x86: unify chunks of kernel/process*.c
[linux-2.6/mini2440.git] / arch / x86 / include / asm / system.h
blob1a7bf39f72dca93ebc6cebb938f9225afade415e
1 #ifndef _ASM_X86_SYSTEM_H
2 #define _ASM_X86_SYSTEM_H
4 #include <asm/asm.h>
5 #include <asm/segment.h>
6 #include <asm/cpufeature.h>
7 #include <asm/cmpxchg.h>
8 #include <asm/nops.h>
10 #include <linux/kernel.h>
11 #include <linux/irqflags.h>
13 /* entries in ARCH_DLINFO: */
14 #ifdef CONFIG_IA32_EMULATION
15 # define AT_VECTOR_SIZE_ARCH 2
16 #else
17 # define AT_VECTOR_SIZE_ARCH 1
18 #endif
20 struct task_struct; /* one of the stranger aspects of C forward declarations */
21 struct task_struct *__switch_to(struct task_struct *prev,
22 struct task_struct *next);
23 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
24 struct tss_struct *tss);
26 #ifdef CONFIG_X86_32
28 #ifdef CONFIG_CC_STACKPROTECTOR
29 #define __switch_canary \
30 "movl %P[task_canary](%[next]), %%ebx\n\t" \
31 "movl %%ebx, "__percpu_arg([stack_canary])"\n\t"
32 #define __switch_canary_oparam \
33 , [stack_canary] "=m" (per_cpu_var(stack_canary))
34 #define __switch_canary_iparam \
35 , [task_canary] "i" (offsetof(struct task_struct, stack_canary))
36 #else /* CC_STACKPROTECTOR */
37 #define __switch_canary
38 #define __switch_canary_oparam
39 #define __switch_canary_iparam
40 #endif /* CC_STACKPROTECTOR */
43 * Saving eflags is important. It switches not only IOPL between tasks,
44 * it also protects other tasks from NT leaking through sysenter etc.
46 #define switch_to(prev, next, last) \
47 do { \
48 /* \
49 * Context-switching clobbers all registers, so we clobber \
50 * them explicitly, via unused output variables. \
51 * (EAX and EBP is not listed because EBP is saved/restored \
52 * explicitly for wchan access and EAX is the return value of \
53 * __switch_to()) \
54 */ \
55 unsigned long ebx, ecx, edx, esi, edi; \
57 asm volatile("pushfl\n\t" /* save flags */ \
58 "pushl %%ebp\n\t" /* save EBP */ \
59 "movl %%esp,%[prev_sp]\n\t" /* save ESP */ \
60 "movl %[next_sp],%%esp\n\t" /* restore ESP */ \
61 "movl $1f,%[prev_ip]\n\t" /* save EIP */ \
62 "pushl %[next_ip]\n\t" /* restore EIP */ \
63 __switch_canary \
64 "jmp __switch_to\n" /* regparm call */ \
65 "1:\t" \
66 "popl %%ebp\n\t" /* restore EBP */ \
67 "popfl\n" /* restore flags */ \
69 /* output parameters */ \
70 : [prev_sp] "=m" (prev->thread.sp), \
71 [prev_ip] "=m" (prev->thread.ip), \
72 "=a" (last), \
74 /* clobbered output registers: */ \
75 "=b" (ebx), "=c" (ecx), "=d" (edx), \
76 "=S" (esi), "=D" (edi) \
78 __switch_canary_oparam \
80 /* input parameters: */ \
81 : [next_sp] "m" (next->thread.sp), \
82 [next_ip] "m" (next->thread.ip), \
84 /* regparm parameters for __switch_to(): */ \
85 [prev] "a" (prev), \
86 [next] "d" (next) \
88 __switch_canary_iparam \
90 : /* reloaded segment registers */ \
91 "memory"); \
92 } while (0)
95 * disable hlt during certain critical i/o operations
97 #define HAVE_DISABLE_HLT
98 #else
99 #define __SAVE(reg, offset) "movq %%" #reg ",(14-" #offset ")*8(%%rsp)\n\t"
100 #define __RESTORE(reg, offset) "movq (14-" #offset ")*8(%%rsp),%%" #reg "\n\t"
102 /* frame pointer must be last for get_wchan */
103 #define SAVE_CONTEXT "pushf ; pushq %%rbp ; movq %%rsi,%%rbp\n\t"
