4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99 * Helpers for converting nanosecond timing to jiffy resolution
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
103 #define NICE_0_LOAD SCHED_LOAD_SCALE
104 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
107 * These are the 'tuning knobs' of the scheduler:
109 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
110 * Timeslices get refilled after they expire.
112 #define DEF_TIMESLICE (100 * HZ / 1000)
115 * single value that denotes runtime == period, ie unlimited time.
117 #define RUNTIME_INF ((u64)~0ULL)
121 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
122 * Since cpu_power is a 'constant', we can use a reciprocal divide.
124 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
126 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
130 * Each time a sched group cpu_power is changed,
131 * we must compute its reciprocal value
133 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
135 sg
->__cpu_power
+= val
;
136 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
140 static inline int rt_policy(int policy
)
142 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
147 static inline int task_has_rt_policy(struct task_struct
*p
)
149 return rt_policy(p
->policy
);
153 * This is the priority-queue data structure of the RT scheduling class:
155 struct rt_prio_array
{
156 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
157 struct list_head queue
[MAX_RT_PRIO
];
160 struct rt_bandwidth
{
161 /* nests inside the rq lock: */
162 spinlock_t rt_runtime_lock
;
165 struct hrtimer rt_period_timer
;
168 static struct rt_bandwidth def_rt_bandwidth
;
170 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
172 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
174 struct rt_bandwidth
*rt_b
=
175 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
181 now
= hrtimer_cb_get_time(timer
);
182 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
187 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
190 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
194 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
196 rt_b
->rt_period
= ns_to_ktime(period
);
197 rt_b
->rt_runtime
= runtime
;
199 spin_lock_init(&rt_b
->rt_runtime_lock
);
201 hrtimer_init(&rt_b
->rt_period_timer
,
202 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
203 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
204 rt_b
->rt_period_timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
;
207 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
211 if (rt_b
->rt_runtime
== RUNTIME_INF
)
214 if (hrtimer_active(&rt_b
->rt_period_timer
))
217 spin_lock(&rt_b
->rt_runtime_lock
);
219 if (hrtimer_active(&rt_b
->rt_period_timer
))
222 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
223 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
224 hrtimer_start(&rt_b
->rt_period_timer
,
225 rt_b
->rt_period_timer
.expires
,
228 spin_unlock(&rt_b
->rt_runtime_lock
);
231 #ifdef CONFIG_RT_GROUP_SCHED
232 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
234 hrtimer_cancel(&rt_b
->rt_period_timer
);
239 * sched_domains_mutex serializes calls to arch_init_sched_domains,
240 * detach_destroy_domains and partition_sched_domains.
242 static DEFINE_MUTEX(sched_domains_mutex
);
244 #ifdef CONFIG_GROUP_SCHED
246 #include <linux/cgroup.h>
250 static LIST_HEAD(task_groups
);
252 /* task group related information */
254 #ifdef CONFIG_CGROUP_SCHED
255 struct cgroup_subsys_state css
;
258 #ifdef CONFIG_FAIR_GROUP_SCHED
259 /* schedulable entities of this group on each cpu */
260 struct sched_entity
**se
;
261 /* runqueue "owned" by this group on each cpu */
262 struct cfs_rq
**cfs_rq
;
263 unsigned long shares
;
266 #ifdef CONFIG_RT_GROUP_SCHED
267 struct sched_rt_entity
**rt_se
;
268 struct rt_rq
**rt_rq
;
270 struct rt_bandwidth rt_bandwidth
;
274 struct list_head list
;
276 struct task_group
*parent
;
277 struct list_head siblings
;
278 struct list_head children
;
281 #ifdef CONFIG_USER_SCHED
285 * Every UID task group (including init_task_group aka UID-0) will
286 * be a child to this group.
288 struct task_group root_task_group
;
290 #ifdef CONFIG_FAIR_GROUP_SCHED
291 /* Default task group's sched entity on each cpu */
292 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
293 /* Default task group's cfs_rq on each cpu */
294 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
295 #endif /* CONFIG_FAIR_GROUP_SCHED */
297 #ifdef CONFIG_RT_GROUP_SCHED
298 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
299 static DEFINE_PER_CPU(struct rt_rq
, init_rt_rq
) ____cacheline_aligned_in_smp
;
300 #endif /* CONFIG_RT_GROUP_SCHED */
301 #else /* !CONFIG_FAIR_GROUP_SCHED */
302 #define root_task_group init_task_group
303 #endif /* CONFIG_FAIR_GROUP_SCHED */
305 /* task_group_lock serializes add/remove of task groups and also changes to
306 * a task group's cpu shares.
308 static DEFINE_SPINLOCK(task_group_lock
);
310 #ifdef CONFIG_FAIR_GROUP_SCHED
311 #ifdef CONFIG_USER_SCHED
312 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
313 #else /* !CONFIG_USER_SCHED */
314 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
315 #endif /* CONFIG_USER_SCHED */
318 * A weight of 0 or 1 can cause arithmetics problems.
319 * A weight of a cfs_rq is the sum of weights of which entities
320 * are queued on this cfs_rq, so a weight of a entity should not be
321 * too large, so as the shares value of a task group.
322 * (The default weight is 1024 - so there's no practical
323 * limitation from this.)
326 #define MAX_SHARES (1UL << 18)
328 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
331 /* Default task group.
332 * Every task in system belong to this group at bootup.
334 struct task_group init_task_group
;
336 /* return group to which a task belongs */
337 static inline struct task_group
*task_group(struct task_struct
*p
)
339 struct task_group
*tg
;
341 #ifdef CONFIG_USER_SCHED
343 #elif defined(CONFIG_CGROUP_SCHED)
344 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
345 struct task_group
, css
);
347 tg
= &init_task_group
;
352 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
353 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
355 #ifdef CONFIG_FAIR_GROUP_SCHED
356 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
357 p
->se
.parent
= task_group(p
)->se
[cpu
];
360 #ifdef CONFIG_RT_GROUP_SCHED
361 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
362 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
368 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
369 static inline struct task_group
*task_group(struct task_struct
*p
)
374 #endif /* CONFIG_GROUP_SCHED */
376 /* CFS-related fields in a runqueue */
378 struct load_weight load
;
379 unsigned long nr_running
;
385 struct rb_root tasks_timeline
;
386 struct rb_node
*rb_leftmost
;
388 struct list_head tasks
;
389 struct list_head
*balance_iterator
;
392 * 'curr' points to currently running entity on this cfs_rq.
393 * It is set to NULL otherwise (i.e when none are currently running).
395 struct sched_entity
*curr
, *next
;
397 unsigned long nr_spread_over
;
399 #ifdef CONFIG_FAIR_GROUP_SCHED
400 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
403 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
404 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
405 * (like users, containers etc.)
407 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
408 * list is used during load balance.
410 struct list_head leaf_cfs_rq_list
;
411 struct task_group
*tg
; /* group that "owns" this runqueue */
415 * the part of load.weight contributed by tasks
417 unsigned long task_weight
;
420 * h_load = weight * f(tg)
422 * Where f(tg) is the recursive weight fraction assigned to
425 unsigned long h_load
;
428 * this cpu's part of tg->shares
430 unsigned long shares
;
433 * load.weight at the time we set shares
435 unsigned long rq_weight
;
440 /* Real-Time classes' related field in a runqueue: */
442 struct rt_prio_array active
;
443 unsigned long rt_nr_running
;
444 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
445 int highest_prio
; /* highest queued rt task prio */
448 unsigned long rt_nr_migratory
;
454 /* Nests inside the rq lock: */
455 spinlock_t rt_runtime_lock
;
457 #ifdef CONFIG_RT_GROUP_SCHED
458 unsigned long rt_nr_boosted
;
461 struct list_head leaf_rt_rq_list
;
462 struct task_group
*tg
;
463 struct sched_rt_entity
*rt_se
;
470 * We add the notion of a root-domain which will be used to define per-domain
471 * variables. Each exclusive cpuset essentially defines an island domain by
472 * fully partitioning the member cpus from any other cpuset. Whenever a new
473 * exclusive cpuset is created, we also create and attach a new root-domain
483 * The "RT overload" flag: it gets set if a CPU has more than
484 * one runnable RT task.
489 struct cpupri cpupri
;
494 * By default the system creates a single root-domain with all cpus as
495 * members (mimicking the global state we have today).
497 static struct root_domain def_root_domain
;
502 * This is the main, per-CPU runqueue data structure.
504 * Locking rule: those places that want to lock multiple runqueues
505 * (such as the load balancing or the thread migration code), lock
506 * acquire operations must be ordered by ascending &runqueue.
513 * nr_running and cpu_load should be in the same cacheline because
514 * remote CPUs use both these fields when doing load calculation.
516 unsigned long nr_running
;
517 #define CPU_LOAD_IDX_MAX 5
518 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
519 unsigned char idle_at_tick
;
521 unsigned long last_tick_seen
;
522 unsigned char in_nohz_recently
;
524 /* capture load from *all* tasks on this cpu: */
525 struct load_weight load
;
526 unsigned long nr_load_updates
;
532 #ifdef CONFIG_FAIR_GROUP_SCHED
533 /* list of leaf cfs_rq on this cpu: */
534 struct list_head leaf_cfs_rq_list
;
536 #ifdef CONFIG_RT_GROUP_SCHED
537 struct list_head leaf_rt_rq_list
;
541 * This is part of a global counter where only the total sum
542 * over all CPUs matters. A task can increase this counter on
543 * one CPU and if it got migrated afterwards it may decrease
544 * it on another CPU. Always updated under the runqueue lock:
546 unsigned long nr_uninterruptible
;
548 struct task_struct
*curr
, *idle
;
549 unsigned long next_balance
;
550 struct mm_struct
*prev_mm
;
557 struct root_domain
*rd
;
558 struct sched_domain
*sd
;
560 /* For active balancing */
563 /* cpu of this runqueue: */
567 unsigned long avg_load_per_task
;
569 struct task_struct
*migration_thread
;
570 struct list_head migration_queue
;
573 #ifdef CONFIG_SCHED_HRTICK
575 int hrtick_csd_pending
;
576 struct call_single_data hrtick_csd
;
578 struct hrtimer hrtick_timer
;
581 #ifdef CONFIG_SCHEDSTATS
583 struct sched_info rq_sched_info
;
585 /* sys_sched_yield() stats */
586 unsigned int yld_exp_empty
;
587 unsigned int yld_act_empty
;
588 unsigned int yld_both_empty
;
589 unsigned int yld_count
;
591 /* schedule() stats */
592 unsigned int sched_switch
;
593 unsigned int sched_count
;
594 unsigned int sched_goidle
;
596 /* try_to_wake_up() stats */
597 unsigned int ttwu_count
;
598 unsigned int ttwu_local
;
601 unsigned int bkl_count
;
605 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
607 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
609 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
612 static inline int cpu_of(struct rq
*rq
)
622 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
623 * See detach_destroy_domains: synchronize_sched for details.
625 * The domain tree of any CPU may only be accessed from within
626 * preempt-disabled sections.
628 #define for_each_domain(cpu, __sd) \
629 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
631 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
632 #define this_rq() (&__get_cpu_var(runqueues))
633 #define task_rq(p) cpu_rq(task_cpu(p))
634 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
636 static inline void update_rq_clock(struct rq
*rq
)
638 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
642 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
644 #ifdef CONFIG_SCHED_DEBUG
645 # define const_debug __read_mostly
647 # define const_debug static const
653 * Returns true if the current cpu runqueue is locked.
654 * This interface allows printk to be called with the runqueue lock
655 * held and know whether or not it is OK to wake up the klogd.
657 int runqueue_is_locked(void)
660 struct rq
*rq
= cpu_rq(cpu
);
663 ret
= spin_is_locked(&rq
->lock
);
669 * Debugging: various feature bits
672 #define SCHED_FEAT(name, enabled) \
673 __SCHED_FEAT_##name ,
676 #include "sched_features.h"
681 #define SCHED_FEAT(name, enabled) \
682 (1UL << __SCHED_FEAT_##name) * enabled |
684 const_debug
unsigned int sysctl_sched_features
=
685 #include "sched_features.h"
690 #ifdef CONFIG_SCHED_DEBUG
691 #define SCHED_FEAT(name, enabled) \
694 static __read_mostly
char *sched_feat_names
[] = {
695 #include "sched_features.h"
701 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
703 filp
->private_data
= inode
->i_private
;
708 sched_feat_read(struct file
*filp
, char __user
*ubuf
,
709 size_t cnt
, loff_t
*ppos
)
716 for (i
= 0; sched_feat_names
[i
]; i
++) {
717 len
+= strlen(sched_feat_names
[i
]);
721 buf
= kmalloc(len
+ 2, GFP_KERNEL
);
725 for (i
= 0; sched_feat_names
[i
]; i
++) {
726 if (sysctl_sched_features
& (1UL << i
))
727 r
+= sprintf(buf
+ r
, "%s ", sched_feat_names
[i
]);
729 r
+= sprintf(buf
+ r
, "NO_%s ", sched_feat_names
[i
]);
732 r
+= sprintf(buf
+ r
, "\n");
733 WARN_ON(r
>= len
+ 2);
735 r
= simple_read_from_buffer(ubuf
, cnt
, ppos
, buf
, r
);
743 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
744 size_t cnt
, loff_t
*ppos
)
754 if (copy_from_user(&buf
, ubuf
, cnt
))
759 if (strncmp(buf
, "NO_", 3) == 0) {
764 for (i
= 0; sched_feat_names
[i
]; i
++) {
765 int len
= strlen(sched_feat_names
[i
]);
767 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
769 sysctl_sched_features
&= ~(1UL << i
);
771 sysctl_sched_features
|= (1UL << i
);
776 if (!sched_feat_names
[i
])
784 static struct file_operations sched_feat_fops
= {
785 .open
= sched_feat_open
,
786 .read
= sched_feat_read
,
787 .write
= sched_feat_write
,
790 static __init
int sched_init_debug(void)
792 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
797 late_initcall(sched_init_debug
);
801 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
804 * Number of tasks to iterate in a single balance run.
805 * Limited because this is done with IRQs disabled.
807 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
810 * ratelimit for updating the group shares.
813 const_debug
unsigned int sysctl_sched_shares_ratelimit
= 500000;
816 * period over which we measure -rt task cpu usage in us.
819 unsigned int sysctl_sched_rt_period
= 1000000;
821 static __read_mostly
int scheduler_running
;
824 * part of the period that we allow rt tasks to run in us.
827 int sysctl_sched_rt_runtime
= 950000;
829 static inline u64
global_rt_period(void)
831 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
834 static inline u64
global_rt_runtime(void)
836 if (sysctl_sched_rt_runtime
< 0)
839 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
842 #ifndef prepare_arch_switch
843 # define prepare_arch_switch(next) do { } while (0)
845 #ifndef finish_arch_switch
846 # define finish_arch_switch(prev) do { } while (0)
849 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
851 return rq
->curr
== p
;
854 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
855 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
857 return task_current(rq
, p
);
860 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
864 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
866 #ifdef CONFIG_DEBUG_SPINLOCK
867 /* this is a valid case when another task releases the spinlock */
868 rq
->lock
.owner
= current
;
871 * If we are tracking spinlock dependencies then we have to
872 * fix up the runqueue lock - which gets 'carried over' from
875 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
877 spin_unlock_irq(&rq
->lock
);
880 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
881 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
886 return task_current(rq
, p
);
890 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
894 * We can optimise this out completely for !SMP, because the
895 * SMP rebalancing from interrupt is the only thing that cares
900 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
901 spin_unlock_irq(&rq
->lock
);
903 spin_unlock(&rq
->lock
);
907 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
911 * After ->oncpu is cleared, the task can be moved to a different CPU.
912 * We must ensure this doesn't happen until the switch is completely
918 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
922 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
925 * __task_rq_lock - lock the runqueue a given task resides on.
926 * Must be called interrupts disabled.
928 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
932 struct rq
*rq
= task_rq(p
);
933 spin_lock(&rq
->lock
);
934 if (likely(rq
== task_rq(p
)))
936 spin_unlock(&rq
->lock
);
941 * task_rq_lock - lock the runqueue a given task resides on and disable
942 * interrupts. Note the ordering: we can safely lookup the task_rq without
943 * explicitly disabling preemption.
945 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
951 local_irq_save(*flags
);
953 spin_lock(&rq
->lock
);
954 if (likely(rq
== task_rq(p
)))
956 spin_unlock_irqrestore(&rq
->lock
, *flags
);
960 static void __task_rq_unlock(struct rq
*rq
)
963 spin_unlock(&rq
->lock
);
966 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
969 spin_unlock_irqrestore(&rq
->lock
, *flags
);
973 * this_rq_lock - lock this runqueue and disable interrupts.
975 static struct rq
*this_rq_lock(void)
982 spin_lock(&rq
->lock
);
987 #ifdef CONFIG_SCHED_HRTICK
989 * Use HR-timers to deliver accurate preemption points.
991 * Its all a bit involved since we cannot program an hrt while holding the
992 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
995 * When we get rescheduled we reprogram the hrtick_timer outside of the
1001 * - enabled by features
1002 * - hrtimer is actually high res
1004 static inline int hrtick_enabled(struct rq
*rq
)
1006 if (!sched_feat(HRTICK
))
1008 if (!cpu_active(cpu_of(rq
)))
1010 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1013 static void hrtick_clear(struct rq
*rq
)
1015 if (hrtimer_active(&rq
->hrtick_timer
))
1016 hrtimer_cancel(&rq
->hrtick_timer
);
1020 * High-resolution timer tick.
1021 * Runs from hardirq context with interrupts disabled.
1023 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1025 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1027 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1029 spin_lock(&rq
->lock
);
1030 update_rq_clock(rq
);
1031 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1032 spin_unlock(&rq
->lock
);
1034 return HRTIMER_NORESTART
;
1039 * called from hardirq (IPI) context
1041 static void __hrtick_start(void *arg
)
1043 struct rq
*rq
= arg
;
1045 spin_lock(&rq
->lock
);
1046 hrtimer_restart(&rq
->hrtick_timer
);
1047 rq
->hrtick_csd_pending
= 0;
1048 spin_unlock(&rq
->lock
);
1052 * Called to set the hrtick timer state.
1054 * called with rq->lock held and irqs disabled
1056 static void hrtick_start(struct rq
*rq
, u64 delay
)
1058 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1059 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1061 timer
->expires
= time
;
1063 if (rq
== this_rq()) {
1064 hrtimer_restart(timer
);
1065 } else if (!rq
->hrtick_csd_pending
) {
1066 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
);
1067 rq
->hrtick_csd_pending
= 1;
1072 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1074 int cpu
= (int)(long)hcpu
;
1077 case CPU_UP_CANCELED
:
1078 case CPU_UP_CANCELED_FROZEN
:
1079 case CPU_DOWN_PREPARE
:
1080 case CPU_DOWN_PREPARE_FROZEN
:
1082 case CPU_DEAD_FROZEN
:
1083 hrtick_clear(cpu_rq(cpu
));
1090 static void init_hrtick(void)
1092 hotcpu_notifier(hotplug_hrtick
, 0);
1096 * Called to set the hrtick timer state.
1098 * called with rq->lock held and irqs disabled
1100 static void hrtick_start(struct rq
*rq
, u64 delay
)
1102 hrtimer_start(&rq
->hrtick_timer
, ns_to_ktime(delay
), HRTIMER_MODE_REL
);
1105 static void init_hrtick(void)
1108 #endif /* CONFIG_SMP */
1110 static void init_rq_hrtick(struct rq
*rq
)
1113 rq
->hrtick_csd_pending
= 0;
1115 rq
->hrtick_csd
.flags
= 0;
1116 rq
->hrtick_csd
.func
= __hrtick_start
;
1117 rq
->hrtick_csd
.info
= rq
;
1120 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1121 rq
->hrtick_timer
.function
= hrtick
;
1122 rq
->hrtick_timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
;
1125 static inline void hrtick_clear(struct rq
*rq
)
1129 static inline void init_rq_hrtick(struct rq
*rq
)
1133 static inline void init_hrtick(void)
1139 * resched_task - mark a task 'to be rescheduled now'.
1141 * On UP this means the setting of the need_resched flag, on SMP it
1142 * might also involve a cross-CPU call to trigger the scheduler on
1147 #ifndef tsk_is_polling
1148 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1151 static void resched_task(struct task_struct
*p
)
1155 assert_spin_locked(&task_rq(p
)->lock
);
1157 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
1160 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
1163 if (cpu
== smp_processor_id())
1166 /* NEED_RESCHED must be visible before we test polling */
1168 if (!tsk_is_polling(p
))
1169 smp_send_reschedule(cpu
);
1172 static void resched_cpu(int cpu
)
1174 struct rq
*rq
= cpu_rq(cpu
);
1175 unsigned long flags
;
1177 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1179 resched_task(cpu_curr(cpu
));
1180 spin_unlock_irqrestore(&rq
->lock
, flags
);
1185 * When add_timer_on() enqueues a timer into the timer wheel of an
1186 * idle CPU then this timer might expire before the next timer event
1187 * which is scheduled to wake up that CPU. In case of a completely
1188 * idle system the next event might even be infinite time into the
1189 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1190 * leaves the inner idle loop so the newly added timer is taken into
1191 * account when the CPU goes back to idle and evaluates the timer
1192 * wheel for the next timer event.
1194 void wake_up_idle_cpu(int cpu
)
1196 struct rq
*rq
= cpu_rq(cpu
);
1198 if (cpu
== smp_processor_id())
1202 * This is safe, as this function is called with the timer
1203 * wheel base lock of (cpu) held. When the CPU is on the way
1204 * to idle and has not yet set rq->curr to idle then it will
1205 * be serialized on the timer wheel base lock and take the new
1206 * timer into account automatically.
1208 if (rq
->curr
!= rq
->idle
)
1212 * We can set TIF_RESCHED on the idle task of the other CPU
1213 * lockless. The worst case is that the other CPU runs the
1214 * idle task through an additional NOOP schedule()
1216 set_tsk_thread_flag(rq
->idle
, TIF_NEED_RESCHED
);
1218 /* NEED_RESCHED must be visible before we test polling */
1220 if (!tsk_is_polling(rq
->idle
))
1221 smp_send_reschedule(cpu
);
1223 #endif /* CONFIG_NO_HZ */
1225 #else /* !CONFIG_SMP */
1226 static void resched_task(struct task_struct
*p
)
1228 assert_spin_locked(&task_rq(p
)->lock
);
1229 set_tsk_need_resched(p
);
1231 #endif /* CONFIG_SMP */
1233 #if BITS_PER_LONG == 32
1234 # define WMULT_CONST (~0UL)
1236 # define WMULT_CONST (1UL << 32)
1239 #define WMULT_SHIFT 32
1242 * Shift right and round:
1244 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1247 * delta *= weight / lw
1249 static unsigned long
1250 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1251 struct load_weight
*lw
)
1255 if (!lw
->inv_weight
) {
1256 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1259 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1263 tmp
= (u64
)delta_exec
* weight
;
1265 * Check whether we'd overflow the 64-bit multiplication:
1267 if (unlikely(tmp
> WMULT_CONST
))
1268 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1271 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1273 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1276 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1282 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1289 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1290 * of tasks with abnormal "nice" values across CPUs the contribution that
1291 * each task makes to its run queue's load is weighted according to its
1292 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1293 * scaled version of the new time slice allocation that they receive on time
1297 #define WEIGHT_IDLEPRIO 2
1298 #define WMULT_IDLEPRIO (1 << 31)
1301 * Nice levels are multiplicative, with a gentle 10% change for every
1302 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1303 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1304 * that remained on nice 0.
1306 * The "10% effect" is relative and cumulative: from _any_ nice level,
1307 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1308 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1309 * If a task goes up by ~10% and another task goes down by ~10% then
1310 * the relative distance between them is ~25%.)
1312 static const int prio_to_weight
[40] = {
1313 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1314 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1315 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1316 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1317 /* 0 */ 1024, 820, 655, 526, 423,
1318 /* 5 */ 335, 272, 215, 172, 137,
1319 /* 10 */ 110, 87, 70, 56, 45,
1320 /* 15 */ 36, 29, 23, 18, 15,
1324 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1326 * In cases where the weight does not change often, we can use the
1327 * precalculated inverse to speed up arithmetics by turning divisions
1328 * into multiplications:
1330 static const u32 prio_to_wmult
[40] = {
1331 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1332 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1333 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1334 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1335 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1336 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1337 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1338 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1341 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1344 * runqueue iterator, to support SMP load-balancing between different
1345 * scheduling classes, without having to expose their internal data
1346 * structures to the load-balancing proper:
1348 struct rq_iterator
{
1350 struct task_struct
*(*start
)(void *);
1351 struct task_struct
*(*next
)(void *);
1355 static unsigned long
1356 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1357 unsigned long max_load_move
, struct sched_domain
*sd
,
1358 enum cpu_idle_type idle
, int *all_pinned
,
1359 int *this_best_prio
, struct rq_iterator
*iterator
);
1362 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1363 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1364 struct rq_iterator
*iterator
);
1367 #ifdef CONFIG_CGROUP_CPUACCT
1368 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1370 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1373 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1375 update_load_add(&rq
->load
, load
);
1378 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1380 update_load_sub(&rq
->load
, load
);
1384 static unsigned long source_load(int cpu
, int type
);
1385 static unsigned long target_load(int cpu
, int type
);
1386 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1388 static unsigned long cpu_avg_load_per_task(int cpu
)
1390 struct rq
*rq
= cpu_rq(cpu
);
1393 rq
->avg_load_per_task
= rq
->load
.weight
/ rq
->nr_running
;
1395 return rq
->avg_load_per_task
;
1398 #ifdef CONFIG_FAIR_GROUP_SCHED
1400 typedef void (*tg_visitor
)(struct task_group
*, int, struct sched_domain
*);
1403 * Iterate the full tree, calling @down when first entering a node and @up when
1404 * leaving it for the final time.
