is reordering.
1333 if (before(TCP_SKB_CB(skb
)->seq
,
1334 tcp_highest_sack_seq(tp
)))
1335 state
->reord
= min(fack_count
,
1338 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1339 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->frto_highmark
))
1340 state
->flag
|= FLAG_ONLY_ORIG_SACKED
;
1343 if (sacked
& TCPCB_LOST
) {
1344 sacked
&= ~TCPCB_LOST
;
1345 tp
->lost_out
-= pcount
;
1349 sacked
|= TCPCB_SACKED_ACKED
;
1350 state
->flag
|= FLAG_DATA_SACKED
;
1351 tp
->sacked_out
+= pcount
;
1353 fack_count
+= pcount
;
1355 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1356 if (!tcp_is_fack(tp
) && (tp
->lost_skb_hint
!= NULL
) &&
1357 before(TCP_SKB_CB(skb
)->seq
,
1358 TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1359 tp
->lost_cnt_hint
+= pcount
;
1361 if (fack_count
> tp
->fackets_out
)
1362 tp
->fackets_out
= fack_count
;
1365 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1366 * frames and clear it. undo_retrans is decreased above, L|R frames
1367 * are accounted above as well.
1369 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1370 sacked
&= ~TCPCB_SACKED_RETRANS
;
1371 tp
->retrans_out
-= pcount
;
1377 static int tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*skb
,
1378 struct tcp_sacktag_state
*state
,
1379 unsigned int pcount
, int shifted
, int mss
,
1382 struct tcp_sock
*tp
= tcp_sk(sk
);
1383 struct sk_buff
*prev
= tcp_write_queue_prev(sk
, skb
);
1387 /* Tweak before seqno plays */
1388 if (!tcp_is_fack(tp
) && tcp_is_sack(tp
) && tp
->lost_skb_hint
&&
1389 !before(TCP_SKB_CB(tp
->lost_skb_hint
)->seq
, TCP_SKB_CB(skb
)->seq
))
1390 tp
->lost_cnt_hint
+= pcount
;
1392 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1393 TCP_SKB_CB(skb
)->seq
+= shifted
;
1395 skb_shinfo(prev
)->gso_segs
+= pcount
;
1396 BUG_ON(skb_shinfo(skb
)->gso_segs
< pcount
);
1397 skb_shinfo(skb
)->gso_segs
-= pcount
;
1399 /* When we're adding to gso_segs == 1, gso_size will be zero,
1400 * in theory this shouldn't be necessary but as long as DSACK
1401 * code can come after this skb later on it's better to keep
1402 * setting gso_size to something.
1404 if (!skb_shinfo(prev
)->gso_size
) {
1405 skb_shinfo(prev
)->gso_size
= mss
;
1406 skb_shinfo(prev
)->gso_type
= sk
->sk_gso_type
;
1409 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1410 if (skb_shinfo(skb
)->gso_segs
<= 1) {
1411 skb_shinfo(skb
)->gso_size
= 0;
1412 skb_shinfo(skb
)->gso_type
= 0;
1415 /* We discard results */
1416 tcp_sacktag_one(skb
, sk
, state
, dup_sack
, pcount
);
1418 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1419 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1422 BUG_ON(!tcp_skb_pcount(skb
));
1423 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1427 /* Whole SKB was eaten :-) */
1429 if (skb
== tp
->retransmit_skb_hint
)
1430 tp
->retransmit_skb_hint
= prev
;
1431 if (skb
== tp
->scoreboard_skb_hint
)
1432 tp
->scoreboard_skb_hint
= prev
;
1433 if (skb
== tp
->lost_skb_hint
) {
1434 tp
->lost_skb_hint
= prev
;
1435 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1438 TCP_SKB_CB(skb
)->flags
|= TCP_SKB_CB(prev
)->flags
;
1439 if (skb
== tcp_highest_sack(sk
))
1440 tcp_advance_highest_sack(sk
, skb
);
1442 tcp_unlink_write_queue(skb
, sk
);
1443 sk_wmem_free_skb(sk
, skb
);
1445 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1450 /* I wish gso_size would have a bit more sane initialization than
1451 * something-or-zero which complicates things
1453 static int tcp_skb_seglen(struct sk_buff
*skb
)
1455 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1458 /* Shifting pages past head area doesn't work */
1459 static int skb_can_shift(struct sk_buff
*skb
)
1461 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1464 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1467 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1468 struct tcp_sacktag_state
*state
,
1469 u32 start_seq
, u32 end_seq
,
1472 struct tcp_sock
*tp
= tcp_sk(sk
);
1473 struct sk_buff
*prev
;
1479 if (!sk_can_gso(sk
))
1482 /* Normally R but no L won't result in plain S */
1484 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1486 if (!skb_can_shift(skb
))
1488 /* This frame is about to be dropped (was ACKed). */
1489 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1492 /* Can only happen with delayed DSACK + discard craziness */
1493 if (unlikely(skb
== tcp_write_queue_head(sk
)))
1495 prev
= tcp_write_queue_prev(sk
, skb
);
1497 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1500 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1501 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1505 pcount
= tcp_skb_pcount(skb
);
1506 mss
= tcp_skb_seglen(skb
);
1508 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1509 * drop this restriction as unnecessary
1511 if (mss
!= tcp_skb_seglen(prev
))
1514 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1516 /* CHECKME: This is non-MSS split case only?, this will
1517 * cause skipped skbs due to advancing loop btw, original
1518 * has that feature too
1520 if (tcp_skb_pcount(skb
) <= 1)
1523 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1525 /* TODO: head merge to next could be attempted here
1526 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1527 * though it might not be worth of the additional hassle
1529 * ...we can probably just fallback to what was done
1530 * previously. We could try merging non-SACKed ones
1531 * as well but it probably isn't going to buy off
1532 * because later SACKs might again split them, and
1533 * it would make skb timestamp tracking considerably
1539 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1541 BUG_ON(len
> skb
->len
);
1543 /* MSS boundaries should be honoured or else pcount will
1544 * severely break even though it makes things bit trickier.
1545 * Optimize common case to avoid most of the divides
1547 mss
= tcp_skb_mss(skb
);
1549 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1550 * drop this restriction as unnecessary
1552 if (mss
!= tcp_skb_seglen(prev
))
1557 } else if (len
< mss
) {
1565 if (!skb_shift(prev
, skb
, len
))
1567 if (!tcp_shifted_skb(sk
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1570 /* Hole filled allows collapsing with the next as well, this is very
1571 * useful when hole on every nth skb pattern happens
1573 if (prev
== tcp_write_queue_tail(sk
))
1575 skb
= tcp_write_queue_next(sk
, prev
);
1577 if (!skb_can_shift(skb
) ||
1578 (skb
== tcp_send_head(sk
)) ||
1579 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1580 (mss
!= tcp_skb_seglen(skb
)))
1584 if (skb_shift(prev
, skb
, len
)) {
1585 pcount
+= tcp_skb_pcount(skb
);
1586 tcp_shifted_skb(sk
, skb
, state
, tcp_skb_pcount(skb
), len
, mss
, 0);
1590 state
->fack_count
+= pcount
;
1597 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1601 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1602 struct tcp_sack_block
*next_dup
,
1603 struct tcp_sacktag_state
*state
,
1604 u32 start_seq
, u32 end_seq
,
1607 struct tcp_sock
*tp
= tcp_sk(sk
);
1608 struct sk_buff
*tmp
;
1610 tcp_for_write_queue_from(skb
, sk
) {
1612 int dup_sack
= dup_sack_in
;
1614 if (skb
== tcp_send_head(sk
))
1617 /* queue is in-order => we can short-circuit the walk early */
1618 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1621 if ((next_dup
!= NULL
) &&
1622 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1623 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1624 next_dup
->start_seq
,
1630 /* skb reference here is a bit tricky to get right, since
1631 * shifting can eat and free both this skb and the next,
1632 * so not even _safe variant of the loop is enough.
1635 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1636 start_seq
, end_seq
, dup_sack
);
1645 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1651 if (unlikely(in_sack
< 0))
1655 TCP_SKB_CB(skb
)->sacked
= tcp_sacktag_one(skb
, sk
,
1658 tcp_skb_pcount(skb
));
1660 if (!before(TCP_SKB_CB(skb
)->seq
,
1661 tcp_highest_sack_seq(tp
)))
1662 tcp_advance_highest_sack(sk
, skb
);
1665 state
->fack_count
+= tcp_skb_pcount(skb
);
1670 /* Avoid all extra work that is being done by sacktag while walking in
1673 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1674 struct tcp_sacktag_state
*state
,
1677 tcp_for_write_queue_from(skb
, sk
) {
1678 if (skb
== tcp_send_head(sk
))
1681 if (after(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1684 state
->fack_count
+= tcp_skb_pcount(skb
);
1689 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1691 struct tcp_sack_block
*next_dup
,
1692 struct tcp_sacktag_state
*state
,
1695 if (next_dup
== NULL
)
1698 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1699 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1700 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1701 next_dup
->start_seq
, next_dup
->end_seq
,
1708 static int tcp_sack_cache_ok(struct tcp_sock
*tp
, struct tcp_sack_block
*cache
)
1710 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1714 tcp_sacktag_write_queue(struct sock
*sk
, struct sk_buff
*ack_skb
,
1717 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1718 struct tcp_sock
*tp
= tcp_sk(sk
);
1719 unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1720 TCP_SKB_CB(ack_skb
)->sacked
);
1721 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1722 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1723 struct tcp_sack_block
*cache
;
1724 struct tcp_sacktag_state state
;
1725 struct sk_buff
*skb
;
1726 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1728 int found_dup_sack
= 0;
1730 int first_sack_index
;
1733 state
.reord
= tp
->packets_out
;
1735 if (!tp
->sacked_out
) {
1736 if (WARN_ON(tp
->fackets_out
))
1737 tp
->fackets_out
= 0;
1738 tcp_highest_sack_reset(sk
);
1741 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1742 num_sacks
, prior_snd_una
);
1744 state
.flag
|= FLAG_DSACKING_ACK
;
1746 /* Eliminate too old ACKs, but take into
1747 * account more or less fresh ones, they can
1748 * contain valid SACK info.
1750 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1753 if (!tp
->packets_out
)
1757 first_sack_index
= 0;
1758 for (i
= 0; i
< num_sacks
; i
++) {
1759 int dup_sack
= !i
&& found_dup_sack
;
1761 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1762 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1764 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1765 sp
[used_sacks
].start_seq
,
1766 sp
[used_sacks
].end_seq
)) {
1770 if (!tp
->undo_marker
)
1771 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1773 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1775 /* Don't count olds caused by ACK reordering */
1776 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1777 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1779 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1782 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
1784 first_sack_index
= -1;
1788 /* Ignore very old stuff early */
1789 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1795 /* order SACK blocks to allow in order walk of the retrans queue */
1796 for (i
= used_sacks
- 1; i
> 0; i
--) {
1797 for (j
= 0; j
< i
; j
++) {
1798 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1799 swap(sp
[j
], sp
[j
+ 1]);
1801 /* Track where the first SACK block goes to */
1802 if (j
== first_sack_index
)
1803 first_sack_index
= j
+ 1;
1808 skb
= tcp_write_queue_head(sk
);
1809 state
.fack_count
= 0;
1812 if (!tp
->sacked_out
) {
1813 /* It's already past, so skip checking against it */
1814 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1816 cache
= tp
->recv_sack_cache
;
1817 /* Skip empty blocks in at head of the cache */
1818 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1823 while (i
< used_sacks
) {
1824 u32 start_seq
= sp
[i
].start_seq
;
1825 u32 end_seq
= sp
[i
].end_seq
;
1826 int dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1827 struct tcp_sack_block
*next_dup
= NULL
;
1829 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1830 next_dup
= &sp
[i
+ 1];
1832 /* Event "B" in the comment above. */
1833 if (after(end_seq
, tp
->high_seq
))
1834 state
.flag
|= FLAG_DATA_LOST
;
1836 /* Skip too early cached blocks */
1837 while (tcp_sack_cache_ok(tp
, cache
) &&
1838 !before(start_seq
, cache
->end_seq
))
1841 /* Can skip some work by looking recv_sack_cache? */
1842 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1843 after(end_seq
, cache
->start_seq
)) {
1846 if (before(start_seq
, cache
->start_seq
)) {
1847 skb
= tcp_sacktag_skip(skb
, sk
, &state
,
1849 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1856 /* Rest of the block already fully processed? */
1857 if (!after(end_seq
, cache
->end_seq
))
1860 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1864 /* ...tail remains todo... */
1865 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1866 /* ...but better entrypoint exists! */
1867 skb
= tcp_highest_sack(sk
);
1870 state
.fack_count
= tp
->fackets_out
;
1875 skb
= tcp_sacktag_skip(skb
, sk
, &state
, cache
->end_seq
);
1876 /* Check overlap against next cached too (past this one already) */
1881 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1882 skb
= tcp_highest_sack(sk
);
1885 state
.fack_count
= tp
->fackets_out
;
1887 skb
= tcp_sacktag_skip(skb
, sk
, &state
, start_seq
);
1890 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, &state
,
1891 start_seq
, end_seq
, dup_sack
);
1894 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1895 * due to in-order walk
1897 if (after(end_seq
, tp
->frto_highmark
))
1898 state
.flag
&= ~FLAG_ONLY_ORIG_SACKED
;
1903 /* Clear the head of the cache sack blocks so we can skip it next time */
1904 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1905 tp
->recv_sack_cache
[i
].start_seq
= 0;
1906 tp
->recv_sack_cache
[i
].end_seq
= 0;
1908 for (j
= 0; j
< used_sacks
; j
++)
1909 tp
->recv_sack_cache
[i
++] = sp
[j
];
1911 tcp_mark_lost_retrans(sk
);
1913 tcp_verify_left_out(tp
);
1915 if ((state
.reord
< tp
->fackets_out
) &&
1916 ((icsk
->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
) &&
1917 (!tp
->frto_highmark
|| after(tp
->snd_una
, tp
->frto_highmark
)))
1918 tcp_update_reordering(sk
, tp
->fackets_out
- state
.reord
, 0);
1922 #if FASTRETRANS_DEBUG > 0
1923 WARN_ON((int)tp
->sacked_out
< 0);
1924 WARN_ON((int)tp
->lost_out
< 0);
1925 WARN_ON((int)tp
->retrans_out
< 0);
1926 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1931 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1932 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1934 static int tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1938 holes
= max(tp
->lost_out
, 1U);
1939 holes
= min(holes
, tp
->packets_out
);
1941 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1942 tp
->sacked_out
= tp
->packets_out
- holes
;
1948 /* If we receive more dupacks than we expected counting segments
1949 * in assumption of absent reordering, interpret this as reordering.
