KVM: Fix KVM_GET_MSR_INDEX_LIST
[linux-2.6/mini2440.git] / arch / x86 / kvm / x86.c
blob0b1bfc6de69aeb64f203b5dd1cc1c9da677d2e6e
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
41 #include <asm/uaccess.h>
42 #include <asm/msr.h>
43 #include <asm/desc.h>
44 #include <asm/mtrr.h>
46 #define MAX_IO_MSRS 256
47 #define CR0_RESERVED_BITS \
48 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
49 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
50 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
51 #define CR4_RESERVED_BITS \
52 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
53 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
54 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
55 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
57 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
58 /* EFER defaults:
59 * - enable syscall per default because its emulated by KVM
60 * - enable LME and LMA per default on 64 bit KVM
62 #ifdef CONFIG_X86_64
63 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
64 #else
65 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
66 #endif
68 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
69 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
71 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
72 struct kvm_cpuid_entry2 __user *entries);
73 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
74 u32 function, u32 index);
76 struct kvm_x86_ops *kvm_x86_ops;
77 EXPORT_SYMBOL_GPL(kvm_x86_ops);
79 struct kvm_stats_debugfs_item debugfs_entries[] = {
80 { "pf_fixed", VCPU_STAT(pf_fixed) },
81 { "pf_guest", VCPU_STAT(pf_guest) },
82 { "tlb_flush", VCPU_STAT(tlb_flush) },
83 { "invlpg", VCPU_STAT(invlpg) },
84 { "exits", VCPU_STAT(exits) },
85 { "io_exits", VCPU_STAT(io_exits) },
86 { "mmio_exits", VCPU_STAT(mmio_exits) },
87 { "signal_exits", VCPU_STAT(signal_exits) },
88 { "irq_window", VCPU_STAT(irq_window_exits) },
89 { "nmi_window", VCPU_STAT(nmi_window_exits) },
90 { "halt_exits", VCPU_STAT(halt_exits) },
91 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
92 { "hypercalls", VCPU_STAT(hypercalls) },
93 { "request_irq", VCPU_STAT(request_irq_exits) },
94 { "request_nmi", VCPU_STAT(request_nmi_exits) },
95 { "irq_exits", VCPU_STAT(irq_exits) },
96 { "host_state_reload", VCPU_STAT(host_state_reload) },
97 { "efer_reload", VCPU_STAT(efer_reload) },
98 { "fpu_reload", VCPU_STAT(fpu_reload) },
99 { "insn_emulation", VCPU_STAT(insn_emulation) },
100 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
101 { "irq_injections", VCPU_STAT(irq_injections) },
102 { "nmi_injections", VCPU_STAT(nmi_injections) },
103 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
104 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
105 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
106 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
107 { "mmu_flooded", VM_STAT(mmu_flooded) },
108 { "mmu_recycled", VM_STAT(mmu_recycled) },
109 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
110 { "mmu_unsync", VM_STAT(mmu_unsync) },
111 { "mmu_unsync_global", VM_STAT(mmu_unsync_global) },
112 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
113 { "largepages", VM_STAT(lpages) },
114 { NULL }
117 unsigned long segment_base(u16 selector)
119 struct descriptor_table gdt;
120 struct desc_struct *d;
121 unsigned long table_base;
122 unsigned long v;
124 if (selector == 0)
125 return 0;
127 asm("sgdt %0" : "=m"(gdt));
128 table_base = gdt.base;
130 if (selector & 4) { /* from ldt */
131 u16 ldt_selector;
133 asm("sldt %0" : "=g"(ldt_selector));
134 table_base = segment_base(ldt_selector);
136 d = (struct desc_struct *)(table_base + (selector & ~7));
137 v = d->base0 | ((unsigned long)d->base1 << 16) |
138 ((unsigned long)d->base2 << 24);
139 #ifdef CONFIG_X86_64
140 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
141 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
142 #endif
143 return v;
145 EXPORT_SYMBOL_GPL(segment_base);
147 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
149 if (irqchip_in_kernel(vcpu->kvm))
150 return vcpu->arch.apic_base;
151 else
152 return vcpu->arch.apic_base;
154 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
156 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
158 /* TODO: reserve bits check */
159 if (irqchip_in_kernel(vcpu->kvm))
160 kvm_lapic_set_base(vcpu, data);
161 else
162 vcpu->arch.apic_base = data;
164 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
166 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
168 WARN_ON(vcpu->arch.exception.pending);
169 vcpu->arch.exception.pending = true;
170 vcpu->arch.exception.has_error_code = false;
171 vcpu->arch.exception.nr = nr;
173 EXPORT_SYMBOL_GPL(kvm_queue_exception);
175 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
176 u32 error_code)
178 ++vcpu->stat.pf_guest;
180 if (vcpu->arch.exception.pending) {
181 if (vcpu->arch.exception.nr == PF_VECTOR) {
182 printk(KERN_DEBUG "kvm: inject_page_fault:"
183 " double fault 0x%lx\n", addr);
184 vcpu->arch.exception.nr = DF_VECTOR;
185 vcpu->arch.exception.error_code = 0;
186 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
187 /* triple fault -> shutdown */
188 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
190 return;
192 vcpu->arch.cr2 = addr;
193 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
196 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
198 vcpu->arch.nmi_pending = 1;
200 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
202 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
204 WARN_ON(vcpu->arch.exception.pending);
205 vcpu->arch.exception.pending = true;
206 vcpu->arch.exception.has_error_code = true;
207 vcpu->arch.exception.nr = nr;
208 vcpu->arch.exception.error_code = error_code;
210 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
212 static void __queue_exception(struct kvm_vcpu *vcpu)
214 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
215 vcpu->arch.exception.has_error_code,
216 vcpu->arch.exception.error_code);
220 * Load the pae pdptrs. Return true is they are all valid.
222 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
224 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
225 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
226 int i;
227 int ret;
228 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
230 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
231 offset * sizeof(u64), sizeof(pdpte));
232 if (ret < 0) {
233 ret = 0;
234 goto out;
236 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
237 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
238 ret = 0;
239 goto out;
242 ret = 1;
244 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
245 out:
247 return ret;
249 EXPORT_SYMBOL_GPL(load_pdptrs);
251 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
253 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
254 bool changed = true;
255 int r;
257 if (is_long_mode(vcpu) || !is_pae(vcpu))
258 return false;
260 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
261 if (r < 0)
262 goto out;
263 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
264 out:
266 return changed;
269 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
271 if (cr0 & CR0_RESERVED_BITS) {
272 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
273 cr0, vcpu->arch.cr0);
274 kvm_inject_gp(vcpu, 0);
275 return;
278 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
279 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
280 kvm_inject_gp(vcpu, 0);
281 return;
284 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
285 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
286 "and a clear PE flag\n");
287 kvm_inject_gp(vcpu, 0);
288 return;
291 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
292 #ifdef CONFIG_X86_64
293 if ((vcpu->arch.shadow_efer & EFER_LME)) {
294 int cs_db, cs_l;
296 if (!is_pae(vcpu)) {
297 printk(KERN_DEBUG "set_cr0: #GP, start paging "
298 "in long mode while PAE is disabled\n");
299 kvm_inject_gp(vcpu, 0);
300 return;
302 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
303 if (cs_l) {
304 printk(KERN_DEBUG "set_cr0: #GP, start paging "
305 "in long mode while CS.L == 1\n");
306 kvm_inject_gp(vcpu, 0);
307 return;
310 } else
311 #endif
312 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
313 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
314 "reserved bits\n");
315 kvm_inject_gp(vcpu, 0);
316 return;
321 kvm_x86_ops->set_cr0(vcpu, cr0);
322 vcpu->arch.cr0 = cr0;
324 kvm_mmu_sync_global(vcpu);
325 kvm_mmu_reset_context(vcpu);
326 return;
328 EXPORT_SYMBOL_GPL(kvm_set_cr0);
330 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
332 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
333 KVMTRACE_1D(LMSW, vcpu,
334 (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
335 handler);
337 EXPORT_SYMBOL_GPL(kvm_lmsw);
339 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
341 unsigned long old_cr4 = vcpu->arch.cr4;
342 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
344 if (cr4 & CR4_RESERVED_BITS) {
345 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
346 kvm_inject_gp(vcpu, 0);
347 return;
350 if (is_long_mode(vcpu)) {
351 if (!(cr4 & X86_CR4_PAE)) {
352 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
353 "in long mode\n");
354 kvm_inject_gp(vcpu, 0);
355 return;
357 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
358 && ((cr4 ^ old_cr4) & pdptr_bits)
359 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
360 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
361 kvm_inject_gp(vcpu, 0);
362 return;
365 if (cr4 & X86_CR4_VMXE) {
366 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
367 kvm_inject_gp(vcpu, 0);
368 return;
370 kvm_x86_ops->set_cr4(vcpu, cr4);
371 vcpu->arch.cr4 = cr4;
372 vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
373 kvm_mmu_sync_global(vcpu);
374 kvm_mmu_reset_context(vcpu);
376 EXPORT_SYMBOL_GPL(kvm_set_cr4);
378 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
380 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
381 kvm_mmu_sync_roots(vcpu);
382 kvm_mmu_flush_tlb(vcpu);
383 return;
386 if (is_long_mode(vcpu)) {
387 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
388 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
389 kvm_inject_gp(vcpu, 0);
390 return;
392 } else {
393 if (is_pae(vcpu)) {
394 if (cr3 & CR3_PAE_RESERVED_BITS) {
395 printk(KERN_DEBUG
396 "set_cr3: #GP, reserved bits\n");
397 kvm_inject_gp(vcpu, 0);
398 return;
400 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
401 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
402 "reserved bits\n");
403 kvm_inject_gp(vcpu, 0);
404 return;
408 * We don't check reserved bits in nonpae mode, because
409 * this isn't enforced, and VMware depends on this.
414 * Does the new cr3 value map to physical memory? (Note, we
415 * catch an invalid cr3 even in real-mode, because it would
416 * cause trouble later on when we turn on paging anyway.)
418 * A real CPU would silently accept an invalid cr3 and would
419 * attempt to use it - with largely undefined (and often hard
420 * to debug) behavior on the guest side.
422 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
423 kvm_inject_gp(vcpu, 0);
424 else {
425 vcpu->arch.cr3 = cr3;
426 vcpu->arch.mmu.new_cr3(vcpu);
429 EXPORT_SYMBOL_GPL(kvm_set_cr3);
431 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
433 if (cr8 & CR8_RESERVED_BITS) {
434 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
435 kvm_inject_gp(vcpu, 0);
436 return;
438 if (irqchip_in_kernel(vcpu->kvm))
439 kvm_lapic_set_tpr(vcpu, cr8);
440 else
441 vcpu->arch.cr8 = cr8;
443 EXPORT_SYMBOL_GPL(kvm_set_cr8);
445 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
447 if (irqchip_in_kernel(vcpu->kvm))
448 return kvm_lapic_get_cr8(vcpu);
449 else
450 return vcpu->arch.cr8;
452 EXPORT_SYMBOL_GPL(kvm_get_cr8);
454 static inline u32 bit(int bitno)
456 return 1 << (bitno & 31);
460 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
461 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
463 * This list is modified at module load time to reflect the
464 * capabilities of the host cpu.
466 static u32 msrs_to_save[] = {
467 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
468 MSR_K6_STAR,
469 #ifdef CONFIG_X86_64
470 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
471 #endif
472 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
473 MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
476 static unsigned num_msrs_to_save;
478 static u32 emulated_msrs[] = {
479 MSR_IA32_MISC_ENABLE,
482 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
484 if (efer & efer_reserved_bits) {
485 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
486 efer);
487 kvm_inject_gp(vcpu, 0);
488 return;
491 if (is_paging(vcpu)
492 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
493 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
494 kvm_inject_gp(vcpu, 0);
495 return;
498 if (efer & EFER_FFXSR) {
499 struct kvm_cpuid_entry2 *feat;
501 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
502 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
503 printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
504 kvm_inject_gp(vcpu, 0);
505 return;
509 if (efer & EFER_SVME) {
510 struct kvm_cpuid_entry2 *feat;
512 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
513 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
514 printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
515 kvm_inject_gp(vcpu, 0);
516 return;
520 kvm_x86_ops->set_efer(vcpu, efer);
522 efer &= ~EFER_LMA;
523 efer |= vcpu->arch.shadow_efer & EFER_LMA;
525 vcpu->arch.shadow_efer = efer;
527 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
528 kvm_mmu_reset_context(vcpu);
531 void kvm_enable_efer_bits(u64 mask)
533 efer_reserved_bits &= ~mask;
535 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
539 * Writes msr value into into the appropriate "register".
540 * Returns 0 on success, non-0 otherwise.
541 * Assumes vcpu_load() was already called.
543 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
545 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
549 * Adapt set_msr() to msr_io()'s calling convention
551 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
553 return kvm_set_msr(vcpu, index, *data);
556 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
558 static int version;
559 struct pvclock_wall_clock wc;
560 struct timespec now, sys, boot;
562 if (!wall_clock)
563 return;
565 version++;
567 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
570 * The guest calculates current wall clock time by adding
571 * system time (updated by kvm_write_guest_time below) to the
572 * wall clock specified here. guest system time equals host
573 * system time for us, thus we must fill in host boot time here.
