2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
26 #include "kvm_cache_regs.h"
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
41 #include <asm/uaccess.h>
46 #define MAX_IO_MSRS 256
47 #define CR0_RESERVED_BITS \
48 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
49 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
50 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
51 #define CR4_RESERVED_BITS \
52 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
53 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
54 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
55 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
57 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
59 * - enable syscall per default because its emulated by KVM
60 * - enable LME and LMA per default on 64 bit KVM
63 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffafeULL
;
65 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffffeULL
;
68 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
69 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
71 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
72 struct kvm_cpuid_entry2 __user
*entries
);
73 struct kvm_cpuid_entry2
*kvm_find_cpuid_entry(struct kvm_vcpu
*vcpu
,
74 u32 function
, u32 index
);
76 struct kvm_x86_ops
*kvm_x86_ops
;
77 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
79 struct kvm_stats_debugfs_item debugfs_entries
[] = {
80 { "pf_fixed", VCPU_STAT(pf_fixed
) },
81 { "pf_guest", VCPU_STAT(pf_guest
) },
82 { "tlb_flush", VCPU_STAT(tlb_flush
) },
83 { "invlpg", VCPU_STAT(invlpg
) },
84 { "exits", VCPU_STAT(exits
) },
85 { "io_exits", VCPU_STAT(io_exits
) },
86 { "mmio_exits", VCPU_STAT(mmio_exits
) },
87 { "signal_exits", VCPU_STAT(signal_exits
) },
88 { "irq_window", VCPU_STAT(irq_window_exits
) },
89 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
90 { "halt_exits", VCPU_STAT(halt_exits
) },
91 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
92 { "hypercalls", VCPU_STAT(hypercalls
) },
93 { "request_irq", VCPU_STAT(request_irq_exits
) },
94 { "request_nmi", VCPU_STAT(request_nmi_exits
) },
95 { "irq_exits", VCPU_STAT(irq_exits
) },
96 { "host_state_reload", VCPU_STAT(host_state_reload
) },
97 { "efer_reload", VCPU_STAT(efer_reload
) },
98 { "fpu_reload", VCPU_STAT(fpu_reload
) },
99 { "insn_emulation", VCPU_STAT(insn_emulation
) },
100 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
101 { "irq_injections", VCPU_STAT(irq_injections
) },
102 { "nmi_injections", VCPU_STAT(nmi_injections
) },
103 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
104 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
105 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
106 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
107 { "mmu_flooded", VM_STAT(mmu_flooded
) },
108 { "mmu_recycled", VM_STAT(mmu_recycled
) },
109 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
110 { "mmu_unsync", VM_STAT(mmu_unsync
) },
111 { "mmu_unsync_global", VM_STAT(mmu_unsync_global
) },
112 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
113 { "largepages", VM_STAT(lpages
) },
117 unsigned long segment_base(u16 selector
)
119 struct descriptor_table gdt
;
120 struct desc_struct
*d
;
121 unsigned long table_base
;
127 asm("sgdt %0" : "=m"(gdt
));
128 table_base
= gdt
.base
;
130 if (selector
& 4) { /* from ldt */
133 asm("sldt %0" : "=g"(ldt_selector
));
134 table_base
= segment_base(ldt_selector
);
136 d
= (struct desc_struct
*)(table_base
+ (selector
& ~7));
137 v
= d
->base0
| ((unsigned long)d
->base1
<< 16) |
138 ((unsigned long)d
->base2
<< 24);
140 if (d
->s
== 0 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
141 v
|= ((unsigned long)((struct ldttss_desc64
*)d
)->base3
) << 32;
145 EXPORT_SYMBOL_GPL(segment_base
);
147 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
149 if (irqchip_in_kernel(vcpu
->kvm
))
150 return vcpu
->arch
.apic_base
;
152 return vcpu
->arch
.apic_base
;
154 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
156 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
158 /* TODO: reserve bits check */
159 if (irqchip_in_kernel(vcpu
->kvm
))
160 kvm_lapic_set_base(vcpu
, data
);
162 vcpu
->arch
.apic_base
= data
;
164 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
166 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
168 WARN_ON(vcpu
->arch
.exception
.pending
);
169 vcpu
->arch
.exception
.pending
= true;
170 vcpu
->arch
.exception
.has_error_code
= false;
171 vcpu
->arch
.exception
.nr
= nr
;
173 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
175 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, unsigned long addr
,
178 ++vcpu
->stat
.pf_guest
;
180 if (vcpu
->arch
.exception
.pending
) {
181 if (vcpu
->arch
.exception
.nr
== PF_VECTOR
) {
182 printk(KERN_DEBUG
"kvm: inject_page_fault:"
183 " double fault 0x%lx\n", addr
);
184 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
185 vcpu
->arch
.exception
.error_code
= 0;
186 } else if (vcpu
->arch
.exception
.nr
== DF_VECTOR
) {
187 /* triple fault -> shutdown */
188 set_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
);
192 vcpu
->arch
.cr2
= addr
;
193 kvm_queue_exception_e(vcpu
, PF_VECTOR
, error_code
);
196 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
198 vcpu
->arch
.nmi_pending
= 1;
200 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
202 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
204 WARN_ON(vcpu
->arch
.exception
.pending
);
205 vcpu
->arch
.exception
.pending
= true;
206 vcpu
->arch
.exception
.has_error_code
= true;
207 vcpu
->arch
.exception
.nr
= nr
;
208 vcpu
->arch
.exception
.error_code
= error_code
;
210 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
212 static void __queue_exception(struct kvm_vcpu
*vcpu
)
214 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
215 vcpu
->arch
.exception
.has_error_code
,
216 vcpu
->arch
.exception
.error_code
);
220 * Load the pae pdptrs. Return true is they are all valid.
222 int load_pdptrs(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
224 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
225 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
228 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
230 ret
= kvm_read_guest_page(vcpu
->kvm
, pdpt_gfn
, pdpte
,
231 offset
* sizeof(u64
), sizeof(pdpte
));
236 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
237 if ((pdpte
[i
] & 1) && (pdpte
[i
] & 0xfffffff0000001e6ull
)) {
244 memcpy(vcpu
->arch
.pdptrs
, pdpte
, sizeof(vcpu
->arch
.pdptrs
));
249 EXPORT_SYMBOL_GPL(load_pdptrs
);
251 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
253 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
257 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
260 r
= kvm_read_guest(vcpu
->kvm
, vcpu
->arch
.cr3
& ~31u, pdpte
, sizeof(pdpte
));
263 changed
= memcmp(pdpte
, vcpu
->arch
.pdptrs
, sizeof(pdpte
)) != 0;
269 void kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
271 if (cr0
& CR0_RESERVED_BITS
) {
272 printk(KERN_DEBUG
"set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
273 cr0
, vcpu
->arch
.cr0
);
274 kvm_inject_gp(vcpu
, 0);
278 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
)) {
279 printk(KERN_DEBUG
"set_cr0: #GP, CD == 0 && NW == 1\n");
280 kvm_inject_gp(vcpu
, 0);
284 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
)) {
285 printk(KERN_DEBUG
"set_cr0: #GP, set PG flag "
286 "and a clear PE flag\n");
287 kvm_inject_gp(vcpu
, 0);
291 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
293 if ((vcpu
->arch
.shadow_efer
& EFER_LME
)) {
297 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
298 "in long mode while PAE is disabled\n");
299 kvm_inject_gp(vcpu
, 0);
302 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
304 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
305 "in long mode while CS.L == 1\n");
306 kvm_inject_gp(vcpu
, 0);
312 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
313 printk(KERN_DEBUG
"set_cr0: #GP, pdptrs "
315 kvm_inject_gp(vcpu
, 0);
321 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
322 vcpu
->arch
.cr0
= cr0
;
324 kvm_mmu_sync_global(vcpu
);
325 kvm_mmu_reset_context(vcpu
);
328 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
330 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
332 kvm_set_cr0(vcpu
, (vcpu
->arch
.cr0
& ~0x0ful
) | (msw
& 0x0f));
333 KVMTRACE_1D(LMSW
, vcpu
,
334 (u32
)((vcpu
->arch
.cr0
& ~0x0ful
) | (msw
& 0x0f)),
337 EXPORT_SYMBOL_GPL(kvm_lmsw
);
339 void kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
341 unsigned long old_cr4
= vcpu
->arch
.cr4
;
342 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
| X86_CR4_PAE
;
344 if (cr4
& CR4_RESERVED_BITS
) {
345 printk(KERN_DEBUG
"set_cr4: #GP, reserved bits\n");
346 kvm_inject_gp(vcpu
, 0);
350 if (is_long_mode(vcpu
)) {
351 if (!(cr4
& X86_CR4_PAE
)) {
352 printk(KERN_DEBUG
"set_cr4: #GP, clearing PAE while "
354 kvm_inject_gp(vcpu
, 0);
357 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
358 && ((cr4
^ old_cr4
) & pdptr_bits
)
359 && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
360 printk(KERN_DEBUG
"set_cr4: #GP, pdptrs reserved bits\n");
361 kvm_inject_gp(vcpu
, 0);
365 if (cr4
& X86_CR4_VMXE
) {
366 printk(KERN_DEBUG
"set_cr4: #GP, setting VMXE\n");
367 kvm_inject_gp(vcpu
, 0);
370 kvm_x86_ops
->set_cr4(vcpu
, cr4
);
371 vcpu
->arch
.cr4
= cr4
;
372 vcpu
->arch
.mmu
.base_role
.cr4_pge
= (cr4
& X86_CR4_PGE
) && !tdp_enabled
;
373 kvm_mmu_sync_global(vcpu
);
374 kvm_mmu_reset_context(vcpu
);
376 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
378 void kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
380 if (cr3
== vcpu
->arch
.cr3
&& !pdptrs_changed(vcpu
)) {
381 kvm_mmu_sync_roots(vcpu
);
382 kvm_mmu_flush_tlb(vcpu
);
386 if (is_long_mode(vcpu
)) {
387 if (cr3
& CR3_L_MODE_RESERVED_BITS
) {
388 printk(KERN_DEBUG
"set_cr3: #GP, reserved bits\n");
389 kvm_inject_gp(vcpu
, 0);
394 if (cr3
& CR3_PAE_RESERVED_BITS
) {
396 "set_cr3: #GP, reserved bits\n");
397 kvm_inject_gp(vcpu
, 0);
400 if (is_paging(vcpu
) && !load_pdptrs(vcpu
, cr3
)) {
401 printk(KERN_DEBUG
"set_cr3: #GP, pdptrs "
403 kvm_inject_gp(vcpu
, 0);
408 * We don't check reserved bits in nonpae mode, because
409 * this isn't enforced, and VMware depends on this.
414 * Does the new cr3 value map to physical memory? (Note, we
415 * catch an invalid cr3 even in real-mode, because it would
416 * cause trouble later on when we turn on paging anyway.)
418 * A real CPU would silently accept an invalid cr3 and would
419 * attempt to use it - with largely undefined (and often hard
420 * to debug) behavior on the guest side.
422 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
423 kvm_inject_gp(vcpu
, 0);
425 vcpu
->arch
.cr3
= cr3
;
426 vcpu
->arch
.mmu
.new_cr3(vcpu
);
429 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
431 void kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
433 if (cr8
& CR8_RESERVED_BITS
) {
434 printk(KERN_DEBUG
"set_cr8: #GP, reserved bits 0x%lx\n", cr8
);
435 kvm_inject_gp(vcpu
, 0);
438 if (irqchip_in_kernel(vcpu
->kvm
))
439 kvm_lapic_set_tpr(vcpu
, cr8
);
441 vcpu
->arch
.cr8
= cr8
;
443 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
445 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
447 if (irqchip_in_kernel(vcpu
->kvm
))
448 return kvm_lapic_get_cr8(vcpu
);
450 return vcpu
->arch
.cr8
;
452 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
454 static inline u32
bit(int bitno
)
456 return 1 << (bitno
& 31);
460 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
461 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
463 * This list is modified at module load time to reflect the
464 * capabilities of the host cpu.
466 static u32 msrs_to_save
[] = {
467 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
470 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
472 MSR_IA32_TIME_STAMP_COUNTER
, MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
473 MSR_IA32_PERF_STATUS
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
476 static unsigned num_msrs_to_save
;
478 static u32 emulated_msrs
[] = {
479 MSR_IA32_MISC_ENABLE
,
482 static void set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
484 if (efer
& efer_reserved_bits
) {
485 printk(KERN_DEBUG
"set_efer: 0x%llx #GP, reserved bits\n",
487 kvm_inject_gp(vcpu
, 0);
492 && (vcpu
->arch
.shadow_efer
& EFER_LME
) != (efer
& EFER_LME
)) {
493 printk(KERN_DEBUG
"set_efer: #GP, change LME while paging\n");
494 kvm_inject_gp(vcpu
, 0);
498 if (efer
& EFER_FFXSR
) {
499 struct kvm_cpuid_entry2
*feat
;
501 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
502 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
))) {
503 printk(KERN_DEBUG
"set_efer: #GP, enable FFXSR w/o CPUID capability\n");
504 kvm_inject_gp(vcpu
, 0);
509 if (efer
& EFER_SVME
) {
510 struct kvm_cpuid_entry2
*feat
;
512 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
513 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
))) {
514 printk(KERN_DEBUG
"set_efer: #GP, enable SVM w/o SVM\n");
515 kvm_inject_gp(vcpu
, 0);
520 kvm_x86_ops
->set_efer(vcpu
, efer
);
523 efer
|= vcpu
->arch
.shadow_efer
& EFER_LMA
;
525 vcpu
->arch
.shadow_efer
= efer
;
527 vcpu
->arch
.mmu
.base_role
.nxe
= (efer
& EFER_NX
) && !tdp_enabled
;
528 kvm_mmu_reset_context(vcpu
);
531 void kvm_enable_efer_bits(u64 mask
)
533 efer_reserved_bits
&= ~mask
;
535 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
539 * Writes msr value into into the appropriate "register".
540 * Returns 0 on success, non-0 otherwise.
541 * Assumes vcpu_load() was already called.
543 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
545 return kvm_x86_ops
->set_msr(vcpu
, msr_index
, data
);
549 * Adapt set_msr() to msr_io()'s calling convention
551 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
553 return kvm_set_msr(vcpu
, index
, *data
);
556 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
559 struct pvclock_wall_clock wc
;
560 struct timespec now
, sys
, boot
;
567 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
570 * The guest calculates current wall clock time by adding
571 * system time (updated by kvm_write_guest_time below) to the
572 * wall clock specified here. guest system time equals host
573 * system time for us, thus we must fill in host boot time here.