1950 * The only another reason could be bug in receiver TCP.
1952 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1954 struct tcp_sock
*tp
= tcp_sk(sk
);
1955 if (tcp_limit_reno_sacked(tp
))
1956 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1959 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1961 static void tcp_add_reno_sack(struct sock
*sk
)
1963 struct tcp_sock
*tp
= tcp_sk(sk
);
1965 tcp_check_reno_reordering(sk
, 0);
1966 tcp_verify_left_out(tp
);
1969 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1971 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1973 struct tcp_sock
*tp
= tcp_sk(sk
);
1976 /* One ACK acked hole. The rest eat duplicate ACKs. */
1977 if (acked
- 1 >= tp
->sacked_out
)
1980 tp
->sacked_out
-= acked
- 1;
1982 tcp_check_reno_reordering(sk
, acked
);
1983 tcp_verify_left_out(tp
);
1986 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1991 static int tcp_is_sackfrto(const struct tcp_sock
*tp
)
1993 return (sysctl_tcp_frto
== 0x2) && !tcp_is_reno(tp
);
1996 /* F-RTO can only be used if TCP has never retransmitted anything other than
1997 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1999 int tcp_use_frto(struct sock
*sk
)
2001 const struct tcp_sock
*tp
= tcp_sk(sk
);
2002 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2003 struct sk_buff
*skb
;
2005 if (!sysctl_tcp_frto
)
2008 /* MTU probe and F-RTO won't really play nicely along currently */
2009 if (icsk
->icsk_mtup
.probe_size
)
2012 if (tcp_is_sackfrto(tp
))
2015 /* Avoid expensive walking of rexmit queue if possible */
2016 if (tp
->retrans_out
> 1)
2019 skb
= tcp_write_queue_head(sk
);
2020 if (tcp_skb_is_last(sk
, skb
))
2022 skb
= tcp_write_queue_next(sk
, skb
); /* Skips head */
2023 tcp_for_write_queue_from(skb
, sk
) {
2024 if (skb
== tcp_send_head(sk
))
2026 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2028 /* Short-circuit when first non-SACKed skb has been checked */
2029 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2035 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2036 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2037 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2038 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2039 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2040 * bits are handled if the Loss state is really to be entered (in
2041 * tcp_enter_frto_loss).
2043 * Do like tcp_enter_loss() would; when RTO expires the second time it
2045 * "Reduce ssthresh if it has not yet been made inside this window."
2047 void tcp_enter_frto(struct sock
*sk
)
2049 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2050 struct tcp_sock
*tp
= tcp_sk(sk
);
2051 struct sk_buff
*skb
;
2053 if ((!tp
->frto_counter
&& icsk
->icsk_ca_state
<= TCP_CA_Disorder
) ||
2054 tp
->snd_una
== tp
->high_seq
||
2055 ((icsk
->icsk_ca_state
== TCP_CA_Loss
|| tp
->frto_counter
) &&
2056 !icsk
->icsk_retransmits
)) {
2057 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2058 /* Our state is too optimistic in ssthresh() call because cwnd
2059 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2060 * recovery has not yet completed. Pattern would be this: RTO,
2061 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2063 * RFC4138 should be more specific on what to do, even though
2064 * RTO is quite unlikely to occur after the first Cumulative ACK
2065 * due to back-off and complexity of triggering events ...
2067 if (tp
->frto_counter
) {
2069 stored_cwnd
= tp
->snd_cwnd
;
2071 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2072 tp
->snd_cwnd
= stored_cwnd
;
2074 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2076 /* ... in theory, cong.control module could do "any tricks" in
2077 * ssthresh(), which means that ca_state, lost bits and lost_out
2078 * counter would have to be faked before the call occurs. We
2079 * consider that too expensive, unlikely and hacky, so modules
2080 * using these in ssthresh() must deal these incompatibility
2081 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2083 tcp_ca_event(sk
, CA_EVENT_FRTO
);
2086 tp
->undo_marker
= tp
->snd_una
;
2087 tp
->undo_retrans
= 0;
2089 skb
= tcp_write_queue_head(sk
);
2090 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2091 tp
->undo_marker
= 0;
2092 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2093 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2094 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2096 tcp_verify_left_out(tp
);
2098 /* Too bad if TCP was application limited */
2099 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
2101 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2102 * The last condition is necessary at least in tp->frto_counter case.
2104 if (tcp_is_sackfrto(tp
) && (tp
->frto_counter
||
2105 ((1 << icsk
->icsk_ca_state
) & (TCPF_CA_Recovery
|TCPF_CA_Loss
))) &&
2106 after(tp
->high_seq
, tp
->snd_una
)) {
2107 tp
->frto_highmark
= tp
->high_seq
;
2109 tp
->frto_highmark
= tp
->snd_nxt
;
2111 tcp_set_ca_state(sk
, TCP_CA_Disorder
);
2112 tp
->high_seq
= tp
->snd_nxt
;
2113 tp
->frto_counter
= 1;
2116 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2117 * which indicates that we should follow the traditional RTO recovery,
2118 * i.e. mark everything lost and do go-back-N retransmission.
2120 static void tcp_enter_frto_loss(struct sock
*sk
, int allowed_segments
, int flag
)
2122 struct tcp_sock
*tp
= tcp_sk(sk
);
2123 struct sk_buff
*skb
;
2126 tp
->retrans_out
= 0;
2127 if (tcp_is_reno(tp
))
2128 tcp_reset_reno_sack(tp
);
2130 tcp_for_write_queue(skb
, sk
) {
2131 if (skb
== tcp_send_head(sk
))
2134 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2136 * Count the retransmission made on RTO correctly (only when
2137 * waiting for the first ACK and did not get it)...
2139 if ((tp
->frto_counter
== 1) && !(flag
& FLAG_DATA_ACKED
)) {
2140 /* For some reason this R-bit might get cleared? */
2141 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
2142 tp
->retrans_out
+= tcp_skb_pcount(skb
);
2143 /* ...enter this if branch just for the first segment */
2144 flag
|= FLAG_DATA_ACKED
;
2146 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2147 tp
->undo_marker
= 0;
2148 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2151 /* Marking forward transmissions that were made after RTO lost
2152 * can cause unnecessary retransmissions in some scenarios,
2153 * SACK blocks will mitigate that in some but not in all cases.
2154 * We used to not mark them but it was causing break-ups with
2155 * receivers that do only in-order receival.
2157 * TODO: we could detect presence of such receiver and select
2158 * different behavior per flow.
2160 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2161 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2162 tp
->lost_out
+= tcp_skb_pcount(skb
);
2163 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2166 tcp_verify_left_out(tp
);
2168 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + allowed_segments
;
2169 tp
->snd_cwnd_cnt
= 0;
2170 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2171 tp
->frto_counter
= 0;
2172 tp
->bytes_acked
= 0;
2174 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2175 sysctl_tcp_reordering
);
2176 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2177 tp
->high_seq
= tp
->snd_nxt
;
2178 TCP_ECN_queue_cwr(tp
);
2180 tcp_clear_all_retrans_hints(tp
);
2183 static void tcp_clear_retrans_partial(struct tcp_sock
*tp
)
2185 tp
->retrans_out
= 0;
2188 tp
->undo_marker
= 0;
2189 tp
->undo_retrans
= 0;
2192 void tcp_clear_retrans(struct tcp_sock
*tp
)
2194 tcp_clear_retrans_partial(tp
);
2196 tp
->fackets_out
= 0;
2200 /* Enter Loss state. If "how" is not zero, forget all SACK information
2201 * and reset tags completely, otherwise preserve SACKs. If receiver
2202 * dropped its ofo queue, we will know this due to reneging detection.
2204 void tcp_enter_loss(struct sock
*sk
, int how
)
2206 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2207 struct tcp_sock
*tp
= tcp_sk(sk
);
2208 struct sk_buff
*skb
;
2210 /* Reduce ssthresh if it has not yet been made inside this window. */
2211 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
|| tp
->snd_una
== tp
->high_seq
||
2212 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
2213 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2214 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2215 tcp_ca_event(sk
, CA_EVENT_LOSS
);
2218 tp
->snd_cwnd_cnt
= 0;
2219 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2221 tp
->bytes_acked
= 0;
2222 tcp_clear_retrans_partial(tp
);
2224 if (tcp_is_reno(tp
))
2225 tcp_reset_reno_sack(tp
);
2228 /* Push undo marker, if it was plain RTO and nothing
2229 * was retransmitted. */
2230 tp
->undo_marker
= tp
->snd_una
;
2233 tp
->fackets_out
= 0;
2235 tcp_clear_all_retrans_hints(tp
);
2237 tcp_for_write_queue(skb
, sk
) {
2238 if (skb
== tcp_send_head(sk
))
2241 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2242 tp
->undo_marker
= 0;
2243 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
2244 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || how
) {
2245 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
2246 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2247 tp
->lost_out
+= tcp_skb_pcount(skb
);
2248 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2251 tcp_verify_left_out(tp
);
2253 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2254 sysctl_tcp_reordering
);
2255 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2256 tp
->high_seq
= tp
->snd_nxt
;
2257 TCP_ECN_queue_cwr(tp
);
2258 /* Abort F-RTO algorithm if one is in progress */
2259 tp
->frto_counter
= 0;
2262 /* If ACK arrived pointing to a remembered SACK, it means that our
2263 * remembered SACKs do not reflect real state of receiver i.e.
2264 * receiver _host_ is heavily congested (or buggy).
2266 * Do processing similar to RTO timeout.
2268 static int tcp_check_sack_reneging(struct sock
*sk
, int flag
)
2270 if (flag
& FLAG_SACK_RENEGING
) {
2271 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2272 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
2274 tcp_enter_loss(sk
, 1);
2275 icsk
->icsk_retransmits
++;
2276 tcp_retransmit_skb(sk
, tcp_write_queue_head(sk
));
2277 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2278 icsk
->icsk_rto
, TCP_RTO_MAX
);
2284 static inline int tcp_fackets_out(struct tcp_sock
*tp
)
2286 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
2289 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2290 * counter when SACK is enabled (without SACK, sacked_out is used for
2293 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2294 * segments up to the highest received SACK block so far and holes in
2297 * With reordering, holes may still be in flight, so RFC3517 recovery
2298 * uses pure sacked_out (total number of SACKed segments) even though
2299 * it violates the RFC that uses duplicate ACKs, often these are equal
2300 * but when e.g. out-of-window ACKs or packet duplication occurs,
2301 * they differ. Since neither occurs due to loss, TCP should really
2304 static inline int tcp_dupack_heurestics(struct tcp_sock
*tp
)
2306 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
2309 static inline int tcp_skb_timedout(struct sock
*sk
, struct sk_buff
*skb
)
2311 return (tcp_time_stamp
- TCP_SKB_CB(skb
)->when
> inet_csk(sk
)->icsk_rto
);
2314 static inline int tcp_head_timedout(struct sock
*sk
)
2316 struct tcp_sock
*tp
= tcp_sk(sk
);
2318 return tp
->packets_out
&&
2319 tcp_skb_timedout(sk
, tcp_write_queue_head(sk
));
2322 /* Linux NewReno/SACK/FACK/ECN state machine.
2323 * --------------------------------------
2325 * "Open" Normal state, no dubious events, fast path.
2326 * "Disorder" In all the respects it is "Open",
2327 * but requires a bit more attention. It is entered when
2328 * we see some SACKs or dupacks. It is split of "Open"
2329 * mainly to move some processing from fast path to slow one.
2330 * "CWR" CWND was reduced due to some Congestion Notification event.
2331 * It can be ECN, ICMP source quench, local device congestion.
2332 * "Recovery" CWND was reduced, we are fast-retransmitting.
2333 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2335 * tcp_fastretrans_alert() is entered:
2336 * - each incoming ACK, if state is not "Open"
2337 * - when arrived ACK is unusual, namely:
2342 * Counting packets in flight is pretty simple.
2344 * in_flight = packets_out - left_out + retrans_out
2346 * packets_out is SND.NXT-SND.UNA counted in packets.
2348 * retrans_out is number of retransmitted segments.
2350 * left_out is number of segments left network, but not ACKed yet.
2352 * left_out = sacked_out + lost_out
2354 * sacked_out: Packets, which arrived to receiver out of order
2355 * and hence not ACKed. With SACKs this number is simply
2356 * amount of SACKed data. Even without SACKs
2357 * it is easy to give pretty reliable estimate of this number,
2358 * counting duplicate ACKs.
2360 * lost_out: Packets lost by network. TCP has no explicit
2361 * "loss notification" feedback from network (for now).
2362 * It means that this number can be only _guessed_.
2363 * Actually, it is the heuristics to predict lossage that
2364 * distinguishes different algorithms.
2366 * F.e. after RTO, when all the queue is considered as lost,
2367 * lost_out = packets_out and in_flight = retrans_out.
2369 * Essentially, we have now two algorithms counting
2372 * FACK: It is the simplest heuristics. As soon as we decided
2373 * that something is lost, we decide that _all_ not SACKed
2374 * packets until the most forward SACK are lost. I.e.
2375 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2376 * It is absolutely correct estimate, if network does not reorder
2377 * packets. And it loses any connection to reality when reordering
2378 * takes place. We use FACK by default until reordering
2379 * is suspected on the path to this destination.
2381 * NewReno: when Recovery is entered, we assume that one segment
2382 * is lost (classic Reno). While we are in Recovery and
2383 * a partial ACK arrives, we assume that one more packet
2384 * is lost (NewReno). This heuristics are the same in NewReno
2387 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2388 * deflation etc. CWND is real congestion window, never inflated, changes
2389 * only according to classic VJ rules.
2391 * Really tricky (and requiring careful tuning) part of algorithm
2392 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2393 * The first determines the moment _when_ we should reduce CWND and,
2394 * hence, slow down forward transmission. In fact, it determines the moment
2395 * when we decide that hole is caused by loss, rather than by a reorder.
2397 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2398 * holes, caused by lost packets.
2400 * And the most logically complicated part of algorithm is undo
2401 * heuristics. We detect false retransmits due to both too early
2402 * fast retransmit (reordering) and underestimated RTO, analyzing
2403 * timestamps and D-SACKs. When we detect that some segments were
2404 * retransmitted by mistake and CWND reduction was wrong, we undo
2405 * window reduction and abort recovery phase. This logic is hidden
2406 * inside several functions named tcp_try_undo_<something>.
2409 /* This function decides, when we should leave Disordered state
2410 * and enter Recovery phase, reducing congestion window.
2412 * Main question: may we further continue forward transmission
2413 * with the same cwnd?