575 now = current_kernel_time();
576 ktime_get_ts(&sys);
577 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
579 wc.sec = boot.tv_sec;
580 wc.nsec = boot.tv_nsec;
581 wc.version = version;
583 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
585 version++;
586 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
589 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
591 uint32_t quotient, remainder;
593 /* Don't try to replace with do_div(), this one calculates
594 * "(dividend << 32) / divisor" */
595 __asm__ ( "divl %4"
596 : "=a" (quotient), "=d" (remainder)
597 : "0" (0), "1" (dividend), "r" (divisor) );
598 return quotient;
601 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
603 uint64_t nsecs = 1000000000LL;
604 int32_t shift = 0;
605 uint64_t tps64;
606 uint32_t tps32;
608 tps64 = tsc_khz * 1000LL;
609 while (tps64 > nsecs*2) {
610 tps64 >>= 1;
611 shift--;
614 tps32 = (uint32_t)tps64;
615 while (tps32 <= (uint32_t)nsecs) {
616 tps32 <<= 1;
617 shift++;
620 hv_clock->tsc_shift = shift;
621 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
623 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
624 __func__, tsc_khz, hv_clock->tsc_shift,
625 hv_clock->tsc_to_system_mul);
628 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
630 static void kvm_write_guest_time(struct kvm_vcpu *v)
632 struct timespec ts;
633 unsigned long flags;
634 struct kvm_vcpu_arch *vcpu = &v->arch;
635 void *shared_kaddr;
637 if ((!vcpu->time_page))
638 return;
640 preempt_disable();
641 if (unlikely(vcpu->hv_clock_tsc_khz != __get_cpu_var(cpu_tsc_khz))) {
642 kvm_set_time_scale(__get_cpu_var(cpu_tsc_khz), &vcpu->hv_clock);
643 vcpu->hv_clock_tsc_khz = __get_cpu_var(cpu_tsc_khz);
645 preempt_enable();
647 /* Keep irq disabled to prevent changes to the clock */
648 local_irq_save(flags);
649 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
650 &vcpu->hv_clock.tsc_timestamp);
651 ktime_get_ts(&ts);
652 local_irq_restore(flags);
654 /* With all the info we got, fill in the values */
656 vcpu->hv_clock.system_time = ts.tv_nsec +
657 (NSEC_PER_SEC * (u64)ts.tv_sec);
659 * The interface expects us to write an even number signaling that the
660 * update is finished. Since the guest won't see the intermediate
661 * state, we just increase by 2 at the end.
663 vcpu->hv_clock.version += 2;
665 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
667 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
668 sizeof(vcpu->hv_clock));
670 kunmap_atomic(shared_kaddr, KM_USER0);
672 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
675 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
677 struct kvm_vcpu_arch *vcpu = &v->arch;
679 if (!vcpu->time_page)
680 return 0;
681 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
682 return 1;
685 static bool msr_mtrr_valid(unsigned msr)
687 switch (msr) {
688 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
689 case MSR_MTRRfix64K_00000:
690 case MSR_MTRRfix16K_80000:
691 case MSR_MTRRfix16K_A0000:
692 case MSR_MTRRfix4K_C0000:
693 case MSR_MTRRfix4K_C8000:
694 case MSR_MTRRfix4K_D0000:
695 case MSR_MTRRfix4K_D8000:
696 case MSR_MTRRfix4K_E0000:
697 case MSR_MTRRfix4K_E8000:
698 case MSR_MTRRfix4K_F0000:
699 case MSR_MTRRfix4K_F8000:
700 case MSR_MTRRdefType:
701 case MSR_IA32_CR_PAT:
702 return true;
703 case 0x2f8:
704 return true;
706 return false;
709 static bool valid_pat_type(unsigned t)
711 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
714 static bool valid_mtrr_type(unsigned t)
716 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
719 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
721 int i;
723 if (!msr_mtrr_valid(msr))
724 return false;
726 if (msr == MSR_IA32_CR_PAT) {
727 for (i = 0; i < 8; i++)
728 if (!valid_pat_type((data >> (i * 8)) & 0xff))
729 return false;
730 return true;
731 } else if (msr == MSR_MTRRdefType) {
732 if (data & ~0xcff)
733 return false;
734 return valid_mtrr_type(data & 0xff);
735 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
736 for (i = 0; i < 8 ; i++)
737 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
738 return false;
739 return true;
742 /* variable MTRRs */
743 return valid_mtrr_type(data & 0xff);
746 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
748 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
750 if (!mtrr_valid(vcpu, msr, data))
751 return 1;
753 if (msr == MSR_MTRRdefType) {
754 vcpu->arch.mtrr_state.def_type = data;
755 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
756 } else if (msr == MSR_MTRRfix64K_00000)
757 p[0] = data;
758 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
759 p[1 + msr - MSR_MTRRfix16K_80000] = data;
760 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
761 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
762 else if (msr == MSR_IA32_CR_PAT)
763 vcpu->arch.pat = data;
764 else { /* Variable MTRRs */
765 int idx, is_mtrr_mask;
766 u64 *pt;
768 idx = (msr - 0x200) / 2;
769 is_mtrr_mask = msr - 0x200 - 2 * idx;
770 if (!is_mtrr_mask)
771 pt =
772 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
773 else
774 pt =
775 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
776 *pt = data;
779 kvm_mmu_reset_context(vcpu);
780 return 0;
783 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
785 switch (msr) {
786 case MSR_EFER:
787 set_efer(vcpu, data);
788 break;
789 case MSR_IA32_MC0_STATUS:
790 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
791 __func__, data);
792 break;
793 case MSR_IA32_MCG_STATUS:
794 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
795 __func__, data);
796 break;
797 case MSR_IA32_MCG_CTL:
798 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
799 __func__, data);
800 break;
801 case MSR_IA32_DEBUGCTLMSR:
802 if (!data) {
803 /* We support the non-activated case already */
804 break;
805 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
806 /* Values other than LBR and BTF are vendor-specific,
807 thus reserved and should throw a #GP */
808 return 1;
810 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
811 __func__, data);
812 break;
813 case MSR_IA32_UCODE_REV:
814 case MSR_IA32_UCODE_WRITE:
815 case MSR_VM_HSAVE_PA:
816 break;
817 case 0x200 ... 0x2ff:
818 return set_msr_mtrr(vcpu, msr, data);
819 case MSR_IA32_APICBASE:
820 kvm_set_apic_base(vcpu, data);
821 break;
822 case MSR_IA32_MISC_ENABLE:
823 vcpu->arch.ia32_misc_enable_msr = data;
824 break;
825 case MSR_KVM_WALL_CLOCK:
826 vcpu->kvm->arch.wall_clock = data;
827 kvm_write_wall_clock(vcpu->kvm, data);
828 break;
829 case MSR_KVM_SYSTEM_TIME: {
830 if (vcpu->arch.time_page) {
831 kvm_release_page_dirty(vcpu->arch.time_page);
832 vcpu->arch.time_page = NULL;
835 vcpu->arch.time = data;
837 /* we verify if the enable bit is set... */
838 if (!(data & 1))
839 break;
841 /* ...but clean it before doing the actual write */
842 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
844 vcpu->arch.time_page =
845 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
847 if (is_error_page(vcpu->arch.time_page)) {
848 kvm_release_page_clean(vcpu->arch.time_page);
849 vcpu->arch.time_page = NULL;
852 kvm_request_guest_time_update(vcpu);
853 break;
855 default:
856 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
857 return 1;
859 return 0;
861 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
865 * Reads an msr value (of 'msr_index') into 'pdata'.
866 * Returns 0 on success, non-0 otherwise.
867 * Assumes vcpu_load() was already called.
869 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
871 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
874 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
876 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
878 if (!msr_mtrr_valid(msr))
879 return 1;
881 if (msr == MSR_MTRRdefType)
882 *pdata = vcpu->arch.mtrr_state.def_type +
883 (vcpu->arch.mtrr_state.enabled << 10);
884 else if (msr == MSR_MTRRfix64K_00000)
885 *pdata = p[0];
886 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
887 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
888 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
889 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
890 else if (msr == MSR_IA32_CR_PAT)
891 *pdata = vcpu->arch.pat;
892 else { /* Variable MTRRs */
893 int idx, is_mtrr_mask;
894 u64 *pt;
896 idx = (msr - 0x200) / 2;
897 is_mtrr_mask = msr - 0x200 - 2 * idx;
898 if (!is_mtrr_mask)
899 pt =
900 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
901 else
902 pt =
903 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
904 *pdata = *pt;
907 return 0;
910 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
912 u64 data;
914 switch (msr) {
915 case 0xc0010010: /* SYSCFG */
916 case 0xc0010015: /* HWCR */
917 case MSR_IA32_PLATFORM_ID:
918 case MSR_IA32_P5_MC_ADDR:
919 case MSR_IA32_P5_MC_TYPE:
920 case MSR_IA32_MC0_CTL:
921 case MSR_IA32_MCG_STATUS:
922 case MSR_IA32_MCG_CAP:
923 case MSR_IA32_MCG_CTL:
924 case MSR_IA32_MC0_MISC:
925 case MSR_IA32_MC0_MISC+4:
926 case MSR_IA32_MC0_MISC+8:
927 case MSR_IA32_MC0_MISC+12:
928 case MSR_IA32_MC0_MISC+16:
929 case MSR_IA32_MC0_MISC+20:
930 case MSR_IA32_UCODE_REV:
931 case MSR_IA32_EBL_CR_POWERON:
932 case MSR_IA32_DEBUGCTLMSR:
933 case MSR_IA32_LASTBRANCHFROMIP:
934 case MSR_IA32_LASTBRANCHTOIP:
935 case MSR_IA32_LASTINTFROMIP:
936 case MSR_IA32_LASTINTTOIP:
937 case MSR_VM_HSAVE_PA:
938 case MSR_P6_EVNTSEL0:
939 case MSR_P6_EVNTSEL1:
940 case MSR_K7_EVNTSEL0:
941 data = 0;
942 break;
943 case MSR_MTRRcap:
944 data = 0x500 | KVM_NR_VAR_MTRR;
945 break;
946 case 0x200 ... 0x2ff:
947 return get_msr_mtrr(vcpu, msr, pdata);
948 case 0xcd: /* fsb frequency */
949 data = 3;
950 break;
951 case MSR_IA32_APICBASE:
952 data = kvm_get_apic_base(vcpu);
953 break;
954 case MSR_IA32_MISC_ENABLE:
955 data = vcpu->arch.ia32_misc_enable_msr;
956 break;
957 case MSR_IA32_PERF_STATUS:
958 /* TSC increment by tick */
959 data = 1000ULL;
960 /* CPU multiplier */
961 data |= (((uint64_t)4ULL) << 40);
962 break;
963 case MSR_EFER:
964 data = vcpu->arch.shadow_efer;
965 break;
966 case MSR_KVM_WALL_CLOCK:
967 data = vcpu->kvm->arch.wall_clock;
968 break;
969 case MSR_KVM_SYSTEM_TIME:
970 data = vcpu->arch.time;
971 break;
972 default:
973 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
974 return 1;
976 *pdata = data;
977 return 0;
979 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
982 * Read or write a bunch of msrs. All parameters are kernel addresses.
984 * @return number of msrs set successfully.
986 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
987 struct kvm_msr_entry *entries,
988 int (*do_msr)(struct kvm_vcpu *vcpu,
989 unsigned index, u64 *data))
991 int i;
993 vcpu_load(vcpu);
995 down_read(&vcpu->kvm->slots_lock);
996 for (i = 0; i < msrs->nmsrs; ++i)
997 if (do_msr(vcpu, entries[i].index, &entries[i].data))
998 break;
999 up_read(&vcpu->kvm->slots_lock);
1001 vcpu_put(vcpu);
1003 return i;
1007 * Read or write a bunch of msrs. Parameters are user addresses.
1009 * @return number of msrs set successfully.