104 #define RESTORE_CONTEXT "movq %%rbp,%%rsi ; popq %%rbp ; popf\t"
106 #define __EXTRA_CLOBBER \
107 , "rcx", "rbx", "rdx", "r8", "r9", "r10", "r11", \
108 "r12", "r13", "r14", "r15"
110 #ifdef CONFIG_CC_STACKPROTECTOR
111 #define __switch_canary \
112 "movq %P[task_canary](%%rsi),%%r8\n\t" \
113 "movq %%r8,"__percpu_arg([gs_canary])"\n\t"
114 #define __switch_canary_oparam \
115 , [gs_canary] "=m" (per_cpu_var(irq_stack_union.stack_canary))
116 #define __switch_canary_iparam \
117 , [task_canary] "i" (offsetof(struct task_struct, stack_canary))
118 #else /* CC_STACKPROTECTOR */
119 #define __switch_canary
120 #define __switch_canary_oparam
121 #define __switch_canary_iparam
122 #endif /* CC_STACKPROTECTOR */
124 /* Save restore flags to clear handle leaking NT */
125 #define switch_to(prev, next, last) \
126 asm volatile(SAVE_CONTEXT \
127 "movq %%rsp,%P[threadrsp](%[prev])\n\t" /* save RSP */ \
128 "movq %P[threadrsp](%[next]),%%rsp\n\t" /* restore RSP */ \
129 "call __switch_to\n\t" \
130 ".globl thread_return\n" \
131 "thread_return:\n\t" \
132 "movq "__percpu_arg([current_task])",%%rsi\n\t" \
133 __switch_canary \
134 "movq %P[thread_info](%%rsi),%%r8\n\t" \
135 "movq %%rax,%%rdi\n\t" \
136 "testl %[_tif_fork],%P[ti_flags](%%r8)\n\t" \
137 "jnz ret_from_fork\n\t" \
138 RESTORE_CONTEXT \
139 : "=a" (last) \
140 __switch_canary_oparam \
141 : [next] "S" (next), [prev] "D" (prev), \
142 [threadrsp] "i" (offsetof(struct task_struct, thread.sp)), \
143 [ti_flags] "i" (offsetof(struct thread_info, flags)), \
144 [_tif_fork] "i" (_TIF_FORK), \
145 [thread_info] "i" (offsetof(struct task_struct, stack)), \
146 [current_task] "m" (per_cpu_var(current_task)) \
147 __switch_canary_iparam \
148 : "memory", "cc" __EXTRA_CLOBBER)
149 #endif
151 #ifdef __KERNEL__
152 #define _set_base(addr, base) do { unsigned long __pr; \
153 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
154 "rorl $16,%%edx\n\t" \
155 "movb %%dl,%2\n\t" \
156 "movb %%dh,%3" \
157 :"=&d" (__pr) \
158 :"m" (*((addr)+2)), \
159 "m" (*((addr)+4)), \
160 "m" (*((addr)+7)), \
161 "0" (base) \
162 ); } while (0)
164 #define _set_limit(addr, limit) do { unsigned long __lr; \
165 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
166 "rorl $16,%%edx\n\t" \
167 "movb %2,%%dh\n\t" \
168 "andb $0xf0,%%dh\n\t" \
169 "orb %%dh,%%dl\n\t" \
170 "movb %%dl,%2" \
171 :"=&d" (__lr) \
172 :"m" (*(addr)), \
173 "m" (*((addr)+6)), \
174 "0" (limit) \
175 ); } while (0)
177 #define set_base(ldt, base) _set_base(((char *)&(ldt)) , (base))
178 #define set_limit(ldt, limit) _set_limit(((char *)&(ldt)) , ((limit)-1))
180 extern void native_load_gs_index(unsigned);
183 * Load a segment. Fall back on loading the zero
184 * segment if something goes wrong..
186 #define loadsegment(seg, value) \
187 asm volatile("\n" \
188 "1:\t" \
189 "movl %k0,%%" #seg "\n" \
190 "2:\n" \
191 ".section .fixup,\"ax\"\n" \
192 "3:\t" \
193 "movl %k1, %%" #seg "\n\t" \
194 "jmp 2b\n" \
195 ".previous\n" \
196 _ASM_EXTABLE(1b,3b) \
197 : :"r" (value), "r" (0) : "memory")
201 * Save a segment register away
203 #define savesegment(seg, value) \
204 asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
207 * x86_32 user gs accessors.
