1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Extent allocs and frees
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
40 #include "blockcheck.h"
42 #include "extent_map.h"
45 #include "localalloc.h"
53 #include "buffer_head_io.h"
57 * Operations for a specific extent tree type.
59 * To implement an on-disk btree (extent tree) type in ocfs2, add
60 * an ocfs2_extent_tree_operations structure and the matching
61 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it
62 * for the allocation portion of the extent tree.
64 struct ocfs2_extent_tree_operations
{
66 * last_eb_blk is the block number of the right most leaf extent
67 * block. Most on-disk structures containing an extent tree store
68 * this value for fast access. The ->eo_set_last_eb_blk() and
69 * ->eo_get_last_eb_blk() operations access this value. They are
72 void (*eo_set_last_eb_blk
)(struct ocfs2_extent_tree
*et
,
74 u64 (*eo_get_last_eb_blk
)(struct ocfs2_extent_tree
*et
);
77 * The on-disk structure usually keeps track of how many total
78 * clusters are stored in this extent tree. This function updates
79 * that value. new_clusters is the delta, and must be
80 * added to the total. Required.
82 void (*eo_update_clusters
)(struct inode
*inode
,
83 struct ocfs2_extent_tree
*et
,
87 * If ->eo_insert_check() exists, it is called before rec is
88 * inserted into the extent tree. It is optional.
90 int (*eo_insert_check
)(struct inode
*inode
,
91 struct ocfs2_extent_tree
*et
,
92 struct ocfs2_extent_rec
*rec
);
93 int (*eo_sanity_check
)(struct inode
*inode
, struct ocfs2_extent_tree
*et
);
96 * --------------------------------------------------------------
97 * The remaining are internal to ocfs2_extent_tree and don't have
102 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
105 void (*eo_fill_root_el
)(struct ocfs2_extent_tree
*et
);
108 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
109 * it exists. If it does not, et->et_max_leaf_clusters is set
110 * to 0 (unlimited). Optional.
112 void (*eo_fill_max_leaf_clusters
)(struct inode
*inode
,
113 struct ocfs2_extent_tree
*et
);
118 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
121 static u64
ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree
*et
);
122 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
124 static void ocfs2_dinode_update_clusters(struct inode
*inode
,
125 struct ocfs2_extent_tree
*et
,
127 static int ocfs2_dinode_insert_check(struct inode
*inode
,
128 struct ocfs2_extent_tree
*et
,
129 struct ocfs2_extent_rec
*rec
);
130 static int ocfs2_dinode_sanity_check(struct inode
*inode
,
131 struct ocfs2_extent_tree
*et
);
132 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree
*et
);
133 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops
= {
134 .eo_set_last_eb_blk
= ocfs2_dinode_set_last_eb_blk
,
135 .eo_get_last_eb_blk
= ocfs2_dinode_get_last_eb_blk
,
136 .eo_update_clusters
= ocfs2_dinode_update_clusters
,
137 .eo_insert_check
= ocfs2_dinode_insert_check
,
138 .eo_sanity_check
= ocfs2_dinode_sanity_check
,
139 .eo_fill_root_el
= ocfs2_dinode_fill_root_el
,
142 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
145 struct ocfs2_dinode
*di
= et
->et_object
;
147 BUG_ON(et
->et_ops
!= &ocfs2_dinode_et_ops
);
148 di
->i_last_eb_blk
= cpu_to_le64(blkno
);
151 static u64
ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
153 struct ocfs2_dinode
*di
= et
->et_object
;
155 BUG_ON(et
->et_ops
!= &ocfs2_dinode_et_ops
);
156 return le64_to_cpu(di
->i_last_eb_blk
);
159 static void ocfs2_dinode_update_clusters(struct inode
*inode
,
160 struct ocfs2_extent_tree
*et
,
163 struct ocfs2_dinode
*di
= et
->et_object
;
165 le32_add_cpu(&di
->i_clusters
, clusters
);
166 spin_lock(&OCFS2_I(inode
)->ip_lock
);
167 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(di
->i_clusters
);
168 spin_unlock(&OCFS2_I(inode
)->ip_lock
);
171 static int ocfs2_dinode_insert_check(struct inode
*inode
,
172 struct ocfs2_extent_tree
*et
,
173 struct ocfs2_extent_rec
*rec
)
175 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
177 BUG_ON(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
);
178 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb
) &&
179 (OCFS2_I(inode
)->ip_clusters
!=
180 le32_to_cpu(rec
->e_cpos
)),
181 "Device %s, asking for sparse allocation: inode %llu, "
182 "cpos %u, clusters %u\n",
184 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
186 OCFS2_I(inode
)->ip_clusters
);
191 static int ocfs2_dinode_sanity_check(struct inode
*inode
,
192 struct ocfs2_extent_tree
*et
)
194 struct ocfs2_dinode
*di
= et
->et_object
;
196 BUG_ON(et
->et_ops
!= &ocfs2_dinode_et_ops
);
197 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
202 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree
*et
)
204 struct ocfs2_dinode
*di
= et
->et_object
;
206 et
->et_root_el
= &di
->id2
.i_list
;
210 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree
*et
)
212 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
214 et
->et_root_el
= &vb
->vb_xv
->xr_list
;
217 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
220 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
222 vb
->vb_xv
->xr_last_eb_blk
= cpu_to_le64(blkno
);
225 static u64
ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
227 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
229 return le64_to_cpu(vb
->vb_xv
->xr_last_eb_blk
);
232 static void ocfs2_xattr_value_update_clusters(struct inode
*inode
,
233 struct ocfs2_extent_tree
*et
,
236 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
238 le32_add_cpu(&vb
->vb_xv
->xr_clusters
, clusters
);
241 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops
= {
242 .eo_set_last_eb_blk
= ocfs2_xattr_value_set_last_eb_blk
,
243 .eo_get_last_eb_blk
= ocfs2_xattr_value_get_last_eb_blk
,
244 .eo_update_clusters
= ocfs2_xattr_value_update_clusters
,
245 .eo_fill_root_el
= ocfs2_xattr_value_fill_root_el
,
248 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree
*et
)
250 struct ocfs2_xattr_block
*xb
= et
->et_object
;
252 et
->et_root_el
= &xb
->xb_attrs
.xb_root
.xt_list
;
255 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode
*inode
,
256 struct ocfs2_extent_tree
*et
)
258 et
->et_max_leaf_clusters
=
259 ocfs2_clusters_for_bytes(inode
->i_sb
,
260 OCFS2_MAX_XATTR_TREE_LEAF_SIZE
);
263 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
266 struct ocfs2_xattr_block
*xb
= et
->et_object
;
267 struct ocfs2_xattr_tree_root
*xt
= &xb
->xb_attrs
.xb_root
;
269 xt
->xt_last_eb_blk
= cpu_to_le64(blkno
);
272 static u64
ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
274 struct ocfs2_xattr_block
*xb
= et
->et_object
;
275 struct ocfs2_xattr_tree_root
*xt
= &xb
->xb_attrs
.xb_root
;
277 return le64_to_cpu(xt
->xt_last_eb_blk
);
280 static void ocfs2_xattr_tree_update_clusters(struct inode
*inode
,
281 struct ocfs2_extent_tree
*et
,
284 struct ocfs2_xattr_block
*xb
= et
->et_object
;
286 le32_add_cpu(&xb
->xb_attrs
.xb_root
.xt_clusters
, clusters
);
289 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops
= {
290 .eo_set_last_eb_blk
= ocfs2_xattr_tree_set_last_eb_blk
,
291 .eo_get_last_eb_blk
= ocfs2_xattr_tree_get_last_eb_blk
,
292 .eo_update_clusters
= ocfs2_xattr_tree_update_clusters
,
293 .eo_fill_root_el
= ocfs2_xattr_tree_fill_root_el
,
294 .eo_fill_max_leaf_clusters
= ocfs2_xattr_tree_fill_max_leaf_clusters
,
297 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree
*et
,
299 struct buffer_head
*bh
,
300 ocfs2_journal_access_func access
,
302 struct ocfs2_extent_tree_operations
*ops
)
306 et
->et_root_journal_access
= access
;
308 obj
= (void *)bh
->b_data
;
311 et
->et_ops
->eo_fill_root_el(et
);
312 if (!et
->et_ops
->eo_fill_max_leaf_clusters
)
313 et
->et_max_leaf_clusters
= 0;
315 et
->et_ops
->eo_fill_max_leaf_clusters(inode
, et
);
318 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree
*et
,
320 struct buffer_head
*bh
)
322 __ocfs2_init_extent_tree(et
, inode
, bh
, ocfs2_journal_access_di
,
323 NULL
, &ocfs2_dinode_et_ops
);
326 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree
*et
,
328 struct buffer_head
*bh
)
330 __ocfs2_init_extent_tree(et
, inode
, bh
, ocfs2_journal_access_xb
,
331 NULL
, &ocfs2_xattr_tree_et_ops
);
334 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree
*et
,
336 struct ocfs2_xattr_value_buf
*vb
)
338 __ocfs2_init_extent_tree(et
, inode
, vb
->vb_bh
, vb
->vb_access
, vb
,
339 &ocfs2_xattr_value_et_ops
);
342 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
345 et
->et_ops
->eo_set_last_eb_blk(et
, new_last_eb_blk
);
348 static inline u64
ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
350 return et
->et_ops
->eo_get_last_eb_blk(et
);
353 static inline void ocfs2_et_update_clusters(struct inode
*inode
,
354 struct ocfs2_extent_tree
*et
,
357 et
->et_ops
->eo_update_clusters(inode
, et
, clusters
);
360 static inline int ocfs2_et_root_journal_access(handle_t
*handle
,
362 struct ocfs2_extent_tree
*et
,
365 return et
->et_root_journal_access(handle
, inode
, et
->et_root_bh
,
369 static inline int ocfs2_et_insert_check(struct inode
*inode
,
370 struct ocfs2_extent_tree
*et
,
371 struct ocfs2_extent_rec
*rec
)
375 if (et
->et_ops
->eo_insert_check
)
376 ret
= et
->et_ops
->eo_insert_check(inode
, et
, rec
);
380 static inline int ocfs2_et_sanity_check(struct inode
*inode
,
381 struct ocfs2_extent_tree
*et
)
385 if (et
->et_ops
->eo_sanity_check
)
386 ret
= et
->et_ops
->eo_sanity_check(inode
, et
);
390 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context
*tc
);
391 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
392 struct ocfs2_extent_block
*eb
);
395 * Structures which describe a path through a btree, and functions to
398 * The idea here is to be as generic as possible with the tree
401 struct ocfs2_path_item
{
402 struct buffer_head
*bh
;
403 struct ocfs2_extent_list
*el
;
406 #define OCFS2_MAX_PATH_DEPTH 5
410 ocfs2_journal_access_func p_root_access
;
411 struct ocfs2_path_item p_node
[OCFS2_MAX_PATH_DEPTH
];
414 #define path_root_bh(_path) ((_path)->p_node[0].bh)
415 #define path_root_el(_path) ((_path)->p_node[0].el)
416 #define path_root_access(_path)((_path)->p_root_access)
417 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
418 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
419 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
422 * Reset the actual path elements so that we can re-use the structure
423 * to build another path. Generally, this involves freeing the buffer
426 static void ocfs2_reinit_path(struct ocfs2_path
*path
, int keep_root
)
428 int i
, start
= 0, depth
= 0;
429 struct ocfs2_path_item
*node
;
434 for(i
= start
; i
< path_num_items(path
); i
++) {
435 node
= &path
->p_node
[i
];
443 * Tree depth may change during truncate, or insert. If we're
444 * keeping the root extent list, then make sure that our path
445 * structure reflects the proper depth.
448 depth
= le16_to_cpu(path_root_el(path
)->l_tree_depth
);
450 path_root_access(path
) = NULL
;
452 path
->p_tree_depth
= depth
;
455 static void ocfs2_free_path(struct ocfs2_path
*path
)
458 ocfs2_reinit_path(path
, 0);
464 * All the elements of src into dest. After this call, src could be freed
465 * without affecting dest.
467 * Both paths should have the same root. Any non-root elements of dest
470 static void ocfs2_cp_path(struct ocfs2_path
*dest
, struct ocfs2_path
*src
)
474 BUG_ON(path_root_bh(dest
) != path_root_bh(src
));
475 BUG_ON(path_root_el(dest
) != path_root_el(src
));
476 BUG_ON(path_root_access(dest
) != path_root_access(src
));
478 ocfs2_reinit_path(dest
, 1);
480 for(i
= 1; i
< OCFS2_MAX_PATH_DEPTH
; i
++) {
481 dest
->p_node
[i
].bh
= src
->p_node
[i
].bh
;
482 dest
->p_node
[i
].el
= src
->p_node
[i
].el
;
484 if (dest
->p_node
[i
].bh
)
485 get_bh(dest
->p_node
[i
].bh
);
490 * Make the *dest path the same as src and re-initialize src path to
493 static void ocfs2_mv_path(struct ocfs2_path
*dest
, struct ocfs2_path
*src
)
497 BUG_ON(path_root_bh(dest
) != path_root_bh(src
));
498 BUG_ON(path_root_access(dest
) != path_root_access(src
));
500 for(i
= 1; i
< OCFS2_MAX_PATH_DEPTH
; i
++) {
501 brelse(dest
->p_node
[i
].bh
);
503 dest
->p_node
[i
].bh
= src
->p_node
[i
].bh
;
504 dest
->p_node
[i
].el
= src
->p_node
[i
].el
;
506 src
->p_node
[i
].bh
= NULL
;
507 src
->p_node
[i
].el
= NULL
;
512 * Insert an extent block at given index.
514 * This will not take an additional reference on eb_bh.
516 static inline void ocfs2_path_insert_eb(struct ocfs2_path
*path
, int index
,
517 struct buffer_head
*eb_bh
)
519 struct ocfs2_extent_block
*eb
= (struct ocfs2_extent_block
*)eb_bh
->b_data
;
522 * Right now, no root bh is an extent block, so this helps
523 * catch code errors with dinode trees. The assertion can be
524 * safely removed if we ever need to insert extent block
525 * structures at the root.
529 path
->p_node
[index
].bh
= eb_bh
;
530 path
->p_node
[index
].el
= &eb
->h_list
;
533 static struct ocfs2_path
*ocfs2_new_path(struct buffer_head
*root_bh
,
534 struct ocfs2_extent_list
*root_el
,
535 ocfs2_journal_access_func access
)
537 struct ocfs2_path
*path
;
539 BUG_ON(le16_to_cpu(root_el
->l_tree_depth
) >= OCFS2_MAX_PATH_DEPTH
);
541 path
= kzalloc(sizeof(*path
), GFP_NOFS
);
543 path
->p_tree_depth
= le16_to_cpu(root_el
->l_tree_depth
);
545 path_root_bh(path
) = root_bh
;
546 path_root_el(path
) = root_el
;
547 path_root_access(path
) = access
;
553 static struct ocfs2_path
*ocfs2_new_path_from_path(struct ocfs2_path
*path
)
555 return ocfs2_new_path(path_root_bh(path
), path_root_el(path
),
556 path_root_access(path
));
559 static struct ocfs2_path
*ocfs2_new_path_from_et(struct ocfs2_extent_tree
*et
)
561 return ocfs2_new_path(et
->et_root_bh
, et
->et_root_el
,
562 et
->et_root_journal_access
);
566 * Journal the buffer at depth idx. All idx>0 are extent_blocks,
567 * otherwise it's the root_access function.
569 * I don't like the way this function's name looks next to
570 * ocfs2_journal_access_path(), but I don't have a better one.
572 static int ocfs2_path_bh_journal_access(handle_t
*handle
,
574 struct ocfs2_path
*path
,
577 ocfs2_journal_access_func access
= path_root_access(path
);
580 access
= ocfs2_journal_access
;
583 access
= ocfs2_journal_access_eb
;
585 return access(handle
, inode
, path
->p_node
[idx
].bh
,
586 OCFS2_JOURNAL_ACCESS_WRITE
);
590 * Convenience function to journal all components in a path.
592 static int ocfs2_journal_access_path(struct inode
*inode
, handle_t
*handle
,
593 struct ocfs2_path
*path
)
600 for(i
= 0; i
< path_num_items(path
); i
++) {
601 ret
= ocfs2_path_bh_journal_access(handle
, inode
, path
, i
);
613 * Return the index of the extent record which contains cluster #v_cluster.
614 * -1 is returned if it was not found.
616 * Should work fine on interior and exterior nodes.
618 int ocfs2_search_extent_list(struct ocfs2_extent_list
*el
, u32 v_cluster
)
622 struct ocfs2_extent_rec
*rec
;
623 u32 rec_end
, rec_start
, clusters
;
625 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
); i
++) {
626 rec
= &el
->l_recs
[i
];
628 rec_start
= le32_to_cpu(rec
->e_cpos
);
629 clusters
= ocfs2_rec_clusters(el
, rec
);
631 rec_end
= rec_start
+ clusters
;
633 if (v_cluster
>= rec_start
&& v_cluster
< rec_end
) {
642 enum ocfs2_contig_type
{
651 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
652 * ocfs2_extent_contig only work properly against leaf nodes!
654 static int ocfs2_block_extent_contig(struct super_block
*sb
,
655 struct ocfs2_extent_rec
*ext
,
658 u64 blk_end
= le64_to_cpu(ext
->e_blkno
);
660 blk_end
+= ocfs2_clusters_to_blocks(sb
,
661 le16_to_cpu(ext
->e_leaf_clusters
));
663 return blkno
== blk_end
;
666 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec
*left
,
667 struct ocfs2_extent_rec
*right
)
671 left_range
= le32_to_cpu(left
->e_cpos
) +
672 le16_to_cpu(left
->e_leaf_clusters
);
674 return (left_range
== le32_to_cpu(right
->e_cpos
));
677 static enum ocfs2_contig_type
678 ocfs2_extent_contig(struct inode
*inode
,
679 struct ocfs2_extent_rec
*ext
,
680 struct ocfs2_extent_rec
*insert_rec
)
682 u64 blkno
= le64_to_cpu(insert_rec
->e_blkno
);
685 * Refuse to coalesce extent records with different flag
686 * fields - we don't want to mix unwritten extents with user
689 if (ext
->e_flags
!= insert_rec
->e_flags
)
692 if (ocfs2_extents_adjacent(ext
, insert_rec
) &&
693 ocfs2_block_extent_contig(inode
->i_sb
, ext
, blkno
))
696 blkno
= le64_to_cpu(ext
->e_blkno
);
697 if (ocfs2_extents_adjacent(insert_rec
, ext
) &&
698 ocfs2_block_extent_contig(inode
->i_sb
, insert_rec
, blkno
))
705 * NOTE: We can have pretty much any combination of contiguousness and
708 * The usefulness of APPEND_TAIL is more in that it lets us know that
709 * we'll have to update the path to that leaf.
