2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
30 #include "xfs_dmapi.h"
31 #include "xfs_mount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_inode_item.h"
41 #include "xfs_btree.h"
42 #include "xfs_alloc.h"
43 #include "xfs_ialloc.h"
46 #include "xfs_error.h"
47 #include "xfs_utils.h"
48 #include "xfs_dir2_trace.h"
49 #include "xfs_quota.h"
51 #include "xfs_filestream.h"
53 #include <linux/log2.h>
55 kmem_zone_t
*xfs_ifork_zone
;
56 kmem_zone_t
*xfs_inode_zone
;
57 kmem_zone_t
*xfs_chashlist_zone
;
60 * Used in xfs_itruncate(). This is the maximum number of extents
61 * freed from a file in a single transaction.
63 #define XFS_ITRUNC_MAX_EXTENTS 2
65 STATIC
int xfs_iflush_int(xfs_inode_t
*, xfs_buf_t
*);
66 STATIC
int xfs_iformat_local(xfs_inode_t
*, xfs_dinode_t
*, int, int);
67 STATIC
int xfs_iformat_extents(xfs_inode_t
*, xfs_dinode_t
*, int);
68 STATIC
int xfs_iformat_btree(xfs_inode_t
*, xfs_dinode_t
*, int);
73 * Make sure that the extents in the given memory buffer
88 for (i
= 0; i
< nrecs
; i
++) {
89 ep
= xfs_iext_get_ext(ifp
, i
);
90 rec
.l0
= get_unaligned((__uint64_t
*)&ep
->l0
);
91 rec
.l1
= get_unaligned((__uint64_t
*)&ep
->l1
);
93 xfs_bmbt_disk_get_all(&rec
, &irec
);
95 xfs_bmbt_get_all(&rec
, &irec
);
96 if (fmt
== XFS_EXTFMT_NOSTATE
)
97 ASSERT(irec
.br_state
== XFS_EXT_NORM
);
101 #define xfs_validate_extents(ifp, nrecs, disk, fmt)
105 * Check that none of the inode's in the buffer have a next
106 * unlinked field of 0.
118 j
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
120 for (i
= 0; i
< j
; i
++) {
121 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
122 i
* mp
->m_sb
.sb_inodesize
);
123 if (!dip
->di_next_unlinked
) {
124 xfs_fs_cmn_err(CE_ALERT
, mp
,
125 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
127 ASSERT(dip
->di_next_unlinked
);
134 * This routine is called to map an inode number within a file
135 * system to the buffer containing the on-disk version of the
136 * inode. It returns a pointer to the buffer containing the
137 * on-disk inode in the bpp parameter, and in the dip parameter
138 * it returns a pointer to the on-disk inode within that buffer.
140 * If a non-zero error is returned, then the contents of bpp and
141 * dipp are undefined.
143 * Use xfs_imap() to determine the size and location of the
144 * buffer to read from disk.
162 * Call the space management code to find the location of the
166 error
= xfs_imap(mp
, tp
, ino
, &imap
, XFS_IMAP_LOOKUP
);
169 "xfs_inotobp: xfs_imap() returned an "
170 "error %d on %s. Returning error.", error
, mp
->m_fsname
);
175 * If the inode number maps to a block outside the bounds of the
176 * file system then return NULL rather than calling read_buf
177 * and panicing when we get an error from the driver.
179 if ((imap
.im_blkno
+ imap
.im_len
) >
180 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
)) {
182 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
183 "of the file system %s. Returning EINVAL.",
184 (unsigned long long)imap
.im_blkno
,
185 imap
.im_len
, mp
->m_fsname
);
186 return XFS_ERROR(EINVAL
);
190 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
191 * default to just a read_buf() call.
193 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
.im_blkno
,
194 (int)imap
.im_len
, XFS_BUF_LOCK
, &bp
);
198 "xfs_inotobp: xfs_trans_read_buf() returned an "
199 "error %d on %s. Returning error.", error
, mp
->m_fsname
);
202 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, 0);
204 INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
) == XFS_DINODE_MAGIC
&&
205 XFS_DINODE_GOOD_VERSION(INT_GET(dip
->di_core
.di_version
, ARCH_CONVERT
));
206 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
, XFS_ERRTAG_ITOBP_INOTOBP
,
207 XFS_RANDOM_ITOBP_INOTOBP
))) {
208 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW
, mp
, dip
);
209 xfs_trans_brelse(tp
, bp
);
211 "xfs_inotobp: XFS_TEST_ERROR() returned an "
212 "error on %s. Returning EFSCORRUPTED.", mp
->m_fsname
);
213 return XFS_ERROR(EFSCORRUPTED
);
216 xfs_inobp_check(mp
, bp
);
219 * Set *dipp to point to the on-disk inode in the buffer.
221 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
223 *offset
= imap
.im_boffset
;
229 * This routine is called to map an inode to the buffer containing
230 * the on-disk version of the inode. It returns a pointer to the
231 * buffer containing the on-disk inode in the bpp parameter, and in
232 * the dip parameter it returns a pointer to the on-disk inode within
235 * If a non-zero error is returned, then the contents of bpp and
236 * dipp are undefined.
238 * If the inode is new and has not yet been initialized, use xfs_imap()
239 * to determine the size and location of the buffer to read from disk.
240 * If the inode has already been mapped to its buffer and read in once,
241 * then use the mapping information stored in the inode rather than
242 * calling xfs_imap(). This allows us to avoid the overhead of looking
243 * at the inode btree for small block file systems (see xfs_dilocate()).
244 * We can tell whether the inode has been mapped in before by comparing
245 * its disk block address to 0. Only uninitialized inodes will have
246 * 0 for the disk block address.
264 if (ip
->i_blkno
== (xfs_daddr_t
)0) {
266 * Call the space management code to find the location of the
270 if ((error
= xfs_imap(mp
, tp
, ip
->i_ino
, &imap
,
271 XFS_IMAP_LOOKUP
| imap_flags
)))
275 * If the inode number maps to a block outside the bounds
276 * of the file system then return NULL rather than calling
277 * read_buf and panicing when we get an error from the
280 if ((imap
.im_blkno
+ imap
.im_len
) >
281 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
)) {
283 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_itobp: "
284 "(imap.im_blkno (0x%llx) "
285 "+ imap.im_len (0x%llx)) > "
286 " XFS_FSB_TO_BB(mp, "
287 "mp->m_sb.sb_dblocks) (0x%llx)",
288 (unsigned long long) imap
.im_blkno
,
289 (unsigned long long) imap
.im_len
,
290 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
));
292 return XFS_ERROR(EINVAL
);
296 * Fill in the fields in the inode that will be used to
297 * map the inode to its buffer from now on.
299 ip
->i_blkno
= imap
.im_blkno
;
300 ip
->i_len
= imap
.im_len
;
301 ip
->i_boffset
= imap
.im_boffset
;
304 * We've already mapped the inode once, so just use the
305 * mapping that we saved the first time.
307 imap
.im_blkno
= ip
->i_blkno
;
308 imap
.im_len
= ip
->i_len
;
309 imap
.im_boffset
= ip
->i_boffset
;
311 ASSERT(bno
== 0 || bno
== imap
.im_blkno
);
314 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
315 * default to just a read_buf() call.
317 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
.im_blkno
,
318 (int)imap
.im_len
, XFS_BUF_LOCK
, &bp
);
321 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_itobp: "
322 "xfs_trans_read_buf() returned error %d, "
323 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
324 error
, (unsigned long long) imap
.im_blkno
,
325 (unsigned long long) imap
.im_len
);
331 * Validate the magic number and version of every inode in the buffer
332 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
333 * No validation is done here in userspace (xfs_repair).
335 #if !defined(__KERNEL__)
338 ni
= BBTOB(imap
.im_len
) >> mp
->m_sb
.sb_inodelog
;
339 #else /* usual case */
343 for (i
= 0; i
< ni
; i
++) {
347 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
348 (i
<< mp
->m_sb
.sb_inodelog
));
349 di_ok
= INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
) == XFS_DINODE_MAGIC
&&
350 XFS_DINODE_GOOD_VERSION(INT_GET(dip
->di_core
.di_version
, ARCH_CONVERT
));
351 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
,
352 XFS_ERRTAG_ITOBP_INOTOBP
,
353 XFS_RANDOM_ITOBP_INOTOBP
))) {
354 if (imap_flags
& XFS_IMAP_BULKSTAT
) {
355 xfs_trans_brelse(tp
, bp
);
356 return XFS_ERROR(EINVAL
);
360 "Device %s - bad inode magic/vsn "
361 "daddr %lld #%d (magic=%x)",
362 XFS_BUFTARG_NAME(mp
->m_ddev_targp
),
363 (unsigned long long)imap
.im_blkno
, i
,
364 INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
));
366 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH
,
368 xfs_trans_brelse(tp
, bp
);
369 return XFS_ERROR(EFSCORRUPTED
);
373 xfs_inobp_check(mp
, bp
);
376 * Mark the buffer as an inode buffer now that it looks good
378 XFS_BUF_SET_VTYPE(bp
, B_FS_INO
);
381 * Set *dipp to point to the on-disk inode in the buffer.
383 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
389 * Move inode type and inode format specific information from the
390 * on-disk inode to the in-core inode. For fifos, devs, and sockets
391 * this means set if_rdev to the proper value. For files, directories,
392 * and symlinks this means to bring in the in-line data or extent
393 * pointers. For a file in B-tree format, only the root is immediately
394 * brought in-core. The rest will be in-lined in if_extents when it
395 * is first referenced (see xfs_iread_extents()).
402 xfs_attr_shortform_t
*atp
;
406 ip
->i_df
.if_ext_max
=
407 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
411 INT_GET(dip
->di_core
.di_nextents
, ARCH_CONVERT
) +
412 INT_GET(dip
->di_core
.di_anextents
, ARCH_CONVERT
) >
413 INT_GET(dip
->di_core
.di_nblocks
, ARCH_CONVERT
))) {
414 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
415 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
416 (unsigned long long)ip
->i_ino
,
417 (int)(INT_GET(dip
->di_core
.di_nextents
, ARCH_CONVERT
)
418 + INT_GET(dip
->di_core
.di_anextents
, ARCH_CONVERT
)),
420 INT_GET(dip
->di_core
.di_nblocks
, ARCH_CONVERT
));
421 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW
,
423 return XFS_ERROR(EFSCORRUPTED
);
426 if (unlikely(INT_GET(dip
->di_core
.di_forkoff
, ARCH_CONVERT
) > ip
->i_mount
->m_sb
.sb_inodesize
)) {
427 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
428 "corrupt dinode %Lu, forkoff = 0x%x.",
429 (unsigned long long)ip
->i_ino
,
430 (int)(INT_GET(dip
->di_core
.di_forkoff
, ARCH_CONVERT
)));
431 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW
,
433 return XFS_ERROR(EFSCORRUPTED
);
436 switch (ip
->i_d
.di_mode
& S_IFMT
) {
441 if (unlikely(INT_GET(dip
->di_core
.di_format
, ARCH_CONVERT
) != XFS_DINODE_FMT_DEV
)) {
442 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW
,
444 return XFS_ERROR(EFSCORRUPTED
);
448 ip
->i_df
.if_u2
.if_rdev
= INT_GET(dip
->di_u
.di_dev
, ARCH_CONVERT
);
454 switch (INT_GET(dip
->di_core
.di_format
, ARCH_CONVERT
)) {
455 case XFS_DINODE_FMT_LOCAL
:
457 * no local regular files yet
459 if (unlikely((INT_GET(dip
->di_core
.di_mode
, ARCH_CONVERT
) & S_IFMT
) == S_IFREG
)) {
460 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
462 "(local format for regular file).",
463 (unsigned long long) ip
->i_ino
);
464 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
467 return XFS_ERROR(EFSCORRUPTED
);
470 di_size
= INT_GET(dip
->di_core
.di_size
, ARCH_CONVERT
);
471 if (unlikely(di_size
> XFS_DFORK_DSIZE(dip
, ip
->i_mount
))) {
472 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
474 "(bad size %Ld for local inode).",
475 (unsigned long long) ip
->i_ino
,
476 (long long) di_size
);
477 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
480 return XFS_ERROR(EFSCORRUPTED
);
484 error
= xfs_iformat_local(ip
, dip
, XFS_DATA_FORK
, size
);
486 case XFS_DINODE_FMT_EXTENTS
:
487 error
= xfs_iformat_extents(ip
, dip
, XFS_DATA_FORK
);
489 case XFS_DINODE_FMT_BTREE
:
490 error
= xfs_iformat_btree(ip
, dip
, XFS_DATA_FORK
);
493 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW
,
495 return XFS_ERROR(EFSCORRUPTED
);
500 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW
, ip
->i_mount
);
501 return XFS_ERROR(EFSCORRUPTED
);
506 if (!XFS_DFORK_Q(dip
))
508 ASSERT(ip
->i_afp
== NULL
);
509 ip
->i_afp
= kmem_zone_zalloc(xfs_ifork_zone
, KM_SLEEP
);
510 ip
->i_afp
->if_ext_max
=
511 XFS_IFORK_ASIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
512 switch (INT_GET(dip
->di_core
.di_aformat
, ARCH_CONVERT
)) {
513 case XFS_DINODE_FMT_LOCAL
:
514 atp
= (xfs_attr_shortform_t
*)XFS_DFORK_APTR(dip
);
515 size
= be16_to_cpu(atp
->hdr
.totsize
);
516 error
= xfs_iformat_local(ip
, dip
, XFS_ATTR_FORK
, size
);
518 case XFS_DINODE_FMT_EXTENTS
:
519 error
= xfs_iformat_extents(ip
, dip
, XFS_ATTR_FORK
);
521 case XFS_DINODE_FMT_BTREE
:
522 error
= xfs_iformat_btree(ip
, dip
, XFS_ATTR_FORK
);
525 error
= XFS_ERROR(EFSCORRUPTED
);
529 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
531 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
537 * The file is in-lined in the on-disk inode.
538 * If it fits into if_inline_data, then copy
539 * it there, otherwise allocate a buffer for it
540 * and copy the data there. Either way, set
541 * if_data to point at the data.
542 * If we allocate a buffer for the data, make
543 * sure that its size is a multiple of 4 and
544 * record the real size in i_real_bytes.
557 * If the size is unreasonable, then something
558 * is wrong and we just bail out rather than crash in
559 * kmem_alloc() or memcpy() below.
561 if (unlikely(size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
562 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
564 "(bad size %d for local fork, size = %d).",
565 (unsigned long long) ip
->i_ino
, size
,
566 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
));
567 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW
,
569 return XFS_ERROR(EFSCORRUPTED
);
571 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
574 ifp
->if_u1
.if_data
= NULL
;
575 else if (size
<= sizeof(ifp
->if_u2
.if_inline_data
))
576 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
578 real_size
= roundup(size
, 4);
579 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
581 ifp
->if_bytes
= size
;
582 ifp
->if_real_bytes
= real_size
;
584 memcpy(ifp
->if_u1
.if_data
, XFS_DFORK_PTR(dip
, whichfork
), size
);
585 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
586 ifp
->if_flags
|= XFS_IFINLINE
;
591 * The file consists of a set of extents all
592 * of which fit into the on-disk inode.
593 * If there are few enough extents to fit into
594 * the if_inline_ext, then copy them there.
595 * Otherwise allocate a buffer for them and copy
596 * them into it. Either way, set if_extents
597 * to point at the extents.
605 xfs_bmbt_rec_t
*ep
, *dp
;
611 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
612 nex
= XFS_DFORK_NEXTENTS(dip
, whichfork
);
613 size
= nex
* (uint
)sizeof(xfs_bmbt_rec_t
);
616 * If the number of extents is unreasonable, then something
617 * is wrong and we just bail out rather than crash in
618 * kmem_alloc() or memcpy() below.
620 if (unlikely(size
< 0 || size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
621 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
622 "corrupt inode %Lu ((a)extents = %d).",
623 (unsigned long long) ip
->i_ino
, nex
);
624 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW
,
626 return XFS_ERROR(EFSCORRUPTED
);
629 ifp
->if_real_bytes
= 0;
631 ifp
->if_u1
.if_extents
= NULL
;
632 else if (nex
<= XFS_INLINE_EXTS
)
633 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
635 xfs_iext_add(ifp
, 0, nex
);
637 ifp
->if_bytes
= size
;
639 dp
= (xfs_bmbt_rec_t
*) XFS_DFORK_PTR(dip
, whichfork
);
640 xfs_validate_extents(ifp
, nex
, 1, XFS_EXTFMT_INODE(ip
));
641 for (i
= 0; i
< nex
; i
++, dp
++) {
642 ep
= xfs_iext_get_ext(ifp
, i
);
643 ep
->l0
= INT_GET(get_unaligned((__uint64_t
*)&dp
->l0
),
645 ep
->l1
= INT_GET(get_unaligned((__uint64_t
*)&dp
->l1
),
648 XFS_BMAP_TRACE_EXLIST(ip
, nex
, whichfork
);
649 if (whichfork
!= XFS_DATA_FORK
||
650 XFS_EXTFMT_INODE(ip
) == XFS_EXTFMT_NOSTATE
)
651 if (unlikely(xfs_check_nostate_extents(
653 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
656 return XFS_ERROR(EFSCORRUPTED
);
659 ifp
->if_flags
|= XFS_IFEXTENTS
;
664 * The file has too many extents to fit into
665 * the inode, so they are in B-tree format.
666 * Allocate a buffer for the root of the B-tree
667 * and copy the root into it. The i_extents
668 * field will remain NULL until all of the
669 * extents are read in (when they are needed).