2415 static int tcp_time_to_recover(struct sock
*sk
)
2417 struct tcp_sock
*tp
= tcp_sk(sk
);
2420 /* Do not perform any recovery during F-RTO algorithm */
2421 if (tp
->frto_counter
)
2424 /* Trick#1: The loss is proven. */
2428 /* Not-A-Trick#2 : Classic rule... */
2429 if (tcp_dupack_heurestics(tp
) > tp
->reordering
)
2432 /* Trick#3 : when we use RFC2988 timer restart, fast
2433 * retransmit can be triggered by timeout of queue head.
2435 if (tcp_is_fack(tp
) && tcp_head_timedout(sk
))
2438 /* Trick#4: It is still not OK... But will it be useful to delay
2441 packets_out
= tp
->packets_out
;
2442 if (packets_out
<= tp
->reordering
&&
2443 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, sysctl_tcp_reordering
) &&
2444 !tcp_may_send_now(sk
)) {
2445 /* We have nothing to send. This connection is limited
2446 * either by receiver window or by application.
2454 /* New heuristics: it is possible only after we switched to restart timer
2455 * each time when something is ACKed. Hence, we can detect timed out packets
2456 * during fast retransmit without falling to slow start.
2458 * Usefulness of this as is very questionable, since we should know which of
2459 * the segments is the next to timeout which is relatively expensive to find
2460 * in general case unless we add some data structure just for that. The
2461 * current approach certainly won't find the right one too often and when it
2462 * finally does find _something_ it usually marks large part of the window
2463 * right away (because a retransmission with a larger timestamp blocks the
2464 * loop from advancing). -ij
2466 static void tcp_timeout_skbs(struct sock
*sk
)
2468 struct tcp_sock
*tp
= tcp_sk(sk
);
2469 struct sk_buff
*skb
;
2471 if (!tcp_is_fack(tp
) || !tcp_head_timedout(sk
))
2474 skb
= tp
->scoreboard_skb_hint
;
2475 if (tp
->scoreboard_skb_hint
== NULL
)
2476 skb
= tcp_write_queue_head(sk
);
2478 tcp_for_write_queue_from(skb
, sk
) {
2479 if (skb
== tcp_send_head(sk
))
2481 if (!tcp_skb_timedout(sk
, skb
))
2484 tcp_skb_mark_lost(tp
, skb
);
2487 tp
->scoreboard_skb_hint
= skb
;
2489 tcp_verify_left_out(tp
);
2492 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2493 * is against sacked "cnt", otherwise it's against facked "cnt"
2495 static void tcp_mark_head_lost(struct sock
*sk
, int packets
)
2497 struct tcp_sock
*tp
= tcp_sk(sk
);
2498 struct sk_buff
*skb
;
2503 WARN_ON(packets
> tp
->packets_out
);
2504 if (tp
->lost_skb_hint
) {
2505 skb
= tp
->lost_skb_hint
;
2506 cnt
= tp
->lost_cnt_hint
;
2508 skb
= tcp_write_queue_head(sk
);
2512 tcp_for_write_queue_from(skb
, sk
) {
2513 if (skb
== tcp_send_head(sk
))
2515 /* TODO: do this better */
2516 /* this is not the most efficient way to do this... */
2517 tp
->lost_skb_hint
= skb
;
2518 tp
->lost_cnt_hint
= cnt
;
2520 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->high_seq
))
2524 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2525 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2526 cnt
+= tcp_skb_pcount(skb
);
2528 if (cnt
> packets
) {
2529 if (tcp_is_sack(tp
) || (oldcnt
>= packets
))
2532 mss
= skb_shinfo(skb
)->gso_size
;
2533 err
= tcp_fragment(sk
, skb
, (packets
- oldcnt
) * mss
, mss
);
2539 tcp_skb_mark_lost(tp
, skb
);
2541 tcp_verify_left_out(tp
);
2544 /* Account newly detected lost packet(s) */
2546 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2548 struct tcp_sock
*tp
= tcp_sk(sk
);
2550 if (tcp_is_reno(tp
)) {
2551 tcp_mark_head_lost(sk
, 1);
2552 } else if (tcp_is_fack(tp
)) {
2553 int lost
= tp
->fackets_out
- tp
->reordering
;
2556 tcp_mark_head_lost(sk
, lost
);
2558 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2559 if (sacked_upto
< fast_rexmit
)
2560 sacked_upto
= fast_rexmit
;
2561 tcp_mark_head_lost(sk
, sacked_upto
);
2564 tcp_timeout_skbs(sk
);
2567 /* CWND moderation, preventing bursts due to too big ACKs
2568 * in dubious situations.
2570 static inline void tcp_moderate_cwnd(struct tcp_sock
*tp
)
2572 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
2573 tcp_packets_in_flight(tp
) + tcp_max_burst(tp
));
2574 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2577 /* Lower bound on congestion window is slow start threshold
2578 * unless congestion avoidance choice decides to overide it.
2580 static inline u32
tcp_cwnd_min(const struct sock
*sk
)
2582 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
2584 return ca_ops
->min_cwnd
? ca_ops
->min_cwnd(sk
) : tcp_sk(sk
)->snd_ssthresh
;
2587 /* Decrease cwnd each second ack. */
2588 static void tcp_cwnd_down(struct sock
*sk
, int flag
)
2590 struct tcp_sock
*tp
= tcp_sk(sk
);
2591 int decr
= tp
->snd_cwnd_cnt
+ 1;
2593 if ((flag
& (FLAG_ANY_PROGRESS
| FLAG_DSACKING_ACK
)) ||
2594 (tcp_is_reno(tp
) && !(flag
& FLAG_NOT_DUP
))) {
2595 tp
->snd_cwnd_cnt
= decr
& 1;
2598 if (decr
&& tp
->snd_cwnd
> tcp_cwnd_min(sk
))
2599 tp
->snd_cwnd
-= decr
;
2601 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
2602 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2606 /* Nothing was retransmitted or returned timestamp is less
2607 * than timestamp of the first retransmission.
2609 static inline int tcp_packet_delayed(struct tcp_sock
*tp
)
2611 return !tp
->retrans_stamp
||
2612 (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2613 before(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
));
2616 /* Undo procedures. */
2618 #if FASTRETRANS_DEBUG > 1
2619 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2621 struct tcp_sock
*tp
= tcp_sk(sk
);
2622 struct inet_sock
*inet
= inet_sk(sk
);
2624 if (sk
->sk_family
== AF_INET
) {
2625 printk(KERN_DEBUG
"Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2627 &inet
->daddr
, ntohs(inet
->dport
),
2628 tp
->snd_cwnd
, tcp_left_out(tp
),
2629 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2632 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2633 else if (sk
->sk_family
== AF_INET6
) {
2634 struct ipv6_pinfo
*np
= inet6_sk(sk
);
2635 printk(KERN_DEBUG
"Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2637 &np
->daddr
, ntohs(inet
->dport
),
2638 tp
->snd_cwnd
, tcp_left_out(tp
),
2639 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2645 #define DBGUNDO(x...) do { } while (0)
2648 static void tcp_undo_cwr(struct sock
*sk
, const int undo
)
2650 struct tcp_sock
*tp
= tcp_sk(sk
);
2652 if (tp
->prior_ssthresh
) {
2653 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2655 if (icsk
->icsk_ca_ops
->undo_cwnd
)
2656 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2658 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<< 1);
2660 if (undo
&& tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2661 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2662 TCP_ECN_withdraw_cwr(tp
);
2665 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2667 tcp_moderate_cwnd(tp
);
2668 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2671 static inline int tcp_may_undo(struct tcp_sock
*tp
)
2673 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2676 /* People celebrate: "We love our President!" */
2677 static int tcp_try_undo_recovery(struct sock
*sk
)
2679 struct tcp_sock
*tp
= tcp_sk(sk
);
2681 if (tcp_may_undo(tp
)) {
2684 /* Happy end! We did not retransmit anything
2685 * or our original transmission succeeded.
2687 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2688 tcp_undo_cwr(sk
, 1);
2689 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2690 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2692 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2694 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2695 tp
->undo_marker
= 0;
2697 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2698 /* Hold old state until something *above* high_seq
2699 * is ACKed. For Reno it is MUST to prevent false
2700 * fast retransmits (RFC2582). SACK TCP is safe. */
2701 tcp_moderate_cwnd(tp
);
2704 tcp_set_ca_state(sk
, TCP_CA_Open
);
2708 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2709 static void tcp_try_undo_dsack(struct sock
*sk
)
2711 struct tcp_sock
*tp
= tcp_sk(sk
);
2713 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2714 DBGUNDO(sk
, "D-SACK");
2715 tcp_undo_cwr(sk
, 1);
2716 tp
->undo_marker
= 0;
2717 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2721 /* Undo during fast recovery after partial ACK. */
2723 static int tcp_try_undo_partial(struct sock
*sk
, int acked
)
2725 struct tcp_sock
*tp
= tcp_sk(sk
);
2726 /* Partial ACK arrived. Force Hoe's retransmit. */
2727 int failed
= tcp_is_reno(tp
) || (tcp_fackets_out(tp
) > tp
->reordering
);
2729 if (tcp_may_undo(tp
)) {
2730 /* Plain luck! Hole if filled with delayed
2731 * packet, rather than with a retransmit.
2733 if (tp
->retrans_out
== 0)
2734 tp
->retrans_stamp
= 0;
2736 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2739 tcp_undo_cwr(sk
, 0);
2740 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2742 /* So... Do not make Hoe's retransmit yet.
2743 * If the first packet was delayed, the rest
2744 * ones are most probably delayed as well.
2751 /* Undo during loss recovery after partial ACK. */
2752 static int tcp_try_undo_loss(struct sock
*sk
)
2754 struct tcp_sock
*tp
= tcp_sk(sk
);
2756 if (tcp_may_undo(tp
)) {
2757 struct sk_buff
*skb
;
2758 tcp_for_write_queue(skb
, sk
) {
2759 if (skb
== tcp_send_head(sk
))
2761 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2764 tcp_clear_all_retrans_hints(tp
);
2766 DBGUNDO(sk
, "partial loss");
2768 tcp_undo_cwr(sk
, 1);
2769 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2770 inet_csk(sk
)->icsk_retransmits
= 0;
2771 tp
->undo_marker
= 0;
2772 if (tcp_is_sack(tp
))
2773 tcp_set_ca_state(sk
, TCP_CA_Open
);
2779 static inline void tcp_complete_cwr(struct sock
*sk
)
2781 struct tcp_sock
*tp
= tcp_sk(sk
);
2782 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2783 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2784 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2787 static void tcp_try_keep_open(struct sock
*sk
)
2789 struct tcp_sock
*tp
= tcp_sk(sk
);
2790 int state
= TCP_CA_Open
;
2792 if (tcp_left_out(tp
) || tp
->retrans_out
|| tp
->undo_marker
)
2793 state
= TCP_CA_Disorder
;
2795 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2796 tcp_set_ca_state(sk
, state
);
2797 tp
->high_seq
= tp
->snd_nxt
;
2801 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2803 struct tcp_sock
*tp
= tcp_sk(sk
);
2805 tcp_verify_left_out(tp
);
2807 if (!tp
->frto_counter
&& tp
->retrans_out
== 0)
2808 tp
->retrans_stamp
= 0;
2810 if (flag
& FLAG_ECE
)
2811 tcp_enter_cwr(sk
, 1);
2813 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2814 tcp_try_keep_open(sk
);
2815 tcp_moderate_cwnd(tp
);
2817 tcp_cwnd_down(sk
, flag
);
2821 static void tcp_mtup_probe_failed(struct sock
*sk
)
2823 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2825 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2826 icsk
->icsk_mtup
.probe_size
= 0;
2829 static void tcp_mtup_probe_success(struct sock
*sk
)
2831 struct tcp_sock
*tp
= tcp_sk(sk
);
2832 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2834 /* FIXME: breaks with very large cwnd */
2835 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2836 tp
->snd_cwnd
= tp
->snd_cwnd
*
2837 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2838 icsk
->icsk_mtup
.probe_size
;
2839 tp
->snd_cwnd_cnt
= 0;
2840 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2841 tp
->rcv_ssthresh
= tcp_current_ssthresh(sk
);
2843 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2844 icsk
->icsk_mtup
.probe_size
= 0;
2845 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2848 /* Do a simple retransmit without using the backoff mechanisms in
2849 * tcp_timer. This is used for path mtu discovery.
2850 * The socket is already locked here.
2852 void tcp_simple_retransmit(struct sock
*sk
)
2854 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2855 struct tcp_sock
*tp
= tcp_sk(sk
);
2856 struct sk_buff
*skb
;
2857 unsigned int mss
= tcp_current_mss(sk
);
2858 u32 prior_lost
= tp
->lost_out
;
2860 tcp_for_write_queue(skb
, sk
) {
2861 if (skb
== tcp_send_head(sk
))
2863 if (tcp_skb_seglen(skb
) > mss
&&
2864 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2865 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2866 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2867 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2869 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2873 tcp_clear_retrans_hints_partial(tp
);
2875 if (prior_lost
== tp
->lost_out
)
2878 if (tcp_is_reno(tp
))
2879 tcp_limit_reno_sacked(tp
);
2881 tcp_verify_left_out(tp
);
2883 /* Don't muck with the congestion window here.
2884 * Reason is that we do not increase amount of _data_
2885 * in network, but units changed and effective
2886 * cwnd/ssthresh really reduced now.
2888 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2889 tp
->high_seq
= tp
->snd_nxt
;
2890 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2891 tp
->prior_ssthresh
= 0;
2892 tp
->undo_marker
= 0;
2893 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2895 tcp_xmit_retransmit_queue(sk
);
2898 /* Process an event, which can update packets-in-flight not trivially.
2899 * Main goal of this function is to calculate new estimate for left_out,
2900 * taking into account both packets sitting in receiver's buffer and
2901 * packets lost by network.
2903 * Besides that it does CWND reduction, when packet loss is detected
2904 * and changes state of machine.
2906 * It does _not_ decide what to send, it is made in function
2907 * tcp_xmit_retransmit_queue().
2909 static void tcp_fastretrans_alert(struct sock
*sk
, int pkts_acked
, int flag
)
2911 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2912 struct tcp_sock
*tp
= tcp_sk(sk
);
2913 int is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
2914 int do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2915 (tcp_fackets_out(tp
) > tp
->reordering
));
2916 int fast_rexmit
= 0, mib_idx
;
2918 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
2920 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
2921 tp
->fackets_out
= 0;
2923 /* Now state machine starts.