711 enum ocfs2_append_type
{
716 enum ocfs2_split_type
{
722 struct ocfs2_insert_type
{
723 enum ocfs2_split_type ins_split
;
724 enum ocfs2_append_type ins_appending
;
725 enum ocfs2_contig_type ins_contig
;
726 int ins_contig_index
;
730 struct ocfs2_merge_ctxt
{
731 enum ocfs2_contig_type c_contig_type
;
732 int c_has_empty_extent
;
733 int c_split_covers_rec
;
736 static int ocfs2_validate_extent_block(struct super_block
*sb
,
737 struct buffer_head
*bh
)
740 struct ocfs2_extent_block
*eb
=
741 (struct ocfs2_extent_block
*)bh
->b_data
;
743 mlog(0, "Validating extent block %llu\n",
744 (unsigned long long)bh
->b_blocknr
);
746 BUG_ON(!buffer_uptodate(bh
));
749 * If the ecc fails, we return the error but otherwise
750 * leave the filesystem running. We know any error is
751 * local to this block.
753 rc
= ocfs2_validate_meta_ecc(sb
, bh
->b_data
, &eb
->h_check
);
755 mlog(ML_ERROR
, "Checksum failed for extent block %llu\n",
756 (unsigned long long)bh
->b_blocknr
);
761 * Errors after here are fatal.
764 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
766 "Extent block #%llu has bad signature %.*s",
767 (unsigned long long)bh
->b_blocknr
, 7,
772 if (le64_to_cpu(eb
->h_blkno
) != bh
->b_blocknr
) {
774 "Extent block #%llu has an invalid h_blkno "
776 (unsigned long long)bh
->b_blocknr
,
777 (unsigned long long)le64_to_cpu(eb
->h_blkno
));
781 if (le32_to_cpu(eb
->h_fs_generation
) != OCFS2_SB(sb
)->fs_generation
) {
783 "Extent block #%llu has an invalid "
784 "h_fs_generation of #%u",
785 (unsigned long long)bh
->b_blocknr
,
786 le32_to_cpu(eb
->h_fs_generation
));
793 int ocfs2_read_extent_block(struct inode
*inode
, u64 eb_blkno
,
794 struct buffer_head
**bh
)
797 struct buffer_head
*tmp
= *bh
;
799 rc
= ocfs2_read_block(inode
, eb_blkno
, &tmp
,
800 ocfs2_validate_extent_block
);
802 /* If ocfs2_read_block() got us a new bh, pass it up. */
811 * How many free extents have we got before we need more meta data?
813 int ocfs2_num_free_extents(struct ocfs2_super
*osb
,
815 struct ocfs2_extent_tree
*et
)
818 struct ocfs2_extent_list
*el
= NULL
;
819 struct ocfs2_extent_block
*eb
;
820 struct buffer_head
*eb_bh
= NULL
;
826 last_eb_blk
= ocfs2_et_get_last_eb_blk(et
);
829 retval
= ocfs2_read_extent_block(inode
, last_eb_blk
, &eb_bh
);
834 eb
= (struct ocfs2_extent_block
*) eb_bh
->b_data
;
838 BUG_ON(el
->l_tree_depth
!= 0);
840 retval
= le16_to_cpu(el
->l_count
) - le16_to_cpu(el
->l_next_free_rec
);
848 /* expects array to already be allocated
850 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
853 static int ocfs2_create_new_meta_bhs(struct ocfs2_super
*osb
,
857 struct ocfs2_alloc_context
*meta_ac
,
858 struct buffer_head
*bhs
[])
860 int count
, status
, i
;
861 u16 suballoc_bit_start
;
864 struct ocfs2_extent_block
*eb
;
869 while (count
< wanted
) {
870 status
= ocfs2_claim_metadata(osb
,
882 for(i
= count
; i
< (num_got
+ count
); i
++) {
883 bhs
[i
] = sb_getblk(osb
->sb
, first_blkno
);
884 if (bhs
[i
] == NULL
) {
889 ocfs2_set_new_buffer_uptodate(inode
, bhs
[i
]);
891 status
= ocfs2_journal_access_eb(handle
, inode
, bhs
[i
],
892 OCFS2_JOURNAL_ACCESS_CREATE
);
898 memset(bhs
[i
]->b_data
, 0, osb
->sb
->s_blocksize
);
899 eb
= (struct ocfs2_extent_block
*) bhs
[i
]->b_data
;
900 /* Ok, setup the minimal stuff here. */
901 strcpy(eb
->h_signature
, OCFS2_EXTENT_BLOCK_SIGNATURE
);
902 eb
->h_blkno
= cpu_to_le64(first_blkno
);
903 eb
->h_fs_generation
= cpu_to_le32(osb
->fs_generation
);
904 eb
->h_suballoc_slot
= cpu_to_le16(osb
->slot_num
);
905 eb
->h_suballoc_bit
= cpu_to_le16(suballoc_bit_start
);
907 cpu_to_le16(ocfs2_extent_recs_per_eb(osb
->sb
));
909 suballoc_bit_start
++;
912 /* We'll also be dirtied by the caller, so
913 * this isn't absolutely necessary. */
914 status
= ocfs2_journal_dirty(handle
, bhs
[i
]);
927 for(i
= 0; i
< wanted
; i
++) {
937 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
939 * Returns the sum of the rightmost extent rec logical offset and
942 * ocfs2_add_branch() uses this to determine what logical cluster
943 * value should be populated into the leftmost new branch records.
945 * ocfs2_shift_tree_depth() uses this to determine the # clusters
946 * value for the new topmost tree record.
948 static inline u32
ocfs2_sum_rightmost_rec(struct ocfs2_extent_list
*el
)
952 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
954 return le32_to_cpu(el
->l_recs
[i
].e_cpos
) +
955 ocfs2_rec_clusters(el
, &el
->l_recs
[i
]);
959 * Add an entire tree branch to our inode. eb_bh is the extent block
960 * to start at, if we don't want to start the branch at the dinode
963 * last_eb_bh is required as we have to update it's next_leaf pointer
964 * for the new last extent block.
966 * the new branch will be 'empty' in the sense that every block will
967 * contain a single record with cluster count == 0.
969 static int ocfs2_add_branch(struct ocfs2_super
*osb
,
972 struct ocfs2_extent_tree
*et
,
973 struct buffer_head
*eb_bh
,
974 struct buffer_head
**last_eb_bh
,
975 struct ocfs2_alloc_context
*meta_ac
)
977 int status
, new_blocks
, i
;
978 u64 next_blkno
, new_last_eb_blk
;
979 struct buffer_head
*bh
;
980 struct buffer_head
**new_eb_bhs
= NULL
;
981 struct ocfs2_extent_block
*eb
;
982 struct ocfs2_extent_list
*eb_el
;
983 struct ocfs2_extent_list
*el
;
988 BUG_ON(!last_eb_bh
|| !*last_eb_bh
);
991 eb
= (struct ocfs2_extent_block
*) eb_bh
->b_data
;
996 /* we never add a branch to a leaf. */
997 BUG_ON(!el
->l_tree_depth
);
999 new_blocks
= le16_to_cpu(el
->l_tree_depth
);
1001 /* allocate the number of new eb blocks we need */
1002 new_eb_bhs
= kcalloc(new_blocks
, sizeof(struct buffer_head
*),
1010 status
= ocfs2_create_new_meta_bhs(osb
, handle
, inode
, new_blocks
,
1011 meta_ac
, new_eb_bhs
);
1017 eb
= (struct ocfs2_extent_block
*)(*last_eb_bh
)->b_data
;
1018 new_cpos
= ocfs2_sum_rightmost_rec(&eb
->h_list
);
1020 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1021 * linked with the rest of the tree.
1022 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1024 * when we leave the loop, new_last_eb_blk will point to the
1025 * newest leaf, and next_blkno will point to the topmost extent
1027 next_blkno
= new_last_eb_blk
= 0;
1028 for(i
= 0; i
< new_blocks
; i
++) {
1030 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1031 /* ocfs2_create_new_meta_bhs() should create it right! */
1032 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb
));
1033 eb_el
= &eb
->h_list
;
1035 status
= ocfs2_journal_access_eb(handle
, inode
, bh
,
1036 OCFS2_JOURNAL_ACCESS_CREATE
);
1042 eb
->h_next_leaf_blk
= 0;
1043 eb_el
->l_tree_depth
= cpu_to_le16(i
);
1044 eb_el
->l_next_free_rec
= cpu_to_le16(1);
1046 * This actually counts as an empty extent as
1049 eb_el
->l_recs
[0].e_cpos
= cpu_to_le32(new_cpos
);
1050 eb_el
->l_recs
[0].e_blkno
= cpu_to_le64(next_blkno
);
1052 * eb_el isn't always an interior node, but even leaf
1053 * nodes want a zero'd flags and reserved field so
1054 * this gets the whole 32 bits regardless of use.
1056 eb_el
->l_recs
[0].e_int_clusters
= cpu_to_le32(0);
1057 if (!eb_el
->l_tree_depth
)
1058 new_last_eb_blk
= le64_to_cpu(eb
->h_blkno
);
1060 status
= ocfs2_journal_dirty(handle
, bh
);
1066 next_blkno
= le64_to_cpu(eb
->h_blkno
);
1069 /* This is a bit hairy. We want to update up to three blocks
1070 * here without leaving any of them in an inconsistent state
1071 * in case of error. We don't have to worry about
1072 * journal_dirty erroring as it won't unless we've aborted the
1073 * handle (in which case we would never be here) so reserving
1074 * the write with journal_access is all we need to do. */
1075 status
= ocfs2_journal_access_eb(handle
, inode
, *last_eb_bh
,
1076 OCFS2_JOURNAL_ACCESS_WRITE
);
1081 status
= ocfs2_et_root_journal_access(handle
, inode
, et
,
1082 OCFS2_JOURNAL_ACCESS_WRITE
);
1088 status
= ocfs2_journal_access_eb(handle
, inode
, eb_bh
,
1089 OCFS2_JOURNAL_ACCESS_WRITE
);
1096 /* Link the new branch into the rest of the tree (el will
1097 * either be on the root_bh, or the extent block passed in. */
1098 i
= le16_to_cpu(el
->l_next_free_rec
);
1099 el
->l_recs
[i
].e_blkno
= cpu_to_le64(next_blkno
);
1100 el
->l_recs
[i
].e_cpos
= cpu_to_le32(new_cpos
);
1101 el
->l_recs
[i
].e_int_clusters
= 0;
1102 le16_add_cpu(&el
->l_next_free_rec
, 1);
1104 /* fe needs a new last extent block pointer, as does the
1105 * next_leaf on the previously last-extent-block. */
1106 ocfs2_et_set_last_eb_blk(et
, new_last_eb_blk
);
1108 eb
= (struct ocfs2_extent_block
*) (*last_eb_bh
)->b_data
;
1109 eb
->h_next_leaf_blk
= cpu_to_le64(new_last_eb_blk
);
1111 status
= ocfs2_journal_dirty(handle
, *last_eb_bh
);
1114 status
= ocfs2_journal_dirty(handle
, et
->et_root_bh
);
1118 status
= ocfs2_journal_dirty(handle
, eb_bh
);
1124 * Some callers want to track the rightmost leaf so pass it
1127 brelse(*last_eb_bh
);
1128 get_bh(new_eb_bhs
[0]);
1129 *last_eb_bh
= new_eb_bhs
[0];
1134 for (i
= 0; i
< new_blocks
; i
++)
1135 brelse(new_eb_bhs
[i
]);
1144 * adds another level to the allocation tree.
1145 * returns back the new extent block so you can add a branch to it
1148 static int ocfs2_shift_tree_depth(struct ocfs2_super
*osb
,
1150 struct inode
*inode
,
1151 struct ocfs2_extent_tree
*et
,
1152 struct ocfs2_alloc_context
*meta_ac
,
1153 struct buffer_head
**ret_new_eb_bh
)
1157 struct buffer_head
*new_eb_bh
= NULL
;
1158 struct ocfs2_extent_block
*eb
;
1159 struct ocfs2_extent_list
*root_el
;
1160 struct ocfs2_extent_list
*eb_el
;
1164 status
= ocfs2_create_new_meta_bhs(osb
, handle
, inode
, 1, meta_ac
,
1171 eb
= (struct ocfs2_extent_block
*) new_eb_bh
->b_data
;
1172 /* ocfs2_create_new_meta_bhs() should create it right! */
1173 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb
));
1175 eb_el
= &eb
->h_list
;
1176 root_el
= et
->et_root_el
;
1178 status
= ocfs2_journal_access_eb(handle
, inode
, new_eb_bh
,
1179 OCFS2_JOURNAL_ACCESS_CREATE
);
1185 /* copy the root extent list data into the new extent block */
1186 eb_el
->l_tree_depth
= root_el
->l_tree_depth
;
1187 eb_el
->l_next_free_rec
= root_el
->l_next_free_rec
;
1188 for (i
= 0; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
1189 eb_el
->l_recs
[i
] = root_el
->l_recs
[i
];
1191 status
= ocfs2_journal_dirty(handle
, new_eb_bh
);
1197 status
= ocfs2_et_root_journal_access(handle
, inode
, et
,
1198 OCFS2_JOURNAL_ACCESS_WRITE
);
1204 new_clusters
= ocfs2_sum_rightmost_rec(eb_el
);
1206 /* update root_bh now */
1207 le16_add_cpu(&root_el
->l_tree_depth
, 1);
1208 root_el
->l_recs
[0].e_cpos
= 0;
1209 root_el
->l_recs
[0].e_blkno
= eb
->h_blkno
;
1210 root_el
->l_recs
[0].e_int_clusters
= cpu_to_le32(new_clusters
);
1211 for (i
= 1; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
1212 memset(&root_el
->l_recs
[i
], 0, sizeof(struct ocfs2_extent_rec
));
1213 root_el
->l_next_free_rec
= cpu_to_le16(1);
1215 /* If this is our 1st tree depth shift, then last_eb_blk
1216 * becomes the allocated extent block */
1217 if (root_el
->l_tree_depth
== cpu_to_le16(1))
1218 ocfs2_et_set_last_eb_blk(et
, le64_to_cpu(eb
->h_blkno
));
1220 status
= ocfs2_journal_dirty(handle
, et
->et_root_bh
);
1226 *ret_new_eb_bh
= new_eb_bh
;
1237 * Should only be called when there is no space left in any of the
1238 * leaf nodes. What we want to do is find the lowest tree depth
1239 * non-leaf extent block with room for new records. There are three
1240 * valid results of this search:
1242 * 1) a lowest extent block is found, then we pass it back in
1243 * *lowest_eb_bh and return '0'
1245 * 2) the search fails to find anything, but the root_el has room. We
1246 * pass NULL back in *lowest_eb_bh, but still return '0'
1248 * 3) the search fails to find anything AND the root_el is full, in
1249 * which case we return > 0
1251 * return status < 0 indicates an error.
1253 static int ocfs2_find_branch_target(struct ocfs2_super
*osb
,
1254 struct inode
*inode
,
1255 struct ocfs2_extent_tree
*et
,
1256 struct buffer_head
**target_bh
)
1260 struct ocfs2_extent_block
*eb
;
1261 struct ocfs2_extent_list
*el
;
1262 struct buffer_head
*bh
= NULL
;
1263 struct buffer_head
*lowest_bh
= NULL
;
1269 el
= et
->et_root_el
;
1271 while(le16_to_cpu(el
->l_tree_depth
) > 1) {
1272 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
1273 ocfs2_error(inode
->i_sb
, "Dinode %llu has empty "
1274 "extent list (next_free_rec == 0)",
1275 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
1279 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
1280 blkno
= le64_to_cpu(el
->l_recs
[i
].e_blkno
);
1282 ocfs2_error(inode
->i_sb
, "Dinode %llu has extent "
1283 "list where extent # %d has no physical "
1285 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, i
);
1293 status
= ocfs2_read_extent_block(inode
, blkno
, &bh
);
1299 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1302 if (le16_to_cpu(el
->l_next_free_rec
) <
1303 le16_to_cpu(el
->l_count
)) {
1310 /* If we didn't find one and the fe doesn't have any room,
1311 * then return '1' */
1312 el
= et
->et_root_el
;
1313 if (!lowest_bh
&& (el
->l_next_free_rec
== el
->l_count
))
1316 *target_bh
= lowest_bh
;
1325 * Grow a b-tree so that it has more records.
1327 * We might shift the tree depth in which case existing paths should
1328 * be considered invalid.
1330 * Tree depth after the grow is returned via *final_depth.
1332 * *last_eb_bh will be updated by ocfs2_add_branch().
1334 static int ocfs2_grow_tree(struct inode
*inode
, handle_t
*handle
,
1335 struct ocfs2_extent_tree
*et
, int *final_depth
,
1336 struct buffer_head
**last_eb_bh
,
1337 struct ocfs2_alloc_context
*meta_ac
)
1340 struct ocfs2_extent_list
*el
= et
->et_root_el
;
1341 int depth
= le16_to_cpu(el
->l_tree_depth
);
1342 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1343 struct buffer_head
*bh
= NULL
;
1345 BUG_ON(meta_ac
== NULL
);
1347 shift
= ocfs2_find_branch_target(osb
, inode
, et
, &bh
);
1354 /* We traveled all the way to the bottom of the allocation tree
1355 * and didn't find room for any more extents - we need to add
1356 * another tree level */
1359 mlog(0, "need to shift tree depth (current = %d)\n", depth
);
1361 /* ocfs2_shift_tree_depth will return us a buffer with
1362 * the new extent block (so we can pass that to
1363 * ocfs2_add_branch). */
1364 ret
= ocfs2_shift_tree_depth(osb
, handle
, inode
, et
,
1373 * Special case: we have room now if we shifted from
1374 * tree_depth 0, so no more work needs to be done.
1376 * We won't be calling add_branch, so pass
1377 * back *last_eb_bh as the new leaf. At depth
1378 * zero, it should always be null so there's
1379 * no reason to brelse.
1381 BUG_ON(*last_eb_bh
);
1388 /* call ocfs2_add_branch to add the final part of the tree with
1390 mlog(0, "add branch. bh = %p\n", bh
);
1391 ret
= ocfs2_add_branch(osb
, handle
, inode
, et
, bh
, last_eb_bh
,
1400 *final_depth
= depth
;
1406 * This function will discard the rightmost extent record.