677 xfs_bmdr_block_t
*dfp
;
683 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
684 dfp
= (xfs_bmdr_block_t
*)XFS_DFORK_PTR(dip
, whichfork
);
685 size
= XFS_BMAP_BROOT_SPACE(dfp
);
686 nrecs
= XFS_BMAP_BROOT_NUMRECS(dfp
);
689 * blow out if -- fork has less extents than can fit in
690 * fork (fork shouldn't be a btree format), root btree
691 * block has more records than can fit into the fork,
692 * or the number of extents is greater than the number of
695 if (unlikely(XFS_IFORK_NEXTENTS(ip
, whichfork
) <= ifp
->if_ext_max
696 || XFS_BMDR_SPACE_CALC(nrecs
) >
697 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
)
698 || XFS_IFORK_NEXTENTS(ip
, whichfork
) > ip
->i_d
.di_nblocks
)) {
699 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
700 "corrupt inode %Lu (btree).",
701 (unsigned long long) ip
->i_ino
);
702 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW
,
704 return XFS_ERROR(EFSCORRUPTED
);
707 ifp
->if_broot_bytes
= size
;
708 ifp
->if_broot
= kmem_alloc(size
, KM_SLEEP
);
709 ASSERT(ifp
->if_broot
!= NULL
);
711 * Copy and convert from the on-disk structure
712 * to the in-memory structure.
714 xfs_bmdr_to_bmbt(dfp
, XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
),
715 ifp
->if_broot
, size
);
716 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
717 ifp
->if_flags
|= XFS_IFBROOT
;
723 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
726 * buf = on-disk representation
727 * dip = native representation
728 * dir = direction - +ve -> disk to native
729 * -ve -> native to disk
732 xfs_xlate_dinode_core(
734 xfs_dinode_core_t
*dip
,
737 xfs_dinode_core_t
*buf_core
= (xfs_dinode_core_t
*)buf
;
738 xfs_dinode_core_t
*mem_core
= (xfs_dinode_core_t
*)dip
;
739 xfs_arch_t arch
= ARCH_CONVERT
;
743 INT_XLATE(buf_core
->di_magic
, mem_core
->di_magic
, dir
, arch
);
744 INT_XLATE(buf_core
->di_mode
, mem_core
->di_mode
, dir
, arch
);
745 INT_XLATE(buf_core
->di_version
, mem_core
->di_version
, dir
, arch
);
746 INT_XLATE(buf_core
->di_format
, mem_core
->di_format
, dir
, arch
);
747 INT_XLATE(buf_core
->di_onlink
, mem_core
->di_onlink
, dir
, arch
);
748 INT_XLATE(buf_core
->di_uid
, mem_core
->di_uid
, dir
, arch
);
749 INT_XLATE(buf_core
->di_gid
, mem_core
->di_gid
, dir
, arch
);
750 INT_XLATE(buf_core
->di_nlink
, mem_core
->di_nlink
, dir
, arch
);
751 INT_XLATE(buf_core
->di_projid
, mem_core
->di_projid
, dir
, arch
);
754 memcpy(mem_core
->di_pad
, buf_core
->di_pad
,
755 sizeof(buf_core
->di_pad
));
757 memcpy(buf_core
->di_pad
, mem_core
->di_pad
,
758 sizeof(buf_core
->di_pad
));
761 INT_XLATE(buf_core
->di_flushiter
, mem_core
->di_flushiter
, dir
, arch
);
763 INT_XLATE(buf_core
->di_atime
.t_sec
, mem_core
->di_atime
.t_sec
,
765 INT_XLATE(buf_core
->di_atime
.t_nsec
, mem_core
->di_atime
.t_nsec
,
767 INT_XLATE(buf_core
->di_mtime
.t_sec
, mem_core
->di_mtime
.t_sec
,
769 INT_XLATE(buf_core
->di_mtime
.t_nsec
, mem_core
->di_mtime
.t_nsec
,
771 INT_XLATE(buf_core
->di_ctime
.t_sec
, mem_core
->di_ctime
.t_sec
,
773 INT_XLATE(buf_core
->di_ctime
.t_nsec
, mem_core
->di_ctime
.t_nsec
,
775 INT_XLATE(buf_core
->di_size
, mem_core
->di_size
, dir
, arch
);
776 INT_XLATE(buf_core
->di_nblocks
, mem_core
->di_nblocks
, dir
, arch
);
777 INT_XLATE(buf_core
->di_extsize
, mem_core
->di_extsize
, dir
, arch
);
778 INT_XLATE(buf_core
->di_nextents
, mem_core
->di_nextents
, dir
, arch
);
779 INT_XLATE(buf_core
->di_anextents
, mem_core
->di_anextents
, dir
, arch
);
780 INT_XLATE(buf_core
->di_forkoff
, mem_core
->di_forkoff
, dir
, arch
);
781 INT_XLATE(buf_core
->di_aformat
, mem_core
->di_aformat
, dir
, arch
);
782 INT_XLATE(buf_core
->di_dmevmask
, mem_core
->di_dmevmask
, dir
, arch
);
783 INT_XLATE(buf_core
->di_dmstate
, mem_core
->di_dmstate
, dir
, arch
);
784 INT_XLATE(buf_core
->di_flags
, mem_core
->di_flags
, dir
, arch
);
785 INT_XLATE(buf_core
->di_gen
, mem_core
->di_gen
, dir
, arch
);
794 if (di_flags
& XFS_DIFLAG_ANY
) {
795 if (di_flags
& XFS_DIFLAG_REALTIME
)
796 flags
|= XFS_XFLAG_REALTIME
;
797 if (di_flags
& XFS_DIFLAG_PREALLOC
)
798 flags
|= XFS_XFLAG_PREALLOC
;
799 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
800 flags
|= XFS_XFLAG_IMMUTABLE
;
801 if (di_flags
& XFS_DIFLAG_APPEND
)
802 flags
|= XFS_XFLAG_APPEND
;
803 if (di_flags
& XFS_DIFLAG_SYNC
)
804 flags
|= XFS_XFLAG_SYNC
;
805 if (di_flags
& XFS_DIFLAG_NOATIME
)
806 flags
|= XFS_XFLAG_NOATIME
;
807 if (di_flags
& XFS_DIFLAG_NODUMP
)
808 flags
|= XFS_XFLAG_NODUMP
;
809 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
810 flags
|= XFS_XFLAG_RTINHERIT
;
811 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
812 flags
|= XFS_XFLAG_PROJINHERIT
;
813 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
814 flags
|= XFS_XFLAG_NOSYMLINKS
;
815 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
816 flags
|= XFS_XFLAG_EXTSIZE
;
817 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
818 flags
|= XFS_XFLAG_EXTSZINHERIT
;
819 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
820 flags
|= XFS_XFLAG_NODEFRAG
;
821 if (di_flags
& XFS_DIFLAG_FILESTREAM
)
822 flags
|= XFS_XFLAG_FILESTREAM
;
832 xfs_dinode_core_t
*dic
= &ip
->i_d
;
834 return _xfs_dic2xflags(dic
->di_flags
) |
835 (XFS_CFORK_Q(dic
) ? XFS_XFLAG_HASATTR
: 0);
840 xfs_dinode_core_t
*dic
)
842 return _xfs_dic2xflags(INT_GET(dic
->di_flags
, ARCH_CONVERT
)) |
843 (XFS_CFORK_Q_DISK(dic
) ? XFS_XFLAG_HASATTR
: 0);
847 * Given a mount structure and an inode number, return a pointer
848 * to a newly allocated in-core inode corresponding to the given
851 * Initialize the inode's attributes and extent pointers if it
852 * already has them (it will not if the inode has no links).
868 ASSERT(xfs_inode_zone
!= NULL
);
870 ip
= kmem_zone_zalloc(xfs_inode_zone
, KM_SLEEP
);
873 spin_lock_init(&ip
->i_flags_lock
);
876 * Get pointer's to the on-disk inode and the buffer containing it.
877 * If the inode number refers to a block outside the file system
878 * then xfs_itobp() will return NULL. In this case we should
879 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
880 * know that this is a new incore inode.
882 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &bp
, bno
, imap_flags
);
884 kmem_zone_free(xfs_inode_zone
, ip
);
889 * Initialize inode's trace buffers.
890 * Do this before xfs_iformat in case it adds entries.
892 #ifdef XFS_BMAP_TRACE
893 ip
->i_xtrace
= ktrace_alloc(XFS_BMAP_KTRACE_SIZE
, KM_SLEEP
);
895 #ifdef XFS_BMBT_TRACE
896 ip
->i_btrace
= ktrace_alloc(XFS_BMBT_KTRACE_SIZE
, KM_SLEEP
);
899 ip
->i_rwtrace
= ktrace_alloc(XFS_RW_KTRACE_SIZE
, KM_SLEEP
);
901 #ifdef XFS_ILOCK_TRACE
902 ip
->i_lock_trace
= ktrace_alloc(XFS_ILOCK_KTRACE_SIZE
, KM_SLEEP
);
904 #ifdef XFS_DIR2_TRACE
905 ip
->i_dir_trace
= ktrace_alloc(XFS_DIR2_KTRACE_SIZE
, KM_SLEEP
);
909 * If we got something that isn't an inode it means someone
910 * (nfs or dmi) has a stale handle.
912 if (INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
) != XFS_DINODE_MAGIC
) {
913 kmem_zone_free(xfs_inode_zone
, ip
);
914 xfs_trans_brelse(tp
, bp
);
916 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
917 "dip->di_core.di_magic (0x%x) != "
918 "XFS_DINODE_MAGIC (0x%x)",
919 INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
),
922 return XFS_ERROR(EINVAL
);
926 * If the on-disk inode is already linked to a directory
927 * entry, copy all of the inode into the in-core inode.
928 * xfs_iformat() handles copying in the inode format
929 * specific information.
930 * Otherwise, just get the truly permanent information.
932 if (dip
->di_core
.di_mode
) {
933 xfs_xlate_dinode_core((xfs_caddr_t
)&dip
->di_core
,
935 error
= xfs_iformat(ip
, dip
);
937 kmem_zone_free(xfs_inode_zone
, ip
);
938 xfs_trans_brelse(tp
, bp
);
940 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
941 "xfs_iformat() returned error %d",
947 ip
->i_d
.di_magic
= INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
);
948 ip
->i_d
.di_version
= INT_GET(dip
->di_core
.di_version
, ARCH_CONVERT
);
949 ip
->i_d
.di_gen
= INT_GET(dip
->di_core
.di_gen
, ARCH_CONVERT
);
950 ip
->i_d
.di_flushiter
= INT_GET(dip
->di_core
.di_flushiter
, ARCH_CONVERT
);
952 * Make sure to pull in the mode here as well in
953 * case the inode is released without being used.
954 * This ensures that xfs_inactive() will see that
955 * the inode is already free and not try to mess
956 * with the uninitialized part of it.
960 * Initialize the per-fork minima and maxima for a new
961 * inode here. xfs_iformat will do it for old inodes.
963 ip
->i_df
.if_ext_max
=
964 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
967 INIT_LIST_HEAD(&ip
->i_reclaim
);
970 * The inode format changed when we moved the link count and
971 * made it 32 bits long. If this is an old format inode,
972 * convert it in memory to look like a new one. If it gets
973 * flushed to disk we will convert back before flushing or
974 * logging it. We zero out the new projid field and the old link
975 * count field. We'll handle clearing the pad field (the remains
976 * of the old uuid field) when we actually convert the inode to
977 * the new format. We don't change the version number so that we
978 * can distinguish this from a real new format inode.
980 if (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
981 ip
->i_d
.di_nlink
= ip
->i_d
.di_onlink
;
982 ip
->i_d
.di_onlink
= 0;
983 ip
->i_d
.di_projid
= 0;
986 ip
->i_delayed_blks
= 0;
987 ip
->i_size
= ip
->i_d
.di_size
;
990 * Mark the buffer containing the inode as something to keep
991 * around for a while. This helps to keep recently accessed
992 * meta-data in-core longer.
994 XFS_BUF_SET_REF(bp
, XFS_INO_REF
);
997 * Use xfs_trans_brelse() to release the buffer containing the
998 * on-disk inode, because it was acquired with xfs_trans_read_buf()
999 * in xfs_itobp() above. If tp is NULL, this is just a normal
1000 * brelse(). If we're within a transaction, then xfs_trans_brelse()
1001 * will only release the buffer if it is not dirty within the
1002 * transaction. It will be OK to release the buffer in this case,
1003 * because inodes on disk are never destroyed and we will be
1004 * locking the new in-core inode before putting it in the hash
1005 * table where other processes can find it. Thus we don't have
1006 * to worry about the inode being changed just because we released
1009 xfs_trans_brelse(tp
, bp
);
1015 * Read in extents from a btree-format inode.
1016 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1026 xfs_extnum_t nextents
;
1029 if (unlikely(XFS_IFORK_FORMAT(ip
, whichfork
) != XFS_DINODE_FMT_BTREE
)) {
1030 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW
,
1032 return XFS_ERROR(EFSCORRUPTED
);
1034 nextents
= XFS_IFORK_NEXTENTS(ip
, whichfork
);
1035 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
1036 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
1039 * We know that the size is valid (it's checked in iformat_btree)
1041 ifp
->if_lastex
= NULLEXTNUM
;
1042 ifp
->if_bytes
= ifp
->if_real_bytes
= 0;
1043 ifp
->if_flags
|= XFS_IFEXTENTS
;
1044 xfs_iext_add(ifp
, 0, nextents
);
1045 error
= xfs_bmap_read_extents(tp
, ip
, whichfork
);
1047 xfs_iext_destroy(ifp
);
1048 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
1051 xfs_validate_extents(ifp
, nextents
, 0, XFS_EXTFMT_INODE(ip
));
1056 * Allocate an inode on disk and return a copy of its in-core version.
1057 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1058 * appropriately within the inode. The uid and gid for the inode are
1059 * set according to the contents of the given cred structure.
1061 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1062 * has a free inode available, call xfs_iget()
1063 * to obtain the in-core version of the allocated inode. Finally,
1064 * fill in the inode and log its initial contents. In this case,
1065 * ialloc_context would be set to NULL and call_again set to false.
1067 * If xfs_dialloc() does not have an available inode,
1068 * it will replenish its supply by doing an allocation. Since we can
1069 * only do one allocation within a transaction without deadlocks, we
1070 * must commit the current transaction before returning the inode itself.
1071 * In this case, therefore, we will set call_again to true and return.
1072 * The caller should then commit the current transaction, start a new
1073 * transaction, and call xfs_ialloc() again to actually get the inode.
1075 * To ensure that some other process does not grab the inode that
1076 * was allocated during the first call to xfs_ialloc(), this routine
1077 * also returns the [locked] bp pointing to the head of the freelist
1078 * as ialloc_context. The caller should hold this buffer across
1079 * the commit and pass it back into this routine on the second call.
1081 * If we are allocating quota inodes, we do not have a parent inode
1082 * to attach to or associate with (i.e. pip == NULL) because they
1083 * are not linked into the directory structure - they are attached
1084 * directly to the superblock - and so have no parent.
1096 xfs_buf_t
**ialloc_context
,
1097 boolean_t
*call_again
,
1107 * Call the space management code to pick
1108 * the on-disk inode to be allocated.
1110 error
= xfs_dialloc(tp
, pip
? pip
->i_ino
: 0, mode
, okalloc
,
1111 ialloc_context
, call_again
, &ino
);
1115 if (*call_again
|| ino
== NULLFSINO
) {
1119 ASSERT(*ialloc_context
== NULL
);
1122 * Get the in-core inode with the lock held exclusively.
1123 * This is because we're setting fields here we need
1124 * to prevent others from looking at until we're done.
1126 error
= xfs_trans_iget(tp
->t_mountp
, tp
, ino
,
1127 XFS_IGET_CREATE
, XFS_ILOCK_EXCL
, &ip
);
1134 ip
->i_d
.di_mode
= (__uint16_t
)mode
;
1135 ip
->i_d
.di_onlink
= 0;
1136 ip
->i_d
.di_nlink
= nlink
;
1137 ASSERT(ip
->i_d
.di_nlink
== nlink
);
1138 ip
->i_d
.di_uid
= current_fsuid(cr
);
1139 ip
->i_d
.di_gid
= current_fsgid(cr
);
1140 ip
->i_d
.di_projid
= prid
;
1141 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
1144 * If the superblock version is up to where we support new format
1145 * inodes and this is currently an old format inode, then change
1146 * the inode version number now. This way we only do the conversion
1147 * here rather than here and in the flush/logging code.
1149 if (XFS_SB_VERSION_HASNLINK(&tp
->t_mountp
->m_sb
) &&
1150 ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
1151 ip
->i_d
.di_version
= XFS_DINODE_VERSION_2
;
1153 * We've already zeroed the old link count, the projid field,
1154 * and the pad field.
1159 * Project ids won't be stored on disk if we are using a version 1 inode.
1161 if ((prid
!= 0) && (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
))
1162 xfs_bump_ino_vers2(tp
, ip
);
1164 if (pip
&& XFS_INHERIT_GID(pip
, vp
->v_vfsp
)) {
1165 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
1166 if ((pip
->i_d
.di_mode
& S_ISGID
) && (mode
& S_IFMT
) == S_IFDIR
) {
1167 ip
->i_d
.di_mode
|= S_ISGID
;
1172 * If the group ID of the new file does not match the effective group
1173 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1174 * (and only if the irix_sgid_inherit compatibility variable is set).
1176 if ((irix_sgid_inherit
) &&
1177 (ip
->i_d
.di_mode
& S_ISGID
) &&
1178 (!in_group_p((gid_t
)ip
->i_d
.di_gid
))) {
1179 ip
->i_d
.di_mode
&= ~S_ISGID
;
1182 ip
->i_d
.di_size
= 0;
1184 ip
->i_d
.di_nextents
= 0;
1185 ASSERT(ip
->i_d
.di_nblocks
== 0);
1186 xfs_ichgtime(ip
, XFS_ICHGTIME_CHG
|XFS_ICHGTIME_ACC
|XFS_ICHGTIME_MOD
);
1188 * di_gen will have been taken care of in xfs_iread.