1407 walk_tg_tree(tg_visitor down
, tg_visitor up
, int cpu
, struct sched_domain
*sd
)
1409 struct task_group
*parent
, *child
;
1412 parent
= &root_task_group
;
1414 (*down
)(parent
, cpu
, sd
);
1415 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1422 (*up
)(parent
, cpu
, sd
);
1425 parent
= parent
->parent
;
1431 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1434 * Calculate and set the cpu's group shares.
1437 __update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1438 unsigned long sd_shares
, unsigned long sd_rq_weight
)
1441 unsigned long shares
;
1442 unsigned long rq_weight
;
1447 rq_weight
= tg
->cfs_rq
[cpu
]->load
.weight
;
1450 * If there are currently no tasks on the cpu pretend there is one of
1451 * average load so that when a new task gets to run here it will not
1452 * get delayed by group starvation.
1456 rq_weight
= NICE_0_LOAD
;
1459 if (unlikely(rq_weight
> sd_rq_weight
))
1460 rq_weight
= sd_rq_weight
;
1463 * \Sum shares * rq_weight
1464 * shares = -----------------------
1468 shares
= (sd_shares
* rq_weight
) / (sd_rq_weight
+ 1);
1471 * record the actual number of shares, not the boosted amount.
1473 tg
->cfs_rq
[cpu
]->shares
= boost
? 0 : shares
;
1474 tg
->cfs_rq
[cpu
]->rq_weight
= rq_weight
;
1476 if (shares
< MIN_SHARES
)
1477 shares
= MIN_SHARES
;
1478 else if (shares
> MAX_SHARES
)
1479 shares
= MAX_SHARES
;
1481 __set_se_shares(tg
->se
[cpu
], shares
);
1485 * Re-compute the task group their per cpu shares over the given domain.
1486 * This needs to be done in a bottom-up fashion because the rq weight of a
1487 * parent group depends on the shares of its child groups.
1490 tg_shares_up(struct task_group
*tg
, int cpu
, struct sched_domain
*sd
)
1492 unsigned long rq_weight
= 0;
1493 unsigned long shares
= 0;
1496 for_each_cpu_mask(i
, sd
->span
) {
1497 rq_weight
+= tg
->cfs_rq
[i
]->load
.weight
;
1498 shares
+= tg
->cfs_rq
[i
]->shares
;
1501 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1502 shares
= tg
->shares
;
1504 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1505 shares
= tg
->shares
;
1508 rq_weight
= cpus_weight(sd
->span
) * NICE_0_LOAD
;
1510 for_each_cpu_mask(i
, sd
->span
) {
1511 struct rq
*rq
= cpu_rq(i
);
1512 unsigned long flags
;
1514 spin_lock_irqsave(&rq
->lock
, flags
);
1515 __update_group_shares_cpu(tg
, i
, shares
, rq_weight
);
1516 spin_unlock_irqrestore(&rq
->lock
, flags
);
1521 * Compute the cpu's hierarchical load factor for each task group.
1522 * This needs to be done in a top-down fashion because the load of a child
1523 * group is a fraction of its parents load.
1526 tg_load_down(struct task_group
*tg
, int cpu
, struct sched_domain
*sd
)
1531 load
= cpu_rq(cpu
)->load
.weight
;
1533 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1534 load
*= tg
->cfs_rq
[cpu
]->shares
;
1535 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1538 tg
->cfs_rq
[cpu
]->h_load
= load
;
1542 tg_nop(struct task_group
*tg
, int cpu
, struct sched_domain
*sd
)
1546 static void update_shares(struct sched_domain
*sd
)
1548 u64 now
= cpu_clock(raw_smp_processor_id());
1549 s64 elapsed
= now
- sd
->last_update
;
1551 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1552 sd
->last_update
= now
;
1553 walk_tg_tree(tg_nop
, tg_shares_up
, 0, sd
);
1557 static void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1559 spin_unlock(&rq
->lock
);
1561 spin_lock(&rq
->lock
);
1564 static void update_h_load(int cpu
)
1566 walk_tg_tree(tg_load_down
, tg_nop
, cpu
, NULL
);
1571 static inline void update_shares(struct sched_domain
*sd
)
1575 static inline void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1583 #ifdef CONFIG_FAIR_GROUP_SCHED
1584 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1587 cfs_rq
->shares
= shares
;
1592 #include "sched_stats.h"
1593 #include "sched_idletask.c"
1594 #include "sched_fair.c"
1595 #include "sched_rt.c"
1596 #ifdef CONFIG_SCHED_DEBUG
1597 # include "sched_debug.c"
1600 #define sched_class_highest (&rt_sched_class)
1601 #define for_each_class(class) \
1602 for (class = sched_class_highest; class; class = class->next)
1604 static void inc_nr_running(struct rq
*rq
)
1609 static void dec_nr_running(struct rq
*rq
)
1614 static void set_load_weight(struct task_struct
*p
)
1616 if (task_has_rt_policy(p
)) {
1617 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1618 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1623 * SCHED_IDLE tasks get minimal weight:
1625 if (p
->policy
== SCHED_IDLE
) {
1626 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1627 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1631 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1632 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1635 static void update_avg(u64
*avg
, u64 sample
)
1637 s64 diff
= sample
- *avg
;
1641 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1643 sched_info_queued(p
);
1644 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1648 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1650 if (sleep
&& p
->se
.last_wakeup
) {
1651 update_avg(&p
->se
.avg_overlap
,
1652 p
->se
.sum_exec_runtime
- p
->se
.last_wakeup
);
1653 p
->se
.last_wakeup
= 0;
1656 sched_info_dequeued(p
);
1657 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1662 * __normal_prio - return the priority that is based on the static prio
1664 static inline int __normal_prio(struct task_struct
*p
)
1666 return p
->static_prio
;
1670 * Calculate the expected normal priority: i.e. priority
1671 * without taking RT-inheritance into account. Might be
1672 * boosted by interactivity modifiers. Changes upon fork,
1673 * setprio syscalls, and whenever the interactivity
1674 * estimator recalculates.
1676 static inline int normal_prio(struct task_struct
*p
)
1680 if (task_has_rt_policy(p
))
1681 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1683 prio
= __normal_prio(p
);
1688 * Calculate the current priority, i.e. the priority
1689 * taken into account by the scheduler. This value might
1690 * be boosted by RT tasks, or might be boosted by
1691 * interactivity modifiers. Will be RT if the task got
1692 * RT-boosted. If not then it returns p->normal_prio.
1694 static int effective_prio(struct task_struct
*p
)
1696 p
->normal_prio
= normal_prio(p
);
1698 * If we are RT tasks or we were boosted to RT priority,
1699 * keep the priority unchanged. Otherwise, update priority
1700 * to the normal priority:
1702 if (!rt_prio(p
->prio
))
1703 return p
->normal_prio
;
1708 * activate_task - move a task to the runqueue.
1710 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1712 if (task_contributes_to_load(p
))
1713 rq
->nr_uninterruptible
--;
1715 enqueue_task(rq
, p
, wakeup
);
1720 * deactivate_task - remove a task from the runqueue.
1722 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1724 if (task_contributes_to_load(p
))
1725 rq
->nr_uninterruptible
++;
1727 dequeue_task(rq
, p
, sleep
);
1732 * task_curr - is this task currently executing on a CPU?
1733 * @p: the task in question.
1735 inline int task_curr(const struct task_struct
*p
)
1737 return cpu_curr(task_cpu(p
)) == p
;
1740 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1742 set_task_rq(p
, cpu
);
1745 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1746 * successfuly executed on another CPU. We must ensure that updates of
1747 * per-task data have been completed by this moment.
1750 task_thread_info(p
)->cpu
= cpu
;
1754 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1755 const struct sched_class
*prev_class
,
1756 int oldprio
, int running
)
1758 if (prev_class
!= p
->sched_class
) {
1759 if (prev_class
->switched_from
)
1760 prev_class
->switched_from(rq
, p
, running
);
1761 p
->sched_class
->switched_to(rq
, p
, running
);
1763 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1768 /* Used instead of source_load when we know the type == 0 */
1769 static unsigned long weighted_cpuload(const int cpu
)
1771 return cpu_rq(cpu
)->load
.weight
;
1775 * Is this task likely cache-hot:
1778 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1783 * Buddy candidates are cache hot:
1785 if (sched_feat(CACHE_HOT_BUDDY
) && (&p
->se
== cfs_rq_of(&p
->se
)->next
))
1788 if (p
->sched_class
!= &fair_sched_class
)
1791 if (sysctl_sched_migration_cost
== -1)
1793 if (sysctl_sched_migration_cost
== 0)
1796 delta
= now
- p
->se
.exec_start
;
1798 return delta
< (s64
)sysctl_sched_migration_cost
;
1802 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1804 int old_cpu
= task_cpu(p
);
1805 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1806 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1807 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1810 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1812 #ifdef CONFIG_SCHEDSTATS
1813 if (p
->se
.wait_start
)
1814 p
->se
.wait_start
-= clock_offset
;
1815 if (p
->se
.sleep_start
)
1816 p
->se
.sleep_start
-= clock_offset
;
1817 if (p
->se
.block_start
)
1818 p
->se
.block_start
-= clock_offset
;
1819 if (old_cpu
!= new_cpu
) {
1820 schedstat_inc(p
, se
.nr_migrations
);
1821 if (task_hot(p
, old_rq
->clock
, NULL
))
1822 schedstat_inc(p
, se
.nr_forced2_migrations
);
1825 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1826 new_cfsrq
->min_vruntime
;
1828 __set_task_cpu(p
, new_cpu
);
1831 struct migration_req
{
1832 struct list_head list
;
1834 struct task_struct
*task
;
1837 struct completion done
;
1841 * The task's runqueue lock must be held.
1842 * Returns true if you have to wait for migration thread.
1845 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1847 struct rq
*rq
= task_rq(p
);
1850 * If the task is not on a runqueue (and not running), then
1851 * it is sufficient to simply update the task's cpu field.
1853 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1854 set_task_cpu(p
, dest_cpu
);
1858 init_completion(&req
->done
);
1860 req
->dest_cpu
= dest_cpu
;
1861 list_add(&req
->list
, &rq
->migration_queue
);
1867 * wait_task_inactive - wait for a thread to unschedule.
1869 * If @match_state is nonzero, it's the @p->state value just checked and
1870 * not expected to change. If it changes, i.e. @p might have woken up,
1871 * then return zero. When we succeed in waiting for @p to be off its CPU,
1872 * we return a positive number (its total switch count). If a second call
1873 * a short while later returns the same number, the caller can be sure that
1874 * @p has remained unscheduled the whole time.
1876 * The caller must ensure that the task *will* unschedule sometime soon,
1877 * else this function might spin for a *long* time. This function can't
1878 * be called with interrupts off, or it may introduce deadlock with
1879 * smp_call_function() if an IPI is sent by the same process we are
1880 * waiting to become inactive.
1882 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
1884 unsigned long flags
;
1891 * We do the initial early heuristics without holding
1892 * any task-queue locks at all. We'll only try to get
1893 * the runqueue lock when things look like they will
1899 * If the task is actively running on another CPU
1900 * still, just relax and busy-wait without holding
1903 * NOTE! Since we don't hold any locks, it's not
1904 * even sure that "rq" stays as the right runqueue!
1905 * But we don't care, since "task_running()" will
1906 * return false if the runqueue has changed and p
1907 * is actually now running somewhere else!
1909 while (task_running(rq
, p
)) {
1910 if (match_state
&& unlikely(p
->state
!= match_state
))
1916 * Ok, time to look more closely! We need the rq
1917 * lock now, to be *sure*. If we're wrong, we'll
1918 * just go back and repeat.
1920 rq
= task_rq_lock(p
, &flags
);
1921 running
= task_running(rq
, p
);
1922 on_rq
= p
->se
.on_rq
;
1924 if (!match_state
|| p
->state
== match_state
) {
1925 ncsw
= p
->nivcsw
+ p
->nvcsw
;
1926 if (unlikely(!ncsw
))
1929 task_rq_unlock(rq
, &flags
);
1932 * If it changed from the expected state, bail out now.
1934 if (unlikely(!ncsw
))
1938 * Was it really running after all now that we
1939 * checked with the proper locks actually held?
1941 * Oops. Go back and try again..
1943 if (unlikely(running
)) {
1949 * It's not enough that it's not actively running,
1950 * it must be off the runqueue _entirely_, and not
1953 * So if it wa still runnable (but just not actively
1954 * running right now), it's preempted, and we should
1955 * yield - it could be a while.
1957 if (unlikely(on_rq
)) {
1958 schedule_timeout_uninterruptible(1);
1963 * Ahh, all good. It wasn't running, and it wasn't
1964 * runnable, which means that it will never become
1965 * running in the future either. We're all done!
1974 * kick_process - kick a running thread to enter/exit the kernel
1975 * @p: the to-be-kicked thread
1977 * Cause a process which is running on another CPU to enter
1978 * kernel-mode, without any delay. (to get signals handled.)
1980 * NOTE: this function doesnt have to take the runqueue lock,
1981 * because all it wants to ensure is that the remote task enters
1982 * the kernel. If the IPI races and the task has been migrated
1983 * to another CPU then no harm is done and the purpose has been
1986 void kick_process(struct task_struct
*p
)
1992 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1993 smp_send_reschedule(cpu
);
1998 * Return a low guess at the load of a migration-source cpu weighted
1999 * according to the scheduling class and "nice" value.
2001 * We want to under-estimate the load of migration sources, to
2002 * balance conservatively.
2004 static unsigned long source_load(int cpu
, int type
)
2006 struct rq
*rq
= cpu_rq(cpu
);
2007 unsigned long total
= weighted_cpuload(cpu
);
2009 if (type
== 0 || !sched_feat(LB_BIAS
))
2012 return min(rq
->cpu_load
[type
-1], total
);
2016 * Return a high guess at the load of a migration-target cpu weighted
2017 * according to the scheduling class and "nice" value.
2019 static unsigned long target_load(int cpu
, int type
)
2021 struct rq
*rq
= cpu_rq(cpu
);
2022 unsigned long total
= weighted_cpuload(cpu
);
2024 if (type
== 0 || !sched_feat(LB_BIAS
))
2027 return max(rq
->cpu_load
[type
-1], total
);
2031 * find_idlest_group finds and returns the least busy CPU group within the
2034 static struct sched_group
*
2035 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
2037 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2038 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
2039 int load_idx
= sd
->forkexec_idx
;
2040 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
2043 unsigned long load
, avg_load
;
2047 /* Skip over this group if it has no CPUs allowed */
2048 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
2051 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2053 /* Tally up the load of all CPUs in the group */
2056 for_each_cpu_mask_nr(i
, group
->cpumask
) {
2057 /* Bias balancing toward cpus of our domain */
2059 load
= source_load(i
, load_idx
);
2061 load
= target_load(i
, load_idx
);
2066 /* Adjust by relative CPU power of the group */
2067 avg_load
= sg_div_cpu_power(group
,
2068 avg_load
* SCHED_LOAD_SCALE
);
2071 this_load
= avg_load
;
2073 } else if (avg_load
< min_load
) {
2074 min_load
= avg_load
;
2077 } while (group
= group
->next
, group
!= sd
->groups
);
2079 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
2085 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2088 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
,
2091 unsigned long load
, min_load
= ULONG_MAX
;
2095 /* Traverse only the allowed CPUs */
2096 cpus_and(*tmp
, group
->cpumask
, p
->cpus_allowed
);
2098 for_each_cpu_mask_nr(i
, *tmp
) {
2099 load
= weighted_cpuload(i
);
2101 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
2111 * sched_balance_self: balance the current task (running on cpu) in domains
2112 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2115 * Balance, ie. select the least loaded group.
2117 * Returns the target CPU number, or the same CPU if no balancing is needed.
2119 * preempt must be disabled.
2121 static int sched_balance_self(int cpu
, int flag
)
2123 struct task_struct
*t
= current
;
2124 struct sched_domain
*tmp
, *sd
= NULL
;
2126 for_each_domain(cpu
, tmp
) {
2128 * If power savings logic is enabled for a domain, stop there.
2130 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
2132 if (tmp
->flags
& flag
)
2140 cpumask_t span
, tmpmask
;
2141 struct sched_group
*group
;
2142 int new_cpu
, weight
;
2144 if (!(sd
->flags
& flag
)) {
2150 group
= find_idlest_group(sd
, t
, cpu
);
2156 new_cpu
= find_idlest_cpu(group
, t
, cpu
, &tmpmask
);
2157 if (new_cpu
== -1 || new_cpu
== cpu
) {
2158 /* Now try balancing at a lower domain level of cpu */
2163 /* Now try balancing at a lower domain level of new_cpu */
2166 weight
= cpus_weight(span
);
2167 for_each_domain(cpu
, tmp
) {
2168 if (weight
<= cpus_weight(tmp
->span
))
2170 if (tmp
->flags
& flag
)
2173 /* while loop will break here if sd == NULL */
2179 #endif /* CONFIG_SMP */
2182 * try_to_wake_up - wake up a thread
2183 * @p: the to-be-woken-up thread
2184 * @state: the mask of task states that can be woken
2185 * @sync: do a synchronous wakeup?
2187 * Put it on the run-queue if it's not already there. The "current"
2188 * thread is always on the run-queue (except when the actual
2189 * re-schedule is in progress), and as such you're allowed to do
2190 * the simpler "current->state = TASK_RUNNING" to mark yourself
2191 * runnable without the overhead of this.
2193 * returns failure only if the task is already active.
2195 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
2197 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2198 unsigned long flags
;
2202 if (!sched_feat(SYNC_WAKEUPS
))
2206 if (sched_feat(LB_WAKEUP_UPDATE
)) {
2207 struct sched_domain
*sd
;
2209 this_cpu
= raw_smp_processor_id();
2212 for_each_domain(this_cpu
, sd
) {
2213 if (cpu_isset(cpu
, sd
->span
)) {
2222 rq
= task_rq_lock(p
, &flags
);
2223 old_state
= p
->state
;
2224 if (!(old_state
& state
))
2232 this_cpu
= smp_processor_id();
2235 if (unlikely(task_running(rq
, p
)))
2238 cpu
= p
->sched_class
->select_task_rq(p
, sync
);
2239 if (cpu
!= orig_cpu
) {
2240 set_task_cpu(p
, cpu
);
2241 task_rq_unlock(rq
, &flags
);
2242 /* might preempt at this point */
2243 rq
= task_rq_lock(p
, &flags
);
2244 old_state
= p
->state
;
2245 if (!(old_state
& state
))
2250 this_cpu
= smp_processor_id();
2254 #ifdef CONFIG_SCHEDSTATS
2255 schedstat_inc(rq
, ttwu_count
);
2256 if (cpu
== this_cpu
)
2257 schedstat_inc(rq
, ttwu_local
);
2259 struct sched_domain
*sd
;
2260 for_each_domain(this_cpu
, sd
) {
2261 if (cpu_isset(cpu
, sd
->span
)) {
2262 schedstat_inc(sd
, ttwu_wake_remote
);
2267 #endif /* CONFIG_SCHEDSTATS */
2270 #endif /* CONFIG_SMP */
2271 schedstat_inc(p
, se
.nr_wakeups
);
2273 schedstat_inc(p
, se
.nr_wakeups_sync
);
2274 if (orig_cpu
!= cpu
)
2275 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2276 if (cpu
== this_cpu
)
2277 schedstat_inc(p
, se
.nr_wakeups_local
);
2279 schedstat_inc(p
, se
.nr_wakeups_remote
);
2280 update_rq_clock(rq
);
2281 activate_task(rq
, p
, 1);
2285 trace_mark(kernel_sched_wakeup
,
2286 "pid %d state %ld ## rq %p task %p rq->curr %p",
2287 p
->pid
, p
->state
, rq
, p
, rq
->curr
);
2288 check_preempt_curr(rq
, p
);
2290 p
->state
= TASK_RUNNING
;
2292 if (p
->sched_class
->task_wake_up
)
2293 p
->sched_class
->task_wake_up(rq
, p
);
2296 current
->se
.last_wakeup
= current
->se
.sum_exec_runtime
;
2298 task_rq_unlock(rq
, &flags
);
2303 int wake_up_process(struct task_struct
*p
)
2305 return try_to_wake_up(p
, TASK_ALL
, 0);
2307 EXPORT_SYMBOL(wake_up_process
);
2309 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2311 return try_to_wake_up(p
, state
, 0);
2315 * Perform scheduler related setup for a newly forked process p.
2316 * p is forked by current.
2318 * __sched_fork() is basic setup used by init_idle() too:
2320 static void __sched_fork(struct task_struct
*p
)
2322 p
->se
.exec_start
= 0;
2323 p
->se
.sum_exec_runtime
= 0;
2324 p
->se
.prev_sum_exec_runtime
= 0;
2325 p
->se
.last_wakeup
= 0;
2326 p
->se
.avg_overlap
= 0;
2328 #ifdef CONFIG_SCHEDSTATS
2329 p
->se
.wait_start
= 0;
2330 p
->se
.sum_sleep_runtime
= 0;
2331 p
->se
.sleep_start
= 0;
2332 p
->se
.block_start
= 0;
2333 p
->se
.sleep_max
= 0;
2334 p
->se
.block_max
= 0;
2336 p
->se
.slice_max
= 0;
2340 INIT_LIST_HEAD(&p
->rt
.run_list
);
2342 INIT_LIST_HEAD(&p
->se
.group_node
);
2344 #ifdef CONFIG_PREEMPT_NOTIFIERS
2345 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2349 * We mark the process as running here, but have not actually
2350 * inserted it onto the runqueue yet. This guarantees that
2351 * nobody will actually run it, and a signal or other external
2352 * event cannot wake it up and insert it on the runqueue either.
2354 p
->state
= TASK_RUNNING
;
2358 * fork()/clone()-time setup:
2360 void sched_fork(struct task_struct
*p
, int clone_flags
)
2362 int cpu
= get_cpu();
2367 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
2369 set_task_cpu(p
, cpu
);
2372 * Make sure we do not leak PI boosting priority to the child:
2374 p
->prio
= current
->normal_prio
;
2375 if (!rt_prio(p
->prio
))
2376 p
->sched_class
= &fair_sched_class
;
2378 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2379 if (likely(sched_info_on()))
2380 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2382 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2385 #ifdef CONFIG_PREEMPT
2386 /* Want to start with kernel preemption disabled. */
2387 task_thread_info(p
)->preempt_count
= 1;
2393 * wake_up_new_task - wake up a newly created task for the first time.
2395 * This function will do some initial scheduler statistics housekeeping
2396 * that must be done for every newly created context, then puts the task
2397 * on the runqueue and wakes it.
2399 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2401 unsigned long flags
;
2404 rq
= task_rq_lock(p
, &flags
);
2405 BUG_ON(p
->state
!= TASK_RUNNING
);
2406 update_rq_clock(rq
);
2408 p
->prio
= effective_prio(p
);
2410 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2411 activate_task(rq
, p
, 0);
2414 * Let the scheduling class do new task startup
2415 * management (if any):
2417 p
->sched_class
->task_new(rq
, p
);
2420 trace_mark(kernel_sched_wakeup_new
,
2421 "pid %d state %ld ## rq %p task %p rq->curr %p",
2422 p
->pid
, p
->state
, rq
, p
, rq
->curr
);
2423 check_preempt_curr(rq
, p
);
2425 if (p
->sched_class
->task_wake_up
)
2426 p
->sched_class
->task_wake_up(rq
, p
);
2428 task_rq_unlock(rq
, &flags
);
2431 #ifdef CONFIG_PREEMPT_NOTIFIERS
2434 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2435 * @notifier: notifier struct to register
2437 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2439 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2441 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2444 * preempt_notifier_unregister - no longer interested in preemption notifications
2445 * @notifier: notifier struct to unregister
2447 * This is safe to call from within a preemption notifier.
2449 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2451 hlist_del(¬ifier
->link
);
2453 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2455 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2457 struct preempt_notifier
*notifier
;
2458 struct hlist_node
*node
;
2460 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2461 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2465 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2466 struct task_struct
*next
)
2468 struct preempt_notifier
*notifier
;
2469 struct hlist_node
*node
;
2471 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2472 notifier
->ops
->sched_out(notifier
, next
);
2475 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2477 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2482 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2483 struct task_struct
*next
)
2487 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2490 * prepare_task_switch - prepare to switch tasks
2491 * @rq: the runqueue preparing to switch
2492 * @prev: the current task that is being switched out
2493 * @next: the task we are going to switch to.
2495 * This is called with the rq lock held and interrupts off. It must
2496 * be paired with a subsequent finish_task_switch after the context
2499 * prepare_task_switch sets up locking and calls architecture specific
2503 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2504 struct task_struct
*next
)
2506 fire_sched_out_preempt_notifiers(prev
, next
);
2507 prepare_lock_switch(rq
, next
);
2508 prepare_arch_switch(next
);
2512 * finish_task_switch - clean up after a task-switch
2513 * @rq: runqueue associated with task-switch
2514 * @prev: the thread we just switched away from.