1408 static void ocfs2_shift_records_right(struct ocfs2_extent_list
*el
)
1410 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
1411 int count
= le16_to_cpu(el
->l_count
);
1412 unsigned int num_bytes
;
1415 /* This will cause us to go off the end of our extent list. */
1416 BUG_ON(next_free
>= count
);
1418 num_bytes
= sizeof(struct ocfs2_extent_rec
) * next_free
;
1420 memmove(&el
->l_recs
[1], &el
->l_recs
[0], num_bytes
);
1423 static void ocfs2_rotate_leaf(struct ocfs2_extent_list
*el
,
1424 struct ocfs2_extent_rec
*insert_rec
)
1426 int i
, insert_index
, next_free
, has_empty
, num_bytes
;
1427 u32 insert_cpos
= le32_to_cpu(insert_rec
->e_cpos
);
1428 struct ocfs2_extent_rec
*rec
;
1430 next_free
= le16_to_cpu(el
->l_next_free_rec
);
1431 has_empty
= ocfs2_is_empty_extent(&el
->l_recs
[0]);
1435 /* The tree code before us didn't allow enough room in the leaf. */
1436 BUG_ON(el
->l_next_free_rec
== el
->l_count
&& !has_empty
);
1439 * The easiest way to approach this is to just remove the
1440 * empty extent and temporarily decrement next_free.
1444 * If next_free was 1 (only an empty extent), this
1445 * loop won't execute, which is fine. We still want
1446 * the decrement above to happen.
1448 for(i
= 0; i
< (next_free
- 1); i
++)
1449 el
->l_recs
[i
] = el
->l_recs
[i
+1];
1455 * Figure out what the new record index should be.
1457 for(i
= 0; i
< next_free
; i
++) {
1458 rec
= &el
->l_recs
[i
];
1460 if (insert_cpos
< le32_to_cpu(rec
->e_cpos
))
1465 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1466 insert_cpos
, insert_index
, has_empty
, next_free
, le16_to_cpu(el
->l_count
));
1468 BUG_ON(insert_index
< 0);
1469 BUG_ON(insert_index
>= le16_to_cpu(el
->l_count
));
1470 BUG_ON(insert_index
> next_free
);
1473 * No need to memmove if we're just adding to the tail.
1475 if (insert_index
!= next_free
) {
1476 BUG_ON(next_free
>= le16_to_cpu(el
->l_count
));
1478 num_bytes
= next_free
- insert_index
;
1479 num_bytes
*= sizeof(struct ocfs2_extent_rec
);
1480 memmove(&el
->l_recs
[insert_index
+ 1],
1481 &el
->l_recs
[insert_index
],
1486 * Either we had an empty extent, and need to re-increment or
1487 * there was no empty extent on a non full rightmost leaf node,
1488 * in which case we still need to increment.
1491 el
->l_next_free_rec
= cpu_to_le16(next_free
);
1493 * Make sure none of the math above just messed up our tree.
1495 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) > le16_to_cpu(el
->l_count
));
1497 el
->l_recs
[insert_index
] = *insert_rec
;
1501 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list
*el
)
1503 int size
, num_recs
= le16_to_cpu(el
->l_next_free_rec
);
1505 BUG_ON(num_recs
== 0);
1507 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
1509 size
= num_recs
* sizeof(struct ocfs2_extent_rec
);
1510 memmove(&el
->l_recs
[0], &el
->l_recs
[1], size
);
1511 memset(&el
->l_recs
[num_recs
], 0,
1512 sizeof(struct ocfs2_extent_rec
));
1513 el
->l_next_free_rec
= cpu_to_le16(num_recs
);
1518 * Create an empty extent record .
1520 * l_next_free_rec may be updated.
1522 * If an empty extent already exists do nothing.
1524 static void ocfs2_create_empty_extent(struct ocfs2_extent_list
*el
)
1526 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
1528 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
1533 if (ocfs2_is_empty_extent(&el
->l_recs
[0]))
1536 mlog_bug_on_msg(el
->l_count
== el
->l_next_free_rec
,
1537 "Asked to create an empty extent in a full list:\n"
1538 "count = %u, tree depth = %u",
1539 le16_to_cpu(el
->l_count
),
1540 le16_to_cpu(el
->l_tree_depth
));
1542 ocfs2_shift_records_right(el
);
1545 le16_add_cpu(&el
->l_next_free_rec
, 1);
1546 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
1550 * For a rotation which involves two leaf nodes, the "root node" is
1551 * the lowest level tree node which contains a path to both leafs. This
1552 * resulting set of information can be used to form a complete "subtree"
1554 * This function is passed two full paths from the dinode down to a
1555 * pair of adjacent leaves. It's task is to figure out which path
1556 * index contains the subtree root - this can be the root index itself
1557 * in a worst-case rotation.
1559 * The array index of the subtree root is passed back.
1561 static int ocfs2_find_subtree_root(struct inode
*inode
,
1562 struct ocfs2_path
*left
,
1563 struct ocfs2_path
*right
)
1568 * Check that the caller passed in two paths from the same tree.
1570 BUG_ON(path_root_bh(left
) != path_root_bh(right
));
1576 * The caller didn't pass two adjacent paths.
1578 mlog_bug_on_msg(i
> left
->p_tree_depth
,
1579 "Inode %lu, left depth %u, right depth %u\n"
1580 "left leaf blk %llu, right leaf blk %llu\n",
1581 inode
->i_ino
, left
->p_tree_depth
,
1582 right
->p_tree_depth
,
1583 (unsigned long long)path_leaf_bh(left
)->b_blocknr
,
1584 (unsigned long long)path_leaf_bh(right
)->b_blocknr
);
1585 } while (left
->p_node
[i
].bh
->b_blocknr
==
1586 right
->p_node
[i
].bh
->b_blocknr
);
1591 typedef void (path_insert_t
)(void *, struct buffer_head
*);
1594 * Traverse a btree path in search of cpos, starting at root_el.
1596 * This code can be called with a cpos larger than the tree, in which
1597 * case it will return the rightmost path.
1599 static int __ocfs2_find_path(struct inode
*inode
,
1600 struct ocfs2_extent_list
*root_el
, u32 cpos
,
1601 path_insert_t
*func
, void *data
)
1606 struct buffer_head
*bh
= NULL
;
1607 struct ocfs2_extent_block
*eb
;
1608 struct ocfs2_extent_list
*el
;
1609 struct ocfs2_extent_rec
*rec
;
1610 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1613 while (el
->l_tree_depth
) {
1614 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
1615 ocfs2_error(inode
->i_sb
,
1616 "Inode %llu has empty extent list at "
1618 (unsigned long long)oi
->ip_blkno
,
1619 le16_to_cpu(el
->l_tree_depth
));
1625 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
) - 1; i
++) {
1626 rec
= &el
->l_recs
[i
];
1629 * In the case that cpos is off the allocation
1630 * tree, this should just wind up returning the
1633 range
= le32_to_cpu(rec
->e_cpos
) +
1634 ocfs2_rec_clusters(el
, rec
);
1635 if (cpos
>= le32_to_cpu(rec
->e_cpos
) && cpos
< range
)
1639 blkno
= le64_to_cpu(el
->l_recs
[i
].e_blkno
);
1641 ocfs2_error(inode
->i_sb
,
1642 "Inode %llu has bad blkno in extent list "
1643 "at depth %u (index %d)\n",
1644 (unsigned long long)oi
->ip_blkno
,
1645 le16_to_cpu(el
->l_tree_depth
), i
);
1652 ret
= ocfs2_read_extent_block(inode
, blkno
, &bh
);
1658 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1661 if (le16_to_cpu(el
->l_next_free_rec
) >
1662 le16_to_cpu(el
->l_count
)) {
1663 ocfs2_error(inode
->i_sb
,
1664 "Inode %llu has bad count in extent list "
1665 "at block %llu (next free=%u, count=%u)\n",
1666 (unsigned long long)oi
->ip_blkno
,
1667 (unsigned long long)bh
->b_blocknr
,
1668 le16_to_cpu(el
->l_next_free_rec
),
1669 le16_to_cpu(el
->l_count
));
1680 * Catch any trailing bh that the loop didn't handle.
1688 * Given an initialized path (that is, it has a valid root extent
1689 * list), this function will traverse the btree in search of the path
1690 * which would contain cpos.
1692 * The path traveled is recorded in the path structure.
1694 * Note that this will not do any comparisons on leaf node extent
1695 * records, so it will work fine in the case that we just added a tree
1698 struct find_path_data
{
1700 struct ocfs2_path
*path
;
1702 static void find_path_ins(void *data
, struct buffer_head
*bh
)
1704 struct find_path_data
*fp
= data
;
1707 ocfs2_path_insert_eb(fp
->path
, fp
->index
, bh
);
1710 static int ocfs2_find_path(struct inode
*inode
, struct ocfs2_path
*path
,
1713 struct find_path_data data
;
1717 return __ocfs2_find_path(inode
, path_root_el(path
), cpos
,
1718 find_path_ins
, &data
);
1721 static void find_leaf_ins(void *data
, struct buffer_head
*bh
)
1723 struct ocfs2_extent_block
*eb
=(struct ocfs2_extent_block
*)bh
->b_data
;
1724 struct ocfs2_extent_list
*el
= &eb
->h_list
;
1725 struct buffer_head
**ret
= data
;
1727 /* We want to retain only the leaf block. */
1728 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
1734 * Find the leaf block in the tree which would contain cpos. No
1735 * checking of the actual leaf is done.
1737 * Some paths want to call this instead of allocating a path structure
1738 * and calling ocfs2_find_path().
1740 * This function doesn't handle non btree extent lists.
1742 int ocfs2_find_leaf(struct inode
*inode
, struct ocfs2_extent_list
*root_el
,
1743 u32 cpos
, struct buffer_head
**leaf_bh
)
1746 struct buffer_head
*bh
= NULL
;
1748 ret
= __ocfs2_find_path(inode
, root_el
, cpos
, find_leaf_ins
, &bh
);
1760 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1762 * Basically, we've moved stuff around at the bottom of the tree and
1763 * we need to fix up the extent records above the changes to reflect
1766 * left_rec: the record on the left.
1767 * left_child_el: is the child list pointed to by left_rec
1768 * right_rec: the record to the right of left_rec
1769 * right_child_el: is the child list pointed to by right_rec
1771 * By definition, this only works on interior nodes.
1773 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec
*left_rec
,
1774 struct ocfs2_extent_list
*left_child_el
,
1775 struct ocfs2_extent_rec
*right_rec
,
1776 struct ocfs2_extent_list
*right_child_el
)
1778 u32 left_clusters
, right_end
;
1781 * Interior nodes never have holes. Their cpos is the cpos of
1782 * the leftmost record in their child list. Their cluster
1783 * count covers the full theoretical range of their child list
1784 * - the range between their cpos and the cpos of the record
1785 * immediately to their right.
1787 left_clusters
= le32_to_cpu(right_child_el
->l_recs
[0].e_cpos
);
1788 if (ocfs2_is_empty_extent(&right_child_el
->l_recs
[0])) {
1789 BUG_ON(le16_to_cpu(right_child_el
->l_next_free_rec
) <= 1);
1790 left_clusters
= le32_to_cpu(right_child_el
->l_recs
[1].e_cpos
);
1792 left_clusters
-= le32_to_cpu(left_rec
->e_cpos
);
1793 left_rec
->e_int_clusters
= cpu_to_le32(left_clusters
);
1796 * Calculate the rightmost cluster count boundary before
1797 * moving cpos - we will need to adjust clusters after
1798 * updating e_cpos to keep the same highest cluster count.
1800 right_end
= le32_to_cpu(right_rec
->e_cpos
);
1801 right_end
+= le32_to_cpu(right_rec
->e_int_clusters
);
1803 right_rec
->e_cpos
= left_rec
->e_cpos
;
1804 le32_add_cpu(&right_rec
->e_cpos
, left_clusters
);
1806 right_end
-= le32_to_cpu(right_rec
->e_cpos
);
1807 right_rec
->e_int_clusters
= cpu_to_le32(right_end
);
1811 * Adjust the adjacent root node records involved in a
1812 * rotation. left_el_blkno is passed in as a key so that we can easily
1813 * find it's index in the root list.
1815 static void ocfs2_adjust_root_records(struct ocfs2_extent_list
*root_el
,
1816 struct ocfs2_extent_list
*left_el
,
1817 struct ocfs2_extent_list
*right_el
,
1822 BUG_ON(le16_to_cpu(root_el
->l_tree_depth
) <=
1823 le16_to_cpu(left_el
->l_tree_depth
));
1825 for(i
= 0; i
< le16_to_cpu(root_el
->l_next_free_rec
) - 1; i
++) {
1826 if (le64_to_cpu(root_el
->l_recs
[i
].e_blkno
) == left_el_blkno
)
1831 * The path walking code should have never returned a root and
1832 * two paths which are not adjacent.
1834 BUG_ON(i
>= (le16_to_cpu(root_el
->l_next_free_rec
) - 1));
1836 ocfs2_adjust_adjacent_records(&root_el
->l_recs
[i
], left_el
,
1837 &root_el
->l_recs
[i
+ 1], right_el
);
1841 * We've changed a leaf block (in right_path) and need to reflect that
1842 * change back up the subtree.
1844 * This happens in multiple places:
1845 * - When we've moved an extent record from the left path leaf to the right
1846 * path leaf to make room for an empty extent in the left path leaf.
1847 * - When our insert into the right path leaf is at the leftmost edge
1848 * and requires an update of the path immediately to it's left. This
1849 * can occur at the end of some types of rotation and appending inserts.
1850 * - When we've adjusted the last extent record in the left path leaf and the
1851 * 1st extent record in the right path leaf during cross extent block merge.
1853 static void ocfs2_complete_edge_insert(struct inode
*inode
, handle_t
*handle
,
1854 struct ocfs2_path
*left_path
,
1855 struct ocfs2_path
*right_path
,
1859 struct ocfs2_extent_list
*el
, *left_el
, *right_el
;
1860 struct ocfs2_extent_rec
*left_rec
, *right_rec
;
1861 struct buffer_head
*root_bh
= left_path
->p_node
[subtree_index
].bh
;
1864 * Update the counts and position values within all the
1865 * interior nodes to reflect the leaf rotation we just did.
1867 * The root node is handled below the loop.
1869 * We begin the loop with right_el and left_el pointing to the
1870 * leaf lists and work our way up.
1872 * NOTE: within this loop, left_el and right_el always refer
1873 * to the *child* lists.
1875 left_el
= path_leaf_el(left_path
);
1876 right_el
= path_leaf_el(right_path
);
1877 for(i
= left_path
->p_tree_depth
- 1; i
> subtree_index
; i
--) {
1878 mlog(0, "Adjust records at index %u\n", i
);
1881 * One nice property of knowing that all of these
1882 * nodes are below the root is that we only deal with
1883 * the leftmost right node record and the rightmost
1886 el
= left_path
->p_node
[i
].el
;
1887 idx
= le16_to_cpu(left_el
->l_next_free_rec
) - 1;
1888 left_rec
= &el
->l_recs
[idx
];
1890 el
= right_path
->p_node
[i
].el
;
1891 right_rec
= &el
->l_recs
[0];
1893 ocfs2_adjust_adjacent_records(left_rec
, left_el
, right_rec
,
1896 ret
= ocfs2_journal_dirty(handle
, left_path
->p_node
[i
].bh
);
1900 ret
= ocfs2_journal_dirty(handle
, right_path
->p_node
[i
].bh
);
1905 * Setup our list pointers now so that the current
1906 * parents become children in the next iteration.
1908 left_el
= left_path
->p_node
[i
].el
;
1909 right_el
= right_path
->p_node
[i
].el
;
1913 * At the root node, adjust the two adjacent records which
1914 * begin our path to the leaves.
1917 el
= left_path
->p_node
[subtree_index
].el
;
1918 left_el
= left_path
->p_node
[subtree_index
+ 1].el
;
1919 right_el
= right_path
->p_node
[subtree_index
+ 1].el
;
1921 ocfs2_adjust_root_records(el
, left_el
, right_el
,
1922 left_path
->p_node
[subtree_index
+ 1].bh
->b_blocknr
);
1924 root_bh
= left_path
->p_node
[subtree_index
].bh
;
1926 ret
= ocfs2_journal_dirty(handle
, root_bh
);
1931 static int ocfs2_rotate_subtree_right(struct inode
*inode
,
1933 struct ocfs2_path
*left_path
,
1934 struct ocfs2_path
*right_path
,
1938 struct buffer_head
*right_leaf_bh
;
1939 struct buffer_head
*left_leaf_bh
= NULL
;
1940 struct buffer_head
*root_bh
;
1941 struct ocfs2_extent_list
*right_el
, *left_el
;
1942 struct ocfs2_extent_rec move_rec
;
1944 left_leaf_bh
= path_leaf_bh(left_path
);
1945 left_el
= path_leaf_el(left_path
);
1947 if (left_el
->l_next_free_rec
!= left_el
->l_count
) {
1948 ocfs2_error(inode
->i_sb
,
1949 "Inode %llu has non-full interior leaf node %llu"
1951 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1952 (unsigned long long)left_leaf_bh
->b_blocknr
,
1953 le16_to_cpu(left_el
->l_next_free_rec
));
1958 * This extent block may already have an empty record, so we
1959 * return early if so.
1961 if (ocfs2_is_empty_extent(&left_el
->l_recs
[0]))
1964 root_bh
= left_path
->p_node
[subtree_index
].bh
;
1965 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
1967 ret
= ocfs2_path_bh_journal_access(handle
, inode
, right_path
,
1974 for(i
= subtree_index
+ 1; i
< path_num_items(right_path
); i
++) {
1975 ret
= ocfs2_path_bh_journal_access(handle
, inode
,
1982 ret
= ocfs2_path_bh_journal_access(handle
, inode
,
1990 right_leaf_bh
= path_leaf_bh(right_path
);
1991 right_el
= path_leaf_el(right_path
);
1993 /* This is a code error, not a disk corruption. */
1994 mlog_bug_on_msg(!right_el
->l_next_free_rec
, "Inode %llu: Rotate fails "
1995 "because rightmost leaf block %llu is empty\n",
1996 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1997 (unsigned long long)right_leaf_bh
->b_blocknr
);
1999 ocfs2_create_empty_extent(right_el
);
2001 ret
= ocfs2_journal_dirty(handle
, right_leaf_bh
);
2007 /* Do the copy now. */
2008 i
= le16_to_cpu(left_el
->l_next_free_rec
) - 1;
2009 move_rec
= left_el
->l_recs
[i
];
2010 right_el
->l_recs
[0] = move_rec
;
2013 * Clear out the record we just copied and shift everything
2014 * over, leaving an empty extent in the left leaf.
2016 * We temporarily subtract from next_free_rec so that the
2017 * shift will lose the tail record (which is now defunct).
2019 le16_add_cpu(&left_el
->l_next_free_rec
, -1);
2020 ocfs2_shift_records_right(left_el
);
2021 memset(&left_el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
2022 le16_add_cpu(&left_el
->l_next_free_rec
, 1);
2024 ret
= ocfs2_journal_dirty(handle
, left_leaf_bh
);
2030 ocfs2_complete_edge_insert(inode
, handle
, left_path
, right_path
,
2038 * Given a full path, determine what cpos value would return us a path
2039 * containing the leaf immediately to the left of the current one.