575 now
= current_kernel_time();
577 boot
= ns_to_timespec(timespec_to_ns(&now
) - timespec_to_ns(&sys
));
579 wc
.sec
= boot
.tv_sec
;
580 wc
.nsec
= boot
.tv_nsec
;
581 wc
.version
= version
;
583 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
586 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
589 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
591 uint32_t quotient
, remainder
;
593 /* Don't try to replace with do_div(), this one calculates
594 * "(dividend << 32) / divisor" */
596 : "=a" (quotient
), "=d" (remainder
)
597 : "0" (0), "1" (dividend
), "r" (divisor
) );
601 static void kvm_set_time_scale(uint32_t tsc_khz
, struct pvclock_vcpu_time_info
*hv_clock
)
603 uint64_t nsecs
= 1000000000LL;
608 tps64
= tsc_khz
* 1000LL;
609 while (tps64
> nsecs
*2) {
614 tps32
= (uint32_t)tps64
;
615 while (tps32
<= (uint32_t)nsecs
) {
620 hv_clock
->tsc_shift
= shift
;
621 hv_clock
->tsc_to_system_mul
= div_frac(nsecs
, tps32
);
623 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
624 __func__
, tsc_khz
, hv_clock
->tsc_shift
,
625 hv_clock
->tsc_to_system_mul
);
628 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
630 static void kvm_write_guest_time(struct kvm_vcpu
*v
)
634 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
637 if ((!vcpu
->time_page
))
641 if (unlikely(vcpu
->hv_clock_tsc_khz
!= __get_cpu_var(cpu_tsc_khz
))) {
642 kvm_set_time_scale(__get_cpu_var(cpu_tsc_khz
), &vcpu
->hv_clock
);
643 vcpu
->hv_clock_tsc_khz
= __get_cpu_var(cpu_tsc_khz
);
647 /* Keep irq disabled to prevent changes to the clock */
648 local_irq_save(flags
);
649 kvm_get_msr(v
, MSR_IA32_TIME_STAMP_COUNTER
,
650 &vcpu
->hv_clock
.tsc_timestamp
);
652 local_irq_restore(flags
);
654 /* With all the info we got, fill in the values */
656 vcpu
->hv_clock
.system_time
= ts
.tv_nsec
+
657 (NSEC_PER_SEC
* (u64
)ts
.tv_sec
);
659 * The interface expects us to write an even number signaling that the
660 * update is finished. Since the guest won't see the intermediate
661 * state, we just increase by 2 at the end.
663 vcpu
->hv_clock
.version
+= 2;
665 shared_kaddr
= kmap_atomic(vcpu
->time_page
, KM_USER0
);
667 memcpy(shared_kaddr
+ vcpu
->time_offset
, &vcpu
->hv_clock
,
668 sizeof(vcpu
->hv_clock
));
670 kunmap_atomic(shared_kaddr
, KM_USER0
);
672 mark_page_dirty(v
->kvm
, vcpu
->time
>> PAGE_SHIFT
);
675 static int kvm_request_guest_time_update(struct kvm_vcpu
*v
)
677 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
679 if (!vcpu
->time_page
)
681 set_bit(KVM_REQ_KVMCLOCK_UPDATE
, &v
->requests
);
685 static bool msr_mtrr_valid(unsigned msr
)
688 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR
- 1:
689 case MSR_MTRRfix64K_00000
:
690 case MSR_MTRRfix16K_80000
:
691 case MSR_MTRRfix16K_A0000
:
692 case MSR_MTRRfix4K_C0000
:
693 case MSR_MTRRfix4K_C8000
:
694 case MSR_MTRRfix4K_D0000
:
695 case MSR_MTRRfix4K_D8000
:
696 case MSR_MTRRfix4K_E0000
:
697 case MSR_MTRRfix4K_E8000
:
698 case MSR_MTRRfix4K_F0000
:
699 case MSR_MTRRfix4K_F8000
:
700 case MSR_MTRRdefType
:
701 case MSR_IA32_CR_PAT
:
709 static bool valid_pat_type(unsigned t
)
711 return t
< 8 && (1 << t
) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
714 static bool valid_mtrr_type(unsigned t
)
716 return t
< 8 && (1 << t
) & 0x73; /* 0, 1, 4, 5, 6 */
719 static bool mtrr_valid(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
723 if (!msr_mtrr_valid(msr
))
726 if (msr
== MSR_IA32_CR_PAT
) {
727 for (i
= 0; i
< 8; i
++)
728 if (!valid_pat_type((data
>> (i
* 8)) & 0xff))
731 } else if (msr
== MSR_MTRRdefType
) {
734 return valid_mtrr_type(data
& 0xff);
735 } else if (msr
>= MSR_MTRRfix64K_00000
&& msr
<= MSR_MTRRfix4K_F8000
) {
736 for (i
= 0; i
< 8 ; i
++)
737 if (!valid_mtrr_type((data
>> (i
* 8)) & 0xff))
743 return valid_mtrr_type(data
& 0xff);
746 static int set_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
748 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
750 if (!mtrr_valid(vcpu
, msr
, data
))
753 if (msr
== MSR_MTRRdefType
) {
754 vcpu
->arch
.mtrr_state
.def_type
= data
;
755 vcpu
->arch
.mtrr_state
.enabled
= (data
& 0xc00) >> 10;
756 } else if (msr
== MSR_MTRRfix64K_00000
)
758 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
759 p
[1 + msr
- MSR_MTRRfix16K_80000
] = data
;
760 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
761 p
[3 + msr
- MSR_MTRRfix4K_C0000
] = data
;
762 else if (msr
== MSR_IA32_CR_PAT
)
763 vcpu
->arch
.pat
= data
;
764 else { /* Variable MTRRs */
765 int idx
, is_mtrr_mask
;
768 idx
= (msr
- 0x200) / 2;
769 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
772 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
775 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
779 kvm_mmu_reset_context(vcpu
);
783 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
787 set_efer(vcpu
, data
);
789 case MSR_IA32_MC0_STATUS
:
790 pr_unimpl(vcpu
, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
793 case MSR_IA32_MCG_STATUS
:
794 pr_unimpl(vcpu
, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
797 case MSR_IA32_MCG_CTL
:
798 pr_unimpl(vcpu
, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
801 case MSR_IA32_DEBUGCTLMSR
:
803 /* We support the non-activated case already */
805 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
806 /* Values other than LBR and BTF are vendor-specific,
807 thus reserved and should throw a #GP */
810 pr_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
813 case MSR_IA32_UCODE_REV
:
814 case MSR_IA32_UCODE_WRITE
:
815 case MSR_VM_HSAVE_PA
:
817 case 0x200 ... 0x2ff:
818 return set_msr_mtrr(vcpu
, msr
, data
);
819 case MSR_IA32_APICBASE
:
820 kvm_set_apic_base(vcpu
, data
);
822 case MSR_IA32_MISC_ENABLE
:
823 vcpu
->arch
.ia32_misc_enable_msr
= data
;
825 case MSR_KVM_WALL_CLOCK
:
826 vcpu
->kvm
->arch
.wall_clock
= data
;
827 kvm_write_wall_clock(vcpu
->kvm
, data
);
829 case MSR_KVM_SYSTEM_TIME
: {
830 if (vcpu
->arch
.time_page
) {
831 kvm_release_page_dirty(vcpu
->arch
.time_page
);
832 vcpu
->arch
.time_page
= NULL
;
835 vcpu
->arch
.time
= data
;
837 /* we verify if the enable bit is set... */
841 /* ...but clean it before doing the actual write */
842 vcpu
->arch
.time_offset
= data
& ~(PAGE_MASK
| 1);
844 vcpu
->arch
.time_page
=
845 gfn_to_page(vcpu
->kvm
, data
>> PAGE_SHIFT
);
847 if (is_error_page(vcpu
->arch
.time_page
)) {
848 kvm_release_page_clean(vcpu
->arch
.time_page
);
849 vcpu
->arch
.time_page
= NULL
;
852 kvm_request_guest_time_update(vcpu
);
856 pr_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n", msr
, data
);
861 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
865 * Reads an msr value (of 'msr_index') into 'pdata'.
866 * Returns 0 on success, non-0 otherwise.
867 * Assumes vcpu_load() was already called.
869 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
871 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
874 static int get_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
876 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
878 if (!msr_mtrr_valid(msr
))
881 if (msr
== MSR_MTRRdefType
)
882 *pdata
= vcpu
->arch
.mtrr_state
.def_type
+
883 (vcpu
->arch
.mtrr_state
.enabled
<< 10);
884 else if (msr
== MSR_MTRRfix64K_00000
)
886 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
887 *pdata
= p
[1 + msr
- MSR_MTRRfix16K_80000
];
888 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
889 *pdata
= p
[3 + msr
- MSR_MTRRfix4K_C0000
];
890 else if (msr
== MSR_IA32_CR_PAT
)
891 *pdata
= vcpu
->arch
.pat
;
892 else { /* Variable MTRRs */
893 int idx
, is_mtrr_mask
;
896 idx
= (msr
- 0x200) / 2;
897 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
900 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
903 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
910 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
915 case 0xc0010010: /* SYSCFG */
916 case 0xc0010015: /* HWCR */
917 case MSR_IA32_PLATFORM_ID
:
918 case MSR_IA32_P5_MC_ADDR
:
919 case MSR_IA32_P5_MC_TYPE
:
920 case MSR_IA32_MC0_CTL
:
921 case MSR_IA32_MCG_STATUS
:
922 case MSR_IA32_MCG_CAP
:
923 case MSR_IA32_MCG_CTL
:
924 case MSR_IA32_MC0_MISC
:
925 case MSR_IA32_MC0_MISC
+4:
926 case MSR_IA32_MC0_MISC
+8:
927 case MSR_IA32_MC0_MISC
+12:
928 case MSR_IA32_MC0_MISC
+16:
929 case MSR_IA32_MC0_MISC
+20:
930 case MSR_IA32_UCODE_REV
:
931 case MSR_IA32_EBL_CR_POWERON
:
932 case MSR_IA32_DEBUGCTLMSR
:
933 case MSR_IA32_LASTBRANCHFROMIP
:
934 case MSR_IA32_LASTBRANCHTOIP
:
935 case MSR_IA32_LASTINTFROMIP
:
936 case MSR_IA32_LASTINTTOIP
:
937 case MSR_VM_HSAVE_PA
:
938 case MSR_P6_EVNTSEL0
:
939 case MSR_P6_EVNTSEL1
:
940 case MSR_K7_EVNTSEL0
:
944 data
= 0x500 | KVM_NR_VAR_MTRR
;
946 case 0x200 ... 0x2ff:
947 return get_msr_mtrr(vcpu
, msr
, pdata
);
948 case 0xcd: /* fsb frequency */
951 case MSR_IA32_APICBASE
:
952 data
= kvm_get_apic_base(vcpu
);
954 case MSR_IA32_MISC_ENABLE
:
955 data
= vcpu
->arch
.ia32_misc_enable_msr
;
957 case MSR_IA32_PERF_STATUS
:
958 /* TSC increment by tick */
961 data
|= (((uint64_t)4ULL) << 40);
964 data
= vcpu
->arch
.shadow_efer
;
966 case MSR_KVM_WALL_CLOCK
:
967 data
= vcpu
->kvm
->arch
.wall_clock
;
969 case MSR_KVM_SYSTEM_TIME
:
970 data
= vcpu
->arch
.time
;
973 pr_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
979 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
982 * Read or write a bunch of msrs. All parameters are kernel addresses.
984 * @return number of msrs set successfully.
986 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
987 struct kvm_msr_entry
*entries
,
988 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
989 unsigned index
, u64
*data
))
995 down_read(&vcpu
->kvm
->slots_lock
);
996 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
997 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
999 up_read(&vcpu
->kvm
->slots_lock
);
1007 * Read or write a bunch of msrs. Parameters are user addresses.
1009 * @return number of msrs set successfully.