1190 ip
->i_d
.di_extsize
= 0;
1191 ip
->i_d
.di_dmevmask
= 0;
1192 ip
->i_d
.di_dmstate
= 0;
1193 ip
->i_d
.di_flags
= 0;
1194 flags
= XFS_ILOG_CORE
;
1195 switch (mode
& S_IFMT
) {
1200 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
1201 ip
->i_df
.if_u2
.if_rdev
= rdev
;
1202 ip
->i_df
.if_flags
= 0;
1203 flags
|= XFS_ILOG_DEV
;
1206 if (pip
&& xfs_inode_is_filestream(pip
)) {
1207 error
= xfs_filestream_associate(pip
, ip
);
1211 xfs_iflags_set(ip
, XFS_IFILESTREAM
);
1215 if (pip
&& (pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
1218 if ((mode
& S_IFMT
) == S_IFDIR
) {
1219 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1220 di_flags
|= XFS_DIFLAG_RTINHERIT
;
1221 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1222 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
1223 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1225 } else if ((mode
& S_IFMT
) == S_IFREG
) {
1226 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
) {
1227 di_flags
|= XFS_DIFLAG_REALTIME
;
1228 ip
->i_iocore
.io_flags
|= XFS_IOCORE_RT
;
1230 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1231 di_flags
|= XFS_DIFLAG_EXTSIZE
;
1232 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1235 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
1236 xfs_inherit_noatime
)
1237 di_flags
|= XFS_DIFLAG_NOATIME
;
1238 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
1240 di_flags
|= XFS_DIFLAG_NODUMP
;
1241 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
1243 di_flags
|= XFS_DIFLAG_SYNC
;
1244 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
1245 xfs_inherit_nosymlinks
)
1246 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
1247 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
1248 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
1249 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
1250 xfs_inherit_nodefrag
)
1251 di_flags
|= XFS_DIFLAG_NODEFRAG
;
1252 if (pip
->i_d
.di_flags
& XFS_DIFLAG_FILESTREAM
)
1253 di_flags
|= XFS_DIFLAG_FILESTREAM
;
1254 ip
->i_d
.di_flags
|= di_flags
;
1258 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
1259 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
1260 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
1261 ip
->i_df
.if_u1
.if_extents
= NULL
;
1267 * Attribute fork settings for new inode.
1269 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
1270 ip
->i_d
.di_anextents
= 0;
1273 * Log the new values stuffed into the inode.
1275 xfs_trans_log_inode(tp
, ip
, flags
);
1277 /* now that we have an i_mode we can setup inode ops and unlock */
1278 bhv_vfs_init_vnode(XFS_MTOVFS(tp
->t_mountp
), vp
, XFS_ITOBHV(ip
), 1);
1285 * Check to make sure that there are no blocks allocated to the
1286 * file beyond the size of the file. We don't check this for
1287 * files with fixed size extents or real time extents, but we
1288 * at least do it for regular files.
1297 xfs_fileoff_t map_first
;
1299 xfs_bmbt_irec_t imaps
[2];
1301 if ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
)
1304 if (ip
->i_d
.di_flags
& (XFS_DIFLAG_REALTIME
| XFS_DIFLAG_EXTSIZE
))
1308 map_first
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
1310 * The filesystem could be shutting down, so bmapi may return
1313 if (xfs_bmapi(NULL
, ip
, map_first
,
1315 (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
)) -
1317 XFS_BMAPI_ENTIRE
, NULL
, 0, imaps
, &nimaps
,
1320 ASSERT(nimaps
== 1);
1321 ASSERT(imaps
[0].br_startblock
== HOLESTARTBLOCK
);
1326 * Calculate the last possible buffered byte in a file. This must
1327 * include data that was buffered beyond the EOF by the write code.
1328 * This also needs to deal with overflowing the xfs_fsize_t type
1329 * which can happen for sizes near the limit.
1331 * We also need to take into account any blocks beyond the EOF. It
1332 * may be the case that they were buffered by a write which failed.
1333 * In that case the pages will still be in memory, but the inode size
1334 * will never have been updated.
1341 xfs_fsize_t last_byte
;
1342 xfs_fileoff_t last_block
;
1343 xfs_fileoff_t size_last_block
;
1346 ASSERT(ismrlocked(&(ip
->i_iolock
), MR_UPDATE
| MR_ACCESS
));
1350 * Only check for blocks beyond the EOF if the extents have
1351 * been read in. This eliminates the need for the inode lock,
1352 * and it also saves us from looking when it really isn't
1355 if (ip
->i_df
.if_flags
& XFS_IFEXTENTS
) {
1356 error
= xfs_bmap_last_offset(NULL
, ip
, &last_block
,
1364 size_last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)ip
->i_size
);
1365 last_block
= XFS_FILEOFF_MAX(last_block
, size_last_block
);
1367 last_byte
= XFS_FSB_TO_B(mp
, last_block
);
1368 if (last_byte
< 0) {
1369 return XFS_MAXIOFFSET(mp
);
1371 last_byte
+= (1 << mp
->m_writeio_log
);
1372 if (last_byte
< 0) {
1373 return XFS_MAXIOFFSET(mp
);
1378 #if defined(XFS_RW_TRACE)
1384 xfs_fsize_t new_size
,
1385 xfs_off_t toss_start
,
1386 xfs_off_t toss_finish
)
1388 if (ip
->i_rwtrace
== NULL
) {
1392 ktrace_enter(ip
->i_rwtrace
,
1395 (void*)(unsigned long)((ip
->i_d
.di_size
>> 32) & 0xffffffff),
1396 (void*)(unsigned long)(ip
->i_d
.di_size
& 0xffffffff),
1397 (void*)((long)flag
),
1398 (void*)(unsigned long)((new_size
>> 32) & 0xffffffff),
1399 (void*)(unsigned long)(new_size
& 0xffffffff),
1400 (void*)(unsigned long)((toss_start
>> 32) & 0xffffffff),
1401 (void*)(unsigned long)(toss_start
& 0xffffffff),
1402 (void*)(unsigned long)((toss_finish
>> 32) & 0xffffffff),
1403 (void*)(unsigned long)(toss_finish
& 0xffffffff),
1404 (void*)(unsigned long)current_cpu(),
1405 (void*)(unsigned long)current_pid(),
1411 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1415 * Start the truncation of the file to new_size. The new size
1416 * must be smaller than the current size. This routine will
1417 * clear the buffer and page caches of file data in the removed
1418 * range, and xfs_itruncate_finish() will remove the underlying
1421 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1422 * must NOT have the inode lock held at all. This is because we're
1423 * calling into the buffer/page cache code and we can't hold the
1424 * inode lock when we do so.
1426 * We need to wait for any direct I/Os in flight to complete before we
1427 * proceed with the truncate. This is needed to prevent the extents
1428 * being read or written by the direct I/Os from being removed while the
1429 * I/O is in flight as there is no other method of synchronising
1430 * direct I/O with the truncate operation. Also, because we hold
1431 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1432 * started until the truncate completes and drops the lock. Essentially,
1433 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1434 * between direct I/Os and the truncate operation.
1436 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1437 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1438 * in the case that the caller is locking things out of order and
1439 * may not be able to call xfs_itruncate_finish() with the inode lock
1440 * held without dropping the I/O lock. If the caller must drop the
1441 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1442 * must be called again with all the same restrictions as the initial
1446 xfs_itruncate_start(
1449 xfs_fsize_t new_size
)
1451 xfs_fsize_t last_byte
;
1452 xfs_off_t toss_start
;
1457 ASSERT(ismrlocked(&ip
->i_iolock
, MR_UPDATE
) != 0);
1458 ASSERT((new_size
== 0) || (new_size
<= ip
->i_size
));
1459 ASSERT((flags
== XFS_ITRUNC_DEFINITE
) ||
1460 (flags
== XFS_ITRUNC_MAYBE
));
1465 vn_iowait(vp
); /* wait for the completion of any pending DIOs */
1468 * Call toss_pages or flushinval_pages to get rid of pages
1469 * overlapping the region being removed. We have to use
1470 * the less efficient flushinval_pages in the case that the
1471 * caller may not be able to finish the truncate without
1472 * dropping the inode's I/O lock. Make sure
1473 * to catch any pages brought in by buffers overlapping
1474 * the EOF by searching out beyond the isize by our
1475 * block size. We round new_size up to a block boundary
1476 * so that we don't toss things on the same block as
1477 * new_size but before it.
1479 * Before calling toss_page or flushinval_pages, make sure to
1480 * call remapf() over the same region if the file is mapped.
1481 * This frees up mapped file references to the pages in the
1482 * given range and for the flushinval_pages case it ensures
1483 * that we get the latest mapped changes flushed out.
1485 toss_start
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1486 toss_start
= XFS_FSB_TO_B(mp
, toss_start
);
1487 if (toss_start
< 0) {
1489 * The place to start tossing is beyond our maximum
1490 * file size, so there is no way that the data extended
1495 last_byte
= xfs_file_last_byte(ip
);
1496 xfs_itrunc_trace(XFS_ITRUNC_START
, ip
, flags
, new_size
, toss_start
,
1498 if (last_byte
> toss_start
) {
1499 if (flags
& XFS_ITRUNC_DEFINITE
) {
1500 bhv_vop_toss_pages(vp
, toss_start
, -1, FI_REMAPF_LOCKED
);
1502 error
= bhv_vop_flushinval_pages(vp
, toss_start
, -1, FI_REMAPF_LOCKED
);
1507 if (new_size
== 0) {
1508 ASSERT(VN_CACHED(vp
) == 0);
1515 * Shrink the file to the given new_size. The new
1516 * size must be smaller than the current size.
1517 * This will free up the underlying blocks
1518 * in the removed range after a call to xfs_itruncate_start()
1519 * or xfs_atruncate_start().
1521 * The transaction passed to this routine must have made
1522 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1523 * This routine may commit the given transaction and
1524 * start new ones, so make sure everything involved in
1525 * the transaction is tidy before calling here.
1526 * Some transaction will be returned to the caller to be
1527 * committed. The incoming transaction must already include
1528 * the inode, and both inode locks must be held exclusively.
1529 * The inode must also be "held" within the transaction. On
1530 * return the inode will be "held" within the returned transaction.
1531 * This routine does NOT require any disk space to be reserved
1532 * for it within the transaction.
1534 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1535 * and it indicates the fork which is to be truncated. For the
1536 * attribute fork we only support truncation to size 0.
1538 * We use the sync parameter to indicate whether or not the first
1539 * transaction we perform might have to be synchronous. For the attr fork,
1540 * it needs to be so if the unlink of the inode is not yet known to be
1541 * permanent in the log. This keeps us from freeing and reusing the
1542 * blocks of the attribute fork before the unlink of the inode becomes
1545 * For the data fork, we normally have to run synchronously if we're
1546 * being called out of the inactive path or we're being called
1547 * out of the create path where we're truncating an existing file.
1548 * Either way, the truncate needs to be sync so blocks don't reappear
1549 * in the file with altered data in case of a crash. wsync filesystems
1550 * can run the first case async because anything that shrinks the inode
1551 * has to run sync so by the time we're called here from inactive, the
1552 * inode size is permanently set to 0.
1554 * Calls from the truncate path always need to be sync unless we're
1555 * in a wsync filesystem and the file has already been unlinked.
1557 * The caller is responsible for correctly setting the sync parameter.
1558 * It gets too hard for us to guess here which path we're being called
1559 * out of just based on inode state.
1562 xfs_itruncate_finish(
1565 xfs_fsize_t new_size
,
1569 xfs_fsblock_t first_block
;
1570 xfs_fileoff_t first_unmap_block
;
1571 xfs_fileoff_t last_block
;
1572 xfs_filblks_t unmap_len
=0;
1577 xfs_bmap_free_t free_list
;
1580 ASSERT(ismrlocked(&ip
->i_iolock
, MR_UPDATE
) != 0);
1581 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
) != 0);
1582 ASSERT((new_size
== 0) || (new_size
<= ip
->i_size
));
1583 ASSERT(*tp
!= NULL
);
1584 ASSERT((*tp
)->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1585 ASSERT(ip
->i_transp
== *tp
);
1586 ASSERT(ip
->i_itemp
!= NULL
);
1587 ASSERT(ip
->i_itemp
->ili_flags
& XFS_ILI_HOLD
);
1591 mp
= (ntp
)->t_mountp
;
1592 ASSERT(! XFS_NOT_DQATTACHED(mp
, ip
));
1595 * We only support truncating the entire attribute fork.
1597 if (fork
== XFS_ATTR_FORK
) {
1600 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1601 xfs_itrunc_trace(XFS_ITRUNC_FINISH1
, ip
, 0, new_size
, 0, 0);
1603 * The first thing we do is set the size to new_size permanently
1604 * on disk. This way we don't have to worry about anyone ever
1605 * being able to look at the data being freed even in the face
1606 * of a crash. What we're getting around here is the case where
1607 * we free a block, it is allocated to another file, it is written
1608 * to, and then we crash. If the new data gets written to the
1609 * file but the log buffers containing the free and reallocation
1610 * don't, then we'd end up with garbage in the blocks being freed.
1611 * As long as we make the new_size permanent before actually
1612 * freeing any blocks it doesn't matter if they get writtten to.
1614 * The callers must signal into us whether or not the size
1615 * setting here must be synchronous. There are a few cases
1616 * where it doesn't have to be synchronous. Those cases
1617 * occur if the file is unlinked and we know the unlink is
1618 * permanent or if the blocks being truncated are guaranteed
1619 * to be beyond the inode eof (regardless of the link count)
1620 * and the eof value is permanent. Both of these cases occur
1621 * only on wsync-mounted filesystems. In those cases, we're
1622 * guaranteed that no user will ever see the data in the blocks
1623 * that are being truncated so the truncate can run async.
1624 * In the free beyond eof case, the file may wind up with
1625 * more blocks allocated to it than it needs if we crash
1626 * and that won't get fixed until the next time the file
1627 * is re-opened and closed but that's ok as that shouldn't
1628 * be too many blocks.
1630 * However, we can't just make all wsync xactions run async
1631 * because there's one call out of the create path that needs
1632 * to run sync where it's truncating an existing file to size
1633 * 0 whose size is > 0.
1635 * It's probably possible to come up with a test in this
1636 * routine that would correctly distinguish all the above
1637 * cases from the values of the function parameters and the
1638 * inode state but for sanity's sake, I've decided to let the
1639 * layers above just tell us. It's simpler to correctly figure
1640 * out in the layer above exactly under what conditions we
1641 * can run async and I think it's easier for others read and
1642 * follow the logic in case something has to be changed.
1643 * cscope is your friend -- rcc.
1645 * The attribute fork is much simpler.
1647 * For the attribute fork we allow the caller to tell us whether
1648 * the unlink of the inode that led to this call is yet permanent
1649 * in the on disk log. If it is not and we will be freeing extents
1650 * in this inode then we make the first transaction synchronous
1651 * to make sure that the unlink is permanent by the time we free
1654 if (fork
== XFS_DATA_FORK
) {
1655 if (ip
->i_d
.di_nextents
> 0) {
1657 * If we are not changing the file size then do
1658 * not update the on-disk file size - we may be
1659 * called from xfs_inactive_free_eofblocks(). If we
1660 * update the on-disk file size and then the system
1661 * crashes before the contents of the file are
1662 * flushed to disk then the files may be full of
1663 * holes (ie NULL files bug).
1665 if (ip
->i_size
!= new_size
) {
1666 ip
->i_d
.di_size
= new_size
;
1667 ip
->i_size
= new_size
;
1668 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1672 ASSERT(!(mp
->m_flags
& XFS_MOUNT_WSYNC
));
1673 if (ip
->i_d
.di_anextents
> 0)
1674 xfs_trans_set_sync(ntp
);
1676 ASSERT(fork
== XFS_DATA_FORK
||
1677 (fork
== XFS_ATTR_FORK
&&
1678 ((sync
&& !(mp
->m_flags
& XFS_MOUNT_WSYNC
)) ||
1679 (sync
== 0 && (mp
->m_flags
& XFS_MOUNT_WSYNC
)))));
1682 * Since it is possible for space to become allocated beyond
1683 * the end of the file (in a crash where the space is allocated
1684 * but the inode size is not yet updated), simply remove any
1685 * blocks which show up between the new EOF and the maximum
1686 * possible file size. If the first block to be removed is
1687 * beyond the maximum file size (ie it is the same as last_block),
1688 * then there is nothing to do.
1690 last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
));
1691 ASSERT(first_unmap_block
<= last_block
);
1693 if (last_block
== first_unmap_block
) {
1696 unmap_len
= last_block
- first_unmap_block
+ 1;
1700 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1701 * will tell us whether it freed the entire range or
1702 * not. If this is a synchronous mount (wsync),
1703 * then we can tell bunmapi to keep all the
1704 * transactions asynchronous since the unlink
1705 * transaction that made this inode inactive has
1706 * already hit the disk. There's no danger of
1707 * the freed blocks being reused, there being a
1708 * crash, and the reused blocks suddenly reappearing
1709 * in this file with garbage in them once recovery
1712 XFS_BMAP_INIT(&free_list
, &first_block
);
1713 error
= XFS_BUNMAPI(mp
, ntp
, &ip
->i_iocore
,
1714 first_unmap_block
, unmap_len
,
1715 XFS_BMAPI_AFLAG(fork
) |
1716 (sync
? 0 : XFS_BMAPI_ASYNC
),
1717 XFS_ITRUNC_MAX_EXTENTS
,
1718 &first_block
, &free_list
,
1722 * If the bunmapi call encounters an error,
1723 * return to the caller where the transaction
1724 * can be properly aborted. We just need to
1725 * make sure we're not holding any resources
1726 * that we were not when we came in.
1728 xfs_bmap_cancel(&free_list
);
1733 * Duplicate the transaction that has the permanent
1734 * reservation and commit the old transaction.
1736 error
= xfs_bmap_finish(tp
, &free_list
, &committed
);
1740 * If the bmap finish call encounters an error,
1741 * return to the caller where the transaction
1742 * can be properly aborted. We just need to
1743 * make sure we're not holding any resources
1744 * that we were not when we came in.
1746 * Aborting from this point might lose some
1747 * blocks in the file system, but oh well.
1749 xfs_bmap_cancel(&free_list
);
1752 * If the passed in transaction committed
1753 * in xfs_bmap_finish(), then we want to
1754 * add the inode to this one before returning.
1755 * This keeps things simple for the higher
1756 * level code, because it always knows that
1757 * the inode is locked and held in the
1758 * transaction that returns to it whether
1759 * errors occur or not. We don't mark the
1760 * inode dirty so that this transaction can
1761 * be easily aborted if possible.
1763 xfs_trans_ijoin(ntp
, ip
,
1764 XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1765 xfs_trans_ihold(ntp
, ip
);
1772 * The first xact was committed,
1773 * so add the inode to the new one.
1774 * Mark it dirty so it will be logged
1775 * and moved forward in the log as
1776 * part of every commit.