2041 * Will return zero if the path passed in is already the leftmost path.
2043 static int ocfs2_find_cpos_for_left_leaf(struct super_block
*sb
,
2044 struct ocfs2_path
*path
, u32
*cpos
)
2048 struct ocfs2_extent_list
*el
;
2050 BUG_ON(path
->p_tree_depth
== 0);
2054 blkno
= path_leaf_bh(path
)->b_blocknr
;
2056 /* Start at the tree node just above the leaf and work our way up. */
2057 i
= path
->p_tree_depth
- 1;
2059 el
= path
->p_node
[i
].el
;
2062 * Find the extent record just before the one in our
2065 for(j
= 0; j
< le16_to_cpu(el
->l_next_free_rec
); j
++) {
2066 if (le64_to_cpu(el
->l_recs
[j
].e_blkno
) == blkno
) {
2070 * We've determined that the
2071 * path specified is already
2072 * the leftmost one - return a
2078 * The leftmost record points to our
2079 * leaf - we need to travel up the
2085 *cpos
= le32_to_cpu(el
->l_recs
[j
- 1].e_cpos
);
2086 *cpos
= *cpos
+ ocfs2_rec_clusters(el
,
2087 &el
->l_recs
[j
- 1]);
2094 * If we got here, we never found a valid node where
2095 * the tree indicated one should be.
2098 "Invalid extent tree at extent block %llu\n",
2099 (unsigned long long)blkno
);
2104 blkno
= path
->p_node
[i
].bh
->b_blocknr
;
2113 * Extend the transaction by enough credits to complete the rotation,
2114 * and still leave at least the original number of credits allocated
2115 * to this transaction.
2117 static int ocfs2_extend_rotate_transaction(handle_t
*handle
, int subtree_depth
,
2119 struct ocfs2_path
*path
)
2121 int credits
= (path
->p_tree_depth
- subtree_depth
) * 2 + 1 + op_credits
;
2123 if (handle
->h_buffer_credits
< credits
)
2124 return ocfs2_extend_trans(handle
, credits
);
2130 * Trap the case where we're inserting into the theoretical range past
2131 * the _actual_ left leaf range. Otherwise, we'll rotate a record
2132 * whose cpos is less than ours into the right leaf.
2134 * It's only necessary to look at the rightmost record of the left
2135 * leaf because the logic that calls us should ensure that the
2136 * theoretical ranges in the path components above the leaves are
2139 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path
*left_path
,
2142 struct ocfs2_extent_list
*left_el
;
2143 struct ocfs2_extent_rec
*rec
;
2146 left_el
= path_leaf_el(left_path
);
2147 next_free
= le16_to_cpu(left_el
->l_next_free_rec
);
2148 rec
= &left_el
->l_recs
[next_free
- 1];
2150 if (insert_cpos
> le32_to_cpu(rec
->e_cpos
))
2155 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list
*el
, u32 cpos
)
2157 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
2159 struct ocfs2_extent_rec
*rec
;
2164 rec
= &el
->l_recs
[0];
2165 if (ocfs2_is_empty_extent(rec
)) {
2169 rec
= &el
->l_recs
[1];
2172 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
2173 if (cpos
>= le32_to_cpu(rec
->e_cpos
) && cpos
< range
)
2179 * Rotate all the records in a btree right one record, starting at insert_cpos.
2181 * The path to the rightmost leaf should be passed in.
2183 * The array is assumed to be large enough to hold an entire path (tree depth).
2185 * Upon succesful return from this function:
2187 * - The 'right_path' array will contain a path to the leaf block
2188 * whose range contains e_cpos.
2189 * - That leaf block will have a single empty extent in list index 0.
2190 * - In the case that the rotation requires a post-insert update,
2191 * *ret_left_path will contain a valid path which can be passed to
2192 * ocfs2_insert_path().
2194 static int ocfs2_rotate_tree_right(struct inode
*inode
,
2196 enum ocfs2_split_type split
,
2198 struct ocfs2_path
*right_path
,
2199 struct ocfs2_path
**ret_left_path
)
2201 int ret
, start
, orig_credits
= handle
->h_buffer_credits
;
2203 struct ocfs2_path
*left_path
= NULL
;
2205 *ret_left_path
= NULL
;
2207 left_path
= ocfs2_new_path_from_path(right_path
);
2214 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, right_path
, &cpos
);
2220 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos
, cpos
);
2223 * What we want to do here is:
2225 * 1) Start with the rightmost path.
2227 * 2) Determine a path to the leaf block directly to the left
2230 * 3) Determine the 'subtree root' - the lowest level tree node
2231 * which contains a path to both leaves.
2233 * 4) Rotate the subtree.
2235 * 5) Find the next subtree by considering the left path to be
2236 * the new right path.
2238 * The check at the top of this while loop also accepts
2239 * insert_cpos == cpos because cpos is only a _theoretical_
2240 * value to get us the left path - insert_cpos might very well
2241 * be filling that hole.
2243 * Stop at a cpos of '0' because we either started at the
2244 * leftmost branch (i.e., a tree with one branch and a
2245 * rotation inside of it), or we've gone as far as we can in
2246 * rotating subtrees.
2248 while (cpos
&& insert_cpos
<= cpos
) {
2249 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2252 ret
= ocfs2_find_path(inode
, left_path
, cpos
);
2258 mlog_bug_on_msg(path_leaf_bh(left_path
) ==
2259 path_leaf_bh(right_path
),
2260 "Inode %lu: error during insert of %u "
2261 "(left path cpos %u) results in two identical "
2262 "paths ending at %llu\n",
2263 inode
->i_ino
, insert_cpos
, cpos
,
2264 (unsigned long long)
2265 path_leaf_bh(left_path
)->b_blocknr
);
2267 if (split
== SPLIT_NONE
&&
2268 ocfs2_rotate_requires_path_adjustment(left_path
,
2272 * We've rotated the tree as much as we
2273 * should. The rest is up to
2274 * ocfs2_insert_path() to complete, after the
2275 * record insertion. We indicate this
2276 * situation by returning the left path.
2278 * The reason we don't adjust the records here
2279 * before the record insert is that an error
2280 * later might break the rule where a parent
2281 * record e_cpos will reflect the actual
2282 * e_cpos of the 1st nonempty record of the
2285 *ret_left_path
= left_path
;
2289 start
= ocfs2_find_subtree_root(inode
, left_path
, right_path
);
2291 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2293 (unsigned long long) right_path
->p_node
[start
].bh
->b_blocknr
,
2294 right_path
->p_tree_depth
);
2296 ret
= ocfs2_extend_rotate_transaction(handle
, start
,
2297 orig_credits
, right_path
);
2303 ret
= ocfs2_rotate_subtree_right(inode
, handle
, left_path
,
2310 if (split
!= SPLIT_NONE
&&
2311 ocfs2_leftmost_rec_contains(path_leaf_el(right_path
),
2314 * A rotate moves the rightmost left leaf
2315 * record over to the leftmost right leaf
2316 * slot. If we're doing an extent split
2317 * instead of a real insert, then we have to
2318 * check that the extent to be split wasn't
2319 * just moved over. If it was, then we can
2320 * exit here, passing left_path back -
2321 * ocfs2_split_extent() is smart enough to
2322 * search both leaves.
2324 *ret_left_path
= left_path
;
2329 * There is no need to re-read the next right path
2330 * as we know that it'll be our current left
2331 * path. Optimize by copying values instead.
2333 ocfs2_mv_path(right_path
, left_path
);
2335 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, right_path
,
2344 ocfs2_free_path(left_path
);
2350 static void ocfs2_update_edge_lengths(struct inode
*inode
, handle_t
*handle
,
2351 struct ocfs2_path
*path
)
2354 struct ocfs2_extent_rec
*rec
;
2355 struct ocfs2_extent_list
*el
;
2356 struct ocfs2_extent_block
*eb
;
2359 /* Path should always be rightmost. */
2360 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
2361 BUG_ON(eb
->h_next_leaf_blk
!= 0ULL);
2364 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) == 0);
2365 idx
= le16_to_cpu(el
->l_next_free_rec
) - 1;
2366 rec
= &el
->l_recs
[idx
];
2367 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
2369 for (i
= 0; i
< path
->p_tree_depth
; i
++) {
2370 el
= path
->p_node
[i
].el
;
2371 idx
= le16_to_cpu(el
->l_next_free_rec
) - 1;
2372 rec
= &el
->l_recs
[idx
];
2374 rec
->e_int_clusters
= cpu_to_le32(range
);
2375 le32_add_cpu(&rec
->e_int_clusters
, -le32_to_cpu(rec
->e_cpos
));
2377 ocfs2_journal_dirty(handle
, path
->p_node
[i
].bh
);
2381 static void ocfs2_unlink_path(struct inode
*inode
, handle_t
*handle
,
2382 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2383 struct ocfs2_path
*path
, int unlink_start
)
2386 struct ocfs2_extent_block
*eb
;
2387 struct ocfs2_extent_list
*el
;
2388 struct buffer_head
*bh
;
2390 for(i
= unlink_start
; i
< path_num_items(path
); i
++) {
2391 bh
= path
->p_node
[i
].bh
;
2393 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
2395 * Not all nodes might have had their final count
2396 * decremented by the caller - handle this here.
2399 if (le16_to_cpu(el
->l_next_free_rec
) > 1) {
2401 "Inode %llu, attempted to remove extent block "
2402 "%llu with %u records\n",
2403 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2404 (unsigned long long)le64_to_cpu(eb
->h_blkno
),
2405 le16_to_cpu(el
->l_next_free_rec
));
2407 ocfs2_journal_dirty(handle
, bh
);
2408 ocfs2_remove_from_cache(inode
, bh
);
2412 el
->l_next_free_rec
= 0;
2413 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
2415 ocfs2_journal_dirty(handle
, bh
);
2417 ret
= ocfs2_cache_extent_block_free(dealloc
, eb
);
2421 ocfs2_remove_from_cache(inode
, bh
);
2425 static void ocfs2_unlink_subtree(struct inode
*inode
, handle_t
*handle
,
2426 struct ocfs2_path
*left_path
,
2427 struct ocfs2_path
*right_path
,
2429 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
2432 struct buffer_head
*root_bh
= left_path
->p_node
[subtree_index
].bh
;
2433 struct ocfs2_extent_list
*root_el
= left_path
->p_node
[subtree_index
].el
;
2434 struct ocfs2_extent_list
*el
;
2435 struct ocfs2_extent_block
*eb
;
2437 el
= path_leaf_el(left_path
);
2439 eb
= (struct ocfs2_extent_block
*)right_path
->p_node
[subtree_index
+ 1].bh
->b_data
;
2441 for(i
= 1; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
2442 if (root_el
->l_recs
[i
].e_blkno
== eb
->h_blkno
)
2445 BUG_ON(i
>= le16_to_cpu(root_el
->l_next_free_rec
));
2447 memset(&root_el
->l_recs
[i
], 0, sizeof(struct ocfs2_extent_rec
));
2448 le16_add_cpu(&root_el
->l_next_free_rec
, -1);
2450 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2451 eb
->h_next_leaf_blk
= 0;
2453 ocfs2_journal_dirty(handle
, root_bh
);
2454 ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
2456 ocfs2_unlink_path(inode
, handle
, dealloc
, right_path
,
2460 static int ocfs2_rotate_subtree_left(struct inode
*inode
, handle_t
*handle
,
2461 struct ocfs2_path
*left_path
,
2462 struct ocfs2_path
*right_path
,
2464 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2466 struct ocfs2_extent_tree
*et
)
2468 int ret
, i
, del_right_subtree
= 0, right_has_empty
= 0;
2469 struct buffer_head
*root_bh
, *et_root_bh
= path_root_bh(right_path
);
2470 struct ocfs2_extent_list
*right_leaf_el
, *left_leaf_el
;
2471 struct ocfs2_extent_block
*eb
;
2475 right_leaf_el
= path_leaf_el(right_path
);
2476 left_leaf_el
= path_leaf_el(left_path
);
2477 root_bh
= left_path
->p_node
[subtree_index
].bh
;
2478 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
2480 if (!ocfs2_is_empty_extent(&left_leaf_el
->l_recs
[0]))
2483 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(right_path
)->b_data
;
2484 if (ocfs2_is_empty_extent(&right_leaf_el
->l_recs
[0])) {
2486 * It's legal for us to proceed if the right leaf is
2487 * the rightmost one and it has an empty extent. There
2488 * are two cases to handle - whether the leaf will be
2489 * empty after removal or not. If the leaf isn't empty
2490 * then just remove the empty extent up front. The
2491 * next block will handle empty leaves by flagging
2494 * Non rightmost leaves will throw -EAGAIN and the
2495 * caller can manually move the subtree and retry.
2498 if (eb
->h_next_leaf_blk
!= 0ULL)
2501 if (le16_to_cpu(right_leaf_el
->l_next_free_rec
) > 1) {
2502 ret
= ocfs2_journal_access_eb(handle
, inode
,
2503 path_leaf_bh(right_path
),
2504 OCFS2_JOURNAL_ACCESS_WRITE
);
2510 ocfs2_remove_empty_extent(right_leaf_el
);
2512 right_has_empty
= 1;
2515 if (eb
->h_next_leaf_blk
== 0ULL &&
2516 le16_to_cpu(right_leaf_el
->l_next_free_rec
) == 1) {
2518 * We have to update i_last_eb_blk during the meta
2521 ret
= ocfs2_et_root_journal_access(handle
, inode
, et
,
2522 OCFS2_JOURNAL_ACCESS_WRITE
);
2528 del_right_subtree
= 1;
2532 * Getting here with an empty extent in the right path implies
2533 * that it's the rightmost path and will be deleted.
2535 BUG_ON(right_has_empty
&& !del_right_subtree
);
2537 ret
= ocfs2_path_bh_journal_access(handle
, inode
, right_path
,
2544 for(i
= subtree_index
+ 1; i
< path_num_items(right_path
); i
++) {
2545 ret
= ocfs2_path_bh_journal_access(handle
, inode
,
2552 ret
= ocfs2_path_bh_journal_access(handle
, inode
,
2560 if (!right_has_empty
) {
2562 * Only do this if we're moving a real
2563 * record. Otherwise, the action is delayed until
2564 * after removal of the right path in which case we
2565 * can do a simple shift to remove the empty extent.
2567 ocfs2_rotate_leaf(left_leaf_el
, &right_leaf_el
->l_recs
[0]);
2568 memset(&right_leaf_el
->l_recs
[0], 0,
2569 sizeof(struct ocfs2_extent_rec
));
2571 if (eb
->h_next_leaf_blk
== 0ULL) {
2573 * Move recs over to get rid of empty extent, decrease
2574 * next_free. This is allowed to remove the last
2575 * extent in our leaf (setting l_next_free_rec to
2576 * zero) - the delete code below won't care.
2578 ocfs2_remove_empty_extent(right_leaf_el
);
2581 ret
= ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
2584 ret
= ocfs2_journal_dirty(handle
, path_leaf_bh(right_path
));
2588 if (del_right_subtree
) {
2589 ocfs2_unlink_subtree(inode
, handle
, left_path
, right_path
,
2590 subtree_index
, dealloc
);
2591 ocfs2_update_edge_lengths(inode
, handle
, left_path
);
2593 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2594 ocfs2_et_set_last_eb_blk(et
, le64_to_cpu(eb
->h_blkno
));
2597 * Removal of the extent in the left leaf was skipped
2598 * above so we could delete the right path
2601 if (right_has_empty
)
2602 ocfs2_remove_empty_extent(left_leaf_el
);
2604 ret
= ocfs2_journal_dirty(handle
, et_root_bh
);
2610 ocfs2_complete_edge_insert(inode
, handle
, left_path
, right_path
,
2618 * Given a full path, determine what cpos value would return us a path
2619 * containing the leaf immediately to the right of the current one.
2621 * Will return zero if the path passed in is already the rightmost path.
2623 * This looks similar, but is subtly different to
2624 * ocfs2_find_cpos_for_left_leaf().
2626 static int ocfs2_find_cpos_for_right_leaf(struct super_block
*sb
,
2627 struct ocfs2_path
*path
, u32
*cpos
)
2631 struct ocfs2_extent_list
*el
;
2635 if (path
->p_tree_depth
== 0)
2638 blkno
= path_leaf_bh(path
)->b_blocknr
;
2640 /* Start at the tree node just above the leaf and work our way up. */
2641 i
= path
->p_tree_depth
- 1;
2645 el
= path
->p_node
[i
].el
;
2648 * Find the extent record just after the one in our
2651 next_free
= le16_to_cpu(el
->l_next_free_rec
);
2652 for(j
= 0; j
< le16_to_cpu(el
->l_next_free_rec
); j
++) {
2653 if (le64_to_cpu(el
->l_recs
[j
].e_blkno
) == blkno
) {
2654 if (j
== (next_free
- 1)) {
2657 * We've determined that the
2658 * path specified is already
2659 * the rightmost one - return a
2665 * The rightmost record points to our
2666 * leaf - we need to travel up the
2672 *cpos
= le32_to_cpu(el
->l_recs
[j
+ 1].e_cpos
);
2678 * If we got here, we never found a valid node where
2679 * the tree indicated one should be.
2682 "Invalid extent tree at extent block %llu\n",
2683 (unsigned long long)blkno
);
2688 blkno
= path
->p_node
[i
].bh
->b_blocknr
;
2696 static int ocfs2_rotate_rightmost_leaf_left(struct inode
*inode
,
2698 struct ocfs2_path
*path
)
2701 struct buffer_head
*bh
= path_leaf_bh(path
);
2702 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
2704 if (!ocfs2_is_empty_extent(&el
->l_recs
[0]))
2707 ret
= ocfs2_path_bh_journal_access(handle
, inode
, path
,
2708 path_num_items(path
) - 1);
2714 ocfs2_remove_empty_extent(el
);
2716 ret
= ocfs2_journal_dirty(handle
, bh
);
2724 static int __ocfs2_rotate_tree_left(struct inode
*inode
,
2725 handle_t
*handle
, int orig_credits
,
2726 struct ocfs2_path
*path
,
2727 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2728 struct ocfs2_path
**empty_extent_path
,
2729 struct ocfs2_extent_tree
*et
)
2731 int ret
, subtree_root
, deleted
;
2733 struct ocfs2_path
*left_path
= NULL
;
2734 struct ocfs2_path
*right_path
= NULL
;
2736 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path
)->l_recs
[0])));
2738 *empty_extent_path
= NULL
;
2740 ret
= ocfs2_find_cpos_for_right_leaf(inode
->i_sb
, path
,
2747 left_path
= ocfs2_new_path_from_path(path
);
2754 ocfs2_cp_path(left_path
, path
);
2756 right_path
= ocfs2_new_path_from_path(path
);
2763 while (right_cpos
) {
2764 ret
= ocfs2_find_path(inode
, right_path
, right_cpos
);
2770 subtree_root
= ocfs2_find_subtree_root(inode
, left_path
,
2773 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2775 (unsigned long long)
2776 right_path
->p_node
[subtree_root
].bh
->b_blocknr
,
2777 right_path
->p_tree_depth
);
2779 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_root
,
2780 orig_credits
, left_path
);
2787 * Caller might still want to make changes to the
2788 * tree root, so re-add it to the journal here.