1011 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
1012 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
1013 unsigned index
, u64
*data
),
1016 struct kvm_msrs msrs
;
1017 struct kvm_msr_entry
*entries
;
1022 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
1026 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
1030 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
1031 entries
= vmalloc(size
);
1036 if (copy_from_user(entries
, user_msrs
->entries
, size
))
1039 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
1044 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
1055 int kvm_dev_ioctl_check_extension(long ext
)
1060 case KVM_CAP_IRQCHIP
:
1062 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
1063 case KVM_CAP_SET_TSS_ADDR
:
1064 case KVM_CAP_EXT_CPUID
:
1065 case KVM_CAP_CLOCKSOURCE
:
1067 case KVM_CAP_NOP_IO_DELAY
:
1068 case KVM_CAP_MP_STATE
:
1069 case KVM_CAP_SYNC_MMU
:
1070 case KVM_CAP_REINJECT_CONTROL
:
1071 case KVM_CAP_IRQ_INJECT_STATUS
:
1074 case KVM_CAP_COALESCED_MMIO
:
1075 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
1078 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
1080 case KVM_CAP_NR_VCPUS
:
1083 case KVM_CAP_NR_MEMSLOTS
:
1084 r
= KVM_MEMORY_SLOTS
;
1086 case KVM_CAP_PV_MMU
:
1100 long kvm_arch_dev_ioctl(struct file
*filp
,
1101 unsigned int ioctl
, unsigned long arg
)
1103 void __user
*argp
= (void __user
*)arg
;
1107 case KVM_GET_MSR_INDEX_LIST
: {
1108 struct kvm_msr_list __user
*user_msr_list
= argp
;
1109 struct kvm_msr_list msr_list
;
1113 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
1116 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
1117 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
1120 if (n
< msr_list
.nmsrs
)
1123 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
1124 num_msrs_to_save
* sizeof(u32
)))
1126 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
1128 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
1133 case KVM_GET_SUPPORTED_CPUID
: {
1134 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1135 struct kvm_cpuid2 cpuid
;
1138 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1140 r
= kvm_dev_ioctl_get_supported_cpuid(&cpuid
,
1141 cpuid_arg
->entries
);
1146 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
1158 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1160 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
1161 kvm_request_guest_time_update(vcpu
);
1164 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
1166 kvm_x86_ops
->vcpu_put(vcpu
);
1167 kvm_put_guest_fpu(vcpu
);
1170 static int is_efer_nx(void)
1172 unsigned long long efer
= 0;
1174 rdmsrl_safe(MSR_EFER
, &efer
);
1175 return efer
& EFER_NX
;
1178 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
1181 struct kvm_cpuid_entry2
*e
, *entry
;
1184 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
1185 e
= &vcpu
->arch
.cpuid_entries
[i
];
1186 if (e
->function
== 0x80000001) {
1191 if (entry
&& (entry
->edx
& (1 << 20)) && !is_efer_nx()) {
1192 entry
->edx
&= ~(1 << 20);
1193 printk(KERN_INFO
"kvm: guest NX capability removed\n");
1197 /* when an old userspace process fills a new kernel module */
1198 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
1199 struct kvm_cpuid
*cpuid
,
1200 struct kvm_cpuid_entry __user
*entries
)
1203 struct kvm_cpuid_entry
*cpuid_entries
;
1206 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
1209 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry
) * cpuid
->nent
);
1213 if (copy_from_user(cpuid_entries
, entries
,
1214 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
1216 for (i
= 0; i
< cpuid
->nent
; i
++) {
1217 vcpu
->arch
.cpuid_entries
[i
].function
= cpuid_entries
[i
].function
;
1218 vcpu
->arch
.cpuid_entries
[i
].eax
= cpuid_entries
[i
].eax
;
1219 vcpu
->arch
.cpuid_entries
[i
].ebx
= cpuid_entries
[i
].ebx
;
1220 vcpu
->arch
.cpuid_entries
[i
].ecx
= cpuid_entries
[i
].ecx
;
1221 vcpu
->arch
.cpuid_entries
[i
].edx
= cpuid_entries
[i
].edx
;
1222 vcpu
->arch
.cpuid_entries
[i
].index
= 0;
1223 vcpu
->arch
.cpuid_entries
[i
].flags
= 0;
1224 vcpu
->arch
.cpuid_entries
[i
].padding
[0] = 0;
1225 vcpu
->arch
.cpuid_entries
[i
].padding
[1] = 0;
1226 vcpu
->arch
.cpuid_entries
[i
].padding
[2] = 0;
1228 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
1229 cpuid_fix_nx_cap(vcpu
);
1233 vfree(cpuid_entries
);
1238 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu
*vcpu
,
1239 struct kvm_cpuid2
*cpuid
,
1240 struct kvm_cpuid_entry2 __user
*entries
)
1245 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
1248 if (copy_from_user(&vcpu
->arch
.cpuid_entries
, entries
,
1249 cpuid
->nent
* sizeof(struct kvm_cpuid_entry2
)))
1251 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
1258 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu
*vcpu
,
1259 struct kvm_cpuid2
*cpuid
,
1260 struct kvm_cpuid_entry2 __user
*entries
)
1265 if (cpuid
->nent
< vcpu
->arch
.cpuid_nent
)
1268 if (copy_to_user(entries
, &vcpu
->arch
.cpuid_entries
,
1269 vcpu
->arch
.cpuid_nent
* sizeof(struct kvm_cpuid_entry2
)))
1274 cpuid
->nent
= vcpu
->arch
.cpuid_nent
;
1278 static void do_cpuid_1_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
1281 entry
->function
= function
;
1282 entry
->index
= index
;
1283 cpuid_count(entry
->function
, entry
->index
,
1284 &entry
->eax
, &entry
->ebx
, &entry
->ecx
, &entry
->edx
);
1288 static void do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
1289 u32 index
, int *nent
, int maxnent
)
1291 const u32 kvm_supported_word0_x86_features
= bit(X86_FEATURE_FPU
) |
1292 bit(X86_FEATURE_VME
) | bit(X86_FEATURE_DE
) |
1293 bit(X86_FEATURE_PSE
) | bit(X86_FEATURE_TSC
) |
1294 bit(X86_FEATURE_MSR
) | bit(X86_FEATURE_PAE
) |
1295 bit(X86_FEATURE_MCE
) |
1296 bit(X86_FEATURE_CX8
) | bit(X86_FEATURE_APIC
) |
1297 bit(X86_FEATURE_SEP
) | bit(X86_FEATURE_MTRR
) |
1298 bit(X86_FEATURE_PGE
) | bit(X86_FEATURE_MCA
) |
1299 bit(X86_FEATURE_CMOV
) | bit(X86_FEATURE_PAT
) |
1300 bit(X86_FEATURE_PSE36
) |
1301 bit(X86_FEATURE_CLFLSH
) | bit(X86_FEATURE_MMX
) |
1302 bit(X86_FEATURE_FXSR
) | bit(X86_FEATURE_XMM
) |
1303 bit(X86_FEATURE_XMM2
) | bit(X86_FEATURE_SELFSNOOP
);
1304 const u32 kvm_supported_word1_x86_features
= bit(X86_FEATURE_FPU
) |
1305 bit(X86_FEATURE_VME
) | bit(X86_FEATURE_DE
) |
1306 bit(X86_FEATURE_PSE
) | bit(X86_FEATURE_TSC
) |
1307 bit(X86_FEATURE_MSR
) | bit(X86_FEATURE_PAE
) |
1308 bit(X86_FEATURE_CX8
) | bit(X86_FEATURE_APIC
) |
1309 bit(X86_FEATURE_PGE
) |
1310 bit(X86_FEATURE_CMOV
) | bit(X86_FEATURE_PSE36
) |
1311 bit(X86_FEATURE_MMX
) | bit(X86_FEATURE_FXSR
) |
1312 bit(X86_FEATURE_SYSCALL
) |
1313 (is_efer_nx() ? bit(X86_FEATURE_NX
) : 0) |
1314 #ifdef CONFIG_X86_64
1315 bit(X86_FEATURE_LM
) |
1317 bit(X86_FEATURE_FXSR_OPT
) |
1318 bit(X86_FEATURE_MMXEXT
) |
1319 bit(X86_FEATURE_3DNOWEXT
) |
1320 bit(X86_FEATURE_3DNOW
);
1321 const u32 kvm_supported_word3_x86_features
=
1322 bit(X86_FEATURE_XMM3
) | bit(X86_FEATURE_CX16
);
1323 const u32 kvm_supported_word6_x86_features
=
1324 bit(X86_FEATURE_LAHF_LM
) | bit(X86_FEATURE_CMP_LEGACY
) |
1325 bit(X86_FEATURE_SVM
);
1327 /* all calls to cpuid_count() should be made on the same cpu */
1329 do_cpuid_1_ent(entry
, function
, index
);
1334 entry
->eax
= min(entry
->eax
, (u32
)0xb);
1337 entry
->edx
&= kvm_supported_word0_x86_features
;
1338 entry
->ecx
&= kvm_supported_word3_x86_features
;
1340 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1341 * may return different values. This forces us to get_cpu() before
1342 * issuing the first command, and also to emulate this annoying behavior
1343 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1345 int t
, times
= entry
->eax
& 0xff;
1347 entry
->flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1348 entry
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
1349 for (t
= 1; t
< times
&& *nent
< maxnent
; ++t
) {
1350 do_cpuid_1_ent(&entry
[t
], function
, 0);
1351 entry
[t
].flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1356 /* function 4 and 0xb have additional index. */
1360 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1361 /* read more entries until cache_type is zero */
1362 for (i
= 1; *nent
< maxnent
; ++i
) {
1363 cache_type
= entry
[i
- 1].eax
& 0x1f;
1366 do_cpuid_1_ent(&entry
[i
], function
, i
);
1368 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1376 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1377 /* read more entries until level_type is zero */
1378 for (i
= 1; *nent
< maxnent
; ++i
) {
1379 level_type
= entry
[i
- 1].ecx
& 0xff00;
1382 do_cpuid_1_ent(&entry
[i
], function
, i
);
1384 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1390 entry
->eax
= min(entry
->eax
, 0x8000001a);
1393 entry
->edx
&= kvm_supported_word1_x86_features
;
1394 entry
->ecx
&= kvm_supported_word6_x86_features
;
1400 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
1401 struct kvm_cpuid_entry2 __user
*entries
)
1403 struct kvm_cpuid_entry2
*cpuid_entries
;
1404 int limit
, nent
= 0, r
= -E2BIG
;
1407 if (cpuid
->nent
< 1)
1410 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry2
) * cpuid
->nent
);
1414 do_cpuid_ent(&cpuid_entries
[0], 0, 0, &nent
, cpuid
->nent
);
1415 limit
= cpuid_entries
[0].eax
;
1416 for (func
= 1; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1417 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1418 &nent
, cpuid
->nent
);
1420 if (nent
>= cpuid
->nent
)
1423 do_cpuid_ent(&cpuid_entries
[nent
], 0x80000000, 0, &nent
, cpuid
->nent
);
1424 limit
= cpuid_entries
[nent
- 1].eax
;
1425 for (func
= 0x80000001; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1426 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1427 &nent
, cpuid
->nent
);
1429 if (copy_to_user(entries
, cpuid_entries
,
1430 nent
* sizeof(struct kvm_cpuid_entry2
)))
1436 vfree(cpuid_entries
);
1441 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
1442 struct kvm_lapic_state
*s
)
1445 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
1451 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
1452 struct kvm_lapic_state
*s
)
1455 memcpy(vcpu
->arch
.apic
->regs
, s
->regs
, sizeof *s
);
1456 kvm_apic_post_state_restore(vcpu
);
1462 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
1463 struct kvm_interrupt
*irq
)
1465 if (irq
->irq
< 0 || irq
->irq
>= 256)
1467 if (irqchip_in_kernel(vcpu
->kvm
))
1471 set_bit(irq
->irq
, vcpu
->arch
.irq_pending
);
1472 set_bit(irq
->irq
/ BITS_PER_LONG
, &vcpu
->arch
.irq_summary
);
1479 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
1482 kvm_inject_nmi(vcpu
);
1488 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
1489 struct kvm_tpr_access_ctl
*tac
)
1493 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
1497 long kvm_arch_vcpu_ioctl(struct file
*filp
,
1498 unsigned int ioctl
, unsigned long arg
)
1500 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1501 void __user
*argp
= (void __user
*)arg
;
1503 struct kvm_lapic_state
*lapic
= NULL
;
1506 case KVM_GET_LAPIC
: {
1507 lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
1512 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, lapic
);
1516 if (copy_to_user(argp
, lapic
, sizeof(struct kvm_lapic_state
)))
1521 case KVM_SET_LAPIC
: {
1522 lapic
= kmalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
1527 if (copy_from_user(lapic
, argp
, sizeof(struct kvm_lapic_state
)))
1529 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, lapic
);
1535 case KVM_INTERRUPT
: {
1536 struct kvm_interrupt irq
;
1539 if (copy_from_user(&irq
, argp
, sizeof irq
))
1541 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
1548 r
= kvm_vcpu_ioctl_nmi(vcpu
);
1554 case KVM_SET_CPUID
: {
1555 struct kvm_cpuid __user
*cpuid_arg
= argp
;
1556 struct kvm_cpuid cpuid
;
1559 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1561 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
1566 case KVM_SET_CPUID2
: {
1567 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1568 struct kvm_cpuid2 cpuid
;
1571 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1573 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
1574 cpuid_arg
->entries
);
1579 case KVM_GET_CPUID2
: {
1580 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1581 struct kvm_cpuid2 cpuid
;
1584 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1586 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
1587 cpuid_arg
->entries
);
1591 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
1597 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
1600 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
1602 case KVM_TPR_ACCESS_REPORTING
: {
1603 struct kvm_tpr_access_ctl tac
;
1606 if (copy_from_user(&tac
, argp
, sizeof tac
))
1608 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
1612 if (copy_to_user(argp
, &tac
, sizeof tac
))
1617 case KVM_SET_VAPIC_ADDR
: {
1618 struct kvm_vapic_addr va
;
1621 if (!irqchip_in_kernel(vcpu
->kvm
))
1624 if (copy_from_user(&va
, argp
, sizeof va
))
1627 kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
1639 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
1643 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
1645 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
1649 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
1650 u32 kvm_nr_mmu_pages
)
1652 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
1655 down_write(&kvm
->slots_lock
);
1656 spin_lock(&kvm
->mmu_lock
);
1658 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
1659 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
1661 spin_unlock(&kvm
->mmu_lock
);
1662 up_write(&kvm
->slots_lock
);
1666 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
1668 return kvm
->arch
.n_alloc_mmu_pages
;
1671 gfn_t
unalias_gfn(struct kvm
*kvm
, gfn_t gfn
)
1674 struct kvm_mem_alias
*alias
;
1676 for (i
= 0; i
< kvm
->arch
.naliases
; ++i
) {
1677 alias
= &kvm
->arch
.aliases
[i
];
1678 if (gfn
>= alias
->base_gfn
1679 && gfn
< alias
->base_gfn
+ alias
->npages
)
1680 return alias
->target_gfn
+ gfn
- alias
->base_gfn
;
1686 * Set a new alias region. Aliases map a portion of physical memory into
1687 * another portion. This is useful for memory windows, for example the PC
1690 static int kvm_vm_ioctl_set_memory_alias(struct kvm
*kvm
,
1691 struct kvm_memory_alias
*alias
)
1694 struct kvm_mem_alias
*p
;
1697 /* General sanity checks */
1698 if (alias
->memory_size
& (PAGE_SIZE
- 1))
1700 if (alias
->guest_phys_addr
& (PAGE_SIZE
- 1))
1702 if (alias
->slot
>= KVM_ALIAS_SLOTS
)
1704 if (alias
->guest_phys_addr
+ alias
->memory_size
1705 < alias
->guest_phys_addr
)
1707 if (alias
->target_phys_addr
+ alias
->memory_size
1708 < alias
->target_phys_addr
)
1711 down_write(&kvm
->slots_lock
);
1712 spin_lock(&kvm
->mmu_lock
);
1714 p
= &kvm
->arch
.aliases
[alias
->slot
];
1715 p
->base_gfn
= alias
->guest_phys_addr
>> PAGE_SHIFT
;
1716 p
->npages
= alias
->memory_size
>> PAGE_SHIFT
;
1717 p
->target_gfn
= alias
->target_phys_addr
>> PAGE_SHIFT
;
1719 for (n
= KVM_ALIAS_SLOTS
; n
> 0; --n
)
1720 if (kvm
->arch
.aliases
[n
- 1].npages
)
1722 kvm
->arch
.naliases
= n
;
1724 spin_unlock(&kvm
->mmu_lock
);
1725 kvm_mmu_zap_all(kvm
);
1727 up_write(&kvm
->slots_lock
);
1735 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
1740 switch (chip
->chip_id
) {
1741 case KVM_IRQCHIP_PIC_MASTER
:
1742 memcpy(&chip
->chip
.pic
,
1743 &pic_irqchip(kvm
)->pics
[0],
1744 sizeof(struct kvm_pic_state
));
1746 case KVM_IRQCHIP_PIC_SLAVE
:
1747 memcpy(&chip
->chip
.pic
,
1748 &pic_irqchip(kvm
)->pics
[1],
1749 sizeof(struct kvm_pic_state
));
1751 case KVM_IRQCHIP_IOAPIC
:
1752 memcpy(&chip
->chip
.ioapic
,
1753 ioapic_irqchip(kvm
),
1754 sizeof(struct kvm_ioapic_state
));
1763 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
1768 switch (chip
->chip_id
) {
1769 case KVM_IRQCHIP_PIC_MASTER
:
1770 memcpy(&pic_irqchip(kvm
)->pics
[0],
1772 sizeof(struct kvm_pic_state
));
1774 case KVM_IRQCHIP_PIC_SLAVE
:
1775 memcpy(&pic_irqchip(kvm
)->pics
[1],
1777 sizeof(struct kvm_pic_state
));
1779 case KVM_IRQCHIP_IOAPIC
:
1780 memcpy(ioapic_irqchip(kvm
),
1782 sizeof(struct kvm_ioapic_state
));
1788 kvm_pic_update_irq(pic_irqchip(kvm
));
1792 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
1796 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
1800 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
1804 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
1805 kvm_pit_load_count(kvm
, 0, ps
->channels
[0].count
);
1809 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
1810 struct kvm_reinject_control
*control
)
1812 if (!kvm
->arch
.vpit
)
1814 kvm
->arch
.vpit
->pit_state
.pit_timer
.reinject
= control
->pit_reinject
;
1819 * Get (and clear) the dirty memory log for a memory slot.
