[JFFS2] Fix JFFS2 [mc]time handling
[linux-2.6/mini2440.git] / fs / jffs2 / gc.c
blobdef97157ecbd4893c74d4f6c33ef8dbc43750d8d
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright (C) 2001-2003 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
10 * $Id: gc.c,v 1.153 2005/08/17 13:46:22 dedekind Exp $
14 #include <linux/kernel.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/slab.h>
17 #include <linux/pagemap.h>
18 #include <linux/crc32.h>
19 #include <linux/compiler.h>
20 #include <linux/stat.h>
21 #include "nodelist.h"
22 #include "compr.h"
24 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
25 struct jffs2_inode_cache *ic,
26 struct jffs2_raw_node_ref *raw);
27 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
28 struct jffs2_inode_info *f, struct jffs2_full_dnode *fd);
29 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
30 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
31 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
32 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
33 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
34 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
35 uint32_t start, uint32_t end);
36 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
37 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
38 uint32_t start, uint32_t end);
39 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
40 struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f);
42 /* Called with erase_completion_lock held */
43 static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
45 struct jffs2_eraseblock *ret;
46 struct list_head *nextlist = NULL;
47 int n = jiffies % 128;
49 /* Pick an eraseblock to garbage collect next. This is where we'll
50 put the clever wear-levelling algorithms. Eventually. */
51 /* We possibly want to favour the dirtier blocks more when the
52 number of free blocks is low. */
53 again:
54 if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
55 D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n"));
56 nextlist = &c->bad_used_list;
57 } else if (n < 50 && !list_empty(&c->erasable_list)) {
58 /* Note that most of them will have gone directly to be erased.
59 So don't favour the erasable_list _too_ much. */
60 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n"));
61 nextlist = &c->erasable_list;
62 } else if (n < 110 && !list_empty(&c->very_dirty_list)) {
63 /* Most of the time, pick one off the very_dirty list */
64 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n"));
65 nextlist = &c->very_dirty_list;
66 } else if (n < 126 && !list_empty(&c->dirty_list)) {
67 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n"));
68 nextlist = &c->dirty_list;
69 } else if (!list_empty(&c->clean_list)) {
70 D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n"));
71 nextlist = &c->clean_list;
72 } else if (!list_empty(&c->dirty_list)) {
73 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n"));
75 nextlist = &c->dirty_list;
76 } else if (!list_empty(&c->very_dirty_list)) {
77 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n"));
78 nextlist = &c->very_dirty_list;
79 } else if (!list_empty(&c->erasable_list)) {
80 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n"));
82 nextlist = &c->erasable_list;
83 } else if (!list_empty(&c->erasable_pending_wbuf_list)) {
84 /* There are blocks are wating for the wbuf sync */
85 D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n"));
86 spin_unlock(&c->erase_completion_lock);
87 jffs2_flush_wbuf_pad(c);
88 spin_lock(&c->erase_completion_lock);
89 goto again;
90 } else {
91 /* Eep. All were empty */
92 D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n"));
93 return NULL;
96 ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
97 list_del(&ret->list);
98 c->gcblock = ret;
99 ret->gc_node = ret->first_node;
100 if (!ret->gc_node) {
101 printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset);
102 BUG();
105 /* Have we accidentally picked a clean block with wasted space ? */
106 if (ret->wasted_size) {
107 D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size));
108 ret->dirty_size += ret->wasted_size;
109 c->wasted_size -= ret->wasted_size;
110 c->dirty_size += ret->wasted_size;
111 ret->wasted_size = 0;
114 return ret;
117 /* jffs2_garbage_collect_pass
118 * Make a single attempt to progress GC. Move one node, and possibly
119 * start erasing one eraseblock.
