x86/mm: unify init task OOM handling
[linux-2.6/mini2440.git] / arch / x86 / mm / fault.c
blob8bc5956e1af46476bbe6b96fc71c04c7de8923ce
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
4 */
6 #include <linux/signal.h>
7 #include <linux/sched.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/string.h>
11 #include <linux/types.h>
12 #include <linux/ptrace.h>
13 #include <linux/mmiotrace.h>
14 #include <linux/mman.h>
15 #include <linux/mm.h>
16 #include <linux/smp.h>
17 #include <linux/interrupt.h>
18 #include <linux/init.h>
19 #include <linux/tty.h>
20 #include <linux/vt_kern.h> /* For unblank_screen() */
21 #include <linux/compiler.h>
22 #include <linux/highmem.h>
23 #include <linux/bootmem.h> /* for max_low_pfn */
24 #include <linux/vmalloc.h>
25 #include <linux/module.h>
26 #include <linux/kprobes.h>
27 #include <linux/uaccess.h>
28 #include <linux/kdebug.h>
30 #include <asm/system.h>
31 #include <asm/desc.h>
32 #include <asm/segment.h>
33 #include <asm/pgalloc.h>
34 #include <asm/smp.h>
35 #include <asm/tlbflush.h>
36 #include <asm/proto.h>
37 #include <asm-generic/sections.h>
38 #include <asm/traps.h>
41 * Page fault error code bits
42 * bit 0 == 0 means no page found, 1 means protection fault
43 * bit 1 == 0 means read, 1 means write
44 * bit 2 == 0 means kernel, 1 means user-mode
45 * bit 3 == 1 means use of reserved bit detected
46 * bit 4 == 1 means fault was an instruction fetch
48 #define PF_PROT (1<<0)
49 #define PF_WRITE (1<<1)
50 #define PF_USER (1<<2)
51 #define PF_RSVD (1<<3)
52 #define PF_INSTR (1<<4)
54 static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr)
56 #ifdef CONFIG_MMIOTRACE_HOOKS
57 if (unlikely(is_kmmio_active()))
58 if (kmmio_handler(regs, addr) == 1)
59 return -1;
60 #endif
61 return 0;
64 static inline int notify_page_fault(struct pt_regs *regs)
66 #ifdef CONFIG_KPROBES
67 int ret = 0;
69 /* kprobe_running() needs smp_processor_id() */
70 if (!user_mode_vm(regs)) {
71 preempt_disable();
72 if (kprobe_running() && kprobe_fault_handler(regs, 14))
73 ret = 1;
74 preempt_enable();
77 return ret;
78 #else
79 return 0;
80 #endif
84 * X86_32
85 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
86 * Check that here and ignore it.
88 * X86_64
89 * Sometimes the CPU reports invalid exceptions on prefetch.
90 * Check that here and ignore it.
92 * Opcode checker based on code by Richard Brunner
94 static int is_prefetch(struct pt_regs *regs, unsigned long addr,
95 unsigned long error_code)
97 unsigned char *instr;
98 int scan_more = 1;
99 int prefetch = 0;
100 unsigned char *max_instr;
103 * If it was a exec (instruction fetch) fault on NX page, then
104 * do not ignore the fault:
106 if (error_code & PF_INSTR)
107 return 0;
109 instr = (unsigned char *)convert_ip_to_linear(current, regs);
110 max_instr = instr + 15;
112 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
113 return 0;
115 while (scan_more && instr < max_instr) {
116 unsigned char opcode;
117 unsigned char instr_hi;
118 unsigned char instr_lo;
120 if (probe_kernel_address(instr, opcode))
121 break;
123 instr_hi = opcode & 0xf0;
124 instr_lo = opcode & 0x0f;
125 instr++;
127 switch (instr_hi) {
128 case 0x20:
129 case 0x30:
131 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
132 * In X86_64 long mode, the CPU will signal invalid
133 * opcode if some of these prefixes are present so
134 * X86_64 will never get here anyway
136 scan_more = ((instr_lo & 7) == 0x6);
137 break;
138 #ifdef CONFIG_X86_64
139 case 0x40:
141 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
142 * Need to figure out under what instruction mode the
143 * instruction was issued. Could check the LDT for lm,
144 * but for now it's good enough to assume that long
145 * mode only uses well known segments or kernel.
