kthreads: simplify migration_thread() exit path
[linux-2.6/mini2440.git] / mm / slab.c
blobd08692303f6e9f154f0e4b2a0786696db7f9b541
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/kmemtrace.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/kmemcheck.h>
119 #include <asm/cacheflush.h>
120 #include <asm/tlbflush.h>
121 #include <asm/page.h>
124 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
125 * 0 for faster, smaller code (especially in the critical paths).
127 * STATS - 1 to collect stats for /proc/slabinfo.
128 * 0 for faster, smaller code (especially in the critical paths).
130 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
133 #ifdef CONFIG_DEBUG_SLAB
134 #define DEBUG 1
135 #define STATS 1
136 #define FORCED_DEBUG 1
137 #else
138 #define DEBUG 0
139 #define STATS 0
140 #define FORCED_DEBUG 0
141 #endif
143 /* Shouldn't this be in a header file somewhere? */
144 #define BYTES_PER_WORD sizeof(void *)
145 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
147 #ifndef ARCH_KMALLOC_MINALIGN
149 * Enforce a minimum alignment for the kmalloc caches.
150 * Usually, the kmalloc caches are cache_line_size() aligned, except when
151 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
152 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
153 * alignment larger than the alignment of a 64-bit integer.
154 * ARCH_KMALLOC_MINALIGN allows that.
155 * Note that increasing this value may disable some debug features.
157 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
158 #endif
160 #ifndef ARCH_SLAB_MINALIGN
162 * Enforce a minimum alignment for all caches.
163 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
164 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
165 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
166 * some debug features.
168 #define ARCH_SLAB_MINALIGN 0
169 #endif
171 #ifndef ARCH_KMALLOC_FLAGS
172 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
173 #endif
175 /* Legal flag mask for kmem_cache_create(). */
176 #if DEBUG
177 # define CREATE_MASK (SLAB_RED_ZONE | \
178 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
179 SLAB_CACHE_DMA | \
180 SLAB_STORE_USER | \
181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
183 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
184 #else
185 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
186 SLAB_CACHE_DMA | \
187 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
188 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
189 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
190 #endif
193 * kmem_bufctl_t:
195 * Bufctl's are used for linking objs within a slab
196 * linked offsets.
198 * This implementation relies on "struct page" for locating the cache &
199 * slab an object belongs to.
200 * This allows the bufctl structure to be small (one int), but limits
201 * the number of objects a slab (not a cache) can contain when off-slab
202 * bufctls are used. The limit is the size of the largest general cache
203 * that does not use off-slab slabs.
204 * For 32bit archs with 4 kB pages, is this 56.
205 * This is not serious, as it is only for large objects, when it is unwise
206 * to have too many per slab.
207 * Note: This limit can be raised by introducing a general cache whose size
208 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
211 typedef unsigned int kmem_bufctl_t;
212 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
213 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
214 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
215 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
218 * struct slab
220 * Manages the objs in a slab. Placed either at the beginning of mem allocated
221 * for a slab, or allocated from an general cache.
222 * Slabs are chained into three list: fully used, partial, fully free slabs.
224 struct slab {
225 struct list_head list;
226 unsigned long colouroff;
227 void *s_mem; /* including colour offset */
228 unsigned int inuse; /* num of objs active in slab */
229 kmem_bufctl_t free;
230 unsigned short nodeid;
234 * struct slab_rcu
236 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
237 * arrange for kmem_freepages to be called via RCU. This is useful if
238 * we need to approach a kernel structure obliquely, from its address
239 * obtained without the usual locking. We can lock the structure to
240 * stabilize it and check it's still at the given address, only if we
241 * can be sure that the memory has not been meanwhile reused for some
242 * other kind of object (which our subsystem's lock might corrupt).
244 * rcu_read_lock before reading the address, then rcu_read_unlock after
245 * taking the spinlock within the structure expected at that address.
247 * We assume struct slab_rcu can overlay struct slab when destroying.
249 struct slab_rcu {
250 struct rcu_head head;
251 struct kmem_cache *cachep;
252 void *addr;
256 * struct array_cache
258 * Purpose:
259 * - LIFO ordering, to hand out cache-warm objects from _alloc
260 * - reduce the number of linked list operations
261 * - reduce spinlock operations
263 * The limit is stored in the per-cpu structure to reduce the data cache
264 * footprint.
267 struct array_cache {
268 unsigned int avail;
269 unsigned int limit;
270 unsigned int batchcount;
271 unsigned int touched;
272 spinlock_t lock;
273 void *entry[]; /*
274 * Must have this definition in here for the proper
275 * alignment of array_cache. Also simplifies accessing
276 * the entries.
281 * bootstrap: The caches do not work without cpuarrays anymore, but the
282 * cpuarrays are allocated from the generic caches...
284 #define BOOT_CPUCACHE_ENTRIES 1
285 struct arraycache_init {
286 struct array_cache cache;
287 void *entries[BOOT_CPUCACHE_ENTRIES];
291 * The slab lists for all objects.
293 struct kmem_list3 {
294 struct list_head slabs_partial; /* partial list first, better asm code */
295 struct list_head slabs_full;
296 struct list_head slabs_free;
297 unsigned long free_objects;
298 unsigned int free_limit;
299 unsigned int colour_next; /* Per-node cache coloring */
300 spinlock_t list_lock;
301 struct array_cache *shared; /* shared per node */
302 struct array_cache **alien; /* on other nodes */
303 unsigned long next_reap; /* updated without locking */
304 int free_touched; /* updated without locking */
308 * The slab allocator is initialized with interrupts disabled. Therefore, make
309 * sure early boot allocations don't accidentally enable interrupts.
311 static gfp_t slab_gfp_mask __read_mostly = SLAB_GFP_BOOT_MASK;
314 * Need this for bootstrapping a per node allocator.
316 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
317 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
318 #define CACHE_CACHE 0
319 #define SIZE_AC MAX_NUMNODES
320 #define SIZE_L3 (2 * MAX_NUMNODES)
322 static int drain_freelist(struct kmem_cache *cache,
323 struct kmem_list3 *l3, int tofree);
324 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
325 int node);
326 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
327 static void cache_reap(struct work_struct *unused);
330 * This function must be completely optimized away if a constant is passed to
331 * it. Mostly the same as what is in linux/slab.h except it returns an index.
333 static __always_inline int index_of(const size_t size)
335 extern void __bad_size(void);
337 if (__builtin_constant_p(size)) {
338 int i = 0;
340 #define CACHE(x) \
341 if (size <=x) \
342 return i; \
343 else \
344 i++;
345 #include <linux/kmalloc_sizes.h>
346 #undef CACHE
347 __bad_size();
348 } else
349 __bad_size();
350 return 0;
353 static int slab_early_init = 1;
355 #define INDEX_AC index_of(sizeof(struct arraycache_init))
356 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
358 static void kmem_list3_init(struct kmem_list3 *parent)
360 INIT_LIST_HEAD(&parent->slabs_full);
361 INIT_LIST_HEAD(&parent->slabs_partial);
362 INIT_LIST_HEAD(&parent->slabs_free);
363 parent->shared = NULL;
364 parent->alien = NULL;
365 parent->colour_next = 0;
366 spin_lock_init(&parent->list_lock);
367 parent->free_objects = 0;
368 parent->free_touched = 0;
371 #define MAKE_LIST(cachep, listp, slab, nodeid) \
372 do { \
373 INIT_LIST_HEAD(listp); \
374 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
375 } while (0)
377 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
378 do { \
379 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
380 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
381 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
382 } while (0)
384 #define CFLGS_OFF_SLAB (0x80000000UL)
385 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
387 #define BATCHREFILL_LIMIT 16
389 * Optimization question: fewer reaps means less probability for unnessary
390 * cpucache drain/refill cycles.
392 * OTOH the cpuarrays can contain lots of objects,
393 * which could lock up otherwise freeable slabs.
395 #define REAPTIMEOUT_CPUC (2*HZ)
396 #define REAPTIMEOUT_LIST3 (4*HZ)
398 #if STATS
399 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
400 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
401 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
402 #define STATS_INC_GROWN(x) ((x)->grown++)
403 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
404 #define STATS_SET_HIGH(x) \
405 do { \
406 if ((x)->num_active > (x)->high_mark) \
407 (x)->high_mark = (x)->num_active; \
408 } while (0)
409 #define STATS_INC_ERR(x) ((x)->errors++)
410 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
411 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
412 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
413 #define STATS_SET_FREEABLE(x, i) \
414 do { \
415 if ((x)->max_freeable < i) \
416 (x)->max_freeable = i; \
417 } while (0)
418 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
419 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
420 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
421 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
422 #else
423 #define STATS_INC_ACTIVE(x) do { } while (0)
424 #define STATS_DEC_ACTIVE(x) do { } while (0)
425 #define STATS_INC_ALLOCED(x) do { } while (0)
426 #define STATS_INC_GROWN(x) do { } while (0)
427 #define STATS_ADD_REAPED(x,y) do { } while (0)
428 #define STATS_SET_HIGH(x) do { } while (0)
429 #define STATS_INC_ERR(x) do { } while (0)
430 #define STATS_INC_NODEALLOCS(x) do { } while (0)
431 #define STATS_INC_NODEFREES(x) do { } while (0)
432 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
433 #define STATS_SET_FREEABLE(x, i) do { } while (0)
434 #define STATS_INC_ALLOCHIT(x) do { } while (0)
435 #define STATS_INC_ALLOCMISS(x) do { } while (0)
436 #define STATS_INC_FREEHIT(x) do { } while (0)
437 #define STATS_INC_FREEMISS(x) do { } while (0)
438 #endif
440 #if DEBUG
443 * memory layout of objects:
444 * 0 : objp
445 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
446 * the end of an object is aligned with the end of the real
447 * allocation. Catches writes behind the end of the allocation.
448 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
449 * redzone word.
450 * cachep->obj_offset: The real object.
451 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
452 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
453 * [BYTES_PER_WORD long]
455 static int obj_offset(struct kmem_cache *cachep)
457 return cachep->obj_offset;
460 static int obj_size(struct kmem_cache *cachep)
462 return cachep->obj_size;
465 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
467 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
468 return (unsigned long long*) (objp + obj_offset(cachep) -
469 sizeof(unsigned long long));
472 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
474 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
475 if (cachep->flags & SLAB_STORE_USER)
476 return (unsigned long long *)(objp + cachep->buffer_size -
477 sizeof(unsigned long long) -
478 REDZONE_ALIGN);
479 return (unsigned long long *) (objp + cachep->buffer_size -
480 sizeof(unsigned long long));
483 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
485 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
486 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
489 #else
491 #define obj_offset(x) 0
492 #define obj_size(cachep) (cachep->buffer_size)
493 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
494 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
495 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
497 #endif
499 #ifdef CONFIG_KMEMTRACE
500 size_t slab_buffer_size(struct kmem_cache *cachep)
502 return cachep->buffer_size;
504 EXPORT_SYMBOL(slab_buffer_size);
505 #endif
508 * Do not go above this order unless 0 objects fit into the slab.
510 #define BREAK_GFP_ORDER_HI 1
511 #define BREAK_GFP_ORDER_LO 0
512 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
515 * Functions for storing/retrieving the cachep and or slab from the page
516 * allocator. These are used to find the slab an obj belongs to. With kfree(),
517 * these are used to find the cache which an obj belongs to.
519 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
521 page->lru.next = (struct list_head *)cache;
524 static inline struct kmem_cache *page_get_cache(struct page *page)
526 page = compound_head(page);
527 BUG_ON(!PageSlab(page));
528 return (struct kmem_cache *)page->lru.next;
531 static inline void page_set_slab(struct page *page, struct slab *slab)
533 page->lru.prev = (struct list_head *)slab;
536 static inline struct slab *page_get_slab(struct page *page)
538 BUG_ON(!PageSlab(page));
539 return (struct slab *)page->lru.prev;
542 static inline struct kmem_cache *virt_to_cache(const void *obj)
544 struct page *page = virt_to_head_page(obj);
545 return page_get_cache(page);
548 static inline struct slab *virt_to_slab(const void *obj)
550 struct page *page = virt_to_head_page(obj);
551 return page_get_slab(page);
554 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
555 unsigned int idx)
557 return slab->s_mem + cache->buffer_size * idx;
561 * We want to avoid an expensive divide : (offset / cache->buffer_size)
562 * Using the fact that buffer_size is a constant for a particular cache,
563 * we can replace (offset / cache->buffer_size) by
564 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
566 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
567 const struct slab *slab, void *obj)
569 u32 offset = (obj - slab->s_mem);
570 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
574 * These are the default caches for kmalloc. Custom caches can have other sizes.
576 struct cache_sizes malloc_sizes[] = {
577 #define CACHE(x) { .cs_size = (x) },
578 #include <linux/kmalloc_sizes.h>
579 CACHE(ULONG_MAX)
580 #undef CACHE
582 EXPORT_SYMBOL(malloc_sizes);
584 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
585 struct cache_names {
586 char *name;
587 char *name_dma;
590 static struct cache_names __initdata cache_names[] = {
591 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
592 #include <linux/kmalloc_sizes.h>
593 {NULL,}
594 #undef CACHE
597 static struct arraycache_init initarray_cache __initdata =
598 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
599 static struct arraycache_init initarray_generic =
600 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
602 /* internal cache of cache description objs */
603 static struct kmem_cache cache_cache = {
604 .batchcount = 1,
605 .limit = BOOT_CPUCACHE_ENTRIES,
606 .shared = 1,
607 .buffer_size = sizeof(struct kmem_cache),
608 .name = "kmem_cache",
611 #define BAD_ALIEN_MAGIC 0x01020304ul
613 #ifdef CONFIG_LOCKDEP
616 * Slab sometimes uses the kmalloc slabs to store the slab headers
617 * for other slabs "off slab".
618 * The locking for this is tricky in that it nests within the locks
619 * of all other slabs in a few places; to deal with this special
620 * locking we put on-slab caches into a separate lock-class.
622 * We set lock class for alien array caches which are up during init.
623 * The lock annotation will be lost if all cpus of a node goes down and
624 * then comes back up during hotplug
626 static struct lock_class_key on_slab_l3_key;
627 static struct lock_class_key on_slab_alc_key;
629 static inline void init_lock_keys(void)
632 int q;
633 struct cache_sizes *s = malloc_sizes;
635 while (s->cs_size != ULONG_MAX) {
636 for_each_node(q) {
637 struct array_cache **alc;
638 int r;
639 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
640 if (!l3 || OFF_SLAB(s->cs_cachep))
641 continue;
642 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
643 alc = l3->alien;
645 * FIXME: This check for BAD_ALIEN_MAGIC
646 * should go away when common slab code is taught to
647 * work even without alien caches.
648 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
649 * for alloc_alien_cache,
651 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
652 continue;
653 for_each_node(r) {
654 if (alc[r])
655 lockdep_set_class(&alc[r]->lock,
656 &on_slab_alc_key);
659 s++;
662 #else
663 static inline void init_lock_keys(void)
666 #endif
669 * Guard access to the cache-chain.