2924 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2925 if (flag
& FLAG_ECE
)
2926 tp
->prior_ssthresh
= 0;
2928 /* B. In all the states check for reneging SACKs. */
2929 if (tcp_check_sack_reneging(sk
, flag
))
2932 /* C. Process data loss notification, provided it is valid. */
2933 if (tcp_is_fack(tp
) && (flag
& FLAG_DATA_LOST
) &&
2934 before(tp
->snd_una
, tp
->high_seq
) &&
2935 icsk
->icsk_ca_state
!= TCP_CA_Open
&&
2936 tp
->fackets_out
> tp
->reordering
) {
2937 tcp_mark_head_lost(sk
, tp
->fackets_out
- tp
->reordering
);
2938 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSS
);
2941 /* D. Check consistency of the current state. */
2942 tcp_verify_left_out(tp
);
2944 /* E. Check state exit conditions. State can be terminated
2945 * when high_seq is ACKed. */
2946 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2947 WARN_ON(tp
->retrans_out
!= 0);
2948 tp
->retrans_stamp
= 0;
2949 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2950 switch (icsk
->icsk_ca_state
) {
2952 icsk
->icsk_retransmits
= 0;
2953 if (tcp_try_undo_recovery(sk
))
2958 /* CWR is to be held something *above* high_seq
2959 * is ACKed for CWR bit to reach receiver. */
2960 if (tp
->snd_una
!= tp
->high_seq
) {
2961 tcp_complete_cwr(sk
);
2962 tcp_set_ca_state(sk
, TCP_CA_Open
);
2966 case TCP_CA_Disorder
:
2967 tcp_try_undo_dsack(sk
);
2968 if (!tp
->undo_marker
||
2969 /* For SACK case do not Open to allow to undo
2970 * catching for all duplicate ACKs. */
2971 tcp_is_reno(tp
) || tp
->snd_una
!= tp
->high_seq
) {
2972 tp
->undo_marker
= 0;
2973 tcp_set_ca_state(sk
, TCP_CA_Open
);
2977 case TCP_CA_Recovery
:
2978 if (tcp_is_reno(tp
))
2979 tcp_reset_reno_sack(tp
);
2980 if (tcp_try_undo_recovery(sk
))
2982 tcp_complete_cwr(sk
);
2987 /* F. Process state. */
2988 switch (icsk
->icsk_ca_state
) {
2989 case TCP_CA_Recovery
:
2990 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
2991 if (tcp_is_reno(tp
) && is_dupack
)
2992 tcp_add_reno_sack(sk
);
2994 do_lost
= tcp_try_undo_partial(sk
, pkts_acked
);
2997 if (flag
& FLAG_DATA_ACKED
)
2998 icsk
->icsk_retransmits
= 0;
2999 if (tcp_is_reno(tp
) && flag
& FLAG_SND_UNA_ADVANCED
)
3000 tcp_reset_reno_sack(tp
);
3001 if (!tcp_try_undo_loss(sk
)) {
3002 tcp_moderate_cwnd(tp
);
3003 tcp_xmit_retransmit_queue(sk
);
3006 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
3008 /* Loss is undone; fall through to processing in Open state. */
3010 if (tcp_is_reno(tp
)) {
3011 if (flag
& FLAG_SND_UNA_ADVANCED
)
3012 tcp_reset_reno_sack(tp
);
3014 tcp_add_reno_sack(sk
);
3017 if (icsk
->icsk_ca_state
== TCP_CA_Disorder
)
3018 tcp_try_undo_dsack(sk
);
3020 if (!tcp_time_to_recover(sk
)) {
3021 tcp_try_to_open(sk
, flag
);
3025 /* MTU probe failure: don't reduce cwnd */
3026 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
3027 icsk
->icsk_mtup
.probe_size
&&
3028 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
3029 tcp_mtup_probe_failed(sk
);
3030 /* Restores the reduction we did in tcp_mtup_probe() */
3032 tcp_simple_retransmit(sk
);
3036 /* Otherwise enter Recovery state */
3038 if (tcp_is_reno(tp
))
3039 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
3041 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
3043 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
3045 tp
->high_seq
= tp
->snd_nxt
;
3046 tp
->prior_ssthresh
= 0;
3047 tp
->undo_marker
= tp
->snd_una
;
3048 tp
->undo_retrans
= tp
->retrans_out
;
3050 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
3051 if (!(flag
& FLAG_ECE
))
3052 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
3053 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
3054 TCP_ECN_queue_cwr(tp
);
3057 tp
->bytes_acked
= 0;
3058 tp
->snd_cwnd_cnt
= 0;
3059 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
3063 if (do_lost
|| (tcp_is_fack(tp
) && tcp_head_timedout(sk
)))
3064 tcp_update_scoreboard(sk
, fast_rexmit
);
3065 tcp_cwnd_down(sk
, flag
);
3066 tcp_xmit_retransmit_queue(sk
);
3069 static void tcp_valid_rtt_meas(struct sock
*sk
, u32 seq_rtt
)
3071 tcp_rtt_estimator(sk
, seq_rtt
);
3073 inet_csk(sk
)->icsk_backoff
= 0;
3076 /* Read draft-ietf-tcplw-high-performance before mucking
3077 * with this code. (Supersedes RFC1323)
3079 static void tcp_ack_saw_tstamp(struct sock
*sk
, int flag
)
3081 /* RTTM Rule: A TSecr value received in a segment is used to
3082 * update the averaged RTT measurement only if the segment
3083 * acknowledges some new data, i.e., only if it advances the
3084 * left edge of the send window.
3086 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3087 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3089 * Changed: reset backoff as soon as we see the first valid sample.
3090 * If we do not, we get strongly overestimated rto. With timestamps
3091 * samples are accepted even from very old segments: f.e., when rtt=1
3092 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3093 * answer arrives rto becomes 120 seconds! If at least one of segments
3094 * in window is lost... Voila. --ANK (010210)
3096 struct tcp_sock
*tp
= tcp_sk(sk
);
3098 tcp_valid_rtt_meas(sk
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
);
3101 static void tcp_ack_no_tstamp(struct sock
*sk
, u32 seq_rtt
, int flag
)
3103 /* We don't have a timestamp. Can only use
3104 * packets that are not retransmitted to determine
3105 * rtt estimates. Also, we must not reset the
3106 * backoff for rto until we get a non-retransmitted
3107 * packet. This allows us to deal with a situation
3108 * where the network delay has increased suddenly.
3109 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3112 if (flag
& FLAG_RETRANS_DATA_ACKED
)
3115 tcp_valid_rtt_meas(sk
, seq_rtt
);
3118 static inline void tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
3121 const struct tcp_sock
*tp
= tcp_sk(sk
);
3122 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3123 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3124 tcp_ack_saw_tstamp(sk
, flag
);
3125 else if (seq_rtt
>= 0)
3126 tcp_ack_no_tstamp(sk
, seq_rtt
, flag
);
3129 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 in_flight
)
3131 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3132 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, in_flight
);
3133 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
3136 /* Restart timer after forward progress on connection.
3137 * RFC2988 recommends to restart timer to now+rto.
3139 static void tcp_rearm_rto(struct sock
*sk
)
3141 struct tcp_sock
*tp
= tcp_sk(sk
);
3143 if (!tp
->packets_out
) {
3144 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
3146 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3147 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
3151 /* If we get here, the whole TSO packet has not been acked. */
3152 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3154 struct tcp_sock
*tp
= tcp_sk(sk
);
3157 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3159 packets_acked
= tcp_skb_pcount(skb
);
3160 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3162 packets_acked
-= tcp_skb_pcount(skb
);
3164 if (packets_acked
) {
3165 BUG_ON(tcp_skb_pcount(skb
) == 0);
3166 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3169 return packets_acked
;
3172 /* Remove acknowledged frames from the retransmission queue. If our packet
3173 * is before the ack sequence we can discard it as it's confirmed to have
3174 * arrived at the other end.
3176 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
,
3179 struct tcp_sock
*tp
= tcp_sk(sk
);
3180 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3181 struct sk_buff
*skb
;
3182 u32 now
= tcp_time_stamp
;
3183 int fully_acked
= 1;
3186 u32 reord
= tp
->packets_out
;
3187 u32 prior_sacked
= tp
->sacked_out
;
3189 s32 ca_seq_rtt
= -1;
3190 ktime_t last_ackt
= net_invalid_timestamp();
3192 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
3193 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3195 u8 sacked
= scb
->sacked
;
3197 /* Determine how many packets and what bytes were acked, tso and else */
3198 if (after(scb
->end_seq
, tp
->snd_una
)) {
3199 if (tcp_skb_pcount(skb
) == 1 ||
3200 !after(tp
->snd_una
, scb
->seq
))
3203 acked_pcount
= tcp_tso_acked(sk
, skb
);
3209 acked_pcount
= tcp_skb_pcount(skb
);
3212 if (sacked
& TCPCB_RETRANS
) {
3213 if (sacked
& TCPCB_SACKED_RETRANS
)
3214 tp
->retrans_out
-= acked_pcount
;
3215 flag
|= FLAG_RETRANS_DATA_ACKED
;
3218 if ((flag
& FLAG_DATA_ACKED
) || (acked_pcount
> 1))
3219 flag
|= FLAG_NONHEAD_RETRANS_ACKED
;
3221 ca_seq_rtt
= now
- scb
->when
;
3222 last_ackt
= skb
->tstamp
;
3224 seq_rtt
= ca_seq_rtt
;
3226 if (!(sacked
& TCPCB_SACKED_ACKED
))
3227 reord
= min(pkts_acked
, reord
);
3230 if (sacked
& TCPCB_SACKED_ACKED
)
3231 tp
->sacked_out
-= acked_pcount
;
3232 if (sacked
& TCPCB_LOST
)
3233 tp
->lost_out
-= acked_pcount
;
3235 tp
->packets_out
-= acked_pcount
;
3236 pkts_acked
+= acked_pcount
;
3238 /* Initial outgoing SYN's get put onto the write_queue
3239 * just like anything else we transmit. It is not
3240 * true data, and if we misinform our callers that
3241 * this ACK acks real data, we will erroneously exit
3242 * connection startup slow start one packet too
3243 * quickly. This is severely frowned upon behavior.
3245 if (!(scb
->flags
& TCPCB_FLAG_SYN
)) {
3246 flag
|= FLAG_DATA_ACKED
;
3248 flag
|= FLAG_SYN_ACKED
;
3249 tp
->retrans_stamp
= 0;
3255 tcp_unlink_write_queue(skb
, sk
);
3256 sk_wmem_free_skb(sk
, skb
);
3257 tp
->scoreboard_skb_hint
= NULL
;
3258 if (skb
== tp
->retransmit_skb_hint
)
3259 tp
->retransmit_skb_hint
= NULL
;
3260 if (skb
== tp
->lost_skb_hint
)
3261 tp
->lost_skb_hint
= NULL
;
3264 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3265 tp
->snd_up
= tp
->snd_una
;
3267 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3268 flag
|= FLAG_SACK_RENEGING
;
3270 if (flag
& FLAG_ACKED
) {
3271 const struct tcp_congestion_ops
*ca_ops
3272 = inet_csk(sk
)->icsk_ca_ops
;
3274 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3275 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3276 tcp_mtup_probe_success(sk
);
3279 tcp_ack_update_rtt(sk
, flag
, seq_rtt
);
3282 if (tcp_is_reno(tp
)) {
3283 tcp_remove_reno_sacks(sk
, pkts_acked
);
3287 /* Non-retransmitted hole got filled? That's reordering */
3288 if (reord
< prior_fackets
)
3289 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
3291 delta
= tcp_is_fack(tp
) ? pkts_acked
:
3292 prior_sacked
- tp
->sacked_out
;
3293 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3296 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
3298 if (ca_ops
->pkts_acked
) {
3301 /* Is the ACK triggering packet unambiguous? */
3302 if (!(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3303 /* High resolution needed and available? */
3304 if (ca_ops
->flags
& TCP_CONG_RTT_STAMP
&&
3305 !ktime_equal(last_ackt
,
3306 net_invalid_timestamp()))
3307 rtt_us
= ktime_us_delta(ktime_get_real(),
3309 else if (ca_seq_rtt
> 0)
3310 rtt_us
= jiffies_to_usecs(ca_seq_rtt
);
3313 ca_ops
->pkts_acked(sk
, pkts_acked
, rtt_us
);
3317 #if FASTRETRANS_DEBUG > 0
3318 WARN_ON((int)tp
->sacked_out
< 0);
3319 WARN_ON((int)tp
->lost_out
< 0);
3320 WARN_ON((int)tp
->retrans_out
< 0);
3321 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3322 icsk
= inet_csk(sk
);
3324 printk(KERN_DEBUG
"Leak l=%u %d\n",
3325 tp
->lost_out
, icsk
->icsk_ca_state
);
3328 if (tp
->sacked_out
) {
3329 printk(KERN_DEBUG
"Leak s=%u %d\n",
3330 tp
->sacked_out
, icsk
->icsk_ca_state
);
3333 if (tp
->retrans_out
) {
3334 printk(KERN_DEBUG
"Leak r=%u %d\n",
3335 tp
->retrans_out
, icsk
->icsk_ca_state
);
3336 tp
->retrans_out
= 0;
3343 static void tcp_ack_probe(struct sock
*sk
)
3345 const struct tcp_sock
*tp
= tcp_sk(sk
);
3346 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3348 /* Was it a usable window open? */
3350 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
3351 icsk
->icsk_backoff
= 0;
3352 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3353 /* Socket must be waked up by subsequent tcp_data_snd_check().
3354 * This function is not for random using!
3357 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3358 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
, TCP_RTO_MAX
),
3363 static inline int tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3365 return (!(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3366 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
);
3369 static inline int tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3371 const struct tcp_sock
*tp
= tcp_sk(sk
);
3372 return (!(flag
& FLAG_ECE
) || tp
->snd_cwnd
< tp
->snd_ssthresh
) &&
3373 !((1 << inet_csk(sk
)->icsk_ca_state
) & (TCPF_CA_Recovery
| TCPF_CA_CWR
));
3376 /* Check that window update is acceptable.
3377 * The function assumes that snd_una<=ack<=snd_next.
3379 static inline int tcp_may_update_window(const struct tcp_sock
*tp
,
3380 const u32 ack
, const u32 ack_seq
,
3383 return (after(ack
, tp
->snd_una
) ||
3384 after(ack_seq
, tp
->snd_wl1
) ||
3385 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
));
3388 /* Update our send window.
3390 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3391 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3393 static int tcp_ack_update_window(struct sock
*sk
, struct sk_buff
*skb
, u32 ack
,
3396 struct tcp_sock
*tp
= tcp_sk(sk
);
3398 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3400 if (likely(!tcp_hdr(skb
)->syn
))
3401 nwin
<<= tp
->rx_opt
.snd_wscale
;
3403 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3404 flag
|= FLAG_WIN_UPDATE
;
3405 tcp_update_wl(tp
, ack_seq
);
3407 if (tp
->snd_wnd
!= nwin
) {
3410 /* Note, it is the only place, where
3411 * fast path is recovered for sending TCP.