121 int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
123 struct jffs2_inode_info *f;
124 struct jffs2_inode_cache *ic;
125 struct jffs2_eraseblock *jeb;
126 struct jffs2_raw_node_ref *raw;
127 int ret = 0, inum, nlink;
129 if (down_interruptible(&c->alloc_sem))
130 return -EINTR;
132 for (;;) {
133 spin_lock(&c->erase_completion_lock);
134 if (!c->unchecked_size)
135 break;
137 /* We can't start doing GC yet. We haven't finished checking
138 the node CRCs etc. Do it now. */
140 /* checked_ino is protected by the alloc_sem */
141 if (c->checked_ino > c->highest_ino) {
142 printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n",
143 c->unchecked_size);
144 jffs2_dbg_dump_block_lists_nolock(c);
145 spin_unlock(&c->erase_completion_lock);
146 BUG();
149 spin_unlock(&c->erase_completion_lock);
151 spin_lock(&c->inocache_lock);
153 ic = jffs2_get_ino_cache(c, c->checked_ino++);
155 if (!ic) {
156 spin_unlock(&c->inocache_lock);
157 continue;
160 if (!ic->nlink) {
161 D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink zero\n",
162 ic->ino));
163 spin_unlock(&c->inocache_lock);
164 continue;
166 switch(ic->state) {
167 case INO_STATE_CHECKEDABSENT:
168 case INO_STATE_PRESENT:
169 D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino));
170 spin_unlock(&c->inocache_lock);
171 continue;
173 case INO_STATE_GC:
174 case INO_STATE_CHECKING:
175 printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state);
176 spin_unlock(&c->inocache_lock);
177 BUG();
179 case INO_STATE_READING:
180 /* We need to wait for it to finish, lest we move on
181 and trigger the BUG() above while we haven't yet
182 finished checking all its nodes */
183 D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino));
184 up(&c->alloc_sem);
185 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
186 return 0;
188 default:
189 BUG();
191 case INO_STATE_UNCHECKED:
194 ic->state = INO_STATE_CHECKING;
195 spin_unlock(&c->inocache_lock);
197 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino));
199 ret = jffs2_do_crccheck_inode(c, ic);
200 if (ret)
201 printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino);
203 jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
204 up(&c->alloc_sem);
205 return ret;
208 /* First, work out which block we're garbage-collecting */
209 jeb = c->gcblock;
211 if (!jeb)
212 jeb = jffs2_find_gc_block(c);
214 if (!jeb) {
215 D1 (printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n"));
216 spin_unlock(&c->erase_completion_lock);
217 up(&c->alloc_sem);
218 return -EIO;
221 D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size));
222 D1(if (c->nextblock)
223 printk(KERN_DEBUG "Nextblock at %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
225 if (!jeb->used_size) {
226 up(&c->alloc_sem);
227 goto eraseit;
230 raw = jeb->gc_node;
232 while(ref_obsolete(raw)) {
233 D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw)));
234 raw = raw->next_phys;
235 if (unlikely(!raw)) {
236 printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n");
237 printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
238 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size);
239 jeb->gc_node = raw;
240 spin_unlock(&c->erase_completion_lock);
241 up(&c->alloc_sem);
242 BUG();
245 jeb->gc_node = raw;
247 D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw)));
249 if (!raw->next_in_ino) {
250 /* Inode-less node. Clean marker, snapshot or something like that */
251 /* FIXME: If it's something that needs to be copied, including something
252 we don't grok that has JFFS2_NODETYPE_RWCOMPAT_COPY, we should do so */
253 spin_unlock(&c->erase_completion_lock);
254 jffs2_mark_node_obsolete(c, raw);
255 up(&c->alloc_sem);
256 goto eraseit_lock;
259 ic = jffs2_raw_ref_to_ic(raw);
261 /* We need to hold the inocache. Either the erase_completion_lock or
262 the inocache_lock are sufficient; we trade down since the inocache_lock
263 causes less contention. */
264 spin_lock(&c->inocache_lock);
266 spin_unlock(&c->erase_completion_lock);
268 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino));
270 /* Three possibilities:
271 1. Inode is already in-core. We must iget it and do proper
272 updating to its fragtree, etc.
273 2. Inode is not in-core, node is REF_PRISTINE. We lock the
274 inocache to prevent a read_inode(), copy the node intact.
275 3. Inode is not in-core, node is not pristine. We must iget()
276 and take the slow path.
279 switch(ic->state) {
280 case INO_STATE_CHECKEDABSENT:
281 /* It's been checked, but it's not currently in-core.
282 We can just copy any pristine nodes, but have
283 to prevent anyone else from doing read_inode() while
284 we're at it, so we set the state accordingly */
285 if (ref_flags(raw) == REF_PRISTINE)
286 ic->state = INO_STATE_GC;
287 else {
288 D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
289 ic->ino));
291 break;
293 case INO_STATE_PRESENT:
294 /* It's in-core. GC must iget() it. */
295 break;
297 case INO_STATE_UNCHECKED:
298 case INO_STATE_CHECKING:
299 case INO_STATE_GC:
300 /* Should never happen. We should have finished checking
301 by the time we actually start doing any GC, and since
302 we're holding the alloc_sem, no other garbage collection
303 can happen.
305 printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
306 ic->ino, ic->state);
307 up(&c->alloc_sem);
308 spin_unlock(&c->inocache_lock);
309 BUG();
311 case INO_STATE_READING:
312 /* Someone's currently trying to read it. We must wait for
313 them to finish and then go through the full iget() route
314 to do the GC. However, sometimes read_inode() needs to get
315 the alloc_sem() (for marking nodes invalid) so we must
316 drop the alloc_sem before sleeping. */
318 up(&c->alloc_sem);
319 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n",
320 ic->ino, ic->state));
321 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
322 /* And because we dropped the alloc_sem we must start again from the
323 beginning. Ponder chance of livelock here -- we're returning success
324 without actually making any progress.