671 static DEFINE_MUTEX(cache_chain_mutex);
672 static struct list_head cache_chain;
675 * chicken and egg problem: delay the per-cpu array allocation
676 * until the general caches are up.
678 static enum {
679 NONE,
680 PARTIAL_AC,
681 PARTIAL_L3,
682 EARLY,
683 FULL
684 } g_cpucache_up;
687 * used by boot code to determine if it can use slab based allocator
689 int slab_is_available(void)
691 return g_cpucache_up >= EARLY;
694 static DEFINE_PER_CPU(struct delayed_work, reap_work);
696 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
698 return cachep->array[smp_processor_id()];
701 static inline struct kmem_cache *__find_general_cachep(size_t size,
702 gfp_t gfpflags)
704 struct cache_sizes *csizep = malloc_sizes;
706 #if DEBUG
707 /* This happens if someone tries to call
708 * kmem_cache_create(), or __kmalloc(), before
709 * the generic caches are initialized.
711 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
712 #endif
713 if (!size)
714 return ZERO_SIZE_PTR;
716 while (size > csizep->cs_size)
717 csizep++;
720 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
721 * has cs_{dma,}cachep==NULL. Thus no special case
722 * for large kmalloc calls required.
724 #ifdef CONFIG_ZONE_DMA
725 if (unlikely(gfpflags & GFP_DMA))
726 return csizep->cs_dmacachep;
727 #endif
728 return csizep->cs_cachep;
731 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
733 return __find_general_cachep(size, gfpflags);
736 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
738 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
742 * Calculate the number of objects and left-over bytes for a given buffer size.
744 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
745 size_t align, int flags, size_t *left_over,
746 unsigned int *num)
748 int nr_objs;
749 size_t mgmt_size;
750 size_t slab_size = PAGE_SIZE << gfporder;
753 * The slab management structure can be either off the slab or
754 * on it. For the latter case, the memory allocated for a
755 * slab is used for:
757 * - The struct slab
758 * - One kmem_bufctl_t for each object
759 * - Padding to respect alignment of @align
760 * - @buffer_size bytes for each object
762 * If the slab management structure is off the slab, then the
763 * alignment will already be calculated into the size. Because
764 * the slabs are all pages aligned, the objects will be at the
765 * correct alignment when allocated.
767 if (flags & CFLGS_OFF_SLAB) {
768 mgmt_size = 0;
769 nr_objs = slab_size / buffer_size;
771 if (nr_objs > SLAB_LIMIT)
772 nr_objs = SLAB_LIMIT;
773 } else {
775 * Ignore padding for the initial guess. The padding
776 * is at most @align-1 bytes, and @buffer_size is at
777 * least @align. In the worst case, this result will
778 * be one greater than the number of objects that fit
779 * into the memory allocation when taking the padding
780 * into account.
782 nr_objs = (slab_size - sizeof(struct slab)) /
783 (buffer_size + sizeof(kmem_bufctl_t));
786 * This calculated number will be either the right
787 * amount, or one greater than what we want.
789 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
790 > slab_size)
791 nr_objs--;
793 if (nr_objs > SLAB_LIMIT)
794 nr_objs = SLAB_LIMIT;
796 mgmt_size = slab_mgmt_size(nr_objs, align);
798 *num = nr_objs;
799 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
802 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
804 static void __slab_error(const char *function, struct kmem_cache *cachep,
805 char *msg)
807 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
808 function, cachep->name, msg);
809 dump_stack();
813 * By default on NUMA we use alien caches to stage the freeing of
814 * objects allocated from other nodes. This causes massive memory
815 * inefficiencies when using fake NUMA setup to split memory into a
816 * large number of small nodes, so it can be disabled on the command
817 * line
820 static int use_alien_caches __read_mostly = 1;
821 static int __init noaliencache_setup(char *s)
823 use_alien_caches = 0;
824 return 1;
826 __setup("noaliencache", noaliencache_setup);
828 #ifdef CONFIG_NUMA
830 * Special reaping functions for NUMA systems called from cache_reap().
831 * These take care of doing round robin flushing of alien caches (containing
832 * objects freed on different nodes from which they were allocated) and the
833 * flushing of remote pcps by calling drain_node_pages.
835 static DEFINE_PER_CPU(unsigned long, reap_node);
837 static void init_reap_node(int cpu)
839 int node;
841 node = next_node(cpu_to_node(cpu), node_online_map);
842 if (node == MAX_NUMNODES)
843 node = first_node(node_online_map);
845 per_cpu(reap_node, cpu) = node;
848 static void next_reap_node(void)
850 int node = __get_cpu_var(reap_node);
852 node = next_node(node, node_online_map);
853 if (unlikely(node >= MAX_NUMNODES))
854 node = first_node(node_online_map);
855 __get_cpu_var(reap_node) = node;
858 #else
859 #define init_reap_node(cpu) do { } while (0)
860 #define next_reap_node(void) do { } while (0)
861 #endif
864 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
865 * via the workqueue/eventd.
866 * Add the CPU number into the expiration time to minimize the possibility of
867 * the CPUs getting into lockstep and contending for the global cache chain
868 * lock.
870 static void __cpuinit start_cpu_timer(int cpu)
872 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
875 * When this gets called from do_initcalls via cpucache_init(),
876 * init_workqueues() has already run, so keventd will be setup
877 * at that time.
879 if (keventd_up() && reap_work->work.func == NULL) {
880 init_reap_node(cpu);
881 INIT_DELAYED_WORK(reap_work, cache_reap);
882 schedule_delayed_work_on(cpu, reap_work,
883 __round_jiffies_relative(HZ, cpu));
887 static struct array_cache *alloc_arraycache(int node, int entries,
888 int batchcount, gfp_t gfp)
890 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
891 struct array_cache *nc = NULL;
893 nc = kmalloc_node(memsize, gfp, node);
895 * The array_cache structures contain pointers to free object.
896 * However, when such objects are allocated or transfered to another
897 * cache the pointers are not cleared and they could be counted as
898 * valid references during a kmemleak scan. Therefore, kmemleak must
899 * not scan such objects.
901 kmemleak_no_scan(nc);
902 if (nc) {
903 nc->avail = 0;
904 nc->limit = entries;
905 nc->batchcount = batchcount;
906 nc->touched = 0;
907 spin_lock_init(&nc->lock);
909 return nc;
913 * Transfer objects in one arraycache to another.
914 * Locking must be handled by the caller.
916 * Return the number of entries transferred.
918 static int transfer_objects(struct array_cache *to,
919 struct array_cache *from, unsigned int max)
921 /* Figure out how many entries to transfer */
922 int nr = min(min(from->avail, max), to->limit - to->avail);
924 if (!nr)
925 return 0;
927 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
928 sizeof(void *) *nr);
930 from->avail -= nr;
931 to->avail += nr;
932 to->touched = 1;
933 return nr;
936 #ifndef CONFIG_NUMA
938 #define drain_alien_cache(cachep, alien) do { } while (0)
939 #define reap_alien(cachep, l3) do { } while (0)
941 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
943 return (struct array_cache **)BAD_ALIEN_MAGIC;
946 static inline void free_alien_cache(struct array_cache **ac_ptr)
950 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
952 return 0;
955 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
956 gfp_t flags)
958 return NULL;
961 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
962 gfp_t flags, int nodeid)
964 return NULL;
967 #else /* CONFIG_NUMA */
969 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
970 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
972 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
974 struct array_cache **ac_ptr;
975 int memsize = sizeof(void *) * nr_node_ids;
976 int i;
978 if (limit > 1)
979 limit = 12;
980 ac_ptr = kmalloc_node(memsize, gfp, node);
981 if (ac_ptr) {
982 for_each_node(i) {
983 if (i == node || !node_online(i)) {
984 ac_ptr[i] = NULL;
985 continue;
987 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
988 if (!ac_ptr[i]) {
989 for (i--; i >= 0; i--)
990 kfree(ac_ptr[i]);
991 kfree(ac_ptr);
992 return NULL;
996 return ac_ptr;
999 static void free_alien_cache(struct array_cache **ac_ptr)
1001 int i;
1003 if (!ac_ptr)
1004 return;
1005 for_each_node(i)
1006 kfree(ac_ptr[i]);
1007 kfree(ac_ptr);
1010 static void __drain_alien_cache(struct kmem_cache *cachep,
1011 struct array_cache *ac, int node)
1013 struct kmem_list3 *rl3 = cachep->nodelists[node];
1015 if (ac->avail) {
1016 spin_lock(&rl3->list_lock);
1018 * Stuff objects into the remote nodes shared array first.
1019 * That way we could avoid the overhead of putting the objects
1020 * into the free lists and getting them back later.
1022 if (rl3->shared)
1023 transfer_objects(rl3->shared, ac, ac->limit);
1025 free_block(cachep, ac->entry, ac->avail, node);
1026 ac->avail = 0;
1027 spin_unlock(&rl3->list_lock);
1032 * Called from cache_reap() to regularly drain alien caches round robin.
1034 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1036 int node = __get_cpu_var(reap_node);
1038 if (l3->alien) {
1039 struct array_cache *ac = l3->alien[node];
1041 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1042 __drain_alien_cache(cachep, ac, node);
1043 spin_unlock_irq(&ac->lock);
1048 static void drain_alien_cache(struct kmem_cache *cachep,
1049 struct array_cache **alien)
1051 int i = 0;
1052 struct array_cache *ac;
1053 unsigned long flags;
1055 for_each_online_node(i) {
1056 ac = alien[i];
1057 if (ac) {
1058 spin_lock_irqsave(&ac->lock, flags);
1059 __drain_alien_cache(cachep, ac, i);
1060 spin_unlock_irqrestore(&ac->lock, flags);
1065 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1067 struct slab *slabp = virt_to_slab(objp);
1068 int nodeid = slabp->nodeid;
1069 struct kmem_list3 *l3;
1070 struct array_cache *alien = NULL;
1071 int node;
1073 node = numa_node_id();
1076 * Make sure we are not freeing a object from another node to the array
1077 * cache on this cpu.
1079 if (likely(slabp->nodeid == node))
1080 return 0;
1082 l3 = cachep->nodelists[node];
1083 STATS_INC_NODEFREES(cachep);
1084 if (l3->alien && l3->alien[nodeid]) {
1085 alien = l3->alien[nodeid];
1086 spin_lock(&alien->lock);
1087 if (unlikely(alien->avail == alien->limit)) {
1088 STATS_INC_ACOVERFLOW(cachep);
1089 __drain_alien_cache(cachep, alien, nodeid);
1091 alien->entry[alien->avail++] = objp;
1092 spin_unlock(&alien->lock);
1093 } else {
1094 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1095 free_block(cachep, &objp, 1, nodeid);
1096 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1098 return 1;
1100 #endif
1102 static void __cpuinit cpuup_canceled(long cpu)
1104 struct kmem_cache *cachep;
1105 struct kmem_list3 *l3 = NULL;
1106 int node = cpu_to_node(cpu);
1107 const struct cpumask *mask = cpumask_of_node(node);
1109 list_for_each_entry(cachep, &cache_chain, next) {
1110 struct array_cache *nc;
1111 struct array_cache *shared;
1112 struct array_cache **alien;
1114 /* cpu is dead; no one can alloc from it. */
1115 nc = cachep->array[cpu];
1116 cachep->array[cpu] = NULL;
1117 l3 = cachep->nodelists[node];
1119 if (!l3)
1120 goto free_array_cache;
1122 spin_lock_irq(&l3->list_lock);
1124 /* Free limit for this kmem_list3 */
1125 l3->free_limit -= cachep->batchcount;
1126 if (nc)
1127 free_block(cachep, nc->entry, nc->avail, node);
1129 if (!cpus_empty(*mask)) {
1130 spin_unlock_irq(&l3->list_lock);
1131 goto free_array_cache;
1134 shared = l3->shared;
1135 if (shared) {
1136 free_block(cachep, shared->entry,
1137 shared->avail, node);
1138 l3->shared = NULL;
1141 alien = l3->alien;
1142 l3->alien = NULL;
1144 spin_unlock_irq(&l3->list_lock);
1146 kfree(shared);
1147 if (alien) {
1148 drain_alien_cache(cachep, alien);
1149 free_alien_cache(alien);
1151 free_array_cache:
1152 kfree(nc);
1155 * In the previous loop, all the objects were freed to
1156 * the respective cache's slabs, now we can go ahead and
1157 * shrink each nodelist to its limit.
1159 list_for_each_entry(cachep, &cache_chain, next) {
1160 l3 = cachep->nodelists[node];
1161 if (!l3)
1162 continue;
1163 drain_freelist(cachep, l3, l3->free_objects);
1167 static int __cpuinit cpuup_prepare(long cpu)
1169 struct kmem_cache *cachep;
1170 struct kmem_list3 *l3 = NULL;
1171 int node = cpu_to_node(cpu);
1172 const int memsize = sizeof(struct kmem_list3);
1175 * We need to do this right in the beginning since
1176 * alloc_arraycache's are going to use this list.
1177 * kmalloc_node allows us to add the slab to the right
1178 * kmem_list3 and not this cpu's kmem_list3
1181 list_for_each_entry(cachep, &cache_chain, next) {
1183 * Set up the size64 kmemlist for cpu before we can
1184 * begin anything. Make sure some other cpu on this
1185 * node has not already allocated this
1187 if (!cachep->nodelists[node]) {
1188 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1189 if (!l3)
1190 goto bad;
1191 kmem_list3_init(l3);
1192 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1193 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1196 * The l3s don't come and go as CPUs come and
1197 * go. cache_chain_mutex is sufficient
1198 * protection here.
1200 cachep->nodelists[node] = l3;
1203 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1204 cachep->nodelists[node]->free_limit =
1205 (1 + nr_cpus_node(node)) *
1206 cachep->batchcount + cachep->num;
1207 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1211 * Now we can go ahead with allocating the shared arrays and
1212 * array caches
1214 list_for_each_entry(cachep, &cache_chain, next) {
1215 struct array_cache *nc;
1216 struct array_cache *shared = NULL;
1217 struct array_cache **alien = NULL;
1219 nc = alloc_arraycache(node, cachep->limit,
1220 cachep->batchcount, GFP_KERNEL);
1221 if (!nc)
1222 goto bad;
1223 if (cachep->shared) {
1224 shared = alloc_arraycache(node,
1225 cachep->shared * cachep->batchcount,
1226 0xbaadf00d, GFP_KERNEL);
1227 if (!shared) {
1228 kfree(nc);
1229 goto bad;
1232 if (use_alien_caches) {
1233 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1234 if (!alien) {
1235 kfree(shared);
1236 kfree(nc);
1237 goto bad;
1240 cachep->array[cpu] = nc;
1241 l3 = cachep->nodelists[node];
1242 BUG_ON(!l3);
1244 spin_lock_irq(&l3->list_lock);
1245 if (!l3->shared) {
1247 * We are serialised from CPU_DEAD or
1248 * CPU_UP_CANCELLED by the cpucontrol lock
1250 l3->shared = shared;
1251 shared = NULL;
1253 #ifdef CONFIG_NUMA
1254 if (!l3->alien) {
1255 l3->alien = alien;
1256 alien = NULL;
1258 #endif
1259 spin_unlock_irq(&l3->list_lock);
1260 kfree(shared);
1261 free_alien_cache(alien);
1263 return 0;
1264 bad:
1265 cpuup_canceled(cpu);
1266 return -ENOMEM;
1269 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1270 unsigned long action, void *hcpu)
1272 long cpu = (long)hcpu;
1273 int err = 0;
1275 switch (action) {
1276 case CPU_UP_PREPARE:
1277 case CPU_UP_PREPARE_FROZEN:
1278 mutex_lock(&cache_chain_mutex);
1279 err = cpuup_prepare(cpu);
1280 mutex_unlock(&cache_chain_mutex);
1281 break;
1282 case CPU_ONLINE:
1283 case CPU_ONLINE_FROZEN:
1284 start_cpu_timer(cpu);
1285 break;
1286 #ifdef CONFIG_HOTPLUG_CPU
1287 case CPU_DOWN_PREPARE:
1288 case CPU_DOWN_PREPARE_FROZEN:
1290 * Shutdown cache reaper. Note that the cache_chain_mutex is
1291 * held so that if cache_reap() is invoked it cannot do
1292 * anything expensive but will only modify reap_work
1293 * and reschedule the timer.