147 scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
148 break;
149 #endif
150 case 0x60:
151 /* 0x64 thru 0x67 are valid prefixes in all modes. */
152 scan_more = (instr_lo & 0xC) == 0x4;
153 break;
154 case 0xF0:
155 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
156 scan_more = !instr_lo || (instr_lo>>1) == 1;
157 break;
158 case 0x00:
159 /* Prefetch instruction is 0x0F0D or 0x0F18 */
160 scan_more = 0;
162 if (probe_kernel_address(instr, opcode))
163 break;
164 prefetch = (instr_lo == 0xF) &&
165 (opcode == 0x0D || opcode == 0x18);
166 break;
167 default:
168 scan_more = 0;
169 break;
172 return prefetch;
175 static void force_sig_info_fault(int si_signo, int si_code,
176 unsigned long address, struct task_struct *tsk)
178 siginfo_t info;
180 info.si_signo = si_signo;
181 info.si_errno = 0;
182 info.si_code = si_code;
183 info.si_addr = (void __user *)address;
184 force_sig_info(si_signo, &info, tsk);
187 #ifdef CONFIG_X86_64
188 static int bad_address(void *p)
190 unsigned long dummy;
191 return probe_kernel_address((unsigned long *)p, dummy);
193 #endif
195 static void dump_pagetable(unsigned long address)
197 #ifdef CONFIG_X86_32
198 __typeof__(pte_val(__pte(0))) page;
200 page = read_cr3();
201 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
202 #ifdef CONFIG_X86_PAE
203 printk("*pdpt = %016Lx ", page);
204 if ((page >> PAGE_SHIFT) < max_low_pfn
205 && page & _PAGE_PRESENT) {
206 page &= PAGE_MASK;
207 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
208 & (PTRS_PER_PMD - 1)];
209 printk(KERN_CONT "*pde = %016Lx ", page);
210 page &= ~_PAGE_NX;
212 #else
213 printk("*pde = %08lx ", page);
214 #endif
217 * We must not directly access the pte in the highpte
218 * case if the page table is located in highmem.
219 * And let's rather not kmap-atomic the pte, just in case
220 * it's allocated already.
222 if ((page >> PAGE_SHIFT) < max_low_pfn
223 && (page & _PAGE_PRESENT)
224 && !(page & _PAGE_PSE)) {
225 page &= PAGE_MASK;
226 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
227 & (PTRS_PER_PTE - 1)];
228 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
231 printk("\n");
232 #else /* CONFIG_X86_64 */
233 pgd_t *pgd;
234 pud_t *pud;
235 pmd_t *pmd;
236 pte_t *pte;
238 pgd = (pgd_t *)read_cr3();
240 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
241 pgd += pgd_index(address);
242 if (bad_address(pgd)) goto bad;
243 printk("PGD %lx ", pgd_val(*pgd));
244 if (!pgd_present(*pgd)) goto ret;
246 pud = pud_offset(pgd, address);
247 if (bad_address(pud)) goto bad;
248 printk("PUD %lx ", pud_val(*pud));
249 if (!pud_present(*pud) || pud_large(*pud))
250 goto ret;
252 pmd = pmd_offset(pud, address);
253 if (bad_address(pmd)) goto bad;
254 printk("PMD %lx ", pmd_val(*pmd));
255 if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret;
257 pte = pte_offset_kernel(pmd, address);
258 if (bad_address(pte)) goto bad;
259 printk("PTE %lx", pte_val(*pte));
260 ret:
261 printk("\n");
262 return;
263 bad:
264 printk("BAD\n");
265 #endif
268 #ifdef CONFIG_X86_32
269 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
271 unsigned index = pgd_index(address);
272 pgd_t *pgd_k;
273 pud_t *pud, *pud_k;
274 pmd_t *pmd, *pmd_k;
276 pgd += index;
277 pgd_k = init_mm.pgd + index;
279 if (!pgd_present(*pgd_k))
280 return NULL;
283 * set_pgd(pgd, *pgd_k); here would be useless on PAE
284 * and redundant with the set_pmd() on non-PAE. As would
285 * set_pud.