1821 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
,
1822 struct kvm_dirty_log
*log
)
1826 struct kvm_memory_slot
*memslot
;
1829 down_write(&kvm
->slots_lock
);
1831 r
= kvm_get_dirty_log(kvm
, log
, &is_dirty
);
1835 /* If nothing is dirty, don't bother messing with page tables. */
1837 spin_lock(&kvm
->mmu_lock
);
1838 kvm_mmu_slot_remove_write_access(kvm
, log
->slot
);
1839 spin_unlock(&kvm
->mmu_lock
);
1840 kvm_flush_remote_tlbs(kvm
);
1841 memslot
= &kvm
->memslots
[log
->slot
];
1842 n
= ALIGN(memslot
->npages
, BITS_PER_LONG
) / 8;
1843 memset(memslot
->dirty_bitmap
, 0, n
);
1847 up_write(&kvm
->slots_lock
);
1851 long kvm_arch_vm_ioctl(struct file
*filp
,
1852 unsigned int ioctl
, unsigned long arg
)
1854 struct kvm
*kvm
= filp
->private_data
;
1855 void __user
*argp
= (void __user
*)arg
;
1858 * This union makes it completely explicit to gcc-3.x
1859 * that these two variables' stack usage should be
1860 * combined, not added together.
1863 struct kvm_pit_state ps
;
1864 struct kvm_memory_alias alias
;
1868 case KVM_SET_TSS_ADDR
:
1869 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
1873 case KVM_SET_MEMORY_REGION
: {
1874 struct kvm_memory_region kvm_mem
;
1875 struct kvm_userspace_memory_region kvm_userspace_mem
;
1878 if (copy_from_user(&kvm_mem
, argp
, sizeof kvm_mem
))
1880 kvm_userspace_mem
.slot
= kvm_mem
.slot
;
1881 kvm_userspace_mem
.flags
= kvm_mem
.flags
;
1882 kvm_userspace_mem
.guest_phys_addr
= kvm_mem
.guest_phys_addr
;
1883 kvm_userspace_mem
.memory_size
= kvm_mem
.memory_size
;
1884 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
1889 case KVM_SET_NR_MMU_PAGES
:
1890 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
1894 case KVM_GET_NR_MMU_PAGES
:
1895 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
1897 case KVM_SET_MEMORY_ALIAS
:
1899 if (copy_from_user(&u
.alias
, argp
, sizeof(struct kvm_memory_alias
)))
1901 r
= kvm_vm_ioctl_set_memory_alias(kvm
, &u
.alias
);
1905 case KVM_CREATE_IRQCHIP
:
1907 kvm
->arch
.vpic
= kvm_create_pic(kvm
);
1908 if (kvm
->arch
.vpic
) {
1909 r
= kvm_ioapic_init(kvm
);
1911 kfree(kvm
->arch
.vpic
);
1912 kvm
->arch
.vpic
= NULL
;
1917 r
= kvm_setup_default_irq_routing(kvm
);
1919 kfree(kvm
->arch
.vpic
);
1920 kfree(kvm
->arch
.vioapic
);
1924 case KVM_CREATE_PIT
:
1925 mutex_lock(&kvm
->lock
);
1928 goto create_pit_unlock
;
1930 kvm
->arch
.vpit
= kvm_create_pit(kvm
);
1934 mutex_unlock(&kvm
->lock
);
1936 case KVM_IRQ_LINE_STATUS
:
1937 case KVM_IRQ_LINE
: {
1938 struct kvm_irq_level irq_event
;
1941 if (copy_from_user(&irq_event
, argp
, sizeof irq_event
))
1943 if (irqchip_in_kernel(kvm
)) {
1945 mutex_lock(&kvm
->lock
);
1946 status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
1947 irq_event
.irq
, irq_event
.level
);
1948 mutex_unlock(&kvm
->lock
);
1949 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
1950 irq_event
.status
= status
;
1951 if (copy_to_user(argp
, &irq_event
,
1959 case KVM_GET_IRQCHIP
: {
1960 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1961 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
1967 if (copy_from_user(chip
, argp
, sizeof *chip
))
1968 goto get_irqchip_out
;
1970 if (!irqchip_in_kernel(kvm
))
1971 goto get_irqchip_out
;
1972 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
1974 goto get_irqchip_out
;
1976 if (copy_to_user(argp
, chip
, sizeof *chip
))
1977 goto get_irqchip_out
;
1985 case KVM_SET_IRQCHIP
: {
1986 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1987 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
1993 if (copy_from_user(chip
, argp
, sizeof *chip
))
1994 goto set_irqchip_out
;
1996 if (!irqchip_in_kernel(kvm
))
1997 goto set_irqchip_out
;
1998 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
2000 goto set_irqchip_out
;
2010 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
2013 if (!kvm
->arch
.vpit
)
2015 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
2019 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
2026 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
2029 if (!kvm
->arch
.vpit
)
2031 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
2037 case KVM_REINJECT_CONTROL
: {
2038 struct kvm_reinject_control control
;
2040 if (copy_from_user(&control
, argp
, sizeof(control
)))
2042 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
2055 static void kvm_init_msr_list(void)
2060 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
2061 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
2064 msrs_to_save
[j
] = msrs_to_save
[i
];
2067 num_msrs_to_save
= j
;
2071 * Only apic need an MMIO device hook, so shortcut now..
2073 static struct kvm_io_device
*vcpu_find_pervcpu_dev(struct kvm_vcpu
*vcpu
,
2074 gpa_t addr
, int len
,
2077 struct kvm_io_device
*dev
;
2079 if (vcpu
->arch
.apic
) {
2080 dev
= &vcpu
->arch
.apic
->dev
;
2081 if (dev
->in_range(dev
, addr
, len
, is_write
))
2088 static struct kvm_io_device
*vcpu_find_mmio_dev(struct kvm_vcpu
*vcpu
,
2089 gpa_t addr
, int len
,
2092 struct kvm_io_device
*dev
;
2094 dev
= vcpu_find_pervcpu_dev(vcpu
, addr
, len
, is_write
);
2096 dev
= kvm_io_bus_find_dev(&vcpu
->kvm
->mmio_bus
, addr
, len
,
2101 static int kvm_read_guest_virt(gva_t addr
, void *val
, unsigned int bytes
,
2102 struct kvm_vcpu
*vcpu
)
2105 int r
= X86EMUL_CONTINUE
;
2108 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2109 unsigned offset
= addr
& (PAGE_SIZE
-1);
2110 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
2113 if (gpa
== UNMAPPED_GVA
) {
2114 r
= X86EMUL_PROPAGATE_FAULT
;
2117 ret
= kvm_read_guest(vcpu
->kvm
, gpa
, data
, toread
);
2119 r
= X86EMUL_UNHANDLEABLE
;
2131 static int kvm_write_guest_virt(gva_t addr
, void *val
, unsigned int bytes
,
2132 struct kvm_vcpu
*vcpu
)
2135 int r
= X86EMUL_CONTINUE
;
2138 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2139 unsigned offset
= addr
& (PAGE_SIZE
-1);
2140 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
2143 if (gpa
== UNMAPPED_GVA
) {
2144 r
= X86EMUL_PROPAGATE_FAULT
;
2147 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, data
, towrite
);
2149 r
= X86EMUL_UNHANDLEABLE
;
2162 static int emulator_read_emulated(unsigned long addr
,
2165 struct kvm_vcpu
*vcpu
)
2167 struct kvm_io_device
*mmio_dev
;
2170 if (vcpu
->mmio_read_completed
) {
2171 memcpy(val
, vcpu
->mmio_data
, bytes
);
2172 vcpu
->mmio_read_completed
= 0;
2173 return X86EMUL_CONTINUE
;
2176 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2178 /* For APIC access vmexit */
2179 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2182 if (kvm_read_guest_virt(addr
, val
, bytes
, vcpu
)
2183 == X86EMUL_CONTINUE
)
2184 return X86EMUL_CONTINUE
;
2185 if (gpa
== UNMAPPED_GVA
)
2186 return X86EMUL_PROPAGATE_FAULT
;
2190 * Is this MMIO handled locally?
2192 mutex_lock(&vcpu
->kvm
->lock
);
2193 mmio_dev
= vcpu_find_mmio_dev(vcpu
, gpa
, bytes
, 0);
2195 kvm_iodevice_read(mmio_dev
, gpa
, bytes
, val
);
2196 mutex_unlock(&vcpu
->kvm
->lock
);
2197 return X86EMUL_CONTINUE
;
2199 mutex_unlock(&vcpu
->kvm
->lock
);
2201 vcpu
->mmio_needed
= 1;
2202 vcpu
->mmio_phys_addr
= gpa
;
2203 vcpu
->mmio_size
= bytes
;
2204 vcpu
->mmio_is_write
= 0;
2206 return X86EMUL_UNHANDLEABLE
;
2209 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
2210 const void *val
, int bytes
)
2214 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
2217 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
, 1);
2221 static int emulator_write_emulated_onepage(unsigned long addr
,
2224 struct kvm_vcpu
*vcpu
)
2226 struct kvm_io_device
*mmio_dev
;
2229 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2231 if (gpa
== UNMAPPED_GVA
) {
2232 kvm_inject_page_fault(vcpu
, addr
, 2);
2233 return X86EMUL_PROPAGATE_FAULT
;
2236 /* For APIC access vmexit */
2237 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2240 if (emulator_write_phys(vcpu
, gpa
, val
, bytes
))
2241 return X86EMUL_CONTINUE
;
2245 * Is this MMIO handled locally?
2247 mutex_lock(&vcpu
->kvm
->lock
);
2248 mmio_dev
= vcpu_find_mmio_dev(vcpu
, gpa
, bytes
, 1);
2250 kvm_iodevice_write(mmio_dev
, gpa
, bytes
, val
);
2251 mutex_unlock(&vcpu
->kvm
->lock
);
2252 return X86EMUL_CONTINUE
;
2254 mutex_unlock(&vcpu
->kvm
->lock
);
2256 vcpu
->mmio_needed
= 1;
2257 vcpu
->mmio_phys_addr
= gpa
;
2258 vcpu
->mmio_size
= bytes
;
2259 vcpu
->mmio_is_write
= 1;
2260 memcpy(vcpu
->mmio_data
, val
, bytes
);
2262 return X86EMUL_CONTINUE
;
2265 int emulator_write_emulated(unsigned long addr
,
2268 struct kvm_vcpu
*vcpu
)
2270 /* Crossing a page boundary? */
2271 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
2274 now
= -addr
& ~PAGE_MASK
;
2275 rc
= emulator_write_emulated_onepage(addr
, val
, now
, vcpu
);
2276 if (rc
!= X86EMUL_CONTINUE
)
2282 return emulator_write_emulated_onepage(addr
, val
, bytes
, vcpu
);
2284 EXPORT_SYMBOL_GPL(emulator_write_emulated
);
2286 static int emulator_cmpxchg_emulated(unsigned long addr
,
2290 struct kvm_vcpu
*vcpu
)
2292 static int reported
;
2296 printk(KERN_WARNING
"kvm: emulating exchange as write\n");
2298 #ifndef CONFIG_X86_64
2299 /* guests cmpxchg8b have to be emulated atomically */
2306 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2308 if (gpa
== UNMAPPED_GVA
||
2309 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2312 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
2317 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
2319 kaddr
= kmap_atomic(page
, KM_USER0
);
2320 set_64bit((u64
*)(kaddr
+ offset_in_page(gpa
)), val
);
2321 kunmap_atomic(kaddr
, KM_USER0
);
2322 kvm_release_page_dirty(page
);
2327 return emulator_write_emulated(addr
, new, bytes
, vcpu
);
2330 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
2332 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
2335 int emulate_invlpg(struct kvm_vcpu
*vcpu
, gva_t address
)
2337 kvm_mmu_invlpg(vcpu
, address
);
2338 return X86EMUL_CONTINUE
;
2341 int emulate_clts(struct kvm_vcpu
*vcpu
)
2343 KVMTRACE_0D(CLTS
, vcpu
, handler
);
2344 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->arch
.cr0
& ~X86_CR0_TS
);
2345 return X86EMUL_CONTINUE
;
2348 int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long *dest
)
2350 struct kvm_vcpu
*vcpu
= ctxt
->vcpu
;
2354 *dest
= kvm_x86_ops
->get_dr(vcpu
, dr
);
2355 return X86EMUL_CONTINUE
;
2357 pr_unimpl(vcpu
, "%s: unexpected dr %u\n", __func__
, dr
);
2358 return X86EMUL_UNHANDLEABLE
;
2362 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
2364 unsigned long mask
= (ctxt
->mode
== X86EMUL_MODE_PROT64
) ? ~0ULL : ~0U;
2367 kvm_x86_ops
->set_dr(ctxt
->vcpu
, dr
, value
& mask
, &exception
);
2369 /* FIXME: better handling */
2370 return X86EMUL_UNHANDLEABLE
;
2372 return X86EMUL_CONTINUE
;
2375 void kvm_report_emulation_failure(struct kvm_vcpu
*vcpu
, const char *context
)
2378 unsigned long rip
= kvm_rip_read(vcpu
);
2379 unsigned long rip_linear
;
2381 if (!printk_ratelimit())
2384 rip_linear
= rip
+ get_segment_base(vcpu
, VCPU_SREG_CS
);
2386 kvm_read_guest_virt(rip_linear
, (void *)opcodes
, 4, vcpu
);
2388 printk(KERN_ERR
"emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2389 context
, rip
, opcodes
[0], opcodes
[1], opcodes
[2], opcodes
[3]);
2391 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure
);
2393 static struct x86_emulate_ops emulate_ops
= {
2394 .read_std
= kvm_read_guest_virt
,
2395 .read_emulated
= emulator_read_emulated
,
2396 .write_emulated
= emulator_write_emulated
,
2397 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
2400 static void cache_all_regs(struct kvm_vcpu
*vcpu
)
2402 kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2403 kvm_register_read(vcpu
, VCPU_REGS_RSP
);
2404 kvm_register_read(vcpu
, VCPU_REGS_RIP
);
2405 vcpu
->arch
.regs_dirty
= ~0;
2408 int emulate_instruction(struct kvm_vcpu
*vcpu
,
2409 struct kvm_run
*run
,
2415 struct decode_cache
*c
;
2417 kvm_clear_exception_queue(vcpu
);
2418 vcpu
->arch
.mmio_fault_cr2
= cr2
;
2420 * TODO: fix x86_emulate.c to use guest_read/write_register
2421 * instead of direct ->regs accesses, can save hundred cycles
2422 * on Intel for instructions that don't read/change RSP, for
2425 cache_all_regs(vcpu
);
2427 vcpu
->mmio_is_write
= 0;
2428 vcpu
->arch
.pio
.string
= 0;
2430 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
2432 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
2434 vcpu
->arch
.emulate_ctxt
.vcpu
= vcpu
;
2435 vcpu
->arch
.emulate_ctxt
.eflags
= kvm_x86_ops
->get_rflags(vcpu
);
2436 vcpu
->arch
.emulate_ctxt
.mode
=
2437 (vcpu
->arch
.emulate_ctxt
.eflags
& X86_EFLAGS_VM
)
2438 ? X86EMUL_MODE_REAL
: cs_l
2439 ? X86EMUL_MODE_PROT64
: cs_db
2440 ? X86EMUL_MODE_PROT32
: X86EMUL_MODE_PROT16
;
2442 r
= x86_decode_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
2444 /* Reject the instructions other than VMCALL/VMMCALL when
2445 * try to emulate invalid opcode */
2446 c
= &vcpu
->arch
.emulate_ctxt
.decode
;
2447 if ((emulation_type
& EMULTYPE_TRAP_UD
) &&
2448 (!(c
->twobyte
&& c
->b
== 0x01 &&
2449 (c
->modrm_reg
== 0 || c
->modrm_reg
== 3) &&
2450 c
->modrm_mod
== 3 && c
->modrm_rm
== 1)))
2451 return EMULATE_FAIL
;
2453 ++vcpu
->stat
.insn_emulation
;
2455 ++vcpu
->stat
.insn_emulation_fail
;
2456 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
2457 return EMULATE_DONE
;
2458 return EMULATE_FAIL
;
2462 r
= x86_emulate_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
2463 shadow_mask
= vcpu
->arch
.emulate_ctxt
.interruptibility
;
2466 kvm_x86_ops
->set_interrupt_shadow(vcpu
, shadow_mask
);
2468 if (vcpu
->arch
.pio
.string
)
2469 return EMULATE_DO_MMIO
;
2471 if ((r
|| vcpu
->mmio_is_write
) && run
) {
2472 run
->exit_reason
= KVM_EXIT_MMIO
;
2473 run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
;
2474 memcpy(run
->mmio
.data
, vcpu
->mmio_data
, 8);
2475 run
->mmio
.len
= vcpu
->mmio_size
;
2476 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
2480 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
2481 return EMULATE_DONE
;
2482 if (!vcpu
->mmio_needed
) {
2483 kvm_report_emulation_failure(vcpu
, "mmio");
2484 return EMULATE_FAIL
;
2486 return EMULATE_DO_MMIO
;
2489 kvm_x86_ops
->set_rflags(vcpu
, vcpu
->arch
.emulate_ctxt
.eflags
);
2491 if (vcpu
->mmio_is_write
) {
2492 vcpu
->mmio_needed
= 0;
2493 return EMULATE_DO_MMIO
;
2496 return EMULATE_DONE
;
2498 EXPORT_SYMBOL_GPL(emulate_instruction
);
2500 static int pio_copy_data(struct kvm_vcpu
*vcpu
)
2502 void *p
= vcpu
->arch
.pio_data
;
2503 gva_t q
= vcpu
->arch
.pio
.guest_gva
;
2507 bytes
= vcpu
->arch
.pio
.size
* vcpu
->arch
.pio
.cur_count
;
2508 if (vcpu
->arch
.pio
.in
)
2509 ret
= kvm_write_guest_virt(q
, p
, bytes
, vcpu
);
2511 ret
= kvm_read_guest_virt(q
, p
, bytes
, vcpu
);
2515 int complete_pio(struct kvm_vcpu
*vcpu
)
2517 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
2524 val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2525 memcpy(&val
, vcpu
->arch
.pio_data
, io
->size
);
2526 kvm_register_write(vcpu
, VCPU_REGS_RAX
, val
);
2530 r
= pio_copy_data(vcpu
);
2537 delta
*= io
->cur_count
;
2539 * The size of the register should really depend on
2540 * current address size.