1295 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1296 /* Now the cache_reaper is guaranteed to be not running. */
1297 per_cpu(reap_work, cpu).work.func = NULL;
1298 break;
1299 case CPU_DOWN_FAILED:
1300 case CPU_DOWN_FAILED_FROZEN:
1301 start_cpu_timer(cpu);
1302 break;
1303 case CPU_DEAD:
1304 case CPU_DEAD_FROZEN:
1306 * Even if all the cpus of a node are down, we don't free the
1307 * kmem_list3 of any cache. This to avoid a race between
1308 * cpu_down, and a kmalloc allocation from another cpu for
1309 * memory from the node of the cpu going down. The list3
1310 * structure is usually allocated from kmem_cache_create() and
1311 * gets destroyed at kmem_cache_destroy().
1313 /* fall through */
1314 #endif
1315 case CPU_UP_CANCELED:
1316 case CPU_UP_CANCELED_FROZEN:
1317 mutex_lock(&cache_chain_mutex);
1318 cpuup_canceled(cpu);
1319 mutex_unlock(&cache_chain_mutex);
1320 break;
1322 return err ? NOTIFY_BAD : NOTIFY_OK;
1325 static struct notifier_block __cpuinitdata cpucache_notifier = {
1326 &cpuup_callback, NULL, 0
1330 * swap the static kmem_list3 with kmalloced memory
1332 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1333 int nodeid)
1335 struct kmem_list3 *ptr;
1337 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1338 BUG_ON(!ptr);
1340 memcpy(ptr, list, sizeof(struct kmem_list3));
1342 * Do not assume that spinlocks can be initialized via memcpy:
1344 spin_lock_init(&ptr->list_lock);
1346 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1347 cachep->nodelists[nodeid] = ptr;
1351 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1352 * size of kmem_list3.
1354 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1356 int node;
1358 for_each_online_node(node) {
1359 cachep->nodelists[node] = &initkmem_list3[index + node];
1360 cachep->nodelists[node]->next_reap = jiffies +
1361 REAPTIMEOUT_LIST3 +
1362 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1367 * Initialisation. Called after the page allocator have been initialised and
1368 * before smp_init().
1370 void __init kmem_cache_init(void)
1372 size_t left_over;
1373 struct cache_sizes *sizes;
1374 struct cache_names *names;
1375 int i;
1376 int order;
1377 int node;
1379 if (num_possible_nodes() == 1)
1380 use_alien_caches = 0;
1382 for (i = 0; i < NUM_INIT_LISTS; i++) {
1383 kmem_list3_init(&initkmem_list3[i]);
1384 if (i < MAX_NUMNODES)
1385 cache_cache.nodelists[i] = NULL;
1387 set_up_list3s(&cache_cache, CACHE_CACHE);
1390 * Fragmentation resistance on low memory - only use bigger
1391 * page orders on machines with more than 32MB of memory.
1393 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1394 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1396 /* Bootstrap is tricky, because several objects are allocated
1397 * from caches that do not exist yet:
1398 * 1) initialize the cache_cache cache: it contains the struct
1399 * kmem_cache structures of all caches, except cache_cache itself:
1400 * cache_cache is statically allocated.
1401 * Initially an __init data area is used for the head array and the
1402 * kmem_list3 structures, it's replaced with a kmalloc allocated
1403 * array at the end of the bootstrap.
1404 * 2) Create the first kmalloc cache.
1405 * The struct kmem_cache for the new cache is allocated normally.
1406 * An __init data area is used for the head array.
1407 * 3) Create the remaining kmalloc caches, with minimally sized
1408 * head arrays.
1409 * 4) Replace the __init data head arrays for cache_cache and the first
1410 * kmalloc cache with kmalloc allocated arrays.
1411 * 5) Replace the __init data for kmem_list3 for cache_cache and
1412 * the other cache's with kmalloc allocated memory.
1413 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1416 node = numa_node_id();
1418 /* 1) create the cache_cache */
1419 INIT_LIST_HEAD(&cache_chain);
1420 list_add(&cache_cache.next, &cache_chain);
1421 cache_cache.colour_off = cache_line_size();
1422 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1423 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1426 * struct kmem_cache size depends on nr_node_ids, which
1427 * can be less than MAX_NUMNODES.
1429 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1430 nr_node_ids * sizeof(struct kmem_list3 *);
1431 #if DEBUG
1432 cache_cache.obj_size = cache_cache.buffer_size;
1433 #endif
1434 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1435 cache_line_size());
1436 cache_cache.reciprocal_buffer_size =
1437 reciprocal_value(cache_cache.buffer_size);
1439 for (order = 0; order < MAX_ORDER; order++) {
1440 cache_estimate(order, cache_cache.buffer_size,
1441 cache_line_size(), 0, &left_over, &cache_cache.num);
1442 if (cache_cache.num)
1443 break;
1445 BUG_ON(!cache_cache.num);
1446 cache_cache.gfporder = order;
1447 cache_cache.colour = left_over / cache_cache.colour_off;
1448 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1449 sizeof(struct slab), cache_line_size());
1451 /* 2+3) create the kmalloc caches */
1452 sizes = malloc_sizes;
1453 names = cache_names;
1456 * Initialize the caches that provide memory for the array cache and the
1457 * kmem_list3 structures first. Without this, further allocations will
1458 * bug.
1461 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1462 sizes[INDEX_AC].cs_size,
1463 ARCH_KMALLOC_MINALIGN,
1464 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1465 NULL);
1467 if (INDEX_AC != INDEX_L3) {
1468 sizes[INDEX_L3].cs_cachep =
1469 kmem_cache_create(names[INDEX_L3].name,
1470 sizes[INDEX_L3].cs_size,
1471 ARCH_KMALLOC_MINALIGN,
1472 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1473 NULL);
1476 slab_early_init = 0;
1478 while (sizes->cs_size != ULONG_MAX) {
1480 * For performance, all the general caches are L1 aligned.
1481 * This should be particularly beneficial on SMP boxes, as it
1482 * eliminates "false sharing".
1483 * Note for systems short on memory removing the alignment will
1484 * allow tighter packing of the smaller caches.
1486 if (!sizes->cs_cachep) {
1487 sizes->cs_cachep = kmem_cache_create(names->name,
1488 sizes->cs_size,
1489 ARCH_KMALLOC_MINALIGN,
1490 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1491 NULL);
1493 #ifdef CONFIG_ZONE_DMA
1494 sizes->cs_dmacachep = kmem_cache_create(
1495 names->name_dma,
1496 sizes->cs_size,
1497 ARCH_KMALLOC_MINALIGN,
1498 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1499 SLAB_PANIC,
1500 NULL);
1501 #endif
1502 sizes++;
1503 names++;
1505 /* 4) Replace the bootstrap head arrays */
1507 struct array_cache *ptr;
1509 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1511 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1512 memcpy(ptr, cpu_cache_get(&cache_cache),
1513 sizeof(struct arraycache_init));
1515 * Do not assume that spinlocks can be initialized via memcpy:
1517 spin_lock_init(&ptr->lock);
1519 cache_cache.array[smp_processor_id()] = ptr;
1521 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1523 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1524 != &initarray_generic.cache);
1525 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1526 sizeof(struct arraycache_init));
1528 * Do not assume that spinlocks can be initialized via memcpy:
1530 spin_lock_init(&ptr->lock);
1532 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1533 ptr;
1535 /* 5) Replace the bootstrap kmem_list3's */
1537 int nid;
1539 for_each_online_node(nid) {
1540 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1542 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1543 &initkmem_list3[SIZE_AC + nid], nid);
1545 if (INDEX_AC != INDEX_L3) {
1546 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1547 &initkmem_list3[SIZE_L3 + nid], nid);
1552 g_cpucache_up = EARLY;
1554 /* Annotate slab for lockdep -- annotate the malloc caches */
1555 init_lock_keys();
1558 void __init kmem_cache_init_late(void)
1560 struct kmem_cache *cachep;
1563 * Interrupts are enabled now so all GFP allocations are safe.
1565 slab_gfp_mask = __GFP_BITS_MASK;
1567 /* 6) resize the head arrays to their final sizes */
1568 mutex_lock(&cache_chain_mutex);
1569 list_for_each_entry(cachep, &cache_chain, next)
1570 if (enable_cpucache(cachep, GFP_NOWAIT))
1571 BUG();
1572 mutex_unlock(&cache_chain_mutex);
1574 /* Done! */
1575 g_cpucache_up = FULL;
1578 * Register a cpu startup notifier callback that initializes
1579 * cpu_cache_get for all new cpus
1581 register_cpu_notifier(&cpucache_notifier);
1584 * The reap timers are started later, with a module init call: That part
1585 * of the kernel is not yet operational.
1589 static int __init cpucache_init(void)
1591 int cpu;
1594 * Register the timers that return unneeded pages to the page allocator
1596 for_each_online_cpu(cpu)
1597 start_cpu_timer(cpu);
1598 return 0;
1600 __initcall(cpucache_init);
1603 * Interface to system's page allocator. No need to hold the cache-lock.
1605 * If we requested dmaable memory, we will get it. Even if we
1606 * did not request dmaable memory, we might get it, but that
1607 * would be relatively rare and ignorable.
1609 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1611 struct page *page;
1612 int nr_pages;
1613 int i;
1615 #ifndef CONFIG_MMU
1617 * Nommu uses slab's for process anonymous memory allocations, and thus
1618 * requires __GFP_COMP to properly refcount higher order allocations
1620 flags |= __GFP_COMP;
1621 #endif
1623 flags |= cachep->gfpflags;
1624 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1625 flags |= __GFP_RECLAIMABLE;
1627 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1628 if (!page)
1629 return NULL;
1631 nr_pages = (1 << cachep->gfporder);
1632 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1633 add_zone_page_state(page_zone(page),
1634 NR_SLAB_RECLAIMABLE, nr_pages);
1635 else
1636 add_zone_page_state(page_zone(page),
1637 NR_SLAB_UNRECLAIMABLE, nr_pages);
1638 for (i = 0; i < nr_pages; i++)
1639 __SetPageSlab(page + i);
1641 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1642 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1644 if (cachep->ctor)
1645 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1646 else
1647 kmemcheck_mark_unallocated_pages(page, nr_pages);
1650 return page_address(page);
1654 * Interface to system's page release.
1656 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1658 unsigned long i = (1 << cachep->gfporder);
1659 struct page *page = virt_to_page(addr);
1660 const unsigned long nr_freed = i;
1662 kmemcheck_free_shadow(page, cachep->gfporder);
1664 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1665 sub_zone_page_state(page_zone(page),
1666 NR_SLAB_RECLAIMABLE, nr_freed);
1667 else
1668 sub_zone_page_state(page_zone(page),
1669 NR_SLAB_UNRECLAIMABLE, nr_freed);
1670 while (i--) {
1671 BUG_ON(!PageSlab(page));
1672 __ClearPageSlab(page);
1673 page++;
1675 if (current->reclaim_state)
1676 current->reclaim_state->reclaimed_slab += nr_freed;
1677 free_pages((unsigned long)addr, cachep->gfporder);
1680 static void kmem_rcu_free(struct rcu_head *head)
1682 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1683 struct kmem_cache *cachep = slab_rcu->cachep;
1685 kmem_freepages(cachep, slab_rcu->addr);
1686 if (OFF_SLAB(cachep))
1687 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1690 #if DEBUG
1692 #ifdef CONFIG_DEBUG_PAGEALLOC
1693 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1694 unsigned long caller)
1696 int size = obj_size(cachep);
1698 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1700 if (size < 5 * sizeof(unsigned long))
1701 return;
1703 *addr++ = 0x12345678;
1704 *addr++ = caller;
1705 *addr++ = smp_processor_id();
1706 size -= 3 * sizeof(unsigned long);
1708 unsigned long *sptr = &caller;
1709 unsigned long svalue;
1711 while (!kstack_end(sptr)) {
1712 svalue = *sptr++;
1713 if (kernel_text_address(svalue)) {
1714 *addr++ = svalue;
1715 size -= sizeof(unsigned long);
1716 if (size <= sizeof(unsigned long))
1717 break;
1722 *addr++ = 0x87654321;
1724 #endif
1726 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1728 int size = obj_size(cachep);
1729 addr = &((char *)addr)[obj_offset(cachep)];
1731 memset(addr, val, size);
1732 *(unsigned char *)(addr + size - 1) = POISON_END;
1735 static void dump_line(char *data, int offset, int limit)
1737 int i;
1738 unsigned char error = 0;
1739 int bad_count = 0;
1741 printk(KERN_ERR "%03x:", offset);
1742 for (i = 0; i < limit; i++) {
1743 if (data[offset + i] != POISON_FREE) {
1744 error = data[offset + i];
1745 bad_count++;
1747 printk(" %02x", (unsigned char)data[offset + i]);
1749 printk("\n");
1751 if (bad_count == 1) {
1752 error ^= POISON_FREE;
1753 if (!(error & (error - 1))) {
1754 printk(KERN_ERR "Single bit error detected. Probably "
1755 "bad RAM.\n");
1756 #ifdef CONFIG_X86
1757 printk(KERN_ERR "Run memtest86+ or a similar memory "
1758 "test tool.\n");
1759 #else
1760 printk(KERN_ERR "Run a memory test tool.\n");
1761 #endif
1765 #endif
1767 #if DEBUG
1769 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1771 int i, size;
1772 char *realobj;
1774 if (cachep->flags & SLAB_RED_ZONE) {
1775 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1776 *dbg_redzone1(cachep, objp),
1777 *dbg_redzone2(cachep, objp));
1780 if (cachep->flags & SLAB_STORE_USER) {
1781 printk(KERN_ERR "Last user: [<%p>]",
1782 *dbg_userword(cachep, objp));
1783 print_symbol("(%s)",
1784 (unsigned long)*dbg_userword(cachep, objp));
1785 printk("\n");
1787 realobj = (char *)objp + obj_offset(cachep);
1788 size = obj_size(cachep);
1789 for (i = 0; i < size && lines; i += 16, lines--) {
1790 int limit;
1791 limit = 16;
1792 if (i + limit > size)
1793 limit = size - i;
1794 dump_line(realobj, i, limit);
1798 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1800 char *realobj;
1801 int size, i;
1802 int lines = 0;
1804 realobj = (char *)objp + obj_offset(cachep);
1805 size = obj_size(cachep);
1807 for (i = 0; i < size; i++) {
1808 char exp = POISON_FREE;
1809 if (i == size - 1)
1810 exp = POISON_END;
1811 if (realobj[i] != exp) {
1812 int limit;
1813 /* Mismatch ! */
1814 /* Print header */
1815 if (lines == 0) {
1816 printk(KERN_ERR
1817 "Slab corruption: %s start=%p, len=%d\n",
1818 cachep->name, realobj, size);
1819 print_objinfo(cachep, objp, 0);
1821 /* Hexdump the affected line */
1822 i = (i / 16) * 16;
1823 limit = 16;
1824 if (i + limit > size)
1825 limit = size - i;
1826 dump_line(realobj, i, limit);
1827 i += 16;
1828 lines++;
1829 /* Limit to 5 lines */
1830 if (lines > 5)
1831 break;
1834 if (lines != 0) {
1835 /* Print some data about the neighboring objects, if they
1836 * exist:
1838 struct slab *slabp = virt_to_slab(objp);
1839 unsigned int objnr;
1841 objnr = obj_to_index(cachep, slabp, objp);
1842 if (objnr) {
1843 objp = index_to_obj(cachep, slabp, objnr - 1);
1844 realobj = (char *)objp + obj_offset(cachep);
1845 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1846 realobj, size);
1847 print_objinfo(cachep, objp, 2);
1849 if (objnr + 1 < cachep->num) {
1850 objp = index_to_obj(cachep, slabp, objnr + 1);
1851 realobj = (char *)objp + obj_offset(cachep);
1852 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1853 realobj, size);
1854 print_objinfo(cachep, objp, 2);
1858 #endif
1860 #if DEBUG
1861 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1863 int i;
1864 for (i = 0; i < cachep->num; i++) {
1865 void *objp = index_to_obj(cachep, slabp, i);
1867 if (cachep->flags & SLAB_POISON) {
1868 #ifdef CONFIG_DEBUG_PAGEALLOC
1869 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1870 OFF_SLAB(cachep))
1871 kernel_map_pages(virt_to_page(objp),
1872 cachep->buffer_size / PAGE_SIZE, 1);
1873 else
1874 check_poison_obj(cachep, objp);
1875 #else
1876 check_poison_obj(cachep, objp);
1877 #endif
1879 if (cachep->flags & SLAB_RED_ZONE) {
1880 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1881 slab_error(cachep, "start of a freed object "
1882 "was overwritten");
1883 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1884 slab_error(cachep, "end of a freed object "
1885 "was overwritten");
1889 #else
1890 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1893 #endif
1896 * slab_destroy - destroy and release all objects in a slab
1897 * @cachep: cache pointer being destroyed
1898 * @slabp: slab pointer being destroyed
1900 * Destroy all the objs in a slab, and release the mem back to the system.
