ath9k: Header file cleanup
[linux-2.6/mini2440.git] / drivers / net / wireless / ath9k / rc.c
blob060a7cf6f75a216cad3857ef4b3065ddb338af6f
1 /*
2 * Copyright (c) 2004 Video54 Technologies, Inc.
3 * Copyright (c) 2004-2008 Atheros Communications, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include "ath9k.h"
20 static struct ath_rate_table ar5416_11na_ratetable = {
21 42,
23 { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
24 5400, 0x0b, 0x00, 12,
25 0, 2, 1, 0, 0, 0, 0, 0 },
26 { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
27 7800, 0x0f, 0x00, 18,
28 0, 3, 1, 1, 1, 1, 1, 0 },
29 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
30 10000, 0x0a, 0x00, 24,
31 2, 4, 2, 2, 2, 2, 2, 0 },
32 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
33 13900, 0x0e, 0x00, 36,
34 2, 6, 2, 3, 3, 3, 3, 0 },
35 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
36 17300, 0x09, 0x00, 48,
37 4, 10, 3, 4, 4, 4, 4, 0 },
38 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
39 23000, 0x0d, 0x00, 72,
40 4, 14, 3, 5, 5, 5, 5, 0 },
41 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
42 27400, 0x08, 0x00, 96,
43 4, 20, 3, 6, 6, 6, 6, 0 },
44 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
45 29300, 0x0c, 0x00, 108,
46 4, 23, 3, 7, 7, 7, 7, 0 },
47 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */
48 6400, 0x80, 0x00, 0,
49 0, 2, 3, 8, 24, 8, 24, 3216 },
50 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */
51 12700, 0x81, 0x00, 1,
52 2, 4, 3, 9, 25, 9, 25, 6434 },
53 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */
54 18800, 0x82, 0x00, 2,
55 2, 6, 3, 10, 26, 10, 26, 9650 },
56 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */
57 25000, 0x83, 0x00, 3,
58 4, 10, 3, 11, 27, 11, 27, 12868 },
59 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */
60 36700, 0x84, 0x00, 4,
61 4, 14, 3, 12, 28, 12, 28, 19304 },
62 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */
63 48100, 0x85, 0x00, 5,
64 4, 20, 3, 13, 29, 13, 29, 25740 },
65 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */
66 53500, 0x86, 0x00, 6,
67 4, 23, 3, 14, 30, 14, 30, 28956 },
68 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */
69 59000, 0x87, 0x00, 7,
70 4, 25, 3, 15, 31, 15, 32, 32180 },
71 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */
72 12700, 0x88, 0x00,
73 8, 0, 2, 3, 16, 33, 16, 33, 6430 },
74 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */
75 24800, 0x89, 0x00, 9,
76 2, 4, 3, 17, 34, 17, 34, 12860 },
77 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */
78 36600, 0x8a, 0x00, 10,
79 2, 6, 3, 18, 35, 18, 35, 19300 },
80 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */
81 48100, 0x8b, 0x00, 11,
82 4, 10, 3, 19, 36, 19, 36, 25736 },
83 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */
84 69500, 0x8c, 0x00, 12,
85 4, 14, 3, 20, 37, 20, 37, 38600 },
86 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */
87 89500, 0x8d, 0x00, 13,
88 4, 20, 3, 21, 38, 21, 38, 51472 },
89 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */
90 98900, 0x8e, 0x00, 14,
91 4, 23, 3, 22, 39, 22, 39, 57890 },
92 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */
93 108300, 0x8f, 0x00, 15,
94 4, 25, 3, 23, 40, 23, 41, 64320 },
95 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */
96 13200, 0x80, 0x00, 0,
97 0, 2, 3, 8, 24, 24, 24, 6684 },
98 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */
99 25900, 0x81, 0x00, 1,
100 2, 4, 3, 9, 25, 25, 25, 13368 },
101 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */
102 38600, 0x82, 0x00, 2,
103 2, 6, 3, 10, 26, 26, 26, 20052 },
104 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */
105 49800, 0x83, 0x00, 3,
106 4, 10, 3, 11, 27, 27, 27, 26738 },
107 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */
108 72200, 0x84, 0x00, 4,
109 4, 14, 3, 12, 28, 28, 28, 40104 },
110 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */
111 92900, 0x85, 0x00, 5,
112 4, 20, 3, 13, 29, 29, 29, 53476 },
113 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5 Mb */
114 102700, 0x86, 0x00, 6,
115 4, 23, 3, 14, 30, 30, 30, 60156 },
116 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */
117 112000, 0x87, 0x00, 7,
118 4, 25, 3, 15, 31, 32, 32, 66840 },
119 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
120 122000, 0x87, 0x00, 7,
121 4, 25, 3, 15, 31, 32, 32, 74200 },
122 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */
123 25800, 0x88, 0x00, 8,
124 0, 2, 3, 16, 33, 33, 33, 13360 },
125 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */
126 49800, 0x89, 0x00, 9,
127 2, 4, 3, 17, 34, 34, 34, 26720 },
128 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */
129 71900, 0x8a, 0x00, 10,
130 2, 6, 3, 18, 35, 35, 35, 40080 },
131 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */
132 92500, 0x8b, 0x00, 11,
133 4, 10, 3, 19, 36, 36, 36, 53440 },
134 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */
135 130300, 0x8c, 0x00, 12,
136 4, 14, 3, 20, 37, 37, 37, 80160 },
137 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */
138 162800, 0x8d, 0x00, 13,
139 4, 20, 3, 21, 38, 38, 38, 106880 },
140 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */
141 178200, 0x8e, 0x00, 14,
142 4, 23, 3, 22, 39, 39, 39, 120240 },
143 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */
144 192100, 0x8f, 0x00, 15,
145 4, 25, 3, 23, 40, 41, 41, 133600 },
146 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
147 207000, 0x8f, 0x00, 15,
148 4, 25, 3, 23, 40, 41, 41, 148400 },
150 50, /* probe interval */
151 50, /* rssi reduce interval */
152 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
155 /* 4ms frame limit not used for NG mode. The values filled
156 * for HT are the 64K max aggregate limit */
158 static struct ath_rate_table ar5416_11ng_ratetable = {
161 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
162 900, 0x1b, 0x00, 2,
163 0, 0, 1, 0, 0, 0, 0, 0 },
164 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
165 1900, 0x1a, 0x04, 4,
166 1, 1, 1, 1, 1, 1, 1, 0 },
167 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
168 4900, 0x19, 0x04, 11,
169 2, 2, 2, 2, 2, 2, 2, 0 },
170 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
171 8100, 0x18, 0x04, 22,
172 3, 3, 2, 3, 3, 3, 3, 0 },
173 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
174 5400, 0x0b, 0x00, 12,
175 4, 2, 1, 4, 4, 4, 4, 0 },
176 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
177 7800, 0x0f, 0x00, 18,
178 4, 3, 1, 5, 5, 5, 5, 0 },
179 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
180 10100, 0x0a, 0x00, 24,
181 6, 4, 1, 6, 6, 6, 6, 0 },
182 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
183 14100, 0x0e, 0x00, 36,
184 6, 6, 2, 7, 7, 7, 7, 0 },
185 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
186 17700, 0x09, 0x00, 48,
187 8, 10, 3, 8, 8, 8, 8, 0 },
188 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
189 23700, 0x0d, 0x00, 72,
190 8, 14, 3, 9, 9, 9, 9, 0 },
191 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
192 27400, 0x08, 0x00, 96,
193 8, 20, 3, 10, 10, 10, 10, 0 },