2516 * finish_task_switch must be called after the context switch, paired
2517 * with a prepare_task_switch call before the context switch.
2518 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2519 * and do any other architecture-specific cleanup actions.
2521 * Note that we may have delayed dropping an mm in context_switch(). If
2522 * so, we finish that here outside of the runqueue lock. (Doing it
2523 * with the lock held can cause deadlocks; see schedule() for
2526 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2527 __releases(rq
->lock
)
2529 struct mm_struct
*mm
= rq
->prev_mm
;
2535 * A task struct has one reference for the use as "current".
2536 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2537 * schedule one last time. The schedule call will never return, and
2538 * the scheduled task must drop that reference.
2539 * The test for TASK_DEAD must occur while the runqueue locks are
2540 * still held, otherwise prev could be scheduled on another cpu, die
2541 * there before we look at prev->state, and then the reference would
2543 * Manfred Spraul <manfred@colorfullife.com>
2545 prev_state
= prev
->state
;
2546 finish_arch_switch(prev
);
2547 finish_lock_switch(rq
, prev
);
2549 if (current
->sched_class
->post_schedule
)
2550 current
->sched_class
->post_schedule(rq
);
2553 fire_sched_in_preempt_notifiers(current
);
2556 if (unlikely(prev_state
== TASK_DEAD
)) {
2558 * Remove function-return probe instances associated with this
2559 * task and put them back on the free list.
2561 kprobe_flush_task(prev
);
2562 put_task_struct(prev
);
2567 * schedule_tail - first thing a freshly forked thread must call.
2568 * @prev: the thread we just switched away from.
2570 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2571 __releases(rq
->lock
)
2573 struct rq
*rq
= this_rq();
2575 finish_task_switch(rq
, prev
);
2576 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2577 /* In this case, finish_task_switch does not reenable preemption */
2580 if (current
->set_child_tid
)
2581 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2585 * context_switch - switch to the new MM and the new
2586 * thread's register state.
2589 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2590 struct task_struct
*next
)
2592 struct mm_struct
*mm
, *oldmm
;
2594 prepare_task_switch(rq
, prev
, next
);
2595 trace_mark(kernel_sched_schedule
,
2596 "prev_pid %d next_pid %d prev_state %ld "
2597 "## rq %p prev %p next %p",
2598 prev
->pid
, next
->pid
, prev
->state
,
2601 oldmm
= prev
->active_mm
;
2603 * For paravirt, this is coupled with an exit in switch_to to
2604 * combine the page table reload and the switch backend into
2607 arch_enter_lazy_cpu_mode();
2609 if (unlikely(!mm
)) {
2610 next
->active_mm
= oldmm
;
2611 atomic_inc(&oldmm
->mm_count
);
2612 enter_lazy_tlb(oldmm
, next
);
2614 switch_mm(oldmm
, mm
, next
);
2616 if (unlikely(!prev
->mm
)) {
2617 prev
->active_mm
= NULL
;
2618 rq
->prev_mm
= oldmm
;
2621 * Since the runqueue lock will be released by the next
2622 * task (which is an invalid locking op but in the case
2623 * of the scheduler it's an obvious special-case), so we
2624 * do an early lockdep release here:
2626 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2627 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2630 /* Here we just switch the register state and the stack. */
2631 switch_to(prev
, next
, prev
);
2635 * this_rq must be evaluated again because prev may have moved
2636 * CPUs since it called schedule(), thus the 'rq' on its stack
2637 * frame will be invalid.
2639 finish_task_switch(this_rq(), prev
);
2643 * nr_running, nr_uninterruptible and nr_context_switches:
2645 * externally visible scheduler statistics: current number of runnable
2646 * threads, current number of uninterruptible-sleeping threads, total
2647 * number of context switches performed since bootup.
2649 unsigned long nr_running(void)
2651 unsigned long i
, sum
= 0;
2653 for_each_online_cpu(i
)
2654 sum
+= cpu_rq(i
)->nr_running
;
2659 unsigned long nr_uninterruptible(void)
2661 unsigned long i
, sum
= 0;
2663 for_each_possible_cpu(i
)
2664 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2667 * Since we read the counters lockless, it might be slightly
2668 * inaccurate. Do not allow it to go below zero though:
2670 if (unlikely((long)sum
< 0))
2676 unsigned long long nr_context_switches(void)
2679 unsigned long long sum
= 0;
2681 for_each_possible_cpu(i
)
2682 sum
+= cpu_rq(i
)->nr_switches
;
2687 unsigned long nr_iowait(void)
2689 unsigned long i
, sum
= 0;
2691 for_each_possible_cpu(i
)
2692 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2697 unsigned long nr_active(void)
2699 unsigned long i
, running
= 0, uninterruptible
= 0;
2701 for_each_online_cpu(i
) {
2702 running
+= cpu_rq(i
)->nr_running
;
2703 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2706 if (unlikely((long)uninterruptible
< 0))
2707 uninterruptible
= 0;
2709 return running
+ uninterruptible
;
2713 * Update rq->cpu_load[] statistics. This function is usually called every
2714 * scheduler tick (TICK_NSEC).
2716 static void update_cpu_load(struct rq
*this_rq
)
2718 unsigned long this_load
= this_rq
->load
.weight
;
2721 this_rq
->nr_load_updates
++;
2723 /* Update our load: */
2724 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2725 unsigned long old_load
, new_load
;
2727 /* scale is effectively 1 << i now, and >> i divides by scale */
2729 old_load
= this_rq
->cpu_load
[i
];
2730 new_load
= this_load
;
2732 * Round up the averaging division if load is increasing. This
2733 * prevents us from getting stuck on 9 if the load is 10, for
2736 if (new_load
> old_load
)
2737 new_load
+= scale
-1;
2738 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2745 * double_rq_lock - safely lock two runqueues
2747 * Note this does not disable interrupts like task_rq_lock,
2748 * you need to do so manually before calling.
2750 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2751 __acquires(rq1
->lock
)
2752 __acquires(rq2
->lock
)
2754 BUG_ON(!irqs_disabled());
2756 spin_lock(&rq1
->lock
);
2757 __acquire(rq2
->lock
); /* Fake it out ;) */
2760 spin_lock(&rq1
->lock
);
2761 spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
2763 spin_lock(&rq2
->lock
);
2764 spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
2767 update_rq_clock(rq1
);
2768 update_rq_clock(rq2
);
2772 * double_rq_unlock - safely unlock two runqueues
2774 * Note this does not restore interrupts like task_rq_unlock,
2775 * you need to do so manually after calling.
2777 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2778 __releases(rq1
->lock
)
2779 __releases(rq2
->lock
)
2781 spin_unlock(&rq1
->lock
);
2783 spin_unlock(&rq2
->lock
);
2785 __release(rq2
->lock
);
2789 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2791 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2792 __releases(this_rq
->lock
)
2793 __acquires(busiest
->lock
)
2794 __acquires(this_rq
->lock
)
2798 if (unlikely(!irqs_disabled())) {
2799 /* printk() doesn't work good under rq->lock */
2800 spin_unlock(&this_rq
->lock
);
2803 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2804 if (busiest
< this_rq
) {
2805 spin_unlock(&this_rq
->lock
);
2806 spin_lock(&busiest
->lock
);
2807 spin_lock_nested(&this_rq
->lock
, SINGLE_DEPTH_NESTING
);
2810 spin_lock_nested(&busiest
->lock
, SINGLE_DEPTH_NESTING
);
2815 static void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2816 __releases(busiest
->lock
)
2818 spin_unlock(&busiest
->lock
);
2819 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
2823 * If dest_cpu is allowed for this process, migrate the task to it.
2824 * This is accomplished by forcing the cpu_allowed mask to only
2825 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2826 * the cpu_allowed mask is restored.
2828 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2830 struct migration_req req
;
2831 unsigned long flags
;
2834 rq
= task_rq_lock(p
, &flags
);
2835 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2836 || unlikely(!cpu_active(dest_cpu
)))
2839 /* force the process onto the specified CPU */
2840 if (migrate_task(p
, dest_cpu
, &req
)) {
2841 /* Need to wait for migration thread (might exit: take ref). */
2842 struct task_struct
*mt
= rq
->migration_thread
;
2844 get_task_struct(mt
);
2845 task_rq_unlock(rq
, &flags
);
2846 wake_up_process(mt
);
2847 put_task_struct(mt
);
2848 wait_for_completion(&req
.done
);
2853 task_rq_unlock(rq
, &flags
);
2857 * sched_exec - execve() is a valuable balancing opportunity, because at
2858 * this point the task has the smallest effective memory and cache footprint.
2860 void sched_exec(void)
2862 int new_cpu
, this_cpu
= get_cpu();
2863 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2865 if (new_cpu
!= this_cpu
)
2866 sched_migrate_task(current
, new_cpu
);
2870 * pull_task - move a task from a remote runqueue to the local runqueue.
2871 * Both runqueues must be locked.
2873 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2874 struct rq
*this_rq
, int this_cpu
)
2876 deactivate_task(src_rq
, p
, 0);
2877 set_task_cpu(p
, this_cpu
);
2878 activate_task(this_rq
, p
, 0);
2880 * Note that idle threads have a prio of MAX_PRIO, for this test
2881 * to be always true for them.
2883 check_preempt_curr(this_rq
, p
);
2887 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2890 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2891 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2895 * We do not migrate tasks that are:
2896 * 1) running (obviously), or
2897 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2898 * 3) are cache-hot on their current CPU.
2900 if (!cpu_isset(this_cpu
, p
->cpus_allowed
)) {
2901 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
2906 if (task_running(rq
, p
)) {
2907 schedstat_inc(p
, se
.nr_failed_migrations_running
);
2912 * Aggressive migration if:
2913 * 1) task is cache cold, or
2914 * 2) too many balance attempts have failed.
2917 if (!task_hot(p
, rq
->clock
, sd
) ||
2918 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2919 #ifdef CONFIG_SCHEDSTATS
2920 if (task_hot(p
, rq
->clock
, sd
)) {
2921 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2922 schedstat_inc(p
, se
.nr_forced_migrations
);
2928 if (task_hot(p
, rq
->clock
, sd
)) {
2929 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
2935 static unsigned long
2936 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2937 unsigned long max_load_move
, struct sched_domain
*sd
,
2938 enum cpu_idle_type idle
, int *all_pinned
,
2939 int *this_best_prio
, struct rq_iterator
*iterator
)
2941 int loops
= 0, pulled
= 0, pinned
= 0;
2942 struct task_struct
*p
;
2943 long rem_load_move
= max_load_move
;
2945 if (max_load_move
== 0)
2951 * Start the load-balancing iterator:
2953 p
= iterator
->start(iterator
->arg
);
2955 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
2958 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
2959 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2960 p
= iterator
->next(iterator
->arg
);
2964 pull_task(busiest
, p
, this_rq
, this_cpu
);
2966 rem_load_move
-= p
->se
.load
.weight
;
2969 * We only want to steal up to the prescribed amount of weighted load.
2971 if (rem_load_move
> 0) {
2972 if (p
->prio
< *this_best_prio
)
2973 *this_best_prio
= p
->prio
;
2974 p
= iterator
->next(iterator
->arg
);
2979 * Right now, this is one of only two places pull_task() is called,
2980 * so we can safely collect pull_task() stats here rather than
2981 * inside pull_task().
2983 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2986 *all_pinned
= pinned
;
2988 return max_load_move
- rem_load_move
;
2992 * move_tasks tries to move up to max_load_move weighted load from busiest to
2993 * this_rq, as part of a balancing operation within domain "sd".
2994 * Returns 1 if successful and 0 otherwise.
2996 * Called with both runqueues locked.
2998 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2999 unsigned long max_load_move
,
3000 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3003 const struct sched_class
*class = sched_class_highest
;
3004 unsigned long total_load_moved
= 0;
3005 int this_best_prio
= this_rq
->curr
->prio
;
3009 class->load_balance(this_rq
, this_cpu
, busiest
,
3010 max_load_move
- total_load_moved
,
3011 sd
, idle
, all_pinned
, &this_best_prio
);
3012 class = class->next
;
3014 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
3017 } while (class && max_load_move
> total_load_moved
);
3019 return total_load_moved
> 0;
3023 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3024 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3025 struct rq_iterator
*iterator
)
3027 struct task_struct
*p
= iterator
->start(iterator
->arg
);
3031 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3032 pull_task(busiest
, p
, this_rq
, this_cpu
);
3034 * Right now, this is only the second place pull_task()
3035 * is called, so we can safely collect pull_task()
3036 * stats here rather than inside pull_task().
3038 schedstat_inc(sd
, lb_gained
[idle
]);
3042 p
= iterator
->next(iterator
->arg
);
3049 * move_one_task tries to move exactly one task from busiest to this_rq, as
3050 * part of active balancing operations within "domain".
3051 * Returns 1 if successful and 0 otherwise.
3053 * Called with both runqueues locked.
3055 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3056 struct sched_domain
*sd
, enum cpu_idle_type idle
)
3058 const struct sched_class
*class;
3060 for (class = sched_class_highest
; class; class = class->next
)
3061 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
3068 * find_busiest_group finds and returns the busiest CPU group within the
3069 * domain. It calculates and returns the amount of weighted load which
3070 * should be moved to restore balance via the imbalance parameter.
3072 static struct sched_group
*
3073 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3074 unsigned long *imbalance
, enum cpu_idle_type idle
,
3075 int *sd_idle
, const cpumask_t
*cpus
, int *balance
)
3077 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
3078 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
3079 unsigned long max_pull
;
3080 unsigned long busiest_load_per_task
, busiest_nr_running
;
3081 unsigned long this_load_per_task
, this_nr_running
;
3082 int load_idx
, group_imb
= 0;
3083 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3084 int power_savings_balance
= 1;
3085 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
3086 unsigned long min_nr_running
= ULONG_MAX
;
3087 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
3090 max_load
= this_load
= total_load
= total_pwr
= 0;
3091 busiest_load_per_task
= busiest_nr_running
= 0;
3092 this_load_per_task
= this_nr_running
= 0;
3094 if (idle
== CPU_NOT_IDLE
)
3095 load_idx
= sd
->busy_idx
;
3096 else if (idle
== CPU_NEWLY_IDLE
)
3097 load_idx
= sd
->newidle_idx
;
3099 load_idx
= sd
->idle_idx
;
3102 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
3105 int __group_imb
= 0;
3106 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3107 unsigned long sum_nr_running
, sum_weighted_load
;
3108 unsigned long sum_avg_load_per_task
;
3109 unsigned long avg_load_per_task
;
3111 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
3114 balance_cpu
= first_cpu(group
->cpumask
);
3116 /* Tally up the load of all CPUs in the group */
3117 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
3118 sum_avg_load_per_task
= avg_load_per_task
= 0;
3121 min_cpu_load
= ~0UL;
3123 for_each_cpu_mask_nr(i
, group
->cpumask
) {
3126 if (!cpu_isset(i
, *cpus
))
3131 if (*sd_idle
&& rq
->nr_running
)
3134 /* Bias balancing toward cpus of our domain */
3136 if (idle_cpu(i
) && !first_idle_cpu
) {
3141 load
= target_load(i
, load_idx
);
3143 load
= source_load(i
, load_idx
);
3144 if (load
> max_cpu_load
)
3145 max_cpu_load
= load
;
3146 if (min_cpu_load
> load
)
3147 min_cpu_load
= load
;
3151 sum_nr_running
+= rq
->nr_running
;
3152 sum_weighted_load
+= weighted_cpuload(i
);
3154 sum_avg_load_per_task
+= cpu_avg_load_per_task(i
);
3158 * First idle cpu or the first cpu(busiest) in this sched group
3159 * is eligible for doing load balancing at this and above
3160 * domains. In the newly idle case, we will allow all the cpu's
3161 * to do the newly idle load balance.
3163 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
3164 balance_cpu
!= this_cpu
&& balance
) {
3169 total_load
+= avg_load
;
3170 total_pwr
+= group
->__cpu_power
;
3172 /* Adjust by relative CPU power of the group */
3173 avg_load
= sg_div_cpu_power(group
,
3174 avg_load
* SCHED_LOAD_SCALE
);
3178 * Consider the group unbalanced when the imbalance is larger
3179 * than the average weight of two tasks.
3181 * APZ: with cgroup the avg task weight can vary wildly and
3182 * might not be a suitable number - should we keep a
3183 * normalized nr_running number somewhere that negates
3186 avg_load_per_task
= sg_div_cpu_power(group
,
3187 sum_avg_load_per_task
* SCHED_LOAD_SCALE
);
3189 if ((max_cpu_load
- min_cpu_load
) > 2*avg_load_per_task
)
3192 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
3195 this_load
= avg_load
;
3197 this_nr_running
= sum_nr_running
;
3198 this_load_per_task
= sum_weighted_load
;
3199 } else if (avg_load
> max_load
&&
3200 (sum_nr_running
> group_capacity
|| __group_imb
)) {
3201 max_load
= avg_load
;
3203 busiest_nr_running
= sum_nr_running
;
3204 busiest_load_per_task
= sum_weighted_load
;
3205 group_imb
= __group_imb
;
3208 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3210 * Busy processors will not participate in power savings
3213 if (idle
== CPU_NOT_IDLE
||
3214 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3218 * If the local group is idle or completely loaded
3219 * no need to do power savings balance at this domain
3221 if (local_group
&& (this_nr_running
>= group_capacity
||
3223 power_savings_balance
= 0;
3226 * If a group is already running at full capacity or idle,
3227 * don't include that group in power savings calculations
3229 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
3234 * Calculate the group which has the least non-idle load.
3235 * This is the group from where we need to pick up the load
3238 if ((sum_nr_running
< min_nr_running
) ||
3239 (sum_nr_running
== min_nr_running
&&
3240 first_cpu(group
->cpumask
) <
3241 first_cpu(group_min
->cpumask
))) {
3243 min_nr_running
= sum_nr_running
;
3244 min_load_per_task
= sum_weighted_load
/
3249 * Calculate the group which is almost near its
3250 * capacity but still has some space to pick up some load
3251 * from other group and save more power
3253 if (sum_nr_running
<= group_capacity
- 1) {
3254 if (sum_nr_running
> leader_nr_running
||
3255 (sum_nr_running
== leader_nr_running
&&
3256 first_cpu(group
->cpumask
) >
3257 first_cpu(group_leader
->cpumask
))) {
3258 group_leader
= group
;
3259 leader_nr_running
= sum_nr_running
;
3264 group
= group
->next
;
3265 } while (group
!= sd
->groups
);
3267 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
3270 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
3272 if (this_load
>= avg_load
||
3273 100*max_load
<= sd
->imbalance_pct
*this_load
)
3276 busiest_load_per_task
/= busiest_nr_running
;
3278 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
3281 * We're trying to get all the cpus to the average_load, so we don't
3282 * want to push ourselves above the average load, nor do we wish to
3283 * reduce the max loaded cpu below the average load, as either of these
3284 * actions would just result in more rebalancing later, and ping-pong
3285 * tasks around. Thus we look for the minimum possible imbalance.
3286 * Negative imbalances (*we* are more loaded than anyone else) will
3287 * be counted as no imbalance for these purposes -- we can't fix that
3288 * by pulling tasks to us. Be careful of negative numbers as they'll
3289 * appear as very large values with unsigned longs.
3291 if (max_load
<= busiest_load_per_task
)
3295 * In the presence of smp nice balancing, certain scenarios can have
3296 * max load less than avg load(as we skip the groups at or below
3297 * its cpu_power, while calculating max_load..)
3299 if (max_load
< avg_load
) {
3301 goto small_imbalance
;
3304 /* Don't want to pull so many tasks that a group would go idle */
3305 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
3307 /* How much load to actually move to equalise the imbalance */
3308 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
3309 (avg_load
- this_load
) * this->__cpu_power
)
3313 * if *imbalance is less than the average load per runnable task
3314 * there is no gaurantee that any tasks will be moved so we'll have
3315 * a think about bumping its value to force at least one task to be
3318 if (*imbalance
< busiest_load_per_task
) {
3319 unsigned long tmp
, pwr_now
, pwr_move
;
3323 pwr_move
= pwr_now
= 0;
3325 if (this_nr_running
) {
3326 this_load_per_task
/= this_nr_running
;
3327 if (busiest_load_per_task
> this_load_per_task
)
3330 this_load_per_task
= cpu_avg_load_per_task(this_cpu
);
3332 if (max_load
- this_load
+ 2*busiest_load_per_task
>=
3333 busiest_load_per_task
* imbn
) {
3334 *imbalance
= busiest_load_per_task
;
3339 * OK, we don't have enough imbalance to justify moving tasks,
3340 * however we may be able to increase total CPU power used by
3344 pwr_now
+= busiest
->__cpu_power
*
3345 min(busiest_load_per_task
, max_load
);
3346 pwr_now
+= this->__cpu_power
*
3347 min(this_load_per_task
, this_load
);
3348 pwr_now
/= SCHED_LOAD_SCALE
;
3350 /* Amount of load we'd subtract */
3351 tmp
= sg_div_cpu_power(busiest
,
3352 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3354 pwr_move
+= busiest
->__cpu_power
*
3355 min(busiest_load_per_task
, max_load
- tmp
);
3357 /* Amount of load we'd add */
3358 if (max_load
* busiest
->__cpu_power
<
3359 busiest_load_per_task
* SCHED_LOAD_SCALE
)
3360 tmp
= sg_div_cpu_power(this,
3361 max_load
* busiest
->__cpu_power
);
3363 tmp
= sg_div_cpu_power(this,
3364 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3365 pwr_move
+= this->__cpu_power
*
3366 min(this_load_per_task
, this_load
+ tmp
);
3367 pwr_move
/= SCHED_LOAD_SCALE
;
3369 /* Move if we gain throughput */
3370 if (pwr_move
> pwr_now
)
3371 *imbalance
= busiest_load_per_task
;
3377 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3378 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3381 if (this == group_leader
&& group_leader
!= group_min
) {
3382 *imbalance
= min_load_per_task
;
3392 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3395 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
3396 unsigned long imbalance
, const cpumask_t
*cpus
)
3398 struct rq
*busiest
= NULL
, *rq
;
3399 unsigned long max_load
= 0;
3402 for_each_cpu_mask_nr(i
, group
->cpumask
) {
3405 if (!cpu_isset(i
, *cpus
))
3409 wl
= weighted_cpuload(i
);
3411 if (rq
->nr_running
== 1 && wl
> imbalance
)
3414 if (wl
> max_load
) {
3424 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3425 * so long as it is large enough.
3427 #define MAX_PINNED_INTERVAL 512
3430 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3431 * tasks if there is an imbalance.
3433 static int load_balance(int this_cpu
, struct rq
*this_rq
,
3434 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3435 int *balance
, cpumask_t
*cpus
)
3437 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
3438 struct sched_group
*group
;
3439 unsigned long imbalance
;
3441 unsigned long flags
;
3446 * When power savings policy is enabled for the parent domain, idle
3447 * sibling can pick up load irrespective of busy siblings. In this case,
3448 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3449 * portraying it as CPU_NOT_IDLE.
3451 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3452 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3455 schedstat_inc(sd
, lb_count
[idle
]);
3459 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
3466 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3470 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
3472 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3476 BUG_ON(busiest
== this_rq
);
3478 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3481 if (busiest
->nr_running
> 1) {
3483 * Attempt to move tasks. If find_busiest_group has found
3484 * an imbalance but busiest->nr_running <= 1, the group is
3485 * still unbalanced. ld_moved simply stays zero, so it is
3486 * correctly treated as an imbalance.
3488 local_irq_save(flags
);
3489 double_rq_lock(this_rq
, busiest
);
3490 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3491 imbalance
, sd
, idle
, &all_pinned
);
3492 double_rq_unlock(this_rq
, busiest
);
3493 local_irq_restore(flags
);
3496 * some other cpu did the load balance for us.
3498 if (ld_moved
&& this_cpu
!= smp_processor_id())
3499 resched_cpu(this_cpu
);
3501 /* All tasks on this runqueue were pinned by CPU affinity */
3502 if (unlikely(all_pinned
)) {
3503 cpu_clear(cpu_of(busiest
), *cpus
);
3504 if (!cpus_empty(*cpus
))
3511 schedstat_inc(sd
, lb_failed
[idle
]);
3512 sd
->nr_balance_failed
++;
3514 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
3516 spin_lock_irqsave(&busiest
->lock
, flags
);
3518 /* don't kick the migration_thread, if the curr
3519 * task on busiest cpu can't be moved to this_cpu
3521 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
3522 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3524 goto out_one_pinned
;
3527 if (!busiest
->active_balance
) {
3528 busiest
->active_balance
= 1;
3529 busiest
->push_cpu
= this_cpu
;
3532 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3534 wake_up_process(busiest
->migration_thread
);
3537 * We've kicked active balancing, reset the failure
3540 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3543 sd
->nr_balance_failed
= 0;
3545 if (likely(!active_balance
)) {
3546 /* We were unbalanced, so reset the balancing interval */
3547 sd
->balance_interval
= sd
->min_interval
;
3550 * If we've begun active balancing, start to back off. This
3551 * case may not be covered by the all_pinned logic if there
3552 * is only 1 task on the busy runqueue (because we don't call
3555 if (sd
->balance_interval
< sd
->max_interval
)
3556 sd
->balance_interval
*= 2;
3559 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3560 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3566 schedstat_inc(sd
, lb_balanced
[idle
]);
3568 sd
->nr_balance_failed
= 0;
3571 /* tune up the balancing interval */
3572 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3573 (sd
->balance_interval
< sd
->max_interval
))
3574 sd
->balance_interval
*= 2;
3576 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3577 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3588 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3589 * tasks if there is an imbalance.