2542 val
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
2544 kvm_register_write(vcpu
, VCPU_REGS_RCX
, val
);
2550 val
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
2552 kvm_register_write(vcpu
, VCPU_REGS_RDI
, val
);
2554 val
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
2556 kvm_register_write(vcpu
, VCPU_REGS_RSI
, val
);
2560 io
->count
-= io
->cur_count
;
2566 static void kernel_pio(struct kvm_io_device
*pio_dev
,
2567 struct kvm_vcpu
*vcpu
,
2570 /* TODO: String I/O for in kernel device */
2572 mutex_lock(&vcpu
->kvm
->lock
);
2573 if (vcpu
->arch
.pio
.in
)
2574 kvm_iodevice_read(pio_dev
, vcpu
->arch
.pio
.port
,
2575 vcpu
->arch
.pio
.size
,
2578 kvm_iodevice_write(pio_dev
, vcpu
->arch
.pio
.port
,
2579 vcpu
->arch
.pio
.size
,
2581 mutex_unlock(&vcpu
->kvm
->lock
);
2584 static void pio_string_write(struct kvm_io_device
*pio_dev
,
2585 struct kvm_vcpu
*vcpu
)
2587 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
2588 void *pd
= vcpu
->arch
.pio_data
;
2591 mutex_lock(&vcpu
->kvm
->lock
);
2592 for (i
= 0; i
< io
->cur_count
; i
++) {
2593 kvm_iodevice_write(pio_dev
, io
->port
,
2598 mutex_unlock(&vcpu
->kvm
->lock
);
2601 static struct kvm_io_device
*vcpu_find_pio_dev(struct kvm_vcpu
*vcpu
,
2602 gpa_t addr
, int len
,
2605 return kvm_io_bus_find_dev(&vcpu
->kvm
->pio_bus
, addr
, len
, is_write
);
2608 int kvm_emulate_pio(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
2609 int size
, unsigned port
)
2611 struct kvm_io_device
*pio_dev
;
2614 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
2615 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
2616 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
2617 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
2618 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= 1;
2619 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
2620 vcpu
->arch
.pio
.in
= in
;
2621 vcpu
->arch
.pio
.string
= 0;
2622 vcpu
->arch
.pio
.down
= 0;
2623 vcpu
->arch
.pio
.rep
= 0;
2625 if (vcpu
->run
->io
.direction
== KVM_EXIT_IO_IN
)
2626 KVMTRACE_2D(IO_READ
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2629 KVMTRACE_2D(IO_WRITE
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2632 val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2633 memcpy(vcpu
->arch
.pio_data
, &val
, 4);
2635 pio_dev
= vcpu_find_pio_dev(vcpu
, port
, size
, !in
);
2637 kernel_pio(pio_dev
, vcpu
, vcpu
->arch
.pio_data
);
2643 EXPORT_SYMBOL_GPL(kvm_emulate_pio
);
2645 int kvm_emulate_pio_string(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
2646 int size
, unsigned long count
, int down
,
2647 gva_t address
, int rep
, unsigned port
)
2649 unsigned now
, in_page
;
2651 struct kvm_io_device
*pio_dev
;
2653 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
2654 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
2655 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
2656 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
2657 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= count
;
2658 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
2659 vcpu
->arch
.pio
.in
= in
;
2660 vcpu
->arch
.pio
.string
= 1;
2661 vcpu
->arch
.pio
.down
= down
;
2662 vcpu
->arch
.pio
.rep
= rep
;
2664 if (vcpu
->run
->io
.direction
== KVM_EXIT_IO_IN
)
2665 KVMTRACE_2D(IO_READ
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2668 KVMTRACE_2D(IO_WRITE
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2672 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2677 in_page
= PAGE_SIZE
- offset_in_page(address
);
2679 in_page
= offset_in_page(address
) + size
;
2680 now
= min(count
, (unsigned long)in_page
/ size
);
2685 * String I/O in reverse. Yuck. Kill the guest, fix later.
2687 pr_unimpl(vcpu
, "guest string pio down\n");
2688 kvm_inject_gp(vcpu
, 0);
2691 vcpu
->run
->io
.count
= now
;
2692 vcpu
->arch
.pio
.cur_count
= now
;
2694 if (vcpu
->arch
.pio
.cur_count
== vcpu
->arch
.pio
.count
)
2695 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2697 vcpu
->arch
.pio
.guest_gva
= address
;
2699 pio_dev
= vcpu_find_pio_dev(vcpu
, port
,
2700 vcpu
->arch
.pio
.cur_count
,
2701 !vcpu
->arch
.pio
.in
);
2702 if (!vcpu
->arch
.pio
.in
) {
2703 /* string PIO write */
2704 ret
= pio_copy_data(vcpu
);
2705 if (ret
== X86EMUL_PROPAGATE_FAULT
) {
2706 kvm_inject_gp(vcpu
, 0);
2709 if (ret
== 0 && pio_dev
) {
2710 pio_string_write(pio_dev
, vcpu
);
2712 if (vcpu
->arch
.pio
.count
== 0)
2716 pr_unimpl(vcpu
, "no string pio read support yet, "
2717 "port %x size %d count %ld\n",
2722 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string
);
2724 static void bounce_off(void *info
)
2729 static unsigned int ref_freq
;
2730 static unsigned long tsc_khz_ref
;
2732 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
2735 struct cpufreq_freqs
*freq
= data
;
2737 struct kvm_vcpu
*vcpu
;
2738 int i
, send_ipi
= 0;
2741 ref_freq
= freq
->old
;
2743 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
2745 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
2747 per_cpu(cpu_tsc_khz
, freq
->cpu
) = cpufreq_scale(tsc_khz_ref
, ref_freq
, freq
->new);
2749 spin_lock(&kvm_lock
);
2750 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
2751 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
2752 vcpu
= kvm
->vcpus
[i
];
2755 if (vcpu
->cpu
!= freq
->cpu
)
2757 if (!kvm_request_guest_time_update(vcpu
))
2759 if (vcpu
->cpu
!= smp_processor_id())
2763 spin_unlock(&kvm_lock
);
2765 if (freq
->old
< freq
->new && send_ipi
) {
2767 * We upscale the frequency. Must make the guest
2768 * doesn't see old kvmclock values while running with
2769 * the new frequency, otherwise we risk the guest sees
2770 * time go backwards.
2772 * In case we update the frequency for another cpu
2773 * (which might be in guest context) send an interrupt
2774 * to kick the cpu out of guest context. Next time
2775 * guest context is entered kvmclock will be updated,
2776 * so the guest will not see stale values.
2778 smp_call_function_single(freq
->cpu
, bounce_off
, NULL
, 1);
2783 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
2784 .notifier_call
= kvmclock_cpufreq_notifier
2787 int kvm_arch_init(void *opaque
)
2790 struct kvm_x86_ops
*ops
= (struct kvm_x86_ops
*)opaque
;
2793 printk(KERN_ERR
"kvm: already loaded the other module\n");
2798 if (!ops
->cpu_has_kvm_support()) {
2799 printk(KERN_ERR
"kvm: no hardware support\n");
2803 if (ops
->disabled_by_bios()) {
2804 printk(KERN_ERR
"kvm: disabled by bios\n");
2809 r
= kvm_mmu_module_init();
2813 kvm_init_msr_list();
2816 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2817 kvm_mmu_set_base_ptes(PT_PRESENT_MASK
);
2818 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
2819 PT_DIRTY_MASK
, PT64_NX_MASK
, 0, 0);
2821 for_each_possible_cpu(cpu
)
2822 per_cpu(cpu_tsc_khz
, cpu
) = tsc_khz
;
2823 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
2824 tsc_khz_ref
= tsc_khz
;
2825 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
2826 CPUFREQ_TRANSITION_NOTIFIER
);
2835 void kvm_arch_exit(void)
2837 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
2838 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
2839 CPUFREQ_TRANSITION_NOTIFIER
);
2841 kvm_mmu_module_exit();
2844 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
2846 ++vcpu
->stat
.halt_exits
;
2847 KVMTRACE_0D(HLT
, vcpu
, handler
);
2848 if (irqchip_in_kernel(vcpu
->kvm
)) {
2849 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
2852 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
2856 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
2858 static inline gpa_t
hc_gpa(struct kvm_vcpu
*vcpu
, unsigned long a0
,
2861 if (is_long_mode(vcpu
))
2864 return a0
| ((gpa_t
)a1
<< 32);
2867 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
2869 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
2872 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2873 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
2874 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
2875 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
2876 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
2878 KVMTRACE_1D(VMMCALL
, vcpu
, (u32
)nr
, handler
);
2880 if (!is_long_mode(vcpu
)) {
2889 case KVM_HC_VAPIC_POLL_IRQ
:
2893 r
= kvm_pv_mmu_op(vcpu
, a0
, hc_gpa(vcpu
, a1
, a2
), &ret
);
2899 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
2900 ++vcpu
->stat
.hypercalls
;
2903 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
2905 int kvm_fix_hypercall(struct kvm_vcpu
*vcpu
)
2907 char instruction
[3];
2909 unsigned long rip
= kvm_rip_read(vcpu
);
2913 * Blow out the MMU to ensure that no other VCPU has an active mapping
2914 * to ensure that the updated hypercall appears atomically across all
2917 kvm_mmu_zap_all(vcpu
->kvm
);
2919 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
2920 if (emulator_write_emulated(rip
, instruction
, 3, vcpu
)
2921 != X86EMUL_CONTINUE
)
2927 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
2929 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
2932 void realmode_lgdt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
2934 struct descriptor_table dt
= { limit
, base
};
2936 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
2939 void realmode_lidt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
2941 struct descriptor_table dt
= { limit
, base
};
2943 kvm_x86_ops
->set_idt(vcpu
, &dt
);
2946 void realmode_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
,
2947 unsigned long *rflags
)
2949 kvm_lmsw(vcpu
, msw
);
2950 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
2953 unsigned long realmode_get_cr(struct kvm_vcpu
*vcpu
, int cr
)
2955 unsigned long value
;
2957 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
2960 value
= vcpu
->arch
.cr0
;
2963 value
= vcpu
->arch
.cr2
;
2966 value
= vcpu
->arch
.cr3
;
2969 value
= vcpu
->arch
.cr4
;
2972 value
= kvm_get_cr8(vcpu
);
2975 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
2978 KVMTRACE_3D(CR_READ
, vcpu
, (u32
)cr
, (u32
)value
,
2979 (u32
)((u64
)value
>> 32), handler
);
2984 void realmode_set_cr(struct kvm_vcpu
*vcpu
, int cr
, unsigned long val
,
2985 unsigned long *rflags
)
2987 KVMTRACE_3D(CR_WRITE
, vcpu
, (u32
)cr
, (u32
)val
,
2988 (u32
)((u64
)val
>> 32), handler
);
2992 kvm_set_cr0(vcpu
, mk_cr_64(vcpu
->arch
.cr0
, val
));
2993 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
2996 vcpu
->arch
.cr2
= val
;
2999 kvm_set_cr3(vcpu
, val
);
3002 kvm_set_cr4(vcpu
, mk_cr_64(vcpu
->arch
.cr4
, val
));
3005 kvm_set_cr8(vcpu
, val
& 0xfUL
);
3008 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
3012 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu
*vcpu
, int i
)
3014 struct kvm_cpuid_entry2
*e
= &vcpu
->arch
.cpuid_entries
[i
];
3015 int j
, nent
= vcpu
->arch
.cpuid_nent
;
3017 e
->flags
&= ~KVM_CPUID_FLAG_STATE_READ_NEXT
;
3018 /* when no next entry is found, the current entry[i] is reselected */
3019 for (j
= i
+ 1; ; j
= (j
+ 1) % nent
) {
3020 struct kvm_cpuid_entry2
*ej
= &vcpu
->arch
.cpuid_entries
[j
];
3021 if (ej
->function
== e
->function
) {
3022 ej
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
3026 return 0; /* silence gcc, even though control never reaches here */
3029 /* find an entry with matching function, matching index (if needed), and that
3030 * should be read next (if it's stateful) */
3031 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2
*e
,
3032 u32 function
, u32 index
)
3034 if (e
->function
!= function
)
3036 if ((e
->flags
& KVM_CPUID_FLAG_SIGNIFCANT_INDEX
) && e
->index
!= index
)
3038 if ((e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
) &&
3039 !(e
->flags
& KVM_CPUID_FLAG_STATE_READ_NEXT
))
3044 struct kvm_cpuid_entry2
*kvm_find_cpuid_entry(struct kvm_vcpu
*vcpu
,
3045 u32 function
, u32 index
)
3048 struct kvm_cpuid_entry2
*best
= NULL
;
3050 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
3051 struct kvm_cpuid_entry2
*e
;
3053 e
= &vcpu
->arch
.cpuid_entries
[i
];
3054 if (is_matching_cpuid_entry(e
, function
, index
)) {
3055 if (e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
)
3056 move_to_next_stateful_cpuid_entry(vcpu
, i
);
3061 * Both basic or both extended?