326 Q: What are the chances that the inode is back in INO_STATE_READING
327 again by the time we next enter this function? And that this happens
328 enough times to cause a real delay?
330 A: Small enough that I don't care :)
332 return 0;
335 /* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
336 node intact, and we don't have to muck about with the fragtree etc.
337 because we know it's not in-core. If it _was_ in-core, we go through
338 all the iget() crap anyway */
340 if (ic->state == INO_STATE_GC) {
341 spin_unlock(&c->inocache_lock);
343 ret = jffs2_garbage_collect_pristine(c, ic, raw);
345 spin_lock(&c->inocache_lock);
346 ic->state = INO_STATE_CHECKEDABSENT;
347 wake_up(&c->inocache_wq);
349 if (ret != -EBADFD) {
350 spin_unlock(&c->inocache_lock);
351 goto release_sem;
354 /* Fall through if it wanted us to, with inocache_lock held */
357 /* Prevent the fairly unlikely race where the gcblock is
358 entirely obsoleted by the final close of a file which had
359 the only valid nodes in the block, followed by erasure,
360 followed by freeing of the ic because the erased block(s)
361 held _all_ the nodes of that inode.... never been seen but
362 it's vaguely possible. */
364 inum = ic->ino;
365 nlink = ic->nlink;
366 spin_unlock(&c->inocache_lock);
368 f = jffs2_gc_fetch_inode(c, inum, nlink);
369 if (IS_ERR(f)) {
370 ret = PTR_ERR(f);
371 goto release_sem;
373 if (!f) {
374 ret = 0;
375 goto release_sem;
378 ret = jffs2_garbage_collect_live(c, jeb, raw, f);
380 jffs2_gc_release_inode(c, f);
382 release_sem:
383 up(&c->alloc_sem);
385 eraseit_lock:
386 /* If we've finished this block, start it erasing */
387 spin_lock(&c->erase_completion_lock);
389 eraseit:
390 if (c->gcblock && !c->gcblock->used_size) {
391 D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset));
392 /* We're GC'ing an empty block? */
393 list_add_tail(&c->gcblock->list, &c->erase_pending_list);
394 c->gcblock = NULL;
395 c->nr_erasing_blocks++;
396 jffs2_erase_pending_trigger(c);
398 spin_unlock(&c->erase_completion_lock);
400 return ret;
403 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
404 struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f)
406 struct jffs2_node_frag *frag;
407 struct jffs2_full_dnode *fn = NULL;
408 struct jffs2_full_dirent *fd;
409 uint32_t start = 0, end = 0, nrfrags = 0;
410 int ret = 0;
412 down(&f->sem);
414 /* Now we have the lock for this inode. Check that it's still the one at the head
415 of the list. */
417 spin_lock(&c->erase_completion_lock);
419 if (c->gcblock != jeb) {
420 spin_unlock(&c->erase_completion_lock);
421 D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n"));
422 goto upnout;
424 if (ref_obsolete(raw)) {
425 spin_unlock(&c->erase_completion_lock);
426 D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n"));
427 /* They'll call again */
428 goto upnout;
430 spin_unlock(&c->erase_completion_lock);
432 /* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
433 if (f->metadata && f->metadata->raw == raw) {
434 fn = f->metadata;
435 ret = jffs2_garbage_collect_metadata(c, jeb, f, fn);
436 goto upnout;
439 /* FIXME. Read node and do lookup? */
440 for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
441 if (frag->node && frag->node->raw == raw) {
442 fn = frag->node;
443 end = frag->ofs + frag->size;
444 if (!nrfrags++)
445 start = frag->ofs;
446 if (nrfrags == frag->node->frags)
447 break; /* We've found them all */
450 if (fn) {
451 if (ref_flags(raw) == REF_PRISTINE) {
452 ret = jffs2_garbage_collect_pristine(c, f->inocache, raw);
453 if (!ret) {
454 /* Urgh. Return it sensibly. */
455 frag->node->raw = f->inocache->nodes;
457 if (ret != -EBADFD)
458 goto upnout;
460 /* We found a datanode. Do the GC */
461 if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) {
462 /* It crosses a page boundary. Therefore, it must be a hole. */
463 ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end);
464 } else {
465 /* It could still be a hole. But we GC the page this way anyway */
466 ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end);
468 goto upnout;
471 /* Wasn't a dnode. Try dirent */
472 for (fd = f->dents; fd; fd=fd->next) {
473 if (fd->raw == raw)
474 break;
477 if (fd && fd->ino) {
478 ret = jffs2_garbage_collect_dirent(c, jeb, f, fd);
479 } else if (fd) {
480 ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
481 } else {
482 printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n",
483 ref_offset(raw), f->inocache->ino);
484 if (ref_obsolete(raw)) {
485 printk(KERN_WARNING "But it's obsolete so we don't mind too much\n");
486 } else {
487 jffs2_dbg_dump_node(c, ref_offset(raw));
488 BUG();
491 upnout:
492 up(&f->sem);
494 return ret;
497 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
498 struct jffs2_inode_cache *ic,
499 struct jffs2_raw_node_ref *raw)
501 union jffs2_node_union *node;
502 struct jffs2_raw_node_ref *nraw;
503 size_t retlen;