1778 xfs_trans_ijoin(ntp
, ip
,
1779 XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1780 xfs_trans_ihold(ntp
, ip
);
1781 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1783 ntp
= xfs_trans_dup(ntp
);
1784 (void) xfs_trans_commit(*tp
, 0);
1786 error
= xfs_trans_reserve(ntp
, 0, XFS_ITRUNCATE_LOG_RES(mp
), 0,
1787 XFS_TRANS_PERM_LOG_RES
,
1788 XFS_ITRUNCATE_LOG_COUNT
);
1790 * Add the inode being truncated to the next chained
1793 xfs_trans_ijoin(ntp
, ip
, XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1794 xfs_trans_ihold(ntp
, ip
);
1799 * Only update the size in the case of the data fork, but
1800 * always re-log the inode so that our permanent transaction
1801 * can keep on rolling it forward in the log.
1803 if (fork
== XFS_DATA_FORK
) {
1804 xfs_isize_check(mp
, ip
, new_size
);
1806 * If we are not changing the file size then do
1807 * not update the on-disk file size - we may be
1808 * called from xfs_inactive_free_eofblocks(). If we
1809 * update the on-disk file size and then the system
1810 * crashes before the contents of the file are
1811 * flushed to disk then the files may be full of
1812 * holes (ie NULL files bug).
1814 if (ip
->i_size
!= new_size
) {
1815 ip
->i_d
.di_size
= new_size
;
1816 ip
->i_size
= new_size
;
1819 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1820 ASSERT((new_size
!= 0) ||
1821 (fork
== XFS_ATTR_FORK
) ||
1822 (ip
->i_delayed_blks
== 0));
1823 ASSERT((new_size
!= 0) ||
1824 (fork
== XFS_ATTR_FORK
) ||
1825 (ip
->i_d
.di_nextents
== 0));
1826 xfs_itrunc_trace(XFS_ITRUNC_FINISH2
, ip
, 0, new_size
, 0, 0);
1834 * Do the first part of growing a file: zero any data in the last
1835 * block that is beyond the old EOF. We need to do this before
1836 * the inode is joined to the transaction to modify the i_size.
1837 * That way we can drop the inode lock and call into the buffer
1838 * cache to get the buffer mapping the EOF.
1843 xfs_fsize_t new_size
,
1848 ASSERT(ismrlocked(&(ip
->i_lock
), MR_UPDATE
) != 0);
1849 ASSERT(ismrlocked(&(ip
->i_iolock
), MR_UPDATE
) != 0);
1850 ASSERT(new_size
> ip
->i_size
);
1853 * Zero any pages that may have been created by
1854 * xfs_write_file() beyond the end of the file
1855 * and any blocks between the old and new file sizes.
1857 error
= xfs_zero_eof(XFS_ITOV(ip
), &ip
->i_iocore
, new_size
,
1865 * This routine is called to extend the size of a file.
1866 * The inode must have both the iolock and the ilock locked
1867 * for update and it must be a part of the current transaction.
1868 * The xfs_igrow_start() function must have been called previously.
1869 * If the change_flag is not zero, the inode change timestamp will
1876 xfs_fsize_t new_size
,
1879 ASSERT(ismrlocked(&(ip
->i_lock
), MR_UPDATE
) != 0);
1880 ASSERT(ismrlocked(&(ip
->i_iolock
), MR_UPDATE
) != 0);
1881 ASSERT(ip
->i_transp
== tp
);
1882 ASSERT(new_size
> ip
->i_size
);
1885 * Update the file size. Update the inode change timestamp
1886 * if change_flag set.
1888 ip
->i_d
.di_size
= new_size
;
1889 ip
->i_size
= new_size
;
1891 xfs_ichgtime(ip
, XFS_ICHGTIME_CHG
);
1892 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1898 * This is called when the inode's link count goes to 0.
1899 * We place the on-disk inode on a list in the AGI. It
1900 * will be pulled from this list when the inode is freed.
1912 xfs_agnumber_t agno
;
1913 xfs_daddr_t agdaddr
;
1920 ASSERT(ip
->i_d
.di_nlink
== 0);
1921 ASSERT(ip
->i_d
.di_mode
!= 0);
1922 ASSERT(ip
->i_transp
== tp
);
1926 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1927 agdaddr
= XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
));
1930 * Get the agi buffer first. It ensures lock ordering
1933 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, agdaddr
,
1934 XFS_FSS_TO_BB(mp
, 1), 0, &agibp
);
1939 * Validate the magic number of the agi block.
1941 agi
= XFS_BUF_TO_AGI(agibp
);
1943 be32_to_cpu(agi
->agi_magicnum
) == XFS_AGI_MAGIC
&&
1944 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi
->agi_versionnum
));
1945 if (unlikely(XFS_TEST_ERROR(!agi_ok
, mp
, XFS_ERRTAG_IUNLINK
,
1946 XFS_RANDOM_IUNLINK
))) {
1947 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW
, mp
, agi
);
1948 xfs_trans_brelse(tp
, agibp
);
1949 return XFS_ERROR(EFSCORRUPTED
);
1952 * Get the index into the agi hash table for the
1953 * list this inode will go on.
1955 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1957 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1958 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1959 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
1961 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
) {
1963 * There is already another inode in the bucket we need
1964 * to add ourselves to. Add us at the front of the list.
1965 * Here we put the head pointer into our next pointer,
1966 * and then we fall through to point the head at us.
1968 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0, 0);
1972 ASSERT(INT_GET(dip
->di_next_unlinked
, ARCH_CONVERT
) == NULLAGINO
);
1973 ASSERT(dip
->di_next_unlinked
);
1974 /* both on-disk, don't endian flip twice */
1975 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
1976 offset
= ip
->i_boffset
+
1977 offsetof(xfs_dinode_t
, di_next_unlinked
);
1978 xfs_trans_inode_buf(tp
, ibp
);
1979 xfs_trans_log_buf(tp
, ibp
, offset
,
1980 (offset
+ sizeof(xfs_agino_t
) - 1));
1981 xfs_inobp_check(mp
, ibp
);
1985 * Point the bucket head pointer at the inode being inserted.
1988 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
1989 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1990 (sizeof(xfs_agino_t
) * bucket_index
);
1991 xfs_trans_log_buf(tp
, agibp
, offset
,
1992 (offset
+ sizeof(xfs_agino_t
) - 1));
1997 * Pull the on-disk inode from the AGI unlinked list.
2010 xfs_agnumber_t agno
;
2011 xfs_daddr_t agdaddr
;
2013 xfs_agino_t next_agino
;
2014 xfs_buf_t
*last_ibp
;
2015 xfs_dinode_t
*last_dip
= NULL
;
2017 int offset
, last_offset
= 0;
2022 * First pull the on-disk inode from the AGI unlinked list.
2026 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
2027 agdaddr
= XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
));
2030 * Get the agi buffer first. It ensures lock ordering
2033 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, agdaddr
,
2034 XFS_FSS_TO_BB(mp
, 1), 0, &agibp
);
2037 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
2038 error
, mp
->m_fsname
);
2042 * Validate the magic number of the agi block.
2044 agi
= XFS_BUF_TO_AGI(agibp
);
2046 be32_to_cpu(agi
->agi_magicnum
) == XFS_AGI_MAGIC
&&
2047 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi
->agi_versionnum
));
2048 if (unlikely(XFS_TEST_ERROR(!agi_ok
, mp
, XFS_ERRTAG_IUNLINK_REMOVE
,
2049 XFS_RANDOM_IUNLINK_REMOVE
))) {
2050 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW
,
2052 xfs_trans_brelse(tp
, agibp
);
2054 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2056 return XFS_ERROR(EFSCORRUPTED
);
2059 * Get the index into the agi hash table for the
2060 * list this inode will go on.
2062 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
2064 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
2065 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
);
2066 ASSERT(agi
->agi_unlinked
[bucket_index
]);
2068 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
2070 * We're at the head of the list. Get the inode's
2071 * on-disk buffer to see if there is anyone after us
2072 * on the list. Only modify our next pointer if it
2073 * is not already NULLAGINO. This saves us the overhead
2074 * of dealing with the buffer when there is no need to
2077 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0, 0);
2080 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2081 error
, mp
->m_fsname
);
2084 next_agino
= INT_GET(dip
->di_next_unlinked
, ARCH_CONVERT
);
2085 ASSERT(next_agino
!= 0);
2086 if (next_agino
!= NULLAGINO
) {
2087 INT_SET(dip
->di_next_unlinked
, ARCH_CONVERT
, NULLAGINO
);
2088 offset
= ip
->i_boffset
+
2089 offsetof(xfs_dinode_t
, di_next_unlinked
);
2090 xfs_trans_inode_buf(tp
, ibp
);
2091 xfs_trans_log_buf(tp
, ibp
, offset
,
2092 (offset
+ sizeof(xfs_agino_t
) - 1));
2093 xfs_inobp_check(mp
, ibp
);
2095 xfs_trans_brelse(tp
, ibp
);
2098 * Point the bucket head pointer at the next inode.
2100 ASSERT(next_agino
!= 0);
2101 ASSERT(next_agino
!= agino
);
2102 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
2103 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
2104 (sizeof(xfs_agino_t
) * bucket_index
);
2105 xfs_trans_log_buf(tp
, agibp
, offset
,
2106 (offset
+ sizeof(xfs_agino_t
) - 1));
2109 * We need to search the list for the inode being freed.
2111 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
2113 while (next_agino
!= agino
) {
2115 * If the last inode wasn't the one pointing to
2116 * us, then release its buffer since we're not
2117 * going to do anything with it.
2119 if (last_ibp
!= NULL
) {
2120 xfs_trans_brelse(tp
, last_ibp
);
2122 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
2123 error
= xfs_inotobp(mp
, tp
, next_ino
, &last_dip
,
2124 &last_ibp
, &last_offset
);
2127 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2128 error
, mp
->m_fsname
);
2131 next_agino
= INT_GET(last_dip
->di_next_unlinked
, ARCH_CONVERT
);
2132 ASSERT(next_agino
!= NULLAGINO
);
2133 ASSERT(next_agino
!= 0);
2136 * Now last_ibp points to the buffer previous to us on
2137 * the unlinked list. Pull us from the list.
2139 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0, 0);
2142 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2143 error
, mp
->m_fsname
);
2146 next_agino
= INT_GET(dip
->di_next_unlinked
, ARCH_CONVERT
);
2147 ASSERT(next_agino
!= 0);
2148 ASSERT(next_agino
!= agino
);
2149 if (next_agino
!= NULLAGINO
) {
2150 INT_SET(dip
->di_next_unlinked
, ARCH_CONVERT
, NULLAGINO
);
2151 offset
= ip
->i_boffset
+
2152 offsetof(xfs_dinode_t
, di_next_unlinked
);
2153 xfs_trans_inode_buf(tp
, ibp
);
2154 xfs_trans_log_buf(tp
, ibp
, offset
,
2155 (offset
+ sizeof(xfs_agino_t
) - 1));
2156 xfs_inobp_check(mp
, ibp
);
2158 xfs_trans_brelse(tp
, ibp
);
2161 * Point the previous inode on the list to the next inode.
2163 INT_SET(last_dip
->di_next_unlinked
, ARCH_CONVERT
, next_agino
);
2164 ASSERT(next_agino
!= 0);
2165 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
2166 xfs_trans_inode_buf(tp
, last_ibp
);
2167 xfs_trans_log_buf(tp
, last_ibp
, offset
,
2168 (offset
+ sizeof(xfs_agino_t
) - 1));
2169 xfs_inobp_check(mp
, last_ibp
);
2174 STATIC_INLINE
int xfs_inode_clean(xfs_inode_t
*ip
)
2176 return (((ip
->i_itemp
== NULL
) ||
2177 !(ip
->i_itemp
->ili_format
.ilf_fields
& XFS_ILOG_ALL
)) &&
2178 (ip
->i_update_core
== 0));
2183 xfs_inode_t
*free_ip
,
2187 xfs_mount_t
*mp
= free_ip
->i_mount
;
2188 int blks_per_cluster
;
2191 int i
, j
, found
, pre_flushed
;
2195 xfs_inode_t
*ip
, **ip_found
;
2196 xfs_inode_log_item_t
*iip
;
2197 xfs_log_item_t
*lip
;
2200 if (mp
->m_sb
.sb_blocksize
>= XFS_INODE_CLUSTER_SIZE(mp
)) {
2201 blks_per_cluster
= 1;
2202 ninodes
= mp
->m_sb
.sb_inopblock
;
2203 nbufs
= XFS_IALLOC_BLOCKS(mp
);
2205 blks_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) /
2206 mp
->m_sb
.sb_blocksize
;
2207 ninodes
= blks_per_cluster
* mp
->m_sb
.sb_inopblock
;
2208 nbufs
= XFS_IALLOC_BLOCKS(mp
) / blks_per_cluster
;
2211 ip_found
= kmem_alloc(ninodes
* sizeof(xfs_inode_t
*), KM_NOFS
);
2213 for (j
= 0; j
< nbufs
; j
++, inum
+= ninodes
) {
2214 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
2215 XFS_INO_TO_AGBNO(mp
, inum
));
2219 * Look for each inode in memory and attempt to lock it,
2220 * we can be racing with flush and tail pushing here.
2221 * any inode we get the locks on, add to an array of
2222 * inode items to process later.
2224 * The get the buffer lock, we could beat a flush
2225 * or tail pushing thread to the lock here, in which
2226 * case they will go looking for the inode buffer
2227 * and fail, we need some other form of interlock
2231 for (i
= 0; i
< ninodes
; i
++) {
2232 ih
= XFS_IHASH(mp
, inum
+ i
);
2233 read_lock(&ih
->ih_lock
);
2234 for (ip
= ih
->ih_next
; ip
!= NULL
; ip
= ip
->i_next
) {
2235 if (ip
->i_ino
== inum
+ i
)
2239 /* Inode not in memory or we found it already,
2242 if (!ip
|| xfs_iflags_test(ip
, XFS_ISTALE
)) {
2243 read_unlock(&ih
->ih_lock
);
2247 if (xfs_inode_clean(ip
)) {
2248 read_unlock(&ih
->ih_lock
);
2252 /* If we can get the locks then add it to the
2253 * list, otherwise by the time we get the bp lock
2254 * below it will already be attached to the
2258 /* This inode will already be locked - by us, lets
2262 if (ip
== free_ip
) {
2263 if (xfs_iflock_nowait(ip
)) {
2264 xfs_iflags_set(ip
, XFS_ISTALE
);
2265 if (xfs_inode_clean(ip
)) {
2268 ip_found
[found
++] = ip
;
2271 read_unlock(&ih
->ih_lock
);
2275 if (xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
2276 if (xfs_iflock_nowait(ip
)) {
2277 xfs_iflags_set(ip
, XFS_ISTALE
);
2279 if (xfs_inode_clean(ip
)) {
2281 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2283 ip_found
[found
++] = ip
;
2286 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2290 read_unlock(&ih
->ih_lock
);
2293 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
2294 mp
->m_bsize
* blks_per_cluster
,
2298 lip
= XFS_BUF_FSPRIVATE(bp
, xfs_log_item_t
*);
2300 if (lip
->li_type
== XFS_LI_INODE
) {
2301 iip
= (xfs_inode_log_item_t
*)lip
;
2302 ASSERT(iip
->ili_logged
== 1);
2303 lip
->li_cb
= (void(*)(xfs_buf_t
*,xfs_log_item_t
*)) xfs_istale_done
;
2305 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
2307 xfs_iflags_set(iip
->ili_inode
, XFS_ISTALE
);
2310 lip
= lip
->li_bio_list
;
2313 for (i
= 0; i
< found
; i
++) {
2318 ip
->i_update_core
= 0;
2320 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2324 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
2325 iip
->ili_format
.ilf_fields
= 0;
2326 iip
->ili_logged
= 1;
2328 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
2331 xfs_buf_attach_iodone(bp
,
2332 (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
2333 xfs_istale_done
, (xfs_log_item_t
*)iip
);
2334 if (ip
!= free_ip
) {
2335 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2339 if (found
|| pre_flushed
)
2340 xfs_trans_stale_inode_buf(tp
, bp
);
2341 xfs_trans_binval(tp
, bp
);
2344 kmem_free(ip_found
, ninodes
* sizeof(xfs_inode_t
*));
2348 * This is called to return an inode to the inode free list.
2349 * The inode should already be truncated to 0 length and have
2350 * no pages associated with it. This routine also assumes that
2351 * the inode is already a part of the transaction.
2353 * The on-disk copy of the inode will have been added to the list
2354 * of unlinked inodes in the AGI. We need to remove the inode from
2355 * that list atomically with respect to freeing it here.
2361 xfs_bmap_free_t
*flist
)
2365 xfs_ino_t first_ino
;
2367 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
));
2368 ASSERT(ip
->i_transp
== tp
);
2369 ASSERT(ip
->i_d
.di_nlink
== 0);
2370 ASSERT(ip
->i_d
.di_nextents
== 0);
2371 ASSERT(ip
->i_d
.di_anextents
== 0);
2372 ASSERT((ip
->i_d
.di_size
== 0 && ip
->i_size
== 0) ||
2373 ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
));
2374 ASSERT(ip
->i_d
.di_nblocks
== 0);
2377 * Pull the on-disk inode from the AGI unlinked list.
2379 error
= xfs_iunlink_remove(tp
, ip
);
2384 error
= xfs_difree(tp
, ip
->i_ino
, flist
, &delete, &first_ino
);
2388 ip
->i_d
.di_mode
= 0; /* mark incore inode as free */
2389 ip
->i_d
.di_flags
= 0;
2390 ip
->i_d
.di_dmevmask
= 0;
2391 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2392 ip
->i_df
.if_ext_max
=
2393 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
2394 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2395 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2397 * Bump the generation count so no one will be confused
2398 * by reincarnations of this inode.
2401 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2404 xfs_ifree_cluster(ip
, tp
, first_ino
);
2411 * Reallocate the space for if_broot based on the number of records
2412 * being added or deleted as indicated in rec_diff. Move the records
2413 * and pointers in if_broot to fit the new size. When shrinking this
2414 * will eliminate holes between the records and pointers created by
2415 * the caller. When growing this will create holes to be filled in
2418 * The caller must not request to add more records than would fit in
2419 * the on-disk inode root. If the if_broot is currently NULL, then
2420 * if we adding records one will be allocated. The caller must also
2421 * not request that the number of records go below zero, although
2422 * it can go to zero.