1011 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1012 int (*do_msr)(struct kvm_vcpu *vcpu,
1013 unsigned index, u64 *data),
1014 int writeback)
1016 struct kvm_msrs msrs;
1017 struct kvm_msr_entry *entries;
1018 int r, n;
1019 unsigned size;
1021 r = -EFAULT;
1022 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1023 goto out;
1025 r = -E2BIG;
1026 if (msrs.nmsrs >= MAX_IO_MSRS)
1027 goto out;
1029 r = -ENOMEM;
1030 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1031 entries = vmalloc(size);
1032 if (!entries)
1033 goto out;
1035 r = -EFAULT;
1036 if (copy_from_user(entries, user_msrs->entries, size))
1037 goto out_free;
1039 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1040 if (r < 0)
1041 goto out_free;
1043 r = -EFAULT;
1044 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1045 goto out_free;
1047 r = n;
1049 out_free:
1050 vfree(entries);
1051 out:
1052 return r;
1055 int kvm_dev_ioctl_check_extension(long ext)
1057 int r;
1059 switch (ext) {
1060 case KVM_CAP_IRQCHIP:
1061 case KVM_CAP_HLT:
1062 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1063 case KVM_CAP_SET_TSS_ADDR:
1064 case KVM_CAP_EXT_CPUID:
1065 case KVM_CAP_CLOCKSOURCE:
1066 case KVM_CAP_PIT:
1067 case KVM_CAP_NOP_IO_DELAY:
1068 case KVM_CAP_MP_STATE:
1069 case KVM_CAP_SYNC_MMU:
1070 case KVM_CAP_REINJECT_CONTROL:
1071 case KVM_CAP_IRQ_INJECT_STATUS:
1072 r = 1;
1073 break;
1074 case KVM_CAP_COALESCED_MMIO:
1075 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1076 break;
1077 case KVM_CAP_VAPIC:
1078 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1079 break;
1080 case KVM_CAP_NR_VCPUS:
1081 r = KVM_MAX_VCPUS;
1082 break;
1083 case KVM_CAP_NR_MEMSLOTS:
1084 r = KVM_MEMORY_SLOTS;
1085 break;
1086 case KVM_CAP_PV_MMU:
1087 r = !tdp_enabled;
1088 break;
1089 case KVM_CAP_IOMMU:
1090 r = iommu_found();
1091 break;
1092 default:
1093 r = 0;
1094 break;
1096 return r;
1100 long kvm_arch_dev_ioctl(struct file *filp,
1101 unsigned int ioctl, unsigned long arg)
1103 void __user *argp = (void __user *)arg;
1104 long r;
1106 switch (ioctl) {
1107 case KVM_GET_MSR_INDEX_LIST: {
1108 struct kvm_msr_list __user *user_msr_list = argp;
1109 struct kvm_msr_list msr_list;
1110 unsigned n;
1112 r = -EFAULT;
1113 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1114 goto out;
1115 n = msr_list.nmsrs;
1116 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1117 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1118 goto out;
1119 r = -E2BIG;
1120 if (n < msr_list.nmsrs)
1121 goto out;
1122 r = -EFAULT;
1123 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1124 num_msrs_to_save * sizeof(u32)))
1125 goto out;
1126 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1127 &emulated_msrs,
1128 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1129 goto out;
1130 r = 0;
1131 break;
1133 case KVM_GET_SUPPORTED_CPUID: {
1134 struct kvm_cpuid2 __user *cpuid_arg = argp;
1135 struct kvm_cpuid2 cpuid;
1137 r = -EFAULT;
1138 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1139 goto out;
1140 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1141 cpuid_arg->entries);
1142 if (r)
1143 goto out;
1145 r = -EFAULT;
1146 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1147 goto out;
1148 r = 0;
1149 break;
1151 default:
1152 r = -EINVAL;
1154 out:
1155 return r;
1158 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1160 kvm_x86_ops->vcpu_load(vcpu, cpu);
1161 kvm_request_guest_time_update(vcpu);
1164 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1166 kvm_x86_ops->vcpu_put(vcpu);
1167 kvm_put_guest_fpu(vcpu);
1170 static int is_efer_nx(void)
1172 unsigned long long efer = 0;
1174 rdmsrl_safe(MSR_EFER, &efer);
1175 return efer & EFER_NX;
1178 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1180 int i;
1181 struct kvm_cpuid_entry2 *e, *entry;
1183 entry = NULL;
1184 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1185 e = &vcpu->arch.cpuid_entries[i];
1186 if (e->function == 0x80000001) {
1187 entry = e;
1188 break;
1191 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1192 entry->edx &= ~(1 << 20);
1193 printk(KERN_INFO "kvm: guest NX capability removed\n");
1197 /* when an old userspace process fills a new kernel module */
1198 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1199 struct kvm_cpuid *cpuid,
1200 struct kvm_cpuid_entry __user *entries)
1202 int r, i;
1203 struct kvm_cpuid_entry *cpuid_entries;
1205 r = -E2BIG;
1206 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1207 goto out;
1208 r = -ENOMEM;
1209 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1210 if (!cpuid_entries)
1211 goto out;
1212 r = -EFAULT;
1213 if (copy_from_user(cpuid_entries, entries,
1214 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1215 goto out_free;
1216 for (i = 0; i < cpuid->nent; i++) {
1217 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1218 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1219 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1220 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1221 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1222 vcpu->arch.cpuid_entries[i].index = 0;
1223 vcpu->arch.cpuid_entries[i].flags = 0;
1224 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1225 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1226 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1228 vcpu->arch.cpuid_nent = cpuid->nent;
1229 cpuid_fix_nx_cap(vcpu);
1230 r = 0;
1232 out_free:
1233 vfree(cpuid_entries);
1234 out:
1235 return r;
1238 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1239 struct kvm_cpuid2 *cpuid,
1240 struct kvm_cpuid_entry2 __user *entries)
1242 int r;
1244 r = -E2BIG;
1245 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1246 goto out;
1247 r = -EFAULT;
1248 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1249 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1250 goto out;
1251 vcpu->arch.cpuid_nent = cpuid->nent;
1252 return 0;
1254 out:
1255 return r;
1258 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1259 struct kvm_cpuid2 *cpuid,
1260 struct kvm_cpuid_entry2 __user *entries)
1262 int r;
1264 r = -E2BIG;
1265 if (cpuid->nent < vcpu->arch.cpuid_nent)
1266 goto out;
1267 r = -EFAULT;
1268 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1269 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1270 goto out;
1271 return 0;
1273 out:
1274 cpuid->nent = vcpu->arch.cpuid_nent;
1275 return r;
1278 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1279 u32 index)
1281 entry->function = function;
1282 entry->index = index;
1283 cpuid_count(entry->function, entry->index,
1284 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1285 entry->flags = 0;
1288 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1289 u32 index, int *nent, int maxnent)
1291 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1292 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1293 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1294 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1295 bit(X86_FEATURE_MCE) |
1296 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1297 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_MTRR) |
1298 bit(X86_FEATURE_PGE) | bit(X86_FEATURE_MCA) |
1299 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PAT) |
1300 bit(X86_FEATURE_PSE36) |
1301 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1302 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1303 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1304 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1305 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1306 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1307 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1308 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1309 bit(X86_FEATURE_PGE) |
1310 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1311 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1312 bit(X86_FEATURE_SYSCALL) |
1313 (is_efer_nx() ? bit(X86_FEATURE_NX) : 0) |
1314 #ifdef CONFIG_X86_64
1315 bit(X86_FEATURE_LM) |
1316 #endif
1317 bit(X86_FEATURE_FXSR_OPT) |
1318 bit(X86_FEATURE_MMXEXT) |
1319 bit(X86_FEATURE_3DNOWEXT) |
1320 bit(X86_FEATURE_3DNOW);
1321 const u32 kvm_supported_word3_x86_features =
1322 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1323 const u32 kvm_supported_word6_x86_features =
1324 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY) |
1325 bit(X86_FEATURE_SVM);
1327 /* all calls to cpuid_count() should be made on the same cpu */
1328 get_cpu();
1329 do_cpuid_1_ent(entry, function, index);
1330 ++*nent;
1332 switch (function) {
1333 case 0:
1334 entry->eax = min(entry->eax, (u32)0xb);
1335 break;
1336 case 1:
1337 entry->edx &= kvm_supported_word0_x86_features;
1338 entry->ecx &= kvm_supported_word3_x86_features;
1339 break;
1340 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1341 * may return different values. This forces us to get_cpu() before
1342 * issuing the first command, and also to emulate this annoying behavior
1343 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1344 case 2: {
1345 int t, times = entry->eax & 0xff;
1347 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1348 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1349 for (t = 1; t < times && *nent < maxnent; ++t) {
1350 do_cpuid_1_ent(&entry[t], function, 0);
1351 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1352 ++*nent;
1354 break;
1356 /* function 4 and 0xb have additional index. */
1357 case 4: {
1358 int i, cache_type;
1360 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1361 /* read more entries until cache_type is zero */
1362 for (i = 1; *nent < maxnent; ++i) {
1363 cache_type = entry[i - 1].eax & 0x1f;
1364 if (!cache_type)
1365 break;
1366 do_cpuid_1_ent(&entry[i], function, i);
1367 entry[i].flags |=
1368 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1369 ++*nent;
1371 break;
1373 case 0xb: {
1374 int i, level_type;
1376 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1377 /* read more entries until level_type is zero */
1378 for (i = 1; *nent < maxnent; ++i) {
1379 level_type = entry[i - 1].ecx & 0xff00;
1380 if (!level_type)
1381 break;
1382 do_cpuid_1_ent(&entry[i], function, i);
1383 entry[i].flags |=
1384 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1385 ++*nent;
1387 break;
1389 case 0x80000000:
1390 entry->eax = min(entry->eax, 0x8000001a);
1391 break;
1392 case 0x80000001:
1393 entry->edx &= kvm_supported_word1_x86_features;
1394 entry->ecx &= kvm_supported_word6_x86_features;
1395 break;
1397 put_cpu();
1400 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1401 struct kvm_cpuid_entry2 __user *entries)
1403 struct kvm_cpuid_entry2 *cpuid_entries;
1404 int limit, nent = 0, r = -E2BIG;
1405 u32 func;
1407 if (cpuid->nent < 1)
1408 goto out;
1409 r = -ENOMEM;
1410 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1411 if (!cpuid_entries)
1412 goto out;
1414 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1415 limit = cpuid_entries[0].eax;
1416 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1417 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1418 &nent, cpuid->nent);
1419 r = -E2BIG;
1420 if (nent >= cpuid->nent)
1421 goto out_free;
1423 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1424 limit = cpuid_entries[nent - 1].eax;
1425 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1426 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1427 &nent, cpuid->nent);
1428 r = -EFAULT;
1429 if (copy_to_user(entries, cpuid_entries,
1430 nent * sizeof(struct kvm_cpuid_entry2)))
1431 goto out_free;
1432 cpuid->nent = nent;
1433 r = 0;
1435 out_free:
1436 vfree(cpuid_entries);
1437 out:
1438 return r;
1441 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1442 struct kvm_lapic_state *s)
1444 vcpu_load(vcpu);
1445 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1446 vcpu_put(vcpu);
1448 return 0;
1451 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1452 struct kvm_lapic_state *s)
1454 vcpu_load(vcpu);
1455 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1456 kvm_apic_post_state_restore(vcpu);
1457 vcpu_put(vcpu);
1459 return 0;
1462 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1463 struct kvm_interrupt *irq)
1465 if (irq->irq < 0 || irq->irq >= 256)
1466 return -EINVAL;
1467 if (irqchip_in_kernel(vcpu->kvm))
1468 return -ENXIO;
1469 vcpu_load(vcpu);
1471 set_bit(irq->irq, vcpu->arch.irq_pending);
1472 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1474 vcpu_put(vcpu);
1476 return 0;
1479 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1481 vcpu_load(vcpu);
1482 kvm_inject_nmi(vcpu);
1483 vcpu_put(vcpu);
1485 return 0;
1488 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1489 struct kvm_tpr_access_ctl *tac)
1491 if (tac->flags)
1492 return -EINVAL;
1493 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1494 return 0;
1497 long kvm_arch_vcpu_ioctl(struct file *filp,
1498 unsigned int ioctl, unsigned long arg)
1500 struct kvm_vcpu *vcpu = filp->private_data;
1501 void __user *argp = (void __user *)arg;
1502 int r;
1503 struct kvm_lapic_state *lapic = NULL;
1505 switch (ioctl) {
1506 case KVM_GET_LAPIC: {
1507 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1509 r = -ENOMEM;
1510 if (!lapic)
1511 goto out;
1512 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1513 if (r)
1514 goto out;
1515 r = -EFAULT;
1516 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1517 goto out;
1518 r = 0;
1519 break;
1521 case KVM_SET_LAPIC: {
1522 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1523 r = -ENOMEM;
1524 if (!lapic)
1525 goto out;
1526 r = -EFAULT;
1527 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1528 goto out;
1529 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1530 if (r)
1531 goto out;
1532 r = 0;
1533 break;
1535 case KVM_INTERRUPT: {
1536 struct kvm_interrupt irq;
1538 r = -EFAULT;
1539 if (copy_from_user(&irq, argp, sizeof irq))
1540 goto out;
1541 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1542 if (r)
1543 goto out;
1544 r = 0;
1545 break;
1547 case KVM_NMI: {
1548 r = kvm_vcpu_ioctl_nmi(vcpu);
1549 if (r)
1550 goto out;
1551 r = 0;
1552 break;
1554 case KVM_SET_CPUID: {
1555 struct kvm_cpuid __user *cpuid_arg = argp;
1556 struct kvm_cpuid cpuid;
1558 r = -EFAULT;
1559 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1560 goto out;
1561 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1562 if (r)
1563 goto out;
1564 break;
1566 case KVM_SET_CPUID2: {
1567 struct kvm_cpuid2 __user *cpuid_arg = argp;
1568 struct kvm_cpuid2 cpuid;
1570 r = -EFAULT;
1571 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1572 goto out;
1573 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1574 cpuid_arg->entries);
1575 if (r)
1576 goto out;
1577 break;
1579 case KVM_GET_CPUID2: {
1580 struct kvm_cpuid2 __user *cpuid_arg = argp;
1581 struct kvm_cpuid2 cpuid;
1583 r = -EFAULT;
1584 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1585 goto out;
1586 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1587 cpuid_arg->entries);
1588 if (r)
1589 goto out;
1590 r = -EFAULT;
1591 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1592 goto out;
1593 r = 0;
1594 break;
1596 case KVM_GET_MSRS:
1597 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1598 break;
1599 case KVM_SET_MSRS:
1600 r = msr_io(vcpu, argp, do_set_msr, 0);
1601 break;
1602 case KVM_TPR_ACCESS_REPORTING: {
1603 struct kvm_tpr_access_ctl tac;
1605 r = -EFAULT;
1606 if (copy_from_user(&tac, argp, sizeof tac))
1607 goto out;
1608 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1609 if (r)
1610 goto out;
1611 r = -EFAULT;
1612 if (copy_to_user(argp, &tac, sizeof tac))
1613 goto out;
1614 r = 0;
1615 break;
1617 case KVM_SET_VAPIC_ADDR: {
1618 struct kvm_vapic_addr va;
1620 r = -EINVAL;
1621 if (!irqchip_in_kernel(vcpu->kvm))
1622 goto out;
1623 r = -EFAULT;
1624 if (copy_from_user(&va, argp, sizeof va))
1625 goto out;
1626 r = 0;
1627 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1628 break;
1630 default:
1631 r = -EINVAL;
1633 out:
1634 if (lapic)
1635 kfree(lapic);
1636 return r;
1639 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1641 int ret;
1643 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1644 return -1;
1645 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1646 return ret;
1649 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1650 u32 kvm_nr_mmu_pages)
1652 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1653 return -EINVAL;
1655 down_write(&kvm->slots_lock);
1656 spin_lock(&kvm->mmu_lock);
1658 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1659 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1661 spin_unlock(&kvm->mmu_lock);
1662 up_write(&kvm->slots_lock);
1663 return 0;
1666 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1668 return kvm->arch.n_alloc_mmu_pages;
1671 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1673 int i;
1674 struct kvm_mem_alias *alias;
1676 for (i = 0; i < kvm->arch.naliases; ++i) {
1677 alias = &kvm->arch.aliases[i];
1678 if (gfn >= alias->base_gfn
1679 && gfn < alias->base_gfn + alias->npages)
1680 return alias->target_gfn + gfn - alias->base_gfn;
1682 return gfn;
1686 * Set a new alias region. Aliases map a portion of physical memory into
1687 * another portion. This is useful for memory windows, for example the PC
1688 * VGA region.