288 pud = pud_offset(pgd, address);
289 pud_k = pud_offset(pgd_k, address);
290 if (!pud_present(*pud_k))
291 return NULL;
293 pmd = pmd_offset(pud, address);
294 pmd_k = pmd_offset(pud_k, address);
295 if (!pmd_present(*pmd_k))
296 return NULL;
297 if (!pmd_present(*pmd)) {
298 set_pmd(pmd, *pmd_k);
299 arch_flush_lazy_mmu_mode();
300 } else
301 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
302 return pmd_k;
304 #endif
306 #ifdef CONFIG_X86_64
307 static const char errata93_warning[] =
308 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
309 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
310 KERN_ERR "******* Please consider a BIOS update.\n"
311 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
312 #endif
314 /* Workaround for K8 erratum #93 & buggy BIOS.
315 BIOS SMM functions are required to use a specific workaround
316 to avoid corruption of the 64bit RIP register on C stepping K8.
317 A lot of BIOS that didn't get tested properly miss this.
318 The OS sees this as a page fault with the upper 32bits of RIP cleared.
319 Try to work around it here.
320 Note we only handle faults in kernel here.
321 Does nothing for X86_32
323 static int is_errata93(struct pt_regs *regs, unsigned long address)
325 #ifdef CONFIG_X86_64
326 static int warned;
327 if (address != regs->ip)
328 return 0;
329 if ((address >> 32) != 0)
330 return 0;
331 address |= 0xffffffffUL << 32;
332 if ((address >= (u64)_stext && address <= (u64)_etext) ||
333 (address >= MODULES_VADDR && address <= MODULES_END)) {
334 if (!warned) {
335 printk(errata93_warning);
336 warned = 1;
338 regs->ip = address;
339 return 1;
341 #endif
342 return 0;
346 * Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal
347 * addresses >4GB. We catch this in the page fault handler because these
348 * addresses are not reachable. Just detect this case and return. Any code
349 * segment in LDT is compatibility mode.
351 static int is_errata100(struct pt_regs *regs, unsigned long address)
353 #ifdef CONFIG_X86_64
354 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
355 (address >> 32))
356 return 1;
357 #endif
358 return 0;
361 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
363 #ifdef CONFIG_X86_F00F_BUG
364 unsigned long nr;
366 * Pentium F0 0F C7 C8 bug workaround.