2424 * ip -- the inode whose if_broot area is changing
2425 * ext_diff -- the change in the number of records, positive or negative,
2426 * requested for the if_broot array.
2436 xfs_bmbt_block_t
*new_broot
;
2443 * Handle the degenerate case quietly.
2445 if (rec_diff
== 0) {
2449 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2452 * If there wasn't any memory allocated before, just
2453 * allocate it now and get out.
2455 if (ifp
->if_broot_bytes
== 0) {
2456 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff
);
2457 ifp
->if_broot
= (xfs_bmbt_block_t
*)kmem_alloc(new_size
,
2459 ifp
->if_broot_bytes
= (int)new_size
;
2464 * If there is already an existing if_broot, then we need
2465 * to realloc() it and shift the pointers to their new
2466 * location. The records don't change location because
2467 * they are kept butted up against the btree block header.
2469 cur_max
= XFS_BMAP_BROOT_MAXRECS(ifp
->if_broot_bytes
);
2470 new_max
= cur_max
+ rec_diff
;
2471 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2472 ifp
->if_broot
= (xfs_bmbt_block_t
*)
2473 kmem_realloc(ifp
->if_broot
,
2475 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max
), /* old size */
2477 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2478 ifp
->if_broot_bytes
);
2479 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2481 ifp
->if_broot_bytes
= (int)new_size
;
2482 ASSERT(ifp
->if_broot_bytes
<=
2483 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2484 memmove(np
, op
, cur_max
* (uint
)sizeof(xfs_dfsbno_t
));
2489 * rec_diff is less than 0. In this case, we are shrinking the
2490 * if_broot buffer. It must already exist. If we go to zero
2491 * records, just get rid of the root and clear the status bit.
2493 ASSERT((ifp
->if_broot
!= NULL
) && (ifp
->if_broot_bytes
> 0));
2494 cur_max
= XFS_BMAP_BROOT_MAXRECS(ifp
->if_broot_bytes
);
2495 new_max
= cur_max
+ rec_diff
;
2496 ASSERT(new_max
>= 0);
2498 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2502 new_broot
= (xfs_bmbt_block_t
*)kmem_alloc(new_size
, KM_SLEEP
);
2504 * First copy over the btree block header.
2506 memcpy(new_broot
, ifp
->if_broot
, sizeof(xfs_bmbt_block_t
));
2509 ifp
->if_flags
&= ~XFS_IFBROOT
;
2513 * Only copy the records and pointers if there are any.
2517 * First copy the records.
2519 op
= (char *)XFS_BMAP_BROOT_REC_ADDR(ifp
->if_broot
, 1,
2520 ifp
->if_broot_bytes
);
2521 np
= (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot
, 1,
2523 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_bmbt_rec_t
));
2526 * Then copy the pointers.
2528 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2529 ifp
->if_broot_bytes
);
2530 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot
, 1,
2532 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_dfsbno_t
));
2534 kmem_free(ifp
->if_broot
, ifp
->if_broot_bytes
);
2535 ifp
->if_broot
= new_broot
;
2536 ifp
->if_broot_bytes
= (int)new_size
;
2537 ASSERT(ifp
->if_broot_bytes
<=
2538 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2544 * This is called when the amount of space needed for if_data
2545 * is increased or decreased. The change in size is indicated by
2546 * the number of bytes that need to be added or deleted in the
2547 * byte_diff parameter.
2549 * If the amount of space needed has decreased below the size of the
2550 * inline buffer, then switch to using the inline buffer. Otherwise,
2551 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2552 * to what is needed.
2554 * ip -- the inode whose if_data area is changing
2555 * byte_diff -- the change in the number of bytes, positive or negative,
2556 * requested for the if_data array.
2568 if (byte_diff
== 0) {
2572 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2573 new_size
= (int)ifp
->if_bytes
+ byte_diff
;
2574 ASSERT(new_size
>= 0);
2576 if (new_size
== 0) {
2577 if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2578 kmem_free(ifp
->if_u1
.if_data
, ifp
->if_real_bytes
);
2580 ifp
->if_u1
.if_data
= NULL
;
2582 } else if (new_size
<= sizeof(ifp
->if_u2
.if_inline_data
)) {
2584 * If the valid extents/data can fit in if_inline_ext/data,
2585 * copy them from the malloc'd vector and free it.
2587 if (ifp
->if_u1
.if_data
== NULL
) {
2588 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2589 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2590 ASSERT(ifp
->if_real_bytes
!= 0);
2591 memcpy(ifp
->if_u2
.if_inline_data
, ifp
->if_u1
.if_data
,
2593 kmem_free(ifp
->if_u1
.if_data
, ifp
->if_real_bytes
);
2594 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2599 * Stuck with malloc/realloc.
2600 * For inline data, the underlying buffer must be
2601 * a multiple of 4 bytes in size so that it can be
2602 * logged and stay on word boundaries. We enforce
2605 real_size
= roundup(new_size
, 4);
2606 if (ifp
->if_u1
.if_data
== NULL
) {
2607 ASSERT(ifp
->if_real_bytes
== 0);
2608 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2609 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2611 * Only do the realloc if the underlying size
2612 * is really changing.
2614 if (ifp
->if_real_bytes
!= real_size
) {
2615 ifp
->if_u1
.if_data
=
2616 kmem_realloc(ifp
->if_u1
.if_data
,
2622 ASSERT(ifp
->if_real_bytes
== 0);
2623 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2624 memcpy(ifp
->if_u1
.if_data
, ifp
->if_u2
.if_inline_data
,
2628 ifp
->if_real_bytes
= real_size
;
2629 ifp
->if_bytes
= new_size
;
2630 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2637 * Map inode to disk block and offset.
2639 * mp -- the mount point structure for the current file system
2640 * tp -- the current transaction
2641 * ino -- the inode number of the inode to be located
2642 * imap -- this structure is filled in with the information necessary
2643 * to retrieve the given inode from disk
2644 * flags -- flags to pass to xfs_dilocate indicating whether or not
2645 * lookups in the inode btree were OK or not
2655 xfs_fsblock_t fsbno
;
2660 fsbno
= imap
->im_blkno
?
2661 XFS_DADDR_TO_FSB(mp
, imap
->im_blkno
) : NULLFSBLOCK
;
2662 error
= xfs_dilocate(mp
, tp
, ino
, &fsbno
, &len
, &off
, flags
);
2666 imap
->im_blkno
= XFS_FSB_TO_DADDR(mp
, fsbno
);
2667 imap
->im_len
= XFS_FSB_TO_BB(mp
, len
);
2668 imap
->im_agblkno
= XFS_FSB_TO_AGBNO(mp
, fsbno
);
2669 imap
->im_ioffset
= (ushort
)off
;
2670 imap
->im_boffset
= (ushort
)(off
<< mp
->m_sb
.sb_inodelog
);
2681 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2682 if (ifp
->if_broot
!= NULL
) {
2683 kmem_free(ifp
->if_broot
, ifp
->if_broot_bytes
);
2684 ifp
->if_broot
= NULL
;
2688 * If the format is local, then we can't have an extents
2689 * array so just look for an inline data array. If we're
2690 * not local then we may or may not have an extents list,
2691 * so check and free it up if we do.
2693 if (XFS_IFORK_FORMAT(ip
, whichfork
) == XFS_DINODE_FMT_LOCAL
) {
2694 if ((ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) &&
2695 (ifp
->if_u1
.if_data
!= NULL
)) {
2696 ASSERT(ifp
->if_real_bytes
!= 0);
2697 kmem_free(ifp
->if_u1
.if_data
, ifp
->if_real_bytes
);
2698 ifp
->if_u1
.if_data
= NULL
;
2699 ifp
->if_real_bytes
= 0;
2701 } else if ((ifp
->if_flags
& XFS_IFEXTENTS
) &&
2702 ((ifp
->if_flags
& XFS_IFEXTIREC
) ||
2703 ((ifp
->if_u1
.if_extents
!= NULL
) &&
2704 (ifp
->if_u1
.if_extents
!= ifp
->if_u2
.if_inline_ext
)))) {
2705 ASSERT(ifp
->if_real_bytes
!= 0);
2706 xfs_iext_destroy(ifp
);
2708 ASSERT(ifp
->if_u1
.if_extents
== NULL
||
2709 ifp
->if_u1
.if_extents
== ifp
->if_u2
.if_inline_ext
);
2710 ASSERT(ifp
->if_real_bytes
== 0);
2711 if (whichfork
== XFS_ATTR_FORK
) {
2712 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
2718 * This is called free all the memory associated with an inode.
2719 * It must free the inode itself and any buffers allocated for
2720 * if_extents/if_data and if_broot. It must also free the lock
2721 * associated with the inode.
2728 switch (ip
->i_d
.di_mode
& S_IFMT
) {
2732 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
2736 xfs_idestroy_fork(ip
, XFS_ATTR_FORK
);
2737 mrfree(&ip
->i_lock
);
2738 mrfree(&ip
->i_iolock
);
2739 freesema(&ip
->i_flock
);
2740 #ifdef XFS_BMAP_TRACE
2741 ktrace_free(ip
->i_xtrace
);
2743 #ifdef XFS_BMBT_TRACE
2744 ktrace_free(ip
->i_btrace
);
2747 ktrace_free(ip
->i_rwtrace
);
2749 #ifdef XFS_ILOCK_TRACE
2750 ktrace_free(ip
->i_lock_trace
);
2752 #ifdef XFS_DIR2_TRACE
2753 ktrace_free(ip
->i_dir_trace
);
2757 * Only if we are shutting down the fs will we see an
2758 * inode still in the AIL. If it is there, we should remove
2759 * it to prevent a use-after-free from occurring.
2761 xfs_mount_t
*mp
= ip
->i_mount
;
2762 xfs_log_item_t
*lip
= &ip
->i_itemp
->ili_item
;
2765 ASSERT(((lip
->li_flags
& XFS_LI_IN_AIL
) == 0) ||
2766 XFS_FORCED_SHUTDOWN(ip
->i_mount
));
2767 if (lip
->li_flags
& XFS_LI_IN_AIL
) {
2769 if (lip
->li_flags
& XFS_LI_IN_AIL
)
2770 xfs_trans_delete_ail(mp
, lip
, s
);
2774 xfs_inode_item_destroy(ip
);
2776 kmem_zone_free(xfs_inode_zone
, ip
);
2781 * Increment the pin count of the given buffer.
2782 * This value is protected by ipinlock spinlock in the mount structure.
2788 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
));
2790 atomic_inc(&ip
->i_pincount
);
2794 * Decrement the pin count of the given inode, and wake up
2795 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2796 * inode must have been previously pinned with a call to xfs_ipin().
2802 ASSERT(atomic_read(&ip
->i_pincount
) > 0);
2804 if (atomic_dec_and_lock(&ip
->i_pincount
, &ip
->i_flags_lock
)) {
2807 * If the inode is currently being reclaimed, the link between
2808 * the bhv_vnode and the xfs_inode will be broken after the
2809 * XFS_IRECLAIM* flag is set. Hence, if these flags are not
2810 * set, then we can move forward and mark the linux inode dirty
2811 * knowing that it is still valid as it won't freed until after
2812 * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
2813 * i_flags_lock is used to synchronise the setting of the
2814 * XFS_IRECLAIM* flags and the breaking of the link, and so we
2815 * can execute atomically w.r.t to reclaim by holding this lock
2818 * However, we still need to issue the unpin wakeup call as the
2819 * inode reclaim may be blocked waiting for the inode to become
2823 if (!__xfs_iflags_test(ip
, XFS_IRECLAIM
|XFS_IRECLAIMABLE
)) {
2824 bhv_vnode_t
*vp
= XFS_ITOV_NULL(ip
);
2825 struct inode
*inode
= NULL
;
2828 inode
= vn_to_inode(vp
);
2829 BUG_ON(inode
->i_state
& I_CLEAR
);
2831 /* make sync come back and flush this inode */
2832 if (!(inode
->i_state
& (I_NEW
|I_FREEING
)))
2833 mark_inode_dirty_sync(inode
);
2835 spin_unlock(&ip
->i_flags_lock
);
2836 wake_up(&ip
->i_ipin_wait
);
2841 * This is called to wait for the given inode to be unpinned.
2842 * It will sleep until this happens. The caller must have the
2843 * inode locked in at least shared mode so that the buffer cannot
2844 * be subsequently pinned once someone is waiting for it to be
2851 xfs_inode_log_item_t
*iip
;
2854 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
| MR_ACCESS
));
2856 if (atomic_read(&ip
->i_pincount
) == 0) {
2861 if (iip
&& iip
->ili_last_lsn
) {
2862 lsn
= iip
->ili_last_lsn
;
2868 * Give the log a push so we don't wait here too long.
2870 xfs_log_force(ip
->i_mount
, lsn
, XFS_LOG_FORCE
);
2872 wait_event(ip
->i_ipin_wait
, (atomic_read(&ip
->i_pincount
) == 0));
2877 * xfs_iextents_copy()
2879 * This is called to copy the REAL extents (as opposed to the delayed
2880 * allocation extents) from the inode into the given buffer. It
2881 * returns the number of bytes copied into the buffer.
2883 * If there are no delayed allocation extents, then we can just
2884 * memcpy() the extents into the buffer. Otherwise, we need to
2885 * examine each extent in turn and skip those which are delayed.
2890 xfs_bmbt_rec_t
*buffer
,
2894 xfs_bmbt_rec_t
*dest_ep
;
2899 xfs_fsblock_t start_block
;
2901 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2902 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
|MR_ACCESS
));
2903 ASSERT(ifp
->if_bytes
> 0);
2905 nrecs
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2906 XFS_BMAP_TRACE_EXLIST(ip
, nrecs
, whichfork
);
2910 * There are some delayed allocation extents in the
2911 * inode, so copy the extents one at a time and skip
2912 * the delayed ones. There must be at least one
2913 * non-delayed extent.
2917 for (i
= 0; i
< nrecs
; i
++) {
2918 ep
= xfs_iext_get_ext(ifp
, i
);
2919 start_block
= xfs_bmbt_get_startblock(ep
);
2920 if (ISNULLSTARTBLOCK(start_block
)) {
2922 * It's a delayed allocation extent, so skip it.
2927 /* Translate to on disk format */
2928 put_unaligned(INT_GET(ep
->l0
, ARCH_CONVERT
),
2929 (__uint64_t
*)&dest_ep
->l0
);
2930 put_unaligned(INT_GET(ep
->l1
, ARCH_CONVERT
),
2931 (__uint64_t
*)&dest_ep
->l1
);
2935 ASSERT(copied
!= 0);
2936 xfs_validate_extents(ifp
, copied
, 1, XFS_EXTFMT_INODE(ip
));
2938 return (copied
* (uint
)sizeof(xfs_bmbt_rec_t
));
2942 * Each of the following cases stores data into the same region
2943 * of the on-disk inode, so only one of them can be valid at
2944 * any given time. While it is possible to have conflicting formats
2945 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2946 * in EXTENTS format, this can only happen when the fork has
2947 * changed formats after being modified but before being flushed.
2948 * In these cases, the format always takes precedence, because the
2949 * format indicates the current state of the fork.
2956 xfs_inode_log_item_t
*iip
,
2963 #ifdef XFS_TRANS_DEBUG
2966 static const short brootflag
[2] =
2967 { XFS_ILOG_DBROOT
, XFS_ILOG_ABROOT
};
2968 static const short dataflag
[2] =
2969 { XFS_ILOG_DDATA
, XFS_ILOG_ADATA
};
2970 static const short extflag
[2] =
2971 { XFS_ILOG_DEXT
, XFS_ILOG_AEXT
};
2975 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2977 * This can happen if we gave up in iformat in an error path,
2978 * for the attribute fork.
2981 ASSERT(whichfork
== XFS_ATTR_FORK
);
2984 cp
= XFS_DFORK_PTR(dip
, whichfork
);
2986 switch (XFS_IFORK_FORMAT(ip
, whichfork
)) {
2987 case XFS_DINODE_FMT_LOCAL
:
2988 if ((iip
->ili_format
.ilf_fields
& dataflag
[whichfork
]) &&
2989 (ifp
->if_bytes
> 0)) {
2990 ASSERT(ifp
->if_u1
.if_data
!= NULL
);
2991 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2992 memcpy(cp
, ifp
->if_u1
.if_data
, ifp
->if_bytes
);
2996 case XFS_DINODE_FMT_EXTENTS
:
2997 ASSERT((ifp
->if_flags
& XFS_IFEXTENTS
) ||
2998 !(iip
->ili_format
.ilf_fields
& extflag
[whichfork
]));
2999 ASSERT((xfs_iext_get_ext(ifp
, 0) != NULL
) ||
3000 (ifp
->if_bytes
== 0));
3001 ASSERT((xfs_iext_get_ext(ifp
, 0) == NULL
) ||
3002 (ifp
->if_bytes
> 0));
3003 if ((iip
->ili_format
.ilf_fields
& extflag
[whichfork
]) &&
3004 (ifp
->if_bytes
> 0)) {
3005 ASSERT(XFS_IFORK_NEXTENTS(ip
, whichfork
) > 0);
3006 (void)xfs_iextents_copy(ip
, (xfs_bmbt_rec_t
*)cp
,
3011 case XFS_DINODE_FMT_BTREE
:
3012 if ((iip
->ili_format
.ilf_fields
& brootflag
[whichfork
]) &&
3013 (ifp
->if_broot_bytes
> 0)) {
3014 ASSERT(ifp
->if_broot
!= NULL
);
3015 ASSERT(ifp
->if_broot_bytes
<=
3016 (XFS_IFORK_SIZE(ip
, whichfork
) +
3017 XFS_BROOT_SIZE_ADJ
));
3018 xfs_bmbt_to_bmdr(ifp
->if_broot
, ifp
->if_broot_bytes
,
3019 (xfs_bmdr_block_t
*)cp
,
3020 XFS_DFORK_SIZE(dip
, mp
, whichfork
));
3024 case XFS_DINODE_FMT_DEV
:
3025 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEV
) {
3026 ASSERT(whichfork
== XFS_DATA_FORK
);
3027 INT_SET(dip
->di_u
.di_dev
, ARCH_CONVERT
, ip
->i_df
.if_u2
.if_rdev
);
3031 case XFS_DINODE_FMT_UUID
:
3032 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_UUID
) {
3033 ASSERT(whichfork
== XFS_DATA_FORK
);
3034 memcpy(&dip
->di_u
.di_muuid
, &ip
->i_df
.if_u2
.if_uuid
,
3048 * xfs_iflush() will write a modified inode's changes out to the
3049 * inode's on disk home. The caller must have the inode lock held
3050 * in at least shared mode and the inode flush semaphore must be
3051 * held as well. The inode lock will still be held upon return from
3052 * the call and the caller is free to unlock it.