1690 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1691 struct kvm_memory_alias *alias)
1693 int r, n;
1694 struct kvm_mem_alias *p;
1696 r = -EINVAL;
1697 /* General sanity checks */
1698 if (alias->memory_size & (PAGE_SIZE - 1))
1699 goto out;
1700 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1701 goto out;
1702 if (alias->slot >= KVM_ALIAS_SLOTS)
1703 goto out;
1704 if (alias->guest_phys_addr + alias->memory_size
1705 < alias->guest_phys_addr)
1706 goto out;
1707 if (alias->target_phys_addr + alias->memory_size
1708 < alias->target_phys_addr)
1709 goto out;
1711 down_write(&kvm->slots_lock);
1712 spin_lock(&kvm->mmu_lock);
1714 p = &kvm->arch.aliases[alias->slot];
1715 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1716 p->npages = alias->memory_size >> PAGE_SHIFT;
1717 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1719 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1720 if (kvm->arch.aliases[n - 1].npages)
1721 break;
1722 kvm->arch.naliases = n;
1724 spin_unlock(&kvm->mmu_lock);
1725 kvm_mmu_zap_all(kvm);
1727 up_write(&kvm->slots_lock);
1729 return 0;
1731 out:
1732 return r;
1735 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1737 int r;
1739 r = 0;
1740 switch (chip->chip_id) {
1741 case KVM_IRQCHIP_PIC_MASTER:
1742 memcpy(&chip->chip.pic,
1743 &pic_irqchip(kvm)->pics[0],
1744 sizeof(struct kvm_pic_state));
1745 break;
1746 case KVM_IRQCHIP_PIC_SLAVE:
1747 memcpy(&chip->chip.pic,
1748 &pic_irqchip(kvm)->pics[1],
1749 sizeof(struct kvm_pic_state));
1750 break;
1751 case KVM_IRQCHIP_IOAPIC:
1752 memcpy(&chip->chip.ioapic,
1753 ioapic_irqchip(kvm),
1754 sizeof(struct kvm_ioapic_state));
1755 break;
1756 default:
1757 r = -EINVAL;
1758 break;
1760 return r;
1763 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1765 int r;
1767 r = 0;
1768 switch (chip->chip_id) {
1769 case KVM_IRQCHIP_PIC_MASTER:
1770 memcpy(&pic_irqchip(kvm)->pics[0],
1771 &chip->chip.pic,
1772 sizeof(struct kvm_pic_state));
1773 break;
1774 case KVM_IRQCHIP_PIC_SLAVE:
1775 memcpy(&pic_irqchip(kvm)->pics[1],
1776 &chip->chip.pic,
1777 sizeof(struct kvm_pic_state));
1778 break;
1779 case KVM_IRQCHIP_IOAPIC:
1780 memcpy(ioapic_irqchip(kvm),
1781 &chip->chip.ioapic,
1782 sizeof(struct kvm_ioapic_state));
1783 break;
1784 default:
1785 r = -EINVAL;
1786 break;
1788 kvm_pic_update_irq(pic_irqchip(kvm));
1789 return r;
1792 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1794 int r = 0;
1796 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1797 return r;
1800 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1802 int r = 0;
1804 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1805 kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1806 return r;
1809 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
1810 struct kvm_reinject_control *control)
1812 if (!kvm->arch.vpit)
1813 return -ENXIO;
1814 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
1815 return 0;
1819 * Get (and clear) the dirty memory log for a memory slot.
1821 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1822 struct kvm_dirty_log *log)
1824 int r;
1825 int n;
1826 struct kvm_memory_slot *memslot;
1827 int is_dirty = 0;
1829 down_write(&kvm->slots_lock);
1831 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1832 if (r)
1833 goto out;
1835 /* If nothing is dirty, don't bother messing with page tables. */
1836 if (is_dirty) {
1837 spin_lock(&kvm->mmu_lock);
1838 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1839 spin_unlock(&kvm->mmu_lock);
1840 kvm_flush_remote_tlbs(kvm);
1841 memslot = &kvm->memslots[log->slot];
1842 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1843 memset(memslot->dirty_bitmap, 0, n);
1845 r = 0;
1846 out:
1847 up_write(&kvm->slots_lock);
1848 return r;
1851 long kvm_arch_vm_ioctl(struct file *filp,
1852 unsigned int ioctl, unsigned long arg)
1854 struct kvm *kvm = filp->private_data;
1855 void __user *argp = (void __user *)arg;
1856 int r = -EINVAL;
1858 * This union makes it completely explicit to gcc-3.x
1859 * that these two variables' stack usage should be
1860 * combined, not added together.
1862 union {
1863 struct kvm_pit_state ps;
1864 struct kvm_memory_alias alias;
1865 } u;
1867 switch (ioctl) {
1868 case KVM_SET_TSS_ADDR:
1869 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1870 if (r < 0)
1871 goto out;
1872 break;
1873 case KVM_SET_MEMORY_REGION: {
1874 struct kvm_memory_region kvm_mem;
1875 struct kvm_userspace_memory_region kvm_userspace_mem;
1877 r = -EFAULT;
1878 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1879 goto out;
1880 kvm_userspace_mem.slot = kvm_mem.slot;
1881 kvm_userspace_mem.flags = kvm_mem.flags;
1882 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1883 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1884 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1885 if (r)
1886 goto out;
1887 break;
1889 case KVM_SET_NR_MMU_PAGES:
1890 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1891 if (r)
1892 goto out;
1893 break;
1894 case KVM_GET_NR_MMU_PAGES:
1895 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1896 break;
1897 case KVM_SET_MEMORY_ALIAS:
1898 r = -EFAULT;
1899 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
1900 goto out;
1901 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
1902 if (r)
1903 goto out;
1904 break;
1905 case KVM_CREATE_IRQCHIP:
1906 r = -ENOMEM;
1907 kvm->arch.vpic = kvm_create_pic(kvm);
1908 if (kvm->arch.vpic) {
1909 r = kvm_ioapic_init(kvm);
1910 if (r) {
1911 kfree(kvm->arch.vpic);
1912 kvm->arch.vpic = NULL;
1913 goto out;
1915 } else
1916 goto out;
1917 r = kvm_setup_default_irq_routing(kvm);
1918 if (r) {
1919 kfree(kvm->arch.vpic);
1920 kfree(kvm->arch.vioapic);
1921 goto out;
1923 break;
1924 case KVM_CREATE_PIT:
1925 mutex_lock(&kvm->lock);
1926 r = -EEXIST;
1927 if (kvm->arch.vpit)
1928 goto create_pit_unlock;
1929 r = -ENOMEM;
1930 kvm->arch.vpit = kvm_create_pit(kvm);
1931 if (kvm->arch.vpit)
1932 r = 0;
1933 create_pit_unlock:
1934 mutex_unlock(&kvm->lock);
1935 break;
1936 case KVM_IRQ_LINE_STATUS:
1937 case KVM_IRQ_LINE: {
1938 struct kvm_irq_level irq_event;
1940 r = -EFAULT;
1941 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1942 goto out;
1943 if (irqchip_in_kernel(kvm)) {
1944 __s32 status;
1945 mutex_lock(&kvm->lock);
1946 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1947 irq_event.irq, irq_event.level);
1948 mutex_unlock(&kvm->lock);
1949 if (ioctl == KVM_IRQ_LINE_STATUS) {
1950 irq_event.status = status;
1951 if (copy_to_user(argp, &irq_event,
1952 sizeof irq_event))
1953 goto out;
1955 r = 0;
1957 break;
1959 case KVM_GET_IRQCHIP: {
1960 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1961 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1963 r = -ENOMEM;
1964 if (!chip)
1965 goto out;
1966 r = -EFAULT;
1967 if (copy_from_user(chip, argp, sizeof *chip))
1968 goto get_irqchip_out;
1969 r = -ENXIO;
1970 if (!irqchip_in_kernel(kvm))
1971 goto get_irqchip_out;
1972 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1973 if (r)
1974 goto get_irqchip_out;
1975 r = -EFAULT;
1976 if (copy_to_user(argp, chip, sizeof *chip))
1977 goto get_irqchip_out;
1978 r = 0;
1979 get_irqchip_out:
1980 kfree(chip);
1981 if (r)
1982 goto out;
1983 break;
1985 case KVM_SET_IRQCHIP: {
1986 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1987 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1989 r = -ENOMEM;
1990 if (!chip)
1991 goto out;
1992 r = -EFAULT;
1993 if (copy_from_user(chip, argp, sizeof *chip))
1994 goto set_irqchip_out;
1995 r = -ENXIO;
1996 if (!irqchip_in_kernel(kvm))
1997 goto set_irqchip_out;
1998 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
1999 if (r)
2000 goto set_irqchip_out;
2001 r = 0;
2002 set_irqchip_out:
2003 kfree(chip);
2004 if (r)
2005 goto out;
2006 break;
2008 case KVM_GET_PIT: {
2009 r = -EFAULT;
2010 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2011 goto out;
2012 r = -ENXIO;
2013 if (!kvm->arch.vpit)
2014 goto out;
2015 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2016 if (r)
2017 goto out;
2018 r = -EFAULT;
2019 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2020 goto out;
2021 r = 0;
2022 break;
2024 case KVM_SET_PIT: {
2025 r = -EFAULT;
2026 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2027 goto out;
2028 r = -ENXIO;
2029 if (!kvm->arch.vpit)
2030 goto out;
2031 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2032 if (r)
2033 goto out;
2034 r = 0;
2035 break;
2037 case KVM_REINJECT_CONTROL: {
2038 struct kvm_reinject_control control;
2039 r = -EFAULT;
2040 if (copy_from_user(&control, argp, sizeof(control)))
2041 goto out;
2042 r = kvm_vm_ioctl_reinject(kvm, &control);
2043 if (r)
2044 goto out;
2045 r = 0;
2046 break;
2048 default:
2051 out:
2052 return r;
2055 static void kvm_init_msr_list(void)
2057 u32 dummy[2];
2058 unsigned i, j;
2060 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2061 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2062 continue;
2063 if (j < i)
2064 msrs_to_save[j] = msrs_to_save[i];
2065 j++;
2067 num_msrs_to_save = j;
2071 * Only apic need an MMIO device hook, so shortcut now..
2073 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
2074 gpa_t addr, int len,
2075 int is_write)
2077 struct kvm_io_device *dev;
2079 if (vcpu->arch.apic) {
2080 dev = &vcpu->arch.apic->dev;
2081 if (dev->in_range(dev, addr, len, is_write))
2082 return dev;
2084 return NULL;
2088 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
2089 gpa_t addr, int len,
2090 int is_write)
2092 struct kvm_io_device *dev;
2094 dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
2095 if (dev == NULL)
2096 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
2097 is_write);
2098 return dev;
2101 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2102 struct kvm_vcpu *vcpu)
2104 void *data = val;
2105 int r = X86EMUL_CONTINUE;
2107 while (bytes) {
2108 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2109 unsigned offset = addr & (PAGE_SIZE-1);
2110 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2111 int ret;
2113 if (gpa == UNMAPPED_GVA) {
2114 r = X86EMUL_PROPAGATE_FAULT;
2115 goto out;
2117 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2118 if (ret < 0) {
2119 r = X86EMUL_UNHANDLEABLE;
2120 goto out;
2123 bytes -= toread;
2124 data += toread;
2125 addr += toread;
2127 out:
2128 return r;
2131 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2132 struct kvm_vcpu *vcpu)
2134 void *data = val;
2135 int r = X86EMUL_CONTINUE;
2137 while (bytes) {
2138 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2139 unsigned offset = addr & (PAGE_SIZE-1);
2140 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2141 int ret;
2143 if (gpa == UNMAPPED_GVA) {
2144 r = X86EMUL_PROPAGATE_FAULT;
2145 goto out;
2147 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2148 if (ret < 0) {
2149 r = X86EMUL_UNHANDLEABLE;
2150 goto out;
2153 bytes -= towrite;
2154 data += towrite;
2155 addr += towrite;
2157 out:
2158 return r;
2162 static int emulator_read_emulated(unsigned long addr,
2163 void *val,
2164 unsigned int bytes,
2165 struct kvm_vcpu *vcpu)
2167 struct kvm_io_device *mmio_dev;
2168 gpa_t gpa;
2170 if (vcpu->mmio_read_completed) {
2171 memcpy(val, vcpu->mmio_data, bytes);
2172 vcpu->mmio_read_completed = 0;
2173 return X86EMUL_CONTINUE;
2176 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2178 /* For APIC access vmexit */
2179 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2180 goto mmio;
2182 if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2183 == X86EMUL_CONTINUE)
2184 return X86EMUL_CONTINUE;
2185 if (gpa == UNMAPPED_GVA)
2186 return X86EMUL_PROPAGATE_FAULT;
2188 mmio:
2190 * Is this MMIO handled locally?
2192 mutex_lock(&vcpu->kvm->lock);
2193 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
2194 if (mmio_dev) {
2195 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
2196 mutex_unlock(&vcpu->kvm->lock);
2197 return X86EMUL_CONTINUE;
2199 mutex_unlock(&vcpu->kvm->lock);
2201 vcpu->mmio_needed = 1;
2202 vcpu->mmio_phys_addr = gpa;
2203 vcpu->mmio_size = bytes;
2204 vcpu->mmio_is_write = 0;
2206 return X86EMUL_UNHANDLEABLE;
2209 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2210 const void *val, int bytes)
2212 int ret;
2214 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2215 if (ret < 0)
2216 return 0;
2217 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2218 return 1;
2221 static int emulator_write_emulated_onepage(unsigned long addr,
2222 const void *val,
2223 unsigned int bytes,
2224 struct kvm_vcpu *vcpu)
2226 struct kvm_io_device *mmio_dev;
2227 gpa_t gpa;
2229 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2231 if (gpa == UNMAPPED_GVA) {
2232 kvm_inject_page_fault(vcpu, addr, 2);
2233 return X86EMUL_PROPAGATE_FAULT;
2236 /* For APIC access vmexit */
2237 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2238 goto mmio;
2240 if (emulator_write_phys(vcpu, gpa, val, bytes))
2241 return X86EMUL_CONTINUE;
2243 mmio:
2245 * Is this MMIO handled locally?