209 #ifdef CONFIG_X86_32
210 #ifdef CONFIG_X86_32_LAZY_GS
211 #define get_user_gs(regs) (u16)({unsigned long v; savesegment(gs, v); v;})
212 #define set_user_gs(regs, v) loadsegment(gs, (unsigned long)(v))
213 #define task_user_gs(tsk) ((tsk)->thread.gs)
214 #define lazy_save_gs(v) savesegment(gs, (v))
215 #define lazy_load_gs(v) loadsegment(gs, (v))
216 #else /* X86_32_LAZY_GS */
217 #define get_user_gs(regs) (u16)((regs)->gs)
218 #define set_user_gs(regs, v) do { (regs)->gs = (v); } while (0)
219 #define task_user_gs(tsk) (task_pt_regs(tsk)->gs)
220 #define lazy_save_gs(v) do { } while (0)
221 #define lazy_load_gs(v) do { } while (0)
222 #endif /* X86_32_LAZY_GS */
223 #endif /* X86_32 */
225 static inline unsigned long get_limit(unsigned long segment)
227 unsigned long __limit;
228 asm("lsll %1,%0" : "=r" (__limit) : "r" (segment));
229 return __limit + 1;
232 static inline void native_clts(void)
234 asm volatile("clts");
238 * Volatile isn't enough to prevent the compiler from reordering the
239 * read/write functions for the control registers and messing everything up.
240 * A memory clobber would solve the problem, but would prevent reordering of
241 * all loads stores around it, which can hurt performance. Solution is to
242 * use a variable and mimic reads and writes to it to enforce serialization
244 static unsigned long __force_order;
246 static inline unsigned long native_read_cr0(void)
248 unsigned long val;
249 asm volatile("mov %%cr0,%0\n\t" : "=r" (val), "=m" (__force_order));
250 return val;
253 static inline void native_write_cr0(unsigned long val)
255 asm volatile("mov %0,%%cr0": : "r" (val), "m" (__force_order));
258 static inline unsigned long native_read_cr2(void)
260 unsigned long val;
261 asm volatile("mov %%cr2,%0\n\t" : "=r" (val), "=m" (__force_order));
262 return val;
265 static inline void native_write_cr2(unsigned long val)
267 asm volatile("mov %0,%%cr2": : "r" (val), "m" (__force_order));
270 static inline unsigned long native_read_cr3(void)
272 unsigned long val;
273 asm volatile("mov %%cr3,%0\n\t" : "=r" (val), "=m" (__force_order));
274 return val;
277 static inline void native_write_cr3(unsigned long val)
279 asm volatile("mov %0,%%cr3": : "r" (val), "m" (__force_order));
282 static inline unsigned long native_read_cr4(void)
284 unsigned long val;
285 asm volatile("mov %%cr4,%0\n\t" : "=r" (val), "=m" (__force_order));
286 return val;
289 static inline unsigned long native_read_cr4_safe(void)
291 unsigned long val;
292 /* This could fault if %cr4 does not exist. In x86_64, a cr4 always
293 * exists, so it will never fail. */
294 #ifdef CONFIG_X86_32
295 asm volatile("1: mov %%cr4, %0\n"
296 "2:\n"
297 _ASM_EXTABLE(1b, 2b)
298 : "=r" (val), "=m" (__force_order) : "0" (0));
299 #else
300 val = native_read_cr4();
301 #endif
302 return val;
305 static inline void native_write_cr4(unsigned long val)
307 asm volatile("mov %0,%%cr4": : "r" (val), "m" (__force_order));
310 #ifdef CONFIG_X86_64
311 static inline unsigned long native_read_cr8(void)
313 unsigned long cr8;
314 asm volatile("movq %%cr8,%0" : "=r" (cr8));
315 return cr8;
318 static inline void native_write_cr8(unsigned long val)
320 asm volatile("movq %0,%%cr8" :: "r" (val) : "memory");
322 #endif
324 static inline void native_wbinvd(void)
326 asm volatile("wbinvd": : :"memory");
329 #ifdef CONFIG_PARAVIRT
330 #include <asm/paravirt.h>
331 #else
332 #define read_cr0() (native_read_cr0())
333 #define write_cr0(x) (native_write_cr0(x))
334 #define read_cr2() (native_read_cr2())
335 #define write_cr2(x) (native_write_cr2(x))
336 #define read_cr3() (native_read_cr3())
337 #define write_cr3(x) (native_write_cr3(x))
338 #define read_cr4() (native_read_cr4())
339 #define read_cr4_safe() (native_read_cr4_safe())
340 #define write_cr4(x) (native_write_cr4(x))
341 #define wbinvd() (native_wbinvd())
342 #ifdef CONFIG_X86_64
343 #define read_cr8() (native_read_cr8())
344 #define write_cr8(x) (native_write_cr8(x))
345 #define load_gs_index native_load_gs_index
346 #endif
348 /* Clear the 'TS' bit */
349 #define clts() (native_clts())
351 #endif/* CONFIG_PARAVIRT */
353 #define stts() write_cr0(read_cr0() | X86_CR0_TS)
355 #endif /* __KERNEL__ */
357 static inline void clflush(volatile void *__p)
359 asm volatile("clflush %0" : "+m" (*(volatile char __force *)__p));
362 #define nop() asm volatile ("nop")
364 void disable_hlt(void);
365 void enable_hlt(void);
367 void cpu_idle_wait(void);
369 extern unsigned long arch_align_stack(unsigned long sp);
370 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
372 void default_idle(void);
374 void stop_this_cpu(void *dummy);
377 * Force strict CPU ordering.