2790 ret
= ocfs2_path_bh_journal_access(handle
, inode
,
2797 ret
= ocfs2_rotate_subtree_left(inode
, handle
, left_path
,
2798 right_path
, subtree_root
,
2799 dealloc
, &deleted
, et
);
2800 if (ret
== -EAGAIN
) {
2802 * The rotation has to temporarily stop due to
2803 * the right subtree having an empty
2804 * extent. Pass it back to the caller for a
2807 *empty_extent_path
= right_path
;
2817 * The subtree rotate might have removed records on
2818 * the rightmost edge. If so, then rotation is
2824 ocfs2_mv_path(left_path
, right_path
);
2826 ret
= ocfs2_find_cpos_for_right_leaf(inode
->i_sb
, left_path
,
2835 ocfs2_free_path(right_path
);
2836 ocfs2_free_path(left_path
);
2841 static int ocfs2_remove_rightmost_path(struct inode
*inode
, handle_t
*handle
,
2842 struct ocfs2_path
*path
,
2843 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2844 struct ocfs2_extent_tree
*et
)
2846 int ret
, subtree_index
;
2848 struct ocfs2_path
*left_path
= NULL
;
2849 struct ocfs2_extent_block
*eb
;
2850 struct ocfs2_extent_list
*el
;
2853 ret
= ocfs2_et_sanity_check(inode
, et
);
2857 * There's two ways we handle this depending on
2858 * whether path is the only existing one.
2860 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
2861 handle
->h_buffer_credits
,
2868 ret
= ocfs2_journal_access_path(inode
, handle
, path
);
2874 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, path
, &cpos
);
2882 * We have a path to the left of this one - it needs
2885 left_path
= ocfs2_new_path_from_path(path
);
2892 ret
= ocfs2_find_path(inode
, left_path
, cpos
);
2898 ret
= ocfs2_journal_access_path(inode
, handle
, left_path
);
2904 subtree_index
= ocfs2_find_subtree_root(inode
, left_path
, path
);
2906 ocfs2_unlink_subtree(inode
, handle
, left_path
, path
,
2907 subtree_index
, dealloc
);
2908 ocfs2_update_edge_lengths(inode
, handle
, left_path
);
2910 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2911 ocfs2_et_set_last_eb_blk(et
, le64_to_cpu(eb
->h_blkno
));
2914 * 'path' is also the leftmost path which
2915 * means it must be the only one. This gets
2916 * handled differently because we want to
2917 * revert the inode back to having extents
2920 ocfs2_unlink_path(inode
, handle
, dealloc
, path
, 1);
2922 el
= et
->et_root_el
;
2923 el
->l_tree_depth
= 0;
2924 el
->l_next_free_rec
= 0;
2925 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
2927 ocfs2_et_set_last_eb_blk(et
, 0);
2930 ocfs2_journal_dirty(handle
, path_root_bh(path
));
2933 ocfs2_free_path(left_path
);
2938 * Left rotation of btree records.
2940 * In many ways, this is (unsurprisingly) the opposite of right
2941 * rotation. We start at some non-rightmost path containing an empty
2942 * extent in the leaf block. The code works its way to the rightmost
2943 * path by rotating records to the left in every subtree.
2945 * This is used by any code which reduces the number of extent records
2946 * in a leaf. After removal, an empty record should be placed in the
2947 * leftmost list position.
2949 * This won't handle a length update of the rightmost path records if
2950 * the rightmost tree leaf record is removed so the caller is
2951 * responsible for detecting and correcting that.
2953 static int ocfs2_rotate_tree_left(struct inode
*inode
, handle_t
*handle
,
2954 struct ocfs2_path
*path
,
2955 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2956 struct ocfs2_extent_tree
*et
)
2958 int ret
, orig_credits
= handle
->h_buffer_credits
;
2959 struct ocfs2_path
*tmp_path
= NULL
, *restart_path
= NULL
;
2960 struct ocfs2_extent_block
*eb
;
2961 struct ocfs2_extent_list
*el
;
2963 el
= path_leaf_el(path
);
2964 if (!ocfs2_is_empty_extent(&el
->l_recs
[0]))
2967 if (path
->p_tree_depth
== 0) {
2968 rightmost_no_delete
:
2970 * Inline extents. This is trivially handled, so do
2973 ret
= ocfs2_rotate_rightmost_leaf_left(inode
, handle
,
2981 * Handle rightmost branch now. There's several cases:
2982 * 1) simple rotation leaving records in there. That's trivial.
2983 * 2) rotation requiring a branch delete - there's no more
2984 * records left. Two cases of this:
2985 * a) There are branches to the left.
2986 * b) This is also the leftmost (the only) branch.
2988 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
2989 * 2a) we need the left branch so that we can update it with the unlink
2990 * 2b) we need to bring the inode back to inline extents.
2993 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
2995 if (eb
->h_next_leaf_blk
== 0) {
2997 * This gets a bit tricky if we're going to delete the
2998 * rightmost path. Get the other cases out of the way
3001 if (le16_to_cpu(el
->l_next_free_rec
) > 1)
3002 goto rightmost_no_delete
;
3004 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
3006 ocfs2_error(inode
->i_sb
,
3007 "Inode %llu has empty extent block at %llu",
3008 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
3009 (unsigned long long)le64_to_cpu(eb
->h_blkno
));
3014 * XXX: The caller can not trust "path" any more after
3015 * this as it will have been deleted. What do we do?
3017 * In theory the rotate-for-merge code will never get
3018 * here because it'll always ask for a rotate in a
3022 ret
= ocfs2_remove_rightmost_path(inode
, handle
, path
,
3030 * Now we can loop, remembering the path we get from -EAGAIN
3031 * and restarting from there.
3034 ret
= __ocfs2_rotate_tree_left(inode
, handle
, orig_credits
, path
,
3035 dealloc
, &restart_path
, et
);
3036 if (ret
&& ret
!= -EAGAIN
) {
3041 while (ret
== -EAGAIN
) {
3042 tmp_path
= restart_path
;
3043 restart_path
= NULL
;
3045 ret
= __ocfs2_rotate_tree_left(inode
, handle
, orig_credits
,
3048 if (ret
&& ret
!= -EAGAIN
) {
3053 ocfs2_free_path(tmp_path
);
3061 ocfs2_free_path(tmp_path
);
3062 ocfs2_free_path(restart_path
);
3066 static void ocfs2_cleanup_merge(struct ocfs2_extent_list
*el
,
3069 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[index
];
3072 if (rec
->e_leaf_clusters
== 0) {
3074 * We consumed all of the merged-from record. An empty
3075 * extent cannot exist anywhere but the 1st array
3076 * position, so move things over if the merged-from
3077 * record doesn't occupy that position.
3079 * This creates a new empty extent so the caller
3080 * should be smart enough to have removed any existing
3084 BUG_ON(ocfs2_is_empty_extent(&el
->l_recs
[0]));
3085 size
= index
* sizeof(struct ocfs2_extent_rec
);
3086 memmove(&el
->l_recs
[1], &el
->l_recs
[0], size
);
3090 * Always memset - the caller doesn't check whether it
3091 * created an empty extent, so there could be junk in
3094 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
3098 static int ocfs2_get_right_path(struct inode
*inode
,
3099 struct ocfs2_path
*left_path
,
3100 struct ocfs2_path
**ret_right_path
)
3104 struct ocfs2_path
*right_path
= NULL
;
3105 struct ocfs2_extent_list
*left_el
;
3107 *ret_right_path
= NULL
;
3109 /* This function shouldn't be called for non-trees. */
3110 BUG_ON(left_path
->p_tree_depth
== 0);
3112 left_el
= path_leaf_el(left_path
);
3113 BUG_ON(left_el
->l_next_free_rec
!= left_el
->l_count
);
3115 ret
= ocfs2_find_cpos_for_right_leaf(inode
->i_sb
, left_path
,
3122 /* This function shouldn't be called for the rightmost leaf. */
3123 BUG_ON(right_cpos
== 0);
3125 right_path
= ocfs2_new_path_from_path(left_path
);
3132 ret
= ocfs2_find_path(inode
, right_path
, right_cpos
);
3138 *ret_right_path
= right_path
;
3141 ocfs2_free_path(right_path
);
3146 * Remove split_rec clusters from the record at index and merge them
3147 * onto the beginning of the record "next" to it.
3148 * For index < l_count - 1, the next means the extent rec at index + 1.
3149 * For index == l_count - 1, the "next" means the 1st extent rec of the
3150 * next extent block.
3152 static int ocfs2_merge_rec_right(struct inode
*inode
,
3153 struct ocfs2_path
*left_path
,
3155 struct ocfs2_extent_rec
*split_rec
,
3158 int ret
, next_free
, i
;
3159 unsigned int split_clusters
= le16_to_cpu(split_rec
->e_leaf_clusters
);
3160 struct ocfs2_extent_rec
*left_rec
;
3161 struct ocfs2_extent_rec
*right_rec
;
3162 struct ocfs2_extent_list
*right_el
;
3163 struct ocfs2_path
*right_path
= NULL
;
3164 int subtree_index
= 0;
3165 struct ocfs2_extent_list
*el
= path_leaf_el(left_path
);
3166 struct buffer_head
*bh
= path_leaf_bh(left_path
);
3167 struct buffer_head
*root_bh
= NULL
;
3169 BUG_ON(index
>= le16_to_cpu(el
->l_next_free_rec
));
3170 left_rec
= &el
->l_recs
[index
];
3172 if (index
== le16_to_cpu(el
->l_next_free_rec
) - 1 &&
3173 le16_to_cpu(el
->l_next_free_rec
) == le16_to_cpu(el
->l_count
)) {
3174 /* we meet with a cross extent block merge. */
3175 ret
= ocfs2_get_right_path(inode
, left_path
, &right_path
);
3181 right_el
= path_leaf_el(right_path
);
3182 next_free
= le16_to_cpu(right_el
->l_next_free_rec
);
3183 BUG_ON(next_free
<= 0);
3184 right_rec
= &right_el
->l_recs
[0];
3185 if (ocfs2_is_empty_extent(right_rec
)) {
3186 BUG_ON(next_free
<= 1);
3187 right_rec
= &right_el
->l_recs
[1];
3190 BUG_ON(le32_to_cpu(left_rec
->e_cpos
) +
3191 le16_to_cpu(left_rec
->e_leaf_clusters
) !=
3192 le32_to_cpu(right_rec
->e_cpos
));
3194 subtree_index
= ocfs2_find_subtree_root(inode
,
3195 left_path
, right_path
);
3197 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_index
,
3198 handle
->h_buffer_credits
,
3205 root_bh
= left_path
->p_node
[subtree_index
].bh
;
3206 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
3208 ret
= ocfs2_path_bh_journal_access(handle
, inode
, right_path
,
3215 for (i
= subtree_index
+ 1;
3216 i
< path_num_items(right_path
); i
++) {
3217 ret
= ocfs2_path_bh_journal_access(handle
, inode
,
3224 ret
= ocfs2_path_bh_journal_access(handle
, inode
,
3233 BUG_ON(index
== le16_to_cpu(el
->l_next_free_rec
) - 1);
3234 right_rec
= &el
->l_recs
[index
+ 1];
3237 ret
= ocfs2_path_bh_journal_access(handle
, inode
, left_path
,
3238 path_num_items(left_path
) - 1);
3244 le16_add_cpu(&left_rec
->e_leaf_clusters
, -split_clusters
);
3246 le32_add_cpu(&right_rec
->e_cpos
, -split_clusters
);
3247 le64_add_cpu(&right_rec
->e_blkno
,
3248 -ocfs2_clusters_to_blocks(inode
->i_sb
, split_clusters
));
3249 le16_add_cpu(&right_rec
->e_leaf_clusters
, split_clusters
);
3251 ocfs2_cleanup_merge(el
, index
);
3253 ret
= ocfs2_journal_dirty(handle
, bh
);
3258 ret
= ocfs2_journal_dirty(handle
, path_leaf_bh(right_path
));
3262 ocfs2_complete_edge_insert(inode
, handle
, left_path
,
3263 right_path
, subtree_index
);
3267 ocfs2_free_path(right_path
);
3271 static int ocfs2_get_left_path(struct inode
*inode
,
3272 struct ocfs2_path
*right_path
,
3273 struct ocfs2_path
**ret_left_path
)
3277 struct ocfs2_path
*left_path
= NULL
;
3279 *ret_left_path
= NULL
;
3281 /* This function shouldn't be called for non-trees. */
3282 BUG_ON(right_path
->p_tree_depth
== 0);
3284 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
,
3285 right_path
, &left_cpos
);
3291 /* This function shouldn't be called for the leftmost leaf. */
3292 BUG_ON(left_cpos
== 0);
3294 left_path
= ocfs2_new_path_from_path(right_path
);
3301 ret
= ocfs2_find_path(inode
, left_path
, left_cpos
);
3307 *ret_left_path
= left_path
;
3310 ocfs2_free_path(left_path
);
3315 * Remove split_rec clusters from the record at index and merge them
3316 * onto the tail of the record "before" it.
3317 * For index > 0, the "before" means the extent rec at index - 1.
3319 * For index == 0, the "before" means the last record of the previous
3320 * extent block. And there is also a situation that we may need to
3321 * remove the rightmost leaf extent block in the right_path and change
3322 * the right path to indicate the new rightmost path.
3324 static int ocfs2_merge_rec_left(struct inode
*inode
,
3325 struct ocfs2_path
*right_path
,
3327 struct ocfs2_extent_rec
*split_rec
,
3328 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
3329 struct ocfs2_extent_tree
*et
,
3332 int ret
, i
, subtree_index
= 0, has_empty_extent
= 0;
3333 unsigned int split_clusters
= le16_to_cpu(split_rec
->e_leaf_clusters
);
3334 struct ocfs2_extent_rec
*left_rec
;
3335 struct ocfs2_extent_rec
*right_rec
;
3336 struct ocfs2_extent_list
*el
= path_leaf_el(right_path
);
3337 struct buffer_head
*bh
= path_leaf_bh(right_path
);
3338 struct buffer_head
*root_bh
= NULL
;
3339 struct ocfs2_path
*left_path
= NULL
;
3340 struct ocfs2_extent_list
*left_el
;
3344 right_rec
= &el
->l_recs
[index
];
3346 /* we meet with a cross extent block merge. */
3347 ret
= ocfs2_get_left_path(inode
, right_path
, &left_path
);
3353 left_el
= path_leaf_el(left_path
);
3354 BUG_ON(le16_to_cpu(left_el
->l_next_free_rec
) !=
3355 le16_to_cpu(left_el
->l_count
));
3357 left_rec
= &left_el
->l_recs
[
3358 le16_to_cpu(left_el
->l_next_free_rec
) - 1];
3359 BUG_ON(le32_to_cpu(left_rec
->e_cpos
) +
3360 le16_to_cpu(left_rec
->e_leaf_clusters
) !=
3361 le32_to_cpu(split_rec
->e_cpos
));
3363 subtree_index
= ocfs2_find_subtree_root(inode
,
3364 left_path
, right_path
);
3366 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_index
,
3367 handle
->h_buffer_credits
,
3374 root_bh
= left_path
->p_node
[subtree_index
].bh
;
3375 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
3377 ret
= ocfs2_path_bh_journal_access(handle
, inode
, right_path
,
3384 for (i
= subtree_index
+ 1;
3385 i
< path_num_items(right_path
); i
++) {
3386 ret
= ocfs2_path_bh_journal_access(handle
, inode
,
3393 ret
= ocfs2_path_bh_journal_access(handle
, inode
,
3401 left_rec
= &el
->l_recs
[index
- 1];
3402 if (ocfs2_is_empty_extent(&el
->l_recs
[0]))
3403 has_empty_extent
= 1;
3406 ret
= ocfs2_path_bh_journal_access(handle
, inode
, right_path
,
3407 path_num_items(right_path
) - 1);
3413 if (has_empty_extent
&& index
== 1) {
3415 * The easy case - we can just plop the record right in.
3417 *left_rec
= *split_rec
;
3419 has_empty_extent
= 0;
3421 le16_add_cpu(&left_rec
->e_leaf_clusters
, split_clusters
);
3423 le32_add_cpu(&right_rec
->e_cpos
, split_clusters
);
3424 le64_add_cpu(&right_rec
->e_blkno
,
3425 ocfs2_clusters_to_blocks(inode
->i_sb
, split_clusters
));
3426 le16_add_cpu(&right_rec
->e_leaf_clusters
, -split_clusters
);
3428 ocfs2_cleanup_merge(el
, index
);
3430 ret
= ocfs2_journal_dirty(handle
, bh
);
3435 ret
= ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
3440 * In the situation that the right_rec is empty and the extent
3441 * block is empty also, ocfs2_complete_edge_insert can't handle
3442 * it and we need to delete the right extent block.
3444 if (le16_to_cpu(right_rec
->e_leaf_clusters
) == 0 &&
3445 le16_to_cpu(el
->l_next_free_rec
) == 1) {
3447 ret
= ocfs2_remove_rightmost_path(inode
, handle
,
3455 /* Now the rightmost extent block has been deleted.
3456 * So we use the new rightmost path.
3458 ocfs2_mv_path(right_path
, left_path
);
3461 ocfs2_complete_edge_insert(inode
, handle
, left_path
,
3462 right_path
, subtree_index
);
3466 ocfs2_free_path(left_path
);
3470 static int ocfs2_try_to_merge_extent(struct inode
*inode
,
3472 struct ocfs2_path
*path
,
3474 struct ocfs2_extent_rec
*split_rec
,
3475 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
3476 struct ocfs2_merge_ctxt
*ctxt
,
3477 struct ocfs2_extent_tree
*et
)
3481 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
3482 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[split_index
];
3484 BUG_ON(ctxt
->c_contig_type
== CONTIG_NONE
);
3486 if (ctxt
->c_split_covers_rec
&& ctxt
->c_has_empty_extent
) {
3488 * The merge code will need to create an empty
3489 * extent to take the place of the newly
3490 * emptied slot. Remove any pre-existing empty
3491 * extents - having more than one in a leaf is
3494 ret
= ocfs2_rotate_tree_left(inode
, handle
, path
,
3501 rec
= &el
->l_recs
[split_index
];
3504 if (ctxt
->c_contig_type
== CONTIG_LEFTRIGHT
) {
3506 * Left-right contig implies this.