368 if (boot_cpu_data.f00f_bug) {
369 nr = (address - idt_descr.address) >> 3;
371 if (nr == 6) {
372 do_invalid_op(regs, 0);
373 return 1;
376 #endif
377 return 0;
380 static void show_fault_oops(struct pt_regs *regs, unsigned long error_code,
381 unsigned long address)
383 #ifdef CONFIG_X86_32
384 if (!oops_may_print())
385 return;
386 #endif
388 #ifdef CONFIG_X86_PAE
389 if (error_code & PF_INSTR) {
390 unsigned int level;
391 pte_t *pte = lookup_address(address, &level);
393 if (pte && pte_present(*pte) && !pte_exec(*pte))
394 printk(KERN_CRIT "kernel tried to execute "
395 "NX-protected page - exploit attempt? "
396 "(uid: %d)\n", current->uid);
398 #endif
400 printk(KERN_ALERT "BUG: unable to handle kernel ");
401 if (address < PAGE_SIZE)
402 printk(KERN_CONT "NULL pointer dereference");
403 else
404 printk(KERN_CONT "paging request");
405 printk(KERN_CONT " at %p\n", (void *) address);
406 printk(KERN_ALERT "IP:");
407 printk_address(regs->ip, 1);
408 dump_pagetable(address);
411 #ifdef CONFIG_X86_64
412 static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
413 unsigned long error_code)
415 unsigned long flags = oops_begin();
416 struct task_struct *tsk;
418 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
419 current->comm, address);
420 dump_pagetable(address);
421 tsk = current;
422 tsk->thread.cr2 = address;
423 tsk->thread.trap_no = 14;
424 tsk->thread.error_code = error_code;
425 if (__die("Bad pagetable", regs, error_code))
426 regs = NULL;
427 oops_end(flags, regs, SIGKILL);
429 #endif
431 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
433 if ((error_code & PF_WRITE) && !pte_write(*pte))
434 return 0;
435 if ((error_code & PF_INSTR) && !pte_exec(*pte))
436 return 0;
438 return 1;
442 * Handle a spurious fault caused by a stale TLB entry. This allows
443 * us to lazily refresh the TLB when increasing the permissions of a
444 * kernel page (RO -> RW or NX -> X). Doing it eagerly is very
445 * expensive since that implies doing a full cross-processor TLB
446 * flush, even if no stale TLB entries exist on other processors.
447 * There are no security implications to leaving a stale TLB when
448 * increasing the permissions on a page.
450 static int spurious_fault(unsigned long address,
451 unsigned long error_code)
453 pgd_t *pgd;
454 pud_t *pud;
455 pmd_t *pmd;
456 pte_t *pte;
458 /* Reserved-bit violation or user access to kernel space? */
459 if (error_code & (PF_USER | PF_RSVD))
460 return 0;
462 pgd = init_mm.pgd + pgd_index(address);
463 if (!pgd_present(*pgd))
464 return 0;
466 pud = pud_offset(pgd, address);
467 if (!pud_present(*pud))
468 return 0;
470 if (pud_large(*pud))
471 return spurious_fault_check(error_code, (pte_t *) pud);
473 pmd = pmd_offset(pud, address);
474 if (!pmd_present(*pmd))
475 return 0;
477 if (pmd_large(*pmd))
478 return spurious_fault_check(error_code, (pte_t *) pmd);
480 pte = pte_offset_kernel(pmd, address);
481 if (!pte_present(*pte))
482 return 0;
484 return spurious_fault_check(error_code, pte);
488 * X86_32
489 * Handle a fault on the vmalloc or module mapping area
491 * X86_64
492 * Handle a fault on the vmalloc area
494 * This assumes no large pages in there.
496 static int vmalloc_fault(unsigned long address)
498 #ifdef CONFIG_X86_32
499 unsigned long pgd_paddr;
500 pmd_t *pmd_k;
501 pte_t *pte_k;
503 /* Make sure we are in vmalloc area */
504 if (!(address >= VMALLOC_START && address < VMALLOC_END))
505 return -1;
508 * Synchronize this task's top level page-table
509 * with the 'reference' page table.
511 * Do _not_ use "current" here. We might be inside
512 * an interrupt in the middle of a task switch..