504 int ret;
505 uint32_t phys_ofs, alloclen;
506 uint32_t crc, rawlen;
507 int retried = 0;
509 D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw)));
511 rawlen = ref_totlen(c, c->gcblock, raw);
513 /* Ask for a small amount of space (or the totlen if smaller) because we
514 don't want to force wastage of the end of a block if splitting would
515 work. */
516 ret = jffs2_reserve_space_gc(c, min_t(uint32_t, sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN,
517 rawlen), &phys_ofs, &alloclen);
518 if (ret)
519 return ret;
521 if (alloclen < rawlen) {
522 /* Doesn't fit untouched. We'll go the old route and split it */
523 return -EBADFD;
526 node = kmalloc(rawlen, GFP_KERNEL);
527 if (!node)
528 return -ENOMEM;
530 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node);
531 if (!ret && retlen != rawlen)
532 ret = -EIO;
533 if (ret)
534 goto out_node;
536 crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
537 if (je32_to_cpu(node->u.hdr_crc) != crc) {
538 printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
539 ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
540 goto bail;
543 switch(je16_to_cpu(node->u.nodetype)) {
544 case JFFS2_NODETYPE_INODE:
545 crc = crc32(0, node, sizeof(node->i)-8);
546 if (je32_to_cpu(node->i.node_crc) != crc) {
547 printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
548 ref_offset(raw), je32_to_cpu(node->i.node_crc), crc);
549 goto bail;
552 if (je32_to_cpu(node->i.dsize)) {
553 crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
554 if (je32_to_cpu(node->i.data_crc) != crc) {
555 printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
556 ref_offset(raw), je32_to_cpu(node->i.data_crc), crc);
557 goto bail;
560 break;
562 case JFFS2_NODETYPE_DIRENT:
563 crc = crc32(0, node, sizeof(node->d)-8);
564 if (je32_to_cpu(node->d.node_crc) != crc) {
565 printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
566 ref_offset(raw), je32_to_cpu(node->d.node_crc), crc);
567 goto bail;
570 if (node->d.nsize) {
571 crc = crc32(0, node->d.name, node->d.nsize);
572 if (je32_to_cpu(node->d.name_crc) != crc) {
573 printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent ode at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
574 ref_offset(raw), je32_to_cpu(node->d.name_crc), crc);
575 goto bail;
578 break;
579 default:
580 printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
581 ref_offset(raw), je16_to_cpu(node->u.nodetype));
582 goto bail;
585 nraw = jffs2_alloc_raw_node_ref();
586 if (!nraw) {
587 ret = -ENOMEM;
588 goto out_node;
591 /* OK, all the CRCs are good; this node can just be copied as-is. */
592 retry:
593 nraw->flash_offset = phys_ofs;
594 nraw->__totlen = rawlen;
595 nraw->next_phys = NULL;
597 ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
599 if (ret || (retlen != rawlen)) {
600 printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
601 rawlen, phys_ofs, ret, retlen);
602 if (retlen) {
603 /* Doesn't belong to any inode */
604 nraw->next_in_ino = NULL;
606 nraw->flash_offset |= REF_OBSOLETE;
607 jffs2_add_physical_node_ref(c, nraw);
608 jffs2_mark_node_obsolete(c, nraw);
609 } else {
610 printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", nraw->flash_offset);
611 jffs2_free_raw_node_ref(nraw);
613 if (!retried && (nraw = jffs2_alloc_raw_node_ref())) {
614 /* Try to reallocate space and retry */
615 uint32_t dummy;
616 struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size];
618 retried = 1;
620 D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n"));
622 jffs2_dbg_acct_sanity_check(c,jeb);
623 jffs2_dbg_acct_paranoia_check(c, jeb);
625 ret = jffs2_reserve_space_gc(c, rawlen, &phys_ofs, &dummy);
627 if (!ret) {
628 D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs));
630 jffs2_dbg_acct_sanity_check(c,jeb);
631 jffs2_dbg_acct_paranoia_check(c, jeb);
633 goto retry;
635 D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret));
636 jffs2_free_raw_node_ref(nraw);
639 jffs2_free_raw_node_ref(nraw);
640 if (!ret)
641 ret = -EIO;
642 goto out_node;
644 nraw->flash_offset |= REF_PRISTINE;
645 jffs2_add_physical_node_ref(c, nraw);
647 /* Link into per-inode list. This is safe because of the ic
648 state being INO_STATE_GC. Note that if we're doing this
649 for an inode which is in-core, the 'nraw' pointer is then
650 going to be fetched from ic->nodes by our caller. */
651 spin_lock(&c->erase_completion_lock);
652 nraw->next_in_ino = ic->nodes;
653 ic->nodes = nraw;
654 spin_unlock(&c->erase_completion_lock);
656 jffs2_mark_node_obsolete(c, raw);
657 D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw)));
659 out_node:
660 kfree(node);
661 return ret;
662 bail:
663 ret = -EBADFD;
664 goto out_node;
667 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
668 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
670 struct jffs2_full_dnode *new_fn;
671 struct jffs2_raw_inode ri;
672 struct jffs2_node_frag *last_frag;