2247 mutex_lock(&vcpu->kvm->lock);
2248 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2249 if (mmio_dev) {
2250 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2251 mutex_unlock(&vcpu->kvm->lock);
2252 return X86EMUL_CONTINUE;
2254 mutex_unlock(&vcpu->kvm->lock);
2256 vcpu->mmio_needed = 1;
2257 vcpu->mmio_phys_addr = gpa;
2258 vcpu->mmio_size = bytes;
2259 vcpu->mmio_is_write = 1;
2260 memcpy(vcpu->mmio_data, val, bytes);
2262 return X86EMUL_CONTINUE;
2265 int emulator_write_emulated(unsigned long addr,
2266 const void *val,
2267 unsigned int bytes,
2268 struct kvm_vcpu *vcpu)
2270 /* Crossing a page boundary? */
2271 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2272 int rc, now;
2274 now = -addr & ~PAGE_MASK;
2275 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2276 if (rc != X86EMUL_CONTINUE)
2277 return rc;
2278 addr += now;
2279 val += now;
2280 bytes -= now;
2282 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2284 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2286 static int emulator_cmpxchg_emulated(unsigned long addr,
2287 const void *old,
2288 const void *new,
2289 unsigned int bytes,
2290 struct kvm_vcpu *vcpu)
2292 static int reported;
2294 if (!reported) {
2295 reported = 1;
2296 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2298 #ifndef CONFIG_X86_64
2299 /* guests cmpxchg8b have to be emulated atomically */
2300 if (bytes == 8) {
2301 gpa_t gpa;
2302 struct page *page;
2303 char *kaddr;
2304 u64 val;
2306 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2308 if (gpa == UNMAPPED_GVA ||
2309 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2310 goto emul_write;
2312 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2313 goto emul_write;
2315 val = *(u64 *)new;
2317 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2319 kaddr = kmap_atomic(page, KM_USER0);
2320 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2321 kunmap_atomic(kaddr, KM_USER0);
2322 kvm_release_page_dirty(page);
2324 emul_write:
2325 #endif
2327 return emulator_write_emulated(addr, new, bytes, vcpu);
2330 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2332 return kvm_x86_ops->get_segment_base(vcpu, seg);
2335 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2337 kvm_mmu_invlpg(vcpu, address);
2338 return X86EMUL_CONTINUE;
2341 int emulate_clts(struct kvm_vcpu *vcpu)
2343 KVMTRACE_0D(CLTS, vcpu, handler);
2344 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2345 return X86EMUL_CONTINUE;
2348 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2350 struct kvm_vcpu *vcpu = ctxt->vcpu;
2352 switch (dr) {
2353 case 0 ... 3:
2354 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2355 return X86EMUL_CONTINUE;
2356 default:
2357 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2358 return X86EMUL_UNHANDLEABLE;
2362 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2364 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2365 int exception;
2367 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2368 if (exception) {
2369 /* FIXME: better handling */
2370 return X86EMUL_UNHANDLEABLE;
2372 return X86EMUL_CONTINUE;
2375 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2377 u8 opcodes[4];
2378 unsigned long rip = kvm_rip_read(vcpu);
2379 unsigned long rip_linear;
2381 if (!printk_ratelimit())
2382 return;
2384 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2386 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2388 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2389 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2391 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2393 static struct x86_emulate_ops emulate_ops = {
2394 .read_std = kvm_read_guest_virt,
2395 .read_emulated = emulator_read_emulated,
2396 .write_emulated = emulator_write_emulated,
2397 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2400 static void cache_all_regs(struct kvm_vcpu *vcpu)
2402 kvm_register_read(vcpu, VCPU_REGS_RAX);
2403 kvm_register_read(vcpu, VCPU_REGS_RSP);
2404 kvm_register_read(vcpu, VCPU_REGS_RIP);
2405 vcpu->arch.regs_dirty = ~0;
2408 int emulate_instruction(struct kvm_vcpu *vcpu,
2409 struct kvm_run *run,
2410 unsigned long cr2,
2411 u16 error_code,
2412 int emulation_type)
2414 int r, shadow_mask;
2415 struct decode_cache *c;
2417 kvm_clear_exception_queue(vcpu);
2418 vcpu->arch.mmio_fault_cr2 = cr2;
2420 * TODO: fix x86_emulate.c to use guest_read/write_register
2421 * instead of direct ->regs accesses, can save hundred cycles
2422 * on Intel for instructions that don't read/change RSP, for
2423 * for example.
2425 cache_all_regs(vcpu);
2427 vcpu->mmio_is_write = 0;
2428 vcpu->arch.pio.string = 0;
2430 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2431 int cs_db, cs_l;
2432 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2434 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2435 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2436 vcpu->arch.emulate_ctxt.mode =
2437 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2438 ? X86EMUL_MODE_REAL : cs_l
2439 ? X86EMUL_MODE_PROT64 : cs_db
2440 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2442 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2444 /* Reject the instructions other than VMCALL/VMMCALL when
2445 * try to emulate invalid opcode */
2446 c = &vcpu->arch.emulate_ctxt.decode;
2447 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2448 (!(c->twobyte && c->b == 0x01 &&
2449 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2450 c->modrm_mod == 3 && c->modrm_rm == 1)))
2451 return EMULATE_FAIL;
2453 ++vcpu->stat.insn_emulation;
2454 if (r) {
2455 ++vcpu->stat.insn_emulation_fail;
2456 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2457 return EMULATE_DONE;
2458 return EMULATE_FAIL;
2462 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2463 shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
2465 if (r == 0)
2466 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
2468 if (vcpu->arch.pio.string)
2469 return EMULATE_DO_MMIO;
2471 if ((r || vcpu->mmio_is_write) && run) {
2472 run->exit_reason = KVM_EXIT_MMIO;
2473 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2474 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2475 run->mmio.len = vcpu->mmio_size;
2476 run->mmio.is_write = vcpu->mmio_is_write;
2479 if (r) {
2480 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2481 return EMULATE_DONE;
2482 if (!vcpu->mmio_needed) {
2483 kvm_report_emulation_failure(vcpu, "mmio");
2484 return EMULATE_FAIL;
2486 return EMULATE_DO_MMIO;
2489 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2491 if (vcpu->mmio_is_write) {
2492 vcpu->mmio_needed = 0;
2493 return EMULATE_DO_MMIO;
2496 return EMULATE_DONE;
2498 EXPORT_SYMBOL_GPL(emulate_instruction);
2500 static int pio_copy_data(struct kvm_vcpu *vcpu)
2502 void *p = vcpu->arch.pio_data;
2503 gva_t q = vcpu->arch.pio.guest_gva;
2504 unsigned bytes;
2505 int ret;
2507 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2508 if (vcpu->arch.pio.in)
2509 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2510 else
2511 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2512 return ret;
2515 int complete_pio(struct kvm_vcpu *vcpu)
2517 struct kvm_pio_request *io = &vcpu->arch.pio;
2518 long delta;
2519 int r;
2520 unsigned long val;
2522 if (!io->string) {
2523 if (io->in) {
2524 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2525 memcpy(&val, vcpu->arch.pio_data, io->size);
2526 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2528 } else {
2529 if (io->in) {
2530 r = pio_copy_data(vcpu);
2531 if (r)
2532 return r;
2535 delta = 1;
2536 if (io->rep) {
2537 delta *= io->cur_count;
2539 * The size of the register should really depend on
2540 * current address size.
2542 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2543 val -= delta;
2544 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2546 if (io->down)
2547 delta = -delta;
2548 delta *= io->size;
2549 if (io->in) {
2550 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2551 val += delta;
2552 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2553 } else {
2554 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2555 val += delta;
2556 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2560 io->count -= io->cur_count;
2561 io->cur_count = 0;
2563 return 0;
2566 static void kernel_pio(struct kvm_io_device *pio_dev,
2567 struct kvm_vcpu *vcpu,
2568 void *pd)
2570 /* TODO: String I/O for in kernel device */
2572 mutex_lock(&vcpu->kvm->lock);
2573 if (vcpu->arch.pio.in)
2574 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2575 vcpu->arch.pio.size,
2576 pd);
2577 else
2578 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2579 vcpu->arch.pio.size,
2580 pd);
2581 mutex_unlock(&vcpu->kvm->lock);
2584 static void pio_string_write(struct kvm_io_device *pio_dev,
2585 struct kvm_vcpu *vcpu)
2587 struct kvm_pio_request *io = &vcpu->arch.pio;
2588 void *pd = vcpu->arch.pio_data;
2589 int i;
2591 mutex_lock(&vcpu->kvm->lock);
2592 for (i = 0; i < io->cur_count; i++) {
2593 kvm_iodevice_write(pio_dev, io->port,
2594 io->size,
2595 pd);
2596 pd += io->size;
2598 mutex_unlock(&vcpu->kvm->lock);
2601 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2602 gpa_t addr, int len,
2603 int is_write)
2605 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2608 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2609 int size, unsigned port)
2611 struct kvm_io_device *pio_dev;
2612 unsigned long val;
2614 vcpu->run->exit_reason = KVM_EXIT_IO;
2615 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2616 vcpu->run->io.size = vcpu->arch.pio.size = size;
2617 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2618 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2619 vcpu->run->io.port = vcpu->arch.pio.port = port;
2620 vcpu->arch.pio.in = in;
2621 vcpu->arch.pio.string = 0;
2622 vcpu->arch.pio.down = 0;
2623 vcpu->arch.pio.rep = 0;
2625 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2626 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2627 handler);
2628 else
2629 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2630 handler);
2632 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2633 memcpy(vcpu->arch.pio_data, &val, 4);
2635 pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2636 if (pio_dev) {
2637 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2638 complete_pio(vcpu);
2639 return 1;
2641 return 0;
2643 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2645 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2646 int size, unsigned long count, int down,
2647 gva_t address, int rep, unsigned port)
2649 unsigned now, in_page;
2650 int ret = 0;
2651 struct kvm_io_device *pio_dev;
2653 vcpu->run->exit_reason = KVM_EXIT_IO;
2654 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2655 vcpu->run->io.size = vcpu->arch.pio.size = size;
2656 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2657 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2658 vcpu->run->io.port = vcpu->arch.pio.port = port;
2659 vcpu->arch.pio.in = in;
2660 vcpu->arch.pio.string = 1;
2661 vcpu->arch.pio.down = down;
2662 vcpu->arch.pio.rep = rep;
2664 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2665 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2666 handler);
2667 else
2668 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2669 handler);
2671 if (!count) {
2672 kvm_x86_ops->skip_emulated_instruction(vcpu);
2673 return 1;
2676 if (!down)
2677 in_page = PAGE_SIZE - offset_in_page(address);
2678 else
2679 in_page = offset_in_page(address) + size;
2680 now = min(count, (unsigned long)in_page / size);
2681 if (!now)
2682 now = 1;
2683 if (down) {
2685 * String I/O in reverse. Yuck. Kill the guest, fix later.
2687 pr_unimpl(vcpu, "guest string pio down\n");
2688 kvm_inject_gp(vcpu, 0);
2689 return 1;
2691 vcpu->run->io.count = now;
2692 vcpu->arch.pio.cur_count = now;
2694 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2695 kvm_x86_ops->skip_emulated_instruction(vcpu);
2697 vcpu->arch.pio.guest_gva = address;
2699 pio_dev = vcpu_find_pio_dev(vcpu, port,
2700 vcpu->arch.pio.cur_count,
2701 !vcpu->arch.pio.in);
2702 if (!vcpu->arch.pio.in) {
2703 /* string PIO write */
2704 ret = pio_copy_data(vcpu);
2705 if (ret == X86EMUL_PROPAGATE_FAULT) {
2706 kvm_inject_gp(vcpu, 0);
2707 return 1;
2709 if (ret == 0 && pio_dev) {
2710 pio_string_write(pio_dev, vcpu);
2711 complete_pio(vcpu);
2712 if (vcpu->arch.pio.count == 0)
2713 ret = 1;
2715 } else if (pio_dev)
2716 pr_unimpl(vcpu, "no string pio read support yet, "
2717 "port %x size %d count %ld\n",
2718 port, size, count);
2720 return ret;
2722 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2724 static void bounce_off(void *info)
2726 /* nothing */
2729 static unsigned int ref_freq;
2730 static unsigned long tsc_khz_ref;
2732 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
2733 void *data)
2735 struct cpufreq_freqs *freq = data;
2736 struct kvm *kvm;
2737 struct kvm_vcpu *vcpu;
2738 int i, send_ipi = 0;
2740 if (!ref_freq)
2741 ref_freq = freq->old;
2743 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
2744 return 0;
2745 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
2746 return 0;
2747 per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
2749 spin_lock(&kvm_lock);
2750 list_for_each_entry(kvm, &vm_list, vm_list) {
2751 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2752 vcpu = kvm->vcpus[i];
2753 if (!vcpu)
2754 continue;
2755 if (vcpu->cpu != freq->cpu)
2756 continue;
2757 if (!kvm_request_guest_time_update(vcpu))
2758 continue;
2759 if (vcpu->cpu != smp_processor_id())
2760 send_ipi++;
2763 spin_unlock(&kvm_lock);
2765 if (freq->old < freq->new && send_ipi) {
2767 * We upscale the frequency. Must make the guest
2768 * doesn't see old kvmclock values while running with
2769 * the new frequency, otherwise we risk the guest sees
2770 * time go backwards.
2772 * In case we update the frequency for another cpu
2773 * (which might be in guest context) send an interrupt
2774 * to kick the cpu out of guest context. Next time
2775 * guest context is entered kvmclock will be updated,
2776 * so the guest will not see stale values.