3508 BUG_ON(!ctxt
->c_split_covers_rec
);
3511 * Since the leftright insert always covers the entire
3512 * extent, this call will delete the insert record
3513 * entirely, resulting in an empty extent record added to
3516 * Since the adding of an empty extent shifts
3517 * everything back to the right, there's no need to
3518 * update split_index here.
3520 * When the split_index is zero, we need to merge it to the
3521 * prevoius extent block. It is more efficient and easier
3522 * if we do merge_right first and merge_left later.
3524 ret
= ocfs2_merge_rec_right(inode
, path
,
3533 * We can only get this from logic error above.
3535 BUG_ON(!ocfs2_is_empty_extent(&el
->l_recs
[0]));
3537 /* The merge left us with an empty extent, remove it. */
3538 ret
= ocfs2_rotate_tree_left(inode
, handle
, path
,
3545 rec
= &el
->l_recs
[split_index
];
3548 * Note that we don't pass split_rec here on purpose -
3549 * we've merged it into the rec already.
3551 ret
= ocfs2_merge_rec_left(inode
, path
,
3561 ret
= ocfs2_rotate_tree_left(inode
, handle
, path
,
3564 * Error from this last rotate is not critical, so
3565 * print but don't bubble it up.
3572 * Merge a record to the left or right.
3574 * 'contig_type' is relative to the existing record,
3575 * so for example, if we're "right contig", it's to
3576 * the record on the left (hence the left merge).
3578 if (ctxt
->c_contig_type
== CONTIG_RIGHT
) {
3579 ret
= ocfs2_merge_rec_left(inode
,
3589 ret
= ocfs2_merge_rec_right(inode
,
3599 if (ctxt
->c_split_covers_rec
) {
3601 * The merge may have left an empty extent in
3602 * our leaf. Try to rotate it away.
3604 ret
= ocfs2_rotate_tree_left(inode
, handle
, path
,
3616 static void ocfs2_subtract_from_rec(struct super_block
*sb
,
3617 enum ocfs2_split_type split
,
3618 struct ocfs2_extent_rec
*rec
,
3619 struct ocfs2_extent_rec
*split_rec
)
3623 len_blocks
= ocfs2_clusters_to_blocks(sb
,
3624 le16_to_cpu(split_rec
->e_leaf_clusters
));
3626 if (split
== SPLIT_LEFT
) {
3628 * Region is on the left edge of the existing
3631 le32_add_cpu(&rec
->e_cpos
,
3632 le16_to_cpu(split_rec
->e_leaf_clusters
));
3633 le64_add_cpu(&rec
->e_blkno
, len_blocks
);
3634 le16_add_cpu(&rec
->e_leaf_clusters
,
3635 -le16_to_cpu(split_rec
->e_leaf_clusters
));
3638 * Region is on the right edge of the existing
3641 le16_add_cpu(&rec
->e_leaf_clusters
,
3642 -le16_to_cpu(split_rec
->e_leaf_clusters
));
3647 * Do the final bits of extent record insertion at the target leaf
3648 * list. If this leaf is part of an allocation tree, it is assumed
3649 * that the tree above has been prepared.
3651 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec
*insert_rec
,
3652 struct ocfs2_extent_list
*el
,
3653 struct ocfs2_insert_type
*insert
,
3654 struct inode
*inode
)
3656 int i
= insert
->ins_contig_index
;
3658 struct ocfs2_extent_rec
*rec
;
3660 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
3662 if (insert
->ins_split
!= SPLIT_NONE
) {
3663 i
= ocfs2_search_extent_list(el
, le32_to_cpu(insert_rec
->e_cpos
));
3665 rec
= &el
->l_recs
[i
];
3666 ocfs2_subtract_from_rec(inode
->i_sb
, insert
->ins_split
, rec
,
3672 * Contiguous insert - either left or right.
3674 if (insert
->ins_contig
!= CONTIG_NONE
) {
3675 rec
= &el
->l_recs
[i
];
3676 if (insert
->ins_contig
== CONTIG_LEFT
) {
3677 rec
->e_blkno
= insert_rec
->e_blkno
;
3678 rec
->e_cpos
= insert_rec
->e_cpos
;
3680 le16_add_cpu(&rec
->e_leaf_clusters
,
3681 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3686 * Handle insert into an empty leaf.
3688 if (le16_to_cpu(el
->l_next_free_rec
) == 0 ||
3689 ((le16_to_cpu(el
->l_next_free_rec
) == 1) &&
3690 ocfs2_is_empty_extent(&el
->l_recs
[0]))) {
3691 el
->l_recs
[0] = *insert_rec
;
3692 el
->l_next_free_rec
= cpu_to_le16(1);
3699 if (insert
->ins_appending
== APPEND_TAIL
) {
3700 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
3701 rec
= &el
->l_recs
[i
];
3702 range
= le32_to_cpu(rec
->e_cpos
)
3703 + le16_to_cpu(rec
->e_leaf_clusters
);
3704 BUG_ON(le32_to_cpu(insert_rec
->e_cpos
) < range
);
3706 mlog_bug_on_msg(le16_to_cpu(el
->l_next_free_rec
) >=
3707 le16_to_cpu(el
->l_count
),
3708 "inode %lu, depth %u, count %u, next free %u, "
3709 "rec.cpos %u, rec.clusters %u, "
3710 "insert.cpos %u, insert.clusters %u\n",
3712 le16_to_cpu(el
->l_tree_depth
),
3713 le16_to_cpu(el
->l_count
),
3714 le16_to_cpu(el
->l_next_free_rec
),
3715 le32_to_cpu(el
->l_recs
[i
].e_cpos
),
3716 le16_to_cpu(el
->l_recs
[i
].e_leaf_clusters
),
3717 le32_to_cpu(insert_rec
->e_cpos
),
3718 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3720 el
->l_recs
[i
] = *insert_rec
;
3721 le16_add_cpu(&el
->l_next_free_rec
, 1);
3727 * Ok, we have to rotate.
3729 * At this point, it is safe to assume that inserting into an
3730 * empty leaf and appending to a leaf have both been handled
3733 * This leaf needs to have space, either by the empty 1st
3734 * extent record, or by virtue of an l_next_rec < l_count.
3736 ocfs2_rotate_leaf(el
, insert_rec
);
3739 static void ocfs2_adjust_rightmost_records(struct inode
*inode
,
3741 struct ocfs2_path
*path
,
3742 struct ocfs2_extent_rec
*insert_rec
)
3744 int ret
, i
, next_free
;
3745 struct buffer_head
*bh
;
3746 struct ocfs2_extent_list
*el
;
3747 struct ocfs2_extent_rec
*rec
;
3750 * Update everything except the leaf block.
3752 for (i
= 0; i
< path
->p_tree_depth
; i
++) {
3753 bh
= path
->p_node
[i
].bh
;
3754 el
= path
->p_node
[i
].el
;
3756 next_free
= le16_to_cpu(el
->l_next_free_rec
);
3757 if (next_free
== 0) {
3758 ocfs2_error(inode
->i_sb
,
3759 "Dinode %llu has a bad extent list",
3760 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
3765 rec
= &el
->l_recs
[next_free
- 1];
3767 rec
->e_int_clusters
= insert_rec
->e_cpos
;
3768 le32_add_cpu(&rec
->e_int_clusters
,
3769 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3770 le32_add_cpu(&rec
->e_int_clusters
,
3771 -le32_to_cpu(rec
->e_cpos
));
3773 ret
= ocfs2_journal_dirty(handle
, bh
);
3780 static int ocfs2_append_rec_to_path(struct inode
*inode
, handle_t
*handle
,
3781 struct ocfs2_extent_rec
*insert_rec
,
3782 struct ocfs2_path
*right_path
,
3783 struct ocfs2_path
**ret_left_path
)
3786 struct ocfs2_extent_list
*el
;
3787 struct ocfs2_path
*left_path
= NULL
;
3789 *ret_left_path
= NULL
;
3792 * This shouldn't happen for non-trees. The extent rec cluster
3793 * count manipulation below only works for interior nodes.
3795 BUG_ON(right_path
->p_tree_depth
== 0);
3798 * If our appending insert is at the leftmost edge of a leaf,
3799 * then we might need to update the rightmost records of the
3802 el
= path_leaf_el(right_path
);
3803 next_free
= le16_to_cpu(el
->l_next_free_rec
);
3804 if (next_free
== 0 ||
3805 (next_free
== 1 && ocfs2_is_empty_extent(&el
->l_recs
[0]))) {
3808 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, right_path
,
3815 mlog(0, "Append may need a left path update. cpos: %u, "
3816 "left_cpos: %u\n", le32_to_cpu(insert_rec
->e_cpos
),
3820 * No need to worry if the append is already in the
3824 left_path
= ocfs2_new_path_from_path(right_path
);
3831 ret
= ocfs2_find_path(inode
, left_path
, left_cpos
);
3838 * ocfs2_insert_path() will pass the left_path to the
3844 ret
= ocfs2_journal_access_path(inode
, handle
, right_path
);
3850 ocfs2_adjust_rightmost_records(inode
, handle
, right_path
, insert_rec
);
3852 *ret_left_path
= left_path
;
3856 ocfs2_free_path(left_path
);
3861 static void ocfs2_split_record(struct inode
*inode
,
3862 struct ocfs2_path
*left_path
,
3863 struct ocfs2_path
*right_path
,
3864 struct ocfs2_extent_rec
*split_rec
,
3865 enum ocfs2_split_type split
)
3868 u32 cpos
= le32_to_cpu(split_rec
->e_cpos
);
3869 struct ocfs2_extent_list
*left_el
= NULL
, *right_el
, *insert_el
, *el
;
3870 struct ocfs2_extent_rec
*rec
, *tmprec
;
3872 right_el
= path_leaf_el(right_path
);
3874 left_el
= path_leaf_el(left_path
);
3877 insert_el
= right_el
;
3878 index
= ocfs2_search_extent_list(el
, cpos
);
3880 if (index
== 0 && left_path
) {
3881 BUG_ON(ocfs2_is_empty_extent(&el
->l_recs
[0]));
3884 * This typically means that the record
3885 * started in the left path but moved to the
3886 * right as a result of rotation. We either
3887 * move the existing record to the left, or we
3888 * do the later insert there.
3890 * In this case, the left path should always
3891 * exist as the rotate code will have passed
3892 * it back for a post-insert update.
3895 if (split
== SPLIT_LEFT
) {
3897 * It's a left split. Since we know
3898 * that the rotate code gave us an
3899 * empty extent in the left path, we
3900 * can just do the insert there.
3902 insert_el
= left_el
;
3905 * Right split - we have to move the
3906 * existing record over to the left
3907 * leaf. The insert will be into the
3908 * newly created empty extent in the
3911 tmprec
= &right_el
->l_recs
[index
];
3912 ocfs2_rotate_leaf(left_el
, tmprec
);
3915 memset(tmprec
, 0, sizeof(*tmprec
));
3916 index
= ocfs2_search_extent_list(left_el
, cpos
);
3917 BUG_ON(index
== -1);
3922 BUG_ON(!ocfs2_is_empty_extent(&left_el
->l_recs
[0]));
3924 * Left path is easy - we can just allow the insert to
3928 insert_el
= left_el
;
3929 index
= ocfs2_search_extent_list(el
, cpos
);
3930 BUG_ON(index
== -1);
3933 rec
= &el
->l_recs
[index
];
3934 ocfs2_subtract_from_rec(inode
->i_sb
, split
, rec
, split_rec
);
3935 ocfs2_rotate_leaf(insert_el
, split_rec
);
3939 * This function only does inserts on an allocation b-tree. For tree
3940 * depth = 0, ocfs2_insert_at_leaf() is called directly.
3942 * right_path is the path we want to do the actual insert
3943 * in. left_path should only be passed in if we need to update that
3944 * portion of the tree after an edge insert.
3946 static int ocfs2_insert_path(struct inode
*inode
,
3948 struct ocfs2_path
*left_path
,
3949 struct ocfs2_path
*right_path
,
3950 struct ocfs2_extent_rec
*insert_rec
,
3951 struct ocfs2_insert_type
*insert
)
3953 int ret
, subtree_index
;
3954 struct buffer_head
*leaf_bh
= path_leaf_bh(right_path
);
3957 int credits
= handle
->h_buffer_credits
;
3960 * There's a chance that left_path got passed back to
3961 * us without being accounted for in the
3962 * journal. Extend our transaction here to be sure we
3963 * can change those blocks.
3965 credits
+= left_path
->p_tree_depth
;
3967 ret
= ocfs2_extend_trans(handle
, credits
);
3973 ret
= ocfs2_journal_access_path(inode
, handle
, left_path
);
3981 * Pass both paths to the journal. The majority of inserts
3982 * will be touching all components anyway.
3984 ret
= ocfs2_journal_access_path(inode
, handle
, right_path
);
3990 if (insert
->ins_split
!= SPLIT_NONE
) {
3992 * We could call ocfs2_insert_at_leaf() for some types
3993 * of splits, but it's easier to just let one separate
3994 * function sort it all out.
3996 ocfs2_split_record(inode
, left_path
, right_path
,
3997 insert_rec
, insert
->ins_split
);
4000 * Split might have modified either leaf and we don't
4001 * have a guarantee that the later edge insert will
4002 * dirty this for us.
4005 ret
= ocfs2_journal_dirty(handle
,
4006 path_leaf_bh(left_path
));
4010 ocfs2_insert_at_leaf(insert_rec
, path_leaf_el(right_path
),
4013 ret
= ocfs2_journal_dirty(handle
, leaf_bh
);
4019 * The rotate code has indicated that we need to fix
4020 * up portions of the tree after the insert.
4022 * XXX: Should we extend the transaction here?
4024 subtree_index
= ocfs2_find_subtree_root(inode
, left_path
,
4026 ocfs2_complete_edge_insert(inode
, handle
, left_path
,
4027 right_path
, subtree_index
);
4035 static int ocfs2_do_insert_extent(struct inode
*inode
,
4037 struct ocfs2_extent_tree
*et
,
4038 struct ocfs2_extent_rec
*insert_rec
,
4039 struct ocfs2_insert_type
*type
)
4041 int ret
, rotate
= 0;
4043 struct ocfs2_path
*right_path
= NULL
;
4044 struct ocfs2_path
*left_path
= NULL
;
4045 struct ocfs2_extent_list
*el
;
4047 el
= et
->et_root_el
;
4049 ret
= ocfs2_et_root_journal_access(handle
, inode
, et
,
4050 OCFS2_JOURNAL_ACCESS_WRITE
);
4056 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
4057 ocfs2_insert_at_leaf(insert_rec
, el
, type
, inode
);
4058 goto out_update_clusters
;
4061 right_path
= ocfs2_new_path_from_et(et
);
4069 * Determine the path to start with. Rotations need the
4070 * rightmost path, everything else can go directly to the
4073 cpos
= le32_to_cpu(insert_rec
->e_cpos
);
4074 if (type
->ins_appending
== APPEND_NONE
&&
4075 type
->ins_contig
== CONTIG_NONE
) {
4080 ret
= ocfs2_find_path(inode
, right_path
, cpos
);
4087 * Rotations and appends need special treatment - they modify
4088 * parts of the tree's above them.
4090 * Both might pass back a path immediate to the left of the
4091 * one being inserted to. This will be cause
4092 * ocfs2_insert_path() to modify the rightmost records of
4093 * left_path to account for an edge insert.
4095 * XXX: When modifying this code, keep in mind that an insert
4096 * can wind up skipping both of these two special cases...
4099 ret
= ocfs2_rotate_tree_right(inode
, handle
, type
->ins_split
,
4100 le32_to_cpu(insert_rec
->e_cpos
),
4101 right_path
, &left_path
);
4108 * ocfs2_rotate_tree_right() might have extended the
4109 * transaction without re-journaling our tree root.
4111 ret
= ocfs2_et_root_journal_access(handle
, inode
, et
,
4112 OCFS2_JOURNAL_ACCESS_WRITE
);
4117 } else if (type
->ins_appending
== APPEND_TAIL
4118 && type
->ins_contig
!= CONTIG_LEFT
) {
4119 ret
= ocfs2_append_rec_to_path(inode
, handle
, insert_rec
,
4120 right_path
, &left_path
);
4127 ret
= ocfs2_insert_path(inode
, handle
, left_path
, right_path
,
4134 out_update_clusters
:
4135 if (type
->ins_split
== SPLIT_NONE
)
4136 ocfs2_et_update_clusters(inode
, et
,
4137 le16_to_cpu(insert_rec
->e_leaf_clusters
));
4139 ret
= ocfs2_journal_dirty(handle
, et
->et_root_bh
);
4144 ocfs2_free_path(left_path
);
4145 ocfs2_free_path(right_path
);
4150 static enum ocfs2_contig_type
4151 ocfs2_figure_merge_contig_type(struct inode
*inode
, struct ocfs2_path
*path
,
4152 struct ocfs2_extent_list
*el
, int index
,
4153 struct ocfs2_extent_rec
*split_rec
)
4156 enum ocfs2_contig_type ret
= CONTIG_NONE
;
4157 u32 left_cpos
, right_cpos
;
4158 struct ocfs2_extent_rec
*rec
= NULL
;
4159 struct ocfs2_extent_list
*new_el
;
4160 struct ocfs2_path
*left_path
= NULL
, *right_path
= NULL
;
4161 struct buffer_head
*bh
;
4162 struct ocfs2_extent_block
*eb
;
4165 rec
= &el
->l_recs
[index
- 1];
4166 } else if (path
->p_tree_depth
> 0) {
4167 status
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
,
4172 if (left_cpos
!= 0) {
4173 left_path
= ocfs2_new_path_from_path(path
);
4177 status
= ocfs2_find_path(inode
, left_path
, left_cpos
);
4181 new_el
= path_leaf_el(left_path
);
4183 if (le16_to_cpu(new_el
->l_next_free_rec
) !=
4184 le16_to_cpu(new_el
->l_count
)) {
4185 bh
= path_leaf_bh(left_path
);
4186 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
4187 ocfs2_error(inode
->i_sb
,
4188 "Extent block #%llu has an "
4189 "invalid l_next_free_rec of "
4190 "%d. It should have "
4191 "matched the l_count of %d",
4192 (unsigned long long)le64_to_cpu(eb
->h_blkno
),
4193 le16_to_cpu(new_el
->l_next_free_rec
),
4194 le16_to_cpu(new_el
->l_count
));
4198 rec
= &new_el
->l_recs
[
4199 le16_to_cpu(new_el
->l_next_free_rec
) - 1];
4204 * We're careful to check for an empty extent record here -
4205 * the merge code will know what to do if it sees one.