1901 * Before calling the slab must have been unlinked from the cache. The
1902 * cache-lock is not held/needed.
1904 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1906 void *addr = slabp->s_mem - slabp->colouroff;
1908 slab_destroy_debugcheck(cachep, slabp);
1909 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1910 struct slab_rcu *slab_rcu;
1912 slab_rcu = (struct slab_rcu *)slabp;
1913 slab_rcu->cachep = cachep;
1914 slab_rcu->addr = addr;
1915 call_rcu(&slab_rcu->head, kmem_rcu_free);
1916 } else {
1917 kmem_freepages(cachep, addr);
1918 if (OFF_SLAB(cachep))
1919 kmem_cache_free(cachep->slabp_cache, slabp);
1923 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1925 int i;
1926 struct kmem_list3 *l3;
1928 for_each_online_cpu(i)
1929 kfree(cachep->array[i]);
1931 /* NUMA: free the list3 structures */
1932 for_each_online_node(i) {
1933 l3 = cachep->nodelists[i];
1934 if (l3) {
1935 kfree(l3->shared);
1936 free_alien_cache(l3->alien);
1937 kfree(l3);
1940 kmem_cache_free(&cache_cache, cachep);
1945 * calculate_slab_order - calculate size (page order) of slabs
1946 * @cachep: pointer to the cache that is being created
1947 * @size: size of objects to be created in this cache.
1948 * @align: required alignment for the objects.
1949 * @flags: slab allocation flags
1951 * Also calculates the number of objects per slab.
1953 * This could be made much more intelligent. For now, try to avoid using
1954 * high order pages for slabs. When the gfp() functions are more friendly
1955 * towards high-order requests, this should be changed.
1957 static size_t calculate_slab_order(struct kmem_cache *cachep,
1958 size_t size, size_t align, unsigned long flags)
1960 unsigned long offslab_limit;
1961 size_t left_over = 0;
1962 int gfporder;
1964 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1965 unsigned int num;
1966 size_t remainder;
1968 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1969 if (!num)
1970 continue;
1972 if (flags & CFLGS_OFF_SLAB) {
1974 * Max number of objs-per-slab for caches which
1975 * use off-slab slabs. Needed to avoid a possible
1976 * looping condition in cache_grow().
1978 offslab_limit = size - sizeof(struct slab);
1979 offslab_limit /= sizeof(kmem_bufctl_t);
1981 if (num > offslab_limit)
1982 break;
1985 /* Found something acceptable - save it away */
1986 cachep->num = num;
1987 cachep->gfporder = gfporder;
1988 left_over = remainder;
1991 * A VFS-reclaimable slab tends to have most allocations
1992 * as GFP_NOFS and we really don't want to have to be allocating
1993 * higher-order pages when we are unable to shrink dcache.
1995 if (flags & SLAB_RECLAIM_ACCOUNT)
1996 break;
1999 * Large number of objects is good, but very large slabs are
2000 * currently bad for the gfp()s.
2002 if (gfporder >= slab_break_gfp_order)
2003 break;
2006 * Acceptable internal fragmentation?
2008 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2009 break;
2011 return left_over;
2014 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2016 if (g_cpucache_up == FULL)
2017 return enable_cpucache(cachep, gfp);
2019 if (g_cpucache_up == NONE) {
2021 * Note: the first kmem_cache_create must create the cache
2022 * that's used by kmalloc(24), otherwise the creation of
2023 * further caches will BUG().
2025 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2028 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2029 * the first cache, then we need to set up all its list3s,
2030 * otherwise the creation of further caches will BUG().
2032 set_up_list3s(cachep, SIZE_AC);
2033 if (INDEX_AC == INDEX_L3)
2034 g_cpucache_up = PARTIAL_L3;
2035 else
2036 g_cpucache_up = PARTIAL_AC;
2037 } else {
2038 cachep->array[smp_processor_id()] =
2039 kmalloc(sizeof(struct arraycache_init), gfp);
2041 if (g_cpucache_up == PARTIAL_AC) {
2042 set_up_list3s(cachep, SIZE_L3);
2043 g_cpucache_up = PARTIAL_L3;
2044 } else {
2045 int node;
2046 for_each_online_node(node) {
2047 cachep->nodelists[node] =
2048 kmalloc_node(sizeof(struct kmem_list3),
2049 gfp, node);
2050 BUG_ON(!cachep->nodelists[node]);
2051 kmem_list3_init(cachep->nodelists[node]);
2055 cachep->nodelists[numa_node_id()]->next_reap =
2056 jiffies + REAPTIMEOUT_LIST3 +
2057 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2059 cpu_cache_get(cachep)->avail = 0;
2060 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2061 cpu_cache_get(cachep)->batchcount = 1;
2062 cpu_cache_get(cachep)->touched = 0;
2063 cachep->batchcount = 1;
2064 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2065 return 0;
2069 * kmem_cache_create - Create a cache.
2070 * @name: A string which is used in /proc/slabinfo to identify this cache.
2071 * @size: The size of objects to be created in this cache.
2072 * @align: The required alignment for the objects.
2073 * @flags: SLAB flags
2074 * @ctor: A constructor for the objects.
2076 * Returns a ptr to the cache on success, NULL on failure.
2077 * Cannot be called within a int, but can be interrupted.
2078 * The @ctor is run when new pages are allocated by the cache.
2080 * @name must be valid until the cache is destroyed. This implies that
2081 * the module calling this has to destroy the cache before getting unloaded.
2082 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2083 * therefore applications must manage it themselves.
2085 * The flags are
2087 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2088 * to catch references to uninitialised memory.
2090 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2091 * for buffer overruns.
2093 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2094 * cacheline. This can be beneficial if you're counting cycles as closely
2095 * as davem.
2097 struct kmem_cache *
2098 kmem_cache_create (const char *name, size_t size, size_t align,
2099 unsigned long flags, void (*ctor)(void *))
2101 size_t left_over, slab_size, ralign;
2102 struct kmem_cache *cachep = NULL, *pc;
2103 gfp_t gfp;
2106 * Sanity checks... these are all serious usage bugs.
2108 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2109 size > KMALLOC_MAX_SIZE) {
2110 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2111 name);
2112 BUG();
2116 * We use cache_chain_mutex to ensure a consistent view of
2117 * cpu_online_mask as well. Please see cpuup_callback
2119 if (slab_is_available()) {
2120 get_online_cpus();
2121 mutex_lock(&cache_chain_mutex);
2124 list_for_each_entry(pc, &cache_chain, next) {
2125 char tmp;
2126 int res;
2129 * This happens when the module gets unloaded and doesn't
2130 * destroy its slab cache and no-one else reuses the vmalloc
2131 * area of the module. Print a warning.
2133 res = probe_kernel_address(pc->name, tmp);
2134 if (res) {
2135 printk(KERN_ERR
2136 "SLAB: cache with size %d has lost its name\n",
2137 pc->buffer_size);
2138 continue;
2141 if (!strcmp(pc->name, name)) {
2142 printk(KERN_ERR
2143 "kmem_cache_create: duplicate cache %s\n", name);
2144 dump_stack();
2145 goto oops;
2149 #if DEBUG
2150 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2151 #if FORCED_DEBUG
2153 * Enable redzoning and last user accounting, except for caches with
2154 * large objects, if the increased size would increase the object size
2155 * above the next power of two: caches with object sizes just above a
2156 * power of two have a significant amount of internal fragmentation.
2158 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2159 2 * sizeof(unsigned long long)))
2160 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2161 if (!(flags & SLAB_DESTROY_BY_RCU))
2162 flags |= SLAB_POISON;
2163 #endif
2164 if (flags & SLAB_DESTROY_BY_RCU)
2165 BUG_ON(flags & SLAB_POISON);
2166 #endif
2168 * Always checks flags, a caller might be expecting debug support which
2169 * isn't available.
2171 BUG_ON(flags & ~CREATE_MASK);
2174 * Check that size is in terms of words. This is needed to avoid
2175 * unaligned accesses for some archs when redzoning is used, and makes
2176 * sure any on-slab bufctl's are also correctly aligned.
2178 if (size & (BYTES_PER_WORD - 1)) {
2179 size += (BYTES_PER_WORD - 1);
2180 size &= ~(BYTES_PER_WORD - 1);
2183 /* calculate the final buffer alignment: */
2185 /* 1) arch recommendation: can be overridden for debug */
2186 if (flags & SLAB_HWCACHE_ALIGN) {
2188 * Default alignment: as specified by the arch code. Except if
2189 * an object is really small, then squeeze multiple objects into
2190 * one cacheline.
2192 ralign = cache_line_size();
2193 while (size <= ralign / 2)
2194 ralign /= 2;
2195 } else {
2196 ralign = BYTES_PER_WORD;
2200 * Redzoning and user store require word alignment or possibly larger.
2201 * Note this will be overridden by architecture or caller mandated
2202 * alignment if either is greater than BYTES_PER_WORD.
2204 if (flags & SLAB_STORE_USER)
2205 ralign = BYTES_PER_WORD;
2207 if (flags & SLAB_RED_ZONE) {
2208 ralign = REDZONE_ALIGN;
2209 /* If redzoning, ensure that the second redzone is suitably
2210 * aligned, by adjusting the object size accordingly. */
2211 size += REDZONE_ALIGN - 1;
2212 size &= ~(REDZONE_ALIGN - 1);
2215 /* 2) arch mandated alignment */
2216 if (ralign < ARCH_SLAB_MINALIGN) {
2217 ralign = ARCH_SLAB_MINALIGN;
2219 /* 3) caller mandated alignment */
2220 if (ralign < align) {
2221 ralign = align;
2223 /* disable debug if necessary */
2224 if (ralign > __alignof__(unsigned long long))
2225 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2227 * 4) Store it.
2229 align = ralign;
2231 if (slab_is_available())
2232 gfp = GFP_KERNEL;
2233 else
2234 gfp = GFP_NOWAIT;
2236 /* Get cache's description obj. */
2237 cachep = kmem_cache_zalloc(&cache_cache, gfp);
2238 if (!cachep)
2239 goto oops;
2241 #if DEBUG
2242 cachep->obj_size = size;
2245 * Both debugging options require word-alignment which is calculated
2246 * into align above.
2248 if (flags & SLAB_RED_ZONE) {
2249 /* add space for red zone words */
2250 cachep->obj_offset += sizeof(unsigned long long);
2251 size += 2 * sizeof(unsigned long long);
2253 if (flags & SLAB_STORE_USER) {
2254 /* user store requires one word storage behind the end of
2255 * the real object. But if the second red zone needs to be
2256 * aligned to 64 bits, we must allow that much space.
2258 if (flags & SLAB_RED_ZONE)
2259 size += REDZONE_ALIGN;
2260 else
2261 size += BYTES_PER_WORD;
2263 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2264 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2265 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2266 cachep->obj_offset += PAGE_SIZE - size;
2267 size = PAGE_SIZE;
2269 #endif
2270 #endif
2273 * Determine if the slab management is 'on' or 'off' slab.
2274 * (bootstrapping cannot cope with offslab caches so don't do
2275 * it too early on.)
2277 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2279 * Size is large, assume best to place the slab management obj
2280 * off-slab (should allow better packing of objs).
2282 flags |= CFLGS_OFF_SLAB;
2284 size = ALIGN(size, align);
2286 left_over = calculate_slab_order(cachep, size, align, flags);
2288 if (!cachep->num) {
2289 printk(KERN_ERR
2290 "kmem_cache_create: couldn't create cache %s.\n", name);
2291 kmem_cache_free(&cache_cache, cachep);
2292 cachep = NULL;
2293 goto oops;
2295 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2296 + sizeof(struct slab), align);
2299 * If the slab has been placed off-slab, and we have enough space then
2300 * move it on-slab. This is at the expense of any extra colouring.
