genirq: Support nested threaded irq handling
[linux-2.6/mini2440.git] / fs / inode.c
blobae7b67e48661b0f078679a67d6f0c1d40847bf06
1 /*
2 * linux/fs/inode.c
4 * (C) 1997 Linus Torvalds
5 */
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/ima.h>
21 #include <linux/pagemap.h>
22 #include <linux/cdev.h>
23 #include <linux/bootmem.h>
24 #include <linux/inotify.h>
25 #include <linux/fsnotify.h>
26 #include <linux/mount.h>
27 #include <linux/async.h>
28 #include <linux/posix_acl.h>
31 * This is needed for the following functions:
32 * - inode_has_buffers
33 * - invalidate_inode_buffers
34 * - invalidate_bdev
36 * FIXME: remove all knowledge of the buffer layer from this file
38 #include <linux/buffer_head.h>
41 * New inode.c implementation.
43 * This implementation has the basic premise of trying
44 * to be extremely low-overhead and SMP-safe, yet be
45 * simple enough to be "obviously correct".
47 * Famous last words.
50 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
52 /* #define INODE_PARANOIA 1 */
53 /* #define INODE_DEBUG 1 */
56 * Inode lookup is no longer as critical as it used to be:
57 * most of the lookups are going to be through the dcache.
59 #define I_HASHBITS i_hash_shift
60 #define I_HASHMASK i_hash_mask
62 static unsigned int i_hash_mask __read_mostly;
63 static unsigned int i_hash_shift __read_mostly;
66 * Each inode can be on two separate lists. One is
67 * the hash list of the inode, used for lookups. The
68 * other linked list is the "type" list:
69 * "in_use" - valid inode, i_count > 0, i_nlink > 0
70 * "dirty" - as "in_use" but also dirty
71 * "unused" - valid inode, i_count = 0
73 * A "dirty" list is maintained for each super block,
74 * allowing for low-overhead inode sync() operations.
77 LIST_HEAD(inode_in_use);
78 LIST_HEAD(inode_unused);
79 static struct hlist_head *inode_hashtable __read_mostly;
82 * A simple spinlock to protect the list manipulations.
84 * NOTE! You also have to own the lock if you change
85 * the i_state of an inode while it is in use..
87 DEFINE_SPINLOCK(inode_lock);
90 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
91 * icache shrinking path, and the umount path. Without this exclusion,
92 * by the time prune_icache calls iput for the inode whose pages it has
93 * been invalidating, or by the time it calls clear_inode & destroy_inode
94 * from its final dispose_list, the struct super_block they refer to
95 * (for inode->i_sb->s_op) may already have been freed and reused.
97 static DEFINE_MUTEX(iprune_mutex);
100 * Statistics gathering..
102 struct inodes_stat_t inodes_stat;
104 static struct kmem_cache *inode_cachep __read_mostly;
106 static void wake_up_inode(struct inode *inode)
109 * Prevent speculative execution through spin_unlock(&inode_lock);
111 smp_mb();
112 wake_up_bit(&inode->i_state, __I_LOCK);
116 * inode_init_always - perform inode structure intialisation
117 * @sb: superblock inode belongs to
118 * @inode: inode to initialise
120 * These are initializations that need to be done on every inode
121 * allocation as the fields are not initialised by slab allocation.
123 int inode_init_always(struct super_block *sb, struct inode *inode)
125 static const struct address_space_operations empty_aops;
126 static struct inode_operations empty_iops;
127 static const struct file_operations empty_fops;
128 struct address_space *const mapping = &inode->i_data;
130 inode->i_sb = sb;
131 inode->i_blkbits = sb->s_blocksize_bits;
132 inode->i_flags = 0;
133 atomic_set(&inode->i_count, 1);
134 inode->i_op = &empty_iops;
135 inode->i_fop = &empty_fops;
136 inode->i_nlink = 1;
137 inode->i_uid = 0;
138 inode->i_gid = 0;
139 atomic_set(&inode->i_writecount, 0);
140 inode->i_size = 0;
141 inode->i_blocks = 0;
142 inode->i_bytes = 0;
143 inode->i_generation = 0;
144 #ifdef CONFIG_QUOTA
145 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
146 #endif
147 inode->i_pipe = NULL;
148 inode->i_bdev = NULL;
149 inode->i_cdev = NULL;
150 inode->i_rdev = 0;
151 inode->dirtied_when = 0;
153 if (security_inode_alloc(inode))
154 goto out;
156 /* allocate and initialize an i_integrity */
157 if (ima_inode_alloc(inode))
158 goto out_free_security;
160 spin_lock_init(&inode->i_lock);
161 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
163 mutex_init(&inode->i_mutex);
164 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
166 init_rwsem(&inode->i_alloc_sem);
167 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
169 mapping->a_ops = &empty_aops;
170 mapping->host = inode;
171 mapping->flags = 0;
172 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
173 mapping->assoc_mapping = NULL;
174 mapping->backing_dev_info = &default_backing_dev_info;
175 mapping->writeback_index = 0;
178 * If the block_device provides a backing_dev_info for client
179 * inodes then use that. Otherwise the inode share the bdev's
180 * backing_dev_info.