4208 if (index
== 1 && ocfs2_is_empty_extent(rec
)) {
4209 if (split_rec
->e_cpos
== el
->l_recs
[index
].e_cpos
)
4212 ret
= ocfs2_extent_contig(inode
, rec
, split_rec
);
4217 if (index
< (le16_to_cpu(el
->l_next_free_rec
) - 1))
4218 rec
= &el
->l_recs
[index
+ 1];
4219 else if (le16_to_cpu(el
->l_next_free_rec
) == le16_to_cpu(el
->l_count
) &&
4220 path
->p_tree_depth
> 0) {
4221 status
= ocfs2_find_cpos_for_right_leaf(inode
->i_sb
,
4226 if (right_cpos
== 0)
4229 right_path
= ocfs2_new_path_from_path(path
);
4233 status
= ocfs2_find_path(inode
, right_path
, right_cpos
);
4237 new_el
= path_leaf_el(right_path
);
4238 rec
= &new_el
->l_recs
[0];
4239 if (ocfs2_is_empty_extent(rec
)) {
4240 if (le16_to_cpu(new_el
->l_next_free_rec
) <= 1) {
4241 bh
= path_leaf_bh(right_path
);
4242 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
4243 ocfs2_error(inode
->i_sb
,
4244 "Extent block #%llu has an "
4245 "invalid l_next_free_rec of %d",
4246 (unsigned long long)le64_to_cpu(eb
->h_blkno
),
4247 le16_to_cpu(new_el
->l_next_free_rec
));
4251 rec
= &new_el
->l_recs
[1];
4256 enum ocfs2_contig_type contig_type
;
4258 contig_type
= ocfs2_extent_contig(inode
, rec
, split_rec
);
4260 if (contig_type
== CONTIG_LEFT
&& ret
== CONTIG_RIGHT
)
4261 ret
= CONTIG_LEFTRIGHT
;
4262 else if (ret
== CONTIG_NONE
)
4268 ocfs2_free_path(left_path
);
4270 ocfs2_free_path(right_path
);
4275 static void ocfs2_figure_contig_type(struct inode
*inode
,
4276 struct ocfs2_insert_type
*insert
,
4277 struct ocfs2_extent_list
*el
,
4278 struct ocfs2_extent_rec
*insert_rec
,
4279 struct ocfs2_extent_tree
*et
)
4282 enum ocfs2_contig_type contig_type
= CONTIG_NONE
;
4284 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
4286 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
); i
++) {
4287 contig_type
= ocfs2_extent_contig(inode
, &el
->l_recs
[i
],
4289 if (contig_type
!= CONTIG_NONE
) {
4290 insert
->ins_contig_index
= i
;
4294 insert
->ins_contig
= contig_type
;
4296 if (insert
->ins_contig
!= CONTIG_NONE
) {
4297 struct ocfs2_extent_rec
*rec
=
4298 &el
->l_recs
[insert
->ins_contig_index
];
4299 unsigned int len
= le16_to_cpu(rec
->e_leaf_clusters
) +
4300 le16_to_cpu(insert_rec
->e_leaf_clusters
);
4303 * Caller might want us to limit the size of extents, don't
4304 * calculate contiguousness if we might exceed that limit.
4306 if (et
->et_max_leaf_clusters
&&
4307 (len
> et
->et_max_leaf_clusters
))
4308 insert
->ins_contig
= CONTIG_NONE
;
4313 * This should only be called against the righmost leaf extent list.
4315 * ocfs2_figure_appending_type() will figure out whether we'll have to
4316 * insert at the tail of the rightmost leaf.
4318 * This should also work against the root extent list for tree's with 0
4319 * depth. If we consider the root extent list to be the rightmost leaf node
4320 * then the logic here makes sense.
4322 static void ocfs2_figure_appending_type(struct ocfs2_insert_type
*insert
,
4323 struct ocfs2_extent_list
*el
,
4324 struct ocfs2_extent_rec
*insert_rec
)
4327 u32 cpos
= le32_to_cpu(insert_rec
->e_cpos
);
4328 struct ocfs2_extent_rec
*rec
;
4330 insert
->ins_appending
= APPEND_NONE
;
4332 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
4334 if (!el
->l_next_free_rec
)
4335 goto set_tail_append
;
4337 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
4338 /* Were all records empty? */
4339 if (le16_to_cpu(el
->l_next_free_rec
) == 1)
4340 goto set_tail_append
;
4343 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
4344 rec
= &el
->l_recs
[i
];
4347 (le32_to_cpu(rec
->e_cpos
) + le16_to_cpu(rec
->e_leaf_clusters
)))
4348 goto set_tail_append
;
4353 insert
->ins_appending
= APPEND_TAIL
;
4357 * Helper function called at the begining of an insert.
4359 * This computes a few things that are commonly used in the process of
4360 * inserting into the btree:
4361 * - Whether the new extent is contiguous with an existing one.
4362 * - The current tree depth.
4363 * - Whether the insert is an appending one.
4364 * - The total # of free records in the tree.
4366 * All of the information is stored on the ocfs2_insert_type
4369 static int ocfs2_figure_insert_type(struct inode
*inode
,
4370 struct ocfs2_extent_tree
*et
,
4371 struct buffer_head
**last_eb_bh
,
4372 struct ocfs2_extent_rec
*insert_rec
,
4374 struct ocfs2_insert_type
*insert
)
4377 struct ocfs2_extent_block
*eb
;
4378 struct ocfs2_extent_list
*el
;
4379 struct ocfs2_path
*path
= NULL
;
4380 struct buffer_head
*bh
= NULL
;
4382 insert
->ins_split
= SPLIT_NONE
;
4384 el
= et
->et_root_el
;
4385 insert
->ins_tree_depth
= le16_to_cpu(el
->l_tree_depth
);
4387 if (el
->l_tree_depth
) {
4389 * If we have tree depth, we read in the
4390 * rightmost extent block ahead of time as
4391 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4392 * may want it later.
4394 ret
= ocfs2_read_extent_block(inode
,
4395 ocfs2_et_get_last_eb_blk(et
),
4401 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
4406 * Unless we have a contiguous insert, we'll need to know if
4407 * there is room left in our allocation tree for another
4410 * XXX: This test is simplistic, we can search for empty
4411 * extent records too.
4413 *free_records
= le16_to_cpu(el
->l_count
) -
4414 le16_to_cpu(el
->l_next_free_rec
);
4416 if (!insert
->ins_tree_depth
) {
4417 ocfs2_figure_contig_type(inode
, insert
, el
, insert_rec
, et
);
4418 ocfs2_figure_appending_type(insert
, el
, insert_rec
);
4422 path
= ocfs2_new_path_from_et(et
);
4430 * In the case that we're inserting past what the tree
4431 * currently accounts for, ocfs2_find_path() will return for
4432 * us the rightmost tree path. This is accounted for below in
4433 * the appending code.
4435 ret
= ocfs2_find_path(inode
, path
, le32_to_cpu(insert_rec
->e_cpos
));
4441 el
= path_leaf_el(path
);
4444 * Now that we have the path, there's two things we want to determine:
4445 * 1) Contiguousness (also set contig_index if this is so)
4447 * 2) Are we doing an append? We can trivially break this up
4448 * into two types of appends: simple record append, or a
4449 * rotate inside the tail leaf.
4451 ocfs2_figure_contig_type(inode
, insert
, el
, insert_rec
, et
);
4454 * The insert code isn't quite ready to deal with all cases of
4455 * left contiguousness. Specifically, if it's an insert into
4456 * the 1st record in a leaf, it will require the adjustment of
4457 * cluster count on the last record of the path directly to it's
4458 * left. For now, just catch that case and fool the layers
4459 * above us. This works just fine for tree_depth == 0, which
4460 * is why we allow that above.
4462 if (insert
->ins_contig
== CONTIG_LEFT
&&
4463 insert
->ins_contig_index
== 0)
4464 insert
->ins_contig
= CONTIG_NONE
;
4467 * Ok, so we can simply compare against last_eb to figure out
4468 * whether the path doesn't exist. This will only happen in
4469 * the case that we're doing a tail append, so maybe we can
4470 * take advantage of that information somehow.
4472 if (ocfs2_et_get_last_eb_blk(et
) ==
4473 path_leaf_bh(path
)->b_blocknr
) {
4475 * Ok, ocfs2_find_path() returned us the rightmost
4476 * tree path. This might be an appending insert. There are
4478 * 1) We're doing a true append at the tail:
4479 * -This might even be off the end of the leaf
4480 * 2) We're "appending" by rotating in the tail
4482 ocfs2_figure_appending_type(insert
, el
, insert_rec
);
4486 ocfs2_free_path(path
);
4496 * Insert an extent into an inode btree.
4498 * The caller needs to update fe->i_clusters
4500 int ocfs2_insert_extent(struct ocfs2_super
*osb
,
4502 struct inode
*inode
,
4503 struct ocfs2_extent_tree
*et
,
4508 struct ocfs2_alloc_context
*meta_ac
)
4511 int uninitialized_var(free_records
);
4512 struct buffer_head
*last_eb_bh
= NULL
;
4513 struct ocfs2_insert_type insert
= {0, };
4514 struct ocfs2_extent_rec rec
;
4516 mlog(0, "add %u clusters at position %u to inode %llu\n",
4517 new_clusters
, cpos
, (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
4519 memset(&rec
, 0, sizeof(rec
));
4520 rec
.e_cpos
= cpu_to_le32(cpos
);
4521 rec
.e_blkno
= cpu_to_le64(start_blk
);
4522 rec
.e_leaf_clusters
= cpu_to_le16(new_clusters
);
4523 rec
.e_flags
= flags
;
4524 status
= ocfs2_et_insert_check(inode
, et
, &rec
);
4530 status
= ocfs2_figure_insert_type(inode
, et
, &last_eb_bh
, &rec
,
4531 &free_records
, &insert
);
4537 mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4538 "Insert.contig_index: %d, Insert.free_records: %d, "
4539 "Insert.tree_depth: %d\n",
4540 insert
.ins_appending
, insert
.ins_contig
, insert
.ins_contig_index
,
4541 free_records
, insert
.ins_tree_depth
);
4543 if (insert
.ins_contig
== CONTIG_NONE
&& free_records
== 0) {
4544 status
= ocfs2_grow_tree(inode
, handle
, et
,
4545 &insert
.ins_tree_depth
, &last_eb_bh
,
4553 /* Finally, we can add clusters. This might rotate the tree for us. */
4554 status
= ocfs2_do_insert_extent(inode
, handle
, et
, &rec
, &insert
);
4557 else if (et
->et_ops
== &ocfs2_dinode_et_ops
)
4558 ocfs2_extent_map_insert_rec(inode
, &rec
);
4568 * Allcate and add clusters into the extent b-tree.
4569 * The new clusters(clusters_to_add) will be inserted at logical_offset.
4570 * The extent b-tree's root is specified by et, and
4571 * it is not limited to the file storage. Any extent tree can use this
4572 * function if it implements the proper ocfs2_extent_tree.
4574 int ocfs2_add_clusters_in_btree(struct ocfs2_super
*osb
,
4575 struct inode
*inode
,
4576 u32
*logical_offset
,
4577 u32 clusters_to_add
,
4579 struct ocfs2_extent_tree
*et
,
4581 struct ocfs2_alloc_context
*data_ac
,
4582 struct ocfs2_alloc_context
*meta_ac
,
4583 enum ocfs2_alloc_restarted
*reason_ret
)
4587 enum ocfs2_alloc_restarted reason
= RESTART_NONE
;
4588 u32 bit_off
, num_bits
;
4592 BUG_ON(!clusters_to_add
);
4595 flags
= OCFS2_EXT_UNWRITTEN
;
4597 free_extents
= ocfs2_num_free_extents(osb
, inode
, et
);
4598 if (free_extents
< 0) {
4599 status
= free_extents
;
4604 /* there are two cases which could cause us to EAGAIN in the
4605 * we-need-more-metadata case:
4606 * 1) we haven't reserved *any*
4607 * 2) we are so fragmented, we've needed to add metadata too
4609 if (!free_extents
&& !meta_ac
) {
4610 mlog(0, "we haven't reserved any metadata!\n");
4612 reason
= RESTART_META
;
4614 } else if ((!free_extents
)
4615 && (ocfs2_alloc_context_bits_left(meta_ac
)
4616 < ocfs2_extend_meta_needed(et
->et_root_el
))) {
4617 mlog(0, "filesystem is really fragmented...\n");
4619 reason
= RESTART_META
;
4623 status
= __ocfs2_claim_clusters(osb
, handle
, data_ac
, 1,
4624 clusters_to_add
, &bit_off
, &num_bits
);
4626 if (status
!= -ENOSPC
)
4631 BUG_ON(num_bits
> clusters_to_add
);
4633 /* reserve our write early -- insert_extent may update the tree root */
4634 status
= ocfs2_et_root_journal_access(handle
, inode
, et
,
4635 OCFS2_JOURNAL_ACCESS_WRITE
);
4641 block
= ocfs2_clusters_to_blocks(osb
->sb
, bit_off
);
4642 mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4643 num_bits
, bit_off
, (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
4644 status
= ocfs2_insert_extent(osb
, handle
, inode
, et
,
4645 *logical_offset
, block
,
4646 num_bits
, flags
, meta_ac
);
4652 status
= ocfs2_journal_dirty(handle
, et
->et_root_bh
);
4658 clusters_to_add
-= num_bits
;
4659 *logical_offset
+= num_bits
;
4661 if (clusters_to_add
) {
4662 mlog(0, "need to alloc once more, wanted = %u\n",
4665 reason
= RESTART_TRANS
;
4671 *reason_ret
= reason
;
4675 static void ocfs2_make_right_split_rec(struct super_block
*sb
,
4676 struct ocfs2_extent_rec
*split_rec
,
4678 struct ocfs2_extent_rec
*rec
)
4680 u32 rec_cpos
= le32_to_cpu(rec
->e_cpos
);
4681 u32 rec_range
= rec_cpos
+ le16_to_cpu(rec
->e_leaf_clusters
);
4683 memset(split_rec
, 0, sizeof(struct ocfs2_extent_rec
));
4685 split_rec
->e_cpos
= cpu_to_le32(cpos
);
4686 split_rec
->e_leaf_clusters
= cpu_to_le16(rec_range
- cpos
);
4688 split_rec
->e_blkno
= rec
->e_blkno
;
4689 le64_add_cpu(&split_rec
->e_blkno
,
4690 ocfs2_clusters_to_blocks(sb
, cpos
- rec_cpos
));
4692 split_rec
->e_flags
= rec
->e_flags
;
4695 static int ocfs2_split_and_insert(struct inode
*inode
,
4697 struct ocfs2_path
*path
,
4698 struct ocfs2_extent_tree
*et
,
4699 struct buffer_head
**last_eb_bh
,
4701 struct ocfs2_extent_rec
*orig_split_rec
,
4702 struct ocfs2_alloc_context
*meta_ac
)
4705 unsigned int insert_range
, rec_range
, do_leftright
= 0;
4706 struct ocfs2_extent_rec tmprec
;
4707 struct ocfs2_extent_list
*rightmost_el
;
4708 struct ocfs2_extent_rec rec
;
4709 struct ocfs2_extent_rec split_rec
= *orig_split_rec
;
4710 struct ocfs2_insert_type insert
;
4711 struct ocfs2_extent_block
*eb
;
4715 * Store a copy of the record on the stack - it might move
4716 * around as the tree is manipulated below.
4718 rec
= path_leaf_el(path
)->l_recs
[split_index
];
4720 rightmost_el
= et
->et_root_el
;
4722 depth
= le16_to_cpu(rightmost_el
->l_tree_depth
);
4724 BUG_ON(!(*last_eb_bh
));
4725 eb
= (struct ocfs2_extent_block
*) (*last_eb_bh
)->b_data
;
4726 rightmost_el
= &eb
->h_list
;
4729 if (le16_to_cpu(rightmost_el
->l_next_free_rec
) ==
4730 le16_to_cpu(rightmost_el
->l_count
)) {
4731 ret
= ocfs2_grow_tree(inode
, handle
, et
,
4732 &depth
, last_eb_bh
, meta_ac
);
4739 memset(&insert
, 0, sizeof(struct ocfs2_insert_type
));
4740 insert
.ins_appending
= APPEND_NONE
;
4741 insert
.ins_contig
= CONTIG_NONE
;
4742 insert
.ins_tree_depth
= depth
;
4744 insert_range
= le32_to_cpu(split_rec
.e_cpos
) +
4745 le16_to_cpu(split_rec
.e_leaf_clusters
);
4746 rec_range
= le32_to_cpu(rec
.e_cpos
) +
4747 le16_to_cpu(rec
.e_leaf_clusters
);
4749 if (split_rec
.e_cpos
== rec
.e_cpos
) {
4750 insert
.ins_split
= SPLIT_LEFT
;
4751 } else if (insert_range
== rec_range
) {
4752 insert
.ins_split
= SPLIT_RIGHT
;
4755 * Left/right split. We fake this as a right split
4756 * first and then make a second pass as a left split.
4758 insert
.ins_split
= SPLIT_RIGHT
;
4760 ocfs2_make_right_split_rec(inode
->i_sb
, &tmprec
, insert_range
,
4765 BUG_ON(do_leftright
);
4769 ret
= ocfs2_do_insert_extent(inode
, handle
, et
, &split_rec
, &insert
);
4775 if (do_leftright
== 1) {
4777 struct ocfs2_extent_list
*el
;
4780 split_rec
= *orig_split_rec
;
4782 ocfs2_reinit_path(path
, 1);
4784 cpos
= le32_to_cpu(split_rec
.e_cpos
);
4785 ret
= ocfs2_find_path(inode
, path
, cpos
);
4791 el
= path_leaf_el(path
);
4792 split_index
= ocfs2_search_extent_list(el
, cpos
);
4800 static int ocfs2_replace_extent_rec(struct inode
*inode
,
4802 struct ocfs2_path
*path
,
4803 struct ocfs2_extent_list
*el
,
4805 struct ocfs2_extent_rec
*split_rec
)
4809 ret
= ocfs2_path_bh_journal_access(handle
, inode
, path
,
4810 path_num_items(path
) - 1);
4816 el
->l_recs
[split_index
] = *split_rec
;
4818 ocfs2_journal_dirty(handle
, path_leaf_bh(path
));
4824 * Mark part or all of the extent record at split_index in the leaf
4825 * pointed to by path as written. This removes the unwritten
4828 * Care is taken to handle contiguousness so as to not grow the tree.
4830 * meta_ac is not strictly necessary - we only truly need it if growth
4831 * of the tree is required. All other cases will degrade into a less
4832 * optimal tree layout.
4834 * last_eb_bh should be the rightmost leaf block for any extent
4835 * btree. Since a split may grow the tree or a merge might shrink it,
4836 * the caller cannot trust the contents of that buffer after this call.
4838 * This code is optimized for readability - several passes might be
4839 * made over certain portions of the tree. All of those blocks will
4840 * have been brought into cache (and pinned via the journal), so the
4841 * extra overhead is not expressed in terms of disk reads.