194 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
195 30900, 0x0c, 0x00, 108,
196 8, 23, 3, 11, 11, 11, 11, 0 },
197 { INVALID, INVALID, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */
198 6400, 0x80, 0x00, 0,
199 4, 2, 3, 12, 28, 12, 28, 3216 },
200 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */
201 12700, 0x81, 0x00, 1,
202 6, 4, 3, 13, 29, 13, 29, 6434 },
203 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */
204 18800, 0x82, 0x00, 2,
205 6, 6, 3, 14, 30, 14, 30, 9650 },
206 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */
207 25000, 0x83, 0x00, 3,
208 8, 10, 3, 15, 31, 15, 31, 12868 },
209 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */
210 36700, 0x84, 0x00, 4,
211 8, 14, 3, 16, 32, 16, 32, 19304 },
212 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */
213 48100, 0x85, 0x00, 5,
214 8, 20, 3, 17, 33, 17, 33, 25740 },
215 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */
216 53500, 0x86, 0x00, 6,
217 8, 23, 3, 18, 34, 18, 34, 28956 },
218 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */
219 59000, 0x87, 0x00, 7,
220 8, 25, 3, 19, 35, 19, 36, 32180 },
221 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */
222 12700, 0x88, 0x00, 8,
223 4, 2, 3, 20, 37, 20, 37, 6430 },
224 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */
225 24800, 0x89, 0x00, 9,
226 6, 4, 3, 21, 38, 21, 38, 12860 },
227 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */
228 36600, 0x8a, 0x00, 10,
229 6, 6, 3, 22, 39, 22, 39, 19300 },
230 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */
231 48100, 0x8b, 0x00, 11,
232 8, 10, 3, 23, 40, 23, 40, 25736 },
233 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */
234 69500, 0x8c, 0x00, 12,
235 8, 14, 3, 24, 41, 24, 41, 38600 },
236 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */
237 89500, 0x8d, 0x00, 13,
238 8, 20, 3, 25, 42, 25, 42, 51472 },
239 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */
240 98900, 0x8e, 0x00, 14,
241 8, 23, 3, 26, 43, 26, 44, 57890 },
242 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */
243 108300, 0x8f, 0x00, 15,
244 8, 25, 3, 27, 44, 27, 45, 64320 },
245 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */
246 13200, 0x80, 0x00, 0,
247 8, 2, 3, 12, 28, 28, 28, 6684 },
248 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */
249 25900, 0x81, 0x00, 1,
250 8, 4, 3, 13, 29, 29, 29, 13368 },
251 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */
252 38600, 0x82, 0x00, 2,
253 8, 6, 3, 14, 30, 30, 30, 20052 },
254 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */
255 49800, 0x83, 0x00, 3,
256 8, 10, 3, 15, 31, 31, 31, 26738 },
257 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */
258 72200, 0x84, 0x00, 4,
259 8, 14, 3, 16, 32, 32, 32, 40104 },
260 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */
261 92900, 0x85, 0x00, 5,
262 8, 20, 3, 17, 33, 33, 33, 53476 },
263 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5 Mb */
264 102700, 0x86, 0x00, 6,
265 8, 23, 3, 18, 34, 34, 34, 60156 },
266 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */
267 112000, 0x87, 0x00, 7,
268 8, 23, 3, 19, 35, 36, 36, 66840 },
269 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
270 122000, 0x87, 0x00, 7,
271 8, 25, 3, 19, 35, 36, 36, 74200 },
272 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */
273 25800, 0x88, 0x00, 8,
274 8, 2, 3, 20, 37, 37, 37, 13360 },
275 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */
276 49800, 0x89, 0x00, 9,
277 8, 4, 3, 21, 38, 38, 38, 26720 },
278 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */
279 71900, 0x8a, 0x00, 10,
280 8, 6, 3, 22, 39, 39, 39, 40080 },
281 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */
282 92500, 0x8b, 0x00, 11,
283 8, 10, 3, 23, 40, 40, 40, 53440 },
284 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */
285 130300, 0x8c, 0x00, 12,
286 8, 14, 3, 24, 41, 41, 41, 80160 },
287 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */
288 162800, 0x8d, 0x00, 13,
289 8, 20, 3, 25, 42, 42, 42, 106880 },
290 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */
291 178200, 0x8e, 0x00, 14,
292 8, 23, 3, 26, 43, 43, 43, 120240 },
293 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */
294 192100, 0x8f, 0x00, 15,
295 8, 23, 3, 27, 44, 45, 45, 133600 },
296 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
297 207000, 0x8f, 0x00, 15,
298 8, 25, 3, 27, 44, 45, 45, 148400 },
300 50, /* probe interval */
301 50, /* rssi reduce interval */
302 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
305 static struct ath_rate_table ar5416_11a_ratetable = {
308 { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
309 5400, 0x0b, 0x00, (0x80|12),
310 0, 2, 1, 0, 0 },
311 { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
312 7800, 0x0f, 0x00, 18,
313 0, 3, 1, 1, 0 },
314 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
315 10000, 0x0a, 0x00, (0x80|24),
316 2, 4, 2, 2, 0 },
317 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
318 13900, 0x0e, 0x00, 36,
319 2, 6, 2, 3, 0 },
320 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
321 17300, 0x09, 0x00, (0x80|48),
322 4, 10, 3, 4, 0 },
323 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
324 23000, 0x0d, 0x00, 72,
325 4, 14, 3, 5, 0 },
326 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
327 27400, 0x08, 0x00, 96,
328 4, 19, 3, 6, 0 },
329 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
330 29300, 0x0c, 0x00, 108,
331 4, 23, 3, 7, 0 },
333 50, /* probe interval */
334 50, /* rssi reduce interval */
335 0, /* Phy rates allowed initially */
338 static struct ath_rate_table ar5416_11g_ratetable = {
341 { VALID, VALID, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
342 900, 0x1b, 0x00, 2,
343 0, 0, 1, 0, 0 },
344 { VALID, VALID, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
345 1900, 0x1a, 0x04, 4,
346 1, 1, 1, 1, 0 },
347 { VALID, VALID, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
348 4900, 0x19, 0x04, 11,
349 2, 2, 2, 2, 0 },
350 { VALID, VALID, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
351 8100, 0x18, 0x04, 22,
352 3, 3, 2, 3, 0 },
353 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
354 5400, 0x0b, 0x00, 12,
355 4, 2, 1, 4, 0 },
356 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
357 7800, 0x0f, 0x00, 18,
358 4, 3, 1, 5, 0 },
359 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
360 10000, 0x0a, 0x00, 24,
361 6, 4, 1, 6, 0 },
362 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
363 13900, 0x0e, 0x00, 36,
364 6, 6, 2, 7, 0 },
365 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
366 17300, 0x09, 0x00, 48,
367 8, 10, 3, 8, 0 },
368 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
369 23000, 0x0d, 0x00, 72,
370 8, 14, 3, 9, 0 },
371 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
372 27400, 0x08, 0x00, 96,
373 8, 19, 3, 10, 0 },
374 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
375 29300, 0x0c, 0x00, 108,
376 8, 23, 3, 11, 0 },
378 50, /* probe interval */
379 50, /* rssi reduce interval */
380 0, /* Phy rates allowed initially */