2778 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
2780 return 0;
2783 static struct notifier_block kvmclock_cpufreq_notifier_block = {
2784 .notifier_call = kvmclock_cpufreq_notifier
2787 int kvm_arch_init(void *opaque)
2789 int r, cpu;
2790 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2792 if (kvm_x86_ops) {
2793 printk(KERN_ERR "kvm: already loaded the other module\n");
2794 r = -EEXIST;
2795 goto out;
2798 if (!ops->cpu_has_kvm_support()) {
2799 printk(KERN_ERR "kvm: no hardware support\n");
2800 r = -EOPNOTSUPP;
2801 goto out;
2803 if (ops->disabled_by_bios()) {
2804 printk(KERN_ERR "kvm: disabled by bios\n");
2805 r = -EOPNOTSUPP;
2806 goto out;
2809 r = kvm_mmu_module_init();
2810 if (r)
2811 goto out;
2813 kvm_init_msr_list();
2815 kvm_x86_ops = ops;
2816 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2817 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2818 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2819 PT_DIRTY_MASK, PT64_NX_MASK, 0, 0);
2821 for_each_possible_cpu(cpu)
2822 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
2823 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
2824 tsc_khz_ref = tsc_khz;
2825 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
2826 CPUFREQ_TRANSITION_NOTIFIER);
2829 return 0;
2831 out:
2832 return r;
2835 void kvm_arch_exit(void)
2837 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
2838 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
2839 CPUFREQ_TRANSITION_NOTIFIER);
2840 kvm_x86_ops = NULL;
2841 kvm_mmu_module_exit();
2844 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2846 ++vcpu->stat.halt_exits;
2847 KVMTRACE_0D(HLT, vcpu, handler);
2848 if (irqchip_in_kernel(vcpu->kvm)) {
2849 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2850 return 1;
2851 } else {
2852 vcpu->run->exit_reason = KVM_EXIT_HLT;
2853 return 0;
2856 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2858 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2859 unsigned long a1)
2861 if (is_long_mode(vcpu))
2862 return a0;
2863 else
2864 return a0 | ((gpa_t)a1 << 32);
2867 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2869 unsigned long nr, a0, a1, a2, a3, ret;
2870 int r = 1;
2872 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
2873 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
2874 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
2875 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
2876 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2878 KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2880 if (!is_long_mode(vcpu)) {
2881 nr &= 0xFFFFFFFF;
2882 a0 &= 0xFFFFFFFF;
2883 a1 &= 0xFFFFFFFF;
2884 a2 &= 0xFFFFFFFF;
2885 a3 &= 0xFFFFFFFF;
2888 switch (nr) {
2889 case KVM_HC_VAPIC_POLL_IRQ:
2890 ret = 0;
2891 break;
2892 case KVM_HC_MMU_OP:
2893 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2894 break;
2895 default:
2896 ret = -KVM_ENOSYS;
2897 break;
2899 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
2900 ++vcpu->stat.hypercalls;
2901 return r;
2903 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2905 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2907 char instruction[3];
2908 int ret = 0;
2909 unsigned long rip = kvm_rip_read(vcpu);
2913 * Blow out the MMU to ensure that no other VCPU has an active mapping
2914 * to ensure that the updated hypercall appears atomically across all
2915 * VCPUs.
2917 kvm_mmu_zap_all(vcpu->kvm);
2919 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2920 if (emulator_write_emulated(rip, instruction, 3, vcpu)
2921 != X86EMUL_CONTINUE)
2922 ret = -EFAULT;
2924 return ret;
2927 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2929 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2932 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2934 struct descriptor_table dt = { limit, base };
2936 kvm_x86_ops->set_gdt(vcpu, &dt);
2939 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2941 struct descriptor_table dt = { limit, base };
2943 kvm_x86_ops->set_idt(vcpu, &dt);
2946 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2947 unsigned long *rflags)
2949 kvm_lmsw(vcpu, msw);
2950 *rflags = kvm_x86_ops->get_rflags(vcpu);
2953 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2955 unsigned long value;
2957 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2958 switch (cr) {
2959 case 0:
2960 value = vcpu->arch.cr0;
2961 break;
2962 case 2:
2963 value = vcpu->arch.cr2;
2964 break;
2965 case 3:
2966 value = vcpu->arch.cr3;
2967 break;
2968 case 4:
2969 value = vcpu->arch.cr4;
2970 break;
2971 case 8:
2972 value = kvm_get_cr8(vcpu);
2973 break;
2974 default:
2975 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2976 return 0;
2978 KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2979 (u32)((u64)value >> 32), handler);
2981 return value;
2984 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2985 unsigned long *rflags)
2987 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2988 (u32)((u64)val >> 32), handler);
2990 switch (cr) {
2991 case 0:
2992 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2993 *rflags = kvm_x86_ops->get_rflags(vcpu);
2994 break;
2995 case 2:
2996 vcpu->arch.cr2 = val;
2997 break;
2998 case 3:
2999 kvm_set_cr3(vcpu, val);
3000 break;
3001 case 4:
3002 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
3003 break;
3004 case 8:
3005 kvm_set_cr8(vcpu, val & 0xfUL);
3006 break;
3007 default:
3008 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3012 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3014 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3015 int j, nent = vcpu->arch.cpuid_nent;
3017 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3018 /* when no next entry is found, the current entry[i] is reselected */
3019 for (j = i + 1; ; j = (j + 1) % nent) {
3020 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3021 if (ej->function == e->function) {
3022 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3023 return j;
3026 return 0; /* silence gcc, even though control never reaches here */
3029 /* find an entry with matching function, matching index (if needed), and that
3030 * should be read next (if it's stateful) */
3031 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3032 u32 function, u32 index)
3034 if (e->function != function)
3035 return 0;
3036 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3037 return 0;
3038 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3039 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3040 return 0;
3041 return 1;
3044 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3045 u32 function, u32 index)
3047 int i;
3048 struct kvm_cpuid_entry2 *best = NULL;
3050 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3051 struct kvm_cpuid_entry2 *e;
3053 e = &vcpu->arch.cpuid_entries[i];
3054 if (is_matching_cpuid_entry(e, function, index)) {
3055 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3056 move_to_next_stateful_cpuid_entry(vcpu, i);
3057 best = e;
3058 break;
3061 * Both basic or both extended?
3063 if (((e->function ^ function) & 0x80000000) == 0)
3064 if (!best || e->function > best->function)
3065 best = e;
3067 return best;
3070 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3072 u32 function, index;
3073 struct kvm_cpuid_entry2 *best;
3075 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3076 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3077 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3078 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3079 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3080 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3081 best = kvm_find_cpuid_entry(vcpu, function, index);
3082 if (best) {
3083 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3084 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3085 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3086 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3088 kvm_x86_ops->skip_emulated_instruction(vcpu);
3089 KVMTRACE_5D(CPUID, vcpu, function,
3090 (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
3091 (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
3092 (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
3093 (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
3095 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3098 * Check if userspace requested an interrupt window, and that the
3099 * interrupt window is open.
3101 * No need to exit to userspace if we already have an interrupt queued.
3103 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3104 struct kvm_run *kvm_run)
3106 return (!vcpu->arch.irq_summary &&
3107 kvm_run->request_interrupt_window &&
3108 vcpu->arch.interrupt_window_open &&
3109 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
3112 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3113 struct kvm_run *kvm_run)
3115 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3116 kvm_run->cr8 = kvm_get_cr8(vcpu);
3117 kvm_run->apic_base = kvm_get_apic_base(vcpu);
3118 if (irqchip_in_kernel(vcpu->kvm))
3119 kvm_run->ready_for_interrupt_injection = 1;
3120 else
3121 kvm_run->ready_for_interrupt_injection =
3122 (vcpu->arch.interrupt_window_open &&
3123 vcpu->arch.irq_summary == 0);
3126 static void vapic_enter(struct kvm_vcpu *vcpu)
3128 struct kvm_lapic *apic = vcpu->arch.apic;
3129 struct page *page;
3131 if (!apic || !apic->vapic_addr)
3132 return;
3134 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3136 vcpu->arch.apic->vapic_page = page;
3139 static void vapic_exit(struct kvm_vcpu *vcpu)
3141 struct kvm_lapic *apic = vcpu->arch.apic;
3143 if (!apic || !apic->vapic_addr)
3144 return;
3146 down_read(&vcpu->kvm->slots_lock);
3147 kvm_release_page_dirty(apic->vapic_page);
3148 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3149 up_read(&vcpu->kvm->slots_lock);
3152 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3154 int r;
3156 if (vcpu->requests)
3157 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3158 kvm_mmu_unload(vcpu);
3160 r = kvm_mmu_reload(vcpu);
3161 if (unlikely(r))
3162 goto out;
3164 if (vcpu->requests) {
3165 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3166 __kvm_migrate_timers(vcpu);
3167 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3168 kvm_write_guest_time(vcpu);
3169 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3170 kvm_mmu_sync_roots(vcpu);
3171 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3172 kvm_x86_ops->tlb_flush(vcpu);
3173 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3174 &vcpu->requests)) {
3175 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3176 r = 0;
3177 goto out;
3179 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3180 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3181 r = 0;
3182 goto out;
3186 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3187 kvm_inject_pending_timer_irqs(vcpu);
3189 preempt_disable();
3191 kvm_x86_ops->prepare_guest_switch(vcpu);
3192 kvm_load_guest_fpu(vcpu);
3194 local_irq_disable();
3196 if (vcpu->requests || need_resched() || signal_pending(current)) {
3197 local_irq_enable();
3198 preempt_enable();
3199 r = 1;
3200 goto out;
3203 vcpu->guest_mode = 1;
3205 * Make sure that guest_mode assignment won't happen after
3206 * testing the pending IRQ vector bitmap.
3208 smp_wmb();
3210 if (vcpu->arch.exception.pending)
3211 __queue_exception(vcpu);
3212 else if (irqchip_in_kernel(vcpu->kvm))
3213 kvm_x86_ops->inject_pending_irq(vcpu);
3214 else
3215 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
3217 kvm_lapic_sync_to_vapic(vcpu);
3219 up_read(&vcpu->kvm->slots_lock);
3221 kvm_guest_enter();
3223 get_debugreg(vcpu->arch.host_dr6, 6);
3224 get_debugreg(vcpu->arch.host_dr7, 7);
3225 if (unlikely(vcpu->arch.switch_db_regs)) {
3226 get_debugreg(vcpu->arch.host_db[0], 0);
3227 get_debugreg(vcpu->arch.host_db[1], 1);
3228 get_debugreg(vcpu->arch.host_db[2], 2);
3229 get_debugreg(vcpu->arch.host_db[3], 3);
3231 set_debugreg(0, 7);
3232 set_debugreg(vcpu->arch.eff_db[0], 0);
3233 set_debugreg(vcpu->arch.eff_db[1], 1);
3234 set_debugreg(vcpu->arch.eff_db[2], 2);
3235 set_debugreg(vcpu->arch.eff_db[3], 3);
3238 KVMTRACE_0D(VMENTRY, vcpu, entryexit);
3239 kvm_x86_ops->run(vcpu, kvm_run);
3241 if (unlikely(vcpu->arch.switch_db_regs)) {
3242 set_debugreg(0, 7);
3243 set_debugreg(vcpu->arch.host_db[0], 0);
3244 set_debugreg(vcpu->arch.host_db[1], 1);
3245 set_debugreg(vcpu->arch.host_db[2], 2);
3246 set_debugreg(vcpu->arch.host_db[3], 3);
3248 set_debugreg(vcpu->arch.host_dr6, 6);
3249 set_debugreg(vcpu->arch.host_dr7, 7);
3251 vcpu->guest_mode = 0;
3252 local_irq_enable();
3254 ++vcpu->stat.exits;
3257 * We must have an instruction between local_irq_enable() and
3258 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3259 * the interrupt shadow. The stat.exits increment will do nicely.
3260 * But we need to prevent reordering, hence this barrier():
3262 barrier();
3264 kvm_guest_exit();
3266 preempt_enable();
3268 down_read(&vcpu->kvm->slots_lock);
3271 * Profile KVM exit RIPs:
3273 if (unlikely(prof_on == KVM_PROFILING)) {
3274 unsigned long rip = kvm_rip_read(vcpu);
3275 profile_hit(KVM_PROFILING, (void *)rip);
3278 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
3279 vcpu->arch.exception.pending = false;
3281 kvm_lapic_sync_from_vapic(vcpu);
3283 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3284 out:
3285 return r;
3288 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3290 int r;
3292 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3293 pr_debug("vcpu %d received sipi with vector # %x\n",
3294 vcpu->vcpu_id, vcpu->arch.sipi_vector);
3295 kvm_lapic_reset(vcpu);
3296 r = kvm_arch_vcpu_reset(vcpu);
3297 if (r)
3298 return r;
3299 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3302 down_read(&vcpu->kvm->slots_lock);
3303 vapic_enter(vcpu);
3305 r = 1;
3306 while (r > 0) {
3307 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3308 r = vcpu_enter_guest(vcpu, kvm_run);
3309 else {
3310 up_read(&vcpu->kvm->slots_lock);
3311 kvm_vcpu_block(vcpu);
3312 down_read(&vcpu->kvm->slots_lock);
3313 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3314 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3315 vcpu->arch.mp_state =
3316 KVM_MP_STATE_RUNNABLE;
3317 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
3318 r = -EINTR;
3321 if (r > 0) {
3322 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3323 r = -EINTR;
3324 kvm_run->exit_reason = KVM_EXIT_INTR;
3325 ++vcpu->stat.request_irq_exits;
3327 if (signal_pending(current)) {
3328 r = -EINTR;
3329 kvm_run->exit_reason = KVM_EXIT_INTR;
3330 ++vcpu->stat.signal_exits;
3332 if (need_resched()) {
3333 up_read(&vcpu->kvm->slots_lock);
3334 kvm_resched(vcpu);
3335 down_read(&vcpu->kvm->slots_lock);
3340 up_read(&vcpu->kvm->slots_lock);
3341 post_kvm_run_save(vcpu, kvm_run);
3343 vapic_exit(vcpu);
3345 return r;
3348 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3350 int r;
3351 sigset_t sigsaved;
3353 vcpu_load(vcpu);
3355 if (vcpu->sigset_active)
3356 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3358 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3359 kvm_vcpu_block(vcpu);
3360 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3361 r = -EAGAIN;
3362 goto out;
3365 /* re-sync apic's tpr */
3366 if (!irqchip_in_kernel(vcpu->kvm))
3367 kvm_set_cr8(vcpu, kvm_run->cr8);
3369 if (vcpu->arch.pio.cur_count) {
3370 r = complete_pio(vcpu);
3371 if (r)
3372 goto out;
3374 #if CONFIG_HAS_IOMEM
3375 if (vcpu->mmio_needed) {
3376 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3377 vcpu->mmio_read_completed = 1;
3378 vcpu->mmio_needed = 0;
3380 down_read(&vcpu->kvm->slots_lock);
3381 r = emulate_instruction(vcpu, kvm_run,
3382 vcpu->arch.mmio_fault_cr2, 0,
3383 EMULTYPE_NO_DECODE);
3384 up_read(&vcpu->kvm->slots_lock);
3385 if (r == EMULATE_DO_MMIO) {
3387 * Read-modify-write. Back to userspace.