378 * And yes, this is required on UP too when we're talking
379 * to devices.
381 #ifdef CONFIG_X86_32
383 * Some non-Intel clones support out of order store. wmb() ceases to be a
384 * nop for these.
386 #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
387 #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
388 #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
389 #else
390 #define mb() asm volatile("mfence":::"memory")
391 #define rmb() asm volatile("lfence":::"memory")
392 #define wmb() asm volatile("sfence" ::: "memory")
393 #endif
396 * read_barrier_depends - Flush all pending reads that subsequents reads
397 * depend on.
399 * No data-dependent reads from memory-like regions are ever reordered
400 * over this barrier. All reads preceding this primitive are guaranteed
401 * to access memory (but not necessarily other CPUs' caches) before any
402 * reads following this primitive that depend on the data return by
403 * any of the preceding reads. This primitive is much lighter weight than
404 * rmb() on most CPUs, and is never heavier weight than is
405 * rmb().
407 * These ordering constraints are respected by both the local CPU
408 * and the compiler.
410 * Ordering is not guaranteed by anything other than these primitives,
411 * not even by data dependencies. See the documentation for
412 * memory_barrier() for examples and URLs to more information.
414 * For example, the following code would force ordering (the initial
415 * value of "a" is zero, "b" is one, and "p" is "&a"):
417 * <programlisting>
418 * CPU 0 CPU 1
420 * b = 2;
421 * memory_barrier();
422 * p = &b; q = p;
423 * read_barrier_depends();
424 * d = *q;
425 * </programlisting>
427 * because the read of "*q" depends on the read of "p" and these
428 * two reads are separated by a read_barrier_depends(). However,
429 * the following code, with the same initial values for "a" and "b":
431 * <programlisting>
432 * CPU 0 CPU 1
434 * a = 2;
435 * memory_barrier();
436 * b = 3; y = b;
437 * read_barrier_depends();
438 * x = a;
439 * </programlisting>
441 * does not enforce ordering, since there is no data dependency between
442 * the read of "a" and the read of "b". Therefore, on some CPUs, such
443 * as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
444 * in cases like this where there are no data dependencies.
447 #define read_barrier_depends() do { } while (0)
449 #ifdef CONFIG_SMP
450 #define smp_mb() mb()
451 #ifdef CONFIG_X86_PPRO_FENCE
452 # define smp_rmb() rmb()
453 #else
454 # define smp_rmb() barrier()
455 #endif
456 #ifdef CONFIG_X86_OOSTORE
457 # define smp_wmb() wmb()
458 #else
459 # define smp_wmb() barrier()
460 #endif
461 #define smp_read_barrier_depends() read_barrier_depends()
462 #define set_mb(var, value) do { (void)xchg(&var, value); } while (0)
463 #else
464 #define smp_mb() barrier()
465 #define smp_rmb() barrier()
466 #define smp_wmb() barrier()
467 #define smp_read_barrier_depends() do { } while (0)
468 #define set_mb(var, value) do { var = value; barrier(); } while (0)
469 #endif
472 * Stop RDTSC speculation. This is needed when you need to use RDTSC
473 * (or get_cycles or vread that possibly accesses the TSC) in a defined
474 * code region.
476 * (Could use an alternative three way for this if there was one.)
478 static inline void rdtsc_barrier(void)
480 alternative(ASM_NOP3, "mfence", X86_FEATURE_MFENCE_RDTSC);
481 alternative(ASM_NOP3, "lfence", X86_FEATURE_LFENCE_RDTSC);
484 #endif /* _ASM_X86_SYSTEM_H */