3414 tcp_fast_path_check(sk
);
3416 if (nwin
> tp
->max_window
) {
3417 tp
->max_window
= nwin
;
3418 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3428 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3429 * continue in congestion avoidance.
3431 static void tcp_conservative_spur_to_response(struct tcp_sock
*tp
)
3433 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
3434 tp
->snd_cwnd_cnt
= 0;
3435 tp
->bytes_acked
= 0;
3436 TCP_ECN_queue_cwr(tp
);
3437 tcp_moderate_cwnd(tp
);
3440 /* A conservative spurious RTO response algorithm: reduce cwnd using
3441 * rate halving and continue in congestion avoidance.
3443 static void tcp_ratehalving_spur_to_response(struct sock
*sk
)
3445 tcp_enter_cwr(sk
, 0);
3448 static void tcp_undo_spur_to_response(struct sock
*sk
, int flag
)
3450 if (flag
& FLAG_ECE
)
3451 tcp_ratehalving_spur_to_response(sk
);
3453 tcp_undo_cwr(sk
, 1);
3456 /* F-RTO spurious RTO detection algorithm (RFC4138)
3458 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3459 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3460 * window (but not to or beyond highest sequence sent before RTO):
3461 * On First ACK, send two new segments out.
3462 * On Second ACK, RTO was likely spurious. Do spurious response (response
3463 * algorithm is not part of the F-RTO detection algorithm
3464 * given in RFC4138 but can be selected separately).
3465 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3466 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3467 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3468 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3470 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3471 * original window even after we transmit two new data segments.
3474 * on first step, wait until first cumulative ACK arrives, then move to
3475 * the second step. In second step, the next ACK decides.
3477 * F-RTO is implemented (mainly) in four functions:
3478 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3479 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3480 * called when tcp_use_frto() showed green light
3481 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3482 * - tcp_enter_frto_loss() is called if there is not enough evidence
3483 * to prove that the RTO is indeed spurious. It transfers the control
3484 * from F-RTO to the conventional RTO recovery
3486 static int tcp_process_frto(struct sock
*sk
, int flag
)
3488 struct tcp_sock
*tp
= tcp_sk(sk
);
3490 tcp_verify_left_out(tp
);
3492 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3493 if (flag
& FLAG_DATA_ACKED
)
3494 inet_csk(sk
)->icsk_retransmits
= 0;
3496 if ((flag
& FLAG_NONHEAD_RETRANS_ACKED
) ||
3497 ((tp
->frto_counter
>= 2) && (flag
& FLAG_RETRANS_DATA_ACKED
)))
3498 tp
->undo_marker
= 0;
3500 if (!before(tp
->snd_una
, tp
->frto_highmark
)) {
3501 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 2 : 3), flag
);
3505 if (!tcp_is_sackfrto(tp
)) {
3506 /* RFC4138 shortcoming in step 2; should also have case c):
3507 * ACK isn't duplicate nor advances window, e.g., opposite dir
3510 if (!(flag
& FLAG_ANY_PROGRESS
) && (flag
& FLAG_NOT_DUP
))
3513 if (!(flag
& FLAG_DATA_ACKED
)) {
3514 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 0 : 3),
3519 if (!(flag
& FLAG_DATA_ACKED
) && (tp
->frto_counter
== 1)) {
3520 /* Prevent sending of new data. */
3521 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
3522 tcp_packets_in_flight(tp
));
3526 if ((tp
->frto_counter
>= 2) &&
3527 (!(flag
& FLAG_FORWARD_PROGRESS
) ||
3528 ((flag
& FLAG_DATA_SACKED
) &&
3529 !(flag
& FLAG_ONLY_ORIG_SACKED
)))) {
3530 /* RFC4138 shortcoming (see comment above) */
3531 if (!(flag
& FLAG_FORWARD_PROGRESS
) &&
3532 (flag
& FLAG_NOT_DUP
))
3535 tcp_enter_frto_loss(sk
, 3, flag
);
3540 if (tp
->frto_counter
== 1) {
3541 /* tcp_may_send_now needs to see updated state */
3542 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + 2;
3543 tp
->frto_counter
= 2;
3545 if (!tcp_may_send_now(sk
))
3546 tcp_enter_frto_loss(sk
, 2, flag
);
3550 switch (sysctl_tcp_frto_response
) {
3552 tcp_undo_spur_to_response(sk
, flag
);
3555 tcp_conservative_spur_to_response(tp
);
3558 tcp_ratehalving_spur_to_response(sk
);
3561 tp
->frto_counter
= 0;
3562 tp
->undo_marker
= 0;
3563 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSPURIOUSRTOS
);
3568 /* This routine deals with incoming acks, but not outgoing ones. */
3569 static int tcp_ack(struct sock
*sk
, struct sk_buff
*skb
, int flag
)
3571 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3572 struct tcp_sock
*tp
= tcp_sk(sk
);
3573 u32 prior_snd_una
= tp
->snd_una
;
3574 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3575 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3576 u32 prior_in_flight
;
3581 /* If the ack is older than previous acks
3582 * then we can probably ignore it.
3584 if (before(ack
, prior_snd_una
))
3587 /* If the ack includes data we haven't sent yet, discard
3588 * this segment (RFC793 Section 3.9).
3590 if (after(ack
, tp
->snd_nxt
))
3593 if (after(ack
, prior_snd_una
))
3594 flag
|= FLAG_SND_UNA_ADVANCED
;
3596 if (sysctl_tcp_abc
) {
3597 if (icsk
->icsk_ca_state
< TCP_CA_CWR
)
3598 tp
->bytes_acked
+= ack
- prior_snd_una
;
3599 else if (icsk
->icsk_ca_state
== TCP_CA_Loss
)
3600 /* we assume just one segment left network */
3601 tp
->bytes_acked
+= min(ack
- prior_snd_una
,
3605 prior_fackets
= tp
->fackets_out
;
3606 prior_in_flight
= tcp_packets_in_flight(tp
);
3608 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3609 /* Window is constant, pure forward advance.
3610 * No more checks are required.
3611 * Note, we use the fact that SND.UNA>=SND.WL2.
3613 tcp_update_wl(tp
, ack_seq
);
3615 flag
|= FLAG_WIN_UPDATE
;
3617 tcp_ca_event(sk
, CA_EVENT_FAST_ACK
);
3619 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3621 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3624 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3626 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3628 if (TCP_SKB_CB(skb
)->sacked
)
3629 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3631 if (TCP_ECN_rcv_ecn_echo(tp
, tcp_hdr(skb
)))
3634 tcp_ca_event(sk
, CA_EVENT_SLOW_ACK
);
3637 /* We passed data and got it acked, remove any soft error
3638 * log. Something worked...
3640 sk
->sk_err_soft
= 0;
3641 icsk
->icsk_probes_out
= 0;
3642 tp
->rcv_tstamp
= tcp_time_stamp
;
3643 prior_packets
= tp
->packets_out
;
3647 /* See if we can take anything off of the retransmit queue. */
3648 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
, prior_snd_una
);
3650 if (tp
->frto_counter
)
3651 frto_cwnd
= tcp_process_frto(sk
, flag
);
3652 /* Guarantee sacktag reordering detection against wrap-arounds */
3653 if (before(tp
->frto_highmark
, tp
->snd_una
))
3654 tp
->frto_highmark
= 0;
3656 if (tcp_ack_is_dubious(sk
, flag
)) {
3657 /* Advance CWND, if state allows this. */
3658 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
&&
3659 tcp_may_raise_cwnd(sk
, flag
))
3660 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3661 tcp_fastretrans_alert(sk
, prior_packets
- tp
->packets_out
,
3664 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
)
3665 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3668 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
))
3669 dst_confirm(sk
->sk_dst_cache
);
3674 /* If this ack opens up a zero window, clear backoff. It was
3675 * being used to time the probes, and is probably far higher than
3676 * it needs to be for normal retransmission.
3678 if (tcp_send_head(sk
))
3683 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3687 if (TCP_SKB_CB(skb
)->sacked
) {
3688 tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3689 if (icsk
->icsk_ca_state
== TCP_CA_Open
)
3690 tcp_try_keep_open(sk
);
3693 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3697 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3698 * But, this can also be called on packets in the established flow when
3699 * the fast version below fails.
3701 void tcp_parse_options(struct sk_buff
*skb
, struct tcp_options_received
*opt_rx
,
3705 struct tcphdr
*th
= tcp_hdr(skb
);
3706 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3708 ptr
= (unsigned char *)(th
+ 1);
3709 opt_rx
->saw_tstamp
= 0;
3711 while (length
> 0) {
3712 int opcode
= *ptr
++;
3718 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3723 if (opsize
< 2) /* "silly options" */
3725 if (opsize
> length
)
3726 return; /* don't parse partial options */
3729 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3730 u16 in_mss
= get_unaligned_be16(ptr
);
3732 if (opt_rx
->user_mss
&&
3733 opt_rx
->user_mss
< in_mss
)
3734 in_mss
= opt_rx
->user_mss
;
3735 opt_rx
->mss_clamp
= in_mss
;
3740 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3741 !estab
&& sysctl_tcp_window_scaling
) {
3742 __u8 snd_wscale
= *(__u8
*)ptr
;
3743 opt_rx
->wscale_ok
= 1;
3744 if (snd_wscale
> 14) {
3745 if (net_ratelimit())
3746 printk(KERN_INFO
"tcp_parse_options: Illegal window "
3747 "scaling value %d >14 received.\n",
3751 opt_rx
->snd_wscale
= snd_wscale
;
3754 case TCPOPT_TIMESTAMP
:
3755 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3756 ((estab
&& opt_rx
->tstamp_ok
) ||
3757 (!estab
&& sysctl_tcp_timestamps
))) {
3758 opt_rx
->saw_tstamp
= 1;
3759 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3760 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3763 case TCPOPT_SACK_PERM
:
3764 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3765 !estab
&& sysctl_tcp_sack
) {
3766 opt_rx
->sack_ok
= 1;
3767 tcp_sack_reset(opt_rx
);
3772 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3773 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3775 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3778 #ifdef CONFIG_TCP_MD5SIG
3781 * The MD5 Hash has already been
3782 * checked (see tcp_v{4,6}_do_rcv()).
3794 static int tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, struct tcphdr
*th
)
3796 __be32
*ptr
= (__be32
*)(th
+ 1);
3798 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3799 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3800 tp
->rx_opt
.saw_tstamp
= 1;
3802 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3804 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
);
3810 /* Fast parse options. This hopes to only see timestamps.
3811 * If it is wrong it falls back on tcp_parse_options().
3813 static int tcp_fast_parse_options(struct sk_buff
*skb
, struct tcphdr
*th
,
3814 struct tcp_sock
*tp
)
3816 if (th
->doff
== sizeof(struct tcphdr
) >> 2) {
3817 tp
->rx_opt
.saw_tstamp
= 0;
3819 } else if (tp
->rx_opt
.tstamp_ok
&&
3820 th
->doff
== (sizeof(struct tcphdr
)>>2)+(TCPOLEN_TSTAMP_ALIGNED
>>2)) {
3821 if (tcp_parse_aligned_timestamp(tp
, th
))
3824 tcp_parse_options(skb
, &tp
->rx_opt
, 1);
3828 #ifdef CONFIG_TCP_MD5SIG
3830 * Parse MD5 Signature option
3832 u8
*tcp_parse_md5sig_option(struct tcphdr
*th
)
3834 int length
= (th
->doff
<< 2) - sizeof (*th
);
3835 u8
*ptr
= (u8
*)(th
+ 1);
3837 /* If the TCP option is too short, we can short cut */
3838 if (length
< TCPOLEN_MD5SIG
)
3841 while (length
> 0) {
3842 int opcode
= *ptr
++;
3853 if (opsize
< 2 || opsize
> length
)
3855 if (opcode
== TCPOPT_MD5SIG
)
3865 static inline void tcp_store_ts_recent(struct tcp_sock
*tp
)
3867 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3868 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
3871 static inline void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3873 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3874 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3875 * extra check below makes sure this can only happen
3876 * for pure ACK frames. -DaveM
3878 * Not only, also it occurs for expired timestamps.
3881 if (tcp_paws_check(&tp
->rx_opt
, 0))
3882 tcp_store_ts_recent(tp
);
3886 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3888 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3889 * it can pass through stack. So, the following predicate verifies that
3890 * this segment is not used for anything but congestion avoidance or
3891 * fast retransmit. Moreover, we even are able to eliminate most of such
3892 * second order effects, if we apply some small "replay" window (~RTO)
3893 * to timestamp space.
3895 * All these measures still do not guarantee that we reject wrapped ACKs
3896 * on networks with high bandwidth, when sequence space is recycled fastly,
3897 * but it guarantees that such events will be very rare and do not affect
3898 * connection seriously. This doesn't look nice, but alas, PAWS is really
3901 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3902 * states that events when retransmit arrives after original data are rare.
3903 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3904 * the biggest problem on large power networks even with minor reordering.
3905 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3906 * up to bandwidth of 18Gigabit/sec. 8) ]
3909 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
3911 struct tcp_sock
*tp
= tcp_sk(sk
);
3912 struct tcphdr
*th
= tcp_hdr(skb
);
3913 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3914 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3916 return (/* 1. Pure ACK with correct sequence number. */
3917 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
3919 /* 2. ... and duplicate ACK. */
3920 ack
== tp
->snd_una
&&
3922 /* 3. ... and does not update window. */
3923 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
3925 /* 4. ... and sits in replay window. */
3926 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
3929 static inline int tcp_paws_discard(const struct sock
*sk
,
3930 const struct sk_buff
*skb
)
3932 const struct tcp_sock
*tp
= tcp_sk(sk
);
3934 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
3935 !tcp_disordered_ack(sk
, skb
);
3938 /* Check segment sequence number for validity.
3940 * Segment controls are considered valid, if the segment
3941 * fits to the window after truncation to the window. Acceptability
3942 * of data (and SYN, FIN, of course) is checked separately.
3943 * See tcp_data_queue(), for example.
3945 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3946 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3947 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3948 * (borrowed from freebsd)
3951 static inline int tcp_sequence(struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
3953 return !before(end_seq
, tp
->rcv_wup
) &&
3954 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
3957 /* When we get a reset we do this. */
3958 static void tcp_reset(struct sock
*sk
)
3960 /* We want the right error as BSD sees it (and indeed as we do). */
3961 switch (sk
->sk_state
) {
3963 sk
->sk_err
= ECONNREFUSED
;
3965 case TCP_CLOSE_WAIT
:
3971 sk
->sk_err
= ECONNRESET
;
3974 if (!sock_flag(sk
, SOCK_DEAD
))
3975 sk
->sk_error_report(sk
);
3981 * Process the FIN bit. This now behaves as it is supposed to work
3982 * and the FIN takes effect when it is validly part of sequence
3983 * space. Not before when we get holes.