673 jint16_t dev;
674 char *mdata = NULL, mdatalen = 0;
675 uint32_t alloclen, phys_ofs, ilen;
676 int ret;
678 if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
679 S_ISCHR(JFFS2_F_I_MODE(f)) ) {
680 /* For these, we don't actually need to read the old node */
681 /* FIXME: for minor or major > 255. */
682 dev = cpu_to_je16(((JFFS2_F_I_RDEV_MAJ(f) << 8) |
683 JFFS2_F_I_RDEV_MIN(f)));
684 mdata = (char *)&dev;
685 mdatalen = sizeof(dev);
686 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen));
687 } else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
688 mdatalen = fn->size;
689 mdata = kmalloc(fn->size, GFP_KERNEL);
690 if (!mdata) {
691 printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
692 return -ENOMEM;
694 ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
695 if (ret) {
696 printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret);
697 kfree(mdata);
698 return ret;
700 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen));
704 ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &phys_ofs, &alloclen);
705 if (ret) {
706 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
707 sizeof(ri)+ mdatalen, ret);
708 goto out;
711 last_frag = frag_last(&f->fragtree);
712 if (last_frag)
713 /* Fetch the inode length from the fragtree rather then
714 * from i_size since i_size may have not been updated yet */
715 ilen = last_frag->ofs + last_frag->size;
716 else
717 ilen = JFFS2_F_I_SIZE(f);
719 memset(&ri, 0, sizeof(ri));
720 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
721 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
722 ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen);
723 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
725 ri.ino = cpu_to_je32(f->inocache->ino);
726 ri.version = cpu_to_je32(++f->highest_version);
727 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
728 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
729 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
730 ri.isize = cpu_to_je32(ilen);
731 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
732 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
733 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
734 ri.offset = cpu_to_je32(0);
735 ri.csize = cpu_to_je32(mdatalen);
736 ri.dsize = cpu_to_je32(mdatalen);
737 ri.compr = JFFS2_COMPR_NONE;
738 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
739 ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
741 new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, phys_ofs, ALLOC_GC);
743 if (IS_ERR(new_fn)) {
744 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
745 ret = PTR_ERR(new_fn);
746 goto out;
748 jffs2_mark_node_obsolete(c, fn->raw);
749 jffs2_free_full_dnode(fn);
750 f->metadata = new_fn;
751 out:
752 if (S_ISLNK(JFFS2_F_I_MODE(f)))
753 kfree(mdata);
754 return ret;
757 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
758 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
760 struct jffs2_full_dirent *new_fd;
761 struct jffs2_raw_dirent rd;
762 uint32_t alloclen, phys_ofs;
763 int ret;
765 rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
766 rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
767 rd.nsize = strlen(fd->name);
768 rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize);
769 rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4));
771 rd.pino = cpu_to_je32(f->inocache->ino);
772 rd.version = cpu_to_je32(++f->highest_version);
773 rd.ino = cpu_to_je32(fd->ino);
774 /* If the times on this inode were set by explicit utime() they can be different,
775 so refrain from splatting them. */
776 if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f))
777 rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f));
778 else
779 rd.mctime = cpu_to_je32(0);
780 rd.type = fd->type;
781 rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8));
782 rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize));
784 ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &phys_ofs, &alloclen);
785 if (ret) {
786 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
787 sizeof(rd)+rd.nsize, ret);
788 return ret;
790 new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, phys_ofs, ALLOC_GC);
792 if (IS_ERR(new_fd)) {
793 printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd));
794 return PTR_ERR(new_fd);
796 jffs2_add_fd_to_list(c, new_fd, &f->dents);
797 return 0;
800 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
801 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
803 struct jffs2_full_dirent **fdp = &f->dents;
804 int found = 0;
806 /* On a medium where we can't actually mark nodes obsolete
807 pernamently, such as NAND flash, we need to work out
808 whether this deletion dirent is still needed to actively
809 delete a 'real' dirent with the same name that's still
810 somewhere else on the flash. */
811 if (!jffs2_can_mark_obsolete(c)) {
812 struct jffs2_raw_dirent *rd;