514 pgd_paddr = read_cr3();
515 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
516 if (!pmd_k)
517 return -1;
518 pte_k = pte_offset_kernel(pmd_k, address);
519 if (!pte_present(*pte_k))
520 return -1;
521 return 0;
522 #else
523 pgd_t *pgd, *pgd_ref;
524 pud_t *pud, *pud_ref;
525 pmd_t *pmd, *pmd_ref;
526 pte_t *pte, *pte_ref;
528 /* Make sure we are in vmalloc area */
529 if (!(address >= VMALLOC_START && address < VMALLOC_END))
530 return -1;
532 /* Copy kernel mappings over when needed. This can also
533 happen within a race in page table update. In the later
534 case just flush. */
536 pgd = pgd_offset(current->mm ?: &init_mm, address);
537 pgd_ref = pgd_offset_k(address);
538 if (pgd_none(*pgd_ref))
539 return -1;
540 if (pgd_none(*pgd))
541 set_pgd(pgd, *pgd_ref);
542 else
543 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
545 /* Below here mismatches are bugs because these lower tables
546 are shared */
548 pud = pud_offset(pgd, address);
549 pud_ref = pud_offset(pgd_ref, address);
550 if (pud_none(*pud_ref))
551 return -1;
552 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
553 BUG();
554 pmd = pmd_offset(pud, address);
555 pmd_ref = pmd_offset(pud_ref, address);
556 if (pmd_none(*pmd_ref))
557 return -1;
558 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
559 BUG();
560 pte_ref = pte_offset_kernel(pmd_ref, address);
561 if (!pte_present(*pte_ref))
562 return -1;
563 pte = pte_offset_kernel(pmd, address);
564 /* Don't use pte_page here, because the mappings can point
565 outside mem_map, and the NUMA hash lookup cannot handle
566 that. */
567 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
568 BUG();
569 return 0;
570 #endif
573 int show_unhandled_signals = 1;
576 * This routine handles page faults. It determines the address,
577 * and the problem, and then passes it off to one of the appropriate
578 * routines.
580 #ifdef CONFIG_X86_64
581 asmlinkage
582 #endif
583 void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
585 struct task_struct *tsk;
586 struct mm_struct *mm;
587 struct vm_area_struct *vma;
588 unsigned long address;
589 int write, si_code;
590 int fault;
591 #ifdef CONFIG_X86_64
592 unsigned long flags;
593 #endif
596 * We can fault from pretty much anywhere, with unknown IRQ state.
598 trace_hardirqs_fixup();
600 tsk = current;
601 mm = tsk->mm;
602 prefetchw(&mm->mmap_sem);
604 /* get the address */
605 address = read_cr2();
607 si_code = SEGV_MAPERR;
609 if (notify_page_fault(regs))
610 return;
611 if (unlikely(kmmio_fault(regs, address)))
612 return;
615 * We fault-in kernel-space virtual memory on-demand. The
616 * 'reference' page table is init_mm.pgd.
618 * NOTE! We MUST NOT take any locks for this case. We may
619 * be in an interrupt or a critical region, and should
620 * only copy the information from the master page table,
621 * nothing more.
623 * This verifies that the fault happens in kernel space
624 * (error_code & 4) == 0, and that the fault was not a
625 * protection error (error_code & 9) == 0.
627 #ifdef CONFIG_X86_32
628 if (unlikely(address >= TASK_SIZE)) {
629 #else
630 if (unlikely(address >= TASK_SIZE64)) {
631 #endif
632 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
633 vmalloc_fault(address) >= 0)
634 return;
636 /* Can handle a stale RO->RW TLB */
637 if (spurious_fault(address, error_code))
638 return;
641 * Don't take the mm semaphore here. If we fixup a prefetch
642 * fault we could otherwise deadlock.
644 goto bad_area_nosemaphore;
649 * It's safe to allow irq's after cr2 has been saved and the
650 * vmalloc fault has been handled.
652 * User-mode registers count as a user access even for any
653 * potential system fault or CPU buglet.
655 if (user_mode_vm(regs)) {
656 local_irq_enable();
657 error_code |= PF_USER;
658 } else if (regs->flags & X86_EFLAGS_IF)
659 local_irq_enable();
661 #ifdef CONFIG_X86_64
662 if (unlikely(error_code & PF_RSVD))
663 pgtable_bad(address, regs, error_code);
664 #endif
667 * If we're in an interrupt, have no user context or are running in an
668 * atomic region then we must not take the fault.