3985 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3986 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3989 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3990 * close and we go into CLOSING (and later onto TIME-WAIT)
3992 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3994 static void tcp_fin(struct sk_buff
*skb
, struct sock
*sk
, struct tcphdr
*th
)
3996 struct tcp_sock
*tp
= tcp_sk(sk
);
3998 inet_csk_schedule_ack(sk
);
4000 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4001 sock_set_flag(sk
, SOCK_DONE
);
4003 switch (sk
->sk_state
) {
4005 case TCP_ESTABLISHED
:
4006 /* Move to CLOSE_WAIT */
4007 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4008 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
4011 case TCP_CLOSE_WAIT
:
4013 /* Received a retransmission of the FIN, do
4018 /* RFC793: Remain in the LAST-ACK state. */
4022 /* This case occurs when a simultaneous close
4023 * happens, we must ack the received FIN and
4024 * enter the CLOSING state.
4027 tcp_set_state(sk
, TCP_CLOSING
);
4030 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4032 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4035 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4036 * cases we should never reach this piece of code.
4038 printk(KERN_ERR
"%s: Impossible, sk->sk_state=%d\n",
4039 __func__
, sk
->sk_state
);
4043 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4044 * Probably, we should reset in this case. For now drop them.
4046 __skb_queue_purge(&tp
->out_of_order_queue
);
4047 if (tcp_is_sack(tp
))
4048 tcp_sack_reset(&tp
->rx_opt
);
4051 if (!sock_flag(sk
, SOCK_DEAD
)) {
4052 sk
->sk_state_change(sk
);
4054 /* Do not send POLL_HUP for half duplex close. */
4055 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4056 sk
->sk_state
== TCP_CLOSE
)
4057 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4059 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4063 static inline int tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4066 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4067 if (before(seq
, sp
->start_seq
))
4068 sp
->start_seq
= seq
;
4069 if (after(end_seq
, sp
->end_seq
))
4070 sp
->end_seq
= end_seq
;
4076 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4078 struct tcp_sock
*tp
= tcp_sk(sk
);
4080 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4083 if (before(seq
, tp
->rcv_nxt
))
4084 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4086 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4088 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
4090 tp
->rx_opt
.dsack
= 1;
4091 tp
->duplicate_sack
[0].start_seq
= seq
;
4092 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4096 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4098 struct tcp_sock
*tp
= tcp_sk(sk
);
4100 if (!tp
->rx_opt
.dsack
)
4101 tcp_dsack_set(sk
, seq
, end_seq
);
4103 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4106 static void tcp_send_dupack(struct sock
*sk
, struct sk_buff
*skb
)
4108 struct tcp_sock
*tp
= tcp_sk(sk
);
4110 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4111 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4112 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4113 tcp_enter_quickack_mode(sk
);
4115 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4116 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4118 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4119 end_seq
= tp
->rcv_nxt
;
4120 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4127 /* These routines update the SACK block as out-of-order packets arrive or
4128 * in-order packets close up the sequence space.
4130 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4133 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4134 struct tcp_sack_block
*swalk
= sp
+ 1;
4136 /* See if the recent change to the first SACK eats into
4137 * or hits the sequence space of other SACK blocks, if so coalesce.
4139 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4140 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4143 /* Zap SWALK, by moving every further SACK up by one slot.
4144 * Decrease num_sacks.
4146 tp
->rx_opt
.num_sacks
--;
4147 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4151 this_sack
++, swalk
++;
4155 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4157 struct tcp_sock
*tp
= tcp_sk(sk
);
4158 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4159 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4165 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4166 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4167 /* Rotate this_sack to the first one. */
4168 for (; this_sack
> 0; this_sack
--, sp
--)
4169 swap(*sp
, *(sp
- 1));
4171 tcp_sack_maybe_coalesce(tp
);
4176 /* Could not find an adjacent existing SACK, build a new one,
4177 * put it at the front, and shift everyone else down. We
4178 * always know there is at least one SACK present already here.
4180 * If the sack array is full, forget about the last one.
4182 if (this_sack
>= TCP_NUM_SACKS
) {
4184 tp
->rx_opt
.num_sacks
--;
4187 for (; this_sack
> 0; this_sack
--, sp
--)
4191 /* Build the new head SACK, and we're done. */
4192 sp
->start_seq
= seq
;
4193 sp
->end_seq
= end_seq
;
4194 tp
->rx_opt
.num_sacks
++;
4197 /* RCV.NXT advances, some SACKs should be eaten. */
4199 static void tcp_sack_remove(struct tcp_sock
*tp
)
4201 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4202 int num_sacks
= tp
->rx_opt
.num_sacks
;
4205 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4206 if (skb_queue_empty(&tp
->out_of_order_queue
)) {
4207 tp
->rx_opt
.num_sacks
= 0;
4211 for (this_sack
= 0; this_sack
< num_sacks
;) {
4212 /* Check if the start of the sack is covered by RCV.NXT. */
4213 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4216 /* RCV.NXT must cover all the block! */
4217 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4219 /* Zap this SACK, by moving forward any other SACKS. */
4220 for (i
=this_sack
+1; i
< num_sacks
; i
++)
4221 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4228 tp
->rx_opt
.num_sacks
= num_sacks
;
4231 /* This one checks to see if we can put data from the
4232 * out_of_order queue into the receive_queue.
4234 static void tcp_ofo_queue(struct sock
*sk
)
4236 struct tcp_sock
*tp
= tcp_sk(sk
);
4237 __u32 dsack_high
= tp
->rcv_nxt
;
4238 struct sk_buff
*skb
;
4240 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
4241 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4244 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4245 __u32 dsack
= dsack_high
;
4246 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4247 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4248 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4251 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4252 SOCK_DEBUG(sk
, "ofo packet was already received \n");
4253 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4257 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4258 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4259 TCP_SKB_CB(skb
)->end_seq
);
4261 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4262 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4263 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4264 if (tcp_hdr(skb
)->fin
)
4265 tcp_fin(skb
, sk
, tcp_hdr(skb
));
4269 static int tcp_prune_ofo_queue(struct sock
*sk
);
4270 static int tcp_prune_queue(struct sock
*sk
);
4272 static inline int tcp_try_rmem_schedule(struct sock
*sk
, unsigned int size
)
4274 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4275 !sk_rmem_schedule(sk
, size
)) {
4277 if (tcp_prune_queue(sk
) < 0)
4280 if (!sk_rmem_schedule(sk
, size
)) {
4281 if (!tcp_prune_ofo_queue(sk
))
4284 if (!sk_rmem_schedule(sk
, size
))
4291 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4293 struct tcphdr
*th
= tcp_hdr(skb
);
4294 struct tcp_sock
*tp
= tcp_sk(sk
);
4297 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
)
4300 __skb_pull(skb
, th
->doff
* 4);
4302 TCP_ECN_accept_cwr(tp
, skb
);
4304 tp
->rx_opt
.dsack
= 0;
4306 /* Queue data for delivery to the user.
4307 * Packets in sequence go to the receive queue.
4308 * Out of sequence packets to the out_of_order_queue.
4310 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4311 if (tcp_receive_window(tp
) == 0)
4314 /* Ok. In sequence. In window. */
4315 if (tp
->ucopy
.task
== current
&&
4316 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
4317 sock_owned_by_user(sk
) && !tp
->urg_data
) {
4318 int chunk
= min_t(unsigned int, skb
->len
,
4321 __set_current_state(TASK_RUNNING
);
4324 if (!skb_copy_datagram_iovec(skb
, 0, tp
->ucopy
.iov
, chunk
)) {
4325 tp
->ucopy
.len
-= chunk
;
4326 tp
->copied_seq
+= chunk
;
4327 eaten
= (chunk
== skb
->len
&& !th
->fin
);
4328 tcp_rcv_space_adjust(sk
);
4336 tcp_try_rmem_schedule(sk
, skb
->truesize
))
4339 skb_set_owner_r(skb
, sk
);
4340 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4342 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4344 tcp_event_data_recv(sk
, skb
);
4346 tcp_fin(skb
, sk
, th
);
4348 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4351 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4352 * gap in queue is filled.
4354 if (skb_queue_empty(&tp
->out_of_order_queue
))
4355 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4358 if (tp
->rx_opt
.num_sacks
)
4359 tcp_sack_remove(tp
);
4361 tcp_fast_path_check(sk
);
4365 else if (!sock_flag(sk
, SOCK_DEAD
))
4366 sk
->sk_data_ready(sk
, 0);
4370 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4371 /* A retransmit, 2nd most common case. Force an immediate ack. */
4372 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4373 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4376 tcp_enter_quickack_mode(sk
);
4377 inet_csk_schedule_ack(sk
);
4383 /* Out of window. F.e. zero window probe. */
4384 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4387 tcp_enter_quickack_mode(sk
);
4389 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4390 /* Partial packet, seq < rcv_next < end_seq */
4391 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4392 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4393 TCP_SKB_CB(skb
)->end_seq
);
4395 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4397 /* If window is closed, drop tail of packet. But after
4398 * remembering D-SACK for its head made in previous line.
4400 if (!tcp_receive_window(tp
))
4405 TCP_ECN_check_ce(tp
, skb
);
4407 if (tcp_try_rmem_schedule(sk
, skb
->truesize
))
4410 /* Disable header prediction. */
4412 inet_csk_schedule_ack(sk
);
4414 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4415 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4417 skb_set_owner_r(skb
, sk
);
4419 if (!skb_peek(&tp
->out_of_order_queue
)) {
4420 /* Initial out of order segment, build 1 SACK. */
4421 if (tcp_is_sack(tp
)) {
4422 tp
->rx_opt
.num_sacks
= 1;
4423 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
4424 tp
->selective_acks
[0].end_seq
=
4425 TCP_SKB_CB(skb
)->end_seq
;
4427 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4429 struct sk_buff
*skb1
= skb_peek_tail(&tp
->out_of_order_queue
);
4430 u32 seq
= TCP_SKB_CB(skb
)->seq
;
4431 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4433 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
4434 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4436 if (!tp
->rx_opt
.num_sacks
||
4437 tp
->selective_acks
[0].end_seq
!= seq
)
4440 /* Common case: data arrive in order after hole. */
4441 tp
->selective_acks
[0].end_seq
= end_seq
;
4445 /* Find place to insert this segment. */
4447 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
4449 if (skb_queue_is_first(&tp
->out_of_order_queue
, skb1
)) {
4453 skb1
= skb_queue_prev(&tp
->out_of_order_queue
, skb1
);
4456 /* Do skb overlap to previous one? */
4457 if (skb1
&& before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4458 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4459 /* All the bits are present. Drop. */
4461 tcp_dsack_set(sk
, seq
, end_seq
);
4464 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4465 /* Partial overlap. */
4466 tcp_dsack_set(sk
, seq
,
4467 TCP_SKB_CB(skb1
)->end_seq
);
4469 if (skb_queue_is_first(&tp
->out_of_order_queue
,
4473 skb1
= skb_queue_prev(
4474 &tp
->out_of_order_queue
,
4479 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4481 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4483 /* And clean segments covered by new one as whole. */
4484 while (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
)) {
4485 skb1
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4487 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4489 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4490 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4494 __skb_unlink(skb1
, &tp
->out_of_order_queue
);
4495 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4496 TCP_SKB_CB(skb1
)->end_seq
);
4501 if (tcp_is_sack(tp
))
4502 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4506 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4507 struct sk_buff_head
*list
)
4509 struct sk_buff
*next
= NULL
;
4511 if (!skb_queue_is_last(list
, skb
))
4512 next
= skb_queue_next(list
, skb
);
4514 __skb_unlink(skb
, list
);
4516 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4521 /* Collapse contiguous sequence of skbs head..tail with
4522 * sequence numbers start..end.
4524 * If tail is NULL, this means until the end of the list.
4526 * Segments with FIN/SYN are not collapsed (only because this
4530 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
,
4531 struct sk_buff
*head
, struct sk_buff
*tail
,
4534 struct sk_buff
*skb
, *n
;
4537 /* First, check that queue is collapsible and find
4538 * the point where collapsing can be useful. */
4542 skb_queue_walk_from_safe(list
, skb
, n
) {
4545 /* No new bits? It is possible on ofo queue. */
4546 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4547 skb
= tcp_collapse_one(sk
, skb
, list
);
4553 /* The first skb to collapse is:
4555 * - bloated or contains data before "start" or
4556 * overlaps to the next one.
4558 if (!tcp_hdr(skb
)->syn
&& !tcp_hdr(skb
)->fin
&&
4559 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4560 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4561 end_of_skbs
= false;
4565 if (!skb_queue_is_last(list
, skb
)) {
4566 struct sk_buff
*next
= skb_queue_next(list
, skb
);
4568 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(next
)->seq
) {
4569 end_of_skbs
= false;
4574 /* Decided to skip this, advance start seq. */
4575 start
= TCP_SKB_CB(skb
)->end_seq
;
4577 if (end_of_skbs
|| tcp_hdr(skb
)->syn
|| tcp_hdr(skb
)->fin
)
4580 while (before(start
, end
)) {
4581 struct sk_buff
*nskb
;
4582 unsigned int header
= skb_headroom(skb
);
4583 int copy
= SKB_MAX_ORDER(header
, 0);
4585 /* Too big header? This can happen with IPv6. */
4588 if (end
- start
< copy
)
4590 nskb
= alloc_skb(copy
+ header
, GFP_ATOMIC
);
4594 skb_set_mac_header(nskb
, skb_mac_header(skb
) - skb
->head
);
4595 skb_set_network_header(nskb
, (skb_network_header(skb
) -
4597 skb_set_transport_header(nskb
, (skb_transport_header(skb
) -
4599 skb_reserve(nskb
, header
);
4600 memcpy(nskb
->head
, skb
->head
, header
);
4601 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4602 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4603 __skb_queue_before(list
, skb
, nskb
);
4604 skb_set_owner_r(nskb
, sk
);
4606 /* Copy data, releasing collapsed skbs. */
4608 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4609 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4613 size
= min(copy
, size
);
4614 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4616 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4620 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4621 skb
= tcp_collapse_one(sk
, skb
, list
);
4624 tcp_hdr(skb
)->syn
||
4632 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4633 * and tcp_collapse() them until all the queue is collapsed.