383 static struct ath_rate_table ar5416_11b_ratetable = {
386 { VALID, VALID, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
387 900, 0x1b, 0x00, (0x80|2),
388 0, 0, 1, 0, 0 },
389 { VALID, VALID, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
390 1800, 0x1a, 0x04, (0x80|4),
391 1, 1, 1, 1, 0 },
392 { VALID, VALID, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
393 4300, 0x19, 0x04, (0x80|11),
394 1, 2, 2, 2, 0 },
395 { VALID, VALID, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
396 7100, 0x18, 0x04, (0x80|22),
397 1, 4, 100, 3, 0 },
399 100, /* probe interval */
400 100, /* rssi reduce interval */
401 0, /* Phy rates allowed initially */
404 static inline int8_t median(int8_t a, int8_t b, int8_t c)
406 if (a >= b) {
407 if (b >= c)
408 return b;
409 else if (a > c)
410 return c;
411 else
412 return a;
413 } else {
414 if (a >= c)
415 return a;
416 else if (b >= c)
417 return c;
418 else
419 return b;
423 static void ath_rc_sort_validrates(struct ath_rate_table *rate_table,
424 struct ath_rate_priv *ath_rc_priv)
426 u8 i, j, idx, idx_next;
428 for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) {
429 for (j = 0; j <= i-1; j++) {
430 idx = ath_rc_priv->valid_rate_index[j];
431 idx_next = ath_rc_priv->valid_rate_index[j+1];
433 if (rate_table->info[idx].ratekbps >
434 rate_table->info[idx_next].ratekbps) {
435 ath_rc_priv->valid_rate_index[j] = idx_next;
436 ath_rc_priv->valid_rate_index[j+1] = idx;
442 static void ath_rc_init_valid_txmask(struct ath_rate_priv *ath_rc_priv)
444 u8 i;
446 for (i = 0; i < ath_rc_priv->rate_table_size; i++)
447 ath_rc_priv->valid_rate_index[i] = 0;
450 static inline void ath_rc_set_valid_txmask(struct ath_rate_priv *ath_rc_priv,
451 u8 index, int valid_tx_rate)
453 ASSERT(index <= ath_rc_priv->rate_table_size);
454 ath_rc_priv->valid_rate_index[index] = valid_tx_rate ? 1 : 0;
457 static inline int ath_rc_isvalid_txmask(struct ath_rate_priv *ath_rc_priv,
458 u8 index)
460 ASSERT(index <= ath_rc_priv->rate_table_size);
461 return ath_rc_priv->valid_rate_index[index];
464 static inline int ath_rc_get_nextvalid_txrate(struct ath_rate_table *rate_table,
465 struct ath_rate_priv *ath_rc_priv,
466 u8 cur_valid_txrate,
467 u8 *next_idx)
469 u8 i;
471 for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) {
472 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
473 *next_idx = ath_rc_priv->valid_rate_index[i+1];
474 return 1;
478 /* No more valid rates */
479 *next_idx = 0;
481 return 0;
484 /* Return true only for single stream */
486 static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
488 if (WLAN_RC_PHY_HT(phy) && !(capflag & WLAN_RC_HT_FLAG))
489 return 0;
490 if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
491 return 0;
492 if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
493 return 0;
494 if (!ignore_cw && WLAN_RC_PHY_HT(phy))
495 if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
496 return 0;
497 if (!WLAN_RC_PHY_40(phy) && (capflag & WLAN_RC_40_FLAG))
498 return 0;
499 return 1;
502 static inline int
503 ath_rc_get_nextlowervalid_txrate(struct ath_rate_table *rate_table,
504 struct ath_rate_priv *ath_rc_priv,
505 u8 cur_valid_txrate, u8 *next_idx)
507 int8_t i;
509 for (i = 1; i < ath_rc_priv->max_valid_rate ; i++) {
510 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
511 *next_idx = ath_rc_priv->valid_rate_index[i-1];
512 return 1;
516 return 0;
519 static u8 ath_rc_init_validrates(struct ath_rate_priv *ath_rc_priv,
520 struct ath_rate_table *rate_table,
521 u32 capflag)
523 u8 i, hi = 0;
524 u32 valid;
526 for (i = 0; i < rate_table->rate_cnt; i++) {
527 valid = (ath_rc_priv->single_stream ?
528 rate_table->info[i].valid_single_stream :
529 rate_table->info[i].valid);
530 if (valid == 1) {
531 u32 phy = rate_table->info[i].phy;
532 u8 valid_rate_count = 0;
534 if (!ath_rc_valid_phyrate(phy, capflag, 0))
535 continue;
537 valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
539 ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = i;
540 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
541 ath_rc_set_valid_txmask(ath_rc_priv, i, 1);
542 hi = A_MAX(hi, i);
546 return hi;
549 static u8 ath_rc_setvalid_rates(struct ath_rate_priv *ath_rc_priv,
550 struct ath_rate_table *rate_table,
551 struct ath_rateset *rateset,
552 u32 capflag)
554 u8 i, j, hi = 0;
556 /* Use intersection of working rates and valid rates */
557 for (i = 0; i < rateset->rs_nrates; i++) {
558 for (j = 0; j < rate_table->rate_cnt; j++) {
559 u32 phy = rate_table->info[j].phy;
560 u32 valid = (ath_rc_priv->single_stream ?
561 rate_table->info[j].valid_single_stream :
562 rate_table->info[j].valid);
563 u8 rate = rateset->rs_rates[i];
564 u8 dot11rate = rate_table->info[j].dot11rate;
566 /* We allow a rate only if its valid and the
567 * capflag matches one of the validity
568 * (VALID/VALID_20/VALID_40) flags */
570 if (((rate & 0x7F) == (dot11rate & 0x7F)) &&
571 ((valid & WLAN_RC_CAP_MODE(capflag)) ==
572 WLAN_RC_CAP_MODE(capflag)) &&
573 !WLAN_RC_PHY_HT(phy)) {
574 u8 valid_rate_count = 0;
576 if (!ath_rc_valid_phyrate(phy, capflag, 0))
577 continue;
579 valid_rate_count =
580 ath_rc_priv->valid_phy_ratecnt[phy];
582 ath_rc_priv->valid_phy_rateidx[phy]
583 [valid_rate_count] = j;
584 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
585 ath_rc_set_valid_txmask(ath_rc_priv, j, 1);
586 hi = A_MAX(hi, j);
591 return hi;
594 static u8 ath_rc_setvalid_htrates(struct ath_rate_priv *ath_rc_priv,
595 struct ath_rate_table *rate_table,
596 u8 *mcs_set, u32 capflag)
598 struct ath_rateset *rateset = (struct ath_rateset *)mcs_set;
600 u8 i, j, hi = 0;
602 /* Use intersection of working rates and valid rates */
603 for (i = 0; i < rateset->rs_nrates; i++) {
604 for (j = 0; j < rate_table->rate_cnt; j++) {
605 u32 phy = rate_table->info[j].phy;
606 u32 valid = (ath_rc_priv->single_stream ?
607 rate_table->info[j].valid_single_stream :
608 rate_table->info[j].valid);
609 u8 rate = rateset->rs_rates[i];
610 u8 dot11rate = rate_table->info[j].dot11rate;
612 if (((rate & 0x7F) != (dot11rate & 0x7F)) ||
613 !WLAN_RC_PHY_HT(phy) ||
614 !WLAN_RC_PHY_HT_VALID(valid, capflag))
615 continue;
617 if (!ath_rc_valid_phyrate(phy, capflag, 0))
618 continue;
620 ath_rc_priv->valid_phy_rateidx[phy]
621 [ath_rc_priv->valid_phy_ratecnt[phy]] = j;
622 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
623 ath_rc_set_valid_txmask(ath_rc_priv, j, 1);
624 hi = A_MAX(hi, j);
628 return hi;
631 static u8 ath_rc_ratefind_ht(struct ath_softc *sc,
632 struct ath_rate_priv *ath_rc_priv,
633 struct ath_rate_table *rate_table,
634 int *is_probing)
636 u32 dt, best_thruput, this_thruput, now_msec;
637 u8 rate, next_rate, best_rate, maxindex, minindex;
638 int8_t rssi_last, rssi_reduce = 0, index = 0;
640 *is_probing = 0;
642 rssi_last = median(ath_rc_priv->rssi_last,
643 ath_rc_priv->rssi_last_prev,
644 ath_rc_priv->rssi_last_prev2);
647 * Age (reduce) last ack rssi based on how old it is.
648 * The bizarre numbers are so the delta is 160msec,
649 * meaning we divide by 16.