813 struct jffs2_raw_node_ref *raw;
814 int ret;
815 size_t retlen;
816 int name_len = strlen(fd->name);
817 uint32_t name_crc = crc32(0, fd->name, name_len);
818 uint32_t rawlen = ref_totlen(c, jeb, fd->raw);
820 rd = kmalloc(rawlen, GFP_KERNEL);
821 if (!rd)
822 return -ENOMEM;
824 /* Prevent the erase code from nicking the obsolete node refs while
825 we're looking at them. I really don't like this extra lock but
826 can't see any alternative. Suggestions on a postcard to... */
827 down(&c->erase_free_sem);
829 for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) {
831 /* We only care about obsolete ones */
832 if (!(ref_obsolete(raw)))
833 continue;
835 /* Any dirent with the same name is going to have the same length... */
836 if (ref_totlen(c, NULL, raw) != rawlen)
837 continue;
839 /* Doesn't matter if there's one in the same erase block. We're going to
840 delete it too at the same time. */
841 if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
842 continue;
844 D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw)));
846 /* This is an obsolete node belonging to the same directory, and it's of the right
847 length. We need to take a closer look...*/
848 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd);
849 if (ret) {
850 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw));
851 /* If we can't read it, we don't need to continue to obsolete it. Continue */
852 continue;
854 if (retlen != rawlen) {
855 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
856 retlen, rawlen, ref_offset(raw));
857 continue;
860 if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT)
861 continue;
863 /* If the name CRC doesn't match, skip */
864 if (je32_to_cpu(rd->name_crc) != name_crc)
865 continue;
867 /* If the name length doesn't match, or it's another deletion dirent, skip */
868 if (rd->nsize != name_len || !je32_to_cpu(rd->ino))
869 continue;
871 /* OK, check the actual name now */
872 if (memcmp(rd->name, fd->name, name_len))
873 continue;
875 /* OK. The name really does match. There really is still an older node on
876 the flash which our deletion dirent obsoletes. So we have to write out
877 a new deletion dirent to replace it */
878 up(&c->erase_free_sem);
880 D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
881 ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino)));
882 kfree(rd);
884 return jffs2_garbage_collect_dirent(c, jeb, f, fd);
887 up(&c->erase_free_sem);
888 kfree(rd);
891 /* FIXME: If we're deleting a dirent which contains the current mtime and ctime,
892 we should update the metadata node with those times accordingly */
894 /* No need for it any more. Just mark it obsolete and remove it from the list */
895 while (*fdp) {
896 if ((*fdp) == fd) {
897 found = 1;
898 *fdp = fd->next;
899 break;
901 fdp = &(*fdp)->next;
903 if (!found) {
904 printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino);
906 jffs2_mark_node_obsolete(c, fd->raw);
907 jffs2_free_full_dirent(fd);
908 return 0;
911 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
912 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
913 uint32_t start, uint32_t end)
915 struct jffs2_raw_inode ri;
916 struct jffs2_node_frag *frag;
917 struct jffs2_full_dnode *new_fn;
918 uint32_t alloclen, phys_ofs, ilen;
919 int ret;
921 D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
922 f->inocache->ino, start, end));
924 memset(&ri, 0, sizeof(ri));
926 if(fn->frags > 1) {
927 size_t readlen;
928 uint32_t crc;
929 /* It's partially obsoleted by a later write. So we have to
930 write it out again with the _same_ version as before */
931 ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
932 if (readlen != sizeof(ri) || ret) {
933 printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen);
934 goto fill;
936 if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
937 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
938 ref_offset(fn->raw),
939 je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
940 return -EIO;
942 if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
943 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
944 ref_offset(fn->raw),
945 je32_to_cpu(ri.totlen), sizeof(ri));
946 return -EIO;
948 crc = crc32(0, &ri, sizeof(ri)-8);
949 if (crc != je32_to_cpu(ri.node_crc)) {
950 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
951 ref_offset(fn->raw),
952 je32_to_cpu(ri.node_crc), crc);
953 /* FIXME: We could possibly deal with this by writing new holes for each frag */
954 printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
955 start, end, f->inocache->ino);
956 goto fill;
958 if (ri.compr != JFFS2_COMPR_ZERO) {
959 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw));
960 printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
961 start, end, f->inocache->ino);
962 goto fill;
964 } else {
965 fill:
966 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