4635 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4637 struct tcp_sock
*tp
= tcp_sk(sk
);
4638 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
4639 struct sk_buff
*head
;
4645 start
= TCP_SKB_CB(skb
)->seq
;
4646 end
= TCP_SKB_CB(skb
)->end_seq
;
4650 struct sk_buff
*next
= NULL
;
4652 if (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
))
4653 next
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4656 /* Segment is terminated when we see gap or when
4657 * we are at the end of all the queue. */
4659 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4660 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4661 tcp_collapse(sk
, &tp
->out_of_order_queue
,
4662 head
, skb
, start
, end
);
4666 /* Start new segment */
4667 start
= TCP_SKB_CB(skb
)->seq
;
4668 end
= TCP_SKB_CB(skb
)->end_seq
;
4670 if (before(TCP_SKB_CB(skb
)->seq
, start
))
4671 start
= TCP_SKB_CB(skb
)->seq
;
4672 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4673 end
= TCP_SKB_CB(skb
)->end_seq
;
4679 * Purge the out-of-order queue.
4680 * Return true if queue was pruned.
4682 static int tcp_prune_ofo_queue(struct sock
*sk
)
4684 struct tcp_sock
*tp
= tcp_sk(sk
);
4687 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4688 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4689 __skb_queue_purge(&tp
->out_of_order_queue
);
4691 /* Reset SACK state. A conforming SACK implementation will
4692 * do the same at a timeout based retransmit. When a connection
4693 * is in a sad state like this, we care only about integrity
4694 * of the connection not performance.
4696 if (tp
->rx_opt
.sack_ok
)
4697 tcp_sack_reset(&tp
->rx_opt
);
4704 /* Reduce allocated memory if we can, trying to get
4705 * the socket within its memory limits again.
4707 * Return less than zero if we should start dropping frames
4708 * until the socket owning process reads some of the data
4709 * to stabilize the situation.
4711 static int tcp_prune_queue(struct sock
*sk
)
4713 struct tcp_sock
*tp
= tcp_sk(sk
);
4715 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4717 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
4719 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4720 tcp_clamp_window(sk
);
4721 else if (tcp_memory_pressure
)
4722 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4724 tcp_collapse_ofo_queue(sk
);
4725 if (!skb_queue_empty(&sk
->sk_receive_queue
))
4726 tcp_collapse(sk
, &sk
->sk_receive_queue
,
4727 skb_peek(&sk
->sk_receive_queue
),
4729 tp
->copied_seq
, tp
->rcv_nxt
);
4732 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4735 /* Collapsing did not help, destructive actions follow.
4736 * This must not ever occur. */
4738 tcp_prune_ofo_queue(sk
);
4740 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4743 /* If we are really being abused, tell the caller to silently
4744 * drop receive data on the floor. It will get retransmitted
4745 * and hopefully then we'll have sufficient space.
4747 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
4749 /* Massive buffer overcommit. */
4754 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4755 * As additional protections, we do not touch cwnd in retransmission phases,
4756 * and if application hit its sndbuf limit recently.
4758 void tcp_cwnd_application_limited(struct sock
*sk
)
4760 struct tcp_sock
*tp
= tcp_sk(sk
);
4762 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
4763 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
4764 /* Limited by application or receiver window. */
4765 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
4766 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
4767 if (win_used
< tp
->snd_cwnd
) {
4768 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
4769 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
4771 tp
->snd_cwnd_used
= 0;
4773 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4776 static int tcp_should_expand_sndbuf(struct sock
*sk
)
4778 struct tcp_sock
*tp
= tcp_sk(sk
);
4780 /* If the user specified a specific send buffer setting, do
4783 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
4786 /* If we are under global TCP memory pressure, do not expand. */
4787 if (tcp_memory_pressure
)
4790 /* If we are under soft global TCP memory pressure, do not expand. */
4791 if (atomic_read(&tcp_memory_allocated
) >= sysctl_tcp_mem
[0])
4794 /* If we filled the congestion window, do not expand. */
4795 if (tp
->packets_out
>= tp
->snd_cwnd
)
4801 /* When incoming ACK allowed to free some skb from write_queue,
4802 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4803 * on the exit from tcp input handler.
4805 * PROBLEM: sndbuf expansion does not work well with largesend.
4807 static void tcp_new_space(struct sock
*sk
)
4809 struct tcp_sock
*tp
= tcp_sk(sk
);
4811 if (tcp_should_expand_sndbuf(sk
)) {
4812 int sndmem
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
4813 MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
);
4814 int demanded
= max_t(unsigned int, tp
->snd_cwnd
,
4815 tp
->reordering
+ 1);
4816 sndmem
*= 2 * demanded
;
4817 if (sndmem
> sk
->sk_sndbuf
)
4818 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
4819 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4822 sk
->sk_write_space(sk
);
4825 static void tcp_check_space(struct sock
*sk
)
4827 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
4828 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
4829 if (sk
->sk_socket
&&
4830 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
4835 static inline void tcp_data_snd_check(struct sock
*sk
)
4837 tcp_push_pending_frames(sk
);
4838 tcp_check_space(sk
);
4842 * Check if sending an ack is needed.
4844 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
4846 struct tcp_sock
*tp
= tcp_sk(sk
);
4848 /* More than one full frame received... */
4849 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
4850 /* ... and right edge of window advances far enough.
4851 * (tcp_recvmsg() will send ACK otherwise). Or...
4853 && __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
4854 /* We ACK each frame or... */
4855 tcp_in_quickack_mode(sk
) ||
4856 /* We have out of order data. */
4857 (ofo_possible
&& skb_peek(&tp
->out_of_order_queue
))) {
4858 /* Then ack it now */
4861 /* Else, send delayed ack. */
4862 tcp_send_delayed_ack(sk
);
4866 static inline void tcp_ack_snd_check(struct sock
*sk
)
4868 if (!inet_csk_ack_scheduled(sk
)) {
4869 /* We sent a data segment already. */
4872 __tcp_ack_snd_check(sk
, 1);
4876 * This routine is only called when we have urgent data
4877 * signaled. Its the 'slow' part of tcp_urg. It could be
4878 * moved inline now as tcp_urg is only called from one
4879 * place. We handle URGent data wrong. We have to - as
4880 * BSD still doesn't use the correction from RFC961.
4881 * For 1003.1g we should support a new option TCP_STDURG to permit
4882 * either form (or just set the sysctl tcp_stdurg).
4885 static void tcp_check_urg(struct sock
*sk
, struct tcphdr
*th
)
4887 struct tcp_sock
*tp
= tcp_sk(sk
);
4888 u32 ptr
= ntohs(th
->urg_ptr
);
4890 if (ptr
&& !sysctl_tcp_stdurg
)
4892 ptr
+= ntohl(th
->seq
);
4894 /* Ignore urgent data that we've already seen and read. */
4895 if (after(tp
->copied_seq
, ptr
))
4898 /* Do not replay urg ptr.
4900 * NOTE: interesting situation not covered by specs.
4901 * Misbehaving sender may send urg ptr, pointing to segment,
4902 * which we already have in ofo queue. We are not able to fetch
4903 * such data and will stay in TCP_URG_NOTYET until will be eaten
4904 * by recvmsg(). Seems, we are not obliged to handle such wicked
4905 * situations. But it is worth to think about possibility of some
4906 * DoSes using some hypothetical application level deadlock.
4908 if (before(ptr
, tp
->rcv_nxt
))
4911 /* Do we already have a newer (or duplicate) urgent pointer? */
4912 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
4915 /* Tell the world about our new urgent pointer. */
4918 /* We may be adding urgent data when the last byte read was
4919 * urgent. To do this requires some care. We cannot just ignore
4920 * tp->copied_seq since we would read the last urgent byte again
4921 * as data, nor can we alter copied_seq until this data arrives
4922 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4924 * NOTE. Double Dutch. Rendering to plain English: author of comment
4925 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4926 * and expect that both A and B disappear from stream. This is _wrong_.
4927 * Though this happens in BSD with high probability, this is occasional.
4928 * Any application relying on this is buggy. Note also, that fix "works"
4929 * only in this artificial test. Insert some normal data between A and B and we will
4930 * decline of BSD again. Verdict: it is better to remove to trap
4933 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
4934 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
4935 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
4937 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
4938 __skb_unlink(skb
, &sk
->sk_receive_queue
);
4943 tp
->urg_data
= TCP_URG_NOTYET
;
4946 /* Disable header prediction. */
4950 /* This is the 'fast' part of urgent handling. */
4951 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, struct tcphdr
*th
)
4953 struct tcp_sock
*tp
= tcp_sk(sk
);
4955 /* Check if we get a new urgent pointer - normally not. */
4957 tcp_check_urg(sk
, th
);
4959 /* Do we wait for any urgent data? - normally not... */
4960 if (tp
->urg_data
== TCP_URG_NOTYET
) {
4961 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
4964 /* Is the urgent pointer pointing into this packet? */
4965 if (ptr
< skb
->len
) {
4967 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
4969 tp
->urg_data
= TCP_URG_VALID
| tmp
;
4970 if (!sock_flag(sk
, SOCK_DEAD
))
4971 sk
->sk_data_ready(sk
, 0);
4976 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
4978 struct tcp_sock
*tp
= tcp_sk(sk
);
4979 int chunk
= skb
->len
- hlen
;
4983 if (skb_csum_unnecessary(skb
))
4984 err
= skb_copy_datagram_iovec(skb
, hlen
, tp
->ucopy
.iov
, chunk
);
4986 err
= skb_copy_and_csum_datagram_iovec(skb
, hlen
,
4990 tp
->ucopy
.len
-= chunk
;
4991 tp
->copied_seq
+= chunk
;
4992 tcp_rcv_space_adjust(sk
);
4999 static __sum16
__tcp_checksum_complete_user(struct sock
*sk
,
5000 struct sk_buff
*skb
)
5004 if (sock_owned_by_user(sk
)) {
5006 result
= __tcp_checksum_complete(skb
);
5009 result
= __tcp_checksum_complete(skb
);
5014 static inline int tcp_checksum_complete_user(struct sock
*sk
,
5015 struct sk_buff
*skb
)
5017 return !skb_csum_unnecessary(skb
) &&
5018 __tcp_checksum_complete_user(sk
, skb
);
5021 #ifdef CONFIG_NET_DMA
5022 static int tcp_dma_try_early_copy(struct sock
*sk
, struct sk_buff
*skb
,
5025 struct tcp_sock
*tp
= tcp_sk(sk
);
5026 int chunk
= skb
->len
- hlen
;
5028 int copied_early
= 0;
5030 if (tp
->ucopy
.wakeup
)
5033 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
5034 tp
->ucopy
.dma_chan
= dma_find_channel(DMA_MEMCPY
);
5036 if (tp
->ucopy
.dma_chan
&& skb_csum_unnecessary(skb
)) {
5038 dma_cookie
= dma_skb_copy_datagram_iovec(tp
->ucopy
.dma_chan
,
5040 tp
->ucopy
.iov
, chunk
,
5041 tp
->ucopy
.pinned_list
);
5046 tp
->ucopy
.dma_cookie
= dma_cookie
;
5049 tp
->ucopy
.len
-= chunk
;
5050 tp
->copied_seq
+= chunk
;
5051 tcp_rcv_space_adjust(sk
);
5053 if ((tp
->ucopy
.len
== 0) ||
5054 (tcp_flag_word(tcp_hdr(skb
)) & TCP_FLAG_PSH
) ||
5055 (atomic_read(&sk
->sk_rmem_alloc
) > (sk
->sk_rcvbuf
>> 1))) {
5056 tp
->ucopy
.wakeup
= 1;
5057 sk
->sk_data_ready(sk
, 0);
5059 } else if (chunk
> 0) {
5060 tp
->ucopy
.wakeup
= 1;
5061 sk
->sk_data_ready(sk
, 0);
5064 return copied_early
;
5066 #endif /* CONFIG_NET_DMA */
5068 /* Does PAWS and seqno based validation of an incoming segment, flags will
5069 * play significant role here.
5071 static int tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5072 struct tcphdr
*th
, int syn_inerr
)
5074 struct tcp_sock
*tp
= tcp_sk(sk
);
5076 /* RFC1323: H1. Apply PAWS check first. */
5077 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->rx_opt
.saw_tstamp
&&
5078 tcp_paws_discard(sk
, skb
)) {
5080 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5081 tcp_send_dupack(sk
, skb
);
5084 /* Reset is accepted even if it did not pass PAWS. */
5087 /* Step 1: check sequence number */
5088 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5089 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5090 * (RST) segments are validated by checking their SEQ-fields."
5091 * And page 69: "If an incoming segment is not acceptable,
5092 * an acknowledgment should be sent in reply (unless the RST
5093 * bit is set, if so drop the segment and return)".
5096 tcp_send_dupack(sk
, skb
);
5100 /* Step 2: check RST bit */
5106 /* ts_recent update must be made after we are sure that the packet
5109 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
5111 /* step 3: check security and precedence [ignored] */
5113 /* step 4: Check for a SYN in window. */
5114 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
5116 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5117 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONSYN
);
5130 * TCP receive function for the ESTABLISHED state.
5132 * It is split into a fast path and a slow path. The fast path is
5134 * - A zero window was announced from us - zero window probing
5135 * is only handled properly in the slow path.
5136 * - Out of order segments arrived.
5137 * - Urgent data is expected.
5138 * - There is no buffer space left
5139 * - Unexpected TCP flags/window values/header lengths are received
5140 * (detected by checking the TCP header against pred_flags)
5141 * - Data is sent in both directions. Fast path only supports pure senders
5142 * or pure receivers (this means either the sequence number or the ack
5143 * value must stay constant)
5144 * - Unexpected TCP option.
5146 * When these conditions are not satisfied it drops into a standard
5147 * receive procedure patterned after RFC793 to handle all cases.
5148 * The first three cases are guaranteed by proper pred_flags setting,
5149 * the rest is checked inline. Fast processing is turned on in
5150 * tcp_data_queue when everything is OK.
5152 int tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5153 struct tcphdr
*th
, unsigned len
)
5155 struct tcp_sock
*tp
= tcp_sk(sk
);
5159 * Header prediction.
5160 * The code loosely follows the one in the famous
5161 * "30 instruction TCP receive" Van Jacobson mail.
5163 * Van's trick is to deposit buffers into socket queue
5164 * on a device interrupt, to call tcp_recv function
5165 * on the receive process context and checksum and copy
5166 * the buffer to user space. smart...
5168 * Our current scheme is not silly either but we take the
5169 * extra cost of the net_bh soft interrupt processing...
5170 * We do checksum and copy also but from device to kernel.
5173 tp
->rx_opt
.saw_tstamp
= 0;
5175 /* pred_flags is 0xS?10 << 16 + snd_wnd
5176 * if header_prediction is to be made
5177 * 'S' will always be tp->tcp_header_len >> 2
5178 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5179 * turn it off (when there are holes in the receive
5180 * space for instance)
5181 * PSH flag is ignored.