3591 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3592 * this_rq is locked.
3595 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
,
3598 struct sched_group
*group
;
3599 struct rq
*busiest
= NULL
;
3600 unsigned long imbalance
;
3608 * When power savings policy is enabled for the parent domain, idle
3609 * sibling can pick up load irrespective of busy siblings. In this case,
3610 * let the state of idle sibling percolate up as IDLE, instead of
3611 * portraying it as CPU_NOT_IDLE.
3613 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
3614 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3617 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
3619 update_shares_locked(this_rq
, sd
);
3620 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
3621 &sd_idle
, cpus
, NULL
);
3623 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
3627 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
, cpus
);
3629 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
3633 BUG_ON(busiest
== this_rq
);
3635 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
3638 if (busiest
->nr_running
> 1) {
3639 /* Attempt to move tasks */
3640 double_lock_balance(this_rq
, busiest
);
3641 /* this_rq->clock is already updated */
3642 update_rq_clock(busiest
);
3643 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3644 imbalance
, sd
, CPU_NEWLY_IDLE
,
3646 double_unlock_balance(this_rq
, busiest
);
3648 if (unlikely(all_pinned
)) {
3649 cpu_clear(cpu_of(busiest
), *cpus
);
3650 if (!cpus_empty(*cpus
))
3656 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
3657 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3658 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3661 sd
->nr_balance_failed
= 0;
3663 update_shares_locked(this_rq
, sd
);
3667 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
3668 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3669 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3671 sd
->nr_balance_failed
= 0;
3677 * idle_balance is called by schedule() if this_cpu is about to become
3678 * idle. Attempts to pull tasks from other CPUs.
3680 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3682 struct sched_domain
*sd
;
3683 int pulled_task
= -1;
3684 unsigned long next_balance
= jiffies
+ HZ
;
3687 for_each_domain(this_cpu
, sd
) {
3688 unsigned long interval
;
3690 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3693 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
3694 /* If we've pulled tasks over stop searching: */
3695 pulled_task
= load_balance_newidle(this_cpu
, this_rq
,
3698 interval
= msecs_to_jiffies(sd
->balance_interval
);
3699 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3700 next_balance
= sd
->last_balance
+ interval
;
3704 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3706 * We are going idle. next_balance may be set based on
3707 * a busy processor. So reset next_balance.
3709 this_rq
->next_balance
= next_balance
;
3714 * active_load_balance is run by migration threads. It pushes running tasks
3715 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3716 * running on each physical CPU where possible, and avoids physical /
3717 * logical imbalances.
3719 * Called with busiest_rq locked.
3721 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3723 int target_cpu
= busiest_rq
->push_cpu
;
3724 struct sched_domain
*sd
;
3725 struct rq
*target_rq
;
3727 /* Is there any task to move? */
3728 if (busiest_rq
->nr_running
<= 1)
3731 target_rq
= cpu_rq(target_cpu
);
3734 * This condition is "impossible", if it occurs
3735 * we need to fix it. Originally reported by
3736 * Bjorn Helgaas on a 128-cpu setup.
3738 BUG_ON(busiest_rq
== target_rq
);
3740 /* move a task from busiest_rq to target_rq */
3741 double_lock_balance(busiest_rq
, target_rq
);
3742 update_rq_clock(busiest_rq
);
3743 update_rq_clock(target_rq
);
3745 /* Search for an sd spanning us and the target CPU. */
3746 for_each_domain(target_cpu
, sd
) {
3747 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3748 cpu_isset(busiest_cpu
, sd
->span
))
3753 schedstat_inc(sd
, alb_count
);
3755 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3757 schedstat_inc(sd
, alb_pushed
);
3759 schedstat_inc(sd
, alb_failed
);
3761 double_unlock_balance(busiest_rq
, target_rq
);
3766 atomic_t load_balancer
;
3768 } nohz ____cacheline_aligned
= {
3769 .load_balancer
= ATOMIC_INIT(-1),
3770 .cpu_mask
= CPU_MASK_NONE
,
3774 * This routine will try to nominate the ilb (idle load balancing)
3775 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3776 * load balancing on behalf of all those cpus. If all the cpus in the system
3777 * go into this tickless mode, then there will be no ilb owner (as there is
3778 * no need for one) and all the cpus will sleep till the next wakeup event
3781 * For the ilb owner, tick is not stopped. And this tick will be used
3782 * for idle load balancing. ilb owner will still be part of
3785 * While stopping the tick, this cpu will become the ilb owner if there
3786 * is no other owner. And will be the owner till that cpu becomes busy
3787 * or if all cpus in the system stop their ticks at which point
3788 * there is no need for ilb owner.
3790 * When the ilb owner becomes busy, it nominates another owner, during the
3791 * next busy scheduler_tick()
3793 int select_nohz_load_balancer(int stop_tick
)
3795 int cpu
= smp_processor_id();
3798 cpu_set(cpu
, nohz
.cpu_mask
);
3799 cpu_rq(cpu
)->in_nohz_recently
= 1;
3802 * If we are going offline and still the leader, give up!
3804 if (!cpu_active(cpu
) &&
3805 atomic_read(&nohz
.load_balancer
) == cpu
) {
3806 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3811 /* time for ilb owner also to sleep */
3812 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3813 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3814 atomic_set(&nohz
.load_balancer
, -1);
3818 if (atomic_read(&nohz
.load_balancer
) == -1) {
3819 /* make me the ilb owner */
3820 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3822 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3825 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
3828 cpu_clear(cpu
, nohz
.cpu_mask
);
3830 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3831 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3838 static DEFINE_SPINLOCK(balancing
);
3841 * It checks each scheduling domain to see if it is due to be balanced,
3842 * and initiates a balancing operation if so.
3844 * Balancing parameters are set up in arch_init_sched_domains.
3846 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3849 struct rq
*rq
= cpu_rq(cpu
);
3850 unsigned long interval
;
3851 struct sched_domain
*sd
;
3852 /* Earliest time when we have to do rebalance again */
3853 unsigned long next_balance
= jiffies
+ 60*HZ
;
3854 int update_next_balance
= 0;
3858 for_each_domain(cpu
, sd
) {
3859 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3862 interval
= sd
->balance_interval
;
3863 if (idle
!= CPU_IDLE
)
3864 interval
*= sd
->busy_factor
;
3866 /* scale ms to jiffies */
3867 interval
= msecs_to_jiffies(interval
);
3868 if (unlikely(!interval
))
3870 if (interval
> HZ
*NR_CPUS
/10)
3871 interval
= HZ
*NR_CPUS
/10;
3873 need_serialize
= sd
->flags
& SD_SERIALIZE
;
3875 if (need_serialize
) {
3876 if (!spin_trylock(&balancing
))
3880 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3881 if (load_balance(cpu
, rq
, sd
, idle
, &balance
, &tmp
)) {
3883 * We've pulled tasks over so either we're no
3884 * longer idle, or one of our SMT siblings is
3887 idle
= CPU_NOT_IDLE
;
3889 sd
->last_balance
= jiffies
;
3892 spin_unlock(&balancing
);
3894 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3895 next_balance
= sd
->last_balance
+ interval
;
3896 update_next_balance
= 1;
3900 * Stop the load balance at this level. There is another
3901 * CPU in our sched group which is doing load balancing more
3909 * next_balance will be updated only when there is a need.
3910 * When the cpu is attached to null domain for ex, it will not be
3913 if (likely(update_next_balance
))
3914 rq
->next_balance
= next_balance
;
3918 * run_rebalance_domains is triggered when needed from the scheduler tick.
3919 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3920 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3922 static void run_rebalance_domains(struct softirq_action
*h
)
3924 int this_cpu
= smp_processor_id();
3925 struct rq
*this_rq
= cpu_rq(this_cpu
);
3926 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3927 CPU_IDLE
: CPU_NOT_IDLE
;
3929 rebalance_domains(this_cpu
, idle
);
3933 * If this cpu is the owner for idle load balancing, then do the
3934 * balancing on behalf of the other idle cpus whose ticks are
3937 if (this_rq
->idle_at_tick
&&
3938 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3939 cpumask_t cpus
= nohz
.cpu_mask
;
3943 cpu_clear(this_cpu
, cpus
);
3944 for_each_cpu_mask_nr(balance_cpu
, cpus
) {
3946 * If this cpu gets work to do, stop the load balancing
3947 * work being done for other cpus. Next load
3948 * balancing owner will pick it up.
3953 rebalance_domains(balance_cpu
, CPU_IDLE
);
3955 rq
= cpu_rq(balance_cpu
);
3956 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3957 this_rq
->next_balance
= rq
->next_balance
;
3964 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3966 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3967 * idle load balancing owner or decide to stop the periodic load balancing,
3968 * if the whole system is idle.
3970 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3974 * If we were in the nohz mode recently and busy at the current
3975 * scheduler tick, then check if we need to nominate new idle
3978 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3979 rq
->in_nohz_recently
= 0;
3981 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3982 cpu_clear(cpu
, nohz
.cpu_mask
);
3983 atomic_set(&nohz
.load_balancer
, -1);
3986 if (atomic_read(&nohz
.load_balancer
) == -1) {
3988 * simple selection for now: Nominate the
3989 * first cpu in the nohz list to be the next
3992 * TBD: Traverse the sched domains and nominate
3993 * the nearest cpu in the nohz.cpu_mask.
3995 int ilb
= first_cpu(nohz
.cpu_mask
);
3997 if (ilb
< nr_cpu_ids
)
4003 * If this cpu is idle and doing idle load balancing for all the
4004 * cpus with ticks stopped, is it time for that to stop?
4006 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
4007 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4013 * If this cpu is idle and the idle load balancing is done by
4014 * someone else, then no need raise the SCHED_SOFTIRQ
4016 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
4017 cpu_isset(cpu
, nohz
.cpu_mask
))
4020 if (time_after_eq(jiffies
, rq
->next_balance
))
4021 raise_softirq(SCHED_SOFTIRQ
);
4024 #else /* CONFIG_SMP */
4027 * on UP we do not need to balance between CPUs:
4029 static inline void idle_balance(int cpu
, struct rq
*rq
)
4035 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
4037 EXPORT_PER_CPU_SYMBOL(kstat
);
4040 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4041 * that have not yet been banked in case the task is currently running.
4043 unsigned long long task_sched_runtime(struct task_struct
*p
)
4045 unsigned long flags
;
4049 rq
= task_rq_lock(p
, &flags
);
4050 ns
= p
->se
.sum_exec_runtime
;
4051 if (task_current(rq
, p
)) {
4052 update_rq_clock(rq
);
4053 delta_exec
= rq
->clock
- p
->se
.exec_start
;
4054 if ((s64
)delta_exec
> 0)
4057 task_rq_unlock(rq
, &flags
);
4063 * Account user cpu time to a process.
4064 * @p: the process that the cpu time gets accounted to
4065 * @cputime: the cpu time spent in user space since the last update
4067 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
4069 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4072 p
->utime
= cputime_add(p
->utime
, cputime
);
4074 /* Add user time to cpustat. */
4075 tmp
= cputime_to_cputime64(cputime
);
4076 if (TASK_NICE(p
) > 0)
4077 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
4079 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4080 /* Account for user time used */
4081 acct_update_integrals(p
);
4085 * Account guest cpu time to a process.
4086 * @p: the process that the cpu time gets accounted to
4087 * @cputime: the cpu time spent in virtual machine since the last update
4089 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
)
4092 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4094 tmp
= cputime_to_cputime64(cputime
);
4096 p
->utime
= cputime_add(p
->utime
, cputime
);
4097 p
->gtime
= cputime_add(p
->gtime
, cputime
);
4099 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4100 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
4104 * Account scaled user cpu time to a process.
4105 * @p: the process that the cpu time gets accounted to
4106 * @cputime: the cpu time spent in user space since the last update
4108 void account_user_time_scaled(struct task_struct
*p
, cputime_t cputime
)
4110 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime
);
4114 * Account system cpu time to a process.
4115 * @p: the process that the cpu time gets accounted to
4116 * @hardirq_offset: the offset to subtract from hardirq_count()
4117 * @cputime: the cpu time spent in kernel space since the last update
4119 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
4122 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4123 struct rq
*rq
= this_rq();
4126 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
4127 account_guest_time(p
, cputime
);
4131 p
->stime
= cputime_add(p
->stime
, cputime
);
4133 /* Add system time to cpustat. */
4134 tmp
= cputime_to_cputime64(cputime
);
4135 if (hardirq_count() - hardirq_offset
)
4136 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
4137 else if (softirq_count())
4138 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
4139 else if (p
!= rq
->idle
)
4140 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
4141 else if (atomic_read(&rq
->nr_iowait
) > 0)
4142 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
4144 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
4145 /* Account for system time used */
4146 acct_update_integrals(p
);
4150 * Account scaled system cpu time to a process.
4151 * @p: the process that the cpu time gets accounted to
4152 * @hardirq_offset: the offset to subtract from hardirq_count()
4153 * @cputime: the cpu time spent in kernel space since the last update
4155 void account_system_time_scaled(struct task_struct
*p
, cputime_t cputime
)
4157 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime
);
4161 * Account for involuntary wait time.
4162 * @p: the process from which the cpu time has been stolen
4163 * @steal: the cpu time spent in involuntary wait
4165 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
4167 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4168 cputime64_t tmp
= cputime_to_cputime64(steal
);
4169 struct rq
*rq
= this_rq();
4171 if (p
== rq
->idle
) {
4172 p
->stime
= cputime_add(p
->stime
, steal
);
4173 if (atomic_read(&rq
->nr_iowait
) > 0)
4174 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
4176 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
4178 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
4182 * This function gets called by the timer code, with HZ frequency.
4183 * We call it with interrupts disabled.
4185 * It also gets called by the fork code, when changing the parent's
4188 void scheduler_tick(void)
4190 int cpu
= smp_processor_id();
4191 struct rq
*rq
= cpu_rq(cpu
);
4192 struct task_struct
*curr
= rq
->curr
;
4196 spin_lock(&rq
->lock
);
4197 update_rq_clock(rq
);
4198 update_cpu_load(rq
);
4199 curr
->sched_class
->task_tick(rq
, curr
, 0);
4200 spin_unlock(&rq
->lock
);
4203 rq
->idle_at_tick
= idle_cpu(cpu
);
4204 trigger_load_balance(rq
, cpu
);
4208 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4209 defined(CONFIG_PREEMPT_TRACER))
4211 static inline unsigned long get_parent_ip(unsigned long addr
)
4213 if (in_lock_functions(addr
)) {
4214 addr
= CALLER_ADDR2
;
4215 if (in_lock_functions(addr
))
4216 addr
= CALLER_ADDR3
;
4221 void __kprobes
add_preempt_count(int val
)
4223 #ifdef CONFIG_DEBUG_PREEMPT
4227 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4230 preempt_count() += val
;
4231 #ifdef CONFIG_DEBUG_PREEMPT
4233 * Spinlock count overflowing soon?
4235 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
4238 if (preempt_count() == val
)
4239 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4241 EXPORT_SYMBOL(add_preempt_count
);
4243 void __kprobes
sub_preempt_count(int val
)
4245 #ifdef CONFIG_DEBUG_PREEMPT
4249 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
4252 * Is the spinlock portion underflowing?
4254 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
4255 !(preempt_count() & PREEMPT_MASK
)))
4259 if (preempt_count() == val
)
4260 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4261 preempt_count() -= val
;
4263 EXPORT_SYMBOL(sub_preempt_count
);
4268 * Print scheduling while atomic bug:
4270 static noinline
void __schedule_bug(struct task_struct
*prev
)
4272 struct pt_regs
*regs
= get_irq_regs();
4274 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
4275 prev
->comm
, prev
->pid
, preempt_count());
4277 debug_show_held_locks(prev
);
4279 if (irqs_disabled())
4280 print_irqtrace_events(prev
);
4289 * Various schedule()-time debugging checks and statistics:
4291 static inline void schedule_debug(struct task_struct
*prev
)
4294 * Test if we are atomic. Since do_exit() needs to call into
4295 * schedule() atomically, we ignore that path for now.
4296 * Otherwise, whine if we are scheduling when we should not be.
4298 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
4299 __schedule_bug(prev
);
4301 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4303 schedstat_inc(this_rq(), sched_count
);
4304 #ifdef CONFIG_SCHEDSTATS
4305 if (unlikely(prev
->lock_depth
>= 0)) {
4306 schedstat_inc(this_rq(), bkl_count
);
4307 schedstat_inc(prev
, sched_info
.bkl_count
);
4313 * Pick up the highest-prio task:
4315 static inline struct task_struct
*
4316 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
4318 const struct sched_class
*class;
4319 struct task_struct
*p
;
4322 * Optimization: we know that if all tasks are in
4323 * the fair class we can call that function directly:
4325 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
4326 p
= fair_sched_class
.pick_next_task(rq
);
4331 class = sched_class_highest
;
4333 p
= class->pick_next_task(rq
);
4337 * Will never be NULL as the idle class always
4338 * returns a non-NULL p:
4340 class = class->next
;
4345 * schedule() is the main scheduler function.
4347 asmlinkage
void __sched
schedule(void)
4349 struct task_struct
*prev
, *next
;
4350 unsigned long *switch_count
;
4356 cpu
= smp_processor_id();
4360 switch_count
= &prev
->nivcsw
;
4362 release_kernel_lock(prev
);
4363 need_resched_nonpreemptible
:
4365 schedule_debug(prev
);
4367 if (sched_feat(HRTICK
))
4371 * Do the rq-clock update outside the rq lock:
4373 local_irq_disable();
4374 update_rq_clock(rq
);
4375 spin_lock(&rq
->lock
);
4376 clear_tsk_need_resched(prev
);
4378 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4379 if (unlikely(signal_pending_state(prev
->state
, prev
)))
4380 prev
->state
= TASK_RUNNING
;
4382 deactivate_task(rq
, prev
, 1);
4383 switch_count
= &prev
->nvcsw
;
4387 if (prev
->sched_class
->pre_schedule
)
4388 prev
->sched_class
->pre_schedule(rq
, prev
);
4391 if (unlikely(!rq
->nr_running
))
4392 idle_balance(cpu
, rq
);
4394 prev
->sched_class
->put_prev_task(rq
, prev
);
4395 next
= pick_next_task(rq
, prev
);
4397 if (likely(prev
!= next
)) {
4398 sched_info_switch(prev
, next
);
4404 context_switch(rq
, prev
, next
); /* unlocks the rq */
4406 * the context switch might have flipped the stack from under
4407 * us, hence refresh the local variables.
4409 cpu
= smp_processor_id();
4412 spin_unlock_irq(&rq
->lock
);
4414 if (unlikely(reacquire_kernel_lock(current
) < 0))
4415 goto need_resched_nonpreemptible
;
4417 preempt_enable_no_resched();
4418 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
4421 EXPORT_SYMBOL(schedule
);
4423 #ifdef CONFIG_PREEMPT
4425 * this is the entry point to schedule() from in-kernel preemption
4426 * off of preempt_enable. Kernel preemptions off return from interrupt
4427 * occur there and call schedule directly.
4429 asmlinkage
void __sched
preempt_schedule(void)
4431 struct thread_info
*ti
= current_thread_info();
4434 * If there is a non-zero preempt_count or interrupts are disabled,
4435 * we do not want to preempt the current task. Just return..
4437 if (likely(ti
->preempt_count
|| irqs_disabled()))
4441 add_preempt_count(PREEMPT_ACTIVE
);
4443 sub_preempt_count(PREEMPT_ACTIVE
);
4446 * Check again in case we missed a preemption opportunity
4447 * between schedule and now.
4450 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4452 EXPORT_SYMBOL(preempt_schedule
);
4455 * this is the entry point to schedule() from kernel preemption
4456 * off of irq context.
4457 * Note, that this is called and return with irqs disabled. This will
4458 * protect us against recursive calling from irq.
4460 asmlinkage
void __sched
preempt_schedule_irq(void)
4462 struct thread_info
*ti
= current_thread_info();
4464 /* Catch callers which need to be fixed */
4465 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4468 add_preempt_count(PREEMPT_ACTIVE
);
4471 local_irq_disable();
4472 sub_preempt_count(PREEMPT_ACTIVE
);
4475 * Check again in case we missed a preemption opportunity
4476 * between schedule and now.
4479 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4482 #endif /* CONFIG_PREEMPT */
4484 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
4487 return try_to_wake_up(curr
->private, mode
, sync
);
4489 EXPORT_SYMBOL(default_wake_function
);
4492 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4493 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4494 * number) then we wake all the non-exclusive tasks and one exclusive task.
4496 * There are circumstances in which we can try to wake a task which has already
4497 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4498 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4500 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4501 int nr_exclusive
, int sync
, void *key
)
4503 wait_queue_t
*curr
, *next
;
4505 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4506 unsigned flags
= curr
->flags
;
4508 if (curr
->func(curr
, mode
, sync
, key
) &&
4509 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4515 * __wake_up - wake up threads blocked on a waitqueue.
4517 * @mode: which threads
4518 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4519 * @key: is directly passed to the wakeup function
4521 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4522 int nr_exclusive
, void *key
)
4524 unsigned long flags
;
4526 spin_lock_irqsave(&q
->lock
, flags
);
4527 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4528 spin_unlock_irqrestore(&q
->lock
, flags
);
4530 EXPORT_SYMBOL(__wake_up
);
4533 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4535 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4537 __wake_up_common(q
, mode
, 1, 0, NULL
);
4541 * __wake_up_sync - wake up threads blocked on a waitqueue.
4543 * @mode: which threads
4544 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4546 * The sync wakeup differs that the waker knows that it will schedule
4547 * away soon, so while the target thread will be woken up, it will not
4548 * be migrated to another CPU - ie. the two threads are 'synchronized'
4549 * with each other. This can prevent needless bouncing between CPUs.
4551 * On UP it can prevent extra preemption.
4554 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4556 unsigned long flags
;
4562 if (unlikely(!nr_exclusive
))
4565 spin_lock_irqsave(&q
->lock
, flags
);
4566 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
4567 spin_unlock_irqrestore(&q
->lock
, flags
);
4569 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4571 void complete(struct completion
*x
)
4573 unsigned long flags
;
4575 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4577 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4578 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4580 EXPORT_SYMBOL(complete
);
4582 void complete_all(struct completion
*x
)
4584 unsigned long flags
;
4586 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4587 x
->done
+= UINT_MAX
/2;
4588 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4589 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4591 EXPORT_SYMBOL(complete_all
);
4593 static inline long __sched
4594 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4597 DECLARE_WAITQUEUE(wait
, current
);
4599 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
4600 __add_wait_queue_tail(&x
->wait
, &wait
);
4602 if ((state
== TASK_INTERRUPTIBLE
&&
4603 signal_pending(current
)) ||
4604 (state
== TASK_KILLABLE
&&
4605 fatal_signal_pending(current
))) {
4606 timeout
= -ERESTARTSYS
;
4609 __set_current_state(state
);
4610 spin_unlock_irq(&x
->wait
.lock
);
4611 timeout
= schedule_timeout(timeout
);
4612 spin_lock_irq(&x
->wait
.lock
);
4613 } while (!x
->done
&& timeout
);
4614 __remove_wait_queue(&x
->wait
, &wait
);
4619 return timeout
?: 1;
4623 wait_for_common(struct completion
*x
, long timeout
, int state
)
4627 spin_lock_irq(&x
->wait
.lock
);
4628 timeout
= do_wait_for_common(x
, timeout
, state
);
4629 spin_unlock_irq(&x
->wait
.lock
);
4633 void __sched
wait_for_completion(struct completion
*x
)
4635 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4637 EXPORT_SYMBOL(wait_for_completion
);
4639 unsigned long __sched
4640 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4642 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4644 EXPORT_SYMBOL(wait_for_completion_timeout
);
4646 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4648 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4649 if (t
== -ERESTARTSYS
)
4653 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4655 unsigned long __sched
4656 wait_for_completion_interruptible_timeout(struct completion
*x
,
4657 unsigned long timeout
)
4659 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4661 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4663 int __sched
wait_for_completion_killable(struct completion
*x
)
4665 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4666 if (t
== -ERESTARTSYS
)
4670 EXPORT_SYMBOL(wait_for_completion_killable
);
4673 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4675 unsigned long flags
;
4678 init_waitqueue_entry(&wait
, current
);
4680 __set_current_state(state
);
4682 spin_lock_irqsave(&q
->lock
, flags
);
4683 __add_wait_queue(q
, &wait
);
4684 spin_unlock(&q
->lock
);
4685 timeout
= schedule_timeout(timeout
);
4686 spin_lock_irq(&q
->lock
);
4687 __remove_wait_queue(q
, &wait
);
4688 spin_unlock_irqrestore(&q
->lock
, flags
);
4693 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4695 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4697 EXPORT_SYMBOL(interruptible_sleep_on
);
4700 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4702 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4704 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4706 void __sched
sleep_on(wait_queue_head_t
*q
)
4708 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4710 EXPORT_SYMBOL(sleep_on
);
4712 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4714 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4716 EXPORT_SYMBOL(sleep_on_timeout
);
4718 #ifdef CONFIG_RT_MUTEXES
4721 * rt_mutex_setprio - set the current priority of a task
4723 * @prio: prio value (kernel-internal form)
4725 * This function changes the 'effective' priority of a task. It does
4726 * not touch ->normal_prio like __setscheduler().