3389 r = 0;
3390 goto out;
3393 #endif
3394 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3395 kvm_register_write(vcpu, VCPU_REGS_RAX,
3396 kvm_run->hypercall.ret);
3398 r = __vcpu_run(vcpu, kvm_run);
3400 out:
3401 if (vcpu->sigset_active)
3402 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3404 vcpu_put(vcpu);
3405 return r;
3408 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3410 vcpu_load(vcpu);
3412 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3413 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3414 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3415 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3416 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3417 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3418 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3419 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3420 #ifdef CONFIG_X86_64
3421 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3422 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3423 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3424 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3425 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3426 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3427 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3428 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3429 #endif
3431 regs->rip = kvm_rip_read(vcpu);
3432 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3435 * Don't leak debug flags in case they were set for guest debugging
3437 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3438 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3440 vcpu_put(vcpu);
3442 return 0;
3445 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3447 vcpu_load(vcpu);
3449 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3450 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3451 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3452 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3453 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3454 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3455 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3456 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3457 #ifdef CONFIG_X86_64
3458 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3459 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3460 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3461 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3462 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3463 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3464 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3465 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3467 #endif
3469 kvm_rip_write(vcpu, regs->rip);
3470 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3473 vcpu->arch.exception.pending = false;
3475 vcpu_put(vcpu);
3477 return 0;
3480 void kvm_get_segment(struct kvm_vcpu *vcpu,
3481 struct kvm_segment *var, int seg)
3483 kvm_x86_ops->get_segment(vcpu, var, seg);
3486 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3488 struct kvm_segment cs;
3490 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3491 *db = cs.db;
3492 *l = cs.l;
3494 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3496 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3497 struct kvm_sregs *sregs)
3499 struct descriptor_table dt;
3500 int pending_vec;
3502 vcpu_load(vcpu);
3504 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3505 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3506 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3507 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3508 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3509 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3511 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3512 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3514 kvm_x86_ops->get_idt(vcpu, &dt);
3515 sregs->idt.limit = dt.limit;
3516 sregs->idt.base = dt.base;
3517 kvm_x86_ops->get_gdt(vcpu, &dt);
3518 sregs->gdt.limit = dt.limit;
3519 sregs->gdt.base = dt.base;
3521 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3522 sregs->cr0 = vcpu->arch.cr0;
3523 sregs->cr2 = vcpu->arch.cr2;
3524 sregs->cr3 = vcpu->arch.cr3;
3525 sregs->cr4 = vcpu->arch.cr4;
3526 sregs->cr8 = kvm_get_cr8(vcpu);
3527 sregs->efer = vcpu->arch.shadow_efer;
3528 sregs->apic_base = kvm_get_apic_base(vcpu);
3530 if (irqchip_in_kernel(vcpu->kvm)) {
3531 memset(sregs->interrupt_bitmap, 0,
3532 sizeof sregs->interrupt_bitmap);
3533 pending_vec = kvm_x86_ops->get_irq(vcpu);
3534 if (pending_vec >= 0)
3535 set_bit(pending_vec,
3536 (unsigned long *)sregs->interrupt_bitmap);
3537 } else
3538 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3539 sizeof sregs->interrupt_bitmap);
3541 vcpu_put(vcpu);
3543 return 0;
3546 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3547 struct kvm_mp_state *mp_state)
3549 vcpu_load(vcpu);
3550 mp_state->mp_state = vcpu->arch.mp_state;
3551 vcpu_put(vcpu);
3552 return 0;
3555 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3556 struct kvm_mp_state *mp_state)
3558 vcpu_load(vcpu);
3559 vcpu->arch.mp_state = mp_state->mp_state;
3560 vcpu_put(vcpu);
3561 return 0;
3564 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3565 struct kvm_segment *var, int seg)
3567 kvm_x86_ops->set_segment(vcpu, var, seg);
3570 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3571 struct kvm_segment *kvm_desct)
3573 kvm_desct->base = seg_desc->base0;
3574 kvm_desct->base |= seg_desc->base1 << 16;
3575 kvm_desct->base |= seg_desc->base2 << 24;
3576 kvm_desct->limit = seg_desc->limit0;
3577 kvm_desct->limit |= seg_desc->limit << 16;
3578 if (seg_desc->g) {
3579 kvm_desct->limit <<= 12;
3580 kvm_desct->limit |= 0xfff;
3582 kvm_desct->selector = selector;
3583 kvm_desct->type = seg_desc->type;
3584 kvm_desct->present = seg_desc->p;
3585 kvm_desct->dpl = seg_desc->dpl;
3586 kvm_desct->db = seg_desc->d;
3587 kvm_desct->s = seg_desc->s;
3588 kvm_desct->l = seg_desc->l;
3589 kvm_desct->g = seg_desc->g;
3590 kvm_desct->avl = seg_desc->avl;
3591 if (!selector)
3592 kvm_desct->unusable = 1;
3593 else
3594 kvm_desct->unusable = 0;
3595 kvm_desct->padding = 0;
3598 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
3599 u16 selector,
3600 struct descriptor_table *dtable)
3602 if (selector & 1 << 2) {
3603 struct kvm_segment kvm_seg;
3605 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3607 if (kvm_seg.unusable)
3608 dtable->limit = 0;
3609 else
3610 dtable->limit = kvm_seg.limit;
3611 dtable->base = kvm_seg.base;
3613 else
3614 kvm_x86_ops->get_gdt(vcpu, dtable);
3617 /* allowed just for 8 bytes segments */
3618 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3619 struct desc_struct *seg_desc)
3621 gpa_t gpa;
3622 struct descriptor_table dtable;
3623 u16 index = selector >> 3;
3625 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3627 if (dtable.limit < index * 8 + 7) {
3628 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3629 return 1;
3631 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3632 gpa += index * 8;
3633 return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3636 /* allowed just for 8 bytes segments */
3637 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3638 struct desc_struct *seg_desc)
3640 gpa_t gpa;
3641 struct descriptor_table dtable;
3642 u16 index = selector >> 3;
3644 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3646 if (dtable.limit < index * 8 + 7)
3647 return 1;
3648 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3649 gpa += index * 8;
3650 return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3653 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3654 struct desc_struct *seg_desc)
3656 u32 base_addr;
3658 base_addr = seg_desc->base0;
3659 base_addr |= (seg_desc->base1 << 16);
3660 base_addr |= (seg_desc->base2 << 24);
3662 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3665 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3667 struct kvm_segment kvm_seg;
3669 kvm_get_segment(vcpu, &kvm_seg, seg);
3670 return kvm_seg.selector;
3673 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3674 u16 selector,
3675 struct kvm_segment *kvm_seg)
3677 struct desc_struct seg_desc;
3679 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3680 return 1;
3681 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3682 return 0;
3685 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3687 struct kvm_segment segvar = {
3688 .base = selector << 4,
3689 .limit = 0xffff,
3690 .selector = selector,
3691 .type = 3,
3692 .present = 1,
3693 .dpl = 3,
3694 .db = 0,
3695 .s = 1,
3696 .l = 0,
3697 .g = 0,
3698 .avl = 0,
3699 .unusable = 0,
3701 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3702 return 0;
3705 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3706 int type_bits, int seg)
3708 struct kvm_segment kvm_seg;
3710 if (!(vcpu->arch.cr0 & X86_CR0_PE))
3711 return kvm_load_realmode_segment(vcpu, selector, seg);
3712 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3713 return 1;
3714 kvm_seg.type |= type_bits;
3716 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3717 seg != VCPU_SREG_LDTR)
3718 if (!kvm_seg.s)
3719 kvm_seg.unusable = 1;
3721 kvm_set_segment(vcpu, &kvm_seg, seg);
3722 return 0;
3725 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3726 struct tss_segment_32 *tss)
3728 tss->cr3 = vcpu->arch.cr3;
3729 tss->eip = kvm_rip_read(vcpu);
3730 tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3731 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3732 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3733 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3734 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3735 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3736 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3737 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3738 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3739 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3740 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3741 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3742 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3743 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3744 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3745 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3746 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3749 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3750 struct tss_segment_32 *tss)
3752 kvm_set_cr3(vcpu, tss->cr3);
3754 kvm_rip_write(vcpu, tss->eip);
3755 kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3757 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
3758 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
3759 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
3760 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
3761 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
3762 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
3763 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
3764 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3766 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3767 return 1;
3769 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3770 return 1;
3772 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3773 return 1;
3775 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3776 return 1;
3778 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3779 return 1;
3781 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3782 return 1;
3784 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3785 return 1;
3786 return 0;
3789 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3790 struct tss_segment_16 *tss)
3792 tss->ip = kvm_rip_read(vcpu);
3793 tss->flag = kvm_x86_ops->get_rflags(vcpu);
3794 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3795 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3796 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3797 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3798 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3799 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3800 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
3801 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3803 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3804 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3805 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3806 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3807 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3808 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3811 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3812 struct tss_segment_16 *tss)
3814 kvm_rip_write(vcpu, tss->ip);
3815 kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3816 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
3817 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
3818 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
3819 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
3820 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
3821 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
3822 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
3823 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3825 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3826 return 1;
3828 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3829 return 1;
3831 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3832 return 1;
3834 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3835 return 1;
3837 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3838 return 1;
3839 return 0;
3842 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3843 u32 old_tss_base,
3844 struct desc_struct *nseg_desc)
3846 struct tss_segment_16 tss_segment_16;
3847 int ret = 0;
3849 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3850 sizeof tss_segment_16))
3851 goto out;
3853 save_state_to_tss16(vcpu, &tss_segment_16);
3855 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3856 sizeof tss_segment_16))
3857 goto out;
3859 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3860 &tss_segment_16, sizeof tss_segment_16))
3861 goto out;
3863 if (load_state_from_tss16(vcpu, &tss_segment_16))
3864 goto out;
3866 ret = 1;
3867 out:
3868 return ret;
3871 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3872 u32 old_tss_base,
3873 struct desc_struct *nseg_desc)
3875 struct tss_segment_32 tss_segment_32;
3876 int ret = 0;
3878 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3879 sizeof tss_segment_32))
3880 goto out;
3882 save_state_to_tss32(vcpu, &tss_segment_32);
3884 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3885 sizeof tss_segment_32))
3886 goto out;
3888 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3889 &tss_segment_32, sizeof tss_segment_32))
3890 goto out;
3892 if (load_state_from_tss32(vcpu, &tss_segment_32))
3893 goto out;
3895 ret = 1;
3896 out:
3897 return ret;
3900 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3902 struct kvm_segment tr_seg;
3903 struct desc_struct cseg_desc;
3904 struct desc_struct nseg_desc;
3905 int ret = 0;
3906 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
3907 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3909 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3911 /* FIXME: Handle errors. Failure to read either TSS or their
3912 * descriptors should generate a pagefault.