182 if (sb->s_bdev) {
183 struct backing_dev_info *bdi;
185 bdi = sb->s_bdev->bd_inode_backing_dev_info;
186 if (!bdi)
187 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
188 mapping->backing_dev_info = bdi;
190 inode->i_private = NULL;
191 inode->i_mapping = mapping;
192 #ifdef CONFIG_FS_POSIX_ACL
193 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
194 #endif
196 #ifdef CONFIG_FSNOTIFY
197 inode->i_fsnotify_mask = 0;
198 #endif
200 return 0;
202 out_free_security:
203 security_inode_free(inode);
204 out:
205 return -ENOMEM;
207 EXPORT_SYMBOL(inode_init_always);
209 static struct inode *alloc_inode(struct super_block *sb)
211 struct inode *inode;
213 if (sb->s_op->alloc_inode)
214 inode = sb->s_op->alloc_inode(sb);
215 else
216 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
218 if (!inode)
219 return NULL;
221 if (unlikely(inode_init_always(sb, inode))) {
222 if (inode->i_sb->s_op->destroy_inode)
223 inode->i_sb->s_op->destroy_inode(inode);
224 else
225 kmem_cache_free(inode_cachep, inode);
226 return NULL;
229 return inode;
232 void __destroy_inode(struct inode *inode)
234 BUG_ON(inode_has_buffers(inode));
235 ima_inode_free(inode);
236 security_inode_free(inode);
237 fsnotify_inode_delete(inode);
238 #ifdef CONFIG_FS_POSIX_ACL
239 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
240 posix_acl_release(inode->i_acl);
241 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
242 posix_acl_release(inode->i_default_acl);
243 #endif
245 EXPORT_SYMBOL(__destroy_inode);
247 void destroy_inode(struct inode *inode)
249 __destroy_inode(inode);
250 if (inode->i_sb->s_op->destroy_inode)
251 inode->i_sb->s_op->destroy_inode(inode);
252 else
253 kmem_cache_free(inode_cachep, (inode));
257 * These are initializations that only need to be done
258 * once, because the fields are idempotent across use
259 * of the inode, so let the slab aware of that.
261 void inode_init_once(struct inode *inode)
263 memset(inode, 0, sizeof(*inode));
264 INIT_HLIST_NODE(&inode->i_hash);
265 INIT_LIST_HEAD(&inode->i_dentry);
266 INIT_LIST_HEAD(&inode->i_devices);
267 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
268 spin_lock_init(&inode->i_data.tree_lock);
269 spin_lock_init(&inode->i_data.i_mmap_lock);
270 INIT_LIST_HEAD(&inode->i_data.private_list);
271 spin_lock_init(&inode->i_data.private_lock);
272 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
273 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
274 i_size_ordered_init(inode);
275 #ifdef CONFIG_INOTIFY
276 INIT_LIST_HEAD(&inode->inotify_watches);
277 mutex_init(&inode->inotify_mutex);
278 #endif
279 #ifdef CONFIG_FSNOTIFY
280 INIT_HLIST_HEAD(&inode->i_fsnotify_mark_entries);
281 #endif
283 EXPORT_SYMBOL(inode_init_once);
285 static void init_once(void *foo)
287 struct inode *inode = (struct inode *) foo;
289 inode_init_once(inode);
293 * inode_lock must be held
295 void __iget(struct inode *inode)
297 if (atomic_read(&inode->i_count)) {
298 atomic_inc(&inode->i_count);
299 return;
301 atomic_inc(&inode->i_count);
302 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
303 list_move(&inode->i_list, &inode_in_use);
304 inodes_stat.nr_unused--;
308 * clear_inode - clear an inode
309 * @inode: inode to clear
311 * This is called by the filesystem to tell us
312 * that the inode is no longer useful. We just
313 * terminate it with extreme prejudice.
315 void clear_inode(struct inode *inode)
317 might_sleep();
318 invalidate_inode_buffers(inode);
320 BUG_ON(inode->i_data.nrpages);
321 BUG_ON(!(inode->i_state & I_FREEING));
322 BUG_ON(inode->i_state & I_CLEAR);
323 inode_sync_wait(inode);
324 vfs_dq_drop(inode);
325 if (inode->i_sb->s_op->clear_inode)
326 inode->i_sb->s_op->clear_inode(inode);
327 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
328 bd_forget(inode);
329 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
330 cd_forget(inode);
331 inode->i_state = I_CLEAR;
333 EXPORT_SYMBOL(clear_inode);
336 * dispose_list - dispose of the contents of a local list
337 * @head: the head of the list to free
339 * Dispose-list gets a local list with local inodes in it, so it doesn't
340 * need to worry about list corruption and SMP locks.
342 static void dispose_list(struct list_head *head)
344 int nr_disposed = 0;
346 while (!list_empty(head)) {
347 struct inode *inode;
349 inode = list_first_entry(head, struct inode, i_list);
350 list_del(&inode->i_list);
352 if (inode->i_data.nrpages)
353 truncate_inode_pages(&inode->i_data, 0);
354 clear_inode(inode);
356 spin_lock(&inode_lock);
357 hlist_del_init(&inode->i_hash);
358 list_del_init(&inode->i_sb_list);
359 spin_unlock(&inode_lock);
361 wake_up_inode(inode);
362 destroy_inode(inode);
363 nr_disposed++;
365 spin_lock(&inode_lock);
366 inodes_stat.nr_inodes -= nr_disposed;
367 spin_unlock(&inode_lock);
371 * Invalidate all inodes for a device.
373 static int invalidate_list(struct list_head *head, struct list_head *dispose)
375 struct list_head *next;
376 int busy = 0, count = 0;
378 next = head->next;
379 for (;;) {
380 struct list_head *tmp = next;
381 struct inode *inode;
384 * We can reschedule here without worrying about the list's
385 * consistency because the per-sb list of inodes must not
386 * change during umount anymore, and because iprune_mutex keeps
387 * shrink_icache_memory() away.