4728 * Used by the rt_mutex code to implement priority inheritance logic.
4730 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4732 unsigned long flags
;
4733 int oldprio
, on_rq
, running
;
4735 const struct sched_class
*prev_class
= p
->sched_class
;
4737 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4739 rq
= task_rq_lock(p
, &flags
);
4740 update_rq_clock(rq
);
4743 on_rq
= p
->se
.on_rq
;
4744 running
= task_current(rq
, p
);
4746 dequeue_task(rq
, p
, 0);
4748 p
->sched_class
->put_prev_task(rq
, p
);
4751 p
->sched_class
= &rt_sched_class
;
4753 p
->sched_class
= &fair_sched_class
;
4758 p
->sched_class
->set_curr_task(rq
);
4760 enqueue_task(rq
, p
, 0);
4762 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4764 task_rq_unlock(rq
, &flags
);
4769 void set_user_nice(struct task_struct
*p
, long nice
)
4771 int old_prio
, delta
, on_rq
;
4772 unsigned long flags
;
4775 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4778 * We have to be careful, if called from sys_setpriority(),
4779 * the task might be in the middle of scheduling on another CPU.
4781 rq
= task_rq_lock(p
, &flags
);
4782 update_rq_clock(rq
);
4784 * The RT priorities are set via sched_setscheduler(), but we still
4785 * allow the 'normal' nice value to be set - but as expected
4786 * it wont have any effect on scheduling until the task is
4787 * SCHED_FIFO/SCHED_RR:
4789 if (task_has_rt_policy(p
)) {
4790 p
->static_prio
= NICE_TO_PRIO(nice
);
4793 on_rq
= p
->se
.on_rq
;
4795 dequeue_task(rq
, p
, 0);
4797 p
->static_prio
= NICE_TO_PRIO(nice
);
4800 p
->prio
= effective_prio(p
);
4801 delta
= p
->prio
- old_prio
;
4804 enqueue_task(rq
, p
, 0);
4806 * If the task increased its priority or is running and
4807 * lowered its priority, then reschedule its CPU:
4809 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4810 resched_task(rq
->curr
);
4813 task_rq_unlock(rq
, &flags
);
4815 EXPORT_SYMBOL(set_user_nice
);
4818 * can_nice - check if a task can reduce its nice value
4822 int can_nice(const struct task_struct
*p
, const int nice
)
4824 /* convert nice value [19,-20] to rlimit style value [1,40] */
4825 int nice_rlim
= 20 - nice
;
4827 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4828 capable(CAP_SYS_NICE
));
4831 #ifdef __ARCH_WANT_SYS_NICE
4834 * sys_nice - change the priority of the current process.
4835 * @increment: priority increment
4837 * sys_setpriority is a more generic, but much slower function that
4838 * does similar things.
4840 asmlinkage
long sys_nice(int increment
)
4845 * Setpriority might change our priority at the same moment.
4846 * We don't have to worry. Conceptually one call occurs first
4847 * and we have a single winner.
4849 if (increment
< -40)
4854 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
4860 if (increment
< 0 && !can_nice(current
, nice
))
4863 retval
= security_task_setnice(current
, nice
);
4867 set_user_nice(current
, nice
);
4874 * task_prio - return the priority value of a given task.
4875 * @p: the task in question.
4877 * This is the priority value as seen by users in /proc.
4878 * RT tasks are offset by -200. Normal tasks are centered
4879 * around 0, value goes from -16 to +15.
4881 int task_prio(const struct task_struct
*p
)
4883 return p
->prio
- MAX_RT_PRIO
;
4887 * task_nice - return the nice value of a given task.
4888 * @p: the task in question.
4890 int task_nice(const struct task_struct
*p
)
4892 return TASK_NICE(p
);
4894 EXPORT_SYMBOL(task_nice
);
4897 * idle_cpu - is a given cpu idle currently?
4898 * @cpu: the processor in question.
4900 int idle_cpu(int cpu
)
4902 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4906 * idle_task - return the idle task for a given cpu.
4907 * @cpu: the processor in question.
4909 struct task_struct
*idle_task(int cpu
)
4911 return cpu_rq(cpu
)->idle
;
4915 * find_process_by_pid - find a process with a matching PID value.
4916 * @pid: the pid in question.
4918 static struct task_struct
*find_process_by_pid(pid_t pid
)
4920 return pid
? find_task_by_vpid(pid
) : current
;
4923 /* Actually do priority change: must hold rq lock. */
4925 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4927 BUG_ON(p
->se
.on_rq
);
4930 switch (p
->policy
) {
4934 p
->sched_class
= &fair_sched_class
;
4938 p
->sched_class
= &rt_sched_class
;
4942 p
->rt_priority
= prio
;
4943 p
->normal_prio
= normal_prio(p
);
4944 /* we are holding p->pi_lock already */
4945 p
->prio
= rt_mutex_getprio(p
);
4949 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
4950 struct sched_param
*param
, bool user
)
4952 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4953 unsigned long flags
;
4954 const struct sched_class
*prev_class
= p
->sched_class
;
4957 /* may grab non-irq protected spin_locks */
4958 BUG_ON(in_interrupt());
4960 /* double check policy once rq lock held */
4962 policy
= oldpolicy
= p
->policy
;
4963 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4964 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4965 policy
!= SCHED_IDLE
)
4968 * Valid priorities for SCHED_FIFO and SCHED_RR are
4969 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4970 * SCHED_BATCH and SCHED_IDLE is 0.
4972 if (param
->sched_priority
< 0 ||
4973 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4974 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4976 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4980 * Allow unprivileged RT tasks to decrease priority:
4982 if (user
&& !capable(CAP_SYS_NICE
)) {
4983 if (rt_policy(policy
)) {
4984 unsigned long rlim_rtprio
;
4986 if (!lock_task_sighand(p
, &flags
))
4988 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4989 unlock_task_sighand(p
, &flags
);
4991 /* can't set/change the rt policy */
4992 if (policy
!= p
->policy
&& !rlim_rtprio
)
4995 /* can't increase priority */
4996 if (param
->sched_priority
> p
->rt_priority
&&
4997 param
->sched_priority
> rlim_rtprio
)
5001 * Like positive nice levels, dont allow tasks to
5002 * move out of SCHED_IDLE either:
5004 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
5007 /* can't change other user's priorities */
5008 if ((current
->euid
!= p
->euid
) &&
5009 (current
->euid
!= p
->uid
))
5014 #ifdef CONFIG_RT_GROUP_SCHED
5016 * Do not allow realtime tasks into groups that have no runtime
5019 if (rt_policy(policy
) && task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
5023 retval
= security_task_setscheduler(p
, policy
, param
);
5029 * make sure no PI-waiters arrive (or leave) while we are
5030 * changing the priority of the task:
5032 spin_lock_irqsave(&p
->pi_lock
, flags
);
5034 * To be able to change p->policy safely, the apropriate
5035 * runqueue lock must be held.
5037 rq
= __task_rq_lock(p
);
5038 /* recheck policy now with rq lock held */
5039 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5040 policy
= oldpolicy
= -1;
5041 __task_rq_unlock(rq
);
5042 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5045 update_rq_clock(rq
);
5046 on_rq
= p
->se
.on_rq
;
5047 running
= task_current(rq
, p
);
5049 deactivate_task(rq
, p
, 0);
5051 p
->sched_class
->put_prev_task(rq
, p
);
5054 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
5057 p
->sched_class
->set_curr_task(rq
);
5059 activate_task(rq
, p
, 0);
5061 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
5063 __task_rq_unlock(rq
);
5064 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5066 rt_mutex_adjust_pi(p
);
5072 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5073 * @p: the task in question.
5074 * @policy: new policy.
5075 * @param: structure containing the new RT priority.
5077 * NOTE that the task may be already dead.
5079 int sched_setscheduler(struct task_struct
*p
, int policy
,
5080 struct sched_param
*param
)
5082 return __sched_setscheduler(p
, policy
, param
, true);
5084 EXPORT_SYMBOL_GPL(sched_setscheduler
);
5087 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5088 * @p: the task in question.
5089 * @policy: new policy.
5090 * @param: structure containing the new RT priority.
5092 * Just like sched_setscheduler, only don't bother checking if the
5093 * current context has permission. For example, this is needed in
5094 * stop_machine(): we create temporary high priority worker threads,
5095 * but our caller might not have that capability.
5097 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
5098 struct sched_param
*param
)
5100 return __sched_setscheduler(p
, policy
, param
, false);
5104 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5106 struct sched_param lparam
;
5107 struct task_struct
*p
;
5110 if (!param
|| pid
< 0)
5112 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5117 p
= find_process_by_pid(pid
);
5119 retval
= sched_setscheduler(p
, policy
, &lparam
);
5126 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5127 * @pid: the pid in question.
5128 * @policy: new policy.
5129 * @param: structure containing the new RT priority.
5132 sys_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5134 /* negative values for policy are not valid */
5138 return do_sched_setscheduler(pid
, policy
, param
);
5142 * sys_sched_setparam - set/change the RT priority of a thread
5143 * @pid: the pid in question.
5144 * @param: structure containing the new RT priority.
5146 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
5148 return do_sched_setscheduler(pid
, -1, param
);
5152 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5153 * @pid: the pid in question.
5155 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
5157 struct task_struct
*p
;
5164 read_lock(&tasklist_lock
);
5165 p
= find_process_by_pid(pid
);
5167 retval
= security_task_getscheduler(p
);
5171 read_unlock(&tasklist_lock
);
5176 * sys_sched_getscheduler - get the RT priority of a thread
5177 * @pid: the pid in question.
5178 * @param: structure containing the RT priority.
5180 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
5182 struct sched_param lp
;
5183 struct task_struct
*p
;
5186 if (!param
|| pid
< 0)
5189 read_lock(&tasklist_lock
);
5190 p
= find_process_by_pid(pid
);
5195 retval
= security_task_getscheduler(p
);
5199 lp
.sched_priority
= p
->rt_priority
;
5200 read_unlock(&tasklist_lock
);
5203 * This one might sleep, we cannot do it with a spinlock held ...
5205 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5210 read_unlock(&tasklist_lock
);
5214 long sched_setaffinity(pid_t pid
, const cpumask_t
*in_mask
)
5216 cpumask_t cpus_allowed
;
5217 cpumask_t new_mask
= *in_mask
;
5218 struct task_struct
*p
;
5222 read_lock(&tasklist_lock
);
5224 p
= find_process_by_pid(pid
);
5226 read_unlock(&tasklist_lock
);
5232 * It is not safe to call set_cpus_allowed with the
5233 * tasklist_lock held. We will bump the task_struct's
5234 * usage count and then drop tasklist_lock.
5237 read_unlock(&tasklist_lock
);
5240 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
5241 !capable(CAP_SYS_NICE
))
5244 retval
= security_task_setscheduler(p
, 0, NULL
);
5248 cpuset_cpus_allowed(p
, &cpus_allowed
);
5249 cpus_and(new_mask
, new_mask
, cpus_allowed
);
5251 retval
= set_cpus_allowed_ptr(p
, &new_mask
);
5254 cpuset_cpus_allowed(p
, &cpus_allowed
);
5255 if (!cpus_subset(new_mask
, cpus_allowed
)) {
5257 * We must have raced with a concurrent cpuset
5258 * update. Just reset the cpus_allowed to the
5259 * cpuset's cpus_allowed
5261 new_mask
= cpus_allowed
;
5271 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5272 cpumask_t
*new_mask
)
5274 if (len
< sizeof(cpumask_t
)) {
5275 memset(new_mask
, 0, sizeof(cpumask_t
));
5276 } else if (len
> sizeof(cpumask_t
)) {
5277 len
= sizeof(cpumask_t
);
5279 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5283 * sys_sched_setaffinity - set the cpu affinity of a process
5284 * @pid: pid of the process
5285 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5286 * @user_mask_ptr: user-space pointer to the new cpu mask
5288 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
5289 unsigned long __user
*user_mask_ptr
)
5294 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
5298 return sched_setaffinity(pid
, &new_mask
);
5301 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
5303 struct task_struct
*p
;
5307 read_lock(&tasklist_lock
);
5310 p
= find_process_by_pid(pid
);
5314 retval
= security_task_getscheduler(p
);
5318 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
5321 read_unlock(&tasklist_lock
);
5328 * sys_sched_getaffinity - get the cpu affinity of a process
5329 * @pid: pid of the process
5330 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5331 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5333 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
5334 unsigned long __user
*user_mask_ptr
)
5339 if (len
< sizeof(cpumask_t
))
5342 ret
= sched_getaffinity(pid
, &mask
);
5346 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
5349 return sizeof(cpumask_t
);
5353 * sys_sched_yield - yield the current processor to other threads.
5355 * This function yields the current CPU to other tasks. If there are no
5356 * other threads running on this CPU then this function will return.
5358 asmlinkage
long sys_sched_yield(void)
5360 struct rq
*rq
= this_rq_lock();
5362 schedstat_inc(rq
, yld_count
);
5363 current
->sched_class
->yield_task(rq
);
5366 * Since we are going to call schedule() anyway, there's
5367 * no need to preempt or enable interrupts:
5369 __release(rq
->lock
);
5370 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5371 _raw_spin_unlock(&rq
->lock
);
5372 preempt_enable_no_resched();
5379 static void __cond_resched(void)
5381 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5382 __might_sleep(__FILE__
, __LINE__
);
5385 * The BKS might be reacquired before we have dropped
5386 * PREEMPT_ACTIVE, which could trigger a second
5387 * cond_resched() call.
5390 add_preempt_count(PREEMPT_ACTIVE
);
5392 sub_preempt_count(PREEMPT_ACTIVE
);
5393 } while (need_resched());
5396 int __sched
_cond_resched(void)
5398 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
5399 system_state
== SYSTEM_RUNNING
) {
5405 EXPORT_SYMBOL(_cond_resched
);
5408 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5409 * call schedule, and on return reacquire the lock.
5411 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5412 * operations here to prevent schedule() from being called twice (once via
5413 * spin_unlock(), once by hand).
5415 int cond_resched_lock(spinlock_t
*lock
)
5417 int resched
= need_resched() && system_state
== SYSTEM_RUNNING
;
5420 if (spin_needbreak(lock
) || resched
) {
5422 if (resched
&& need_resched())
5431 EXPORT_SYMBOL(cond_resched_lock
);
5433 int __sched
cond_resched_softirq(void)
5435 BUG_ON(!in_softirq());
5437 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
5445 EXPORT_SYMBOL(cond_resched_softirq
);
5448 * yield - yield the current processor to other threads.
5450 * This is a shortcut for kernel-space yielding - it marks the
5451 * thread runnable and calls sys_sched_yield().
5453 void __sched
yield(void)
5455 set_current_state(TASK_RUNNING
);
5458 EXPORT_SYMBOL(yield
);
5461 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5462 * that process accounting knows that this is a task in IO wait state.
5464 * But don't do that if it is a deliberate, throttling IO wait (this task
5465 * has set its backing_dev_info: the queue against which it should throttle)
5467 void __sched
io_schedule(void)
5469 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5471 delayacct_blkio_start();
5472 atomic_inc(&rq
->nr_iowait
);
5474 atomic_dec(&rq
->nr_iowait
);
5475 delayacct_blkio_end();
5477 EXPORT_SYMBOL(io_schedule
);
5479 long __sched
io_schedule_timeout(long timeout
)
5481 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5484 delayacct_blkio_start();
5485 atomic_inc(&rq
->nr_iowait
);
5486 ret
= schedule_timeout(timeout
);
5487 atomic_dec(&rq
->nr_iowait
);
5488 delayacct_blkio_end();
5493 * sys_sched_get_priority_max - return maximum RT priority.
5494 * @policy: scheduling class.
5496 * this syscall returns the maximum rt_priority that can be used
5497 * by a given scheduling class.
5499 asmlinkage
long sys_sched_get_priority_max(int policy
)
5506 ret
= MAX_USER_RT_PRIO
-1;
5518 * sys_sched_get_priority_min - return minimum RT priority.
5519 * @policy: scheduling class.
5521 * this syscall returns the minimum rt_priority that can be used
5522 * by a given scheduling class.
5524 asmlinkage
long sys_sched_get_priority_min(int policy
)
5542 * sys_sched_rr_get_interval - return the default timeslice of a process.
5543 * @pid: pid of the process.
5544 * @interval: userspace pointer to the timeslice value.
5546 * this syscall writes the default timeslice value of a given process
5547 * into the user-space timespec buffer. A value of '0' means infinity.
5550 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
5552 struct task_struct
*p
;
5553 unsigned int time_slice
;
5561 read_lock(&tasklist_lock
);
5562 p
= find_process_by_pid(pid
);
5566 retval
= security_task_getscheduler(p
);
5571 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5572 * tasks that are on an otherwise idle runqueue:
5575 if (p
->policy
== SCHED_RR
) {
5576 time_slice
= DEF_TIMESLICE
;
5577 } else if (p
->policy
!= SCHED_FIFO
) {
5578 struct sched_entity
*se
= &p
->se
;
5579 unsigned long flags
;
5582 rq
= task_rq_lock(p
, &flags
);
5583 if (rq
->cfs
.load
.weight
)
5584 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
5585 task_rq_unlock(rq
, &flags
);
5587 read_unlock(&tasklist_lock
);
5588 jiffies_to_timespec(time_slice
, &t
);
5589 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5593 read_unlock(&tasklist_lock
);
5597 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5599 void sched_show_task(struct task_struct
*p
)
5601 unsigned long free
= 0;
5604 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5605 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5606 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5607 #if BITS_PER_LONG == 32
5608 if (state
== TASK_RUNNING
)
5609 printk(KERN_CONT
" running ");
5611 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5613 if (state
== TASK_RUNNING
)
5614 printk(KERN_CONT
" running task ");
5616 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5618 #ifdef CONFIG_DEBUG_STACK_USAGE
5620 unsigned long *n
= end_of_stack(p
);
5623 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
5626 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
5627 task_pid_nr(p
), task_pid_nr(p
->real_parent
));
5629 show_stack(p
, NULL
);
5632 void show_state_filter(unsigned long state_filter
)
5634 struct task_struct
*g
, *p
;
5636 #if BITS_PER_LONG == 32
5638 " task PC stack pid father\n");
5641 " task PC stack pid father\n");
5643 read_lock(&tasklist_lock
);
5644 do_each_thread(g
, p
) {
5646 * reset the NMI-timeout, listing all files on a slow
5647 * console might take alot of time:
5649 touch_nmi_watchdog();
5650 if (!state_filter
|| (p
->state
& state_filter
))
5652 } while_each_thread(g
, p
);
5654 touch_all_softlockup_watchdogs();
5656 #ifdef CONFIG_SCHED_DEBUG
5657 sysrq_sched_debug_show();
5659 read_unlock(&tasklist_lock
);
5661 * Only show locks if all tasks are dumped:
5663 if (state_filter
== -1)
5664 debug_show_all_locks();
5667 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5669 idle
->sched_class
= &idle_sched_class
;
5673 * init_idle - set up an idle thread for a given CPU
5674 * @idle: task in question
5675 * @cpu: cpu the idle task belongs to
5677 * NOTE: this function does not set the idle thread's NEED_RESCHED
5678 * flag, to make booting more robust.
5680 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5682 struct rq
*rq
= cpu_rq(cpu
);
5683 unsigned long flags
;
5686 idle
->se
.exec_start
= sched_clock();
5688 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
5689 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
5690 __set_task_cpu(idle
, cpu
);
5692 spin_lock_irqsave(&rq
->lock
, flags
);
5693 rq
->curr
= rq
->idle
= idle
;
5694 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5697 spin_unlock_irqrestore(&rq
->lock
, flags
);
5699 /* Set the preempt count _outside_ the spinlocks! */
5700 #if defined(CONFIG_PREEMPT)
5701 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
5703 task_thread_info(idle
)->preempt_count
= 0;
5706 * The idle tasks have their own, simple scheduling class:
5708 idle
->sched_class
= &idle_sched_class
;
5712 * In a system that switches off the HZ timer nohz_cpu_mask
5713 * indicates which cpus entered this state. This is used
5714 * in the rcu update to wait only for active cpus. For system
5715 * which do not switch off the HZ timer nohz_cpu_mask should
5716 * always be CPU_MASK_NONE.
5718 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
5721 * Increase the granularity value when there are more CPUs,
5722 * because with more CPUs the 'effective latency' as visible
5723 * to users decreases. But the relationship is not linear,
5724 * so pick a second-best guess by going with the log2 of the
5727 * This idea comes from the SD scheduler of Con Kolivas:
5729 static inline void sched_init_granularity(void)
5731 unsigned int factor
= 1 + ilog2(num_online_cpus());
5732 const unsigned long limit
= 200000000;
5734 sysctl_sched_min_granularity
*= factor
;
5735 if (sysctl_sched_min_granularity
> limit
)
5736 sysctl_sched_min_granularity
= limit
;
5738 sysctl_sched_latency
*= factor
;
5739 if (sysctl_sched_latency
> limit
)
5740 sysctl_sched_latency
= limit
;
5742 sysctl_sched_wakeup_granularity
*= factor
;
5747 * This is how migration works:
5749 * 1) we queue a struct migration_req structure in the source CPU's
5750 * runqueue and wake up that CPU's migration thread.
5751 * 2) we down() the locked semaphore => thread blocks.
5752 * 3) migration thread wakes up (implicitly it forces the migrated
5753 * thread off the CPU)
5754 * 4) it gets the migration request and checks whether the migrated
5755 * task is still in the wrong runqueue.
5756 * 5) if it's in the wrong runqueue then the migration thread removes
5757 * it and puts it into the right queue.
5758 * 6) migration thread up()s the semaphore.
5759 * 7) we wake up and the migration is done.
5763 * Change a given task's CPU affinity. Migrate the thread to a
5764 * proper CPU and schedule it away if the CPU it's executing on
5765 * is removed from the allowed bitmask.
5767 * NOTE: the caller must have a valid reference to the task, the
5768 * task must not exit() & deallocate itself prematurely. The
5769 * call is not atomic; no spinlocks may be held.
5771 int set_cpus_allowed_ptr(struct task_struct
*p
, const cpumask_t
*new_mask
)
5773 struct migration_req req
;
5774 unsigned long flags
;
5778 rq
= task_rq_lock(p
, &flags
);
5779 if (!cpus_intersects(*new_mask
, cpu_online_map
)) {
5784 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
5785 !cpus_equal(p
->cpus_allowed
, *new_mask
))) {
5790 if (p
->sched_class
->set_cpus_allowed
)
5791 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5793 p
->cpus_allowed
= *new_mask
;
5794 p
->rt
.nr_cpus_allowed
= cpus_weight(*new_mask
);
5797 /* Can the task run on the task's current CPU? If so, we're done */
5798 if (cpu_isset(task_cpu(p
), *new_mask
))
5801 if (migrate_task(p
, any_online_cpu(*new_mask
), &req
)) {
5802 /* Need help from migration thread: drop lock and wait. */
5803 task_rq_unlock(rq
, &flags
);
5804 wake_up_process(rq
->migration_thread
);
5805 wait_for_completion(&req
.done
);
5806 tlb_migrate_finish(p
->mm
);
5810 task_rq_unlock(rq
, &flags
);
5814 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
5817 * Move (not current) task off this cpu, onto dest cpu. We're doing
5818 * this because either it can't run here any more (set_cpus_allowed()
5819 * away from this CPU, or CPU going down), or because we're
5820 * attempting to rebalance this task on exec (sched_exec).
5822 * So we race with normal scheduler movements, but that's OK, as long
5823 * as the task is no longer on this CPU.
5825 * Returns non-zero if task was successfully migrated.
5827 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5829 struct rq
*rq_dest
, *rq_src
;
5832 if (unlikely(!cpu_active(dest_cpu
)))
5835 rq_src
= cpu_rq(src_cpu
);
5836 rq_dest
= cpu_rq(dest_cpu
);
5838 double_rq_lock(rq_src
, rq_dest
);
5839 /* Already moved. */
5840 if (task_cpu(p
) != src_cpu
)
5842 /* Affinity changed (again). */
5843 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
5846 on_rq
= p
->se
.on_rq
;
5848 deactivate_task(rq_src
, p
, 0);
5850 set_task_cpu(p
, dest_cpu
);
5852 activate_task(rq_dest
, p
, 0);
5853 check_preempt_curr(rq_dest
, p
);
5858 double_rq_unlock(rq_src
, rq_dest
);
5863 * migration_thread - this is a highprio system thread that performs
5864 * thread migration by bumping thread off CPU then 'pushing' onto
5867 static int migration_thread(void *data
)
5869 int cpu
= (long)data
;
5873 BUG_ON(rq
->migration_thread
!= current
);
5875 set_current_state(TASK_INTERRUPTIBLE
);
5876 while (!kthread_should_stop()) {
5877 struct migration_req
*req
;
5878 struct list_head
*head
;
5880 spin_lock_irq(&rq
->lock
);
5882 if (cpu_is_offline(cpu
)) {
5883 spin_unlock_irq(&rq
->lock
);
5887 if (rq
->active_balance
) {
5888 active_load_balance(rq
, cpu
);
5889 rq
->active_balance
= 0;
5892 head
= &rq
->migration_queue
;
5894 if (list_empty(head
)) {
5895 spin_unlock_irq(&rq
->lock
);
5897 set_current_state(TASK_INTERRUPTIBLE
);
5900 req
= list_entry(head
->next
, struct migration_req
, list
);
5901 list_del_init(head
->next
);
5903 spin_unlock(&rq
->lock
);
5904 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5907 complete(&req
->done
);
5909 __set_current_state(TASK_RUNNING
);
5913 /* Wait for kthread_stop */
5914 set_current_state(TASK_INTERRUPTIBLE
);
5915 while (!kthread_should_stop()) {
5917 set_current_state(TASK_INTERRUPTIBLE
);
5919 __set_current_state(TASK_RUNNING
);
5923 #ifdef CONFIG_HOTPLUG_CPU
5925 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5929 local_irq_disable();
5930 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
5936 * Figure out where task on dead CPU should go, use force if necessary.