2302 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2303 flags &= ~CFLGS_OFF_SLAB;
2304 left_over -= slab_size;
2307 if (flags & CFLGS_OFF_SLAB) {
2308 /* really off slab. No need for manual alignment */
2309 slab_size =
2310 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2312 #ifdef CONFIG_PAGE_POISONING
2313 /* If we're going to use the generic kernel_map_pages()
2314 * poisoning, then it's going to smash the contents of
2315 * the redzone and userword anyhow, so switch them off.
2317 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2318 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2319 #endif
2322 cachep->colour_off = cache_line_size();
2323 /* Offset must be a multiple of the alignment. */
2324 if (cachep->colour_off < align)
2325 cachep->colour_off = align;
2326 cachep->colour = left_over / cachep->colour_off;
2327 cachep->slab_size = slab_size;
2328 cachep->flags = flags;
2329 cachep->gfpflags = 0;
2330 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2331 cachep->gfpflags |= GFP_DMA;
2332 cachep->buffer_size = size;
2333 cachep->reciprocal_buffer_size = reciprocal_value(size);
2335 if (flags & CFLGS_OFF_SLAB) {
2336 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2338 * This is a possibility for one of the malloc_sizes caches.
2339 * But since we go off slab only for object size greater than
2340 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2341 * this should not happen at all.
2342 * But leave a BUG_ON for some lucky dude.
2344 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2346 cachep->ctor = ctor;
2347 cachep->name = name;
2349 if (setup_cpu_cache(cachep, gfp)) {
2350 __kmem_cache_destroy(cachep);
2351 cachep = NULL;
2352 goto oops;
2355 /* cache setup completed, link it into the list */
2356 list_add(&cachep->next, &cache_chain);
2357 oops:
2358 if (!cachep && (flags & SLAB_PANIC))
2359 panic("kmem_cache_create(): failed to create slab `%s'\n",
2360 name);
2361 if (slab_is_available()) {
2362 mutex_unlock(&cache_chain_mutex);
2363 put_online_cpus();
2365 return cachep;
2367 EXPORT_SYMBOL(kmem_cache_create);
2369 #if DEBUG
2370 static void check_irq_off(void)
2372 BUG_ON(!irqs_disabled());
2375 static void check_irq_on(void)
2377 BUG_ON(irqs_disabled());
2380 static void check_spinlock_acquired(struct kmem_cache *cachep)
2382 #ifdef CONFIG_SMP
2383 check_irq_off();
2384 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2385 #endif
2388 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2390 #ifdef CONFIG_SMP
2391 check_irq_off();
2392 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2393 #endif
2396 #else
2397 #define check_irq_off() do { } while(0)
2398 #define check_irq_on() do { } while(0)
2399 #define check_spinlock_acquired(x) do { } while(0)
2400 #define check_spinlock_acquired_node(x, y) do { } while(0)
2401 #endif
2403 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2404 struct array_cache *ac,
2405 int force, int node);
2407 static void do_drain(void *arg)
2409 struct kmem_cache *cachep = arg;
2410 struct array_cache *ac;
2411 int node = numa_node_id();
2413 check_irq_off();
2414 ac = cpu_cache_get(cachep);
2415 spin_lock(&cachep->nodelists[node]->list_lock);
2416 free_block(cachep, ac->entry, ac->avail, node);
2417 spin_unlock(&cachep->nodelists[node]->list_lock);
2418 ac->avail = 0;
2421 static void drain_cpu_caches(struct kmem_cache *cachep)
2423 struct kmem_list3 *l3;
2424 int node;
2426 on_each_cpu(do_drain, cachep, 1);
2427 check_irq_on();
2428 for_each_online_node(node) {
2429 l3 = cachep->nodelists[node];
2430 if (l3 && l3->alien)
2431 drain_alien_cache(cachep, l3->alien);
2434 for_each_online_node(node) {
2435 l3 = cachep->nodelists[node];
2436 if (l3)
2437 drain_array(cachep, l3, l3->shared, 1, node);
2442 * Remove slabs from the list of free slabs.
2443 * Specify the number of slabs to drain in tofree.
2445 * Returns the actual number of slabs released.
2447 static int drain_freelist(struct kmem_cache *cache,
2448 struct kmem_list3 *l3, int tofree)
2450 struct list_head *p;
2451 int nr_freed;
2452 struct slab *slabp;
2454 nr_freed = 0;
2455 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2457 spin_lock_irq(&l3->list_lock);
2458 p = l3->slabs_free.prev;
2459 if (p == &l3->slabs_free) {
2460 spin_unlock_irq(&l3->list_lock);
2461 goto out;
2464 slabp = list_entry(p, struct slab, list);
2465 #if DEBUG
2466 BUG_ON(slabp->inuse);
2467 #endif
2468 list_del(&slabp->list);
2470 * Safe to drop the lock. The slab is no longer linked
2471 * to the cache.
2473 l3->free_objects -= cache->num;
2474 spin_unlock_irq(&l3->list_lock);
2475 slab_destroy(cache, slabp);
2476 nr_freed++;
2478 out:
2479 return nr_freed;
2482 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2483 static int __cache_shrink(struct kmem_cache *cachep)
2485 int ret = 0, i = 0;
2486 struct kmem_list3 *l3;
2488 drain_cpu_caches(cachep);
2490 check_irq_on();
2491 for_each_online_node(i) {
2492 l3 = cachep->nodelists[i];
2493 if (!l3)
2494 continue;
2496 drain_freelist(cachep, l3, l3->free_objects);
2498 ret += !list_empty(&l3->slabs_full) ||
2499 !list_empty(&l3->slabs_partial);
2501 return (ret ? 1 : 0);
2505 * kmem_cache_shrink - Shrink a cache.
2506 * @cachep: The cache to shrink.
2508 * Releases as many slabs as possible for a cache.
2509 * To help debugging, a zero exit status indicates all slabs were released.
2511 int kmem_cache_shrink(struct kmem_cache *cachep)
2513 int ret;
2514 BUG_ON(!cachep || in_interrupt());
2516 get_online_cpus();
2517 mutex_lock(&cache_chain_mutex);
2518 ret = __cache_shrink(cachep);
2519 mutex_unlock(&cache_chain_mutex);
2520 put_online_cpus();
2521 return ret;
2523 EXPORT_SYMBOL(kmem_cache_shrink);
2526 * kmem_cache_destroy - delete a cache
2527 * @cachep: the cache to destroy
2529 * Remove a &struct kmem_cache object from the slab cache.
2531 * It is expected this function will be called by a module when it is
2532 * unloaded. This will remove the cache completely, and avoid a duplicate
2533 * cache being allocated each time a module is loaded and unloaded, if the
2534 * module doesn't have persistent in-kernel storage across loads and unloads.
2536 * The cache must be empty before calling this function.
2538 * The caller must guarantee that noone will allocate memory from the cache
2539 * during the kmem_cache_destroy().
2541 void kmem_cache_destroy(struct kmem_cache *cachep)
2543 BUG_ON(!cachep || in_interrupt());
2545 /* Find the cache in the chain of caches. */
2546 get_online_cpus();
2547 mutex_lock(&cache_chain_mutex);
2549 * the chain is never empty, cache_cache is never destroyed
2551 list_del(&cachep->next);
2552 if (__cache_shrink(cachep)) {
2553 slab_error(cachep, "Can't free all objects");
2554 list_add(&cachep->next, &cache_chain);
2555 mutex_unlock(&cache_chain_mutex);
2556 put_online_cpus();
2557 return;
2560 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2561 synchronize_rcu();
2563 __kmem_cache_destroy(cachep);
2564 mutex_unlock(&cache_chain_mutex);
2565 put_online_cpus();
2567 EXPORT_SYMBOL(kmem_cache_destroy);
2570 * Get the memory for a slab management obj.
2571 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2572 * always come from malloc_sizes caches. The slab descriptor cannot
2573 * come from the same cache which is getting created because,
2574 * when we are searching for an appropriate cache for these
2575 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2576 * If we are creating a malloc_sizes cache here it would not be visible to
2577 * kmem_find_general_cachep till the initialization is complete.
2578 * Hence we cannot have slabp_cache same as the original cache.
2580 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2581 int colour_off, gfp_t local_flags,
2582 int nodeid)
2584 struct slab *slabp;
2586 if (OFF_SLAB(cachep)) {
2587 /* Slab management obj is off-slab. */
2588 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2589 local_flags, nodeid);
2591 * If the first object in the slab is leaked (it's allocated
2592 * but no one has a reference to it), we want to make sure
2593 * kmemleak does not treat the ->s_mem pointer as a reference
2594 * to the object. Otherwise we will not report the leak.
2596 kmemleak_scan_area(slabp, offsetof(struct slab, list),
2597 sizeof(struct list_head), local_flags);
2598 if (!slabp)
2599 return NULL;
2600 } else {
2601 slabp = objp + colour_off;
2602 colour_off += cachep->slab_size;
2604 slabp->inuse = 0;
2605 slabp->colouroff = colour_off;
2606 slabp->s_mem = objp + colour_off;
2607 slabp->nodeid = nodeid;
2608 slabp->free = 0;
2609 return slabp;
2612 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2614 return (kmem_bufctl_t *) (slabp + 1);
2617 static void cache_init_objs(struct kmem_cache *cachep,
2618 struct slab *slabp)
2620 int i;
2622 for (i = 0; i < cachep->num; i++) {
2623 void *objp = index_to_obj(cachep, slabp, i);
2624 #if DEBUG
2625 /* need to poison the objs? */
2626 if (cachep->flags & SLAB_POISON)
2627 poison_obj(cachep, objp, POISON_FREE);
2628 if (cachep->flags & SLAB_STORE_USER)
2629 *dbg_userword(cachep, objp) = NULL;
2631 if (cachep->flags & SLAB_RED_ZONE) {
2632 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2633 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2636 * Constructors are not allowed to allocate memory from the same
2637 * cache which they are a constructor for. Otherwise, deadlock.
2638 * They must also be threaded.
2640 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2641 cachep->ctor(objp + obj_offset(cachep));
2643 if (cachep->flags & SLAB_RED_ZONE) {
2644 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2645 slab_error(cachep, "constructor overwrote the"
2646 " end of an object");
2647 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2648 slab_error(cachep, "constructor overwrote the"
2649 " start of an object");
2651 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2652 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2653 kernel_map_pages(virt_to_page(objp),
2654 cachep->buffer_size / PAGE_SIZE, 0);
2655 #else
2656 if (cachep->ctor)
2657 cachep->ctor(objp);
2658 #endif
2659 slab_bufctl(slabp)[i] = i + 1;
2661 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2664 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2666 if (CONFIG_ZONE_DMA_FLAG) {
2667 if (flags & GFP_DMA)
2668 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2669 else
2670 BUG_ON(cachep->gfpflags & GFP_DMA);
2674 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2675 int nodeid)
2677 void *objp = index_to_obj(cachep, slabp, slabp->free);
2678 kmem_bufctl_t next;
2680 slabp->inuse++;
2681 next = slab_bufctl(slabp)[slabp->free];
2682 #if DEBUG
2683 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2684 WARN_ON(slabp->nodeid != nodeid);
2685 #endif
2686 slabp->free = next;
2688 return objp;
2691 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2692 void *objp, int nodeid)
2694 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2696 #if DEBUG
2697 /* Verify that the slab belongs to the intended node */
2698 WARN_ON(slabp->nodeid != nodeid);
2700 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2701 printk(KERN_ERR "slab: double free detected in cache "
2702 "'%s', objp %p\n", cachep->name, objp);
2703 BUG();
2705 #endif
2706 slab_bufctl(slabp)[objnr] = slabp->free;
2707 slabp->free = objnr;
2708 slabp->inuse--;
2712 * Map pages beginning at addr to the given cache and slab. This is required
2713 * for the slab allocator to be able to lookup the cache and slab of a
2714 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2716 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2717 void *addr)
2719 int nr_pages;
2720 struct page *page;
2722 page = virt_to_page(addr);
2724 nr_pages = 1;
2725 if (likely(!PageCompound(page)))
2726 nr_pages <<= cache->gfporder;
2728 do {
2729 page_set_cache(page, cache);
2730 page_set_slab(page, slab);
2731 page++;
2732 } while (--nr_pages);
2736 * Grow (by 1) the number of slabs within a cache. This is called by
2737 * kmem_cache_alloc() when there are no active objs left in a cache.
2739 static int cache_grow(struct kmem_cache *cachep,
2740 gfp_t flags, int nodeid, void *objp)
2742 struct slab *slabp;
2743 size_t offset;
2744 gfp_t local_flags;
2745 struct kmem_list3 *l3;
2748 * Be lazy and only check for valid flags here, keeping it out of the
2749 * critical path in kmem_cache_alloc().
2751 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2752 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2754 /* Take the l3 list lock to change the colour_next on this node */
2755 check_irq_off();
2756 l3 = cachep->nodelists[nodeid];
2757 spin_lock(&l3->list_lock);
2759 /* Get colour for the slab, and cal the next value. */
2760 offset = l3->colour_next;
2761 l3->colour_next++;
2762 if (l3->colour_next >= cachep->colour)
2763 l3->colour_next = 0;
2764 spin_unlock(&l3->list_lock);
2766 offset *= cachep->colour_off;
2768 if (local_flags & __GFP_WAIT)
2769 local_irq_enable();
2772 * The test for missing atomic flag is performed here, rather than
2773 * the more obvious place, simply to reduce the critical path length
2774 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2775 * will eventually be caught here (where it matters).
2777 kmem_flagcheck(cachep, flags);
2780 * Get mem for the objs. Attempt to allocate a physical page from
2781 * 'nodeid'.
2783 if (!objp)
2784 objp = kmem_getpages(cachep, local_flags, nodeid);
2785 if (!objp)
2786 goto failed;
2788 /* Get slab management. */
2789 slabp = alloc_slabmgmt(cachep, objp, offset,
2790 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2791 if (!slabp)
2792 goto opps1;
2794 slab_map_pages(cachep, slabp, objp);
2796 cache_init_objs(cachep, slabp);
2798 if (local_flags & __GFP_WAIT)
2799 local_irq_disable();
2800 check_irq_off();
2801 spin_lock(&l3->list_lock);
2803 /* Make slab active. */
2804 list_add_tail(&slabp->list, &(l3->slabs_free));
2805 STATS_INC_GROWN(cachep);
2806 l3->free_objects += cachep->num;
2807 spin_unlock(&l3->list_lock);
2808 return 1;
2809 opps1:
2810 kmem_freepages(cachep, objp);
2811 failed:
2812 if (local_flags & __GFP_WAIT)
2813 local_irq_disable();
2814 return 0;
2817 #if DEBUG
2820 * Perform extra freeing checks:
2821 * - detect bad pointers.