389 cond_resched_lock(&inode_lock);
391 next = next->next;
392 if (tmp == head)
393 break;
394 inode = list_entry(tmp, struct inode, i_sb_list);
395 if (inode->i_state & I_NEW)
396 continue;
397 invalidate_inode_buffers(inode);
398 if (!atomic_read(&inode->i_count)) {
399 list_move(&inode->i_list, dispose);
400 WARN_ON(inode->i_state & I_NEW);
401 inode->i_state |= I_FREEING;
402 count++;
403 continue;
405 busy = 1;
407 /* only unused inodes may be cached with i_count zero */
408 inodes_stat.nr_unused -= count;
409 return busy;
413 * invalidate_inodes - discard the inodes on a device
414 * @sb: superblock
416 * Discard all of the inodes for a given superblock. If the discard
417 * fails because there are busy inodes then a non zero value is returned.
418 * If the discard is successful all the inodes have been discarded.
420 int invalidate_inodes(struct super_block *sb)
422 int busy;
423 LIST_HEAD(throw_away);
425 mutex_lock(&iprune_mutex);
426 spin_lock(&inode_lock);
427 inotify_unmount_inodes(&sb->s_inodes);
428 fsnotify_unmount_inodes(&sb->s_inodes);
429 busy = invalidate_list(&sb->s_inodes, &throw_away);
430 spin_unlock(&inode_lock);
432 dispose_list(&throw_away);
433 mutex_unlock(&iprune_mutex);
435 return busy;
437 EXPORT_SYMBOL(invalidate_inodes);
439 static int can_unuse(struct inode *inode)
441 if (inode->i_state)
442 return 0;
443 if (inode_has_buffers(inode))
444 return 0;
445 if (atomic_read(&inode->i_count))
446 return 0;
447 if (inode->i_data.nrpages)
448 return 0;
449 return 1;
453 * Scan `goal' inodes on the unused list for freeable ones. They are moved to
454 * a temporary list and then are freed outside inode_lock by dispose_list().
456 * Any inodes which are pinned purely because of attached pagecache have their
457 * pagecache removed. We expect the final iput() on that inode to add it to
458 * the front of the inode_unused list. So look for it there and if the
459 * inode is still freeable, proceed. The right inode is found 99.9% of the
460 * time in testing on a 4-way.
462 * If the inode has metadata buffers attached to mapping->private_list then
463 * try to remove them.
465 static void prune_icache(int nr_to_scan)
467 LIST_HEAD(freeable);
468 int nr_pruned = 0;
469 int nr_scanned;
470 unsigned long reap = 0;
472 mutex_lock(&iprune_mutex);
473 spin_lock(&inode_lock);
474 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
475 struct inode *inode;
477 if (list_empty(&inode_unused))
478 break;
480 inode = list_entry(inode_unused.prev, struct inode, i_list);
482 if (inode->i_state || atomic_read(&inode->i_count)) {
483 list_move(&inode->i_list, &inode_unused);
484 continue;
486 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
487 __iget(inode);
488 spin_unlock(&inode_lock);
489 if (remove_inode_buffers(inode))
490 reap += invalidate_mapping_pages(&inode->i_data,
491 0, -1);
492 iput(inode);
493 spin_lock(&inode_lock);
495 if (inode != list_entry(inode_unused.next,
496 struct inode, i_list))
497 continue; /* wrong inode or list_empty */
498 if (!can_unuse(inode))
499 continue;
501 list_move(&inode->i_list, &freeable);
502 WARN_ON(inode->i_state & I_NEW);
503 inode->i_state |= I_FREEING;
504 nr_pruned++;
506 inodes_stat.nr_unused -= nr_pruned;
507 if (current_is_kswapd())
508 __count_vm_events(KSWAPD_INODESTEAL, reap);
509 else
510 __count_vm_events(PGINODESTEAL, reap);
511 spin_unlock(&inode_lock);
513 dispose_list(&freeable);
514 mutex_unlock(&iprune_mutex);
518 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
519 * "unused" means that no dentries are referring to the inodes: the files are
520 * not open and the dcache references to those inodes have already been
521 * reclaimed.
523 * This function is passed the number of inodes to scan, and it returns the
524 * total number of remaining possibly-reclaimable inodes.
526 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
528 if (nr) {
530 * Nasty deadlock avoidance. We may hold various FS locks,
531 * and we don't want to recurse into the FS that called us
532 * in clear_inode() and friends..
534 if (!(gfp_mask & __GFP_FS))
535 return -1;
536 prune_icache(nr);
538 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
541 static struct shrinker icache_shrinker = {
542 .shrink = shrink_icache_memory,
543 .seeks = DEFAULT_SEEKS,
546 static void __wait_on_freeing_inode(struct inode *inode);
548 * Called with the inode lock held.
549 * NOTE: we are not increasing the inode-refcount, you must call __iget()
550 * by hand after calling find_inode now! This simplifies iunique and won't
551 * add any additional branch in the common code.
553 static struct inode *find_inode(struct super_block *sb,
554 struct hlist_head *head,
555 int (*test)(struct inode *, void *),
556 void *data)
558 struct hlist_node *node;
559 struct inode *inode = NULL;
561 repeat:
562 hlist_for_each_entry(inode, node, head, i_hash) {
563 if (inode->i_sb != sb)
564 continue;
565 if (!test(inode, data))
566 continue;
567 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
568 __wait_on_freeing_inode(inode);
569 goto repeat;
571 break;
573 return node ? inode : NULL;
577 * find_inode_fast is the fast path version of find_inode, see the comment at
578 * iget_locked for details.