5937 * NOTE: interrupts should be disabled by the caller
5939 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5941 unsigned long flags
;
5948 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5949 cpus_and(mask
, mask
, p
->cpus_allowed
);
5950 dest_cpu
= any_online_cpu(mask
);
5952 /* On any allowed CPU? */
5953 if (dest_cpu
>= nr_cpu_ids
)
5954 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5956 /* No more Mr. Nice Guy. */
5957 if (dest_cpu
>= nr_cpu_ids
) {
5958 cpumask_t cpus_allowed
;
5960 cpuset_cpus_allowed_locked(p
, &cpus_allowed
);
5962 * Try to stay on the same cpuset, where the
5963 * current cpuset may be a subset of all cpus.
5964 * The cpuset_cpus_allowed_locked() variant of
5965 * cpuset_cpus_allowed() will not block. It must be
5966 * called within calls to cpuset_lock/cpuset_unlock.
5968 rq
= task_rq_lock(p
, &flags
);
5969 p
->cpus_allowed
= cpus_allowed
;
5970 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5971 task_rq_unlock(rq
, &flags
);
5974 * Don't tell them about moving exiting tasks or
5975 * kernel threads (both mm NULL), since they never
5978 if (p
->mm
&& printk_ratelimit()) {
5979 printk(KERN_INFO
"process %d (%s) no "
5980 "longer affine to cpu%d\n",
5981 task_pid_nr(p
), p
->comm
, dead_cpu
);
5984 } while (!__migrate_task_irq(p
, dead_cpu
, dest_cpu
));
5988 * While a dead CPU has no uninterruptible tasks queued at this point,
5989 * it might still have a nonzero ->nr_uninterruptible counter, because
5990 * for performance reasons the counter is not stricly tracking tasks to
5991 * their home CPUs. So we just add the counter to another CPU's counter,
5992 * to keep the global sum constant after CPU-down:
5994 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5996 struct rq
*rq_dest
= cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR
));
5997 unsigned long flags
;
5999 local_irq_save(flags
);
6000 double_rq_lock(rq_src
, rq_dest
);
6001 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
6002 rq_src
->nr_uninterruptible
= 0;
6003 double_rq_unlock(rq_src
, rq_dest
);
6004 local_irq_restore(flags
);
6007 /* Run through task list and migrate tasks from the dead cpu. */
6008 static void migrate_live_tasks(int src_cpu
)
6010 struct task_struct
*p
, *t
;
6012 read_lock(&tasklist_lock
);
6014 do_each_thread(t
, p
) {
6018 if (task_cpu(p
) == src_cpu
)
6019 move_task_off_dead_cpu(src_cpu
, p
);
6020 } while_each_thread(t
, p
);
6022 read_unlock(&tasklist_lock
);
6026 * Schedules idle task to be the next runnable task on current CPU.
6027 * It does so by boosting its priority to highest possible.
6028 * Used by CPU offline code.
6030 void sched_idle_next(void)
6032 int this_cpu
= smp_processor_id();
6033 struct rq
*rq
= cpu_rq(this_cpu
);
6034 struct task_struct
*p
= rq
->idle
;
6035 unsigned long flags
;
6037 /* cpu has to be offline */
6038 BUG_ON(cpu_online(this_cpu
));
6041 * Strictly not necessary since rest of the CPUs are stopped by now
6042 * and interrupts disabled on the current cpu.
6044 spin_lock_irqsave(&rq
->lock
, flags
);
6046 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6048 update_rq_clock(rq
);
6049 activate_task(rq
, p
, 0);
6051 spin_unlock_irqrestore(&rq
->lock
, flags
);
6055 * Ensures that the idle task is using init_mm right before its cpu goes
6058 void idle_task_exit(void)
6060 struct mm_struct
*mm
= current
->active_mm
;
6062 BUG_ON(cpu_online(smp_processor_id()));
6065 switch_mm(mm
, &init_mm
, current
);
6069 /* called under rq->lock with disabled interrupts */
6070 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
6072 struct rq
*rq
= cpu_rq(dead_cpu
);
6074 /* Must be exiting, otherwise would be on tasklist. */
6075 BUG_ON(!p
->exit_state
);
6077 /* Cannot have done final schedule yet: would have vanished. */
6078 BUG_ON(p
->state
== TASK_DEAD
);
6083 * Drop lock around migration; if someone else moves it,
6084 * that's OK. No task can be added to this CPU, so iteration is
6087 spin_unlock_irq(&rq
->lock
);
6088 move_task_off_dead_cpu(dead_cpu
, p
);
6089 spin_lock_irq(&rq
->lock
);
6094 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6095 static void migrate_dead_tasks(unsigned int dead_cpu
)
6097 struct rq
*rq
= cpu_rq(dead_cpu
);
6098 struct task_struct
*next
;
6101 if (!rq
->nr_running
)
6103 update_rq_clock(rq
);
6104 next
= pick_next_task(rq
, rq
->curr
);
6107 next
->sched_class
->put_prev_task(rq
, next
);
6108 migrate_dead(dead_cpu
, next
);
6112 #endif /* CONFIG_HOTPLUG_CPU */
6114 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6116 static struct ctl_table sd_ctl_dir
[] = {
6118 .procname
= "sched_domain",
6124 static struct ctl_table sd_ctl_root
[] = {
6126 .ctl_name
= CTL_KERN
,
6127 .procname
= "kernel",
6129 .child
= sd_ctl_dir
,
6134 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
6136 struct ctl_table
*entry
=
6137 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
6142 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
6144 struct ctl_table
*entry
;
6147 * In the intermediate directories, both the child directory and
6148 * procname are dynamically allocated and could fail but the mode
6149 * will always be set. In the lowest directory the names are
6150 * static strings and all have proc handlers.
6152 for (entry
= *tablep
; entry
->mode
; entry
++) {
6154 sd_free_ctl_entry(&entry
->child
);
6155 if (entry
->proc_handler
== NULL
)
6156 kfree(entry
->procname
);
6164 set_table_entry(struct ctl_table
*entry
,
6165 const char *procname
, void *data
, int maxlen
,
6166 mode_t mode
, proc_handler
*proc_handler
)
6168 entry
->procname
= procname
;
6170 entry
->maxlen
= maxlen
;
6172 entry
->proc_handler
= proc_handler
;
6175 static struct ctl_table
*
6176 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
6178 struct ctl_table
*table
= sd_alloc_ctl_entry(12);
6183 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
6184 sizeof(long), 0644, proc_doulongvec_minmax
);
6185 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
6186 sizeof(long), 0644, proc_doulongvec_minmax
);
6187 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
6188 sizeof(int), 0644, proc_dointvec_minmax
);
6189 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
6190 sizeof(int), 0644, proc_dointvec_minmax
);
6191 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
6192 sizeof(int), 0644, proc_dointvec_minmax
);
6193 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
6194 sizeof(int), 0644, proc_dointvec_minmax
);
6195 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
6196 sizeof(int), 0644, proc_dointvec_minmax
);
6197 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
6198 sizeof(int), 0644, proc_dointvec_minmax
);
6199 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
6200 sizeof(int), 0644, proc_dointvec_minmax
);
6201 set_table_entry(&table
[9], "cache_nice_tries",
6202 &sd
->cache_nice_tries
,
6203 sizeof(int), 0644, proc_dointvec_minmax
);
6204 set_table_entry(&table
[10], "flags", &sd
->flags
,
6205 sizeof(int), 0644, proc_dointvec_minmax
);
6206 /* &table[11] is terminator */
6211 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
6213 struct ctl_table
*entry
, *table
;
6214 struct sched_domain
*sd
;
6215 int domain_num
= 0, i
;
6218 for_each_domain(cpu
, sd
)
6220 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6225 for_each_domain(cpu
, sd
) {
6226 snprintf(buf
, 32, "domain%d", i
);
6227 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6229 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6236 static struct ctl_table_header
*sd_sysctl_header
;
6237 static void register_sched_domain_sysctl(void)
6239 int i
, cpu_num
= num_online_cpus();
6240 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6243 WARN_ON(sd_ctl_dir
[0].child
);
6244 sd_ctl_dir
[0].child
= entry
;
6249 for_each_online_cpu(i
) {
6250 snprintf(buf
, 32, "cpu%d", i
);
6251 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6253 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6257 WARN_ON(sd_sysctl_header
);
6258 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6261 /* may be called multiple times per register */
6262 static void unregister_sched_domain_sysctl(void)
6264 if (sd_sysctl_header
)
6265 unregister_sysctl_table(sd_sysctl_header
);
6266 sd_sysctl_header
= NULL
;
6267 if (sd_ctl_dir
[0].child
)
6268 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6271 static void register_sched_domain_sysctl(void)
6274 static void unregister_sched_domain_sysctl(void)
6279 static void set_rq_online(struct rq
*rq
)
6282 const struct sched_class
*class;
6284 cpu_set(rq
->cpu
, rq
->rd
->online
);
6287 for_each_class(class) {
6288 if (class->rq_online
)
6289 class->rq_online(rq
);
6294 static void set_rq_offline(struct rq
*rq
)
6297 const struct sched_class
*class;
6299 for_each_class(class) {
6300 if (class->rq_offline
)
6301 class->rq_offline(rq
);
6304 cpu_clear(rq
->cpu
, rq
->rd
->online
);
6310 * migration_call - callback that gets triggered when a CPU is added.
6311 * Here we can start up the necessary migration thread for the new CPU.
6313 static int __cpuinit
6314 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6316 struct task_struct
*p
;
6317 int cpu
= (long)hcpu
;
6318 unsigned long flags
;
6323 case CPU_UP_PREPARE
:
6324 case CPU_UP_PREPARE_FROZEN
:
6325 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
6328 kthread_bind(p
, cpu
);
6329 /* Must be high prio: stop_machine expects to yield to it. */
6330 rq
= task_rq_lock(p
, &flags
);
6331 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6332 task_rq_unlock(rq
, &flags
);
6333 cpu_rq(cpu
)->migration_thread
= p
;
6337 case CPU_ONLINE_FROZEN
:
6338 /* Strictly unnecessary, as first user will wake it. */
6339 wake_up_process(cpu_rq(cpu
)->migration_thread
);
6341 /* Update our root-domain */
6343 spin_lock_irqsave(&rq
->lock
, flags
);
6345 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
6349 spin_unlock_irqrestore(&rq
->lock
, flags
);
6352 #ifdef CONFIG_HOTPLUG_CPU
6353 case CPU_UP_CANCELED
:
6354 case CPU_UP_CANCELED_FROZEN
:
6355 if (!cpu_rq(cpu
)->migration_thread
)
6357 /* Unbind it from offline cpu so it can run. Fall thru. */
6358 kthread_bind(cpu_rq(cpu
)->migration_thread
,
6359 any_online_cpu(cpu_online_map
));
6360 kthread_stop(cpu_rq(cpu
)->migration_thread
);
6361 cpu_rq(cpu
)->migration_thread
= NULL
;
6365 case CPU_DEAD_FROZEN
:
6366 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6367 migrate_live_tasks(cpu
);
6369 kthread_stop(rq
->migration_thread
);
6370 rq
->migration_thread
= NULL
;
6371 /* Idle task back to normal (off runqueue, low prio) */
6372 spin_lock_irq(&rq
->lock
);
6373 update_rq_clock(rq
);
6374 deactivate_task(rq
, rq
->idle
, 0);
6375 rq
->idle
->static_prio
= MAX_PRIO
;
6376 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
6377 rq
->idle
->sched_class
= &idle_sched_class
;
6378 migrate_dead_tasks(cpu
);
6379 spin_unlock_irq(&rq
->lock
);
6381 migrate_nr_uninterruptible(rq
);
6382 BUG_ON(rq
->nr_running
!= 0);
6385 * No need to migrate the tasks: it was best-effort if
6386 * they didn't take sched_hotcpu_mutex. Just wake up
6389 spin_lock_irq(&rq
->lock
);
6390 while (!list_empty(&rq
->migration_queue
)) {
6391 struct migration_req
*req
;
6393 req
= list_entry(rq
->migration_queue
.next
,
6394 struct migration_req
, list
);
6395 list_del_init(&req
->list
);
6396 complete(&req
->done
);
6398 spin_unlock_irq(&rq
->lock
);
6402 case CPU_DYING_FROZEN
:
6403 /* Update our root-domain */
6405 spin_lock_irqsave(&rq
->lock
, flags
);
6407 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
6410 spin_unlock_irqrestore(&rq
->lock
, flags
);
6417 /* Register at highest priority so that task migration (migrate_all_tasks)
6418 * happens before everything else.
6420 static struct notifier_block __cpuinitdata migration_notifier
= {
6421 .notifier_call
= migration_call
,
6425 static int __init
migration_init(void)
6427 void *cpu
= (void *)(long)smp_processor_id();
6430 /* Start one for the boot CPU: */
6431 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6432 BUG_ON(err
== NOTIFY_BAD
);
6433 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6434 register_cpu_notifier(&migration_notifier
);
6438 early_initcall(migration_init
);
6443 #ifdef CONFIG_SCHED_DEBUG
6445 static inline const char *sd_level_to_string(enum sched_domain_level lvl
)
6458 case SD_LV_ALLNODES
:
6467 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6468 cpumask_t
*groupmask
)
6470 struct sched_group
*group
= sd
->groups
;
6473 cpulist_scnprintf(str
, sizeof(str
), sd
->span
);
6474 cpus_clear(*groupmask
);
6476 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6478 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6479 printk("does not load-balance\n");
6481 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6486 printk(KERN_CONT
"span %s level %s\n",
6487 str
, sd_level_to_string(sd
->level
));
6489 if (!cpu_isset(cpu
, sd
->span
)) {
6490 printk(KERN_ERR
"ERROR: domain->span does not contain "
6493 if (!cpu_isset(cpu
, group
->cpumask
)) {
6494 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6498 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6502 printk(KERN_ERR
"ERROR: group is NULL\n");
6506 if (!group
->__cpu_power
) {
6507 printk(KERN_CONT
"\n");
6508 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6513 if (!cpus_weight(group
->cpumask
)) {
6514 printk(KERN_CONT
"\n");
6515 printk(KERN_ERR
"ERROR: empty group\n");
6519 if (cpus_intersects(*groupmask
, group
->cpumask
)) {
6520 printk(KERN_CONT
"\n");
6521 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6525 cpus_or(*groupmask
, *groupmask
, group
->cpumask
);
6527 cpulist_scnprintf(str
, sizeof(str
), group
->cpumask
);
6528 printk(KERN_CONT
" %s", str
);
6530 group
= group
->next
;
6531 } while (group
!= sd
->groups
);
6532 printk(KERN_CONT
"\n");
6534 if (!cpus_equal(sd
->span
, *groupmask
))
6535 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6537 if (sd
->parent
&& !cpus_subset(*groupmask
, sd
->parent
->span
))
6538 printk(KERN_ERR
"ERROR: parent span is not a superset "
6539 "of domain->span\n");
6543 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6545 cpumask_t
*groupmask
;
6549 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6553 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6555 groupmask
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
6557 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
6562 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
6571 #else /* !CONFIG_SCHED_DEBUG */
6572 # define sched_domain_debug(sd, cpu) do { } while (0)
6573 #endif /* CONFIG_SCHED_DEBUG */
6575 static int sd_degenerate(struct sched_domain
*sd
)
6577 if (cpus_weight(sd
->span
) == 1)
6580 /* Following flags need at least 2 groups */
6581 if (sd
->flags
& (SD_LOAD_BALANCE
|
6582 SD_BALANCE_NEWIDLE
|
6586 SD_SHARE_PKG_RESOURCES
)) {
6587 if (sd
->groups
!= sd
->groups
->next
)
6591 /* Following flags don't use groups */
6592 if (sd
->flags
& (SD_WAKE_IDLE
|
6601 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6603 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6605 if (sd_degenerate(parent
))
6608 if (!cpus_equal(sd
->span
, parent
->span
))
6611 /* Does parent contain flags not in child? */
6612 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6613 if (cflags
& SD_WAKE_AFFINE
)
6614 pflags
&= ~SD_WAKE_BALANCE
;
6615 /* Flags needing groups don't count if only 1 group in parent */
6616 if (parent
->groups
== parent
->groups
->next
) {
6617 pflags
&= ~(SD_LOAD_BALANCE
|
6618 SD_BALANCE_NEWIDLE
|
6622 SD_SHARE_PKG_RESOURCES
);
6624 if (~cflags
& pflags
)
6630 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6632 unsigned long flags
;
6634 spin_lock_irqsave(&rq
->lock
, flags
);
6637 struct root_domain
*old_rd
= rq
->rd
;
6639 if (cpu_isset(rq
->cpu
, old_rd
->online
))
6642 cpu_clear(rq
->cpu
, old_rd
->span
);
6644 if (atomic_dec_and_test(&old_rd
->refcount
))
6648 atomic_inc(&rd
->refcount
);
6651 cpu_set(rq
->cpu
, rd
->span
);
6652 if (cpu_isset(rq
->cpu
, cpu_online_map
))
6655 spin_unlock_irqrestore(&rq
->lock
, flags
);
6658 static void init_rootdomain(struct root_domain
*rd
)
6660 memset(rd
, 0, sizeof(*rd
));
6662 cpus_clear(rd
->span
);
6663 cpus_clear(rd
->online
);
6665 cpupri_init(&rd
->cpupri
);
6668 static void init_defrootdomain(void)
6670 init_rootdomain(&def_root_domain
);
6671 atomic_set(&def_root_domain
.refcount
, 1);
6674 static struct root_domain
*alloc_rootdomain(void)
6676 struct root_domain
*rd
;
6678 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6682 init_rootdomain(rd
);
6688 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6689 * hold the hotplug lock.
6692 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6694 struct rq
*rq
= cpu_rq(cpu
);
6695 struct sched_domain
*tmp
;
6697 /* Remove the sched domains which do not contribute to scheduling. */
6698 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
6699 struct sched_domain
*parent
= tmp
->parent
;
6702 if (sd_parent_degenerate(tmp
, parent
)) {
6703 tmp
->parent
= parent
->parent
;
6705 parent
->parent
->child
= tmp
;
6709 if (sd
&& sd_degenerate(sd
)) {
6715 sched_domain_debug(sd
, cpu
);
6717 rq_attach_root(rq
, rd
);
6718 rcu_assign_pointer(rq
->sd
, sd
);
6721 /* cpus with isolated domains */
6722 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
6724 /* Setup the mask of cpus configured for isolated domains */
6725 static int __init
isolated_cpu_setup(char *str
)
6727 static int __initdata ints
[NR_CPUS
];
6730 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
6731 cpus_clear(cpu_isolated_map
);
6732 for (i
= 1; i
<= ints
[0]; i
++)
6733 if (ints
[i
] < NR_CPUS
)
6734 cpu_set(ints
[i
], cpu_isolated_map
);
6738 __setup("isolcpus=", isolated_cpu_setup
);
6741 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6742 * to a function which identifies what group(along with sched group) a CPU
6743 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6744 * (due to the fact that we keep track of groups covered with a cpumask_t).
6746 * init_sched_build_groups will build a circular linked list of the groups
6747 * covered by the given span, and will set each group's ->cpumask correctly,
6748 * and ->cpu_power to 0.
6751 init_sched_build_groups(const cpumask_t
*span
, const cpumask_t
*cpu_map
,
6752 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
6753 struct sched_group
**sg
,
6754 cpumask_t
*tmpmask
),
6755 cpumask_t
*covered
, cpumask_t
*tmpmask
)
6757 struct sched_group
*first
= NULL
, *last
= NULL
;
6760 cpus_clear(*covered
);
6762 for_each_cpu_mask_nr(i
, *span
) {
6763 struct sched_group
*sg
;
6764 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
6767 if (cpu_isset(i
, *covered
))
6770 cpus_clear(sg
->cpumask
);
6771 sg
->__cpu_power
= 0;
6773 for_each_cpu_mask_nr(j
, *span
) {
6774 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
6777 cpu_set(j
, *covered
);
6778 cpu_set(j
, sg
->cpumask
);
6789 #define SD_NODES_PER_DOMAIN 16
6794 * find_next_best_node - find the next node to include in a sched_domain
6795 * @node: node whose sched_domain we're building
6796 * @used_nodes: nodes already in the sched_domain
6798 * Find the next node to include in a given scheduling domain. Simply
6799 * finds the closest node not already in the @used_nodes map.
6801 * Should use nodemask_t.
6803 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6805 int i
, n
, val
, min_val
, best_node
= 0;
6809 for (i
= 0; i
< nr_node_ids
; i
++) {
6810 /* Start at @node */
6811 n
= (node
+ i
) % nr_node_ids
;
6813 if (!nr_cpus_node(n
))
6816 /* Skip already used nodes */
6817 if (node_isset(n
, *used_nodes
))
6820 /* Simple min distance search */
6821 val
= node_distance(node
, n
);
6823 if (val
< min_val
) {
6829 node_set(best_node
, *used_nodes
);
6834 * sched_domain_node_span - get a cpumask for a node's sched_domain
6835 * @node: node whose cpumask we're constructing
6836 * @span: resulting cpumask
6838 * Given a node, construct a good cpumask for its sched_domain to span. It
6839 * should be one that prevents unnecessary balancing, but also spreads tasks
6842 static void sched_domain_node_span(int node
, cpumask_t
*span
)
6844 nodemask_t used_nodes
;
6845 node_to_cpumask_ptr(nodemask
, node
);
6849 nodes_clear(used_nodes
);
6851 cpus_or(*span
, *span
, *nodemask
);
6852 node_set(node
, used_nodes
);
6854 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6855 int next_node
= find_next_best_node(node
, &used_nodes
);
6857 node_to_cpumask_ptr_next(nodemask
, next_node
);
6858 cpus_or(*span
, *span
, *nodemask
);
6861 #endif /* CONFIG_NUMA */
6863 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6866 * SMT sched-domains:
6868 #ifdef CONFIG_SCHED_SMT
6869 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
6870 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
6873 cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
6877 *sg
= &per_cpu(sched_group_cpus
, cpu
);
6880 #endif /* CONFIG_SCHED_SMT */
6883 * multi-core sched-domains:
6885 #ifdef CONFIG_SCHED_MC
6886 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
6887 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
6888 #endif /* CONFIG_SCHED_MC */
6890 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6892 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
6897 *mask
= per_cpu(cpu_sibling_map
, cpu
);
6898 cpus_and(*mask
, *mask
, *cpu_map
);
6899 group
= first_cpu(*mask
);
6901 *sg
= &per_cpu(sched_group_core
, group
);
6904 #elif defined(CONFIG_SCHED_MC)
6906 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
6910 *sg
= &per_cpu(sched_group_core
, cpu
);
6915 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
6916 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
6919 cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
6923 #ifdef CONFIG_SCHED_MC
6924 *mask
= cpu_coregroup_map(cpu
);
6925 cpus_and(*mask
, *mask
, *cpu_map
);
6926 group
= first_cpu(*mask
);
6927 #elif defined(CONFIG_SCHED_SMT)
6928 *mask
= per_cpu(cpu_sibling_map
, cpu
);
6929 cpus_and(*mask
, *mask
, *cpu_map
);
6930 group
= first_cpu(*mask
);
6935 *sg
= &per_cpu(sched_group_phys
, group
);
6941 * The init_sched_build_groups can't handle what we want to do with node
6942 * groups, so roll our own. Now each node has its own list of groups which
6943 * gets dynamically allocated.
6945 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
6946 static struct sched_group
***sched_group_nodes_bycpu
;
6948 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
6949 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
6951 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
6952 struct sched_group
**sg
, cpumask_t
*nodemask
)
6956 *nodemask
= node_to_cpumask(cpu_to_node(cpu
));
6957 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
6958 group
= first_cpu(*nodemask
);
6961 *sg
= &per_cpu(sched_group_allnodes
, group
);
6965 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6967 struct sched_group
*sg
= group_head
;
6973 for_each_cpu_mask_nr(j
, sg
->cpumask
) {
6974 struct sched_domain
*sd
;
6976 sd
= &per_cpu(phys_domains
, j
);
6977 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
6979 * Only add "power" once for each
6985 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
6988 } while (sg
!= group_head
);
6990 #endif /* CONFIG_NUMA */
6993 /* Free memory allocated for various sched_group structures */
6994 static void free_sched_groups(const cpumask_t
*cpu_map
, cpumask_t
*nodemask
)
6998 for_each_cpu_mask_nr(cpu
, *cpu_map
) {
6999 struct sched_group
**sched_group_nodes
7000 = sched_group_nodes_bycpu
[cpu
];
7002 if (!sched_group_nodes
)
7005 for (i
= 0; i
< nr_node_ids
; i
++) {
7006 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
7008 *nodemask
= node_to_cpumask(i
);
7009 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7010 if (cpus_empty(*nodemask
))
7020 if (oldsg
!= sched_group_nodes
[i
])
7023 kfree(sched_group_nodes
);
7024 sched_group_nodes_bycpu
[cpu
] = NULL
;
7027 #else /* !CONFIG_NUMA */
7028 static void free_sched_groups(const cpumask_t
*cpu_map
, cpumask_t
*nodemask
)
7031 #endif /* CONFIG_NUMA */
7034 * Initialize sched groups cpu_power.