650 * 0msec <= dt <= 25msec: don't derate
651 * 25msec <= dt <= 185msec: derate linearly from 0 to 10dB
652 * 185msec <= dt: derate by 10dB
655 now_msec = jiffies_to_msecs(jiffies);
656 dt = now_msec - ath_rc_priv->rssi_time;
658 if (dt >= 185)
659 rssi_reduce = 10;
660 else if (dt >= 25)
661 rssi_reduce = (u8)((dt - 25) >> 4);
663 /* Now reduce rssi_last by rssi_reduce */
664 if (rssi_last < rssi_reduce)
665 rssi_last = 0;
666 else
667 rssi_last -= rssi_reduce;
670 * Now look up the rate in the rssi table and return it.
671 * If no rates match then we return 0 (lowest rate)
674 best_thruput = 0;
675 maxindex = ath_rc_priv->max_valid_rate-1;
677 minindex = 0;
678 best_rate = minindex;
681 * Try the higher rate first. It will reduce memory moving time
682 * if we have very good channel characteristics.
684 for (index = maxindex; index >= minindex ; index--) {
685 u8 per_thres;
687 rate = ath_rc_priv->valid_rate_index[index];
688 if (rate > ath_rc_priv->rate_max_phy)
689 continue;
692 * For TCP the average collision rate is around 11%,
693 * so we ignore PERs less than this. This is to
694 * prevent the rate we are currently using (whose
695 * PER might be in the 10-15 range because of TCP
696 * collisions) looking worse than the next lower
697 * rate whose PER has decayed close to 0. If we
698 * used to next lower rate, its PER would grow to
699 * 10-15 and we would be worse off then staying
700 * at the current rate.
702 per_thres = ath_rc_priv->state[rate].per;
703 if (per_thres < 12)
704 per_thres = 12;
706 this_thruput = rate_table->info[rate].user_ratekbps *
707 (100 - per_thres);
709 if (best_thruput <= this_thruput) {
710 best_thruput = this_thruput;
711 best_rate = rate;
715 rate = best_rate;
716 ath_rc_priv->rssi_last_lookup = rssi_last;
719 * Must check the actual rate (ratekbps) to account for
720 * non-monoticity of 11g's rate table
723 if (rate >= ath_rc_priv->rate_max_phy) {
724 rate = ath_rc_priv->rate_max_phy;
726 /* Probe the next allowed phy state */
727 if (ath_rc_get_nextvalid_txrate(rate_table,
728 ath_rc_priv, rate, &next_rate) &&
729 (now_msec - ath_rc_priv->probe_time >
730 rate_table->probe_interval) &&
731 (ath_rc_priv->hw_maxretry_pktcnt >= 1)) {
732 rate = next_rate;
733 ath_rc_priv->probe_rate = rate;
734 ath_rc_priv->probe_time = now_msec;
735 ath_rc_priv->hw_maxretry_pktcnt = 0;
736 *is_probing = 1;
740 if (rate > (ath_rc_priv->rate_table_size - 1))
741 rate = ath_rc_priv->rate_table_size - 1;
743 ASSERT((rate_table->info[rate].valid && !ath_rc_priv->single_stream) ||
744 (rate_table->info[rate].valid_single_stream &&
745 ath_rc_priv->single_stream));
747 return rate;
750 static void ath_rc_rate_set_series(struct ath_rate_table *rate_table,
751 struct ieee80211_tx_rate *rate,
752 struct ieee80211_tx_rate_control *txrc,
753 u8 tries, u8 rix, int rtsctsenable)
755 rate->count = tries;
756 rate->idx = rix;
758 if (txrc->short_preamble)
759 rate->flags |= IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
760 if (txrc->rts || rtsctsenable)
761 rate->flags |= IEEE80211_TX_RC_USE_RTS_CTS;
762 if (WLAN_RC_PHY_40(rate_table->info[rix].phy))
763 rate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
764 if (WLAN_RC_PHY_SGI(rate_table->info[rix].phy))
765 rate->flags |= IEEE80211_TX_RC_SHORT_GI;
766 if (WLAN_RC_PHY_HT(rate_table->info[rix].phy))
767 rate->flags |= IEEE80211_TX_RC_MCS;
770 static void ath_rc_rate_set_rtscts(struct ath_softc *sc,
771 struct ath_rate_table *rate_table,
772 struct ieee80211_tx_info *tx_info)
774 struct ieee80211_tx_rate *rates = tx_info->control.rates;
775 int i = 0, rix = 0, cix, enable_g_protection = 0;
777 /* get the cix for the lowest valid rix */
778 for (i = 3; i >= 0; i--) {
779 if (rates[i].count && (rates[i].idx >= 0)) {
780 rix = rates[i].idx;
781 break;
784 cix = rate_table->info[rix].ctrl_rate;
786 /* All protection frames are transmited at 2Mb/s for 802.11g,
787 * otherwise we transmit them at 1Mb/s */
788 if (sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ &&
789 !conf_is_ht(&sc->hw->conf))
790 enable_g_protection = 1;
793 * If 802.11g protection is enabled, determine whether to use RTS/CTS or
794 * just CTS. Note that this is only done for OFDM/HT unicast frames.
796 if ((sc->sc_flags & SC_OP_PROTECT_ENABLE) &&
797 !(tx_info->flags & IEEE80211_TX_CTL_NO_ACK) &&
798 (rate_table->info[rix].phy == WLAN_RC_PHY_OFDM ||
799 WLAN_RC_PHY_HT(rate_table->info[rix].phy))) {
800 rates[0].flags |= IEEE80211_TX_RC_USE_CTS_PROTECT;
801 cix = rate_table->info[enable_g_protection].ctrl_rate;
804 tx_info->control.rts_cts_rate_idx = cix;
807 static u8 ath_rc_rate_getidx(struct ath_softc *sc,
808 struct ath_rate_priv *ath_rc_priv,
809 struct ath_rate_table *rate_table,
810 u8 rix, u16 stepdown,
811 u16 min_rate)
813 u32 j;
814 u8 nextindex;
816 if (min_rate) {
817 for (j = RATE_TABLE_SIZE; j > 0; j--) {
818 if (ath_rc_get_nextlowervalid_txrate(rate_table,
819 ath_rc_priv, rix, &nextindex))
820 rix = nextindex;
821 else
822 break;
824 } else {
825 for (j = stepdown; j > 0; j--) {
826 if (ath_rc_get_nextlowervalid_txrate(rate_table,
827 ath_rc_priv, rix, &nextindex))
828 rix = nextindex;
829 else
830 break;
833 return rix;
836 static void ath_rc_ratefind(struct ath_softc *sc,
837 struct ath_rate_priv *ath_rc_priv,
838 struct ieee80211_tx_rate_control *txrc)
840 struct ath_rate_table *rate_table;
841 struct sk_buff *skb = txrc->skb;
842 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
843 struct ieee80211_tx_rate *rates = tx_info->control.rates;
844 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
845 __le16 fc = hdr->frame_control;
846 u8 try_per_rate = 0, i = 0, rix, nrix;
847 int is_probe = 0;
849 rate_table = sc->cur_rate_table;
850 rix = ath_rc_ratefind_ht(sc, ath_rc_priv, rate_table, &is_probe);
851 nrix = rix;
853 if (is_probe) {
854 /* set one try for probe rates. For the
855 * probes don't enable rts */
856 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
857 1, nrix, 0);
859 try_per_rate = (ATH_11N_TXMAXTRY/4);
860 /* Get the next tried/allowed rate. No RTS for the next series
861 * after the probe rate
863 nrix = ath_rc_rate_getidx(sc, ath_rc_priv,
864 rate_table, nrix, 1, 0);
865 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
866 try_per_rate, nrix, 0);
867 } else {
868 try_per_rate = (ATH_11N_TXMAXTRY/4);
869 /* Set the choosen rate. No RTS for first series entry. */
870 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
871 try_per_rate, nrix, 0);
874 /* Fill in the other rates for multirate retry */
875 for ( ; i < 4; i++) {
876 u8 try_num;
877 u8 min_rate;
879 try_num = ((i + 1) == 4) ?