580 static struct inode *find_inode_fast(struct super_block *sb,
581 struct hlist_head *head, unsigned long ino)
583 struct hlist_node *node;
584 struct inode *inode = NULL;
586 repeat:
587 hlist_for_each_entry(inode, node, head, i_hash) {
588 if (inode->i_ino != ino)
589 continue;
590 if (inode->i_sb != sb)
591 continue;
592 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
593 __wait_on_freeing_inode(inode);
594 goto repeat;
596 break;
598 return node ? inode : NULL;
601 static unsigned long hash(struct super_block *sb, unsigned long hashval)
603 unsigned long tmp;
605 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
606 L1_CACHE_BYTES;
607 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
608 return tmp & I_HASHMASK;
611 static inline void
612 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head,
613 struct inode *inode)
615 inodes_stat.nr_inodes++;
616 list_add(&inode->i_list, &inode_in_use);
617 list_add(&inode->i_sb_list, &sb->s_inodes);
618 if (head)
619 hlist_add_head(&inode->i_hash, head);
623 * inode_add_to_lists - add a new inode to relevant lists
624 * @sb: superblock inode belongs to
625 * @inode: inode to mark in use
627 * When an inode is allocated it needs to be accounted for, added to the in use
628 * list, the owning superblock and the inode hash. This needs to be done under
629 * the inode_lock, so export a function to do this rather than the inode lock
630 * itself. We calculate the hash list to add to here so it is all internal
631 * which requires the caller to have already set up the inode number in the
632 * inode to add.
634 void inode_add_to_lists(struct super_block *sb, struct inode *inode)
636 struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino);
638 spin_lock(&inode_lock);
639 __inode_add_to_lists(sb, head, inode);
640 spin_unlock(&inode_lock);
642 EXPORT_SYMBOL_GPL(inode_add_to_lists);
645 * new_inode - obtain an inode
646 * @sb: superblock
648 * Allocates a new inode for given superblock. The default gfp_mask
649 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
650 * If HIGHMEM pages are unsuitable or it is known that pages allocated
651 * for the page cache are not reclaimable or migratable,
652 * mapping_set_gfp_mask() must be called with suitable flags on the
653 * newly created inode's mapping
656 struct inode *new_inode(struct super_block *sb)
659 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
660 * error if st_ino won't fit in target struct field. Use 32bit counter
661 * here to attempt to avoid that.
663 static unsigned int last_ino;
664 struct inode *inode;
666 spin_lock_prefetch(&inode_lock);
668 inode = alloc_inode(sb);
669 if (inode) {
670 spin_lock(&inode_lock);
671 __inode_add_to_lists(sb, NULL, inode);
672 inode->i_ino = ++last_ino;
673 inode->i_state = 0;
674 spin_unlock(&inode_lock);
676 return inode;
678 EXPORT_SYMBOL(new_inode);
680 void unlock_new_inode(struct inode *inode)
682 #ifdef CONFIG_DEBUG_LOCK_ALLOC
683 if (inode->i_mode & S_IFDIR) {
684 struct file_system_type *type = inode->i_sb->s_type;
686 /* Set new key only if filesystem hasn't already changed it */
687 if (!lockdep_match_class(&inode->i_mutex,
688 &type->i_mutex_key)) {
690 * ensure nobody is actually holding i_mutex
692 mutex_destroy(&inode->i_mutex);
693 mutex_init(&inode->i_mutex);
694 lockdep_set_class(&inode->i_mutex,
695 &type->i_mutex_dir_key);
698 #endif
700 * This is special! We do not need the spinlock
701 * when clearing I_LOCK, because we're guaranteed
702 * that nobody else tries to do anything about the
703 * state of the inode when it is locked, as we
704 * just created it (so there can be no old holders
705 * that haven't tested I_LOCK).
707 WARN_ON((inode->i_state & (I_LOCK|I_NEW)) != (I_LOCK|I_NEW));
708 inode->i_state &= ~(I_LOCK|I_NEW);
709 wake_up_inode(inode);
711 EXPORT_SYMBOL(unlock_new_inode);
714 * This is called without the inode lock held.. Be careful.
716 * We no longer cache the sb_flags in i_flags - see fs.h
717 * -- rmk@arm.uk.linux.org
719 static struct inode *get_new_inode(struct super_block *sb,
720 struct hlist_head *head,
721 int (*test)(struct inode *, void *),
722 int (*set)(struct inode *, void *),
723 void *data)
725 struct inode *inode;
727 inode = alloc_inode(sb);
728 if (inode) {
729 struct inode *old;
731 spin_lock(&inode_lock);
732 /* We released the lock, so.. */
733 old = find_inode(sb, head, test, data);
734 if (!old) {
735 if (set(inode, data))
736 goto set_failed;
738 __inode_add_to_lists(sb, head, inode);
739 inode->i_state = I_LOCK|I_NEW;
740 spin_unlock(&inode_lock);
742 /* Return the locked inode with I_NEW set, the
743 * caller is responsible for filling in the contents
745 return inode;
749 * Uhhuh, somebody else created the same inode under
750 * us. Use the old inode instead of the one we just
751 * allocated.
753 __iget(old);
754 spin_unlock(&inode_lock);
755 destroy_inode(inode);
756 inode = old;
757 wait_on_inode(inode);
759 return inode;
761 set_failed:
762 spin_unlock(&inode_lock);
763 destroy_inode(inode);
764 return NULL;
768 * get_new_inode_fast is the fast path version of get_new_inode, see the
769 * comment at iget_locked for details.
771 static struct inode *get_new_inode_fast(struct super_block *sb,
772 struct hlist_head *head, unsigned long ino)
774 struct inode *inode;
776 inode = alloc_inode(sb);
777 if (inode) {
778 struct inode *old;
780 spin_lock(&inode_lock);
781 /* We released the lock, so.. */
782 old = find_inode_fast(sb, head, ino);
783 if (!old) {
784 inode->i_ino = ino;
785 __inode_add_to_lists(sb, head, inode);
786 inode->i_state = I_LOCK|I_NEW;
787 spin_unlock(&inode_lock);
789 /* Return the locked inode with I_NEW set, the
790 * caller is responsible for filling in the contents
792 return inode;
796 * Uhhuh, somebody else created the same inode under
797 * us. Use the old inode instead of the one we just
798 * allocated.