967 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
968 ri.totlen = cpu_to_je32(sizeof(ri));
969 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
971 ri.ino = cpu_to_je32(f->inocache->ino);
972 ri.version = cpu_to_je32(++f->highest_version);
973 ri.offset = cpu_to_je32(start);
974 ri.dsize = cpu_to_je32(end - start);
975 ri.csize = cpu_to_je32(0);
976 ri.compr = JFFS2_COMPR_ZERO;
979 frag = frag_last(&f->fragtree);
980 if (frag)
981 /* Fetch the inode length from the fragtree rather then
982 * from i_size since i_size may have not been updated yet */
983 ilen = frag->ofs + frag->size;
984 else
985 ilen = JFFS2_F_I_SIZE(f);
987 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
988 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
989 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
990 ri.isize = cpu_to_je32(ilen);
991 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
992 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
993 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
994 ri.data_crc = cpu_to_je32(0);
995 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
997 ret = jffs2_reserve_space_gc(c, sizeof(ri), &phys_ofs, &alloclen);
998 if (ret) {
999 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
1000 sizeof(ri), ret);
1001 return ret;
1003 new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, phys_ofs, ALLOC_GC);
1005 if (IS_ERR(new_fn)) {
1006 printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn));
1007 return PTR_ERR(new_fn);
1009 if (je32_to_cpu(ri.version) == f->highest_version) {
1010 jffs2_add_full_dnode_to_inode(c, f, new_fn);
1011 if (f->metadata) {
1012 jffs2_mark_node_obsolete(c, f->metadata->raw);
1013 jffs2_free_full_dnode(f->metadata);
1014 f->metadata = NULL;
1016 return 0;
1020 * We should only get here in the case where the node we are
1021 * replacing had more than one frag, so we kept the same version
1022 * number as before. (Except in case of error -- see 'goto fill;'
1023 * above.)
1025 D1(if(unlikely(fn->frags <= 1)) {
1026 printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
1027 fn->frags, je32_to_cpu(ri.version), f->highest_version,
1028 je32_to_cpu(ri.ino));
1031 /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
1032 mark_ref_normal(new_fn->raw);
1034 for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs);
1035 frag; frag = frag_next(frag)) {
1036 if (frag->ofs > fn->size + fn->ofs)
1037 break;
1038 if (frag->node == fn) {
1039 frag->node = new_fn;
1040 new_fn->frags++;
1041 fn->frags--;
1044 if (fn->frags) {
1045 printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n");
1046 BUG();
1048 if (!new_fn->frags) {
1049 printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n");
1050 BUG();
1053 jffs2_mark_node_obsolete(c, fn->raw);
1054 jffs2_free_full_dnode(fn);
1056 return 0;
1059 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1060 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
1061 uint32_t start, uint32_t end)
1063 struct jffs2_full_dnode *new_fn;
1064 struct jffs2_raw_inode ri;
1065 uint32_t alloclen, phys_ofs, offset, orig_end, orig_start;
1066 int ret = 0;
1067 unsigned char *comprbuf = NULL, *writebuf;
1068 unsigned long pg;
1069 unsigned char *pg_ptr;
1071 memset(&ri, 0, sizeof(ri));
1073 D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
1074 f->inocache->ino, start, end));
1076 orig_end = end;
1077 orig_start = start;
1079 if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) {
1080 /* Attempt to do some merging. But only expand to cover logically
1081 adjacent frags if the block containing them is already considered
1082 to be dirty. Otherwise we end up with GC just going round in
1083 circles dirtying the nodes it already wrote out, especially
1084 on NAND where we have small eraseblocks and hence a much higher
1085 chance of nodes having to be split to cross boundaries. */
1087 struct jffs2_node_frag *frag;
1088 uint32_t min, max;
1090 min = start & ~(PAGE_CACHE_SIZE-1);
1091 max = min + PAGE_CACHE_SIZE;
1093 frag = jffs2_lookup_node_frag(&f->fragtree, start);
1095 /* BUG_ON(!frag) but that'll happen anyway... */
1097 BUG_ON(frag->ofs != start);
1099 /* First grow down... */
1100 while((frag = frag_prev(frag)) && frag->ofs >= min) {
1102 /* If the previous frag doesn't even reach the beginning, there's
1103 excessive fragmentation. Just merge. */
1104 if (frag->ofs > min) {
1105 D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n",
1106 frag->ofs, frag->ofs+frag->size));
1107 start = frag->ofs;
1108 continue;
1110 /* OK. This frag holds the first byte of the page. */
1111 if (!frag->node || !frag->node->raw) {
1112 D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
1113 frag->ofs, frag->ofs+frag->size));
1114 break;
1115 } else {
1117 /* OK, it's a frag which extends to the beginning of the page. Does it live
1118 in a block which is still considered clean? If so, don't obsolete it.