3053 * The inode flush lock will be unlocked when the inode reaches the disk.
3054 * The flags indicate how the inode's buffer should be written out.
3061 xfs_inode_log_item_t
*iip
;
3069 int clcount
; /* count of inodes clustered */
3071 enum { INT_DELWRI
= (1 << 0), INT_ASYNC
= (1 << 1) };
3074 XFS_STATS_INC(xs_iflush_count
);
3076 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
|MR_ACCESS
));
3077 ASSERT(issemalocked(&(ip
->i_flock
)));
3078 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3079 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
3085 * If the inode isn't dirty, then just release the inode
3086 * flush lock and do nothing.
3088 if ((ip
->i_update_core
== 0) &&
3089 ((iip
== NULL
) || !(iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
))) {
3090 ASSERT((iip
!= NULL
) ?
3091 !(iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) : 1);
3097 * We can't flush the inode until it is unpinned, so
3098 * wait for it. We know noone new can pin it, because
3099 * we are holding the inode lock shared and you need
3100 * to hold it exclusively to pin the inode.
3102 xfs_iunpin_wait(ip
);
3105 * This may have been unpinned because the filesystem is shutting
3106 * down forcibly. If that's the case we must not write this inode
3107 * to disk, because the log record didn't make it to disk!
3109 if (XFS_FORCED_SHUTDOWN(mp
)) {
3110 ip
->i_update_core
= 0;
3112 iip
->ili_format
.ilf_fields
= 0;
3114 return XFS_ERROR(EIO
);
3118 * Get the buffer containing the on-disk inode.
3120 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &bp
, 0, 0);
3127 * Decide how buffer will be flushed out. This is done before
3128 * the call to xfs_iflush_int because this field is zeroed by it.
3130 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3132 * Flush out the inode buffer according to the directions
3133 * of the caller. In the cases where the caller has given
3134 * us a choice choose the non-delwri case. This is because
3135 * the inode is in the AIL and we need to get it out soon.
3138 case XFS_IFLUSH_SYNC
:
3139 case XFS_IFLUSH_DELWRI_ELSE_SYNC
:
3142 case XFS_IFLUSH_ASYNC
:
3143 case XFS_IFLUSH_DELWRI_ELSE_ASYNC
:
3146 case XFS_IFLUSH_DELWRI
:
3156 case XFS_IFLUSH_DELWRI_ELSE_SYNC
:
3157 case XFS_IFLUSH_DELWRI_ELSE_ASYNC
:
3158 case XFS_IFLUSH_DELWRI
:
3161 case XFS_IFLUSH_ASYNC
:
3164 case XFS_IFLUSH_SYNC
:
3175 * First flush out the inode that xfs_iflush was called with.
3177 error
= xfs_iflush_int(ip
, bp
);
3184 * see if other inodes can be gathered into this write
3187 ip
->i_chash
->chl_buf
= bp
;
3189 ch
= XFS_CHASH(mp
, ip
->i_blkno
);
3190 s
= mutex_spinlock(&ch
->ch_lock
);
3193 for (iq
= ip
->i_cnext
; iq
!= ip
; iq
= iq
->i_cnext
) {
3195 * Do an un-protected check to see if the inode is dirty and
3196 * is a candidate for flushing. These checks will be repeated
3197 * later after the appropriate locks are acquired.
3200 if ((iq
->i_update_core
== 0) &&
3202 !(iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
)) &&
3203 xfs_ipincount(iq
) == 0) {
3208 * Try to get locks. If any are unavailable,
3209 * then this inode cannot be flushed and is skipped.
3212 /* get inode locks (just i_lock) */
3213 if (xfs_ilock_nowait(iq
, XFS_ILOCK_SHARED
)) {
3214 /* get inode flush lock */
3215 if (xfs_iflock_nowait(iq
)) {
3216 /* check if pinned */
3217 if (xfs_ipincount(iq
) == 0) {
3218 /* arriving here means that
3219 * this inode can be flushed.
3220 * first re-check that it's
3224 if ((iq
->i_update_core
!= 0)||
3226 (iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
))) {
3228 error
= xfs_iflush_int(iq
, bp
);
3232 goto cluster_corrupt_out
;
3241 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
3244 mutex_spinunlock(&ch
->ch_lock
, s
);
3247 XFS_STATS_INC(xs_icluster_flushcnt
);
3248 XFS_STATS_ADD(xs_icluster_flushinode
, clcount
);
3252 * If the buffer is pinned then push on the log so we won't
3253 * get stuck waiting in the write for too long.
3255 if (XFS_BUF_ISPINNED(bp
)){
3256 xfs_log_force(mp
, (xfs_lsn_t
)0, XFS_LOG_FORCE
);
3259 if (flags
& INT_DELWRI
) {
3260 xfs_bdwrite(mp
, bp
);
3261 } else if (flags
& INT_ASYNC
) {
3262 xfs_bawrite(mp
, bp
);
3264 error
= xfs_bwrite(mp
, bp
);
3270 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3271 xfs_iflush_abort(ip
);
3273 * Unlocks the flush lock
3275 return XFS_ERROR(EFSCORRUPTED
);
3277 cluster_corrupt_out
:
3278 /* Corruption detected in the clustering loop. Invalidate the
3279 * inode buffer and shut down the filesystem.
3281 mutex_spinunlock(&ch
->ch_lock
, s
);
3284 * Clean up the buffer. If it was B_DELWRI, just release it --
3285 * brelse can handle it with no problems. If not, shut down the
3286 * filesystem before releasing the buffer.
3288 if ((bufwasdelwri
= XFS_BUF_ISDELAYWRITE(bp
))) {
3292 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3296 * Just like incore_relse: if we have b_iodone functions,
3297 * mark the buffer as an error and call them. Otherwise
3298 * mark it as stale and brelse.
3300 if (XFS_BUF_IODONE_FUNC(bp
)) {
3301 XFS_BUF_CLR_BDSTRAT_FUNC(bp
);
3305 XFS_BUF_ERROR(bp
,EIO
);
3313 xfs_iflush_abort(iq
);
3315 * Unlocks the flush lock
3317 return XFS_ERROR(EFSCORRUPTED
);
3326 xfs_inode_log_item_t
*iip
;
3329 #ifdef XFS_TRANS_DEBUG
3334 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
|MR_ACCESS
));
3335 ASSERT(issemalocked(&(ip
->i_flock
)));
3336 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3337 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
3344 * If the inode isn't dirty, then just release the inode
3345 * flush lock and do nothing.
3347 if ((ip
->i_update_core
== 0) &&
3348 ((iip
== NULL
) || !(iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
))) {
3353 /* set *dip = inode's place in the buffer */
3354 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_boffset
);
3357 * Clear i_update_core before copying out the data.
3358 * This is for coordination with our timestamp updates
3359 * that don't hold the inode lock. They will always
3360 * update the timestamps BEFORE setting i_update_core,
3361 * so if we clear i_update_core after they set it we
3362 * are guaranteed to see their updates to the timestamps.
3363 * I believe that this depends on strongly ordered memory
3364 * semantics, but we have that. We use the SYNCHRONIZE
3365 * macro to make sure that the compiler does not reorder
3366 * the i_update_core access below the data copy below.
3368 ip
->i_update_core
= 0;
3372 * Make sure to get the latest atime from the Linux inode.
3374 xfs_synchronize_atime(ip
);
3376 if (XFS_TEST_ERROR(INT_GET(dip
->di_core
.di_magic
,ARCH_CONVERT
) != XFS_DINODE_MAGIC
,
3377 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
3378 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3379 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3380 ip
->i_ino
, (int) INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
), dip
);
3383 if (XFS_TEST_ERROR(ip
->i_d
.di_magic
!= XFS_DINODE_MAGIC
,
3384 mp
, XFS_ERRTAG_IFLUSH_2
, XFS_RANDOM_IFLUSH_2
)) {
3385 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3386 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3387 ip
->i_ino
, ip
, ip
->i_d
.di_magic
);
3390 if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFREG
) {
3392 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3393 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
3394 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
3395 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3396 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3400 } else if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFDIR
) {
3402 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3403 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
3404 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
3405 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
3406 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3407 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3412 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
3413 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
3414 XFS_RANDOM_IFLUSH_5
)) {
3415 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3416 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3418 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
3423 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
3424 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
3425 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3426 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3427 ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
3431 * bump the flush iteration count, used to detect flushes which
3432 * postdate a log record during recovery.
3435 ip
->i_d
.di_flushiter
++;
3438 * Copy the dirty parts of the inode into the on-disk
3439 * inode. We always copy out the core of the inode,
3440 * because if the inode is dirty at all the core must
3443 xfs_xlate_dinode_core((xfs_caddr_t
)&(dip
->di_core
), &(ip
->i_d
), -1);
3445 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3446 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
3447 ip
->i_d
.di_flushiter
= 0;
3450 * If this is really an old format inode and the superblock version
3451 * has not been updated to support only new format inodes, then
3452 * convert back to the old inode format. If the superblock version
3453 * has been updated, then make the conversion permanent.
3455 ASSERT(ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
||
3456 XFS_SB_VERSION_HASNLINK(&mp
->m_sb
));
3457 if (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
3458 if (!XFS_SB_VERSION_HASNLINK(&mp
->m_sb
)) {
3462 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
3463 INT_SET(dip
->di_core
.di_onlink
, ARCH_CONVERT
, ip
->i_d
.di_nlink
);
3466 * The superblock version has already been bumped,
3467 * so just make the conversion to the new inode
3470 ip
->i_d
.di_version
= XFS_DINODE_VERSION_2
;
3471 INT_SET(dip
->di_core
.di_version
, ARCH_CONVERT
, XFS_DINODE_VERSION_2
);
3472 ip
->i_d
.di_onlink
= 0;
3473 dip
->di_core
.di_onlink
= 0;
3474 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
3475 memset(&(dip
->di_core
.di_pad
[0]), 0,
3476 sizeof(dip
->di_core
.di_pad
));
3477 ASSERT(ip
->i_d
.di_projid
== 0);
3481 if (xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
, bp
) == EFSCORRUPTED
) {
3485 if (XFS_IFORK_Q(ip
)) {
3487 * The only error from xfs_iflush_fork is on the data fork.
3489 (void) xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
, bp
);
3491 xfs_inobp_check(mp
, bp
);
3494 * We've recorded everything logged in the inode, so we'd
3495 * like to clear the ilf_fields bits so we don't log and
3496 * flush things unnecessarily. However, we can't stop
3497 * logging all this information until the data we've copied
3498 * into the disk buffer is written to disk. If we did we might
3499 * overwrite the copy of the inode in the log with all the
3500 * data after re-logging only part of it, and in the face of
3501 * a crash we wouldn't have all the data we need to recover.
3503 * What we do is move the bits to the ili_last_fields field.
3504 * When logging the inode, these bits are moved back to the
3505 * ilf_fields field. In the xfs_iflush_done() routine we
3506 * clear ili_last_fields, since we know that the information
3507 * those bits represent is permanently on disk. As long as
3508 * the flush completes before the inode is logged again, then
3509 * both ilf_fields and ili_last_fields will be cleared.
3511 * We can play with the ilf_fields bits here, because the inode
3512 * lock must be held exclusively in order to set bits there
3513 * and the flush lock protects the ili_last_fields bits.
3514 * Set ili_logged so the flush done
3515 * routine can tell whether or not to look in the AIL.
3516 * Also, store the current LSN of the inode so that we can tell
3517 * whether the item has moved in the AIL from xfs_iflush_done().
3518 * In order to read the lsn we need the AIL lock, because
3519 * it is a 64 bit value that cannot be read atomically.
3521 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3522 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
3523 iip
->ili_format
.ilf_fields
= 0;
3524 iip
->ili_logged
= 1;
3526 ASSERT(sizeof(xfs_lsn_t
) == 8); /* don't lock if it shrinks */
3528 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
3532 * Attach the function xfs_iflush_done to the inode's
3533 * buffer. This will remove the inode from the AIL
3534 * and unlock the inode's flush lock when the inode is
3535 * completely written to disk.
3537 xfs_buf_attach_iodone(bp
, (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
3538 xfs_iflush_done
, (xfs_log_item_t
*)iip
);
3540 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) != NULL
);
3541 ASSERT(XFS_BUF_IODONE_FUNC(bp
) != NULL
);
3544 * We're flushing an inode which is not in the AIL and has
3545 * not been logged but has i_update_core set. For this
3546 * case we can use a B_DELWRI flush and immediately drop
3547 * the inode flush lock because we can avoid the whole
3548 * AIL state thing. It's OK to drop the flush lock now,
3549 * because we've already locked the buffer and to do anything
3550 * you really need both.
3553 ASSERT(iip
->ili_logged
== 0);
3554 ASSERT(iip
->ili_last_fields
== 0);
3555 ASSERT((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0);
3563 return XFS_ERROR(EFSCORRUPTED
);
3568 * Flush all inactive inodes in mp.
3578 XFS_MOUNT_ILOCK(mp
);
3584 /* Make sure we skip markers inserted by sync */
3585 if (ip
->i_mount
== NULL
) {
3590 vp
= XFS_ITOV_NULL(ip
);
3592 XFS_MOUNT_IUNLOCK(mp
);
3593 xfs_finish_reclaim(ip
, 0, XFS_IFLUSH_ASYNC
);
3597 ASSERT(vn_count(vp
) == 0);
3600 } while (ip
!= mp
->m_inodes
);
3602 XFS_MOUNT_IUNLOCK(mp
);
3606 * xfs_iaccess: check accessibility of inode for mode.
3615 mode_t orgmode
= mode
;
3616 struct inode
*inode
= vn_to_inode(XFS_ITOV(ip
));
3618 if (mode
& S_IWUSR
) {
3619 umode_t imode
= inode
->i_mode
;
3621 if (IS_RDONLY(inode
) &&
3622 (S_ISREG(imode
) || S_ISDIR(imode
) || S_ISLNK(imode
)))
3623 return XFS_ERROR(EROFS
);
3625 if (IS_IMMUTABLE(inode
))
3626 return XFS_ERROR(EACCES
);
3630 * If there's an Access Control List it's used instead of
3633 if ((error
= _ACL_XFS_IACCESS(ip
, mode
, cr
)) != -1)
3634 return error
? XFS_ERROR(error
) : 0;
3636 if (current_fsuid(cr
) != ip
->i_d
.di_uid
) {
3638 if (!in_group_p((gid_t
)ip
->i_d
.di_gid
))
3643 * If the DACs are ok we don't need any capability check.
3645 if ((ip
->i_d
.di_mode
& mode
) == mode
)
3648 * Read/write DACs are always overridable.
3649 * Executable DACs are overridable if at least one exec bit is set.
3651 if (!(orgmode
& S_IXUSR
) ||
3652 (inode
->i_mode
& S_IXUGO
) || S_ISDIR(inode
->i_mode
))
3653 if (capable_cred(cr
, CAP_DAC_OVERRIDE
))
3656 if ((orgmode
== S_IRUSR
) ||
3657 (S_ISDIR(inode
->i_mode
) && (!(orgmode
& S_IWUSR
)))) {
3658 if (capable_cred(cr
, CAP_DAC_READ_SEARCH
))
3661 cmn_err(CE_NOTE
, "Ick: mode=%o, orgmode=%o", mode
, orgmode
);
3663 return XFS_ERROR(EACCES
);
3665 return XFS_ERROR(EACCES
);
3669 * xfs_iroundup: round up argument to next power of two
3678 if ((v
& (v
- 1)) == 0)
3680 ASSERT((v
& 0x80000000) == 0);
3681 if ((v
& (v
+ 1)) == 0)
3683 for (i
= 0, m
= 1; i
< 31; i
++, m
<<= 1) {
3687 if ((v
& (v
+ 1)) == 0)
3694 #ifdef XFS_ILOCK_TRACE
3695 ktrace_t
*xfs_ilock_trace_buf
;
3698 xfs_ilock_trace(xfs_inode_t
*ip
, int lock
, unsigned int lockflags
, inst_t
*ra
)
3700 ktrace_enter(ip
->i_lock_trace
,
3702 (void *)(unsigned long)lock
, /* 1 = LOCK, 3=UNLOCK, etc */
3703 (void *)(unsigned long)lockflags
, /* XFS_ILOCK_EXCL etc */
3704 (void *)ra
, /* caller of ilock */
3705 (void *)(unsigned long)current_cpu(),
3706 (void *)(unsigned long)current_pid(),
3707 NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
);
3712 * Return a pointer to the extent record at file index idx.