800 __iget(old);
801 spin_unlock(&inode_lock);
802 destroy_inode(inode);
803 inode = old;
804 wait_on_inode(inode);
806 return inode;
810 * iunique - get a unique inode number
811 * @sb: superblock
812 * @max_reserved: highest reserved inode number
814 * Obtain an inode number that is unique on the system for a given
815 * superblock. This is used by file systems that have no natural
816 * permanent inode numbering system. An inode number is returned that
817 * is higher than the reserved limit but unique.
819 * BUGS:
820 * With a large number of inodes live on the file system this function
821 * currently becomes quite slow.
823 ino_t iunique(struct super_block *sb, ino_t max_reserved)
826 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
827 * error if st_ino won't fit in target struct field. Use 32bit counter
828 * here to attempt to avoid that.
830 static unsigned int counter;
831 struct inode *inode;
832 struct hlist_head *head;
833 ino_t res;
835 spin_lock(&inode_lock);
836 do {
837 if (counter <= max_reserved)
838 counter = max_reserved + 1;
839 res = counter++;
840 head = inode_hashtable + hash(sb, res);
841 inode = find_inode_fast(sb, head, res);
842 } while (inode != NULL);
843 spin_unlock(&inode_lock);
845 return res;
847 EXPORT_SYMBOL(iunique);
849 struct inode *igrab(struct inode *inode)
851 spin_lock(&inode_lock);
852 if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
853 __iget(inode);
854 else
856 * Handle the case where s_op->clear_inode is not been
857 * called yet, and somebody is calling igrab
858 * while the inode is getting freed.
860 inode = NULL;
861 spin_unlock(&inode_lock);
862 return inode;
864 EXPORT_SYMBOL(igrab);
867 * ifind - internal function, you want ilookup5() or iget5().
868 * @sb: super block of file system to search
869 * @head: the head of the list to search
870 * @test: callback used for comparisons between inodes
871 * @data: opaque data pointer to pass to @test
872 * @wait: if true wait for the inode to be unlocked, if false do not
874 * ifind() searches for the inode specified by @data in the inode
875 * cache. This is a generalized version of ifind_fast() for file systems where
876 * the inode number is not sufficient for unique identification of an inode.
878 * If the inode is in the cache, the inode is returned with an incremented
879 * reference count.
881 * Otherwise NULL is returned.
883 * Note, @test is called with the inode_lock held, so can't sleep.
885 static struct inode *ifind(struct super_block *sb,
886 struct hlist_head *head, int (*test)(struct inode *, void *),
887 void *data, const int wait)
889 struct inode *inode;
891 spin_lock(&inode_lock);
892 inode = find_inode(sb, head, test, data);
893 if (inode) {
894 __iget(inode);
895 spin_unlock(&inode_lock);
896 if (likely(wait))
897 wait_on_inode(inode);
898 return inode;
900 spin_unlock(&inode_lock);
901 return NULL;
905 * ifind_fast - internal function, you want ilookup() or iget().
906 * @sb: super block of file system to search
907 * @head: head of the list to search
908 * @ino: inode number to search for
910 * ifind_fast() searches for the inode @ino in the inode cache. This is for
911 * file systems where the inode number is sufficient for unique identification
912 * of an inode.
914 * If the inode is in the cache, the inode is returned with an incremented
915 * reference count.
917 * Otherwise NULL is returned.
919 static struct inode *ifind_fast(struct super_block *sb,
920 struct hlist_head *head, unsigned long ino)
922 struct inode *inode;
924 spin_lock(&inode_lock);
925 inode = find_inode_fast(sb, head, ino);
926 if (inode) {
927 __iget(inode);
928 spin_unlock(&inode_lock);
929 wait_on_inode(inode);
930 return inode;
932 spin_unlock(&inode_lock);
933 return NULL;
937 * ilookup5_nowait - search for an inode in the inode cache
938 * @sb: super block of file system to search
939 * @hashval: hash value (usually inode number) to search for
940 * @test: callback used for comparisons between inodes
941 * @data: opaque data pointer to pass to @test
943 * ilookup5() uses ifind() to search for the inode specified by @hashval and
944 * @data in the inode cache. This is a generalized version of ilookup() for
945 * file systems where the inode number is not sufficient for unique
946 * identification of an inode.
948 * If the inode is in the cache, the inode is returned with an incremented
949 * reference count. Note, the inode lock is not waited upon so you have to be
950 * very careful what you do with the returned inode. You probably should be
951 * using ilookup5() instead.
953 * Otherwise NULL is returned.
955 * Note, @test is called with the inode_lock held, so can't sleep.
957 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
958 int (*test)(struct inode *, void *), void *data)
960 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
962 return ifind(sb, head, test, data, 0);
964 EXPORT_SYMBOL(ilookup5_nowait);
967 * ilookup5 - search for an inode in the inode cache
968 * @sb: super block of file system to search
969 * @hashval: hash value (usually inode number) to search for
970 * @test: callback used for comparisons between inodes
971 * @data: opaque data pointer to pass to @test
973 * ilookup5() uses ifind() to search for the inode specified by @hashval and
974 * @data in the inode cache. This is a generalized version of ilookup() for
975 * file systems where the inode number is not sufficient for unique
976 * identification of an inode.
978 * If the inode is in the cache, the inode lock is waited upon and the inode is
979 * returned with an incremented reference count.
981 * Otherwise NULL is returned.
983 * Note, @test is called with the inode_lock held, so can't sleep.