3063 if (((e
->function
^ function
) & 0x80000000) == 0)
3064 if (!best
|| e
->function
> best
->function
)
3070 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
3072 u32 function
, index
;
3073 struct kvm_cpuid_entry2
*best
;
3075 function
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3076 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3077 kvm_register_write(vcpu
, VCPU_REGS_RAX
, 0);
3078 kvm_register_write(vcpu
, VCPU_REGS_RBX
, 0);
3079 kvm_register_write(vcpu
, VCPU_REGS_RCX
, 0);
3080 kvm_register_write(vcpu
, VCPU_REGS_RDX
, 0);
3081 best
= kvm_find_cpuid_entry(vcpu
, function
, index
);
3083 kvm_register_write(vcpu
, VCPU_REGS_RAX
, best
->eax
);
3084 kvm_register_write(vcpu
, VCPU_REGS_RBX
, best
->ebx
);
3085 kvm_register_write(vcpu
, VCPU_REGS_RCX
, best
->ecx
);
3086 kvm_register_write(vcpu
, VCPU_REGS_RDX
, best
->edx
);
3088 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
3089 KVMTRACE_5D(CPUID
, vcpu
, function
,
3090 (u32
)kvm_register_read(vcpu
, VCPU_REGS_RAX
),
3091 (u32
)kvm_register_read(vcpu
, VCPU_REGS_RBX
),
3092 (u32
)kvm_register_read(vcpu
, VCPU_REGS_RCX
),
3093 (u32
)kvm_register_read(vcpu
, VCPU_REGS_RDX
), handler
);
3095 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);
3098 * Check if userspace requested an interrupt window, and that the
3099 * interrupt window is open.
3101 * No need to exit to userspace if we already have an interrupt queued.
3103 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
,
3104 struct kvm_run
*kvm_run
)
3106 return (!vcpu
->arch
.irq_summary
&&
3107 kvm_run
->request_interrupt_window
&&
3108 vcpu
->arch
.interrupt_window_open
&&
3109 (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_IF
));
3112 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
,
3113 struct kvm_run
*kvm_run
)
3115 kvm_run
->if_flag
= (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
3116 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
3117 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
3118 if (irqchip_in_kernel(vcpu
->kvm
))
3119 kvm_run
->ready_for_interrupt_injection
= 1;
3121 kvm_run
->ready_for_interrupt_injection
=
3122 (vcpu
->arch
.interrupt_window_open
&&
3123 vcpu
->arch
.irq_summary
== 0);
3126 static void vapic_enter(struct kvm_vcpu
*vcpu
)
3128 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
3131 if (!apic
|| !apic
->vapic_addr
)
3134 page
= gfn_to_page(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
3136 vcpu
->arch
.apic
->vapic_page
= page
;
3139 static void vapic_exit(struct kvm_vcpu
*vcpu
)
3141 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
3143 if (!apic
|| !apic
->vapic_addr
)
3146 down_read(&vcpu
->kvm
->slots_lock
);
3147 kvm_release_page_dirty(apic
->vapic_page
);
3148 mark_page_dirty(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
3149 up_read(&vcpu
->kvm
->slots_lock
);
3152 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3157 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD
, &vcpu
->requests
))
3158 kvm_mmu_unload(vcpu
);
3160 r
= kvm_mmu_reload(vcpu
);
3164 if (vcpu
->requests
) {
3165 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER
, &vcpu
->requests
))
3166 __kvm_migrate_timers(vcpu
);
3167 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE
, &vcpu
->requests
))
3168 kvm_write_guest_time(vcpu
);
3169 if (test_and_clear_bit(KVM_REQ_MMU_SYNC
, &vcpu
->requests
))
3170 kvm_mmu_sync_roots(vcpu
);
3171 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH
, &vcpu
->requests
))
3172 kvm_x86_ops
->tlb_flush(vcpu
);
3173 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS
,
3175 kvm_run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
3179 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
)) {
3180 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
3186 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
3187 kvm_inject_pending_timer_irqs(vcpu
);
3191 kvm_x86_ops
->prepare_guest_switch(vcpu
);
3192 kvm_load_guest_fpu(vcpu
);
3194 local_irq_disable();
3196 if (vcpu
->requests
|| need_resched() || signal_pending(current
)) {
3203 vcpu
->guest_mode
= 1;
3205 * Make sure that guest_mode assignment won't happen after
3206 * testing the pending IRQ vector bitmap.
3210 if (vcpu
->arch
.exception
.pending
)
3211 __queue_exception(vcpu
);
3212 else if (irqchip_in_kernel(vcpu
->kvm
))
3213 kvm_x86_ops
->inject_pending_irq(vcpu
);
3215 kvm_x86_ops
->inject_pending_vectors(vcpu
, kvm_run
);
3217 kvm_lapic_sync_to_vapic(vcpu
);
3219 up_read(&vcpu
->kvm
->slots_lock
);
3223 get_debugreg(vcpu
->arch
.host_dr6
, 6);
3224 get_debugreg(vcpu
->arch
.host_dr7
, 7);
3225 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
3226 get_debugreg(vcpu
->arch
.host_db
[0], 0);
3227 get_debugreg(vcpu
->arch
.host_db
[1], 1);
3228 get_debugreg(vcpu
->arch
.host_db
[2], 2);
3229 get_debugreg(vcpu
->arch
.host_db
[3], 3);
3232 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
3233 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
3234 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
3235 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
3238 KVMTRACE_0D(VMENTRY
, vcpu
, entryexit
);
3239 kvm_x86_ops
->run(vcpu
, kvm_run
);
3241 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
3243 set_debugreg(vcpu
->arch
.host_db
[0], 0);
3244 set_debugreg(vcpu
->arch
.host_db
[1], 1);
3245 set_debugreg(vcpu
->arch
.host_db
[2], 2);
3246 set_debugreg(vcpu
->arch
.host_db
[3], 3);
3248 set_debugreg(vcpu
->arch
.host_dr6
, 6);
3249 set_debugreg(vcpu
->arch
.host_dr7
, 7);
3251 vcpu
->guest_mode
= 0;
3257 * We must have an instruction between local_irq_enable() and
3258 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3259 * the interrupt shadow. The stat.exits increment will do nicely.
3260 * But we need to prevent reordering, hence this barrier():
3268 down_read(&vcpu
->kvm
->slots_lock
);
3271 * Profile KVM exit RIPs:
3273 if (unlikely(prof_on
== KVM_PROFILING
)) {
3274 unsigned long rip
= kvm_rip_read(vcpu
);
3275 profile_hit(KVM_PROFILING
, (void *)rip
);
3278 if (vcpu
->arch
.exception
.pending
&& kvm_x86_ops
->exception_injected(vcpu
))
3279 vcpu
->arch
.exception
.pending
= false;
3281 kvm_lapic_sync_from_vapic(vcpu
);
3283 r
= kvm_x86_ops
->handle_exit(kvm_run
, vcpu
);
3288 static int __vcpu_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3292 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
)) {
3293 pr_debug("vcpu %d received sipi with vector # %x\n",
3294 vcpu
->vcpu_id
, vcpu
->arch
.sipi_vector
);
3295 kvm_lapic_reset(vcpu
);
3296 r
= kvm_arch_vcpu_reset(vcpu
);
3299 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
3302 down_read(&vcpu
->kvm
->slots_lock
);
3307 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
)
3308 r
= vcpu_enter_guest(vcpu
, kvm_run
);
3310 up_read(&vcpu
->kvm
->slots_lock
);
3311 kvm_vcpu_block(vcpu
);
3312 down_read(&vcpu
->kvm
->slots_lock
);
3313 if (test_and_clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
))
3314 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
)
3315 vcpu
->arch
.mp_state
=
3316 KVM_MP_STATE_RUNNABLE
;
3317 if (vcpu
->arch
.mp_state
!= KVM_MP_STATE_RUNNABLE
)
3322 if (dm_request_for_irq_injection(vcpu
, kvm_run
)) {
3324 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
3325 ++vcpu
->stat
.request_irq_exits
;
3327 if (signal_pending(current
)) {
3329 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
3330 ++vcpu
->stat
.signal_exits
;
3332 if (need_resched()) {
3333 up_read(&vcpu
->kvm
->slots_lock
);
3335 down_read(&vcpu
->kvm
->slots_lock
);
3340 up_read(&vcpu
->kvm
->slots_lock
);
3341 post_kvm_run_save(vcpu
, kvm_run
);
3348 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3355 if (vcpu
->sigset_active
)
3356 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
3358 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
3359 kvm_vcpu_block(vcpu
);
3360 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
3365 /* re-sync apic's tpr */
3366 if (!irqchip_in_kernel(vcpu
->kvm
))
3367 kvm_set_cr8(vcpu
, kvm_run
->cr8
);
3369 if (vcpu
->arch
.pio
.cur_count
) {
3370 r
= complete_pio(vcpu
);
3374 #if CONFIG_HAS_IOMEM
3375 if (vcpu
->mmio_needed
) {
3376 memcpy(vcpu
->mmio_data
, kvm_run
->mmio
.data
, 8);
3377 vcpu
->mmio_read_completed
= 1;
3378 vcpu
->mmio_needed
= 0;
3380 down_read(&vcpu
->kvm
->slots_lock
);
3381 r
= emulate_instruction(vcpu
, kvm_run
,
3382 vcpu
->arch
.mmio_fault_cr2
, 0,
3383 EMULTYPE_NO_DECODE
);
3384 up_read(&vcpu
->kvm
->slots_lock
);
3385 if (r
== EMULATE_DO_MMIO
) {
3387 * Read-modify-write. Back to userspace.