670 if (unlikely(in_atomic() || !mm))
671 goto bad_area_nosemaphore;
673 again:
675 * When running in the kernel we expect faults to occur only to
676 * addresses in user space. All other faults represent errors in the
677 * kernel and should generate an OOPS. Unfortunately, in the case of an
678 * erroneous fault occurring in a code path which already holds mmap_sem
679 * we will deadlock attempting to validate the fault against the
680 * address space. Luckily the kernel only validly references user
681 * space from well defined areas of code, which are listed in the
682 * exceptions table.
684 * As the vast majority of faults will be valid we will only perform
685 * the source reference check when there is a possibility of a deadlock.
686 * Attempt to lock the address space, if we cannot we then validate the
687 * source. If this is invalid we can skip the address space check,
688 * thus avoiding the deadlock.
690 if (!down_read_trylock(&mm->mmap_sem)) {
691 if ((error_code & PF_USER) == 0 &&
692 !search_exception_tables(regs->ip))
693 goto bad_area_nosemaphore;
694 down_read(&mm->mmap_sem);
697 vma = find_vma(mm, address);
698 if (!vma)
699 goto bad_area;
700 if (vma->vm_start <= address)
701 goto good_area;
702 if (!(vma->vm_flags & VM_GROWSDOWN))
703 goto bad_area;
704 if (error_code & PF_USER) {
706 * Accessing the stack below %sp is always a bug.
707 * The large cushion allows instructions like enter
708 * and pusha to work. ("enter $65535,$31" pushes
709 * 32 pointers and then decrements %sp by 65535.)
711 if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp)
712 goto bad_area;
714 if (expand_stack(vma, address))
715 goto bad_area;
717 * Ok, we have a good vm_area for this memory access, so
718 * we can handle it..
720 good_area:
721 si_code = SEGV_ACCERR;
722 write = 0;
723 switch (error_code & (PF_PROT|PF_WRITE)) {
724 default: /* 3: write, present */
725 /* fall through */
726 case PF_WRITE: /* write, not present */
727 if (!(vma->vm_flags & VM_WRITE))
728 goto bad_area;
729 write++;
730 break;
731 case PF_PROT: /* read, present */
732 goto bad_area;
733 case 0: /* read, not present */
734 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
735 goto bad_area;
739 * If for any reason at all we couldn't handle the fault,
740 * make sure we exit gracefully rather than endlessly redo
741 * the fault.
743 fault = handle_mm_fault(mm, vma, address, write);
744 if (unlikely(fault & VM_FAULT_ERROR)) {
745 if (fault & VM_FAULT_OOM)
746 goto out_of_memory;
747 else if (fault & VM_FAULT_SIGBUS)
748 goto do_sigbus;
749 BUG();
751 if (fault & VM_FAULT_MAJOR)
752 tsk->maj_flt++;
753 else
754 tsk->min_flt++;
756 #ifdef CONFIG_X86_32
758 * Did it hit the DOS screen memory VA from vm86 mode?
760 if (v8086_mode(regs)) {
761 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
762 if (bit < 32)
763 tsk->thread.screen_bitmap |= 1 << bit;
765 #endif
766 up_read(&mm->mmap_sem);
767 return;
770 * Something tried to access memory that isn't in our memory map..
771 * Fix it, but check if it's kernel or user first..
773 bad_area:
774 up_read(&mm->mmap_sem);
776 bad_area_nosemaphore:
777 /* User mode accesses just cause a SIGSEGV */
778 if (error_code & PF_USER) {
780 * It's possible to have interrupts off here.
782 local_irq_enable();
785 * Valid to do another page fault here because this one came
786 * from user space.
788 if (is_prefetch(regs, address, error_code))
789 return;
791 if (is_errata100(regs, address))
792 return;
794 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
795 printk_ratelimit()) {
796 printk(
797 "%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
798 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
799 tsk->comm, task_pid_nr(tsk), address,
800 (void *) regs->ip, (void *) regs->sp, error_code);
801 print_vma_addr(" in ", regs->ip);
802 printk("\n");
805 tsk->thread.cr2 = address;
806 /* Kernel addresses are always protection faults */
807 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
808 tsk->thread.trap_no = 14;
809 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
810 return;
813 if (is_f00f_bug(regs, address))
814 return;
816 no_context:
817 /* Are we prepared to handle this kernel fault? */
818 if (fixup_exception(regs))
819 return;
822 * X86_32
823 * Valid to do another page fault here, because if this fault
824 * had been triggered by is_prefetch fixup_exception would have
825 * handled it.