880 ATH_11N_TXMAXTRY - (try_per_rate * i) : try_per_rate ;
881 min_rate = (((i + 1) == 4) && 0);
883 nrix = ath_rc_rate_getidx(sc, ath_rc_priv,
884 rate_table, nrix, 1, min_rate);
885 /* All other rates in the series have RTS enabled */
886 ath_rc_rate_set_series(rate_table, &rates[i], txrc,
887 try_num, nrix, 1);
891 * NB:Change rate series to enable aggregation when operating
892 * at lower MCS rates. When first rate in series is MCS2
893 * in HT40 @ 2.4GHz, series should look like:
895 * {MCS2, MCS1, MCS0, MCS0}.
897 * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
898 * look like:
900 * {MCS3, MCS2, MCS1, MCS1}
902 * So, set fourth rate in series to be same as third one for
903 * above conditions.
905 if ((sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ) &&
906 (conf_is_ht(&sc->hw->conf))) {
907 u8 dot11rate = rate_table->info[rix].dot11rate;
908 u8 phy = rate_table->info[rix].phy;
909 if (i == 4 &&
910 ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
911 (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
912 rates[3].idx = rates[2].idx;
913 rates[3].flags = rates[2].flags;
918 * Force hardware to use computed duration for next
919 * fragment by disabling multi-rate retry, which
920 * updates duration based on the multi-rate duration table.
922 * FIXME: Fix duration
924 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK) &&
925 (ieee80211_has_morefrags(fc) ||
926 (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG))) {
927 rates[1].count = rates[2].count = rates[3].count = 0;
928 rates[1].idx = rates[2].idx = rates[3].idx = 0;
929 rates[0].count = ATH_TXMAXTRY;
932 /* Setup RTS/CTS */
933 ath_rc_rate_set_rtscts(sc, rate_table, tx_info);
936 static bool ath_rc_update_per(struct ath_softc *sc,
937 struct ath_rate_table *rate_table,
938 struct ath_rate_priv *ath_rc_priv,
939 struct ath_tx_info_priv *tx_info_priv,
940 int tx_rate, int xretries, int retries,
941 u32 now_msec)
943 bool state_change = false;
944 int count;
945 u8 last_per;
946 static u32 nretry_to_per_lookup[10] = {
947 100 * 0 / 1,
948 100 * 1 / 4,
949 100 * 1 / 2,
950 100 * 3 / 4,
951 100 * 4 / 5,
952 100 * 5 / 6,
953 100 * 6 / 7,
954 100 * 7 / 8,
955 100 * 8 / 9,
956 100 * 9 / 10
959 last_per = ath_rc_priv->state[tx_rate].per;
961 if (xretries) {
962 if (xretries == 1) {
963 ath_rc_priv->state[tx_rate].per += 30;
964 if (ath_rc_priv->state[tx_rate].per > 100)
965 ath_rc_priv->state[tx_rate].per = 100;
966 } else {
967 /* xretries == 2 */
968 count = ARRAY_SIZE(nretry_to_per_lookup);
969 if (retries >= count)
970 retries = count - 1;
972 /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
973 ath_rc_priv->state[tx_rate].per =
974 (u8)(last_per - (last_per >> 3) + (100 >> 3));
977 /* xretries == 1 or 2 */
979 if (ath_rc_priv->probe_rate == tx_rate)
980 ath_rc_priv->probe_rate = 0;
982 } else { /* xretries == 0 */
983 count = ARRAY_SIZE(nretry_to_per_lookup);
984 if (retries >= count)
985 retries = count - 1;
987 if (tx_info_priv->n_bad_frames) {
988 /* new_PER = 7/8*old_PER + 1/8*(currentPER)
989 * Assuming that n_frames is not 0. The current PER
990 * from the retries is 100 * retries / (retries+1),
991 * since the first retries attempts failed, and the
992 * next one worked. For the one that worked,
993 * n_bad_frames subframes out of n_frames wored,
994 * so the PER for that part is
995 * 100 * n_bad_frames / n_frames, and it contributes
996 * 100 * n_bad_frames / (n_frames * (retries+1)) to
997 * the above PER. The expression below is a
998 * simplified version of the sum of these two terms.
1000 if (tx_info_priv->n_frames > 0) {
1001 int n_frames, n_bad_frames;
1002 u8 cur_per, new_per;
1004 n_bad_frames = retries * tx_info_priv->n_frames +
1005 tx_info_priv->n_bad_frames;
1006 n_frames = tx_info_priv->n_frames * (retries + 1);
1007 cur_per = (100 * n_bad_frames / n_frames) >> 3;
1008 new_per = (u8)(last_per - (last_per >> 3) + cur_per);
1009 ath_rc_priv->state[tx_rate].per = new_per;
1011 } else {
1012 ath_rc_priv->state[tx_rate].per =
1013 (u8)(last_per - (last_per >> 3) +
1014 (nretry_to_per_lookup[retries] >> 3));
1017 ath_rc_priv->rssi_last_prev2 = ath_rc_priv->rssi_last_prev;
1018 ath_rc_priv->rssi_last_prev = ath_rc_priv->rssi_last;
1019 ath_rc_priv->rssi_last = tx_info_priv->tx.ts_rssi;
1020 ath_rc_priv->rssi_time = now_msec;
1023 * If we got at most one retry then increase the max rate if
1024 * this was a probe. Otherwise, ignore the probe.
1026 if (ath_rc_priv->probe_rate && ath_rc_priv->probe_rate == tx_rate) {
1027 if (retries > 0 || 2 * tx_info_priv->n_bad_frames >
1028 tx_info_priv->n_frames) {
1030 * Since we probed with just a single attempt,
1031 * any retries means the probe failed. Also,
1032 * if the attempt worked, but more than half
1033 * the subframes were bad then also consider
1034 * the probe a failure.
1036 ath_rc_priv->probe_rate = 0;
1037 } else {
1038 u8 probe_rate = 0;
1040 ath_rc_priv->rate_max_phy =
1041 ath_rc_priv->probe_rate;
1042 probe_rate = ath_rc_priv->probe_rate;
1044 if (ath_rc_priv->state[probe_rate].per > 30)
1045 ath_rc_priv->state[probe_rate].per = 20;
1047 ath_rc_priv->probe_rate = 0;
1050 * Since this probe succeeded, we allow the next
1051 * probe twice as soon. This allows the maxRate
1052 * to move up faster if the probes are
1053 * succesful.
1055 ath_rc_priv->probe_time =
1056 now_msec - rate_table->probe_interval / 2;
1060 if (retries > 0) {
1062 * Don't update anything. We don't know if
1063 * this was because of collisions or poor signal.
1065 * Later: if rssi_ack is close to
1066 * ath_rc_priv->state[txRate].rssi_thres and we see lots
1067 * of retries, then we could increase
1068 * ath_rc_priv->state[txRate].rssi_thres.
1070 ath_rc_priv->hw_maxretry_pktcnt = 0;
1071 } else {
1072 int32_t rssi_ackAvg;
1073 int8_t rssi_thres;
1074 int8_t rssi_ack_vmin;
1077 * It worked with no retries. First ignore bogus (small)
1078 * rssi_ack values.