3394 if (kvm_run
->exit_reason
== KVM_EXIT_HYPERCALL
)
3395 kvm_register_write(vcpu
, VCPU_REGS_RAX
,
3396 kvm_run
->hypercall
.ret
);
3398 r
= __vcpu_run(vcpu
, kvm_run
);
3401 if (vcpu
->sigset_active
)
3402 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
3408 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
3412 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3413 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
3414 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3415 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
3416 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
3417 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
3418 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
3419 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
3420 #ifdef CONFIG_X86_64
3421 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
3422 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
3423 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
3424 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
3425 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
3426 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
3427 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
3428 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
3431 regs
->rip
= kvm_rip_read(vcpu
);
3432 regs
->rflags
= kvm_x86_ops
->get_rflags(vcpu
);
3435 * Don't leak debug flags in case they were set for guest debugging
3437 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
3438 regs
->rflags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
3445 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
3449 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
3450 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
3451 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
3452 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
3453 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
3454 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
3455 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
3456 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
3457 #ifdef CONFIG_X86_64
3458 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
3459 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
3460 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
3461 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
3462 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
3463 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
3464 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
3465 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
3469 kvm_rip_write(vcpu
, regs
->rip
);
3470 kvm_x86_ops
->set_rflags(vcpu
, regs
->rflags
);
3473 vcpu
->arch
.exception
.pending
= false;
3480 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
3481 struct kvm_segment
*var
, int seg
)
3483 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
3486 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
3488 struct kvm_segment cs
;
3490 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
3494 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
3496 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
3497 struct kvm_sregs
*sregs
)
3499 struct descriptor_table dt
;
3504 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
3505 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
3506 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
3507 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
3508 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
3509 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
3511 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
3512 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
3514 kvm_x86_ops
->get_idt(vcpu
, &dt
);
3515 sregs
->idt
.limit
= dt
.limit
;
3516 sregs
->idt
.base
= dt
.base
;
3517 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
3518 sregs
->gdt
.limit
= dt
.limit
;
3519 sregs
->gdt
.base
= dt
.base
;
3521 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
3522 sregs
->cr0
= vcpu
->arch
.cr0
;
3523 sregs
->cr2
= vcpu
->arch
.cr2
;
3524 sregs
->cr3
= vcpu
->arch
.cr3
;
3525 sregs
->cr4
= vcpu
->arch
.cr4
;
3526 sregs
->cr8
= kvm_get_cr8(vcpu
);
3527 sregs
->efer
= vcpu
->arch
.shadow_efer
;
3528 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
3530 if (irqchip_in_kernel(vcpu
->kvm
)) {
3531 memset(sregs
->interrupt_bitmap
, 0,
3532 sizeof sregs
->interrupt_bitmap
);
3533 pending_vec
= kvm_x86_ops
->get_irq(vcpu
);
3534 if (pending_vec
>= 0)
3535 set_bit(pending_vec
,
3536 (unsigned long *)sregs
->interrupt_bitmap
);
3538 memcpy(sregs
->interrupt_bitmap
, vcpu
->arch
.irq_pending
,
3539 sizeof sregs
->interrupt_bitmap
);
3546 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
3547 struct kvm_mp_state
*mp_state
)
3550 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
3555 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
3556 struct kvm_mp_state
*mp_state
)
3559 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
3564 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
3565 struct kvm_segment
*var
, int seg
)
3567 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
3570 static void seg_desct_to_kvm_desct(struct desc_struct
*seg_desc
, u16 selector
,
3571 struct kvm_segment
*kvm_desct
)
3573 kvm_desct
->base
= seg_desc
->base0
;
3574 kvm_desct
->base
|= seg_desc
->base1
<< 16;
3575 kvm_desct
->base
|= seg_desc
->base2
<< 24;
3576 kvm_desct
->limit
= seg_desc
->limit0
;
3577 kvm_desct
->limit
|= seg_desc
->limit
<< 16;
3579 kvm_desct
->limit
<<= 12;
3580 kvm_desct
->limit
|= 0xfff;
3582 kvm_desct
->selector
= selector
;
3583 kvm_desct
->type
= seg_desc
->type
;
3584 kvm_desct
->present
= seg_desc
->p
;
3585 kvm_desct
->dpl
= seg_desc
->dpl
;
3586 kvm_desct
->db
= seg_desc
->d
;
3587 kvm_desct
->s
= seg_desc
->s
;
3588 kvm_desct
->l
= seg_desc
->l
;
3589 kvm_desct
->g
= seg_desc
->g
;
3590 kvm_desct
->avl
= seg_desc
->avl
;
3592 kvm_desct
->unusable
= 1;
3594 kvm_desct
->unusable
= 0;
3595 kvm_desct
->padding
= 0;
3598 static void get_segment_descriptor_dtable(struct kvm_vcpu
*vcpu
,
3600 struct descriptor_table
*dtable
)
3602 if (selector
& 1 << 2) {
3603 struct kvm_segment kvm_seg
;
3605 kvm_get_segment(vcpu
, &kvm_seg
, VCPU_SREG_LDTR
);
3607 if (kvm_seg
.unusable
)
3610 dtable
->limit
= kvm_seg
.limit
;
3611 dtable
->base
= kvm_seg
.base
;
3614 kvm_x86_ops
->get_gdt(vcpu
, dtable
);
3617 /* allowed just for 8 bytes segments */
3618 static int load_guest_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
3619 struct desc_struct
*seg_desc
)
3622 struct descriptor_table dtable
;
3623 u16 index
= selector
>> 3;
3625 get_segment_descriptor_dtable(vcpu
, selector
, &dtable
);
3627 if (dtable
.limit
< index
* 8 + 7) {
3628 kvm_queue_exception_e(vcpu
, GP_VECTOR
, selector
& 0xfffc);
3631 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, dtable
.base
);
3633 return kvm_read_guest(vcpu
->kvm
, gpa
, seg_desc
, 8);
3636 /* allowed just for 8 bytes segments */
3637 static int save_guest_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
3638 struct desc_struct
*seg_desc
)
3641 struct descriptor_table dtable
;
3642 u16 index
= selector
>> 3;
3644 get_segment_descriptor_dtable(vcpu
, selector
, &dtable
);
3646 if (dtable
.limit
< index
* 8 + 7)
3648 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, dtable
.base
);
3650 return kvm_write_guest(vcpu
->kvm
, gpa
, seg_desc
, 8);
3653 static u32
get_tss_base_addr(struct kvm_vcpu
*vcpu
,
3654 struct desc_struct
*seg_desc
)
3658 base_addr
= seg_desc
->base0
;
3659 base_addr
|= (seg_desc
->base1
<< 16);
3660 base_addr
|= (seg_desc
->base2
<< 24);
3662 return vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, base_addr
);
3665 static u16
get_segment_selector(struct kvm_vcpu
*vcpu
, int seg
)
3667 struct kvm_segment kvm_seg
;
3669 kvm_get_segment(vcpu
, &kvm_seg
, seg
);
3670 return kvm_seg
.selector
;
3673 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu
*vcpu
,
3675 struct kvm_segment
*kvm_seg
)
3677 struct desc_struct seg_desc
;
3679 if (load_guest_segment_descriptor(vcpu
, selector
, &seg_desc
))
3681 seg_desct_to_kvm_desct(&seg_desc
, selector
, kvm_seg
);
3685 static int kvm_load_realmode_segment(struct kvm_vcpu
*vcpu
, u16 selector
, int seg
)
3687 struct kvm_segment segvar
= {
3688 .base
= selector
<< 4,
3690 .selector
= selector
,
3701 kvm_x86_ops
->set_segment(vcpu
, &segvar
, seg
);
3705 int kvm_load_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
3706 int type_bits
, int seg
)
3708 struct kvm_segment kvm_seg
;
3710 if (!(vcpu
->arch
.cr0
& X86_CR0_PE
))
3711 return kvm_load_realmode_segment(vcpu
, selector
, seg
);
3712 if (load_segment_descriptor_to_kvm_desct(vcpu
, selector
, &kvm_seg
))
3714 kvm_seg
.type
|= type_bits
;
3716 if (seg
!= VCPU_SREG_SS
&& seg
!= VCPU_SREG_CS
&&
3717 seg
!= VCPU_SREG_LDTR
)
3719 kvm_seg
.unusable
= 1;
3721 kvm_set_segment(vcpu
, &kvm_seg
, seg
);
3725 static void save_state_to_tss32(struct kvm_vcpu
*vcpu
,
3726 struct tss_segment_32
*tss
)
3728 tss
->cr3
= vcpu
->arch
.cr3
;
3729 tss
->eip
= kvm_rip_read(vcpu
);
3730 tss
->eflags
= kvm_x86_ops
->get_rflags(vcpu
);
3731 tss
->eax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3732 tss
->ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3733 tss
->edx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
3734 tss
->ebx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
3735 tss
->esp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
3736 tss
->ebp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
3737 tss
->esi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
3738 tss
->edi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
3739 tss
->es
= get_segment_selector(vcpu
, VCPU_SREG_ES
);
3740 tss
->cs
= get_segment_selector(vcpu
, VCPU_SREG_CS
);
3741 tss
->ss
= get_segment_selector(vcpu
, VCPU_SREG_SS
);
3742 tss
->ds
= get_segment_selector(vcpu
, VCPU_SREG_DS
);
3743 tss
->fs
= get_segment_selector(vcpu
, VCPU_SREG_FS
);
3744 tss
->gs
= get_segment_selector(vcpu
, VCPU_SREG_GS
);
3745 tss
->ldt_selector
= get_segment_selector(vcpu
, VCPU_SREG_LDTR
);
3746 tss
->prev_task_link
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
3749 static int load_state_from_tss32(struct kvm_vcpu
*vcpu
,
3750 struct tss_segment_32
*tss
)
3752 kvm_set_cr3(vcpu
, tss
->cr3
);
3754 kvm_rip_write(vcpu
, tss
->eip
);
3755 kvm_x86_ops
->set_rflags(vcpu
, tss
->eflags
| 2);
3757 kvm_register_write(vcpu
, VCPU_REGS_RAX
, tss
->eax
);
3758 kvm_register_write(vcpu
, VCPU_REGS_RCX
, tss
->ecx
);
3759 kvm_register_write(vcpu
, VCPU_REGS_RDX
, tss
->edx
);
3760 kvm_register_write(vcpu
, VCPU_REGS_RBX
, tss
->ebx
);
3761 kvm_register_write(vcpu
, VCPU_REGS_RSP
, tss
->esp
);
3762 kvm_register_write(vcpu
, VCPU_REGS_RBP
, tss
->ebp
);
3763 kvm_register_write(vcpu
, VCPU_REGS_RSI
, tss
->esi
);
3764 kvm_register_write(vcpu
, VCPU_REGS_RDI
, tss
->edi
);
3766 if (kvm_load_segment_descriptor(vcpu
, tss
->ldt_selector
, 0, VCPU_SREG_LDTR
))
3769 if (kvm_load_segment_descriptor(vcpu
, tss
->es
, 1, VCPU_SREG_ES
))
3772 if (kvm_load_segment_descriptor(vcpu
, tss
->cs
, 9, VCPU_SREG_CS
))
3775 if (kvm_load_segment_descriptor(vcpu
, tss
->ss
, 1, VCPU_SREG_SS
))
3778 if (kvm_load_segment_descriptor(vcpu
, tss
->ds
, 1, VCPU_SREG_DS
))
3781 if (kvm_load_segment_descriptor(vcpu
, tss
->fs
, 1, VCPU_SREG_FS
))
3784 if (kvm_load_segment_descriptor(vcpu
, tss
->gs
, 1, VCPU_SREG_GS
))
3789 static void save_state_to_tss16(struct kvm_vcpu
*vcpu
,
3790 struct tss_segment_16
*tss
)
3792 tss
->ip
= kvm_rip_read(vcpu
);
3793 tss
->flag
= kvm_x86_ops
->get_rflags(vcpu
);
3794 tss
->ax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3795 tss
->cx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3796 tss
->dx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
3797 tss
->bx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
3798 tss
->sp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
3799 tss
->bp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
3800 tss
->si
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
3801 tss
->di
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
3803 tss
->es
= get_segment_selector(vcpu
, VCPU_SREG_ES
);
3804 tss
->cs
= get_segment_selector(vcpu
, VCPU_SREG_CS
);
3805 tss
->ss
= get_segment_selector(vcpu
, VCPU_SREG_SS
);
3806 tss
->ds
= get_segment_selector(vcpu
, VCPU_SREG_DS
);
3807 tss
->ldt
= get_segment_selector(vcpu
, VCPU_SREG_LDTR
);
3808 tss
->prev_task_link
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
3811 static int load_state_from_tss16(struct kvm_vcpu
*vcpu
,
3812 struct tss_segment_16
*tss
)
3814 kvm_rip_write(vcpu
, tss
->ip
);
3815 kvm_x86_ops
->set_rflags(vcpu
, tss
->flag
| 2);
3816 kvm_register_write(vcpu
, VCPU_REGS_RAX
, tss
->ax
);
3817 kvm_register_write(vcpu
, VCPU_REGS_RCX
, tss
->cx
);
3818 kvm_register_write(vcpu
, VCPU_REGS_RDX
, tss
->dx
);
3819 kvm_register_write(vcpu
, VCPU_REGS_RBX
, tss
->bx
);
3820 kvm_register_write(vcpu
, VCPU_REGS_RSP
, tss
->sp
);
3821 kvm_register_write(vcpu
, VCPU_REGS_RBP
, tss
->bp
);
3822 kvm_register_write(vcpu
, VCPU_REGS_RSI
, tss
->si
);
3823 kvm_register_write(vcpu
, VCPU_REGS_RDI
, tss
->di
);
3825 if (kvm_load_segment_descriptor(vcpu
, tss
->ldt
, 0, VCPU_SREG_LDTR
))
3828 if (kvm_load_segment_descriptor(vcpu
, tss
->es
, 1, VCPU_SREG_ES
))
3831 if (kvm_load_segment_descriptor(vcpu
, tss
->cs
, 9, VCPU_SREG_CS
))
3834 if (kvm_load_segment_descriptor(vcpu
, tss
->ss
, 1, VCPU_SREG_SS
))
3837 if (kvm_load_segment_descriptor(vcpu
, tss
->ds
, 1, VCPU_SREG_DS
))
3842 static int kvm_task_switch_16(struct kvm_vcpu
*vcpu
, u16 tss_selector
,
3844 struct desc_struct
*nseg_desc
)
3846 struct tss_segment_16 tss_segment_16
;
3849 if (kvm_read_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_16
,
3850 sizeof tss_segment_16
))
3853 save_state_to_tss16(vcpu
, &tss_segment_16
);
3855 if (kvm_write_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_16
,
3856 sizeof tss_segment_16
))
3859 if (kvm_read_guest(vcpu
->kvm
, get_tss_base_addr(vcpu
, nseg_desc
),
3860 &tss_segment_16
, sizeof tss_segment_16
))
3863 if (load_state_from_tss16(vcpu
, &tss_segment_16
))
3871 static int kvm_task_switch_32(struct kvm_vcpu
*vcpu
, u16 tss_selector
,
3873 struct desc_struct
*nseg_desc
)
3875 struct tss_segment_32 tss_segment_32
;
3878 if (kvm_read_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_32
,
3879 sizeof tss_segment_32
))
3882 save_state_to_tss32(vcpu
, &tss_segment_32
);
3884 if (kvm_write_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_32
,
3885 sizeof tss_segment_32
))
3888 if (kvm_read_guest(vcpu
->kvm
, get_tss_base_addr(vcpu
, nseg_desc
),
3889 &tss_segment_32
, sizeof tss_segment_32
))
3892 if (load_state_from_tss32(vcpu
, &tss_segment_32
))
3900 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int reason
)
3902 struct kvm_segment tr_seg
;
3903 struct desc_struct cseg_desc
;
3904 struct desc_struct nseg_desc
;
3906 u32 old_tss_base
= get_segment_base(vcpu
, VCPU_SREG_TR
);
3907 u16 old_tss_sel
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
3909 old_tss_base
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, old_tss_base
);
3911 /* FIXME: Handle errors. Failure to read either TSS or their
3912 * descriptors should generate a pagefault.