985 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
986 int (*test)(struct inode *, void *), void *data)
988 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
990 return ifind(sb, head, test, data, 1);
992 EXPORT_SYMBOL(ilookup5);
995 * ilookup - search for an inode in the inode cache
996 * @sb: super block of file system to search
997 * @ino: inode number to search for
999 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
1000 * This is for file systems where the inode number is sufficient for unique
1001 * identification of an inode.
1003 * If the inode is in the cache, the inode is returned with an incremented
1004 * reference count.
1006 * Otherwise NULL is returned.
1008 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1010 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1012 return ifind_fast(sb, head, ino);
1014 EXPORT_SYMBOL(ilookup);
1017 * iget5_locked - obtain an inode from a mounted file system
1018 * @sb: super block of file system
1019 * @hashval: hash value (usually inode number) to get
1020 * @test: callback used for comparisons between inodes
1021 * @set: callback used to initialize a new struct inode
1022 * @data: opaque data pointer to pass to @test and @set
1024 * iget5_locked() uses ifind() to search for the inode specified by @hashval
1025 * and @data in the inode cache and if present it is returned with an increased
1026 * reference count. This is a generalized version of iget_locked() for file
1027 * systems where the inode number is not sufficient for unique identification
1028 * of an inode.
1030 * If the inode is not in cache, get_new_inode() is called to allocate a new
1031 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1032 * file system gets to fill it in before unlocking it via unlock_new_inode().
1034 * Note both @test and @set are called with the inode_lock held, so can't sleep.
1036 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1037 int (*test)(struct inode *, void *),
1038 int (*set)(struct inode *, void *), void *data)
1040 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1041 struct inode *inode;
1043 inode = ifind(sb, head, test, data, 1);
1044 if (inode)
1045 return inode;
1047 * get_new_inode() will do the right thing, re-trying the search
1048 * in case it had to block at any point.
1050 return get_new_inode(sb, head, test, set, data);
1052 EXPORT_SYMBOL(iget5_locked);
1055 * iget_locked - obtain an inode from a mounted file system
1056 * @sb: super block of file system
1057 * @ino: inode number to get
1059 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1060 * the inode cache and if present it is returned with an increased reference
1061 * count. This is for file systems where the inode number is sufficient for
1062 * unique identification of an inode.
1064 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1065 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1066 * The file system gets to fill it in before unlocking it via
1067 * unlock_new_inode().
1069 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1071 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1072 struct inode *inode;
1074 inode = ifind_fast(sb, head, ino);
1075 if (inode)
1076 return inode;
1078 * get_new_inode_fast() will do the right thing, re-trying the search
1079 * in case it had to block at any point.
1081 return get_new_inode_fast(sb, head, ino);
1083 EXPORT_SYMBOL(iget_locked);
1085 int insert_inode_locked(struct inode *inode)
1087 struct super_block *sb = inode->i_sb;
1088 ino_t ino = inode->i_ino;
1089 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1091 inode->i_state |= I_LOCK|I_NEW;
1092 while (1) {
1093 struct hlist_node *node;
1094 struct inode *old = NULL;
1095 spin_lock(&inode_lock);
1096 hlist_for_each_entry(old, node, head, i_hash) {
1097 if (old->i_ino != ino)
1098 continue;
1099 if (old->i_sb != sb)
1100 continue;
1101 if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))
1102 continue;
1103 break;
1105 if (likely(!node)) {
1106 hlist_add_head(&inode->i_hash, head);
1107 spin_unlock(&inode_lock);
1108 return 0;
1110 __iget(old);
1111 spin_unlock(&inode_lock);
1112 wait_on_inode(old);
1113 if (unlikely(!hlist_unhashed(&old->i_hash))) {
1114 iput(old);
1115 return -EBUSY;
1117 iput(old);
1120 EXPORT_SYMBOL(insert_inode_locked);
1122 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1123 int (*test)(struct inode *, void *), void *data)
1125 struct super_block *sb = inode->i_sb;
1126 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1128 inode->i_state |= I_LOCK|I_NEW;
1130 while (1) {
1131 struct hlist_node *node;
1132 struct inode *old = NULL;
1134 spin_lock(&inode_lock);
1135 hlist_for_each_entry(old, node, head, i_hash) {
1136 if (old->i_sb != sb)
1137 continue;
1138 if (!test(old, data))
1139 continue;
1140 if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))
1141 continue;
1142 break;
1144 if (likely(!node)) {
1145 hlist_add_head(&inode->i_hash, head);
1146 spin_unlock(&inode_lock);
1147 return 0;
1149 __iget(old);
1150 spin_unlock(&inode_lock);
1151 wait_on_inode(old);
1152 if (unlikely(!hlist_unhashed(&old->i_hash))) {
1153 iput(old);
1154 return -EBUSY;
1156 iput(old);
1159 EXPORT_SYMBOL(insert_inode_locked4);
1162 * __insert_inode_hash - hash an inode
1163 * @inode: unhashed inode
1164 * @hashval: unsigned long value used to locate this object in the
1165 * inode_hashtable.
1167 * Add an inode to the inode hash for this superblock.
1169 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1171 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1172 spin_lock(&inode_lock);
1173 hlist_add_head(&inode->i_hash, head);
1174 spin_unlock(&inode_lock);
1176 EXPORT_SYMBOL(__insert_inode_hash);
1179 * remove_inode_hash - remove an inode from the hash
1180 * @inode: inode to unhash
1182 * Remove an inode from the superblock.
1184 void remove_inode_hash(struct inode *inode)
1186 spin_lock(&inode_lock);
1187 hlist_del_init(&inode->i_hash);
1188 spin_unlock(&inode_lock);
1190 EXPORT_SYMBOL(remove_inode_hash);
1193 * Tell the filesystem that this inode is no longer of any interest and should
1194 * be completely destroyed.