3914 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3915 goto out;
3917 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3918 goto out;
3920 if (reason != TASK_SWITCH_IRET) {
3921 int cpl;
3923 cpl = kvm_x86_ops->get_cpl(vcpu);
3924 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3925 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3926 return 1;
3930 if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3931 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3932 return 1;
3935 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3936 cseg_desc.type &= ~(1 << 1); //clear the B flag
3937 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
3940 if (reason == TASK_SWITCH_IRET) {
3941 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3942 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
3945 kvm_x86_ops->skip_emulated_instruction(vcpu);
3947 if (nseg_desc.type & 8)
3948 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
3949 &nseg_desc);
3950 else
3951 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
3952 &nseg_desc);
3954 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
3955 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3956 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
3959 if (reason != TASK_SWITCH_IRET) {
3960 nseg_desc.type |= (1 << 1);
3961 save_guest_segment_descriptor(vcpu, tss_selector,
3962 &nseg_desc);
3965 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
3966 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
3967 tr_seg.type = 11;
3968 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3969 out:
3970 return ret;
3972 EXPORT_SYMBOL_GPL(kvm_task_switch);
3974 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3975 struct kvm_sregs *sregs)
3977 int mmu_reset_needed = 0;
3978 int i, pending_vec, max_bits;
3979 struct descriptor_table dt;
3981 vcpu_load(vcpu);
3983 dt.limit = sregs->idt.limit;
3984 dt.base = sregs->idt.base;
3985 kvm_x86_ops->set_idt(vcpu, &dt);
3986 dt.limit = sregs->gdt.limit;
3987 dt.base = sregs->gdt.base;
3988 kvm_x86_ops->set_gdt(vcpu, &dt);
3990 vcpu->arch.cr2 = sregs->cr2;
3991 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3993 down_read(&vcpu->kvm->slots_lock);
3994 if (gfn_to_memslot(vcpu->kvm, sregs->cr3 >> PAGE_SHIFT))
3995 vcpu->arch.cr3 = sregs->cr3;
3996 else
3997 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
3998 up_read(&vcpu->kvm->slots_lock);
4000 kvm_set_cr8(vcpu, sregs->cr8);
4002 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4003 kvm_x86_ops->set_efer(vcpu, sregs->efer);
4004 kvm_set_apic_base(vcpu, sregs->apic_base);
4006 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4008 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4009 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4010 vcpu->arch.cr0 = sregs->cr0;
4012 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4013 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4014 if (!is_long_mode(vcpu) && is_pae(vcpu))
4015 load_pdptrs(vcpu, vcpu->arch.cr3);
4017 if (mmu_reset_needed)
4018 kvm_mmu_reset_context(vcpu);
4020 if (!irqchip_in_kernel(vcpu->kvm)) {
4021 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
4022 sizeof vcpu->arch.irq_pending);
4023 vcpu->arch.irq_summary = 0;
4024 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
4025 if (vcpu->arch.irq_pending[i])
4026 __set_bit(i, &vcpu->arch.irq_summary);
4027 } else {
4028 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4029 pending_vec = find_first_bit(
4030 (const unsigned long *)sregs->interrupt_bitmap,
4031 max_bits);
4032 /* Only pending external irq is handled here */
4033 if (pending_vec < max_bits) {
4034 kvm_x86_ops->set_irq(vcpu, pending_vec);
4035 pr_debug("Set back pending irq %d\n",
4036 pending_vec);
4038 kvm_pic_clear_isr_ack(vcpu->kvm);
4041 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4042 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4043 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4044 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4045 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4046 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4048 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4049 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4051 /* Older userspace won't unhalt the vcpu on reset. */
4052 if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
4053 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4054 !(vcpu->arch.cr0 & X86_CR0_PE))
4055 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4057 vcpu_put(vcpu);
4059 return 0;
4062 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4063 struct kvm_guest_debug *dbg)
4065 int i, r;
4067 vcpu_load(vcpu);
4069 if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4070 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4071 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4072 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4073 vcpu->arch.switch_db_regs =
4074 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4075 } else {
4076 for (i = 0; i < KVM_NR_DB_REGS; i++)
4077 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4078 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4081 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4083 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4084 kvm_queue_exception(vcpu, DB_VECTOR);
4085 else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4086 kvm_queue_exception(vcpu, BP_VECTOR);
4088 vcpu_put(vcpu);
4090 return r;
4094 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4095 * we have asm/x86/processor.h
4097 struct fxsave {
4098 u16 cwd;
4099 u16 swd;
4100 u16 twd;
4101 u16 fop;
4102 u64 rip;
4103 u64 rdp;
4104 u32 mxcsr;
4105 u32 mxcsr_mask;
4106 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4107 #ifdef CONFIG_X86_64
4108 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4109 #else
4110 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4111 #endif
4115 * Translate a guest virtual address to a guest physical address.
4117 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4118 struct kvm_translation *tr)
4120 unsigned long vaddr = tr->linear_address;
4121 gpa_t gpa;
4123 vcpu_load(vcpu);
4124 down_read(&vcpu->kvm->slots_lock);
4125 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4126 up_read(&vcpu->kvm->slots_lock);
4127 tr->physical_address = gpa;
4128 tr->valid = gpa != UNMAPPED_GVA;
4129 tr->writeable = 1;
4130 tr->usermode = 0;
4131 vcpu_put(vcpu);
4133 return 0;
4136 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4138 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4140 vcpu_load(vcpu);
4142 memcpy(fpu->fpr, fxsave->st_space, 128);
4143 fpu->fcw = fxsave->cwd;
4144 fpu->fsw = fxsave->swd;
4145 fpu->ftwx = fxsave->twd;
4146 fpu->last_opcode = fxsave->fop;
4147 fpu->last_ip = fxsave->rip;
4148 fpu->last_dp = fxsave->rdp;
4149 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4151 vcpu_put(vcpu);
4153 return 0;
4156 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4158 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4160 vcpu_load(vcpu);
4162 memcpy(fxsave->st_space, fpu->fpr, 128);
4163 fxsave->cwd = fpu->fcw;
4164 fxsave->swd = fpu->fsw;
4165 fxsave->twd = fpu->ftwx;
4166 fxsave->fop = fpu->last_opcode;
4167 fxsave->rip = fpu->last_ip;
4168 fxsave->rdp = fpu->last_dp;
4169 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4171 vcpu_put(vcpu);
4173 return 0;
4176 void fx_init(struct kvm_vcpu *vcpu)
4178 unsigned after_mxcsr_mask;
4181 * Touch the fpu the first time in non atomic context as if
4182 * this is the first fpu instruction the exception handler
4183 * will fire before the instruction returns and it'll have to
4184 * allocate ram with GFP_KERNEL.
4186 if (!used_math())
4187 kvm_fx_save(&vcpu->arch.host_fx_image);
4189 /* Initialize guest FPU by resetting ours and saving into guest's */
4190 preempt_disable();
4191 kvm_fx_save(&vcpu->arch.host_fx_image);
4192 kvm_fx_finit();
4193 kvm_fx_save(&vcpu->arch.guest_fx_image);
4194 kvm_fx_restore(&vcpu->arch.host_fx_image);
4195 preempt_enable();
4197 vcpu->arch.cr0 |= X86_CR0_ET;
4198 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4199 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4200 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4201 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4203 EXPORT_SYMBOL_GPL(fx_init);
4205 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4207 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4208 return;
4210 vcpu->guest_fpu_loaded = 1;
4211 kvm_fx_save(&vcpu->arch.host_fx_image);
4212 kvm_fx_restore(&vcpu->arch.guest_fx_image);
4214 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4216 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4218 if (!vcpu->guest_fpu_loaded)
4219 return;
4221 vcpu->guest_fpu_loaded = 0;
4222 kvm_fx_save(&vcpu->arch.guest_fx_image);
4223 kvm_fx_restore(&vcpu->arch.host_fx_image);
4224 ++vcpu->stat.fpu_reload;
4226 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4228 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4230 if (vcpu->arch.time_page) {
4231 kvm_release_page_dirty(vcpu->arch.time_page);
4232 vcpu->arch.time_page = NULL;
4235 kvm_x86_ops->vcpu_free(vcpu);
4238 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4239 unsigned int id)
4241 return kvm_x86_ops->vcpu_create(kvm, id);
4244 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4246 int r;
4248 /* We do fxsave: this must be aligned. */
4249 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4251 vcpu->arch.mtrr_state.have_fixed = 1;
4252 vcpu_load(vcpu);
4253 r = kvm_arch_vcpu_reset(vcpu);
4254 if (r == 0)
4255 r = kvm_mmu_setup(vcpu);
4256 vcpu_put(vcpu);
4257 if (r < 0)
4258 goto free_vcpu;
4260 return 0;
4261 free_vcpu:
4262 kvm_x86_ops->vcpu_free(vcpu);
4263 return r;
4266 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4268 vcpu_load(vcpu);
4269 kvm_mmu_unload(vcpu);
4270 vcpu_put(vcpu);
4272 kvm_x86_ops->vcpu_free(vcpu);
4275 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4277 vcpu->arch.nmi_pending = false;
4278 vcpu->arch.nmi_injected = false;
4280 vcpu->arch.switch_db_regs = 0;
4281 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4282 vcpu->arch.dr6 = DR6_FIXED_1;
4283 vcpu->arch.dr7 = DR7_FIXED_1;
4285 return kvm_x86_ops->vcpu_reset(vcpu);
4288 void kvm_arch_hardware_enable(void *garbage)
4290 kvm_x86_ops->hardware_enable(garbage);
4293 void kvm_arch_hardware_disable(void *garbage)
4295 kvm_x86_ops->hardware_disable(garbage);
4298 int kvm_arch_hardware_setup(void)
4300 return kvm_x86_ops->hardware_setup();
4303 void kvm_arch_hardware_unsetup(void)
4305 kvm_x86_ops->hardware_unsetup();
4308 void kvm_arch_check_processor_compat(void *rtn)
4310 kvm_x86_ops->check_processor_compatibility(rtn);
4313 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4315 struct page *page;
4316 struct kvm *kvm;
4317 int r;
4319 BUG_ON(vcpu->kvm == NULL);
4320 kvm = vcpu->kvm;
4322 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4323 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
4324 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4325 else
4326 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4328 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4329 if (!page) {
4330 r = -ENOMEM;
4331 goto fail;
4333 vcpu->arch.pio_data = page_address(page);
4335 r = kvm_mmu_create(vcpu);
4336 if (r < 0)
4337 goto fail_free_pio_data;
4339 if (irqchip_in_kernel(kvm)) {
4340 r = kvm_create_lapic(vcpu);
4341 if (r < 0)
4342 goto fail_mmu_destroy;
4345 return 0;
4347 fail_mmu_destroy:
4348 kvm_mmu_destroy(vcpu);
4349 fail_free_pio_data:
4350 free_page((unsigned long)vcpu->arch.pio_data);
4351 fail:
4352 return r;
4355 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4357 kvm_free_lapic(vcpu);
4358 down_read(&vcpu->kvm->slots_lock);
4359 kvm_mmu_destroy(vcpu);
4360 up_read(&vcpu->kvm->slots_lock);
4361 free_page((unsigned long)vcpu->arch.pio_data);
4364 struct kvm *kvm_arch_create_vm(void)
4366 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4368 if (!kvm)
4369 return ERR_PTR(-ENOMEM);
4371 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4372 INIT_LIST_HEAD(&kvm->arch.oos_global_pages);
4373 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4375 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4376 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4378 rdtscll(kvm->arch.vm_init_tsc);
4380 return kvm;
4383 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4385 vcpu_load(vcpu);
4386 kvm_mmu_unload(vcpu);
4387 vcpu_put(vcpu);
4390 static void kvm_free_vcpus(struct kvm *kvm)
4392 unsigned int i;
4395 * Unpin any mmu pages first.
4397 for (i = 0; i < KVM_MAX_VCPUS; ++i)
4398 if (kvm->vcpus[i])
4399 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
4400 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
4401 if (kvm->vcpus[i]) {
4402 kvm_arch_vcpu_free(kvm->vcpus[i]);
4403 kvm->vcpus[i] = NULL;
4409 void kvm_arch_sync_events(struct kvm *kvm)
4411 kvm_free_all_assigned_devices(kvm);
4414 void kvm_arch_destroy_vm(struct kvm *kvm)
4416 kvm_iommu_unmap_guest(kvm);
4417 kvm_free_pit(kvm);
4418 kfree(kvm->arch.vpic);
4419 kfree(kvm->arch.vioapic);
4420 kvm_free_vcpus(kvm);
4421 kvm_free_physmem(kvm);
4422 if (kvm->arch.apic_access_page)
4423 put_page(kvm->arch.apic_access_page);
4424 if (kvm->arch.ept_identity_pagetable)
4425 put_page(kvm->arch.ept_identity_pagetable);
4426 kfree(kvm);
4429 int kvm_arch_set_memory_region(struct kvm *kvm,
4430 struct kvm_userspace_memory_region *mem,
4431 struct kvm_memory_slot old,
4432 int user_alloc)
4434 int npages = mem->memory_size >> PAGE_SHIFT;
4435 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4437 /*To keep backward compatibility with older userspace,
4438 *x86 needs to hanlde !user_alloc case.
4440 if (!user_alloc) {
4441 if (npages && !old.rmap) {
4442 unsigned long userspace_addr;
4444 down_write(&current->mm->mmap_sem);
4445 userspace_addr = do_mmap(NULL, 0,
4446 npages * PAGE_SIZE,
4447 PROT_READ | PROT_WRITE,
4448 MAP_PRIVATE | MAP_ANONYMOUS,
4450 up_write(&current->mm->mmap_sem);
4452 if (IS_ERR((void *)userspace_addr))
4453 return PTR_ERR((void *)userspace_addr);
4455 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4456 spin_lock(&kvm->mmu_lock);
4457 memslot->userspace_addr = userspace_addr;
4458 spin_unlock(&kvm->mmu_lock);
4459 } else {
4460 if (!old.user_alloc && old.rmap) {
4461 int ret;
4463 down_write(&current->mm->mmap_sem);
4464 ret = do_munmap(current->mm, old.userspace_addr,
4465 old.npages * PAGE_SIZE);
4466 up_write(&current->mm->mmap_sem);
4467 if (ret < 0)
4468 printk(KERN_WARNING
4469 "kvm_vm_ioctl_set_memory_region: "
4470 "failed to munmap memory\n");
4475 spin_lock(&kvm->mmu_lock);
4476 if (!kvm->arch.n_requested_mmu_pages) {
4477 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4478 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4481 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4482 spin_unlock(&kvm->mmu_lock);
4483 kvm_flush_remote_tlbs(kvm);
4485 return 0;
4488 void kvm_arch_flush_shadow(struct kvm *kvm)
4490 kvm_mmu_zap_all(kvm);
4491 kvm_reload_remote_mmus(kvm);
4494 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4496 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4497 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4498 || vcpu->arch.nmi_pending;
4501 static void vcpu_kick_intr(void *info)
4503 #ifdef DEBUG
4504 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
4505 printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
4506 #endif
4509 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4511 int ipi_pcpu = vcpu->cpu;
4512 int cpu = get_cpu();
4514 if (waitqueue_active(&vcpu->wq)) {
4515 wake_up_interruptible(&vcpu->wq);
4516 ++vcpu->stat.halt_wakeup;
4519 * We may be called synchronously with irqs disabled in guest mode,
4520 * So need not to call smp_call_function_single() in that case.
4522 if (vcpu->guest_mode && vcpu->cpu != cpu)
4523 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4524 put_cpu();