3914 if (load_guest_segment_descriptor(vcpu
, tss_selector
, &nseg_desc
))
3917 if (load_guest_segment_descriptor(vcpu
, old_tss_sel
, &cseg_desc
))
3920 if (reason
!= TASK_SWITCH_IRET
) {
3923 cpl
= kvm_x86_ops
->get_cpl(vcpu
);
3924 if ((tss_selector
& 3) > nseg_desc
.dpl
|| cpl
> nseg_desc
.dpl
) {
3925 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
3930 if (!nseg_desc
.p
|| (nseg_desc
.limit0
| nseg_desc
.limit
<< 16) < 0x67) {
3931 kvm_queue_exception_e(vcpu
, TS_VECTOR
, tss_selector
& 0xfffc);
3935 if (reason
== TASK_SWITCH_IRET
|| reason
== TASK_SWITCH_JMP
) {
3936 cseg_desc
.type
&= ~(1 << 1); //clear the B flag
3937 save_guest_segment_descriptor(vcpu
, old_tss_sel
, &cseg_desc
);
3940 if (reason
== TASK_SWITCH_IRET
) {
3941 u32 eflags
= kvm_x86_ops
->get_rflags(vcpu
);
3942 kvm_x86_ops
->set_rflags(vcpu
, eflags
& ~X86_EFLAGS_NT
);
3945 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
3947 if (nseg_desc
.type
& 8)
3948 ret
= kvm_task_switch_32(vcpu
, tss_selector
, old_tss_base
,
3951 ret
= kvm_task_switch_16(vcpu
, tss_selector
, old_tss_base
,
3954 if (reason
== TASK_SWITCH_CALL
|| reason
== TASK_SWITCH_GATE
) {
3955 u32 eflags
= kvm_x86_ops
->get_rflags(vcpu
);
3956 kvm_x86_ops
->set_rflags(vcpu
, eflags
| X86_EFLAGS_NT
);
3959 if (reason
!= TASK_SWITCH_IRET
) {
3960 nseg_desc
.type
|= (1 << 1);
3961 save_guest_segment_descriptor(vcpu
, tss_selector
,
3965 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->arch
.cr0
| X86_CR0_TS
);
3966 seg_desct_to_kvm_desct(&nseg_desc
, tss_selector
, &tr_seg
);
3968 kvm_set_segment(vcpu
, &tr_seg
, VCPU_SREG_TR
);
3972 EXPORT_SYMBOL_GPL(kvm_task_switch
);
3974 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
3975 struct kvm_sregs
*sregs
)
3977 int mmu_reset_needed
= 0;
3978 int i
, pending_vec
, max_bits
;
3979 struct descriptor_table dt
;
3983 dt
.limit
= sregs
->idt
.limit
;
3984 dt
.base
= sregs
->idt
.base
;
3985 kvm_x86_ops
->set_idt(vcpu
, &dt
);
3986 dt
.limit
= sregs
->gdt
.limit
;
3987 dt
.base
= sregs
->gdt
.base
;
3988 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
3990 vcpu
->arch
.cr2
= sregs
->cr2
;
3991 mmu_reset_needed
|= vcpu
->arch
.cr3
!= sregs
->cr3
;
3993 down_read(&vcpu
->kvm
->slots_lock
);
3994 if (gfn_to_memslot(vcpu
->kvm
, sregs
->cr3
>> PAGE_SHIFT
))
3995 vcpu
->arch
.cr3
= sregs
->cr3
;
3997 set_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
);
3998 up_read(&vcpu
->kvm
->slots_lock
);
4000 kvm_set_cr8(vcpu
, sregs
->cr8
);
4002 mmu_reset_needed
|= vcpu
->arch
.shadow_efer
!= sregs
->efer
;
4003 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
4004 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
4006 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
4008 mmu_reset_needed
|= vcpu
->arch
.cr0
!= sregs
->cr0
;
4009 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
4010 vcpu
->arch
.cr0
= sregs
->cr0
;
4012 mmu_reset_needed
|= vcpu
->arch
.cr4
!= sregs
->cr4
;
4013 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
4014 if (!is_long_mode(vcpu
) && is_pae(vcpu
))
4015 load_pdptrs(vcpu
, vcpu
->arch
.cr3
);
4017 if (mmu_reset_needed
)
4018 kvm_mmu_reset_context(vcpu
);
4020 if (!irqchip_in_kernel(vcpu
->kvm
)) {
4021 memcpy(vcpu
->arch
.irq_pending
, sregs
->interrupt_bitmap
,
4022 sizeof vcpu
->arch
.irq_pending
);
4023 vcpu
->arch
.irq_summary
= 0;
4024 for (i
= 0; i
< ARRAY_SIZE(vcpu
->arch
.irq_pending
); ++i
)
4025 if (vcpu
->arch
.irq_pending
[i
])
4026 __set_bit(i
, &vcpu
->arch
.irq_summary
);
4028 max_bits
= (sizeof sregs
->interrupt_bitmap
) << 3;
4029 pending_vec
= find_first_bit(
4030 (const unsigned long *)sregs
->interrupt_bitmap
,
4032 /* Only pending external irq is handled here */
4033 if (pending_vec
< max_bits
) {
4034 kvm_x86_ops
->set_irq(vcpu
, pending_vec
);
4035 pr_debug("Set back pending irq %d\n",
4038 kvm_pic_clear_isr_ack(vcpu
->kvm
);
4041 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
4042 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
4043 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
4044 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
4045 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
4046 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
4048 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
4049 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
4051 /* Older userspace won't unhalt the vcpu on reset. */
4052 if (vcpu
->vcpu_id
== 0 && kvm_rip_read(vcpu
) == 0xfff0 &&
4053 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
4054 !(vcpu
->arch
.cr0
& X86_CR0_PE
))
4055 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
4062 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
4063 struct kvm_guest_debug
*dbg
)
4069 if ((dbg
->control
& (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
)) ==
4070 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
)) {
4071 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
4072 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
4073 vcpu
->arch
.switch_db_regs
=
4074 (dbg
->arch
.debugreg
[7] & DR7_BP_EN_MASK
);
4076 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
4077 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
4078 vcpu
->arch
.switch_db_regs
= (vcpu
->arch
.dr7
& DR7_BP_EN_MASK
);
4081 r
= kvm_x86_ops
->set_guest_debug(vcpu
, dbg
);
4083 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
4084 kvm_queue_exception(vcpu
, DB_VECTOR
);
4085 else if (dbg
->control
& KVM_GUESTDBG_INJECT_BP
)
4086 kvm_queue_exception(vcpu
, BP_VECTOR
);
4094 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4095 * we have asm/x86/processor.h
4106 u32 st_space
[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4107 #ifdef CONFIG_X86_64
4108 u32 xmm_space
[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4110 u32 xmm_space
[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4115 * Translate a guest virtual address to a guest physical address.
4117 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
4118 struct kvm_translation
*tr
)
4120 unsigned long vaddr
= tr
->linear_address
;
4124 down_read(&vcpu
->kvm
->slots_lock
);
4125 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, vaddr
);
4126 up_read(&vcpu
->kvm
->slots_lock
);
4127 tr
->physical_address
= gpa
;
4128 tr
->valid
= gpa
!= UNMAPPED_GVA
;
4136 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
4138 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
4142 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
4143 fpu
->fcw
= fxsave
->cwd
;
4144 fpu
->fsw
= fxsave
->swd
;
4145 fpu
->ftwx
= fxsave
->twd
;
4146 fpu
->last_opcode
= fxsave
->fop
;
4147 fpu
->last_ip
= fxsave
->rip
;
4148 fpu
->last_dp
= fxsave
->rdp
;
4149 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
4156 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
4158 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
4162 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
4163 fxsave
->cwd
= fpu
->fcw
;
4164 fxsave
->swd
= fpu
->fsw
;
4165 fxsave
->twd
= fpu
->ftwx
;
4166 fxsave
->fop
= fpu
->last_opcode
;
4167 fxsave
->rip
= fpu
->last_ip
;
4168 fxsave
->rdp
= fpu
->last_dp
;
4169 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
4176 void fx_init(struct kvm_vcpu
*vcpu
)
4178 unsigned after_mxcsr_mask
;
4181 * Touch the fpu the first time in non atomic context as if
4182 * this is the first fpu instruction the exception handler
4183 * will fire before the instruction returns and it'll have to
4184 * allocate ram with GFP_KERNEL.
4187 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4189 /* Initialize guest FPU by resetting ours and saving into guest's */
4191 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4193 kvm_fx_save(&vcpu
->arch
.guest_fx_image
);
4194 kvm_fx_restore(&vcpu
->arch
.host_fx_image
);
4197 vcpu
->arch
.cr0
|= X86_CR0_ET
;
4198 after_mxcsr_mask
= offsetof(struct i387_fxsave_struct
, st_space
);
4199 vcpu
->arch
.guest_fx_image
.mxcsr
= 0x1f80;
4200 memset((void *)&vcpu
->arch
.guest_fx_image
+ after_mxcsr_mask
,
4201 0, sizeof(struct i387_fxsave_struct
) - after_mxcsr_mask
);
4203 EXPORT_SYMBOL_GPL(fx_init
);
4205 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
4207 if (!vcpu
->fpu_active
|| vcpu
->guest_fpu_loaded
)
4210 vcpu
->guest_fpu_loaded
= 1;
4211 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4212 kvm_fx_restore(&vcpu
->arch
.guest_fx_image
);
4214 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu
);
4216 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
4218 if (!vcpu
->guest_fpu_loaded
)
4221 vcpu
->guest_fpu_loaded
= 0;
4222 kvm_fx_save(&vcpu
->arch
.guest_fx_image
);
4223 kvm_fx_restore(&vcpu
->arch
.host_fx_image
);
4224 ++vcpu
->stat
.fpu_reload
;
4226 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu
);
4228 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
4230 if (vcpu
->arch
.time_page
) {
4231 kvm_release_page_dirty(vcpu
->arch
.time_page
);
4232 vcpu
->arch
.time_page
= NULL
;
4235 kvm_x86_ops
->vcpu_free(vcpu
);
4238 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
4241 return kvm_x86_ops
->vcpu_create(kvm
, id
);
4244 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
4248 /* We do fxsave: this must be aligned. */
4249 BUG_ON((unsigned long)&vcpu
->arch
.host_fx_image
& 0xF);
4251 vcpu
->arch
.mtrr_state
.have_fixed
= 1;
4253 r
= kvm_arch_vcpu_reset(vcpu
);
4255 r
= kvm_mmu_setup(vcpu
);
4262 kvm_x86_ops
->vcpu_free(vcpu
);
4266 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
4269 kvm_mmu_unload(vcpu
);
4272 kvm_x86_ops
->vcpu_free(vcpu
);
4275 int kvm_arch_vcpu_reset(struct kvm_vcpu
*vcpu
)
4277 vcpu
->arch
.nmi_pending
= false;
4278 vcpu
->arch
.nmi_injected
= false;
4280 vcpu
->arch
.switch_db_regs
= 0;
4281 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
4282 vcpu
->arch
.dr6
= DR6_FIXED_1
;
4283 vcpu
->arch
.dr7
= DR7_FIXED_1
;
4285 return kvm_x86_ops
->vcpu_reset(vcpu
);
4288 void kvm_arch_hardware_enable(void *garbage
)
4290 kvm_x86_ops
->hardware_enable(garbage
);
4293 void kvm_arch_hardware_disable(void *garbage
)
4295 kvm_x86_ops
->hardware_disable(garbage
);
4298 int kvm_arch_hardware_setup(void)
4300 return kvm_x86_ops
->hardware_setup();
4303 void kvm_arch_hardware_unsetup(void)
4305 kvm_x86_ops
->hardware_unsetup();
4308 void kvm_arch_check_processor_compat(void *rtn
)
4310 kvm_x86_ops
->check_processor_compatibility(rtn
);
4313 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
4319 BUG_ON(vcpu
->kvm
== NULL
);
4322 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
4323 if (!irqchip_in_kernel(kvm
) || vcpu
->vcpu_id
== 0)
4324 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
4326 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
4328 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
4333 vcpu
->arch
.pio_data
= page_address(page
);
4335 r
= kvm_mmu_create(vcpu
);
4337 goto fail_free_pio_data
;
4339 if (irqchip_in_kernel(kvm
)) {
4340 r
= kvm_create_lapic(vcpu
);
4342 goto fail_mmu_destroy
;
4348 kvm_mmu_destroy(vcpu
);
4350 free_page((unsigned long)vcpu
->arch
.pio_data
);
4355 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
4357 kvm_free_lapic(vcpu
);
4358 down_read(&vcpu
->kvm
->slots_lock
);
4359 kvm_mmu_destroy(vcpu
);
4360 up_read(&vcpu
->kvm
->slots_lock
);
4361 free_page((unsigned long)vcpu
->arch
.pio_data
);
4364 struct kvm
*kvm_arch_create_vm(void)
4366 struct kvm
*kvm
= kzalloc(sizeof(struct kvm
), GFP_KERNEL
);
4369 return ERR_PTR(-ENOMEM
);
4371 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
4372 INIT_LIST_HEAD(&kvm
->arch
.oos_global_pages
);
4373 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
4375 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4376 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
4378 rdtscll(kvm
->arch
.vm_init_tsc
);
4383 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
4386 kvm_mmu_unload(vcpu
);
4390 static void kvm_free_vcpus(struct kvm
*kvm
)
4395 * Unpin any mmu pages first.
4397 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
)
4399 kvm_unload_vcpu_mmu(kvm
->vcpus
[i
]);
4400 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
4401 if (kvm
->vcpus
[i
]) {
4402 kvm_arch_vcpu_free(kvm
->vcpus
[i
]);
4403 kvm
->vcpus
[i
] = NULL
;
4409 void kvm_arch_sync_events(struct kvm
*kvm
)
4411 kvm_free_all_assigned_devices(kvm
);
4414 void kvm_arch_destroy_vm(struct kvm
*kvm
)
4416 kvm_iommu_unmap_guest(kvm
);
4418 kfree(kvm
->arch
.vpic
);
4419 kfree(kvm
->arch
.vioapic
);
4420 kvm_free_vcpus(kvm
);
4421 kvm_free_physmem(kvm
);
4422 if (kvm
->arch
.apic_access_page
)
4423 put_page(kvm
->arch
.apic_access_page
);
4424 if (kvm
->arch
.ept_identity_pagetable
)
4425 put_page(kvm
->arch
.ept_identity_pagetable
);
4429 int kvm_arch_set_memory_region(struct kvm
*kvm
,
4430 struct kvm_userspace_memory_region
*mem
,
4431 struct kvm_memory_slot old
,
4434 int npages
= mem
->memory_size
>> PAGE_SHIFT
;
4435 struct kvm_memory_slot
*memslot
= &kvm
->memslots
[mem
->slot
];
4437 /*To keep backward compatibility with older userspace,
4438 *x86 needs to hanlde !user_alloc case.
4441 if (npages
&& !old
.rmap
) {
4442 unsigned long userspace_addr
;
4444 down_write(¤t
->mm
->mmap_sem
);
4445 userspace_addr
= do_mmap(NULL
, 0,
4447 PROT_READ
| PROT_WRITE
,
4448 MAP_PRIVATE
| MAP_ANONYMOUS
,
4450 up_write(¤t
->mm
->mmap_sem
);
4452 if (IS_ERR((void *)userspace_addr
))
4453 return PTR_ERR((void *)userspace_addr
);
4455 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4456 spin_lock(&kvm
->mmu_lock
);
4457 memslot
->userspace_addr
= userspace_addr
;
4458 spin_unlock(&kvm
->mmu_lock
);
4460 if (!old
.user_alloc
&& old
.rmap
) {
4463 down_write(¤t
->mm
->mmap_sem
);
4464 ret
= do_munmap(current
->mm
, old
.userspace_addr
,
4465 old
.npages
* PAGE_SIZE
);
4466 up_write(¤t
->mm
->mmap_sem
);
4469 "kvm_vm_ioctl_set_memory_region: "
4470 "failed to munmap memory\n");
4475 spin_lock(&kvm
->mmu_lock
);
4476 if (!kvm
->arch
.n_requested_mmu_pages
) {
4477 unsigned int nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
4478 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
4481 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
4482 spin_unlock(&kvm
->mmu_lock
);
4483 kvm_flush_remote_tlbs(kvm
);
4488 void kvm_arch_flush_shadow(struct kvm
*kvm
)
4490 kvm_mmu_zap_all(kvm
);
4491 kvm_reload_remote_mmus(kvm
);
4494 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
4496 return vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
4497 || vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
4498 || vcpu
->arch
.nmi_pending
;
4501 static void vcpu_kick_intr(void *info
)
4504 struct kvm_vcpu
*vcpu
= (struct kvm_vcpu
*)info
;
4505 printk(KERN_DEBUG
"vcpu_kick_intr %p \n", vcpu
);
4509 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
4511 int ipi_pcpu
= vcpu
->cpu
;
4512 int cpu
= get_cpu();
4514 if (waitqueue_active(&vcpu
->wq
)) {
4515 wake_up_interruptible(&vcpu
->wq
);
4516 ++vcpu
->stat
.halt_wakeup
;
4519 * We may be called synchronously with irqs disabled in guest mode,
4520 * So need not to call smp_call_function_single() in that case.
4522 if (vcpu
->guest_mode
&& vcpu
->cpu
!= cpu
)
4523 smp_call_function_single(ipi_pcpu
, vcpu_kick_intr
, vcpu
, 0);