3716 xfs_ifork_t
*ifp
, /* inode fork pointer */
3717 xfs_extnum_t idx
) /* index of target extent */
3720 if ((ifp
->if_flags
& XFS_IFEXTIREC
) && (idx
== 0)) {
3721 return ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3722 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3723 xfs_ext_irec_t
*erp
; /* irec pointer */
3724 int erp_idx
= 0; /* irec index */
3725 xfs_extnum_t page_idx
= idx
; /* ext index in target list */
3727 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3728 return &erp
->er_extbuf
[page_idx
];
3729 } else if (ifp
->if_bytes
) {
3730 return &ifp
->if_u1
.if_extents
[idx
];
3737 * Insert new item(s) into the extent records for incore inode
3738 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3742 xfs_ifork_t
*ifp
, /* inode fork pointer */
3743 xfs_extnum_t idx
, /* starting index of new items */
3744 xfs_extnum_t count
, /* number of inserted items */
3745 xfs_bmbt_irec_t
*new) /* items to insert */
3747 xfs_bmbt_rec_t
*ep
; /* extent record pointer */
3748 xfs_extnum_t i
; /* extent record index */
3750 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3751 xfs_iext_add(ifp
, idx
, count
);
3752 for (i
= idx
; i
< idx
+ count
; i
++, new++) {
3753 ep
= xfs_iext_get_ext(ifp
, i
);
3754 xfs_bmbt_set_all(ep
, new);
3759 * This is called when the amount of space required for incore file
3760 * extents needs to be increased. The ext_diff parameter stores the
3761 * number of new extents being added and the idx parameter contains
3762 * the extent index where the new extents will be added. If the new
3763 * extents are being appended, then we just need to (re)allocate and
3764 * initialize the space. Otherwise, if the new extents are being
3765 * inserted into the middle of the existing entries, a bit more work
3766 * is required to make room for the new extents to be inserted. The
3767 * caller is responsible for filling in the new extent entries upon
3772 xfs_ifork_t
*ifp
, /* inode fork pointer */
3773 xfs_extnum_t idx
, /* index to begin adding exts */
3774 int ext_diff
) /* number of extents to add */
3776 int byte_diff
; /* new bytes being added */
3777 int new_size
; /* size of extents after adding */
3778 xfs_extnum_t nextents
; /* number of extents in file */
3780 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3781 ASSERT((idx
>= 0) && (idx
<= nextents
));
3782 byte_diff
= ext_diff
* sizeof(xfs_bmbt_rec_t
);
3783 new_size
= ifp
->if_bytes
+ byte_diff
;
3785 * If the new number of extents (nextents + ext_diff)
3786 * fits inside the inode, then continue to use the inline
3789 if (nextents
+ ext_diff
<= XFS_INLINE_EXTS
) {
3790 if (idx
< nextents
) {
3791 memmove(&ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3792 &ifp
->if_u2
.if_inline_ext
[idx
],
3793 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3794 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0, byte_diff
);
3796 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3797 ifp
->if_real_bytes
= 0;
3798 ifp
->if_lastex
= nextents
+ ext_diff
;
3801 * Otherwise use a linear (direct) extent list.
3802 * If the extents are currently inside the inode,
3803 * xfs_iext_realloc_direct will switch us from
3804 * inline to direct extent allocation mode.
3806 else if (nextents
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3807 xfs_iext_realloc_direct(ifp
, new_size
);
3808 if (idx
< nextents
) {
3809 memmove(&ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3810 &ifp
->if_u1
.if_extents
[idx
],
3811 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3812 memset(&ifp
->if_u1
.if_extents
[idx
], 0, byte_diff
);
3815 /* Indirection array */
3817 xfs_ext_irec_t
*erp
;
3821 ASSERT(nextents
+ ext_diff
> XFS_LINEAR_EXTS
);
3822 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3823 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 1);
3825 xfs_iext_irec_init(ifp
);
3826 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3827 erp
= ifp
->if_u1
.if_ext_irec
;
3829 /* Extents fit in target extent page */
3830 if (erp
&& erp
->er_extcount
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3831 if (page_idx
< erp
->er_extcount
) {
3832 memmove(&erp
->er_extbuf
[page_idx
+ ext_diff
],
3833 &erp
->er_extbuf
[page_idx
],
3834 (erp
->er_extcount
- page_idx
) *
3835 sizeof(xfs_bmbt_rec_t
));
3836 memset(&erp
->er_extbuf
[page_idx
], 0, byte_diff
);
3838 erp
->er_extcount
+= ext_diff
;
3839 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3841 /* Insert a new extent page */
3843 xfs_iext_add_indirect_multi(ifp
,
3844 erp_idx
, page_idx
, ext_diff
);
3847 * If extent(s) are being appended to the last page in
3848 * the indirection array and the new extent(s) don't fit
3849 * in the page, then erp is NULL and erp_idx is set to
3850 * the next index needed in the indirection array.
3853 int count
= ext_diff
;
3856 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3857 erp
->er_extcount
= count
;
3858 count
-= MIN(count
, (int)XFS_LINEAR_EXTS
);
3865 ifp
->if_bytes
= new_size
;
3869 * This is called when incore extents are being added to the indirection
3870 * array and the new extents do not fit in the target extent list. The
3871 * erp_idx parameter contains the irec index for the target extent list
3872 * in the indirection array, and the idx parameter contains the extent
3873 * index within the list. The number of extents being added is stored
3874 * in the count parameter.
3876 * |-------| |-------|
3877 * | | | | idx - number of extents before idx
3879 * | | | | count - number of extents being inserted at idx
3880 * |-------| |-------|
3881 * | count | | nex2 | nex2 - number of extents after idx + count
3882 * |-------| |-------|
3885 xfs_iext_add_indirect_multi(
3886 xfs_ifork_t
*ifp
, /* inode fork pointer */
3887 int erp_idx
, /* target extent irec index */
3888 xfs_extnum_t idx
, /* index within target list */
3889 int count
) /* new extents being added */
3891 int byte_diff
; /* new bytes being added */
3892 xfs_ext_irec_t
*erp
; /* pointer to irec entry */
3893 xfs_extnum_t ext_diff
; /* number of extents to add */
3894 xfs_extnum_t ext_cnt
; /* new extents still needed */
3895 xfs_extnum_t nex2
; /* extents after idx + count */
3896 xfs_bmbt_rec_t
*nex2_ep
= NULL
; /* temp list for nex2 extents */
3897 int nlists
; /* number of irec's (lists) */
3899 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3900 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3901 nex2
= erp
->er_extcount
- idx
;
3902 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3905 * Save second part of target extent list
3906 * (all extents past */
3908 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3909 nex2_ep
= (xfs_bmbt_rec_t
*) kmem_alloc(byte_diff
, KM_SLEEP
);
3910 memmove(nex2_ep
, &erp
->er_extbuf
[idx
], byte_diff
);
3911 erp
->er_extcount
-= nex2
;
3912 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -nex2
);
3913 memset(&erp
->er_extbuf
[idx
], 0, byte_diff
);
3917 * Add the new extents to the end of the target
3918 * list, then allocate new irec record(s) and
3919 * extent buffer(s) as needed to store the rest
3920 * of the new extents.
3923 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
- erp
->er_extcount
);
3925 erp
->er_extcount
+= ext_diff
;
3926 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3927 ext_cnt
-= ext_diff
;
3931 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3932 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
);
3933 erp
->er_extcount
= ext_diff
;
3934 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3935 ext_cnt
-= ext_diff
;
3938 /* Add nex2 extents back to indirection array */
3940 xfs_extnum_t ext_avail
;
3943 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3944 ext_avail
= XFS_LINEAR_EXTS
- erp
->er_extcount
;
3947 * If nex2 extents fit in the current page, append
3948 * nex2_ep after the new extents.
3950 if (nex2
<= ext_avail
) {
3951 i
= erp
->er_extcount
;
3954 * Otherwise, check if space is available in the
3957 else if ((erp_idx
< nlists
- 1) &&
3958 (nex2
<= (ext_avail
= XFS_LINEAR_EXTS
-
3959 ifp
->if_u1
.if_ext_irec
[erp_idx
+1].er_extcount
))) {
3962 /* Create a hole for nex2 extents */
3963 memmove(&erp
->er_extbuf
[nex2
], erp
->er_extbuf
,
3964 erp
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
3967 * Final choice, create a new extent page for
3972 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3974 memmove(&erp
->er_extbuf
[i
], nex2_ep
, byte_diff
);
3975 kmem_free(nex2_ep
, byte_diff
);
3976 erp
->er_extcount
+= nex2
;
3977 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, nex2
);
3982 * This is called when the amount of space required for incore file
3983 * extents needs to be decreased. The ext_diff parameter stores the
3984 * number of extents to be removed and the idx parameter contains
3985 * the extent index where the extents will be removed from.
3987 * If the amount of space needed has decreased below the linear
3988 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3989 * extent array. Otherwise, use kmem_realloc() to adjust the
3990 * size to what is needed.
3994 xfs_ifork_t
*ifp
, /* inode fork pointer */
3995 xfs_extnum_t idx
, /* index to begin removing exts */
3996 int ext_diff
) /* number of extents to remove */
3998 xfs_extnum_t nextents
; /* number of extents in file */
3999 int new_size
; /* size of extents after removal */
4001 ASSERT(ext_diff
> 0);
4002 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4003 new_size
= (nextents
- ext_diff
) * sizeof(xfs_bmbt_rec_t
);
4005 if (new_size
== 0) {
4006 xfs_iext_destroy(ifp
);
4007 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4008 xfs_iext_remove_indirect(ifp
, idx
, ext_diff
);
4009 } else if (ifp
->if_real_bytes
) {
4010 xfs_iext_remove_direct(ifp
, idx
, ext_diff
);
4012 xfs_iext_remove_inline(ifp
, idx
, ext_diff
);
4014 ifp
->if_bytes
= new_size
;
4018 * This removes ext_diff extents from the inline buffer, beginning
4019 * at extent index idx.
4022 xfs_iext_remove_inline(
4023 xfs_ifork_t
*ifp
, /* inode fork pointer */
4024 xfs_extnum_t idx
, /* index to begin removing exts */
4025 int ext_diff
) /* number of extents to remove */
4027 int nextents
; /* number of extents in file */
4029 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
4030 ASSERT(idx
< XFS_INLINE_EXTS
);
4031 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4032 ASSERT(((nextents
- ext_diff
) > 0) &&
4033 (nextents
- ext_diff
) < XFS_INLINE_EXTS
);
4035 if (idx
+ ext_diff
< nextents
) {
4036 memmove(&ifp
->if_u2
.if_inline_ext
[idx
],
4037 &ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
4038 (nextents
- (idx
+ ext_diff
)) *
4039 sizeof(xfs_bmbt_rec_t
));
4040 memset(&ifp
->if_u2
.if_inline_ext
[nextents
- ext_diff
],
4041 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
4043 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0,
4044 ext_diff
* sizeof(xfs_bmbt_rec_t
));
4049 * This removes ext_diff extents from a linear (direct) extent list,
4050 * beginning at extent index idx. If the extents are being removed
4051 * from the end of the list (ie. truncate) then we just need to re-
4052 * allocate the list to remove the extra space. Otherwise, if the
4053 * extents are being removed from the middle of the existing extent
4054 * entries, then we first need to move the extent records beginning
4055 * at idx + ext_diff up in the list to overwrite the records being
4056 * removed, then remove the extra space via kmem_realloc.
4059 xfs_iext_remove_direct(
4060 xfs_ifork_t
*ifp
, /* inode fork pointer */
4061 xfs_extnum_t idx
, /* index to begin removing exts */
4062 int ext_diff
) /* number of extents to remove */
4064 xfs_extnum_t nextents
; /* number of extents in file */
4065 int new_size
; /* size of extents after removal */
4067 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
4068 new_size
= ifp
->if_bytes
-
4069 (ext_diff
* sizeof(xfs_bmbt_rec_t
));
4070 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4072 if (new_size
== 0) {
4073 xfs_iext_destroy(ifp
);
4076 /* Move extents up in the list (if needed) */
4077 if (idx
+ ext_diff
< nextents
) {
4078 memmove(&ifp
->if_u1
.if_extents
[idx
],
4079 &ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
4080 (nextents
- (idx
+ ext_diff
)) *
4081 sizeof(xfs_bmbt_rec_t
));
4083 memset(&ifp
->if_u1
.if_extents
[nextents
- ext_diff
],
4084 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
4086 * Reallocate the direct extent list. If the extents
4087 * will fit inside the inode then xfs_iext_realloc_direct
4088 * will switch from direct to inline extent allocation
4091 xfs_iext_realloc_direct(ifp
, new_size
);
4092 ifp
->if_bytes
= new_size
;
4096 * This is called when incore extents are being removed from the
4097 * indirection array and the extents being removed span multiple extent
4098 * buffers. The idx parameter contains the file extent index where we
4099 * want to begin removing extents, and the count parameter contains
4100 * how many extents need to be removed.
4102 * |-------| |-------|
4103 * | nex1 | | | nex1 - number of extents before idx
4104 * |-------| | count |
4105 * | | | | count - number of extents being removed at idx
4106 * | count | |-------|
4107 * | | | nex2 | nex2 - number of extents after idx + count
4108 * |-------| |-------|
4111 xfs_iext_remove_indirect(
4112 xfs_ifork_t
*ifp
, /* inode fork pointer */
4113 xfs_extnum_t idx
, /* index to begin removing extents */
4114 int count
) /* number of extents to remove */
4116 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4117 int erp_idx
= 0; /* indirection array index */
4118 xfs_extnum_t ext_cnt
; /* extents left to remove */
4119 xfs_extnum_t ext_diff
; /* extents to remove in current list */
4120 xfs_extnum_t nex1
; /* number of extents before idx */
4121 xfs_extnum_t nex2
; /* extents after idx + count */
4122 int nlists
; /* entries in indirection array */
4123 int page_idx
= idx
; /* index in target extent list */
4125 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4126 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
4127 ASSERT(erp
!= NULL
);
4128 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4132 nex2
= MAX((erp
->er_extcount
- (nex1
+ ext_cnt
)), 0);
4133 ext_diff
= MIN(ext_cnt
, (erp
->er_extcount
- nex1
));
4135 * Check for deletion of entire list;
4136 * xfs_iext_irec_remove() updates extent offsets.
4138 if (ext_diff
== erp
->er_extcount
) {
4139 xfs_iext_irec_remove(ifp
, erp_idx
);
4140 ext_cnt
-= ext_diff
;
4143 ASSERT(erp_idx
< ifp
->if_real_bytes
/
4145 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4152 /* Move extents up (if needed) */
4154 memmove(&erp
->er_extbuf
[nex1
],
4155 &erp
->er_extbuf
[nex1
+ ext_diff
],
4156 nex2
* sizeof(xfs_bmbt_rec_t
));
4158 /* Zero out rest of page */
4159 memset(&erp
->er_extbuf
[nex1
+ nex2
], 0, (XFS_IEXT_BUFSZ
-
4160 ((nex1
+ nex2
) * sizeof(xfs_bmbt_rec_t
))));
4161 /* Update remaining counters */
4162 erp
->er_extcount
-= ext_diff
;
4163 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -ext_diff
);
4164 ext_cnt
-= ext_diff
;
4169 ifp
->if_bytes
-= count
* sizeof(xfs_bmbt_rec_t
);
4170 xfs_iext_irec_compact(ifp
);
4174 * Create, destroy, or resize a linear (direct) block of extents.
4177 xfs_iext_realloc_direct(
4178 xfs_ifork_t
*ifp
, /* inode fork pointer */
4179 int new_size
) /* new size of extents */
4181 int rnew_size
; /* real new size of extents */
4183 rnew_size
= new_size
;
4185 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
) ||
4186 ((new_size
>= 0) && (new_size
<= XFS_IEXT_BUFSZ
) &&
4187 (new_size
!= ifp
->if_real_bytes
)));
4189 /* Free extent records */
4190 if (new_size
== 0) {
4191 xfs_iext_destroy(ifp
);
4193 /* Resize direct extent list and zero any new bytes */
4194 else if (ifp
->if_real_bytes
) {
4195 /* Check if extents will fit inside the inode */
4196 if (new_size
<= XFS_INLINE_EXTS
* sizeof(xfs_bmbt_rec_t
)) {
4197 xfs_iext_direct_to_inline(ifp
, new_size
/
4198 (uint
)sizeof(xfs_bmbt_rec_t
));
4199 ifp
->if_bytes
= new_size
;
4202 if (!is_power_of_2(new_size
)){
4203 rnew_size
= xfs_iroundup(new_size
);
4205 if (rnew_size
!= ifp
->if_real_bytes
) {
4206 ifp
->if_u1
.if_extents
= (xfs_bmbt_rec_t
*)
4207 kmem_realloc(ifp
->if_u1
.if_extents
,
4212 if (rnew_size
> ifp
->if_real_bytes
) {
4213 memset(&ifp
->if_u1
.if_extents
[ifp
->if_bytes
/
4214 (uint
)sizeof(xfs_bmbt_rec_t
)], 0,
4215 rnew_size
- ifp
->if_real_bytes
);
4219 * Switch from the inline extent buffer to a direct
4220 * extent list. Be sure to include the inline extent
4221 * bytes in new_size.
4224 new_size
+= ifp
->if_bytes
;
4225 if (!is_power_of_2(new_size
)) {
4226 rnew_size
= xfs_iroundup(new_size
);
4228 xfs_iext_inline_to_direct(ifp
, rnew_size
);
4230 ifp
->if_real_bytes
= rnew_size
;
4231 ifp
->if_bytes
= new_size
;
4235 * Switch from linear (direct) extent records to inline buffer.
4238 xfs_iext_direct_to_inline(
4239 xfs_ifork_t
*ifp
, /* inode fork pointer */
4240 xfs_extnum_t nextents
) /* number of extents in file */
4242 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
4243 ASSERT(nextents
<= XFS_INLINE_EXTS
);
4245 * The inline buffer was zeroed when we switched
4246 * from inline to direct extent allocation mode,
4247 * so we don't need to clear it here.
4249 memcpy(ifp
->if_u2
.if_inline_ext
, ifp
->if_u1
.if_extents
,
4250 nextents
* sizeof(xfs_bmbt_rec_t
));
4251 kmem_free(ifp
->if_u1
.if_extents
, ifp
->if_real_bytes
);
4252 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
4253 ifp
->if_real_bytes
= 0;
4257 * Switch from inline buffer to linear (direct) extent records.
4258 * new_size should already be rounded up to the next power of 2
4259 * by the caller (when appropriate), so use new_size as it is.
4260 * However, since new_size may be rounded up, we can't update
4261 * if_bytes here. It is the caller's responsibility to update
4262 * if_bytes upon return.
4265 xfs_iext_inline_to_direct(
4266 xfs_ifork_t
*ifp
, /* inode fork pointer */
4267 int new_size
) /* number of extents in file */
4269 ifp
->if_u1
.if_extents
= (xfs_bmbt_rec_t
*)
4270 kmem_alloc(new_size
, KM_SLEEP
);
4271 memset(ifp
->if_u1
.if_extents
, 0, new_size
);
4272 if (ifp
->if_bytes
) {
4273 memcpy(ifp
->if_u1
.if_extents
, ifp
->if_u2
.if_inline_ext
,
4275 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
4276 sizeof(xfs_bmbt_rec_t
));
4278 ifp
->if_real_bytes
= new_size
;
4282 * Resize an extent indirection array to new_size bytes.