1196 * We leave the inode in the inode hash table until *after* the filesystem's
1197 * ->delete_inode completes. This ensures that an iget (such as nfsd might
1198 * instigate) will always find up-to-date information either in the hash or on
1199 * disk.
1201 * I_FREEING is set so that no-one will take a new reference to the inode while
1202 * it is being deleted.
1204 void generic_delete_inode(struct inode *inode)
1206 const struct super_operations *op = inode->i_sb->s_op;
1208 list_del_init(&inode->i_list);
1209 list_del_init(&inode->i_sb_list);
1210 WARN_ON(inode->i_state & I_NEW);
1211 inode->i_state |= I_FREEING;
1212 inodes_stat.nr_inodes--;
1213 spin_unlock(&inode_lock);
1215 security_inode_delete(inode);
1217 if (op->delete_inode) {
1218 void (*delete)(struct inode *) = op->delete_inode;
1219 if (!is_bad_inode(inode))
1220 vfs_dq_init(inode);
1221 /* Filesystems implementing their own
1222 * s_op->delete_inode are required to call
1223 * truncate_inode_pages and clear_inode()
1224 * internally */
1225 delete(inode);
1226 } else {
1227 truncate_inode_pages(&inode->i_data, 0);
1228 clear_inode(inode);
1230 spin_lock(&inode_lock);
1231 hlist_del_init(&inode->i_hash);
1232 spin_unlock(&inode_lock);
1233 wake_up_inode(inode);
1234 BUG_ON(inode->i_state != I_CLEAR);
1235 destroy_inode(inode);
1237 EXPORT_SYMBOL(generic_delete_inode);
1239 static void generic_forget_inode(struct inode *inode)
1241 struct super_block *sb = inode->i_sb;
1243 if (!hlist_unhashed(&inode->i_hash)) {
1244 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1245 list_move(&inode->i_list, &inode_unused);
1246 inodes_stat.nr_unused++;
1247 if (sb->s_flags & MS_ACTIVE) {
1248 spin_unlock(&inode_lock);
1249 return;
1251 WARN_ON(inode->i_state & I_NEW);
1252 inode->i_state |= I_WILL_FREE;
1253 spin_unlock(&inode_lock);
1254 write_inode_now(inode, 1);
1255 spin_lock(&inode_lock);
1256 WARN_ON(inode->i_state & I_NEW);
1257 inode->i_state &= ~I_WILL_FREE;
1258 inodes_stat.nr_unused--;
1259 hlist_del_init(&inode->i_hash);
1261 list_del_init(&inode->i_list);
1262 list_del_init(&inode->i_sb_list);
1263 WARN_ON(inode->i_state & I_NEW);
1264 inode->i_state |= I_FREEING;
1265 inodes_stat.nr_inodes--;
1266 spin_unlock(&inode_lock);
1267 if (inode->i_data.nrpages)
1268 truncate_inode_pages(&inode->i_data, 0);
1269 clear_inode(inode);
1270 wake_up_inode(inode);
1271 destroy_inode(inode);
1275 * Normal UNIX filesystem behaviour: delete the
1276 * inode when the usage count drops to zero, and
1277 * i_nlink is zero.
1279 void generic_drop_inode(struct inode *inode)
1281 if (!inode->i_nlink)
1282 generic_delete_inode(inode);
1283 else
1284 generic_forget_inode(inode);
1286 EXPORT_SYMBOL_GPL(generic_drop_inode);
1289 * Called when we're dropping the last reference
1290 * to an inode.
1292 * Call the FS "drop()" function, defaulting to
1293 * the legacy UNIX filesystem behaviour..
1295 * NOTE! NOTE! NOTE! We're called with the inode lock
1296 * held, and the drop function is supposed to release
1297 * the lock!
1299 static inline void iput_final(struct inode *inode)
1301 const struct super_operations *op = inode->i_sb->s_op;
1302 void (*drop)(struct inode *) = generic_drop_inode;
1304 if (op && op->drop_inode)
1305 drop = op->drop_inode;
1306 drop(inode);
1310 * iput - put an inode
1311 * @inode: inode to put
1313 * Puts an inode, dropping its usage count. If the inode use count hits
1314 * zero, the inode is then freed and may also be destroyed.
1316 * Consequently, iput() can sleep.
1318 void iput(struct inode *inode)
1320 if (inode) {
1321 BUG_ON(inode->i_state == I_CLEAR);
1323 if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1324 iput_final(inode);
1327 EXPORT_SYMBOL(iput);
1330 * bmap - find a block number in a file
1331 * @inode: inode of file
1332 * @block: block to find
1334 * Returns the block number on the device holding the inode that
1335 * is the disk block number for the block of the file requested.
1336 * That is, asked for block 4 of inode 1 the function will return the
1337 * disk block relative to the disk start that holds that block of the
1338 * file.
1340 sector_t bmap(struct inode *inode, sector_t block)
1342 sector_t res = 0;
1343 if (inode->i_mapping->a_ops->bmap)
1344 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1345 return res;
1347 EXPORT_SYMBOL(bmap);
1350 * With relative atime, only update atime if the previous atime is
1351 * earlier than either the ctime or mtime or if at least a day has
1352 * passed since the last atime update.
1354 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1355 struct timespec now)
1358 if (!(mnt->mnt_flags & MNT_RELATIME))
1359 return 1;
1361 * Is mtime younger than atime? If yes, update atime:
1363 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1364 return 1;
1366 * Is ctime younger than atime? If yes, update atime:
1368 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1369 return 1;
1372 * Is the previous atime value older than a day? If yes,
1373 * update atime:
1375 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1376 return 1;
1378 * Good, we can skip the atime update:
1380 return 0;
1384 * touch_atime - update the access time
1385 * @mnt: mount the inode is accessed on
1386 * @dentry: dentry accessed
1388 * Update the accessed time on an inode and mark it for writeback.