7036 * cpu_power indicates the capacity of sched group, which is used while
7037 * distributing the load between different sched groups in a sched domain.
7038 * Typically cpu_power for all the groups in a sched domain will be same unless
7039 * there are asymmetries in the topology. If there are asymmetries, group
7040 * having more cpu_power will pickup more load compared to the group having
7043 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7044 * the maximum number of tasks a group can handle in the presence of other idle
7045 * or lightly loaded groups in the same sched domain.
7047 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
7049 struct sched_domain
*child
;
7050 struct sched_group
*group
;
7052 WARN_ON(!sd
|| !sd
->groups
);
7054 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
7059 sd
->groups
->__cpu_power
= 0;
7062 * For perf policy, if the groups in child domain share resources
7063 * (for example cores sharing some portions of the cache hierarchy
7064 * or SMT), then set this domain groups cpu_power such that each group
7065 * can handle only one task, when there are other idle groups in the
7066 * same sched domain.
7068 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
7070 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
7071 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
7076 * add cpu_power of each child group to this groups cpu_power
7078 group
= child
->groups
;
7080 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
7081 group
= group
->next
;
7082 } while (group
!= child
->groups
);
7086 * Initializers for schedule domains
7087 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7090 #define SD_INIT(sd, type) sd_init_##type(sd)
7091 #define SD_INIT_FUNC(type) \
7092 static noinline void sd_init_##type(struct sched_domain *sd) \
7094 memset(sd, 0, sizeof(*sd)); \
7095 *sd = SD_##type##_INIT; \
7096 sd->level = SD_LV_##type; \
7101 SD_INIT_FUNC(ALLNODES
)
7104 #ifdef CONFIG_SCHED_SMT
7105 SD_INIT_FUNC(SIBLING
)
7107 #ifdef CONFIG_SCHED_MC
7112 * To minimize stack usage kmalloc room for cpumasks and share the
7113 * space as the usage in build_sched_domains() dictates. Used only
7114 * if the amount of space is significant.
7117 cpumask_t tmpmask
; /* make this one first */
7120 cpumask_t this_sibling_map
;
7121 cpumask_t this_core_map
;
7123 cpumask_t send_covered
;
7126 cpumask_t domainspan
;
7128 cpumask_t notcovered
;
7133 #define SCHED_CPUMASK_ALLOC 1
7134 #define SCHED_CPUMASK_FREE(v) kfree(v)
7135 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7137 #define SCHED_CPUMASK_ALLOC 0
7138 #define SCHED_CPUMASK_FREE(v)
7139 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7142 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7143 ((unsigned long)(a) + offsetof(struct allmasks, v))
7145 static int default_relax_domain_level
= -1;
7147 static int __init
setup_relax_domain_level(char *str
)
7151 val
= simple_strtoul(str
, NULL
, 0);
7152 if (val
< SD_LV_MAX
)
7153 default_relax_domain_level
= val
;
7157 __setup("relax_domain_level=", setup_relax_domain_level
);
7159 static void set_domain_attribute(struct sched_domain
*sd
,
7160 struct sched_domain_attr
*attr
)
7164 if (!attr
|| attr
->relax_domain_level
< 0) {
7165 if (default_relax_domain_level
< 0)
7168 request
= default_relax_domain_level
;
7170 request
= attr
->relax_domain_level
;
7171 if (request
< sd
->level
) {
7172 /* turn off idle balance on this domain */
7173 sd
->flags
&= ~(SD_WAKE_IDLE
|SD_BALANCE_NEWIDLE
);
7175 /* turn on idle balance on this domain */
7176 sd
->flags
|= (SD_WAKE_IDLE_FAR
|SD_BALANCE_NEWIDLE
);
7181 * Build sched domains for a given set of cpus and attach the sched domains
7182 * to the individual cpus
7184 static int __build_sched_domains(const cpumask_t
*cpu_map
,
7185 struct sched_domain_attr
*attr
)
7188 struct root_domain
*rd
;
7189 SCHED_CPUMASK_DECLARE(allmasks
);
7192 struct sched_group
**sched_group_nodes
= NULL
;
7193 int sd_allnodes
= 0;
7196 * Allocate the per-node list of sched groups
7198 sched_group_nodes
= kcalloc(nr_node_ids
, sizeof(struct sched_group
*),
7200 if (!sched_group_nodes
) {
7201 printk(KERN_WARNING
"Can not alloc sched group node list\n");
7206 rd
= alloc_rootdomain();
7208 printk(KERN_WARNING
"Cannot alloc root domain\n");
7210 kfree(sched_group_nodes
);
7215 #if SCHED_CPUMASK_ALLOC
7216 /* get space for all scratch cpumask variables */
7217 allmasks
= kmalloc(sizeof(*allmasks
), GFP_KERNEL
);
7219 printk(KERN_WARNING
"Cannot alloc cpumask array\n");
7222 kfree(sched_group_nodes
);
7227 tmpmask
= (cpumask_t
*)allmasks
;
7231 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
7235 * Set up domains for cpus specified by the cpu_map.
7237 for_each_cpu_mask_nr(i
, *cpu_map
) {
7238 struct sched_domain
*sd
= NULL
, *p
;
7239 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7241 *nodemask
= node_to_cpumask(cpu_to_node(i
));
7242 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7245 if (cpus_weight(*cpu_map
) >
7246 SD_NODES_PER_DOMAIN
*cpus_weight(*nodemask
)) {
7247 sd
= &per_cpu(allnodes_domains
, i
);
7248 SD_INIT(sd
, ALLNODES
);
7249 set_domain_attribute(sd
, attr
);
7250 sd
->span
= *cpu_map
;
7251 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7257 sd
= &per_cpu(node_domains
, i
);
7259 set_domain_attribute(sd
, attr
);
7260 sched_domain_node_span(cpu_to_node(i
), &sd
->span
);
7264 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7268 sd
= &per_cpu(phys_domains
, i
);
7270 set_domain_attribute(sd
, attr
);
7271 sd
->span
= *nodemask
;
7275 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7277 #ifdef CONFIG_SCHED_MC
7279 sd
= &per_cpu(core_domains
, i
);
7281 set_domain_attribute(sd
, attr
);
7282 sd
->span
= cpu_coregroup_map(i
);
7283 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7286 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7289 #ifdef CONFIG_SCHED_SMT
7291 sd
= &per_cpu(cpu_domains
, i
);
7292 SD_INIT(sd
, SIBLING
);
7293 set_domain_attribute(sd
, attr
);
7294 sd
->span
= per_cpu(cpu_sibling_map
, i
);
7295 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7298 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7302 #ifdef CONFIG_SCHED_SMT
7303 /* Set up CPU (sibling) groups */
7304 for_each_cpu_mask_nr(i
, *cpu_map
) {
7305 SCHED_CPUMASK_VAR(this_sibling_map
, allmasks
);
7306 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7308 *this_sibling_map
= per_cpu(cpu_sibling_map
, i
);
7309 cpus_and(*this_sibling_map
, *this_sibling_map
, *cpu_map
);
7310 if (i
!= first_cpu(*this_sibling_map
))
7313 init_sched_build_groups(this_sibling_map
, cpu_map
,
7315 send_covered
, tmpmask
);
7319 #ifdef CONFIG_SCHED_MC
7320 /* Set up multi-core groups */
7321 for_each_cpu_mask_nr(i
, *cpu_map
) {
7322 SCHED_CPUMASK_VAR(this_core_map
, allmasks
);
7323 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7325 *this_core_map
= cpu_coregroup_map(i
);
7326 cpus_and(*this_core_map
, *this_core_map
, *cpu_map
);
7327 if (i
!= first_cpu(*this_core_map
))
7330 init_sched_build_groups(this_core_map
, cpu_map
,
7332 send_covered
, tmpmask
);
7336 /* Set up physical groups */
7337 for (i
= 0; i
< nr_node_ids
; i
++) {
7338 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7339 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7341 *nodemask
= node_to_cpumask(i
);
7342 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7343 if (cpus_empty(*nodemask
))
7346 init_sched_build_groups(nodemask
, cpu_map
,
7348 send_covered
, tmpmask
);
7352 /* Set up node groups */
7354 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7356 init_sched_build_groups(cpu_map
, cpu_map
,
7357 &cpu_to_allnodes_group
,
7358 send_covered
, tmpmask
);
7361 for (i
= 0; i
< nr_node_ids
; i
++) {
7362 /* Set up node groups */
7363 struct sched_group
*sg
, *prev
;
7364 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7365 SCHED_CPUMASK_VAR(domainspan
, allmasks
);
7366 SCHED_CPUMASK_VAR(covered
, allmasks
);
7369 *nodemask
= node_to_cpumask(i
);
7370 cpus_clear(*covered
);
7372 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7373 if (cpus_empty(*nodemask
)) {
7374 sched_group_nodes
[i
] = NULL
;
7378 sched_domain_node_span(i
, domainspan
);
7379 cpus_and(*domainspan
, *domainspan
, *cpu_map
);
7381 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
7383 printk(KERN_WARNING
"Can not alloc domain group for "
7387 sched_group_nodes
[i
] = sg
;
7388 for_each_cpu_mask_nr(j
, *nodemask
) {
7389 struct sched_domain
*sd
;
7391 sd
= &per_cpu(node_domains
, j
);
7394 sg
->__cpu_power
= 0;
7395 sg
->cpumask
= *nodemask
;
7397 cpus_or(*covered
, *covered
, *nodemask
);
7400 for (j
= 0; j
< nr_node_ids
; j
++) {
7401 SCHED_CPUMASK_VAR(notcovered
, allmasks
);
7402 int n
= (i
+ j
) % nr_node_ids
;
7403 node_to_cpumask_ptr(pnodemask
, n
);
7405 cpus_complement(*notcovered
, *covered
);
7406 cpus_and(*tmpmask
, *notcovered
, *cpu_map
);
7407 cpus_and(*tmpmask
, *tmpmask
, *domainspan
);
7408 if (cpus_empty(*tmpmask
))
7411 cpus_and(*tmpmask
, *tmpmask
, *pnodemask
);
7412 if (cpus_empty(*tmpmask
))
7415 sg
= kmalloc_node(sizeof(struct sched_group
),
7419 "Can not alloc domain group for node %d\n", j
);
7422 sg
->__cpu_power
= 0;
7423 sg
->cpumask
= *tmpmask
;
7424 sg
->next
= prev
->next
;
7425 cpus_or(*covered
, *covered
, *tmpmask
);
7432 /* Calculate CPU power for physical packages and nodes */
7433 #ifdef CONFIG_SCHED_SMT
7434 for_each_cpu_mask_nr(i
, *cpu_map
) {
7435 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
7437 init_sched_groups_power(i
, sd
);
7440 #ifdef CONFIG_SCHED_MC
7441 for_each_cpu_mask_nr(i
, *cpu_map
) {
7442 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
7444 init_sched_groups_power(i
, sd
);
7448 for_each_cpu_mask_nr(i
, *cpu_map
) {
7449 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
7451 init_sched_groups_power(i
, sd
);
7455 for (i
= 0; i
< nr_node_ids
; i
++)
7456 init_numa_sched_groups_power(sched_group_nodes
[i
]);
7459 struct sched_group
*sg
;
7461 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
,
7463 init_numa_sched_groups_power(sg
);
7467 /* Attach the domains */
7468 for_each_cpu_mask_nr(i
, *cpu_map
) {
7469 struct sched_domain
*sd
;
7470 #ifdef CONFIG_SCHED_SMT
7471 sd
= &per_cpu(cpu_domains
, i
);
7472 #elif defined(CONFIG_SCHED_MC)
7473 sd
= &per_cpu(core_domains
, i
);
7475 sd
= &per_cpu(phys_domains
, i
);
7477 cpu_attach_domain(sd
, rd
, i
);
7480 SCHED_CPUMASK_FREE((void *)allmasks
);
7485 free_sched_groups(cpu_map
, tmpmask
);
7486 SCHED_CPUMASK_FREE((void *)allmasks
);
7491 static int build_sched_domains(const cpumask_t
*cpu_map
)
7493 return __build_sched_domains(cpu_map
, NULL
);
7496 static cpumask_t
*doms_cur
; /* current sched domains */
7497 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7498 static struct sched_domain_attr
*dattr_cur
;
7499 /* attribues of custom domains in 'doms_cur' */
7502 * Special case: If a kmalloc of a doms_cur partition (array of
7503 * cpumask_t) fails, then fallback to a single sched domain,
7504 * as determined by the single cpumask_t fallback_doms.
7506 static cpumask_t fallback_doms
;
7508 void __attribute__((weak
)) arch_update_cpu_topology(void)
7513 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7514 * For now this just excludes isolated cpus, but could be used to
7515 * exclude other special cases in the future.
7517 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
7521 arch_update_cpu_topology();
7523 doms_cur
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
7525 doms_cur
= &fallback_doms
;
7526 cpus_andnot(*doms_cur
, *cpu_map
, cpu_isolated_map
);
7528 err
= build_sched_domains(doms_cur
);
7529 register_sched_domain_sysctl();
7534 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
,
7537 free_sched_groups(cpu_map
, tmpmask
);
7541 * Detach sched domains from a group of cpus specified in cpu_map
7542 * These cpus will now be attached to the NULL domain
7544 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
7549 unregister_sched_domain_sysctl();
7551 for_each_cpu_mask_nr(i
, *cpu_map
)
7552 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7553 synchronize_sched();
7554 arch_destroy_sched_domains(cpu_map
, &tmpmask
);
7557 /* handle null as "default" */
7558 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7559 struct sched_domain_attr
*new, int idx_new
)
7561 struct sched_domain_attr tmp
;
7568 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7569 new ? (new + idx_new
) : &tmp
,
7570 sizeof(struct sched_domain_attr
));
7574 * Partition sched domains as specified by the 'ndoms_new'
7575 * cpumasks in the array doms_new[] of cpumasks. This compares
7576 * doms_new[] to the current sched domain partitioning, doms_cur[].
7577 * It destroys each deleted domain and builds each new domain.
7579 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7580 * The masks don't intersect (don't overlap.) We should setup one
7581 * sched domain for each mask. CPUs not in any of the cpumasks will
7582 * not be load balanced. If the same cpumask appears both in the
7583 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7586 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7587 * ownership of it and will kfree it when done with it. If the caller
7588 * failed the kmalloc call, then it can pass in doms_new == NULL,
7589 * and partition_sched_domains() will fallback to the single partition
7590 * 'fallback_doms', it also forces the domains to be rebuilt.
7592 * Call with hotplug lock held
7594 void partition_sched_domains(int ndoms_new
, cpumask_t
*doms_new
,
7595 struct sched_domain_attr
*dattr_new
)
7599 mutex_lock(&sched_domains_mutex
);
7601 /* always unregister in case we don't destroy any domains */
7602 unregister_sched_domain_sysctl();
7604 if (doms_new
== NULL
)
7607 /* Destroy deleted domains */
7608 for (i
= 0; i
< ndoms_cur
; i
++) {
7609 for (j
= 0; j
< ndoms_new
; j
++) {
7610 if (cpus_equal(doms_cur
[i
], doms_new
[j
])
7611 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7614 /* no match - a current sched domain not in new doms_new[] */
7615 detach_destroy_domains(doms_cur
+ i
);
7620 if (doms_new
== NULL
) {
7623 doms_new
= &fallback_doms
;
7624 cpus_andnot(doms_new
[0], cpu_online_map
, cpu_isolated_map
);
7628 /* Build new domains */
7629 for (i
= 0; i
< ndoms_new
; i
++) {
7630 for (j
= 0; j
< ndoms_cur
; j
++) {
7631 if (cpus_equal(doms_new
[i
], doms_cur
[j
])
7632 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7635 /* no match - add a new doms_new */
7636 __build_sched_domains(doms_new
+ i
,
7637 dattr_new
? dattr_new
+ i
: NULL
);
7642 /* Remember the new sched domains */
7643 if (doms_cur
!= &fallback_doms
)
7645 kfree(dattr_cur
); /* kfree(NULL) is safe */
7646 doms_cur
= doms_new
;
7647 dattr_cur
= dattr_new
;
7648 ndoms_cur
= ndoms_new
;
7650 register_sched_domain_sysctl();
7652 mutex_unlock(&sched_domains_mutex
);
7655 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7656 int arch_reinit_sched_domains(void)
7659 rebuild_sched_domains();
7664 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7668 if (buf
[0] != '0' && buf
[0] != '1')
7672 sched_smt_power_savings
= (buf
[0] == '1');
7674 sched_mc_power_savings
= (buf
[0] == '1');
7676 ret
= arch_reinit_sched_domains();
7678 return ret
? ret
: count
;
7681 #ifdef CONFIG_SCHED_MC
7682 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
7685 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7687 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
7688 const char *buf
, size_t count
)
7690 return sched_power_savings_store(buf
, count
, 0);
7692 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
7693 sched_mc_power_savings_show
,
7694 sched_mc_power_savings_store
);
7697 #ifdef CONFIG_SCHED_SMT
7698 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
7701 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7703 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
7704 const char *buf
, size_t count
)
7706 return sched_power_savings_store(buf
, count
, 1);
7708 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
7709 sched_smt_power_savings_show
,
7710 sched_smt_power_savings_store
);
7713 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7717 #ifdef CONFIG_SCHED_SMT
7719 err
= sysfs_create_file(&cls
->kset
.kobj
,
7720 &attr_sched_smt_power_savings
.attr
);
7722 #ifdef CONFIG_SCHED_MC
7723 if (!err
&& mc_capable())
7724 err
= sysfs_create_file(&cls
->kset
.kobj
,
7725 &attr_sched_mc_power_savings
.attr
);
7729 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7731 #ifndef CONFIG_CPUSETS
7733 * Add online and remove offline CPUs from the scheduler domains.
7734 * When cpusets are enabled they take over this function.
7736 static int update_sched_domains(struct notifier_block
*nfb
,
7737 unsigned long action
, void *hcpu
)
7741 case CPU_ONLINE_FROZEN
:
7743 case CPU_DEAD_FROZEN
:
7744 partition_sched_domains(0, NULL
, NULL
);
7753 static int update_runtime(struct notifier_block
*nfb
,
7754 unsigned long action
, void *hcpu
)
7756 int cpu
= (int)(long)hcpu
;
7759 case CPU_DOWN_PREPARE
:
7760 case CPU_DOWN_PREPARE_FROZEN
:
7761 disable_runtime(cpu_rq(cpu
));
7764 case CPU_DOWN_FAILED
:
7765 case CPU_DOWN_FAILED_FROZEN
:
7767 case CPU_ONLINE_FROZEN
:
7768 enable_runtime(cpu_rq(cpu
));
7776 void __init
sched_init_smp(void)
7778 cpumask_t non_isolated_cpus
;
7780 #if defined(CONFIG_NUMA)
7781 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
7783 BUG_ON(sched_group_nodes_bycpu
== NULL
);
7786 mutex_lock(&sched_domains_mutex
);
7787 arch_init_sched_domains(&cpu_online_map
);
7788 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
7789 if (cpus_empty(non_isolated_cpus
))
7790 cpu_set(smp_processor_id(), non_isolated_cpus
);
7791 mutex_unlock(&sched_domains_mutex
);
7794 #ifndef CONFIG_CPUSETS
7795 /* XXX: Theoretical race here - CPU may be hotplugged now */
7796 hotcpu_notifier(update_sched_domains
, 0);
7799 /* RT runtime code needs to handle some hotplug events */
7800 hotcpu_notifier(update_runtime
, 0);
7804 /* Move init over to a non-isolated CPU */
7805 if (set_cpus_allowed_ptr(current
, &non_isolated_cpus
) < 0)
7807 sched_init_granularity();
7810 void __init
sched_init_smp(void)
7812 sched_init_granularity();
7814 #endif /* CONFIG_SMP */
7816 int in_sched_functions(unsigned long addr
)
7818 return in_lock_functions(addr
) ||
7819 (addr
>= (unsigned long)__sched_text_start
7820 && addr
< (unsigned long)__sched_text_end
);
7823 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7825 cfs_rq
->tasks_timeline
= RB_ROOT
;
7826 INIT_LIST_HEAD(&cfs_rq
->tasks
);
7827 #ifdef CONFIG_FAIR_GROUP_SCHED
7830 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7833 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7835 struct rt_prio_array
*array
;
7838 array
= &rt_rq
->active
;
7839 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7840 INIT_LIST_HEAD(array
->queue
+ i
);
7841 __clear_bit(i
, array
->bitmap
);
7843 /* delimiter for bitsearch: */
7844 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7846 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7847 rt_rq
->highest_prio
= MAX_RT_PRIO
;
7850 rt_rq
->rt_nr_migratory
= 0;
7851 rt_rq
->overloaded
= 0;
7855 rt_rq
->rt_throttled
= 0;
7856 rt_rq
->rt_runtime
= 0;
7857 spin_lock_init(&rt_rq
->rt_runtime_lock
);
7859 #ifdef CONFIG_RT_GROUP_SCHED
7860 rt_rq
->rt_nr_boosted
= 0;
7865 #ifdef CONFIG_FAIR_GROUP_SCHED
7866 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
7867 struct sched_entity
*se
, int cpu
, int add
,
7868 struct sched_entity
*parent
)
7870 struct rq
*rq
= cpu_rq(cpu
);
7871 tg
->cfs_rq
[cpu
] = cfs_rq
;
7872 init_cfs_rq(cfs_rq
, rq
);
7875 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7878 /* se could be NULL for init_task_group */
7883 se
->cfs_rq
= &rq
->cfs
;
7885 se
->cfs_rq
= parent
->my_q
;
7888 se
->load
.weight
= tg
->shares
;
7889 se
->load
.inv_weight
= 0;
7890 se
->parent
= parent
;
7894 #ifdef CONFIG_RT_GROUP_SCHED
7895 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
7896 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
7897 struct sched_rt_entity
*parent
)
7899 struct rq
*rq
= cpu_rq(cpu
);
7901 tg
->rt_rq
[cpu
] = rt_rq
;
7902 init_rt_rq(rt_rq
, rq
);
7904 rt_rq
->rt_se
= rt_se
;
7905 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7907 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
7909 tg
->rt_se
[cpu
] = rt_se
;
7914 rt_se
->rt_rq
= &rq
->rt
;
7916 rt_se
->rt_rq
= parent
->my_q
;
7918 rt_se
->my_q
= rt_rq
;
7919 rt_se
->parent
= parent
;
7920 INIT_LIST_HEAD(&rt_se
->run_list
);
7924 void __init
sched_init(void)
7927 unsigned long alloc_size
= 0, ptr
;
7929 #ifdef CONFIG_FAIR_GROUP_SCHED
7930 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7932 #ifdef CONFIG_RT_GROUP_SCHED
7933 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7935 #ifdef CONFIG_USER_SCHED
7939 * As sched_init() is called before page_alloc is setup,
7940 * we use alloc_bootmem().
7943 ptr
= (unsigned long)alloc_bootmem(alloc_size
);
7945 #ifdef CONFIG_FAIR_GROUP_SCHED
7946 init_task_group
.se
= (struct sched_entity
**)ptr
;
7947 ptr
+= nr_cpu_ids
* sizeof(void **);
7949 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
7950 ptr
+= nr_cpu_ids
* sizeof(void **);
7952 #ifdef CONFIG_USER_SCHED
7953 root_task_group
.se
= (struct sched_entity
**)ptr
;
7954 ptr
+= nr_cpu_ids
* sizeof(void **);
7956 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
7957 ptr
+= nr_cpu_ids
* sizeof(void **);
7958 #endif /* CONFIG_USER_SCHED */
7959 #endif /* CONFIG_FAIR_GROUP_SCHED */
7960 #ifdef CONFIG_RT_GROUP_SCHED
7961 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
7962 ptr
+= nr_cpu_ids
* sizeof(void **);
7964 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
7965 ptr
+= nr_cpu_ids
* sizeof(void **);
7967 #ifdef CONFIG_USER_SCHED
7968 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
7969 ptr
+= nr_cpu_ids
* sizeof(void **);
7971 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
7972 ptr
+= nr_cpu_ids
* sizeof(void **);
7973 #endif /* CONFIG_USER_SCHED */
7974 #endif /* CONFIG_RT_GROUP_SCHED */
7978 init_defrootdomain();
7981 init_rt_bandwidth(&def_rt_bandwidth
,
7982 global_rt_period(), global_rt_runtime());
7984 #ifdef CONFIG_RT_GROUP_SCHED
7985 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
7986 global_rt_period(), global_rt_runtime());
7987 #ifdef CONFIG_USER_SCHED
7988 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
7989 global_rt_period(), RUNTIME_INF
);
7990 #endif /* CONFIG_USER_SCHED */
7991 #endif /* CONFIG_RT_GROUP_SCHED */
7993 #ifdef CONFIG_GROUP_SCHED
7994 list_add(&init_task_group
.list
, &task_groups
);
7995 INIT_LIST_HEAD(&init_task_group
.children
);
7997 #ifdef CONFIG_USER_SCHED
7998 INIT_LIST_HEAD(&root_task_group
.children
);
7999 init_task_group
.parent
= &root_task_group
;
8000 list_add(&init_task_group
.siblings
, &root_task_group
.children
);
8001 #endif /* CONFIG_USER_SCHED */
8002 #endif /* CONFIG_GROUP_SCHED */
8004 for_each_possible_cpu(i
) {
8008 spin_lock_init(&rq
->lock
);
8010 init_cfs_rq(&rq
->cfs
, rq
);
8011 init_rt_rq(&rq
->rt
, rq
);
8012 #ifdef CONFIG_FAIR_GROUP_SCHED
8013 init_task_group
.shares
= init_task_group_load
;
8014 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
8015 #ifdef CONFIG_CGROUP_SCHED
8017 * How much cpu bandwidth does init_task_group get?