827 * X86_64
828 * Hall of shame of CPU/BIOS bugs.
830 if (is_prefetch(regs, address, error_code))
831 return;
833 if (is_errata93(regs, address))
834 return;
837 * Oops. The kernel tried to access some bad page. We'll have to
838 * terminate things with extreme prejudice.
840 #ifdef CONFIG_X86_32
841 bust_spinlocks(1);
842 #else
843 flags = oops_begin();
844 #endif
846 show_fault_oops(regs, error_code, address);
848 tsk->thread.cr2 = address;
849 tsk->thread.trap_no = 14;
850 tsk->thread.error_code = error_code;
852 #ifdef CONFIG_X86_32
853 die("Oops", regs, error_code);
854 bust_spinlocks(0);
855 do_exit(SIGKILL);
856 #else
857 if (__die("Oops", regs, error_code))
858 regs = NULL;
859 /* Executive summary in case the body of the oops scrolled away */
860 printk(KERN_EMERG "CR2: %016lx\n", address);
861 oops_end(flags, regs, SIGKILL);
862 #endif
865 * We ran out of memory, or some other thing happened to us that made
866 * us unable to handle the page fault gracefully.
868 out_of_memory:
869 up_read(&mm->mmap_sem);
870 if (is_global_init(tsk)) {
871 yield();
873 * Re-lookup the vma - in theory the vma tree might
874 * have changed:
876 goto again;
879 printk("VM: killing process %s\n", tsk->comm);
880 if (error_code & PF_USER)
881 do_group_exit(SIGKILL);
882 goto no_context;
884 do_sigbus:
885 up_read(&mm->mmap_sem);
887 /* Kernel mode? Handle exceptions or die */
888 if (!(error_code & PF_USER))
889 goto no_context;
890 #ifdef CONFIG_X86_32
891 /* User space => ok to do another page fault */
892 if (is_prefetch(regs, address, error_code))
893 return;
894 #endif
895 tsk->thread.cr2 = address;
896 tsk->thread.error_code = error_code;
897 tsk->thread.trap_no = 14;
898 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
901 DEFINE_SPINLOCK(pgd_lock);
902 LIST_HEAD(pgd_list);
904 void vmalloc_sync_all(void)
906 unsigned long address;
908 #ifdef CONFIG_X86_32
909 if (SHARED_KERNEL_PMD)
910 return;
912 for (address = VMALLOC_START & PMD_MASK;
913 address >= TASK_SIZE && address < FIXADDR_TOP;
914 address += PMD_SIZE) {
915 unsigned long flags;
916 struct page *page;
918 spin_lock_irqsave(&pgd_lock, flags);
919 list_for_each_entry(page, &pgd_list, lru) {
920 if (!vmalloc_sync_one(page_address(page),
921 address))
922 break;
924 spin_unlock_irqrestore(&pgd_lock, flags);
926 #else /* CONFIG_X86_64 */
927 for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
928 address += PGDIR_SIZE) {
929 const pgd_t *pgd_ref = pgd_offset_k(address);
930 unsigned long flags;
931 struct page *page;
933 if (pgd_none(*pgd_ref))
934 continue;
935 spin_lock_irqsave(&pgd_lock, flags);
936 list_for_each_entry(page, &pgd_list, lru) {
937 pgd_t *pgd;
938 pgd = (pgd_t *)page_address(page) + pgd_index(address);
939 if (pgd_none(*pgd))
940 set_pgd(pgd, *pgd_ref);
941 else
942 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
944 spin_unlock_irqrestore(&pgd_lock, flags);
946 #endif