1119 If not, cover it anyway. */
1121 struct jffs2_raw_node_ref *raw = frag->node->raw;
1122 struct jffs2_eraseblock *jeb;
1124 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1126 if (jeb == c->gcblock) {
1127 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1128 frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1129 start = frag->ofs;
1130 break;
1132 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1133 D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
1134 frag->ofs, frag->ofs+frag->size, jeb->offset));
1135 break;
1138 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
1139 frag->ofs, frag->ofs+frag->size, jeb->offset));
1140 start = frag->ofs;
1141 break;
1145 /* ... then up */
1147 /* Find last frag which is actually part of the node we're to GC. */
1148 frag = jffs2_lookup_node_frag(&f->fragtree, end-1);
1150 while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) {
1152 /* If the previous frag doesn't even reach the beginning, there's lots
1153 of fragmentation. Just merge. */
1154 if (frag->ofs+frag->size < max) {
1155 D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n",
1156 frag->ofs, frag->ofs+frag->size));
1157 end = frag->ofs + frag->size;
1158 continue;
1161 if (!frag->node || !frag->node->raw) {
1162 D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
1163 frag->ofs, frag->ofs+frag->size));
1164 break;
1165 } else {
1167 /* OK, it's a frag which extends to the beginning of the page. Does it live
1168 in a block which is still considered clean? If so, don't obsolete it.
1169 If not, cover it anyway. */
1171 struct jffs2_raw_node_ref *raw = frag->node->raw;
1172 struct jffs2_eraseblock *jeb;
1174 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1176 if (jeb == c->gcblock) {
1177 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1178 frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1179 end = frag->ofs + frag->size;
1180 break;
1182 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1183 D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
1184 frag->ofs, frag->ofs+frag->size, jeb->offset));
1185 break;
1188 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
1189 frag->ofs, frag->ofs+frag->size, jeb->offset));
1190 end = frag->ofs + frag->size;
1191 break;
1194 D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
1195 orig_start, orig_end, start, end));
1197 D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size));
1198 BUG_ON(end < orig_end);
1199 BUG_ON(start > orig_start);
1202 /* First, use readpage() to read the appropriate page into the page cache */
1203 /* Q: What happens if we actually try to GC the _same_ page for which commit_write()
1204 * triggered garbage collection in the first place?
1205 * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the
1206 * page OK. We'll actually write it out again in commit_write, which is a little
1207 * suboptimal, but at least we're correct.
1209 pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg);
1211 if (IS_ERR(pg_ptr)) {
1212 printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr));
1213 return PTR_ERR(pg_ptr);
1216 offset = start;
1217 while(offset < orig_end) {
1218 uint32_t datalen;
1219 uint32_t cdatalen;
1220 uint16_t comprtype = JFFS2_COMPR_NONE;
1222 ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN, &phys_ofs, &alloclen);
1224 if (ret) {
1225 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
1226 sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret);
1227 break;
1229 cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
1230 datalen = end - offset;
1232 writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1));
1234 comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen);
1236 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1237 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1238 ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen);
1239 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1241 ri.ino = cpu_to_je32(f->inocache->ino);
1242 ri.version = cpu_to_je32(++f->highest_version);
1243 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1244 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1245 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1246 ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
1247 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1248 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1249 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1250 ri.offset = cpu_to_je32(offset);
1251 ri.csize = cpu_to_je32(cdatalen);
1252 ri.dsize = cpu_to_je32(datalen);
1253 ri.compr = comprtype & 0xff;
1254 ri.usercompr = (comprtype >> 8) & 0xff;
1255 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1256 ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen));
1258 new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, phys_ofs, ALLOC_GC);
1260 jffs2_free_comprbuf(comprbuf, writebuf);
1262 if (IS_ERR(new_fn)) {
1263 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
1264 ret = PTR_ERR(new_fn);
1265 break;
1267 ret = jffs2_add_full_dnode_to_inode(c, f, new_fn);
1268 offset += datalen;
1269 if (f->metadata) {
1270 jffs2_mark_node_obsolete(c, f->metadata->raw);
1271 jffs2_free_full_dnode(f->metadata);
1272 f->metadata = NULL;
1276 jffs2_gc_release_page(c, pg_ptr, &pg);
1277 return ret;