8019 * In case of task-groups formed thr' the cgroup filesystem, it
8020 * gets 100% of the cpu resources in the system. This overall
8021 * system cpu resource is divided among the tasks of
8022 * init_task_group and its child task-groups in a fair manner,
8023 * based on each entity's (task or task-group's) weight
8024 * (se->load.weight).
8026 * In other words, if init_task_group has 10 tasks of weight
8027 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8028 * then A0's share of the cpu resource is:
8030 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8032 * We achieve this by letting init_task_group's tasks sit
8033 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8035 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
8036 #elif defined CONFIG_USER_SCHED
8037 root_task_group
.shares
= NICE_0_LOAD
;
8038 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, 0, NULL
);
8040 * In case of task-groups formed thr' the user id of tasks,
8041 * init_task_group represents tasks belonging to root user.
8042 * Hence it forms a sibling of all subsequent groups formed.
8043 * In this case, init_task_group gets only a fraction of overall
8044 * system cpu resource, based on the weight assigned to root
8045 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8046 * by letting tasks of init_task_group sit in a separate cfs_rq
8047 * (init_cfs_rq) and having one entity represent this group of
8048 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8050 init_tg_cfs_entry(&init_task_group
,
8051 &per_cpu(init_cfs_rq
, i
),
8052 &per_cpu(init_sched_entity
, i
), i
, 1,
8053 root_task_group
.se
[i
]);
8056 #endif /* CONFIG_FAIR_GROUP_SCHED */
8058 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
8059 #ifdef CONFIG_RT_GROUP_SCHED
8060 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
8061 #ifdef CONFIG_CGROUP_SCHED
8062 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
8063 #elif defined CONFIG_USER_SCHED
8064 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, 0, NULL
);
8065 init_tg_rt_entry(&init_task_group
,
8066 &per_cpu(init_rt_rq
, i
),
8067 &per_cpu(init_sched_rt_entity
, i
), i
, 1,
8068 root_task_group
.rt_se
[i
]);
8072 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
8073 rq
->cpu_load
[j
] = 0;
8077 rq
->active_balance
= 0;
8078 rq
->next_balance
= jiffies
;
8082 rq
->migration_thread
= NULL
;
8083 INIT_LIST_HEAD(&rq
->migration_queue
);
8084 rq_attach_root(rq
, &def_root_domain
);
8087 atomic_set(&rq
->nr_iowait
, 0);
8090 set_load_weight(&init_task
);
8092 #ifdef CONFIG_PREEMPT_NOTIFIERS
8093 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
8097 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
8100 #ifdef CONFIG_RT_MUTEXES
8101 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
8105 * The boot idle thread does lazy MMU switching as well:
8107 atomic_inc(&init_mm
.mm_count
);
8108 enter_lazy_tlb(&init_mm
, current
);
8111 * Make us the idle thread. Technically, schedule() should not be
8112 * called from this thread, however somewhere below it might be,
8113 * but because we are the idle thread, we just pick up running again
8114 * when this runqueue becomes "idle".
8116 init_idle(current
, smp_processor_id());
8118 * During early bootup we pretend to be a normal task:
8120 current
->sched_class
= &fair_sched_class
;
8122 scheduler_running
= 1;
8125 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8126 void __might_sleep(char *file
, int line
)
8129 static unsigned long prev_jiffy
; /* ratelimiting */
8131 if ((in_atomic() || irqs_disabled()) &&
8132 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
8133 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8135 prev_jiffy
= jiffies
;
8136 printk(KERN_ERR
"BUG: sleeping function called from invalid"
8137 " context at %s:%d\n", file
, line
);
8138 printk("in_atomic():%d, irqs_disabled():%d\n",
8139 in_atomic(), irqs_disabled());
8140 debug_show_held_locks(current
);
8141 if (irqs_disabled())
8142 print_irqtrace_events(current
);
8147 EXPORT_SYMBOL(__might_sleep
);
8150 #ifdef CONFIG_MAGIC_SYSRQ
8151 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8155 update_rq_clock(rq
);
8156 on_rq
= p
->se
.on_rq
;
8158 deactivate_task(rq
, p
, 0);
8159 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8161 activate_task(rq
, p
, 0);
8162 resched_task(rq
->curr
);
8166 void normalize_rt_tasks(void)
8168 struct task_struct
*g
, *p
;
8169 unsigned long flags
;
8172 read_lock_irqsave(&tasklist_lock
, flags
);
8173 do_each_thread(g
, p
) {
8175 * Only normalize user tasks:
8180 p
->se
.exec_start
= 0;
8181 #ifdef CONFIG_SCHEDSTATS
8182 p
->se
.wait_start
= 0;
8183 p
->se
.sleep_start
= 0;
8184 p
->se
.block_start
= 0;
8189 * Renice negative nice level userspace
8192 if (TASK_NICE(p
) < 0 && p
->mm
)
8193 set_user_nice(p
, 0);
8197 spin_lock(&p
->pi_lock
);
8198 rq
= __task_rq_lock(p
);
8200 normalize_task(rq
, p
);
8202 __task_rq_unlock(rq
);
8203 spin_unlock(&p
->pi_lock
);
8204 } while_each_thread(g
, p
);
8206 read_unlock_irqrestore(&tasklist_lock
, flags
);
8209 #endif /* CONFIG_MAGIC_SYSRQ */
8213 * These functions are only useful for the IA64 MCA handling.
8215 * They can only be called when the whole system has been
8216 * stopped - every CPU needs to be quiescent, and no scheduling
8217 * activity can take place. Using them for anything else would
8218 * be a serious bug, and as a result, they aren't even visible
8219 * under any other configuration.
8223 * curr_task - return the current task for a given cpu.
8224 * @cpu: the processor in question.
8226 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8228 struct task_struct
*curr_task(int cpu
)
8230 return cpu_curr(cpu
);
8234 * set_curr_task - set the current task for a given cpu.
8235 * @cpu: the processor in question.
8236 * @p: the task pointer to set.
8238 * Description: This function must only be used when non-maskable interrupts
8239 * are serviced on a separate stack. It allows the architecture to switch the
8240 * notion of the current task on a cpu in a non-blocking manner. This function
8241 * must be called with all CPU's synchronized, and interrupts disabled, the
8242 * and caller must save the original value of the current task (see
8243 * curr_task() above) and restore that value before reenabling interrupts and
8244 * re-starting the system.
8246 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8248 void set_curr_task(int cpu
, struct task_struct
*p
)
8255 #ifdef CONFIG_FAIR_GROUP_SCHED
8256 static void free_fair_sched_group(struct task_group
*tg
)
8260 for_each_possible_cpu(i
) {
8262 kfree(tg
->cfs_rq
[i
]);
8272 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8274 struct cfs_rq
*cfs_rq
;
8275 struct sched_entity
*se
, *parent_se
;
8279 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8282 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8286 tg
->shares
= NICE_0_LOAD
;
8288 for_each_possible_cpu(i
) {
8291 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
),
8292 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8296 se
= kmalloc_node(sizeof(struct sched_entity
),
8297 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8301 parent_se
= parent
? parent
->se
[i
] : NULL
;
8302 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent_se
);
8311 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8313 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
8314 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
8317 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8319 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
8321 #else /* !CONFG_FAIR_GROUP_SCHED */
8322 static inline void free_fair_sched_group(struct task_group
*tg
)
8327 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8332 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8336 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8339 #endif /* CONFIG_FAIR_GROUP_SCHED */
8341 #ifdef CONFIG_RT_GROUP_SCHED
8342 static void free_rt_sched_group(struct task_group
*tg
)
8346 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8348 for_each_possible_cpu(i
) {
8350 kfree(tg
->rt_rq
[i
]);
8352 kfree(tg
->rt_se
[i
]);
8360 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8362 struct rt_rq
*rt_rq
;
8363 struct sched_rt_entity
*rt_se
, *parent_se
;
8367 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8370 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8374 init_rt_bandwidth(&tg
->rt_bandwidth
,
8375 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8377 for_each_possible_cpu(i
) {
8380 rt_rq
= kmalloc_node(sizeof(struct rt_rq
),
8381 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8385 rt_se
= kmalloc_node(sizeof(struct sched_rt_entity
),
8386 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8390 parent_se
= parent
? parent
->rt_se
[i
] : NULL
;
8391 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent_se
);
8400 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8402 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
8403 &cpu_rq(cpu
)->leaf_rt_rq_list
);
8406 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8408 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
8410 #else /* !CONFIG_RT_GROUP_SCHED */
8411 static inline void free_rt_sched_group(struct task_group
*tg
)
8416 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8421 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8425 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8428 #endif /* CONFIG_RT_GROUP_SCHED */
8430 #ifdef CONFIG_GROUP_SCHED
8431 static void free_sched_group(struct task_group
*tg
)
8433 free_fair_sched_group(tg
);
8434 free_rt_sched_group(tg
);
8438 /* allocate runqueue etc for a new task group */
8439 struct task_group
*sched_create_group(struct task_group
*parent
)
8441 struct task_group
*tg
;
8442 unsigned long flags
;
8445 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8447 return ERR_PTR(-ENOMEM
);
8449 if (!alloc_fair_sched_group(tg
, parent
))
8452 if (!alloc_rt_sched_group(tg
, parent
))
8455 spin_lock_irqsave(&task_group_lock
, flags
);
8456 for_each_possible_cpu(i
) {
8457 register_fair_sched_group(tg
, i
);
8458 register_rt_sched_group(tg
, i
);
8460 list_add_rcu(&tg
->list
, &task_groups
);
8462 WARN_ON(!parent
); /* root should already exist */
8464 tg
->parent
= parent
;
8465 list_add_rcu(&tg
->siblings
, &parent
->children
);
8466 INIT_LIST_HEAD(&tg
->children
);
8467 spin_unlock_irqrestore(&task_group_lock
, flags
);
8472 free_sched_group(tg
);
8473 return ERR_PTR(-ENOMEM
);
8476 /* rcu callback to free various structures associated with a task group */
8477 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8479 /* now it should be safe to free those cfs_rqs */
8480 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8483 /* Destroy runqueue etc associated with a task group */
8484 void sched_destroy_group(struct task_group
*tg
)
8486 unsigned long flags
;
8489 spin_lock_irqsave(&task_group_lock
, flags
);
8490 for_each_possible_cpu(i
) {
8491 unregister_fair_sched_group(tg
, i
);
8492 unregister_rt_sched_group(tg
, i
);
8494 list_del_rcu(&tg
->list
);
8495 list_del_rcu(&tg
->siblings
);
8496 spin_unlock_irqrestore(&task_group_lock
, flags
);
8498 /* wait for possible concurrent references to cfs_rqs complete */
8499 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8502 /* change task's runqueue when it moves between groups.
8503 * The caller of this function should have put the task in its new group
8504 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8505 * reflect its new group.
8507 void sched_move_task(struct task_struct
*tsk
)
8510 unsigned long flags
;
8513 rq
= task_rq_lock(tsk
, &flags
);
8515 update_rq_clock(rq
);
8517 running
= task_current(rq
, tsk
);
8518 on_rq
= tsk
->se
.on_rq
;
8521 dequeue_task(rq
, tsk
, 0);
8522 if (unlikely(running
))
8523 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8525 set_task_rq(tsk
, task_cpu(tsk
));
8527 #ifdef CONFIG_FAIR_GROUP_SCHED
8528 if (tsk
->sched_class
->moved_group
)
8529 tsk
->sched_class
->moved_group(tsk
);
8532 if (unlikely(running
))
8533 tsk
->sched_class
->set_curr_task(rq
);
8535 enqueue_task(rq
, tsk
, 0);
8537 task_rq_unlock(rq
, &flags
);
8539 #endif /* CONFIG_GROUP_SCHED */
8541 #ifdef CONFIG_FAIR_GROUP_SCHED
8542 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8544 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8549 dequeue_entity(cfs_rq
, se
, 0);
8551 se
->load
.weight
= shares
;
8552 se
->load
.inv_weight
= 0;
8555 enqueue_entity(cfs_rq
, se
, 0);
8558 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8560 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8561 struct rq
*rq
= cfs_rq
->rq
;
8562 unsigned long flags
;
8564 spin_lock_irqsave(&rq
->lock
, flags
);
8565 __set_se_shares(se
, shares
);
8566 spin_unlock_irqrestore(&rq
->lock
, flags
);
8569 static DEFINE_MUTEX(shares_mutex
);
8571 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8574 unsigned long flags
;
8577 * We can't change the weight of the root cgroup.
8582 if (shares
< MIN_SHARES
)
8583 shares
= MIN_SHARES
;
8584 else if (shares
> MAX_SHARES
)
8585 shares
= MAX_SHARES
;
8587 mutex_lock(&shares_mutex
);
8588 if (tg
->shares
== shares
)
8591 spin_lock_irqsave(&task_group_lock
, flags
);
8592 for_each_possible_cpu(i
)
8593 unregister_fair_sched_group(tg
, i
);
8594 list_del_rcu(&tg
->siblings
);
8595 spin_unlock_irqrestore(&task_group_lock
, flags
);
8597 /* wait for any ongoing reference to this group to finish */
8598 synchronize_sched();
8601 * Now we are free to modify the group's share on each cpu
8602 * w/o tripping rebalance_share or load_balance_fair.
8604 tg
->shares
= shares
;
8605 for_each_possible_cpu(i
) {
8609 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
8610 set_se_shares(tg
->se
[i
], shares
);
8614 * Enable load balance activity on this group, by inserting it back on
8615 * each cpu's rq->leaf_cfs_rq_list.
8617 spin_lock_irqsave(&task_group_lock
, flags
);
8618 for_each_possible_cpu(i
)
8619 register_fair_sched_group(tg
, i
);
8620 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
8621 spin_unlock_irqrestore(&task_group_lock
, flags
);
8623 mutex_unlock(&shares_mutex
);
8627 unsigned long sched_group_shares(struct task_group
*tg
)
8633 #ifdef CONFIG_RT_GROUP_SCHED
8635 * Ensure that the real time constraints are schedulable.
8637 static DEFINE_MUTEX(rt_constraints_mutex
);
8639 static unsigned long to_ratio(u64 period
, u64 runtime
)
8641 if (runtime
== RUNTIME_INF
)
8644 return div64_u64(runtime
<< 16, period
);
8647 #ifdef CONFIG_CGROUP_SCHED
8648 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8650 struct task_group
*tgi
, *parent
= tg
->parent
;
8651 unsigned long total
= 0;
8654 if (global_rt_period() < period
)
8657 return to_ratio(period
, runtime
) <
8658 to_ratio(global_rt_period(), global_rt_runtime());
8661 if (ktime_to_ns(parent
->rt_bandwidth
.rt_period
) < period
)
8665 list_for_each_entry_rcu(tgi
, &parent
->children
, siblings
) {
8669 total
+= to_ratio(ktime_to_ns(tgi
->rt_bandwidth
.rt_period
),
8670 tgi
->rt_bandwidth
.rt_runtime
);
8674 return total
+ to_ratio(period
, runtime
) <=
8675 to_ratio(ktime_to_ns(parent
->rt_bandwidth
.rt_period
),
8676 parent
->rt_bandwidth
.rt_runtime
);
8678 #elif defined CONFIG_USER_SCHED
8679 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8681 struct task_group
*tgi
;
8682 unsigned long total
= 0;
8683 unsigned long global_ratio
=
8684 to_ratio(global_rt_period(), global_rt_runtime());
8687 list_for_each_entry_rcu(tgi
, &task_groups
, list
) {
8691 total
+= to_ratio(ktime_to_ns(tgi
->rt_bandwidth
.rt_period
),
8692 tgi
->rt_bandwidth
.rt_runtime
);
8696 return total
+ to_ratio(period
, runtime
) < global_ratio
;
8700 /* Must be called with tasklist_lock held */
8701 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8703 struct task_struct
*g
, *p
;
8704 do_each_thread(g
, p
) {
8705 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8707 } while_each_thread(g
, p
);
8711 static int tg_set_bandwidth(struct task_group
*tg
,
8712 u64 rt_period
, u64 rt_runtime
)
8716 mutex_lock(&rt_constraints_mutex
);
8717 read_lock(&tasklist_lock
);
8718 if (rt_runtime
== 0 && tg_has_rt_tasks(tg
)) {
8722 if (!__rt_schedulable(tg
, rt_period
, rt_runtime
)) {
8727 spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8728 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8729 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8731 for_each_possible_cpu(i
) {
8732 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8734 spin_lock(&rt_rq
->rt_runtime_lock
);
8735 rt_rq
->rt_runtime
= rt_runtime
;
8736 spin_unlock(&rt_rq
->rt_runtime_lock
);
8738 spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8740 read_unlock(&tasklist_lock
);
8741 mutex_unlock(&rt_constraints_mutex
);
8746 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8748 u64 rt_runtime
, rt_period
;
8750 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8751 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8752 if (rt_runtime_us
< 0)
8753 rt_runtime
= RUNTIME_INF
;
8755 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8758 long sched_group_rt_runtime(struct task_group
*tg
)
8762 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8765 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8766 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8767 return rt_runtime_us
;
8770 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8772 u64 rt_runtime
, rt_period
;
8774 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8775 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8780 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8783 long sched_group_rt_period(struct task_group
*tg
)
8787 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8788 do_div(rt_period_us
, NSEC_PER_USEC
);
8789 return rt_period_us
;
8792 static int sched_rt_global_constraints(void)
8794 struct task_group
*tg
= &root_task_group
;
8795 u64 rt_runtime
, rt_period
;
8798 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8799 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8801 mutex_lock(&rt_constraints_mutex
);
8802 if (!__rt_schedulable(tg
, rt_period
, rt_runtime
))
8804 mutex_unlock(&rt_constraints_mutex
);
8808 #else /* !CONFIG_RT_GROUP_SCHED */
8809 static int sched_rt_global_constraints(void)
8811 unsigned long flags
;
8814 spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8815 for_each_possible_cpu(i
) {
8816 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
8818 spin_lock(&rt_rq
->rt_runtime_lock
);
8819 rt_rq
->rt_runtime
= global_rt_runtime();
8820 spin_unlock(&rt_rq
->rt_runtime_lock
);
8822 spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8826 #endif /* CONFIG_RT_GROUP_SCHED */
8828 int sched_rt_handler(struct ctl_table
*table
, int write
,
8829 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
8833 int old_period
, old_runtime
;
8834 static DEFINE_MUTEX(mutex
);
8837 old_period
= sysctl_sched_rt_period
;
8838 old_runtime
= sysctl_sched_rt_runtime
;
8840 ret
= proc_dointvec(table
, write
, filp
, buffer
, lenp
, ppos
);
8842 if (!ret
&& write
) {
8843 ret
= sched_rt_global_constraints();
8845 sysctl_sched_rt_period
= old_period
;
8846 sysctl_sched_rt_runtime
= old_runtime
;
8848 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
8849 def_rt_bandwidth
.rt_period
=
8850 ns_to_ktime(global_rt_period());
8853 mutex_unlock(&mutex
);
8858 #ifdef CONFIG_CGROUP_SCHED
8860 /* return corresponding task_group object of a cgroup */
8861 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
8863 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
8864 struct task_group
, css
);
8867 static struct cgroup_subsys_state
*
8868 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8870 struct task_group
*tg
, *parent
;
8872 if (!cgrp
->parent
) {
8873 /* This is early initialization for the top cgroup */
8874 init_task_group
.css
.cgroup
= cgrp
;
8875 return &init_task_group
.css
;
8878 parent
= cgroup_tg(cgrp
->parent
);
8879 tg
= sched_create_group(parent
);
8881 return ERR_PTR(-ENOMEM
);
8883 /* Bind the cgroup to task_group object we just created */
8884 tg
->css
.cgroup
= cgrp
;
8890 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8892 struct task_group
*tg
= cgroup_tg(cgrp
);
8894 sched_destroy_group(tg
);
8898 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8899 struct task_struct
*tsk
)
8901 #ifdef CONFIG_RT_GROUP_SCHED
8902 /* Don't accept realtime tasks when there is no way for them to run */
8903 if (rt_task(tsk
) && cgroup_tg(cgrp
)->rt_bandwidth
.rt_runtime
== 0)
8906 /* We don't support RT-tasks being in separate groups */
8907 if (tsk
->sched_class
!= &fair_sched_class
)
8915 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8916 struct cgroup
*old_cont
, struct task_struct
*tsk
)
8918 sched_move_task(tsk
);
8921 #ifdef CONFIG_FAIR_GROUP_SCHED
8922 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
8925 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
8928 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
8930 struct task_group
*tg
= cgroup_tg(cgrp
);
8932 return (u64
) tg
->shares
;
8934 #endif /* CONFIG_FAIR_GROUP_SCHED */
8936 #ifdef CONFIG_RT_GROUP_SCHED
8937 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
8940 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
8943 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
8945 return sched_group_rt_runtime(cgroup_tg(cgrp
));
8948 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
8951 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
8954 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
8956 return sched_group_rt_period(cgroup_tg(cgrp
));
8958 #endif /* CONFIG_RT_GROUP_SCHED */
8960 static struct cftype cpu_files
[] = {
8961 #ifdef CONFIG_FAIR_GROUP_SCHED
8964 .read_u64
= cpu_shares_read_u64
,
8965 .write_u64
= cpu_shares_write_u64
,
8968 #ifdef CONFIG_RT_GROUP_SCHED
8970 .name
= "rt_runtime_us",
8971 .read_s64
= cpu_rt_runtime_read
,
8972 .write_s64
= cpu_rt_runtime_write
,
8975 .name
= "rt_period_us",
8976 .read_u64
= cpu_rt_period_read_uint
,
8977 .write_u64
= cpu_rt_period_write_uint
,
8982 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8984 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
8987 struct cgroup_subsys cpu_cgroup_subsys
= {
8989 .create
= cpu_cgroup_create
,
8990 .destroy
= cpu_cgroup_destroy
,
8991 .can_attach
= cpu_cgroup_can_attach
,
8992 .attach
= cpu_cgroup_attach
,
8993 .populate
= cpu_cgroup_populate
,
8994 .subsys_id
= cpu_cgroup_subsys_id
,
8998 #endif /* CONFIG_CGROUP_SCHED */
9000 #ifdef CONFIG_CGROUP_CPUACCT
9003 * CPU accounting code for task groups.
9005 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9006 * (balbir@in.ibm.com).
9009 /* track cpu usage of a group of tasks */
9011 struct cgroup_subsys_state css
;
9012 /* cpuusage holds pointer to a u64-type object on every cpu */
9016 struct cgroup_subsys cpuacct_subsys
;
9018 /* return cpu accounting group corresponding to this container */
9019 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
9021 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
9022 struct cpuacct
, css
);
9025 /* return cpu accounting group to which this task belongs */
9026 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
9028 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
9029 struct cpuacct
, css
);
9032 /* create a new cpu accounting group */
9033 static struct cgroup_subsys_state
*cpuacct_create(
9034 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9036 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
9039 return ERR_PTR(-ENOMEM
);
9041 ca
->cpuusage
= alloc_percpu(u64
);
9042 if (!ca
->cpuusage
) {
9044 return ERR_PTR(-ENOMEM
);
9050 /* destroy an existing cpu accounting group */
9052 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9054 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9056 free_percpu(ca
->cpuusage
);
9060 /* return total cpu usage (in nanoseconds) of a group */
9061 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9063 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9064 u64 totalcpuusage
= 0;
9067 for_each_possible_cpu(i
) {
9068 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
9071 * Take rq->lock to make 64-bit addition safe on 32-bit
9074 spin_lock_irq(&cpu_rq(i
)->lock
);
9075 totalcpuusage
+= *cpuusage
;
9076 spin_unlock_irq(&cpu_rq(i
)->lock
);
9079 return totalcpuusage
;
9082 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9085 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9094 for_each_possible_cpu(i
) {
9095 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
9097 spin_lock_irq(&cpu_rq(i
)->lock
);
9099 spin_unlock_irq(&cpu_rq(i
)->lock
);
9105 static struct cftype files
[] = {
9108 .read_u64
= cpuusage_read
,
9109 .write_u64
= cpuusage_write
,
9113 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9115 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9119 * charge this task's execution time to its accounting group.
9121 * called with rq->lock held.
9123 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9127 if (!cpuacct_subsys
.active
)
9132 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, task_cpu(tsk
));
9134 *cpuusage
+= cputime
;
9138 struct cgroup_subsys cpuacct_subsys
= {
9140 .create
= cpuacct_create
,
9141 .destroy
= cpuacct_destroy
,
9142 .populate
= cpuacct_populate
,
9143 .subsys_id
= cpuacct_subsys_id
,
9145 #endif /* CONFIG_CGROUP_CPUACCT */