1080 if (tx_rate == ath_rc_priv->rate_max_phy &&
1081 ath_rc_priv->hw_maxretry_pktcnt < 255) {
1082 ath_rc_priv->hw_maxretry_pktcnt++;
1085 if (tx_info_priv->tx.ts_rssi <
1086 rate_table->info[tx_rate].rssi_ack_validmin)
1087 goto exit;
1089 /* Average the rssi */
1090 if (tx_rate != ath_rc_priv->rssi_sum_rate) {
1091 ath_rc_priv->rssi_sum_rate = tx_rate;
1092 ath_rc_priv->rssi_sum =
1093 ath_rc_priv->rssi_sum_cnt = 0;
1096 ath_rc_priv->rssi_sum += tx_info_priv->tx.ts_rssi;
1097 ath_rc_priv->rssi_sum_cnt++;
1099 if (ath_rc_priv->rssi_sum_cnt < 4)
1100 goto exit;
1102 rssi_ackAvg =
1103 (ath_rc_priv->rssi_sum + 2) / 4;
1104 rssi_thres =
1105 ath_rc_priv->state[tx_rate].rssi_thres;
1106 rssi_ack_vmin =
1107 rate_table->info[tx_rate].rssi_ack_validmin;
1109 ath_rc_priv->rssi_sum =
1110 ath_rc_priv->rssi_sum_cnt = 0;
1112 /* Now reduce the current rssi threshold */
1113 if ((rssi_ackAvg < rssi_thres + 2) &&
1114 (rssi_thres > rssi_ack_vmin)) {
1115 ath_rc_priv->state[tx_rate].rssi_thres--;
1118 state_change = true;
1121 exit:
1122 return state_change;
1125 /* Update PER, RSSI and whatever else that the code thinks it is doing.
1126 If you can make sense of all this, you really need to go out more. */
1128 static void ath_rc_update_ht(struct ath_softc *sc,
1129 struct ath_rate_priv *ath_rc_priv,
1130 struct ath_tx_info_priv *tx_info_priv,
1131 int tx_rate, int xretries, int retries)
1133 #define CHK_RSSI(rate) \
1134 ((ath_rc_priv->state[(rate)].rssi_thres + \
1135 rate_table->info[(rate)].rssi_ack_deltamin) > \
1136 ath_rc_priv->state[(rate)+1].rssi_thres)
1138 u32 now_msec = jiffies_to_msecs(jiffies);
1139 int rate;
1140 u8 last_per;
1141 bool state_change = false;
1142 struct ath_rate_table *rate_table = sc->cur_rate_table;
1143 int size = ath_rc_priv->rate_table_size;
1145 if ((tx_rate < 0) || (tx_rate > rate_table->rate_cnt))
1146 return;
1148 /* To compensate for some imbalance between ctrl and ext. channel */
1150 if (WLAN_RC_PHY_40(rate_table->info[tx_rate].phy))
1151 tx_info_priv->tx.ts_rssi =
1152 tx_info_priv->tx.ts_rssi < 3 ? 0 :
1153 tx_info_priv->tx.ts_rssi - 3;
1155 last_per = ath_rc_priv->state[tx_rate].per;
1157 /* Update PER first */
1158 state_change = ath_rc_update_per(sc, rate_table, ath_rc_priv,
1159 tx_info_priv, tx_rate, xretries,
1160 retries, now_msec);
1163 * If this rate looks bad (high PER) then stop using it for
1164 * a while (except if we are probing).
1166 if (ath_rc_priv->state[tx_rate].per >= 55 && tx_rate > 0 &&
1167 rate_table->info[tx_rate].ratekbps <=
1168 rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) {
1169 ath_rc_get_nextlowervalid_txrate(rate_table, ath_rc_priv,
1170 (u8)tx_rate, &ath_rc_priv->rate_max_phy);
1172 /* Don't probe for a little while. */
1173 ath_rc_priv->probe_time = now_msec;
1176 if (state_change) {
1178 * Make sure the rates above this have higher rssi thresholds.
1179 * (Note: Monotonicity is kept within the OFDM rates and
1180 * within the CCK rates. However, no adjustment is
1181 * made to keep the rssi thresholds monotonically
1182 * increasing between the CCK and OFDM rates.)
1184 for (rate = tx_rate; rate < size - 1; rate++) {
1185 if (rate_table->info[rate+1].phy !=
1186 rate_table->info[tx_rate].phy)
1187 break;
1189 if (CHK_RSSI(rate)) {
1190 ath_rc_priv->state[rate+1].rssi_thres =
1191 ath_rc_priv->state[rate].rssi_thres +
1192 rate_table->info[rate].rssi_ack_deltamin;
1196 /* Make sure the rates below this have lower rssi thresholds. */
1197 for (rate = tx_rate - 1; rate >= 0; rate--) {
1198 if (rate_table->info[rate].phy !=
1199 rate_table->info[tx_rate].phy)
1200 break;
1202 if (CHK_RSSI(rate)) {
1203 if (ath_rc_priv->state[rate+1].rssi_thres <
1204 rate_table->info[rate].rssi_ack_deltamin)
1205 ath_rc_priv->state[rate].rssi_thres = 0;
1206 else {
1207 ath_rc_priv->state[rate].rssi_thres =
1208 ath_rc_priv->state[rate+1].rssi_thres -
1209 rate_table->info[rate].rssi_ack_deltamin;
1212 if (ath_rc_priv->state[rate].rssi_thres <
1213 rate_table->info[rate].rssi_ack_validmin) {
1214 ath_rc_priv->state[rate].rssi_thres =
1215 rate_table->info[rate].rssi_ack_validmin;
1221 /* Make sure the rates below this have lower PER */
1222 /* Monotonicity is kept only for rates below the current rate. */
1223 if (ath_rc_priv->state[tx_rate].per < last_per) {
1224 for (rate = tx_rate - 1; rate >= 0; rate--) {
1225 if (rate_table->info[rate].phy !=
1226 rate_table->info[tx_rate].phy)
1227 break;
1229 if (ath_rc_priv->state[rate].per >
1230 ath_rc_priv->state[rate+1].per) {
1231 ath_rc_priv->state[rate].per =
1232 ath_rc_priv->state[rate+1].per;
1237 /* Maintain monotonicity for rates above the current rate */
1238 for (rate = tx_rate; rate < size - 1; rate++) {
1239 if (ath_rc_priv->state[rate+1].per <
1240 ath_rc_priv->state[rate].per)
1241 ath_rc_priv->state[rate+1].per =
1242 ath_rc_priv->state[rate].per;
1245 /* Every so often, we reduce the thresholds and
1246 * PER (different for CCK and OFDM). */
1247 if (now_msec - ath_rc_priv->rssi_down_time >=
1248 rate_table->rssi_reduce_interval) {
1250 for (rate = 0; rate < size; rate++) {
1251 if (ath_rc_priv->state[rate].rssi_thres >
1252 rate_table->info[rate].rssi_ack_validmin)
1253 ath_rc_priv->state[rate].rssi_thres -= 1;
1255 ath_rc_priv->rssi_down_time = now_msec;
1258 /* Every so often, we reduce the thresholds
1259 * and PER (different for CCK and OFDM). */
1260 if (now_msec - ath_rc_priv->per_down_time >=
1261 rate_table->rssi_reduce_interval) {
1262 for (rate = 0; rate < size; rate++) {
1263 ath_rc_priv->state[rate].per =
1264 7 * ath_rc_priv->state[rate].per / 8;
1267 ath_rc_priv->per_down_time = now_msec;
1270 ath_debug_stat_retries(sc, tx_rate, xretries, retries);
1272 #undef CHK_RSSI
1275 static int ath_rc_get_rateindex(struct ath_rate_table *rate_table,
1276 struct ieee80211_tx_rate *rate)
1278 int rix;
1280 if ((rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1281 (rate->flags & IEEE80211_TX_RC_SHORT_GI))
1282 rix = rate_table->info[rate->idx].ht_index;
1283 else if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
1284 rix = rate_table->info[rate->idx].sgi_index;
1285 else if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1286 rix = rate_table->info[rate->idx].cw40index;
1287 else
1288 rix = rate_table->info[rate->idx].base_index;
1290 return rix;
1293 static void ath_rc_tx_status(struct ath_softc *sc,
1294 struct ath_rate_priv *ath_rc_priv,
1295 struct ieee80211_tx_info *tx_info,
1296 int final_ts_idx, int xretries, int long_retry)
1298 struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1299 struct ath_rate_table *rate_table;
1300 struct ieee80211_tx_rate *rates = tx_info->status.rates;
1301 u8 flags;
1302 u32 i = 0, rix;
1304 rate_table = sc->cur_rate_table;
1307 * If the first rate is not the final index, there
1308 * are intermediate rate failures to be processed.