1389 * This function automatically handles read only file systems and media,
1390 * as well as the "noatime" flag and inode specific "noatime" markers.
1392 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1394 struct inode *inode = dentry->d_inode;
1395 struct timespec now;
1397 if (mnt_want_write(mnt))
1398 return;
1399 if (inode->i_flags & S_NOATIME)
1400 goto out;
1401 if (IS_NOATIME(inode))
1402 goto out;
1403 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1404 goto out;
1406 if (mnt->mnt_flags & MNT_NOATIME)
1407 goto out;
1408 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1409 goto out;
1411 now = current_fs_time(inode->i_sb);
1413 if (!relatime_need_update(mnt, inode, now))
1414 goto out;
1416 if (timespec_equal(&inode->i_atime, &now))
1417 goto out;
1419 inode->i_atime = now;
1420 mark_inode_dirty_sync(inode);
1421 out:
1422 mnt_drop_write(mnt);
1424 EXPORT_SYMBOL(touch_atime);
1427 * file_update_time - update mtime and ctime time
1428 * @file: file accessed
1430 * Update the mtime and ctime members of an inode and mark the inode
1431 * for writeback. Note that this function is meant exclusively for
1432 * usage in the file write path of filesystems, and filesystems may
1433 * choose to explicitly ignore update via this function with the
1434 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1435 * timestamps are handled by the server.
1438 void file_update_time(struct file *file)
1440 struct inode *inode = file->f_path.dentry->d_inode;
1441 struct timespec now;
1442 int sync_it = 0;
1443 int err;
1445 if (IS_NOCMTIME(inode))
1446 return;
1448 err = mnt_want_write_file(file);
1449 if (err)
1450 return;
1452 now = current_fs_time(inode->i_sb);
1453 if (!timespec_equal(&inode->i_mtime, &now)) {
1454 inode->i_mtime = now;
1455 sync_it = 1;
1458 if (!timespec_equal(&inode->i_ctime, &now)) {
1459 inode->i_ctime = now;
1460 sync_it = 1;
1463 if (IS_I_VERSION(inode)) {
1464 inode_inc_iversion(inode);
1465 sync_it = 1;
1468 if (sync_it)
1469 mark_inode_dirty_sync(inode);
1470 mnt_drop_write(file->f_path.mnt);
1472 EXPORT_SYMBOL(file_update_time);
1474 int inode_needs_sync(struct inode *inode)
1476 if (IS_SYNC(inode))
1477 return 1;
1478 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1479 return 1;
1480 return 0;
1482 EXPORT_SYMBOL(inode_needs_sync);
1484 int inode_wait(void *word)
1486 schedule();
1487 return 0;
1489 EXPORT_SYMBOL(inode_wait);
1492 * If we try to find an inode in the inode hash while it is being
1493 * deleted, we have to wait until the filesystem completes its
1494 * deletion before reporting that it isn't found. This function waits
1495 * until the deletion _might_ have completed. Callers are responsible
1496 * to recheck inode state.
1498 * It doesn't matter if I_LOCK is not set initially, a call to
1499 * wake_up_inode() after removing from the hash list will DTRT.
1501 * This is called with inode_lock held.
1503 static void __wait_on_freeing_inode(struct inode *inode)
1505 wait_queue_head_t *wq;
1506 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1507 wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1508 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1509 spin_unlock(&inode_lock);
1510 schedule();
1511 finish_wait(wq, &wait.wait);
1512 spin_lock(&inode_lock);
1515 static __initdata unsigned long ihash_entries;
1516 static int __init set_ihash_entries(char *str)
1518 if (!str)
1519 return 0;
1520 ihash_entries = simple_strtoul(str, &str, 0);
1521 return 1;
1523 __setup("ihash_entries=", set_ihash_entries);
1526 * Initialize the waitqueues and inode hash table.
1528 void __init inode_init_early(void)
1530 int loop;
1532 /* If hashes are distributed across NUMA nodes, defer
1533 * hash allocation until vmalloc space is available.
1535 if (hashdist)
1536 return;
1538 inode_hashtable =
1539 alloc_large_system_hash("Inode-cache",
1540 sizeof(struct hlist_head),
1541 ihash_entries,
1543 HASH_EARLY,
1544 &i_hash_shift,
1545 &i_hash_mask,
1548 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1549 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1552 void __init inode_init(void)
1554 int loop;
1556 /* inode slab cache */
1557 inode_cachep = kmem_cache_create("inode_cache",
1558 sizeof(struct inode),
1560 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1561 SLAB_MEM_SPREAD),
1562 init_once);
1563 register_shrinker(&icache_shrinker);
1565 /* Hash may have been set up in inode_init_early */
1566 if (!hashdist)
1567 return;
1569 inode_hashtable =
1570 alloc_large_system_hash("Inode-cache",
1571 sizeof(struct hlist_head),
1572 ihash_entries,
1575 &i_hash_shift,
1576 &i_hash_mask,
1579 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1580 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1583 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1585 inode->i_mode = mode;
1586 if (S_ISCHR(mode)) {
1587 inode->i_fop = &def_chr_fops;
1588 inode->i_rdev = rdev;
1589 } else if (S_ISBLK(mode)) {
1590 inode->i_fop = &def_blk_fops;
1591 inode->i_rdev = rdev;
1592 } else if (S_ISFIFO(mode))
1593 inode->i_fop = &def_fifo_fops;
1594 else if (S_ISSOCK(mode))
1595 inode->i_fop = &bad_sock_fops;
1596 else
1597 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1598 mode);
1600 EXPORT_SYMBOL(init_special_inode);