2822 * - POISON/RED_ZONE checking
2824 static void kfree_debugcheck(const void *objp)
2826 if (!virt_addr_valid(objp)) {
2827 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2828 (unsigned long)objp);
2829 BUG();
2833 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2835 unsigned long long redzone1, redzone2;
2837 redzone1 = *dbg_redzone1(cache, obj);
2838 redzone2 = *dbg_redzone2(cache, obj);
2841 * Redzone is ok.
2843 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2844 return;
2846 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2847 slab_error(cache, "double free detected");
2848 else
2849 slab_error(cache, "memory outside object was overwritten");
2851 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2852 obj, redzone1, redzone2);
2855 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2856 void *caller)
2858 struct page *page;
2859 unsigned int objnr;
2860 struct slab *slabp;
2862 BUG_ON(virt_to_cache(objp) != cachep);
2864 objp -= obj_offset(cachep);
2865 kfree_debugcheck(objp);
2866 page = virt_to_head_page(objp);
2868 slabp = page_get_slab(page);
2870 if (cachep->flags & SLAB_RED_ZONE) {
2871 verify_redzone_free(cachep, objp);
2872 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2873 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2875 if (cachep->flags & SLAB_STORE_USER)
2876 *dbg_userword(cachep, objp) = caller;
2878 objnr = obj_to_index(cachep, slabp, objp);
2880 BUG_ON(objnr >= cachep->num);
2881 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2883 #ifdef CONFIG_DEBUG_SLAB_LEAK
2884 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2885 #endif
2886 if (cachep->flags & SLAB_POISON) {
2887 #ifdef CONFIG_DEBUG_PAGEALLOC
2888 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2889 store_stackinfo(cachep, objp, (unsigned long)caller);
2890 kernel_map_pages(virt_to_page(objp),
2891 cachep->buffer_size / PAGE_SIZE, 0);
2892 } else {
2893 poison_obj(cachep, objp, POISON_FREE);
2895 #else
2896 poison_obj(cachep, objp, POISON_FREE);
2897 #endif
2899 return objp;
2902 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2904 kmem_bufctl_t i;
2905 int entries = 0;
2907 /* Check slab's freelist to see if this obj is there. */
2908 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2909 entries++;
2910 if (entries > cachep->num || i >= cachep->num)
2911 goto bad;
2913 if (entries != cachep->num - slabp->inuse) {
2914 bad:
2915 printk(KERN_ERR "slab: Internal list corruption detected in "
2916 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2917 cachep->name, cachep->num, slabp, slabp->inuse);
2918 for (i = 0;
2919 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2920 i++) {
2921 if (i % 16 == 0)
2922 printk("\n%03x:", i);
2923 printk(" %02x", ((unsigned char *)slabp)[i]);
2925 printk("\n");
2926 BUG();
2929 #else
2930 #define kfree_debugcheck(x) do { } while(0)
2931 #define cache_free_debugcheck(x,objp,z) (objp)
2932 #define check_slabp(x,y) do { } while(0)
2933 #endif
2935 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2937 int batchcount;
2938 struct kmem_list3 *l3;
2939 struct array_cache *ac;
2940 int node;
2942 retry:
2943 check_irq_off();
2944 node = numa_node_id();
2945 ac = cpu_cache_get(cachep);
2946 batchcount = ac->batchcount;
2947 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2949 * If there was little recent activity on this cache, then
2950 * perform only a partial refill. Otherwise we could generate
2951 * refill bouncing.
2953 batchcount = BATCHREFILL_LIMIT;
2955 l3 = cachep->nodelists[node];
2957 BUG_ON(ac->avail > 0 || !l3);
2958 spin_lock(&l3->list_lock);
2960 /* See if we can refill from the shared array */
2961 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2962 goto alloc_done;
2964 while (batchcount > 0) {
2965 struct list_head *entry;
2966 struct slab *slabp;
2967 /* Get slab alloc is to come from. */
2968 entry = l3->slabs_partial.next;
2969 if (entry == &l3->slabs_partial) {
2970 l3->free_touched = 1;
2971 entry = l3->slabs_free.next;
2972 if (entry == &l3->slabs_free)
2973 goto must_grow;
2976 slabp = list_entry(entry, struct slab, list);
2977 check_slabp(cachep, slabp);
2978 check_spinlock_acquired(cachep);
2981 * The slab was either on partial or free list so
2982 * there must be at least one object available for
2983 * allocation.
2985 BUG_ON(slabp->inuse >= cachep->num);
2987 while (slabp->inuse < cachep->num && batchcount--) {
2988 STATS_INC_ALLOCED(cachep);
2989 STATS_INC_ACTIVE(cachep);
2990 STATS_SET_HIGH(cachep);
2992 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2993 node);
2995 check_slabp(cachep, slabp);
2997 /* move slabp to correct slabp list: */
2998 list_del(&slabp->list);
2999 if (slabp->free == BUFCTL_END)
3000 list_add(&slabp->list, &l3->slabs_full);
3001 else
3002 list_add(&slabp->list, &l3->slabs_partial);
3005 must_grow:
3006 l3->free_objects -= ac->avail;
3007 alloc_done:
3008 spin_unlock(&l3->list_lock);
3010 if (unlikely(!ac->avail)) {
3011 int x;
3012 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3014 /* cache_grow can reenable interrupts, then ac could change. */
3015 ac = cpu_cache_get(cachep);
3016 if (!x && ac->avail == 0) /* no objects in sight? abort */
3017 return NULL;
3019 if (!ac->avail) /* objects refilled by interrupt? */
3020 goto retry;
3022 ac->touched = 1;
3023 return ac->entry[--ac->avail];
3026 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3027 gfp_t flags)
3029 might_sleep_if(flags & __GFP_WAIT);
3030 #if DEBUG
3031 kmem_flagcheck(cachep, flags);
3032 #endif
3035 #if DEBUG
3036 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3037 gfp_t flags, void *objp, void *caller)
3039 if (!objp)
3040 return objp;
3041 if (cachep->flags & SLAB_POISON) {
3042 #ifdef CONFIG_DEBUG_PAGEALLOC
3043 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3044 kernel_map_pages(virt_to_page(objp),
3045 cachep->buffer_size / PAGE_SIZE, 1);
3046 else
3047 check_poison_obj(cachep, objp);
3048 #else
3049 check_poison_obj(cachep, objp);
3050 #endif
3051 poison_obj(cachep, objp, POISON_INUSE);
3053 if (cachep->flags & SLAB_STORE_USER)
3054 *dbg_userword(cachep, objp) = caller;
3056 if (cachep->flags & SLAB_RED_ZONE) {
3057 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3058 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3059 slab_error(cachep, "double free, or memory outside"
3060 " object was overwritten");
3061 printk(KERN_ERR
3062 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3063 objp, *dbg_redzone1(cachep, objp),
3064 *dbg_redzone2(cachep, objp));
3066 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3067 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3069 #ifdef CONFIG_DEBUG_SLAB_LEAK
3071 struct slab *slabp;
3072 unsigned objnr;
3074 slabp = page_get_slab(virt_to_head_page(objp));
3075 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3076 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3078 #endif
3079 objp += obj_offset(cachep);
3080 if (cachep->ctor && cachep->flags & SLAB_POISON)
3081 cachep->ctor(objp);
3082 #if ARCH_SLAB_MINALIGN
3083 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3084 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3085 objp, ARCH_SLAB_MINALIGN);
3087 #endif
3088 return objp;
3090 #else
3091 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3092 #endif
3094 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3096 if (cachep == &cache_cache)
3097 return false;
3099 return should_failslab(obj_size(cachep), flags);
3102 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3104 void *objp;
3105 struct array_cache *ac;
3107 check_irq_off();
3109 ac = cpu_cache_get(cachep);
3110 if (likely(ac->avail)) {
3111 STATS_INC_ALLOCHIT(cachep);
3112 ac->touched = 1;
3113 objp = ac->entry[--ac->avail];
3114 } else {
3115 STATS_INC_ALLOCMISS(cachep);
3116 objp = cache_alloc_refill(cachep, flags);
3119 * To avoid a false negative, if an object that is in one of the
3120 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3121 * treat the array pointers as a reference to the object.
3123 kmemleak_erase(&ac->entry[ac->avail]);
3124 return objp;
3127 #ifdef CONFIG_NUMA
3129 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3131 * If we are in_interrupt, then process context, including cpusets and
3132 * mempolicy, may not apply and should not be used for allocation policy.
3134 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3136 int nid_alloc, nid_here;
3138 if (in_interrupt() || (flags & __GFP_THISNODE))
3139 return NULL;
3140 nid_alloc = nid_here = numa_node_id();
3141 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3142 nid_alloc = cpuset_mem_spread_node();
3143 else if (current->mempolicy)
3144 nid_alloc = slab_node(current->mempolicy);
3145 if (nid_alloc != nid_here)
3146 return ____cache_alloc_node(cachep, flags, nid_alloc);
3147 return NULL;
3151 * Fallback function if there was no memory available and no objects on a
3152 * certain node and fall back is permitted. First we scan all the
3153 * available nodelists for available objects. If that fails then we
3154 * perform an allocation without specifying a node. This allows the page
3155 * allocator to do its reclaim / fallback magic. We then insert the
3156 * slab into the proper nodelist and then allocate from it.
3158 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3160 struct zonelist *zonelist;
3161 gfp_t local_flags;
3162 struct zoneref *z;
3163 struct zone *zone;
3164 enum zone_type high_zoneidx = gfp_zone(flags);
3165 void *obj = NULL;
3166 int nid;
3168 if (flags & __GFP_THISNODE)
3169 return NULL;
3171 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3172 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3174 retry:
3176 * Look through allowed nodes for objects available
3177 * from existing per node queues.
3179 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3180 nid = zone_to_nid(zone);
3182 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3183 cache->nodelists[nid] &&
3184 cache->nodelists[nid]->free_objects) {
3185 obj = ____cache_alloc_node(cache,
3186 flags | GFP_THISNODE, nid);
3187 if (obj)
3188 break;
3192 if (!obj) {
3194 * This allocation will be performed within the constraints
3195 * of the current cpuset / memory policy requirements.
3196 * We may trigger various forms of reclaim on the allowed
3197 * set and go into memory reserves if necessary.
3199 if (local_flags & __GFP_WAIT)
3200 local_irq_enable();
3201 kmem_flagcheck(cache, flags);
3202 obj = kmem_getpages(cache, local_flags, numa_node_id());
3203 if (local_flags & __GFP_WAIT)
3204 local_irq_disable();
3205 if (obj) {
3207 * Insert into the appropriate per node queues
3209 nid = page_to_nid(virt_to_page(obj));
3210 if (cache_grow(cache, flags, nid, obj)) {
3211 obj = ____cache_alloc_node(cache,
3212 flags | GFP_THISNODE, nid);
3213 if (!obj)
3215 * Another processor may allocate the
3216 * objects in the slab since we are
3217 * not holding any locks.
3219 goto retry;
3220 } else {
3221 /* cache_grow already freed obj */
3222 obj = NULL;
3226 return obj;
3230 * A interface to enable slab creation on nodeid
3232 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3233 int nodeid)
3235 struct list_head *entry;
3236 struct slab *slabp;
3237 struct kmem_list3 *l3;
3238 void *obj;
3239 int x;
3241 l3 = cachep->nodelists[nodeid];
3242 BUG_ON(!l3);
3244 retry:
3245 check_irq_off();
3246 spin_lock(&l3->list_lock);
3247 entry = l3->slabs_partial.next;
3248 if (entry == &l3->slabs_partial) {
3249 l3->free_touched = 1;
3250 entry = l3->slabs_free.next;
3251 if (entry == &l3->slabs_free)
3252 goto must_grow;
3255 slabp = list_entry(entry, struct slab, list);
3256 check_spinlock_acquired_node(cachep, nodeid);
3257 check_slabp(cachep, slabp);
3259 STATS_INC_NODEALLOCS(cachep);
3260 STATS_INC_ACTIVE(cachep);
3261 STATS_SET_HIGH(cachep);
3263 BUG_ON(slabp->inuse == cachep->num);
3265 obj = slab_get_obj(cachep, slabp, nodeid);
3266 check_slabp(cachep, slabp);
3267 l3->free_objects--;
3268 /* move slabp to correct slabp list: */
3269 list_del(&slabp->list);
3271 if (slabp->free == BUFCTL_END)
3272 list_add(&slabp->list, &l3->slabs_full);
3273 else
3274 list_add(&slabp->list, &l3->slabs_partial);
3276 spin_unlock(&l3->list_lock);
3277 goto done;
3279 must_grow:
3280 spin_unlock(&l3->list_lock);
3281 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3282 if (x)
3283 goto retry;
3285 return fallback_alloc(cachep, flags);
3287 done:
3288 return obj;
3292 * kmem_cache_alloc_node - Allocate an object on the specified node
3293 * @cachep: The cache to allocate from.
3294 * @flags: See kmalloc().
3295 * @nodeid: node number of the target node.
3296 * @caller: return address of caller, used for debug information
3298 * Identical to kmem_cache_alloc but it will allocate memory on the given
3299 * node, which can improve the performance for cpu bound structures.
3301 * Fallback to other node is possible if __GFP_THISNODE is not set.
3303 static __always_inline void *
3304 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3305 void *caller)
3307 unsigned long save_flags;
3308 void *ptr;
3310 flags &= slab_gfp_mask;
3312 lockdep_trace_alloc(flags);
3314 if (slab_should_failslab(cachep, flags))
3315 return NULL;
3317 cache_alloc_debugcheck_before(cachep, flags);
3318 local_irq_save(save_flags);
3320 if (unlikely(nodeid == -1))
3321 nodeid = numa_node_id();
3323 if (unlikely(!cachep->nodelists[nodeid])) {
3324 /* Node not bootstrapped yet */
3325 ptr = fallback_alloc(cachep, flags);
3326 goto out;
3329 if (nodeid == numa_node_id()) {
3331 * Use the locally cached objects if possible.
3332 * However ____cache_alloc does not allow fallback
3333 * to other nodes. It may fail while we still have
3334 * objects on other nodes available.
3336 ptr = ____cache_alloc(cachep, flags);
3337 if (ptr)
3338 goto out;
3340 /* ___cache_alloc_node can fall back to other nodes */
3341 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3342 out:
3343 local_irq_restore(save_flags);
3344 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3345 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3346 flags);
3348 if (likely(ptr))
3349 kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3351 if (unlikely((flags & __GFP_ZERO) && ptr))
3352 memset(ptr, 0, obj_size(cachep));
3354 return ptr;
3357 static __always_inline void *
3358 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3360 void *objp;
3362 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3363 objp = alternate_node_alloc(cache, flags);
3364 if (objp)
3365 goto out;
3367 objp = ____cache_alloc(cache, flags);
3370 * We may just have run out of memory on the local node.