1310 if (final_ts_idx != 0) {
1311 /* Process intermediate rates that failed.*/
1312 for (i = 0; i < final_ts_idx ; i++) {
1313 if (rates[i].count != 0 && (rates[i].idx >= 0)) {
1314 flags = rates[i].flags;
1316 /* If HT40 and we have switched mode from
1317 * 40 to 20 => don't update */
1319 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1320 (ath_rc_priv->rc_phy_mode != WLAN_RC_40_FLAG))
1321 return;
1323 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1324 ath_rc_update_ht(sc, ath_rc_priv,
1325 tx_info_priv, rix,
1326 xretries ? 1 : 2,
1327 rates[i].count);
1330 } else {
1332 * Handle the special case of MIMO PS burst, where the second
1333 * aggregate is sent out with only one rate and one try.
1334 * Treating it as an excessive retry penalizes the rate
1335 * inordinately.
1337 if (rates[0].count == 1 && xretries == 1)
1338 xretries = 2;
1341 flags = rates[i].flags;
1343 /* If HT40 and we have switched mode from 40 to 20 => don't update */
1344 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1345 (ath_rc_priv->rc_phy_mode != WLAN_RC_40_FLAG)) {
1346 return;
1349 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1350 ath_rc_update_ht(sc, ath_rc_priv, tx_info_priv, rix,
1351 xretries, long_retry);
1354 static struct ath_rate_table *ath_choose_rate_table(struct ath_softc *sc,
1355 enum ieee80211_band band,
1356 bool is_ht, bool is_cw_40)
1358 int mode = 0;
1360 switch(band) {
1361 case IEEE80211_BAND_2GHZ:
1362 mode = ATH9K_MODE_11G;
1363 if (is_ht)
1364 mode = ATH9K_MODE_11NG_HT20;
1365 if (is_cw_40)
1366 mode = ATH9K_MODE_11NG_HT40PLUS;
1367 break;
1368 case IEEE80211_BAND_5GHZ:
1369 mode = ATH9K_MODE_11A;
1370 if (is_ht)
1371 mode = ATH9K_MODE_11NA_HT20;
1372 if (is_cw_40)
1373 mode = ATH9K_MODE_11NA_HT40PLUS;
1374 break;
1375 default:
1376 DPRINTF(sc, ATH_DBG_CONFIG, "Invalid band\n");
1377 return NULL;
1380 BUG_ON(mode >= ATH9K_MODE_MAX);
1382 DPRINTF(sc, ATH_DBG_CONFIG, "Choosing rate table for mode: %d\n", mode);
1383 return sc->hw_rate_table[mode];
1386 static void ath_rc_init(struct ath_softc *sc,
1387 struct ath_rate_priv *ath_rc_priv,
1388 struct ieee80211_supported_band *sband,
1389 struct ieee80211_sta *sta)
1391 struct ath_rate_table *rate_table = NULL;
1392 struct ath_rateset *rateset = &ath_rc_priv->neg_rates;
1393 u8 *ht_mcs = (u8 *)&ath_rc_priv->neg_ht_rates;
1394 u8 i, j, k, hi = 0, hthi = 0;
1396 /* FIXME: Adhoc */
1397 if ((sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) ||
1398 (sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC)) {
1399 bool is_cw_40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40;
1400 rate_table = ath_choose_rate_table(sc, sband->band,
1401 sta->ht_cap.ht_supported,
1402 is_cw_40);
1403 } else if (sc->sc_ah->ah_opmode == NL80211_IFTYPE_AP) {
1404 /* cur_rate_table would be set on init through config() */
1405 rate_table = sc->cur_rate_table;
1408 if (!rate_table) {
1409 DPRINTF(sc, ATH_DBG_FATAL, "Rate table not initialized\n");
1410 return;
1413 if (sta->ht_cap.ht_supported) {
1414 ath_rc_priv->ht_cap = WLAN_RC_HT_FLAG;
1415 if (sc->sc_ah->ah_caps.tx_chainmask != 1)
1416 ath_rc_priv->ht_cap |= WLAN_RC_DS_FLAG;
1417 if (sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40)
1418 ath_rc_priv->ht_cap |= WLAN_RC_40_FLAG;
1419 if (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40)
1420 ath_rc_priv->ht_cap |= WLAN_RC_SGI_FLAG;
1423 /* Initial rate table size. Will change depending
1424 * on the working rate set */
1425 ath_rc_priv->rate_table_size = RATE_TABLE_SIZE;
1427 /* Initialize thresholds according to the global rate table */
1428 for (i = 0 ; i < ath_rc_priv->rate_table_size; i++) {
1429 ath_rc_priv->state[i].rssi_thres =
1430 rate_table->info[i].rssi_ack_validmin;
1431 ath_rc_priv->state[i].per = 0;
1434 /* Determine the valid rates */
1435 ath_rc_init_valid_txmask(ath_rc_priv);
1437 for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
1438 for (j = 0; j < MAX_TX_RATE_PHY; j++)
1439 ath_rc_priv->valid_phy_rateidx[i][j] = 0;
1440 ath_rc_priv->valid_phy_ratecnt[i] = 0;
1442 ath_rc_priv->rc_phy_mode = (ath_rc_priv->ht_cap & WLAN_RC_40_FLAG);
1444 /* Set stream capability */
1445 ath_rc_priv->single_stream = (ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ? 0 : 1;
1447 if (!rateset->rs_nrates) {
1448 /* No working rate, just initialize valid rates */
1449 hi = ath_rc_init_validrates(ath_rc_priv, rate_table,
1450 ath_rc_priv->ht_cap);
1451 } else {
1452 /* Use intersection of working rates and valid rates */
1453 hi = ath_rc_setvalid_rates(ath_rc_priv, rate_table,
1454 rateset, ath_rc_priv->ht_cap);
1455 if (ath_rc_priv->ht_cap & WLAN_RC_HT_FLAG) {
1456 hthi = ath_rc_setvalid_htrates(ath_rc_priv,
1457 rate_table,
1458 ht_mcs,
1459 ath_rc_priv->ht_cap);
1461 hi = A_MAX(hi, hthi);
1464 ath_rc_priv->rate_table_size = hi + 1;
1465 ath_rc_priv->rate_max_phy = 0;
1466 ASSERT(ath_rc_priv->rate_table_size <= RATE_TABLE_SIZE);
1468 for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
1469 for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) {
1470 ath_rc_priv->valid_rate_index[k++] =
1471 ath_rc_priv->valid_phy_rateidx[i][j];
1474 if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, 1)
1475 || !ath_rc_priv->valid_phy_ratecnt[i])
1476 continue;
1478 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_phy_rateidx[i][j-1];
1480 ASSERT(ath_rc_priv->rate_table_size <= RATE_TABLE_SIZE);
1481 ASSERT(k <= RATE_TABLE_SIZE);
1483 ath_rc_priv->max_valid_rate = k;
1484 ath_rc_sort_validrates(rate_table, ath_rc_priv);
1485 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_rate_index[k-4];
1486 sc->cur_rate_table = rate_table;
1489 /* Rate Control callbacks */
1490 static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband,
1491 struct ieee80211_sta *sta, void *priv_sta,
1492 struct sk_buff *skb)
1494 struct ath_softc *sc = priv;
1495 struct ath_rate_priv *ath_rc_priv = priv_sta;
1496 struct ath_tx_info_priv *tx_info_priv = NULL;
1497 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1498 struct ieee80211_hdr *hdr;
1499 int final_ts_idx, tx_status = 0, is_underrun = 0;
1500 __le16 fc;
1502 hdr = (struct ieee80211_hdr *)skb->data;
1503 fc = hdr->frame_control;
1504 tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1505 final_ts_idx = tx_info_priv->tx.ts_rateindex;
1507 if (!priv_sta || !ieee80211_is_data(fc) ||
1508 !tx_info_priv->update_rc)
1509 goto exit;
1511 if (tx_info_priv->tx.ts_status & ATH9K_TXERR_FILT)
1512 goto exit;
1515 * If underrun error is seen assume it as an excessive retry only
1516 * if prefetch trigger level have reached the max (0x3f for 5416)
1517 * Adjust the long retry as if the frame was tried ATH_11N_TXMAXTRY
1518 * times. This affects how ratectrl updates PER for the failed rate.