5184 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5185 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5186 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5187 int tcp_header_len
= tp
->tcp_header_len
;
5189 /* Timestamp header prediction: tcp_header_len
5190 * is automatically equal to th->doff*4 due to pred_flags
5194 /* Check timestamp */
5195 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5196 /* No? Slow path! */
5197 if (!tcp_parse_aligned_timestamp(tp
, th
))
5200 /* If PAWS failed, check it more carefully in slow path */
5201 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5204 /* DO NOT update ts_recent here, if checksum fails
5205 * and timestamp was corrupted part, it will result
5206 * in a hung connection since we will drop all
5207 * future packets due to the PAWS test.
5211 if (len
<= tcp_header_len
) {
5212 /* Bulk data transfer: sender */
5213 if (len
== tcp_header_len
) {
5214 /* Predicted packet is in window by definition.
5215 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5216 * Hence, check seq<=rcv_wup reduces to:
5218 if (tcp_header_len
==
5219 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5220 tp
->rcv_nxt
== tp
->rcv_wup
)
5221 tcp_store_ts_recent(tp
);
5223 /* We know that such packets are checksummed
5226 tcp_ack(sk
, skb
, 0);
5228 tcp_data_snd_check(sk
);
5230 } else { /* Header too small */
5231 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5236 int copied_early
= 0;
5238 if (tp
->copied_seq
== tp
->rcv_nxt
&&
5239 len
- tcp_header_len
<= tp
->ucopy
.len
) {
5240 #ifdef CONFIG_NET_DMA
5241 if (tcp_dma_try_early_copy(sk
, skb
, tcp_header_len
)) {
5246 if (tp
->ucopy
.task
== current
&&
5247 sock_owned_by_user(sk
) && !copied_early
) {
5248 __set_current_state(TASK_RUNNING
);
5250 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
))
5254 /* Predicted packet is in window by definition.
5255 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5256 * Hence, check seq<=rcv_wup reduces to:
5258 if (tcp_header_len
==
5259 (sizeof(struct tcphdr
) +
5260 TCPOLEN_TSTAMP_ALIGNED
) &&
5261 tp
->rcv_nxt
== tp
->rcv_wup
)
5262 tcp_store_ts_recent(tp
);
5264 tcp_rcv_rtt_measure_ts(sk
, skb
);
5266 __skb_pull(skb
, tcp_header_len
);
5267 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5268 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITSTOUSER
);
5271 tcp_cleanup_rbuf(sk
, skb
->len
);
5274 if (tcp_checksum_complete_user(sk
, skb
))
5277 /* Predicted packet is in window by definition.
5278 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5279 * Hence, check seq<=rcv_wup reduces to:
5281 if (tcp_header_len
==
5282 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5283 tp
->rcv_nxt
== tp
->rcv_wup
)
5284 tcp_store_ts_recent(tp
);
5286 tcp_rcv_rtt_measure_ts(sk
, skb
);
5288 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5291 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5293 /* Bulk data transfer: receiver */
5294 __skb_pull(skb
, tcp_header_len
);
5295 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
5296 skb_set_owner_r(skb
, sk
);
5297 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5300 tcp_event_data_recv(sk
, skb
);
5302 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5303 /* Well, only one small jumplet in fast path... */
5304 tcp_ack(sk
, skb
, FLAG_DATA
);
5305 tcp_data_snd_check(sk
);
5306 if (!inet_csk_ack_scheduled(sk
))
5310 if (!copied_early
|| tp
->rcv_nxt
!= tp
->rcv_wup
)
5311 __tcp_ack_snd_check(sk
, 0);
5313 #ifdef CONFIG_NET_DMA
5315 __skb_queue_tail(&sk
->sk_async_wait_queue
, skb
);
5321 sk
->sk_data_ready(sk
, 0);
5327 if (len
< (th
->doff
<< 2) || tcp_checksum_complete_user(sk
, skb
))
5331 * Standard slow path.
5334 res
= tcp_validate_incoming(sk
, skb
, th
, 1);
5339 if (th
->ack
&& tcp_ack(sk
, skb
, FLAG_SLOWPATH
) < 0)
5342 tcp_rcv_rtt_measure_ts(sk
, skb
);
5344 /* Process urgent data. */
5345 tcp_urg(sk
, skb
, th
);
5347 /* step 7: process the segment text */
5348 tcp_data_queue(sk
, skb
);
5350 tcp_data_snd_check(sk
);
5351 tcp_ack_snd_check(sk
);
5355 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5362 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5363 struct tcphdr
*th
, unsigned len
)
5365 struct tcp_sock
*tp
= tcp_sk(sk
);
5366 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5367 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5369 tcp_parse_options(skb
, &tp
->rx_opt
, 0);
5373 * "If the state is SYN-SENT then
5374 * first check the ACK bit
5375 * If the ACK bit is set
5376 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5377 * a reset (unless the RST bit is set, if so drop
5378 * the segment and return)"
5380 * We do not send data with SYN, so that RFC-correct
5383 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_nxt
)
5384 goto reset_and_undo
;
5386 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5387 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5389 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSACTIVEREJECTED
);
5390 goto reset_and_undo
;
5393 /* Now ACK is acceptable.
5395 * "If the RST bit is set
5396 * If the ACK was acceptable then signal the user "error:
5397 * connection reset", drop the segment, enter CLOSED state,
5398 * delete TCB, and return."
5407 * "fifth, if neither of the SYN or RST bits is set then
5408 * drop the segment and return."
5414 goto discard_and_undo
;
5417 * "If the SYN bit is on ...
5418 * are acceptable then ...
5419 * (our SYN has been ACKed), change the connection
5420 * state to ESTABLISHED..."
5423 TCP_ECN_rcv_synack(tp
, th
);
5425 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5426 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5428 /* Ok.. it's good. Set up sequence numbers and
5429 * move to established.
5431 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5432 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5434 /* RFC1323: The window in SYN & SYN/ACK segments is
5437 tp
->snd_wnd
= ntohs(th
->window
);
5438 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5440 if (!tp
->rx_opt
.wscale_ok
) {
5441 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5442 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5445 if (tp
->rx_opt
.saw_tstamp
) {
5446 tp
->rx_opt
.tstamp_ok
= 1;
5447 tp
->tcp_header_len
=
5448 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5449 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5450 tcp_store_ts_recent(tp
);
5452 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5455 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5456 tcp_enable_fack(tp
);
5459 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5460 tcp_initialize_rcv_mss(sk
);
5462 /* Remember, tcp_poll() does not lock socket!
5463 * Change state from SYN-SENT only after copied_seq
5464 * is initialized. */
5465 tp
->copied_seq
= tp
->rcv_nxt
;
5467 tcp_set_state(sk
, TCP_ESTABLISHED
);
5469 security_inet_conn_established(sk
, skb
);
5471 /* Make sure socket is routed, for correct metrics. */
5472 icsk
->icsk_af_ops
->rebuild_header(sk
);
5474 tcp_init_metrics(sk
);
5476 tcp_init_congestion_control(sk
);
5478 /* Prevent spurious tcp_cwnd_restart() on first data
5481 tp
->lsndtime
= tcp_time_stamp
;
5483 tcp_init_buffer_space(sk
);
5485 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5486 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5488 if (!tp
->rx_opt
.snd_wscale
)
5489 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5493 if (!sock_flag(sk
, SOCK_DEAD
)) {
5494 sk
->sk_state_change(sk
);
5495 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5498 if (sk
->sk_write_pending
||
5499 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5500 icsk
->icsk_ack
.pingpong
) {
5501 /* Save one ACK. Data will be ready after
5502 * several ticks, if write_pending is set.
5504 * It may be deleted, but with this feature tcpdumps
5505 * look so _wonderfully_ clever, that I was not able
5506 * to stand against the temptation 8) --ANK
5508 inet_csk_schedule_ack(sk
);
5509 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
5510 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
5511 tcp_incr_quickack(sk
);
5512 tcp_enter_quickack_mode(sk
);
5513 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5514 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5525 /* No ACK in the segment */
5529 * "If the RST bit is set
5531 * Otherwise (no ACK) drop the segment and return."
5534 goto discard_and_undo
;
5538 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5539 tcp_paws_reject(&tp
->rx_opt
, 0))
5540 goto discard_and_undo
;
5543 /* We see SYN without ACK. It is attempt of
5544 * simultaneous connect with crossed SYNs.
5545 * Particularly, it can be connect to self.
5547 tcp_set_state(sk
, TCP_SYN_RECV
);
5549 if (tp
->rx_opt
.saw_tstamp
) {
5550 tp
->rx_opt
.tstamp_ok
= 1;
5551 tcp_store_ts_recent(tp
);
5552 tp
->tcp_header_len
=
5553 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5555 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5558 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5559 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5561 /* RFC1323: The window in SYN & SYN/ACK segments is
5564 tp
->snd_wnd
= ntohs(th
->window
);
5565 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5566 tp
->max_window
= tp
->snd_wnd
;
5568 TCP_ECN_rcv_syn(tp
, th
);
5571 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5572 tcp_initialize_rcv_mss(sk
);
5574 tcp_send_synack(sk
);
5576 /* Note, we could accept data and URG from this segment.
5577 * There are no obstacles to make this.
5579 * However, if we ignore data in ACKless segments sometimes,
5580 * we have no reasons to accept it sometimes.
5581 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5582 * is not flawless. So, discard packet for sanity.
5583 * Uncomment this return to process the data.
5590 /* "fifth, if neither of the SYN or RST bits is set then
5591 * drop the segment and return."
5595 tcp_clear_options(&tp
->rx_opt
);
5596 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5600 tcp_clear_options(&tp
->rx_opt
);
5601 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5606 * This function implements the receiving procedure of RFC 793 for
5607 * all states except ESTABLISHED and TIME_WAIT.
5608 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5609 * address independent.
5612 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5613 struct tcphdr
*th
, unsigned len
)
5615 struct tcp_sock
*tp
= tcp_sk(sk
);
5616 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5620 tp
->rx_opt
.saw_tstamp
= 0;
5622 switch (sk
->sk_state
) {
5634 if (icsk
->icsk_af_ops
->conn_request(sk
, skb
) < 0)
5637 /* Now we have several options: In theory there is
5638 * nothing else in the frame. KA9Q has an option to
5639 * send data with the syn, BSD accepts data with the
5640 * syn up to the [to be] advertised window and
5641 * Solaris 2.1 gives you a protocol error. For now
5642 * we just ignore it, that fits the spec precisely
5643 * and avoids incompatibilities. It would be nice in
5644 * future to drop through and process the data.
5646 * Now that TTCP is starting to be used we ought to
5648 * But, this leaves one open to an easy denial of
5649 * service attack, and SYN cookies can't defend
5650 * against this problem. So, we drop the data
5651 * in the interest of security over speed unless
5652 * it's still in use.
5660 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
, len
);
5664 /* Do step6 onward by hand. */
5665 tcp_urg(sk
, skb
, th
);
5667 tcp_data_snd_check(sk
);
5671 res
= tcp_validate_incoming(sk
, skb
, th
, 0);
5675 /* step 5: check the ACK field */
5677 int acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
) > 0;
5679 switch (sk
->sk_state
) {
5682 tp
->copied_seq
= tp
->rcv_nxt
;
5684 tcp_set_state(sk
, TCP_ESTABLISHED
);
5685 sk
->sk_state_change(sk
);
5687 /* Note, that this wakeup is only for marginal
5688 * crossed SYN case. Passively open sockets
5689 * are not waked up, because sk->sk_sleep ==
5690 * NULL and sk->sk_socket == NULL.
5694 SOCK_WAKE_IO
, POLL_OUT
);
5696 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
5697 tp
->snd_wnd
= ntohs(th
->window
) <<
5698 tp
->rx_opt
.snd_wscale
;
5699 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5701 /* tcp_ack considers this ACK as duplicate
5702 * and does not calculate rtt.
5703 * Fix it at least with timestamps.
5705 if (tp
->rx_opt
.saw_tstamp
&&
5706 tp
->rx_opt
.rcv_tsecr
&& !tp
->srtt
)
5707 tcp_ack_saw_tstamp(sk
, 0);
5709 if (tp
->rx_opt
.tstamp_ok
)
5710 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5712 /* Make sure socket is routed, for
5715 icsk
->icsk_af_ops
->rebuild_header(sk
);
5717 tcp_init_metrics(sk
);
5719 tcp_init_congestion_control(sk
);
5721 /* Prevent spurious tcp_cwnd_restart() on
5722 * first data packet.
5724 tp
->lsndtime
= tcp_time_stamp
;
5727 tcp_initialize_rcv_mss(sk
);
5728 tcp_init_buffer_space(sk
);
5729 tcp_fast_path_on(tp
);
5736 if (tp
->snd_una
== tp
->write_seq
) {
5737 tcp_set_state(sk
, TCP_FIN_WAIT2
);
5738 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
5739 dst_confirm(sk
->sk_dst_cache
);
5741 if (!sock_flag(sk
, SOCK_DEAD
))
5742 /* Wake up lingering close() */
5743 sk
->sk_state_change(sk
);
5747 if (tp
->linger2
< 0 ||
5748 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5749 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
5751 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5755 tmo
= tcp_fin_time(sk
);
5756 if (tmo
> TCP_TIMEWAIT_LEN
) {
5757 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
5758 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
5759 /* Bad case. We could lose such FIN otherwise.
5760 * It is not a big problem, but it looks confusing
5761 * and not so rare event. We still can lose it now,
5762 * if it spins in bh_lock_sock(), but it is really
5765 inet_csk_reset_keepalive_timer(sk
, tmo
);
5767 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
5775 if (tp
->snd_una
== tp
->write_seq
) {
5776 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
5782 if (tp
->snd_una
== tp
->write_seq
) {
5783 tcp_update_metrics(sk
);
5792 /* step 6: check the URG bit */
5793 tcp_urg(sk
, skb
, th
);
5795 /* step 7: process the segment text */
5796 switch (sk
->sk_state
) {
5797 case TCP_CLOSE_WAIT
:
5800 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
5804 /* RFC 793 says to queue data in these states,
5805 * RFC 1122 says we MUST send a reset.
5806 * BSD 4.4 also does reset.
5808 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
5809 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5810 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
5811 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5817 case TCP_ESTABLISHED
:
5818 tcp_data_queue(sk
, skb
);
5823 /* tcp_data could move socket to TIME-WAIT */
5824 if (sk
->sk_state
!= TCP_CLOSE
) {
5825 tcp_data_snd_check(sk
);
5826 tcp_ack_snd_check(sk
);
5836 EXPORT_SYMBOL(sysctl_tcp_ecn
);
5837 EXPORT_SYMBOL(sysctl_tcp_reordering
);
5838 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
5839 EXPORT_SYMBOL(tcp_parse_options
);
5840 #ifdef CONFIG_TCP_MD5SIG
5841 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
5843 EXPORT_SYMBOL(tcp_rcv_established
);
5844 EXPORT_SYMBOL(tcp_rcv_state_process
);
5845 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);