3371 * ____cache_alloc_node() knows how to locate memory on other nodes
3373 if (!objp)
3374 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3376 out:
3377 return objp;
3379 #else
3381 static __always_inline void *
3382 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3384 return ____cache_alloc(cachep, flags);
3387 #endif /* CONFIG_NUMA */
3389 static __always_inline void *
3390 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3392 unsigned long save_flags;
3393 void *objp;
3395 flags &= slab_gfp_mask;
3397 lockdep_trace_alloc(flags);
3399 if (slab_should_failslab(cachep, flags))
3400 return NULL;
3402 cache_alloc_debugcheck_before(cachep, flags);
3403 local_irq_save(save_flags);
3404 objp = __do_cache_alloc(cachep, flags);
3405 local_irq_restore(save_flags);
3406 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3407 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3408 flags);
3409 prefetchw(objp);
3411 if (likely(objp))
3412 kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3414 if (unlikely((flags & __GFP_ZERO) && objp))
3415 memset(objp, 0, obj_size(cachep));
3417 return objp;
3421 * Caller needs to acquire correct kmem_list's list_lock
3423 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3424 int node)
3426 int i;
3427 struct kmem_list3 *l3;
3429 for (i = 0; i < nr_objects; i++) {
3430 void *objp = objpp[i];
3431 struct slab *slabp;
3433 slabp = virt_to_slab(objp);
3434 l3 = cachep->nodelists[node];
3435 list_del(&slabp->list);
3436 check_spinlock_acquired_node(cachep, node);
3437 check_slabp(cachep, slabp);
3438 slab_put_obj(cachep, slabp, objp, node);
3439 STATS_DEC_ACTIVE(cachep);
3440 l3->free_objects++;
3441 check_slabp(cachep, slabp);
3443 /* fixup slab chains */
3444 if (slabp->inuse == 0) {
3445 if (l3->free_objects > l3->free_limit) {
3446 l3->free_objects -= cachep->num;
3447 /* No need to drop any previously held
3448 * lock here, even if we have a off-slab slab
3449 * descriptor it is guaranteed to come from
3450 * a different cache, refer to comments before
3451 * alloc_slabmgmt.
3453 slab_destroy(cachep, slabp);
3454 } else {
3455 list_add(&slabp->list, &l3->slabs_free);
3457 } else {
3458 /* Unconditionally move a slab to the end of the
3459 * partial list on free - maximum time for the
3460 * other objects to be freed, too.
3462 list_add_tail(&slabp->list, &l3->slabs_partial);
3467 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3469 int batchcount;
3470 struct kmem_list3 *l3;
3471 int node = numa_node_id();
3473 batchcount = ac->batchcount;
3474 #if DEBUG
3475 BUG_ON(!batchcount || batchcount > ac->avail);
3476 #endif
3477 check_irq_off();
3478 l3 = cachep->nodelists[node];
3479 spin_lock(&l3->list_lock);
3480 if (l3->shared) {
3481 struct array_cache *shared_array = l3->shared;
3482 int max = shared_array->limit - shared_array->avail;
3483 if (max) {
3484 if (batchcount > max)
3485 batchcount = max;
3486 memcpy(&(shared_array->entry[shared_array->avail]),
3487 ac->entry, sizeof(void *) * batchcount);
3488 shared_array->avail += batchcount;
3489 goto free_done;
3493 free_block(cachep, ac->entry, batchcount, node);
3494 free_done:
3495 #if STATS
3497 int i = 0;
3498 struct list_head *p;
3500 p = l3->slabs_free.next;
3501 while (p != &(l3->slabs_free)) {
3502 struct slab *slabp;
3504 slabp = list_entry(p, struct slab, list);
3505 BUG_ON(slabp->inuse);
3507 i++;
3508 p = p->next;
3510 STATS_SET_FREEABLE(cachep, i);
3512 #endif
3513 spin_unlock(&l3->list_lock);
3514 ac->avail -= batchcount;
3515 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3519 * Release an obj back to its cache. If the obj has a constructed state, it must
3520 * be in this state _before_ it is released. Called with disabled ints.
3522 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3524 struct array_cache *ac = cpu_cache_get(cachep);
3526 check_irq_off();
3527 kmemleak_free_recursive(objp, cachep->flags);
3528 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3530 kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3533 * Skip calling cache_free_alien() when the platform is not numa.
3534 * This will avoid cache misses that happen while accessing slabp (which
3535 * is per page memory reference) to get nodeid. Instead use a global
3536 * variable to skip the call, which is mostly likely to be present in
3537 * the cache.
3539 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3540 return;
3542 if (likely(ac->avail < ac->limit)) {
3543 STATS_INC_FREEHIT(cachep);
3544 ac->entry[ac->avail++] = objp;
3545 return;
3546 } else {
3547 STATS_INC_FREEMISS(cachep);
3548 cache_flusharray(cachep, ac);
3549 ac->entry[ac->avail++] = objp;
3554 * kmem_cache_alloc - Allocate an object
3555 * @cachep: The cache to allocate from.
3556 * @flags: See kmalloc().
3558 * Allocate an object from this cache. The flags are only relevant
3559 * if the cache has no available objects.
3561 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3563 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3565 trace_kmem_cache_alloc(_RET_IP_, ret,
3566 obj_size(cachep), cachep->buffer_size, flags);
3568 return ret;
3570 EXPORT_SYMBOL(kmem_cache_alloc);
3572 #ifdef CONFIG_KMEMTRACE
3573 void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
3575 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3577 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
3578 #endif
3581 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
3582 * @cachep: the cache we're checking against
3583 * @ptr: pointer to validate
3585 * This verifies that the untrusted pointer looks sane;
3586 * it is _not_ a guarantee that the pointer is actually
3587 * part of the slab cache in question, but it at least
3588 * validates that the pointer can be dereferenced and
3589 * looks half-way sane.
3591 * Currently only used for dentry validation.
3593 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3595 unsigned long addr = (unsigned long)ptr;
3596 unsigned long min_addr = PAGE_OFFSET;
3597 unsigned long align_mask = BYTES_PER_WORD - 1;
3598 unsigned long size = cachep->buffer_size;
3599 struct page *page;
3601 if (unlikely(addr < min_addr))
3602 goto out;
3603 if (unlikely(addr > (unsigned long)high_memory - size))
3604 goto out;
3605 if (unlikely(addr & align_mask))
3606 goto out;
3607 if (unlikely(!kern_addr_valid(addr)))
3608 goto out;
3609 if (unlikely(!kern_addr_valid(addr + size - 1)))
3610 goto out;
3611 page = virt_to_page(ptr);
3612 if (unlikely(!PageSlab(page)))
3613 goto out;
3614 if (unlikely(page_get_cache(page) != cachep))
3615 goto out;
3616 return 1;
3617 out:
3618 return 0;
3621 #ifdef CONFIG_NUMA
3622 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3624 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3625 __builtin_return_address(0));
3627 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3628 obj_size(cachep), cachep->buffer_size,
3629 flags, nodeid);
3631 return ret;
3633 EXPORT_SYMBOL(kmem_cache_alloc_node);
3635 #ifdef CONFIG_KMEMTRACE
3636 void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
3637 gfp_t flags,
3638 int nodeid)
3640 return __cache_alloc_node(cachep, flags, nodeid,
3641 __builtin_return_address(0));
3643 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
3644 #endif
3646 static __always_inline void *
3647 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3649 struct kmem_cache *cachep;
3650 void *ret;
3652 cachep = kmem_find_general_cachep(size, flags);
3653 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3654 return cachep;
3655 ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
3657 trace_kmalloc_node((unsigned long) caller, ret,
3658 size, cachep->buffer_size, flags, node);
3660 return ret;
3663 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3664 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3666 return __do_kmalloc_node(size, flags, node,
3667 __builtin_return_address(0));
3669 EXPORT_SYMBOL(__kmalloc_node);
3671 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3672 int node, unsigned long caller)
3674 return __do_kmalloc_node(size, flags, node, (void *)caller);
3676 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3677 #else
3678 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3680 return __do_kmalloc_node(size, flags, node, NULL);
3682 EXPORT_SYMBOL(__kmalloc_node);
3683 #endif /* CONFIG_DEBUG_SLAB */
3684 #endif /* CONFIG_NUMA */
3687 * __do_kmalloc - allocate memory
3688 * @size: how many bytes of memory are required.
3689 * @flags: the type of memory to allocate (see kmalloc).
3690 * @caller: function caller for debug tracking of the caller
3692 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3693 void *caller)
3695 struct kmem_cache *cachep;
3696 void *ret;
3698 /* If you want to save a few bytes .text space: replace
3699 * __ with kmem_.
3700 * Then kmalloc uses the uninlined functions instead of the inline
3701 * functions.
3703 cachep = __find_general_cachep(size, flags);
3704 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3705 return cachep;
3706 ret = __cache_alloc(cachep, flags, caller);
3708 trace_kmalloc((unsigned long) caller, ret,
3709 size, cachep->buffer_size, flags);
3711 return ret;
3715 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3716 void *__kmalloc(size_t size, gfp_t flags)
3718 return __do_kmalloc(size, flags, __builtin_return_address(0));
3720 EXPORT_SYMBOL(__kmalloc);
3722 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3724 return __do_kmalloc(size, flags, (void *)caller);
3726 EXPORT_SYMBOL(__kmalloc_track_caller);
3728 #else
3729 void *__kmalloc(size_t size, gfp_t flags)
3731 return __do_kmalloc(size, flags, NULL);
3733 EXPORT_SYMBOL(__kmalloc);
3734 #endif
3737 * kmem_cache_free - Deallocate an object
3738 * @cachep: The cache the allocation was from.
3739 * @objp: The previously allocated object.
3741 * Free an object which was previously allocated from this
3742 * cache.
3744 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3746 unsigned long flags;
3748 local_irq_save(flags);
3749 debug_check_no_locks_freed(objp, obj_size(cachep));
3750 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3751 debug_check_no_obj_freed(objp, obj_size(cachep));
3752 __cache_free(cachep, objp);
3753 local_irq_restore(flags);
3755 trace_kmem_cache_free(_RET_IP_, objp);
3757 EXPORT_SYMBOL(kmem_cache_free);
3760 * kfree - free previously allocated memory
3761 * @objp: pointer returned by kmalloc.
3763 * If @objp is NULL, no operation is performed.
3765 * Don't free memory not originally allocated by kmalloc()
3766 * or you will run into trouble.
3768 void kfree(const void *objp)
3770 struct kmem_cache *c;
3771 unsigned long flags;
3773 trace_kfree(_RET_IP_, objp);
3775 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3776 return;
3777 local_irq_save(flags);
3778 kfree_debugcheck(objp);
3779 c = virt_to_cache(objp);
3780 debug_check_no_locks_freed(objp, obj_size(c));
3781 debug_check_no_obj_freed(objp, obj_size(c));
3782 __cache_free(c, (void *)objp);
3783 local_irq_restore(flags);
3785 EXPORT_SYMBOL(kfree);
3787 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3789 return obj_size(cachep);
3791 EXPORT_SYMBOL(kmem_cache_size);
3793 const char *kmem_cache_name(struct kmem_cache *cachep)
3795 return cachep->name;
3797 EXPORT_SYMBOL_GPL(kmem_cache_name);
3800 * This initializes kmem_list3 or resizes various caches for all nodes.
3802 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3804 int node;
3805 struct kmem_list3 *l3;
3806 struct array_cache *new_shared;
3807 struct array_cache **new_alien = NULL;
3809 for_each_online_node(node) {
3811 if (use_alien_caches) {
3812 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3813 if (!new_alien)
3814 goto fail;
3817 new_shared = NULL;
3818 if (cachep->shared) {
3819 new_shared = alloc_arraycache(node,
3820 cachep->shared*cachep->batchcount,
3821 0xbaadf00d, gfp);
3822 if (!new_shared) {
3823 free_alien_cache(new_alien);
3824 goto fail;
3828 l3 = cachep->nodelists[node];
3829 if (l3) {
3830 struct array_cache *shared = l3->shared;
3832 spin_lock_irq(&l3->list_lock);
3834 if (shared)
3835 free_block(cachep, shared->entry,
3836 shared->avail, node);
3838 l3->shared = new_shared;
3839 if (!l3->alien) {
3840 l3->alien = new_alien;
3841 new_alien = NULL;
3843 l3->free_limit = (1 + nr_cpus_node(node)) *
3844 cachep->batchcount + cachep->num;
3845 spin_unlock_irq(&l3->list_lock);
3846 kfree(shared);
3847 free_alien_cache(new_alien);
3848 continue;
3850 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3851 if (!l3) {
3852 free_alien_cache(new_alien);
3853 kfree(new_shared);
3854 goto fail;
3857 kmem_list3_init(l3);
3858 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3859 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3860 l3->shared = new_shared;
3861 l3->alien = new_alien;
3862 l3->free_limit = (1 + nr_cpus_node(node)) *
3863 cachep->batchcount + cachep->num;
3864 cachep->nodelists[node] = l3;
3866 return 0;
3868 fail:
3869 if (!cachep->next.next) {
3870 /* Cache is not active yet. Roll back what we did */
3871 node--;
3872 while (node >= 0) {
3873 if (cachep->nodelists[node]) {
3874 l3 = cachep->nodelists[node];
3876 kfree(l3->shared);
3877 free_alien_cache(l3->alien);
3878 kfree(l3);
3879 cachep->nodelists[node] = NULL;
3881 node--;
3884 return -ENOMEM;
3887 struct ccupdate_struct {
3888 struct kmem_cache *cachep;
3889 struct array_cache *new[NR_CPUS];
3892 static void do_ccupdate_local(void *info)
3894 struct ccupdate_struct *new = info;
3895 struct array_cache *old;
3897 check_irq_off();
3898 old = cpu_cache_get(new->cachep);
3900 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3901 new->new[smp_processor_id()] = old;
3904 /* Always called with the cache_chain_mutex held */
3905 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3906 int batchcount, int shared, gfp_t gfp)
3908 struct ccupdate_struct *new;
3909 int i;
3911 new = kzalloc(sizeof(*new), gfp);
3912 if (!new)
3913 return -ENOMEM;
3915 for_each_online_cpu(i) {
3916 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3917 batchcount, gfp);
3918 if (!new->new[i]) {
3919 for (i--; i >= 0; i--)
3920 kfree(new->new[i]);
3921 kfree(new);
3922 return -ENOMEM;
3925 new->cachep = cachep;
3927 on_each_cpu(do_ccupdate_local, (void *)new, 1);
3929 check_irq_on();
3930 cachep->batchcount = batchcount;
3931 cachep->limit = limit;
3932 cachep->shared = shared;
3934 for_each_online_cpu(i) {
3935 struct array_cache *ccold = new->new[i];
3936 if (!ccold)
3937 continue;
3938 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3939 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3940 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3941 kfree(ccold);
3943 kfree(new);
3944 return alloc_kmemlist(cachep, gfp);
3947 /* Called with cache_chain_mutex held always */
3948 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3950 int err;
3951 int limit, shared;
3954 * The head array serves three purposes:
3955 * - create a LIFO ordering, i.e. return objects that are cache-warm
3956 * - reduce the number of spinlock operations.
3957 * - reduce the number of linked list operations on the slab and
3958 * bufctl chains: array operations are cheaper.
3959 * The numbers are guessed, we should auto-tune as described by
3960 * Bonwick.