1520 if (tx_info_priv->tx.ts_flags &
1521 (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN) &&
1522 ((sc->sc_ah->ah_txTrigLevel) >= ath_rc_priv->tx_triglevel_max)) {
1523 tx_status = 1;
1524 is_underrun = 1;
1527 if ((tx_info_priv->tx.ts_status & ATH9K_TXERR_XRETRY) ||
1528 (tx_info_priv->tx.ts_status & ATH9K_TXERR_FIFO))
1529 tx_status = 1;
1531 ath_rc_tx_status(sc, ath_rc_priv, tx_info, final_ts_idx, tx_status,
1532 (is_underrun) ? ATH_11N_TXMAXTRY :
1533 tx_info_priv->tx.ts_longretry);
1535 /* Check if aggregation has to be enabled for this tid */
1536 if (conf_is_ht(&sc->hw->conf)) {
1537 if (ieee80211_is_data_qos(fc)) {
1538 u8 *qc, tid;
1539 struct ath_node *an;
1541 qc = ieee80211_get_qos_ctl(hdr);
1542 tid = qc[0] & 0xf;
1543 an = (struct ath_node *)sta->drv_priv;
1545 if(ath_tx_aggr_check(sc, an, tid))
1546 ieee80211_start_tx_ba_session(sc->hw, hdr->addr1, tid);
1550 ath_debug_stat_rc(sc, skb);
1551 exit:
1552 kfree(tx_info_priv);
1555 static void ath_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
1556 struct ieee80211_tx_rate_control *txrc)
1558 struct ieee80211_supported_band *sband = txrc->sband;
1559 struct sk_buff *skb = txrc->skb;
1560 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1561 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1562 struct ath_softc *sc = priv;
1563 struct ath_rate_priv *ath_rc_priv = priv_sta;
1564 __le16 fc = hdr->frame_control;
1566 /* lowest rate for management and multicast/broadcast frames */
1567 if (!ieee80211_is_data(fc) || is_multicast_ether_addr(hdr->addr1) ||
1568 !sta) {
1569 tx_info->control.rates[0].idx = rate_lowest_index(sband, sta);
1570 tx_info->control.rates[0].count =
1571 is_multicast_ether_addr(hdr->addr1) ? 1 : ATH_MGT_TXMAXTRY;
1572 return;
1575 /* Find tx rate for unicast frames */
1576 ath_rc_ratefind(sc, ath_rc_priv, txrc);
1579 static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband,
1580 struct ieee80211_sta *sta, void *priv_sta)
1582 struct ath_softc *sc = priv;
1583 struct ath_rate_priv *ath_rc_priv = priv_sta;
1584 int i, j = 0;
1586 for (i = 0; i < sband->n_bitrates; i++) {
1587 if (sta->supp_rates[sband->band] & BIT(i)) {
1588 ath_rc_priv->neg_rates.rs_rates[j]
1589 = (sband->bitrates[i].bitrate * 2) / 10;
1590 j++;
1593 ath_rc_priv->neg_rates.rs_nrates = j;
1595 if (sta->ht_cap.ht_supported) {
1596 for (i = 0, j = 0; i < 77; i++) {
1597 if (sta->ht_cap.mcs.rx_mask[i/8] & (1<<(i%8)))
1598 ath_rc_priv->neg_ht_rates.rs_rates[j++] = i;
1599 if (j == ATH_RATE_MAX)
1600 break;
1602 ath_rc_priv->neg_ht_rates.rs_nrates = j;
1605 ath_rc_init(sc, priv_sta, sband, sta);
1608 static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
1610 return hw->priv;
1613 static void ath_rate_free(void *priv)
1615 return;
1618 static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1620 struct ath_softc *sc = priv;
1621 struct ath_rate_priv *rate_priv;
1623 rate_priv = kzalloc(sizeof(struct ath_rate_priv), gfp);
1624 if (!rate_priv) {
1625 DPRINTF(sc, ATH_DBG_FATAL,
1626 "Unable to allocate private rc structure\n");
1627 return NULL;
1630 rate_priv->rssi_down_time = jiffies_to_msecs(jiffies);
1631 rate_priv->tx_triglevel_max = sc->sc_ah->ah_caps.tx_triglevel_max;
1633 return rate_priv;
1636 static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta,
1637 void *priv_sta)
1639 struct ath_rate_priv *rate_priv = priv_sta;
1640 kfree(rate_priv);
1643 static struct rate_control_ops ath_rate_ops = {
1644 .module = NULL,
1645 .name = "ath9k_rate_control",
1646 .tx_status = ath_tx_status,
1647 .get_rate = ath_get_rate,
1648 .rate_init = ath_rate_init,
1649 .alloc = ath_rate_alloc,
1650 .free = ath_rate_free,
1651 .alloc_sta = ath_rate_alloc_sta,
1652 .free_sta = ath_rate_free_sta,
1655 static void ath_setup_rate_table(struct ath_softc *sc,
1656 struct ath_rate_table *rate_table)
1658 int i;
1660 for (i = 0; i < rate_table->rate_cnt; i++) {
1661 u8 cix = rate_table->info[i].ctrl_rate;
1663 rate_table->info[i].lpAckDuration =
1664 ath9k_hw_computetxtime(sc->sc_ah, rate_table,
1665 WLAN_CTRL_FRAME_SIZE,
1666 cix,
1667 false);
1668 rate_table->info[i].spAckDuration =
1669 ath9k_hw_computetxtime(sc->sc_ah, rate_table,
1670 WLAN_CTRL_FRAME_SIZE,
1671 cix,
1672 true);
1676 void ath_rate_attach(struct ath_softc *sc)
1678 sc->hw_rate_table[ATH9K_MODE_11B] =
1679 &ar5416_11b_ratetable;
1680 sc->hw_rate_table[ATH9K_MODE_11A] =
1681 &ar5416_11a_ratetable;
1682 sc->hw_rate_table[ATH9K_MODE_11G] =
1683 &ar5416_11g_ratetable;
1684 sc->hw_rate_table[ATH9K_MODE_11NA_HT20] =
1685 &ar5416_11na_ratetable;
1686 sc->hw_rate_table[ATH9K_MODE_11NG_HT20] =
1687 &ar5416_11ng_ratetable;
1688 sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS] =
1689 &ar5416_11na_ratetable;
1690 sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS] =
1691 &ar5416_11na_ratetable;
1692 sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS] =
1693 &ar5416_11ng_ratetable;
1694 sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS] =
1695 &ar5416_11ng_ratetable;
1697 ath_setup_rate_table(sc, &ar5416_11b_ratetable);
1698 ath_setup_rate_table(sc, &ar5416_11a_ratetable);
1699 ath_setup_rate_table(sc, &ar5416_11g_ratetable);
1700 ath_setup_rate_table(sc, &ar5416_11na_ratetable);
1701 ath_setup_rate_table(sc, &ar5416_11ng_ratetable);
1704 int ath_rate_control_register(void)
1706 return ieee80211_rate_control_register(&ath_rate_ops);
1709 void ath_rate_control_unregister(void)
1711 ieee80211_rate_control_unregister(&ath_rate_ops);