4285 xfs_iext_realloc_indirect(
4286 xfs_ifork_t
*ifp
, /* inode fork pointer */
4287 int new_size
) /* new indirection array size */
4289 int nlists
; /* number of irec's (ex lists) */
4290 int size
; /* current indirection array size */
4292 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4293 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4294 size
= nlists
* sizeof(xfs_ext_irec_t
);
4295 ASSERT(ifp
->if_real_bytes
);
4296 ASSERT((new_size
>= 0) && (new_size
!= size
));
4297 if (new_size
== 0) {
4298 xfs_iext_destroy(ifp
);
4300 ifp
->if_u1
.if_ext_irec
= (xfs_ext_irec_t
*)
4301 kmem_realloc(ifp
->if_u1
.if_ext_irec
,
4302 new_size
, size
, KM_SLEEP
);
4307 * Switch from indirection array to linear (direct) extent allocations.
4310 xfs_iext_indirect_to_direct(
4311 xfs_ifork_t
*ifp
) /* inode fork pointer */
4313 xfs_bmbt_rec_t
*ep
; /* extent record pointer */
4314 xfs_extnum_t nextents
; /* number of extents in file */
4315 int size
; /* size of file extents */
4317 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4318 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4319 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
4320 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
4322 xfs_iext_irec_compact_full(ifp
);
4323 ASSERT(ifp
->if_real_bytes
== XFS_IEXT_BUFSZ
);
4325 ep
= ifp
->if_u1
.if_ext_irec
->er_extbuf
;
4326 kmem_free(ifp
->if_u1
.if_ext_irec
, sizeof(xfs_ext_irec_t
));
4327 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
4328 ifp
->if_u1
.if_extents
= ep
;
4329 ifp
->if_bytes
= size
;
4330 if (nextents
< XFS_LINEAR_EXTS
) {
4331 xfs_iext_realloc_direct(ifp
, size
);
4336 * Free incore file extents.
4340 xfs_ifork_t
*ifp
) /* inode fork pointer */
4342 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4346 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4347 for (erp_idx
= nlists
- 1; erp_idx
>= 0 ; erp_idx
--) {
4348 xfs_iext_irec_remove(ifp
, erp_idx
);
4350 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
4351 } else if (ifp
->if_real_bytes
) {
4352 kmem_free(ifp
->if_u1
.if_extents
, ifp
->if_real_bytes
);
4353 } else if (ifp
->if_bytes
) {
4354 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
4355 sizeof(xfs_bmbt_rec_t
));
4357 ifp
->if_u1
.if_extents
= NULL
;
4358 ifp
->if_real_bytes
= 0;
4363 * Return a pointer to the extent record for file system block bno.
4365 xfs_bmbt_rec_t
* /* pointer to found extent record */
4366 xfs_iext_bno_to_ext(
4367 xfs_ifork_t
*ifp
, /* inode fork pointer */
4368 xfs_fileoff_t bno
, /* block number to search for */
4369 xfs_extnum_t
*idxp
) /* index of target extent */
4371 xfs_bmbt_rec_t
*base
; /* pointer to first extent */
4372 xfs_filblks_t blockcount
= 0; /* number of blocks in extent */
4373 xfs_bmbt_rec_t
*ep
= NULL
; /* pointer to target extent */
4374 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
4375 int high
; /* upper boundary in search */
4376 xfs_extnum_t idx
= 0; /* index of target extent */
4377 int low
; /* lower boundary in search */
4378 xfs_extnum_t nextents
; /* number of file extents */
4379 xfs_fileoff_t startoff
= 0; /* start offset of extent */
4381 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4382 if (nextents
== 0) {
4387 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4388 /* Find target extent list */
4390 erp
= xfs_iext_bno_to_irec(ifp
, bno
, &erp_idx
);
4391 base
= erp
->er_extbuf
;
4392 high
= erp
->er_extcount
- 1;
4394 base
= ifp
->if_u1
.if_extents
;
4395 high
= nextents
- 1;
4397 /* Binary search extent records */
4398 while (low
<= high
) {
4399 idx
= (low
+ high
) >> 1;
4401 startoff
= xfs_bmbt_get_startoff(ep
);
4402 blockcount
= xfs_bmbt_get_blockcount(ep
);
4403 if (bno
< startoff
) {
4405 } else if (bno
>= startoff
+ blockcount
) {
4408 /* Convert back to file-based extent index */
4409 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4410 idx
+= erp
->er_extoff
;
4416 /* Convert back to file-based extent index */
4417 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4418 idx
+= erp
->er_extoff
;
4420 if (bno
>= startoff
+ blockcount
) {
4421 if (++idx
== nextents
) {
4424 ep
= xfs_iext_get_ext(ifp
, idx
);
4432 * Return a pointer to the indirection array entry containing the
4433 * extent record for filesystem block bno. Store the index of the
4434 * target irec in *erp_idxp.
4436 xfs_ext_irec_t
* /* pointer to found extent record */
4437 xfs_iext_bno_to_irec(
4438 xfs_ifork_t
*ifp
, /* inode fork pointer */
4439 xfs_fileoff_t bno
, /* block number to search for */
4440 int *erp_idxp
) /* irec index of target ext list */
4442 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
4443 xfs_ext_irec_t
*erp_next
; /* next indirection array entry */
4444 int erp_idx
; /* indirection array index */
4445 int nlists
; /* number of extent irec's (lists) */
4446 int high
; /* binary search upper limit */
4447 int low
; /* binary search lower limit */
4449 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4450 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4454 while (low
<= high
) {
4455 erp_idx
= (low
+ high
) >> 1;
4456 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4457 erp_next
= erp_idx
< nlists
- 1 ? erp
+ 1 : NULL
;
4458 if (bno
< xfs_bmbt_get_startoff(erp
->er_extbuf
)) {
4460 } else if (erp_next
&& bno
>=
4461 xfs_bmbt_get_startoff(erp_next
->er_extbuf
)) {
4467 *erp_idxp
= erp_idx
;
4472 * Return a pointer to the indirection array entry containing the
4473 * extent record at file extent index *idxp. Store the index of the
4474 * target irec in *erp_idxp and store the page index of the target
4475 * extent record in *idxp.
4478 xfs_iext_idx_to_irec(
4479 xfs_ifork_t
*ifp
, /* inode fork pointer */
4480 xfs_extnum_t
*idxp
, /* extent index (file -> page) */
4481 int *erp_idxp
, /* pointer to target irec */
4482 int realloc
) /* new bytes were just added */
4484 xfs_ext_irec_t
*prev
; /* pointer to previous irec */
4485 xfs_ext_irec_t
*erp
= NULL
; /* pointer to current irec */
4486 int erp_idx
; /* indirection array index */
4487 int nlists
; /* number of irec's (ex lists) */
4488 int high
; /* binary search upper limit */
4489 int low
; /* binary search lower limit */
4490 xfs_extnum_t page_idx
= *idxp
; /* extent index in target list */
4492 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4493 ASSERT(page_idx
>= 0 && page_idx
<=
4494 ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
));
4495 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4500 /* Binary search extent irec's */
4501 while (low
<= high
) {
4502 erp_idx
= (low
+ high
) >> 1;
4503 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4504 prev
= erp_idx
> 0 ? erp
- 1 : NULL
;
4505 if (page_idx
< erp
->er_extoff
|| (page_idx
== erp
->er_extoff
&&
4506 realloc
&& prev
&& prev
->er_extcount
< XFS_LINEAR_EXTS
)) {
4508 } else if (page_idx
> erp
->er_extoff
+ erp
->er_extcount
||
4509 (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
4512 } else if (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
4513 erp
->er_extcount
== XFS_LINEAR_EXTS
) {
4517 erp
= erp_idx
< nlists
? erp
+ 1 : NULL
;
4520 page_idx
-= erp
->er_extoff
;
4525 *erp_idxp
= erp_idx
;
4530 * Allocate and initialize an indirection array once the space needed
4531 * for incore extents increases above XFS_IEXT_BUFSZ.
4535 xfs_ifork_t
*ifp
) /* inode fork pointer */
4537 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4538 xfs_extnum_t nextents
; /* number of extents in file */
4540 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
4541 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4542 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
4544 erp
= (xfs_ext_irec_t
*)
4545 kmem_alloc(sizeof(xfs_ext_irec_t
), KM_SLEEP
);
4547 if (nextents
== 0) {
4548 ifp
->if_u1
.if_extents
= (xfs_bmbt_rec_t
*)
4549 kmem_alloc(XFS_IEXT_BUFSZ
, KM_SLEEP
);
4550 } else if (!ifp
->if_real_bytes
) {
4551 xfs_iext_inline_to_direct(ifp
, XFS_IEXT_BUFSZ
);
4552 } else if (ifp
->if_real_bytes
< XFS_IEXT_BUFSZ
) {
4553 xfs_iext_realloc_direct(ifp
, XFS_IEXT_BUFSZ
);
4555 erp
->er_extbuf
= ifp
->if_u1
.if_extents
;
4556 erp
->er_extcount
= nextents
;
4559 ifp
->if_flags
|= XFS_IFEXTIREC
;
4560 ifp
->if_real_bytes
= XFS_IEXT_BUFSZ
;
4561 ifp
->if_bytes
= nextents
* sizeof(xfs_bmbt_rec_t
);
4562 ifp
->if_u1
.if_ext_irec
= erp
;
4568 * Allocate and initialize a new entry in the indirection array.
4572 xfs_ifork_t
*ifp
, /* inode fork pointer */
4573 int erp_idx
) /* index for new irec */
4575 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4576 int i
; /* loop counter */
4577 int nlists
; /* number of irec's (ex lists) */
4579 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4580 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4582 /* Resize indirection array */
4583 xfs_iext_realloc_indirect(ifp
, ++nlists
*
4584 sizeof(xfs_ext_irec_t
));
4586 * Move records down in the array so the
4587 * new page can use erp_idx.
4589 erp
= ifp
->if_u1
.if_ext_irec
;
4590 for (i
= nlists
- 1; i
> erp_idx
; i
--) {
4591 memmove(&erp
[i
], &erp
[i
-1], sizeof(xfs_ext_irec_t
));
4593 ASSERT(i
== erp_idx
);
4595 /* Initialize new extent record */
4596 erp
= ifp
->if_u1
.if_ext_irec
;
4597 erp
[erp_idx
].er_extbuf
= (xfs_bmbt_rec_t
*)
4598 kmem_alloc(XFS_IEXT_BUFSZ
, KM_SLEEP
);
4599 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4600 memset(erp
[erp_idx
].er_extbuf
, 0, XFS_IEXT_BUFSZ
);
4601 erp
[erp_idx
].er_extcount
= 0;
4602 erp
[erp_idx
].er_extoff
= erp_idx
> 0 ?
4603 erp
[erp_idx
-1].er_extoff
+ erp
[erp_idx
-1].er_extcount
: 0;
4604 return (&erp
[erp_idx
]);
4608 * Remove a record from the indirection array.
4611 xfs_iext_irec_remove(
4612 xfs_ifork_t
*ifp
, /* inode fork pointer */
4613 int erp_idx
) /* irec index to remove */
4615 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4616 int i
; /* loop counter */
4617 int nlists
; /* number of irec's (ex lists) */
4619 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4620 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4621 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4622 if (erp
->er_extbuf
) {
4623 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1,
4625 kmem_free(erp
->er_extbuf
, XFS_IEXT_BUFSZ
);
4627 /* Compact extent records */
4628 erp
= ifp
->if_u1
.if_ext_irec
;
4629 for (i
= erp_idx
; i
< nlists
- 1; i
++) {
4630 memmove(&erp
[i
], &erp
[i
+1], sizeof(xfs_ext_irec_t
));
4633 * Manually free the last extent record from the indirection
4634 * array. A call to xfs_iext_realloc_indirect() with a size
4635 * of zero would result in a call to xfs_iext_destroy() which
4636 * would in turn call this function again, creating a nasty
4640 xfs_iext_realloc_indirect(ifp
,
4641 nlists
* sizeof(xfs_ext_irec_t
));
4643 kmem_free(ifp
->if_u1
.if_ext_irec
,
4644 sizeof(xfs_ext_irec_t
));
4646 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4650 * This is called to clean up large amounts of unused memory allocated
4651 * by the indirection array. Before compacting anything though, verify
4652 * that the indirection array is still needed and switch back to the
4653 * linear extent list (or even the inline buffer) if possible. The
4654 * compaction policy is as follows:
4656 * Full Compaction: Extents fit into a single page (or inline buffer)
4657 * Full Compaction: Extents occupy less than 10% of allocated space
4658 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4659 * No Compaction: Extents occupy at least 50% of allocated space
4662 xfs_iext_irec_compact(
4663 xfs_ifork_t
*ifp
) /* inode fork pointer */
4665 xfs_extnum_t nextents
; /* number of extents in file */
4666 int nlists
; /* number of irec's (ex lists) */
4668 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4669 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4670 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4672 if (nextents
== 0) {
4673 xfs_iext_destroy(ifp
);
4674 } else if (nextents
<= XFS_INLINE_EXTS
) {
4675 xfs_iext_indirect_to_direct(ifp
);
4676 xfs_iext_direct_to_inline(ifp
, nextents
);
4677 } else if (nextents
<= XFS_LINEAR_EXTS
) {
4678 xfs_iext_indirect_to_direct(ifp
);
4679 } else if (nextents
< (nlists
* XFS_LINEAR_EXTS
) >> 3) {
4680 xfs_iext_irec_compact_full(ifp
);
4681 } else if (nextents
< (nlists
* XFS_LINEAR_EXTS
) >> 1) {
4682 xfs_iext_irec_compact_pages(ifp
);
4687 * Combine extents from neighboring extent pages.
4690 xfs_iext_irec_compact_pages(
4691 xfs_ifork_t
*ifp
) /* inode fork pointer */
4693 xfs_ext_irec_t
*erp
, *erp_next
;/* pointers to irec entries */
4694 int erp_idx
= 0; /* indirection array index */
4695 int nlists
; /* number of irec's (ex lists) */
4697 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4698 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4699 while (erp_idx
< nlists
- 1) {
4700 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4702 if (erp_next
->er_extcount
<=
4703 (XFS_LINEAR_EXTS
- erp
->er_extcount
)) {
4704 memmove(&erp
->er_extbuf
[erp
->er_extcount
],
4705 erp_next
->er_extbuf
, erp_next
->er_extcount
*
4706 sizeof(xfs_bmbt_rec_t
));
4707 erp
->er_extcount
+= erp_next
->er_extcount
;
4709 * Free page before removing extent record
4710 * so er_extoffs don't get modified in
4711 * xfs_iext_irec_remove.
4713 kmem_free(erp_next
->er_extbuf
, XFS_IEXT_BUFSZ
);
4714 erp_next
->er_extbuf
= NULL
;
4715 xfs_iext_irec_remove(ifp
, erp_idx
+ 1);
4716 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4724 * Fully compact the extent records managed by the indirection array.
4727 xfs_iext_irec_compact_full(
4728 xfs_ifork_t
*ifp
) /* inode fork pointer */
4730 xfs_bmbt_rec_t
*ep
, *ep_next
; /* extent record pointers */
4731 xfs_ext_irec_t
*erp
, *erp_next
; /* extent irec pointers */
4732 int erp_idx
= 0; /* extent irec index */
4733 int ext_avail
; /* empty entries in ex list */
4734 int ext_diff
; /* number of exts to add */
4735 int nlists
; /* number of irec's (ex lists) */
4737 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4738 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4739 erp
= ifp
->if_u1
.if_ext_irec
;
4740 ep
= &erp
->er_extbuf
[erp
->er_extcount
];
4742 ep_next
= erp_next
->er_extbuf
;
4743 while (erp_idx
< nlists
- 1) {
4744 ext_avail
= XFS_LINEAR_EXTS
- erp
->er_extcount
;
4745 ext_diff
= MIN(ext_avail
, erp_next
->er_extcount
);
4746 memcpy(ep
, ep_next
, ext_diff
* sizeof(xfs_bmbt_rec_t
));
4747 erp
->er_extcount
+= ext_diff
;
4748 erp_next
->er_extcount
-= ext_diff
;
4749 /* Remove next page */
4750 if (erp_next
->er_extcount
== 0) {
4752 * Free page before removing extent record
4753 * so er_extoffs don't get modified in
4754 * xfs_iext_irec_remove.
4756 kmem_free(erp_next
->er_extbuf
,
4757 erp_next
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
4758 erp_next
->er_extbuf
= NULL
;
4759 xfs_iext_irec_remove(ifp
, erp_idx
+ 1);
4760 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4761 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4762 /* Update next page */
4764 /* Move rest of page up to become next new page */
4765 memmove(erp_next
->er_extbuf
, ep_next
,
4766 erp_next
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
4767 ep_next
= erp_next
->er_extbuf
;
4768 memset(&ep_next
[erp_next
->er_extcount
], 0,
4769 (XFS_LINEAR_EXTS
- erp_next
->er_extcount
) *
4770 sizeof(xfs_bmbt_rec_t
));
4772 if (erp
->er_extcount
== XFS_LINEAR_EXTS
) {
4774 if (erp_idx
< nlists
)
4775 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4779 ep
= &erp
->er_extbuf
[erp
->er_extcount
];
4781 ep_next
= erp_next
->er_extbuf
;
4786 * This is called to update the er_extoff field in the indirection
4787 * array when extents have been added or removed from one of the
4788 * extent lists. erp_idx contains the irec index to begin updating
4789 * at and ext_diff contains the number of extents that were added
4793 xfs_iext_irec_update_extoffs(
4794 xfs_ifork_t
*ifp
, /* inode fork pointer */
4795 int erp_idx
, /* irec index to update */
4796 int ext_diff
) /* number of new extents */
4798 int i
; /* loop counter */
4799 int nlists
; /* number of irec's (ex lists */
4801 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4802 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4803 for (i
= erp_idx
; i
< nlists
; i
++) {
4804 ifp
->if_u1
.if_ext_irec
[i
].er_extoff
+= ext_diff
;