3962 if (cachep->buffer_size > 131072)
3963 limit = 1;
3964 else if (cachep->buffer_size > PAGE_SIZE)
3965 limit = 8;
3966 else if (cachep->buffer_size > 1024)
3967 limit = 24;
3968 else if (cachep->buffer_size > 256)
3969 limit = 54;
3970 else
3971 limit = 120;
3974 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3975 * allocation behaviour: Most allocs on one cpu, most free operations
3976 * on another cpu. For these cases, an efficient object passing between
3977 * cpus is necessary. This is provided by a shared array. The array
3978 * replaces Bonwick's magazine layer.
3979 * On uniprocessor, it's functionally equivalent (but less efficient)
3980 * to a larger limit. Thus disabled by default.
3982 shared = 0;
3983 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
3984 shared = 8;
3986 #if DEBUG
3988 * With debugging enabled, large batchcount lead to excessively long
3989 * periods with disabled local interrupts. Limit the batchcount
3991 if (limit > 32)
3992 limit = 32;
3993 #endif
3994 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
3995 if (err)
3996 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3997 cachep->name, -err);
3998 return err;
4002 * Drain an array if it contains any elements taking the l3 lock only if
4003 * necessary. Note that the l3 listlock also protects the array_cache
4004 * if drain_array() is used on the shared array.
4006 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4007 struct array_cache *ac, int force, int node)
4009 int tofree;
4011 if (!ac || !ac->avail)
4012 return;
4013 if (ac->touched && !force) {
4014 ac->touched = 0;
4015 } else {
4016 spin_lock_irq(&l3->list_lock);
4017 if (ac->avail) {
4018 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4019 if (tofree > ac->avail)
4020 tofree = (ac->avail + 1) / 2;
4021 free_block(cachep, ac->entry, tofree, node);
4022 ac->avail -= tofree;
4023 memmove(ac->entry, &(ac->entry[tofree]),
4024 sizeof(void *) * ac->avail);
4026 spin_unlock_irq(&l3->list_lock);
4031 * cache_reap - Reclaim memory from caches.
4032 * @w: work descriptor
4034 * Called from workqueue/eventd every few seconds.
4035 * Purpose:
4036 * - clear the per-cpu caches for this CPU.
4037 * - return freeable pages to the main free memory pool.
4039 * If we cannot acquire the cache chain mutex then just give up - we'll try
4040 * again on the next iteration.
4042 static void cache_reap(struct work_struct *w)
4044 struct kmem_cache *searchp;
4045 struct kmem_list3 *l3;
4046 int node = numa_node_id();
4047 struct delayed_work *work = to_delayed_work(w);
4049 if (!mutex_trylock(&cache_chain_mutex))
4050 /* Give up. Setup the next iteration. */
4051 goto out;
4053 list_for_each_entry(searchp, &cache_chain, next) {
4054 check_irq_on();
4057 * We only take the l3 lock if absolutely necessary and we
4058 * have established with reasonable certainty that
4059 * we can do some work if the lock was obtained.
4061 l3 = searchp->nodelists[node];
4063 reap_alien(searchp, l3);
4065 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4068 * These are racy checks but it does not matter
4069 * if we skip one check or scan twice.
4071 if (time_after(l3->next_reap, jiffies))
4072 goto next;
4074 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4076 drain_array(searchp, l3, l3->shared, 0, node);
4078 if (l3->free_touched)
4079 l3->free_touched = 0;
4080 else {
4081 int freed;
4083 freed = drain_freelist(searchp, l3, (l3->free_limit +
4084 5 * searchp->num - 1) / (5 * searchp->num));
4085 STATS_ADD_REAPED(searchp, freed);
4087 next:
4088 cond_resched();
4090 check_irq_on();
4091 mutex_unlock(&cache_chain_mutex);
4092 next_reap_node();
4093 out:
4094 /* Set up the next iteration */
4095 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4098 #ifdef CONFIG_SLABINFO
4100 static void print_slabinfo_header(struct seq_file *m)
4103 * Output format version, so at least we can change it
4104 * without _too_ many complaints.
4106 #if STATS
4107 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4108 #else
4109 seq_puts(m, "slabinfo - version: 2.1\n");
4110 #endif
4111 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4112 "<objperslab> <pagesperslab>");
4113 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4114 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4115 #if STATS
4116 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4117 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4118 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4119 #endif
4120 seq_putc(m, '\n');
4123 static void *s_start(struct seq_file *m, loff_t *pos)
4125 loff_t n = *pos;
4127 mutex_lock(&cache_chain_mutex);
4128 if (!n)
4129 print_slabinfo_header(m);
4131 return seq_list_start(&cache_chain, *pos);
4134 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4136 return seq_list_next(p, &cache_chain, pos);
4139 static void s_stop(struct seq_file *m, void *p)
4141 mutex_unlock(&cache_chain_mutex);
4144 static int s_show(struct seq_file *m, void *p)
4146 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4147 struct slab *slabp;
4148 unsigned long active_objs;
4149 unsigned long num_objs;
4150 unsigned long active_slabs = 0;
4151 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4152 const char *name;
4153 char *error = NULL;
4154 int node;
4155 struct kmem_list3 *l3;
4157 active_objs = 0;
4158 num_slabs = 0;
4159 for_each_online_node(node) {
4160 l3 = cachep->nodelists[node];
4161 if (!l3)
4162 continue;
4164 check_irq_on();
4165 spin_lock_irq(&l3->list_lock);
4167 list_for_each_entry(slabp, &l3->slabs_full, list) {
4168 if (slabp->inuse != cachep->num && !error)
4169 error = "slabs_full accounting error";
4170 active_objs += cachep->num;
4171 active_slabs++;
4173 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4174 if (slabp->inuse == cachep->num && !error)
4175 error = "slabs_partial inuse accounting error";
4176 if (!slabp->inuse && !error)
4177 error = "slabs_partial/inuse accounting error";
4178 active_objs += slabp->inuse;
4179 active_slabs++;
4181 list_for_each_entry(slabp, &l3->slabs_free, list) {
4182 if (slabp->inuse && !error)
4183 error = "slabs_free/inuse accounting error";
4184 num_slabs++;
4186 free_objects += l3->free_objects;
4187 if (l3->shared)
4188 shared_avail += l3->shared->avail;
4190 spin_unlock_irq(&l3->list_lock);
4192 num_slabs += active_slabs;
4193 num_objs = num_slabs * cachep->num;
4194 if (num_objs - active_objs != free_objects && !error)
4195 error = "free_objects accounting error";
4197 name = cachep->name;
4198 if (error)
4199 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4201 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4202 name, active_objs, num_objs, cachep->buffer_size,
4203 cachep->num, (1 << cachep->gfporder));
4204 seq_printf(m, " : tunables %4u %4u %4u",
4205 cachep->limit, cachep->batchcount, cachep->shared);
4206 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4207 active_slabs, num_slabs, shared_avail);
4208 #if STATS
4209 { /* list3 stats */
4210 unsigned long high = cachep->high_mark;
4211 unsigned long allocs = cachep->num_allocations;
4212 unsigned long grown = cachep->grown;
4213 unsigned long reaped = cachep->reaped;
4214 unsigned long errors = cachep->errors;
4215 unsigned long max_freeable = cachep->max_freeable;
4216 unsigned long node_allocs = cachep->node_allocs;
4217 unsigned long node_frees = cachep->node_frees;
4218 unsigned long overflows = cachep->node_overflow;
4220 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4221 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4222 reaped, errors, max_freeable, node_allocs,
4223 node_frees, overflows);
4225 /* cpu stats */
4227 unsigned long allochit = atomic_read(&cachep->allochit);
4228 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4229 unsigned long freehit = atomic_read(&cachep->freehit);
4230 unsigned long freemiss = atomic_read(&cachep->freemiss);
4232 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4233 allochit, allocmiss, freehit, freemiss);
4235 #endif
4236 seq_putc(m, '\n');
4237 return 0;
4241 * slabinfo_op - iterator that generates /proc/slabinfo
4243 * Output layout:
4244 * cache-name
4245 * num-active-objs
4246 * total-objs
4247 * object size
4248 * num-active-slabs
4249 * total-slabs
4250 * num-pages-per-slab
4251 * + further values on SMP and with statistics enabled
4254 static const struct seq_operations slabinfo_op = {
4255 .start = s_start,
4256 .next = s_next,
4257 .stop = s_stop,
4258 .show = s_show,
4261 #define MAX_SLABINFO_WRITE 128
4263 * slabinfo_write - Tuning for the slab allocator
4264 * @file: unused
4265 * @buffer: user buffer
4266 * @count: data length
4267 * @ppos: unused
4269 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4270 size_t count, loff_t *ppos)
4272 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4273 int limit, batchcount, shared, res;
4274 struct kmem_cache *cachep;
4276 if (count > MAX_SLABINFO_WRITE)
4277 return -EINVAL;
4278 if (copy_from_user(&kbuf, buffer, count))
4279 return -EFAULT;
4280 kbuf[MAX_SLABINFO_WRITE] = '\0';
4282 tmp = strchr(kbuf, ' ');
4283 if (!tmp)
4284 return -EINVAL;
4285 *tmp = '\0';
4286 tmp++;
4287 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4288 return -EINVAL;
4290 /* Find the cache in the chain of caches. */
4291 mutex_lock(&cache_chain_mutex);
4292 res = -EINVAL;
4293 list_for_each_entry(cachep, &cache_chain, next) {
4294 if (!strcmp(cachep->name, kbuf)) {
4295 if (limit < 1 || batchcount < 1 ||
4296 batchcount > limit || shared < 0) {
4297 res = 0;
4298 } else {
4299 res = do_tune_cpucache(cachep, limit,
4300 batchcount, shared,
4301 GFP_KERNEL);
4303 break;
4306 mutex_unlock(&cache_chain_mutex);
4307 if (res >= 0)
4308 res = count;
4309 return res;
4312 static int slabinfo_open(struct inode *inode, struct file *file)
4314 return seq_open(file, &slabinfo_op);
4317 static const struct file_operations proc_slabinfo_operations = {
4318 .open = slabinfo_open,
4319 .read = seq_read,
4320 .write = slabinfo_write,
4321 .llseek = seq_lseek,
4322 .release = seq_release,
4325 #ifdef CONFIG_DEBUG_SLAB_LEAK
4327 static void *leaks_start(struct seq_file *m, loff_t *pos)
4329 mutex_lock(&cache_chain_mutex);
4330 return seq_list_start(&cache_chain, *pos);
4333 static inline int add_caller(unsigned long *n, unsigned long v)
4335 unsigned long *p;
4336 int l;
4337 if (!v)
4338 return 1;
4339 l = n[1];
4340 p = n + 2;
4341 while (l) {
4342 int i = l/2;
4343 unsigned long *q = p + 2 * i;
4344 if (*q == v) {
4345 q[1]++;
4346 return 1;
4348 if (*q > v) {
4349 l = i;
4350 } else {
4351 p = q + 2;
4352 l -= i + 1;
4355 if (++n[1] == n[0])
4356 return 0;
4357 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4358 p[0] = v;
4359 p[1] = 1;
4360 return 1;
4363 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4365 void *p;
4366 int i;
4367 if (n[0] == n[1])
4368 return;
4369 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4370 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4371 continue;
4372 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4373 return;
4377 static void show_symbol(struct seq_file *m, unsigned long address)
4379 #ifdef CONFIG_KALLSYMS
4380 unsigned long offset, size;
4381 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4383 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4384 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4385 if (modname[0])
4386 seq_printf(m, " [%s]", modname);
4387 return;
4389 #endif
4390 seq_printf(m, "%p", (void *)address);
4393 static int leaks_show(struct seq_file *m, void *p)
4395 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4396 struct slab *slabp;
4397 struct kmem_list3 *l3;
4398 const char *name;
4399 unsigned long *n = m->private;
4400 int node;
4401 int i;
4403 if (!(cachep->flags & SLAB_STORE_USER))
4404 return 0;
4405 if (!(cachep->flags & SLAB_RED_ZONE))
4406 return 0;
4408 /* OK, we can do it */
4410 n[1] = 0;
4412 for_each_online_node(node) {
4413 l3 = cachep->nodelists[node];
4414 if (!l3)
4415 continue;
4417 check_irq_on();
4418 spin_lock_irq(&l3->list_lock);
4420 list_for_each_entry(slabp, &l3->slabs_full, list)
4421 handle_slab(n, cachep, slabp);
4422 list_for_each_entry(slabp, &l3->slabs_partial, list)
4423 handle_slab(n, cachep, slabp);
4424 spin_unlock_irq(&l3->list_lock);
4426 name = cachep->name;
4427 if (n[0] == n[1]) {
4428 /* Increase the buffer size */
4429 mutex_unlock(&cache_chain_mutex);
4430 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4431 if (!m->private) {
4432 /* Too bad, we are really out */
4433 m->private = n;
4434 mutex_lock(&cache_chain_mutex);
4435 return -ENOMEM;
4437 *(unsigned long *)m->private = n[0] * 2;
4438 kfree(n);
4439 mutex_lock(&cache_chain_mutex);
4440 /* Now make sure this entry will be retried */
4441 m->count = m->size;
4442 return 0;
4444 for (i = 0; i < n[1]; i++) {
4445 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4446 show_symbol(m, n[2*i+2]);
4447 seq_putc(m, '\n');
4450 return 0;
4453 static const struct seq_operations slabstats_op = {
4454 .start = leaks_start,
4455 .next = s_next,
4456 .stop = s_stop,
4457 .show = leaks_show,
4460 static int slabstats_open(struct inode *inode, struct file *file)
4462 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4463 int ret = -ENOMEM;
4464 if (n) {
4465 ret = seq_open(file, &slabstats_op);
4466 if (!ret) {
4467 struct seq_file *m = file->private_data;
4468 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4469 m->private = n;
4470 n = NULL;
4472 kfree(n);
4474 return ret;
4477 static const struct file_operations proc_slabstats_operations = {
4478 .open = slabstats_open,
4479 .read = seq_read,
4480 .llseek = seq_lseek,
4481 .release = seq_release_private,
4483 #endif
4485 static int __init slab_proc_init(void)
4487 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4488 #ifdef CONFIG_DEBUG_SLAB_LEAK
4489 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4490 #endif
4491 return 0;
4493 module_init(slab_proc_init);
4494 #endif
4497 * ksize - get the actual amount of memory allocated for a given object
4498 * @objp: Pointer to the object
4500 * kmalloc may internally round up allocations and return more memory
4501 * than requested. ksize() can be used to determine the actual amount of
4502 * memory allocated. The caller may use this additional memory, even though
4503 * a smaller amount of memory was initially specified with the kmalloc call.
4504 * The caller must guarantee that objp points to a valid object previously
4505 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4506 * must not be freed during the duration of the call.
4508 size_t ksize(const void *objp)
4510 BUG_ON(!objp);
4511 if (unlikely(objp == ZERO_SIZE_PTR))
4512 return 0;
4514 return obj_size(virt_to_cache(objp));
4516 EXPORT_SYMBOL(ksize);