4843 static int __ocfs2_mark_extent_written(struct inode
*inode
,
4844 struct ocfs2_extent_tree
*et
,
4846 struct ocfs2_path
*path
,
4848 struct ocfs2_extent_rec
*split_rec
,
4849 struct ocfs2_alloc_context
*meta_ac
,
4850 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
4853 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
4854 struct buffer_head
*last_eb_bh
= NULL
;
4855 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[split_index
];
4856 struct ocfs2_merge_ctxt ctxt
;
4857 struct ocfs2_extent_list
*rightmost_el
;
4859 if (!(rec
->e_flags
& OCFS2_EXT_UNWRITTEN
)) {
4865 if (le32_to_cpu(rec
->e_cpos
) > le32_to_cpu(split_rec
->e_cpos
) ||
4866 ((le32_to_cpu(rec
->e_cpos
) + le16_to_cpu(rec
->e_leaf_clusters
)) <
4867 (le32_to_cpu(split_rec
->e_cpos
) + le16_to_cpu(split_rec
->e_leaf_clusters
)))) {
4873 ctxt
.c_contig_type
= ocfs2_figure_merge_contig_type(inode
, path
, el
,
4878 * The core merge / split code wants to know how much room is
4879 * left in this inodes allocation tree, so we pass the
4880 * rightmost extent list.
4882 if (path
->p_tree_depth
) {
4883 struct ocfs2_extent_block
*eb
;
4885 ret
= ocfs2_read_extent_block(inode
,
4886 ocfs2_et_get_last_eb_blk(et
),
4893 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
4894 rightmost_el
= &eb
->h_list
;
4896 rightmost_el
= path_root_el(path
);
4898 if (rec
->e_cpos
== split_rec
->e_cpos
&&
4899 rec
->e_leaf_clusters
== split_rec
->e_leaf_clusters
)
4900 ctxt
.c_split_covers_rec
= 1;
4902 ctxt
.c_split_covers_rec
= 0;
4904 ctxt
.c_has_empty_extent
= ocfs2_is_empty_extent(&el
->l_recs
[0]);
4906 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
4907 split_index
, ctxt
.c_contig_type
, ctxt
.c_has_empty_extent
,
4908 ctxt
.c_split_covers_rec
);
4910 if (ctxt
.c_contig_type
== CONTIG_NONE
) {
4911 if (ctxt
.c_split_covers_rec
)
4912 ret
= ocfs2_replace_extent_rec(inode
, handle
,
4914 split_index
, split_rec
);
4916 ret
= ocfs2_split_and_insert(inode
, handle
, path
, et
,
4917 &last_eb_bh
, split_index
,
4918 split_rec
, meta_ac
);
4922 ret
= ocfs2_try_to_merge_extent(inode
, handle
, path
,
4923 split_index
, split_rec
,
4924 dealloc
, &ctxt
, et
);
4935 * Mark the already-existing extent at cpos as written for len clusters.
4937 * If the existing extent is larger than the request, initiate a
4938 * split. An attempt will be made at merging with adjacent extents.
4940 * The caller is responsible for passing down meta_ac if we'll need it.
4942 int ocfs2_mark_extent_written(struct inode
*inode
,
4943 struct ocfs2_extent_tree
*et
,
4944 handle_t
*handle
, u32 cpos
, u32 len
, u32 phys
,
4945 struct ocfs2_alloc_context
*meta_ac
,
4946 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
4949 u64 start_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, phys
);
4950 struct ocfs2_extent_rec split_rec
;
4951 struct ocfs2_path
*left_path
= NULL
;
4952 struct ocfs2_extent_list
*el
;
4954 mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4955 inode
->i_ino
, cpos
, len
, phys
, (unsigned long long)start_blkno
);
4957 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode
->i_sb
))) {
4958 ocfs2_error(inode
->i_sb
, "Inode %llu has unwritten extents "
4959 "that are being written to, but the feature bit "
4960 "is not set in the super block.",
4961 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
4967 * XXX: This should be fixed up so that we just re-insert the
4968 * next extent records.
4970 * XXX: This is a hack on the extent tree, maybe it should be
4973 if (et
->et_ops
== &ocfs2_dinode_et_ops
)
4974 ocfs2_extent_map_trunc(inode
, 0);
4976 left_path
= ocfs2_new_path_from_et(et
);
4983 ret
= ocfs2_find_path(inode
, left_path
, cpos
);
4988 el
= path_leaf_el(left_path
);
4990 index
= ocfs2_search_extent_list(el
, cpos
);
4991 if (index
== -1 || index
>= le16_to_cpu(el
->l_next_free_rec
)) {
4992 ocfs2_error(inode
->i_sb
,
4993 "Inode %llu has an extent at cpos %u which can no "
4994 "longer be found.\n",
4995 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, cpos
);
5000 memset(&split_rec
, 0, sizeof(struct ocfs2_extent_rec
));
5001 split_rec
.e_cpos
= cpu_to_le32(cpos
);
5002 split_rec
.e_leaf_clusters
= cpu_to_le16(len
);
5003 split_rec
.e_blkno
= cpu_to_le64(start_blkno
);
5004 split_rec
.e_flags
= path_leaf_el(left_path
)->l_recs
[index
].e_flags
;
5005 split_rec
.e_flags
&= ~OCFS2_EXT_UNWRITTEN
;
5007 ret
= __ocfs2_mark_extent_written(inode
, et
, handle
, left_path
,
5008 index
, &split_rec
, meta_ac
,
5014 ocfs2_free_path(left_path
);
5018 static int ocfs2_split_tree(struct inode
*inode
, struct ocfs2_extent_tree
*et
,
5019 handle_t
*handle
, struct ocfs2_path
*path
,
5020 int index
, u32 new_range
,
5021 struct ocfs2_alloc_context
*meta_ac
)
5023 int ret
, depth
, credits
= handle
->h_buffer_credits
;
5024 struct buffer_head
*last_eb_bh
= NULL
;
5025 struct ocfs2_extent_block
*eb
;
5026 struct ocfs2_extent_list
*rightmost_el
, *el
;
5027 struct ocfs2_extent_rec split_rec
;
5028 struct ocfs2_extent_rec
*rec
;
5029 struct ocfs2_insert_type insert
;
5032 * Setup the record to split before we grow the tree.
5034 el
= path_leaf_el(path
);
5035 rec
= &el
->l_recs
[index
];
5036 ocfs2_make_right_split_rec(inode
->i_sb
, &split_rec
, new_range
, rec
);
5038 depth
= path
->p_tree_depth
;
5040 ret
= ocfs2_read_extent_block(inode
,
5041 ocfs2_et_get_last_eb_blk(et
),
5048 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
5049 rightmost_el
= &eb
->h_list
;
5051 rightmost_el
= path_leaf_el(path
);
5053 credits
+= path
->p_tree_depth
+
5054 ocfs2_extend_meta_needed(et
->et_root_el
);
5055 ret
= ocfs2_extend_trans(handle
, credits
);
5061 if (le16_to_cpu(rightmost_el
->l_next_free_rec
) ==
5062 le16_to_cpu(rightmost_el
->l_count
)) {
5063 ret
= ocfs2_grow_tree(inode
, handle
, et
, &depth
, &last_eb_bh
,
5071 memset(&insert
, 0, sizeof(struct ocfs2_insert_type
));
5072 insert
.ins_appending
= APPEND_NONE
;
5073 insert
.ins_contig
= CONTIG_NONE
;
5074 insert
.ins_split
= SPLIT_RIGHT
;
5075 insert
.ins_tree_depth
= depth
;
5077 ret
= ocfs2_do_insert_extent(inode
, handle
, et
, &split_rec
, &insert
);
5086 static int ocfs2_truncate_rec(struct inode
*inode
, handle_t
*handle
,
5087 struct ocfs2_path
*path
, int index
,
5088 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
5090 struct ocfs2_extent_tree
*et
)
5093 u32 left_cpos
, rec_range
, trunc_range
;
5094 int wants_rotate
= 0, is_rightmost_tree_rec
= 0;
5095 struct super_block
*sb
= inode
->i_sb
;
5096 struct ocfs2_path
*left_path
= NULL
;
5097 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
5098 struct ocfs2_extent_rec
*rec
;
5099 struct ocfs2_extent_block
*eb
;
5101 if (ocfs2_is_empty_extent(&el
->l_recs
[0]) && index
> 0) {
5102 ret
= ocfs2_rotate_tree_left(inode
, handle
, path
, dealloc
, et
);
5111 if (index
== (le16_to_cpu(el
->l_next_free_rec
) - 1) &&
5112 path
->p_tree_depth
) {
5114 * Check whether this is the rightmost tree record. If
5115 * we remove all of this record or part of its right
5116 * edge then an update of the record lengths above it
5119 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
5120 if (eb
->h_next_leaf_blk
== 0)
5121 is_rightmost_tree_rec
= 1;
5124 rec
= &el
->l_recs
[index
];
5125 if (index
== 0 && path
->p_tree_depth
&&
5126 le32_to_cpu(rec
->e_cpos
) == cpos
) {
5128 * Changing the leftmost offset (via partial or whole
5129 * record truncate) of an interior (or rightmost) path
5130 * means we have to update the subtree that is formed
5131 * by this leaf and the one to it's left.
5133 * There are two cases we can skip:
5134 * 1) Path is the leftmost one in our inode tree.
5135 * 2) The leaf is rightmost and will be empty after
5136 * we remove the extent record - the rotate code
5137 * knows how to update the newly formed edge.
5140 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, path
,
5147 if (left_cpos
&& le16_to_cpu(el
->l_next_free_rec
) > 1) {
5148 left_path
= ocfs2_new_path_from_path(path
);
5155 ret
= ocfs2_find_path(inode
, left_path
, left_cpos
);
5163 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
5164 handle
->h_buffer_credits
,
5171 ret
= ocfs2_journal_access_path(inode
, handle
, path
);
5177 ret
= ocfs2_journal_access_path(inode
, handle
, left_path
);
5183 rec_range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
5184 trunc_range
= cpos
+ len
;
5186 if (le32_to_cpu(rec
->e_cpos
) == cpos
&& rec_range
== trunc_range
) {
5189 memset(rec
, 0, sizeof(*rec
));
5190 ocfs2_cleanup_merge(el
, index
);
5193 next_free
= le16_to_cpu(el
->l_next_free_rec
);
5194 if (is_rightmost_tree_rec
&& next_free
> 1) {
5196 * We skip the edge update if this path will
5197 * be deleted by the rotate code.
5199 rec
= &el
->l_recs
[next_free
- 1];
5200 ocfs2_adjust_rightmost_records(inode
, handle
, path
,
5203 } else if (le32_to_cpu(rec
->e_cpos
) == cpos
) {
5204 /* Remove leftmost portion of the record. */
5205 le32_add_cpu(&rec
->e_cpos
, len
);
5206 le64_add_cpu(&rec
->e_blkno
, ocfs2_clusters_to_blocks(sb
, len
));
5207 le16_add_cpu(&rec
->e_leaf_clusters
, -len
);
5208 } else if (rec_range
== trunc_range
) {
5209 /* Remove rightmost portion of the record */
5210 le16_add_cpu(&rec
->e_leaf_clusters
, -len
);
5211 if (is_rightmost_tree_rec
)
5212 ocfs2_adjust_rightmost_records(inode
, handle
, path
, rec
);
5214 /* Caller should have trapped this. */
5215 mlog(ML_ERROR
, "Inode %llu: Invalid record truncate: (%u, %u) "
5216 "(%u, %u)\n", (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
5217 le32_to_cpu(rec
->e_cpos
),
5218 le16_to_cpu(rec
->e_leaf_clusters
), cpos
, len
);
5225 subtree_index
= ocfs2_find_subtree_root(inode
, left_path
, path
);
5226 ocfs2_complete_edge_insert(inode
, handle
, left_path
, path
,
5230 ocfs2_journal_dirty(handle
, path_leaf_bh(path
));
5232 ret
= ocfs2_rotate_tree_left(inode
, handle
, path
, dealloc
, et
);
5239 ocfs2_free_path(left_path
);
5243 int ocfs2_remove_extent(struct inode
*inode
,
5244 struct ocfs2_extent_tree
*et
,
5245 u32 cpos
, u32 len
, handle_t
*handle
,
5246 struct ocfs2_alloc_context
*meta_ac
,
5247 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
5250 u32 rec_range
, trunc_range
;
5251 struct ocfs2_extent_rec
*rec
;
5252 struct ocfs2_extent_list
*el
;
5253 struct ocfs2_path
*path
= NULL
;
5255 ocfs2_extent_map_trunc(inode
, 0);
5257 path
= ocfs2_new_path_from_et(et
);
5264 ret
= ocfs2_find_path(inode
, path
, cpos
);
5270 el
= path_leaf_el(path
);
5271 index
= ocfs2_search_extent_list(el
, cpos
);
5272 if (index
== -1 || index
>= le16_to_cpu(el
->l_next_free_rec
)) {
5273 ocfs2_error(inode
->i_sb
,
5274 "Inode %llu has an extent at cpos %u which can no "
5275 "longer be found.\n",
5276 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, cpos
);
5282 * We have 3 cases of extent removal:
5283 * 1) Range covers the entire extent rec
5284 * 2) Range begins or ends on one edge of the extent rec
5285 * 3) Range is in the middle of the extent rec (no shared edges)
5287 * For case 1 we remove the extent rec and left rotate to
5290 * For case 2 we just shrink the existing extent rec, with a
5291 * tree update if the shrinking edge is also the edge of an
5294 * For case 3 we do a right split to turn the extent rec into
5295 * something case 2 can handle.
5297 rec
= &el
->l_recs
[index
];
5298 rec_range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
5299 trunc_range
= cpos
+ len
;
5301 BUG_ON(cpos
< le32_to_cpu(rec
->e_cpos
) || trunc_range
> rec_range
);
5303 mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5304 "(cpos %u, len %u)\n",
5305 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, cpos
, len
, index
,
5306 le32_to_cpu(rec
->e_cpos
), ocfs2_rec_clusters(el
, rec
));
5308 if (le32_to_cpu(rec
->e_cpos
) == cpos
|| rec_range
== trunc_range
) {
5309 ret
= ocfs2_truncate_rec(inode
, handle
, path
, index
, dealloc
,
5316 ret
= ocfs2_split_tree(inode
, et
, handle
, path
, index
,
5317 trunc_range
, meta_ac
);
5324 * The split could have manipulated the tree enough to
5325 * move the record location, so we have to look for it again.
5327 ocfs2_reinit_path(path
, 1);
5329 ret
= ocfs2_find_path(inode
, path
, cpos
);
5335 el
= path_leaf_el(path
);
5336 index
= ocfs2_search_extent_list(el
, cpos
);
5337 if (index
== -1 || index
>= le16_to_cpu(el
->l_next_free_rec
)) {
5338 ocfs2_error(inode
->i_sb
,
5339 "Inode %llu: split at cpos %u lost record.",
5340 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
5347 * Double check our values here. If anything is fishy,
5348 * it's easier to catch it at the top level.
5350 rec
= &el
->l_recs
[index
];
5351 rec_range
= le32_to_cpu(rec
->e_cpos
) +
5352 ocfs2_rec_clusters(el
, rec
);
5353 if (rec_range
!= trunc_range
) {
5354 ocfs2_error(inode
->i_sb
,
5355 "Inode %llu: error after split at cpos %u"
5356 "trunc len %u, existing record is (%u,%u)",
5357 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
5358 cpos
, len
, le32_to_cpu(rec
->e_cpos
),
5359 ocfs2_rec_clusters(el
, rec
));
5364 ret
= ocfs2_truncate_rec(inode
, handle
, path
, index
, dealloc
,
5373 ocfs2_free_path(path
);
5377 int ocfs2_remove_btree_range(struct inode
*inode
,
5378 struct ocfs2_extent_tree
*et
,
5379 u32 cpos
, u32 phys_cpos
, u32 len
,
5380 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
5383 u64 phys_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, phys_cpos
);
5384 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
5385 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5387 struct ocfs2_alloc_context
*meta_ac
= NULL
;
5389 ret
= ocfs2_lock_allocators(inode
, et
, 0, 1, NULL
, &meta_ac
);
5395 mutex_lock(&tl_inode
->i_mutex
);
5397 if (ocfs2_truncate_log_needs_flush(osb
)) {
5398 ret
= __ocfs2_flush_truncate_log(osb
);
5405 handle
= ocfs2_start_trans(osb
, ocfs2_remove_extent_credits(osb
->sb
));
5406 if (IS_ERR(handle
)) {
5407 ret
= PTR_ERR(handle
);
5412 ret
= ocfs2_et_root_journal_access(handle
, inode
, et
,
5413 OCFS2_JOURNAL_ACCESS_WRITE
);
5419 vfs_dq_free_space_nodirty(inode
,
5420 ocfs2_clusters_to_bytes(inode
->i_sb
, len
));
5422 ret
= ocfs2_remove_extent(inode
, et
, cpos
, len
, handle
, meta_ac
,
5429 ocfs2_et_update_clusters(inode
, et
, -len
);
5431 ret
= ocfs2_journal_dirty(handle
, et
->et_root_bh
);
5437 ret
= ocfs2_truncate_log_append(osb
, handle
, phys_blkno
, len
);
5442 ocfs2_commit_trans(osb
, handle
);
5444 mutex_unlock(&tl_inode
->i_mutex
);
5447 ocfs2_free_alloc_context(meta_ac
);
5452 int ocfs2_truncate_log_needs_flush(struct ocfs2_super
*osb
)
5454 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5455 struct ocfs2_dinode
*di
;
5456 struct ocfs2_truncate_log
*tl
;
5458 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5459 tl
= &di
->id2
.i_dealloc
;
5461 mlog_bug_on_msg(le16_to_cpu(tl
->tl_used
) > le16_to_cpu(tl
->tl_count
),
5462 "slot %d, invalid truncate log parameters: used = "
5463 "%u, count = %u\n", osb
->slot_num
,
5464 le16_to_cpu(tl
->tl_used
), le16_to_cpu(tl
->tl_count
));
5465 return le16_to_cpu(tl
->tl_used
) == le16_to_cpu(tl
->tl_count
);
5468 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log
*tl
,
5469 unsigned int new_start
)
5471 unsigned int tail_index
;
5472 unsigned int current_tail
;
5474 /* No records, nothing to coalesce */
5475 if (!le16_to_cpu(tl
->tl_used
))
5478 tail_index
= le16_to_cpu(tl
->tl_used
) - 1;
5479 current_tail
= le32_to_cpu(tl
->tl_recs
[tail_index
].t_start
);
5480 current_tail
+= le32_to_cpu(tl
->tl_recs
[tail_index
].t_clusters
);
5482 return current_tail
== new_start
;
5485 int ocfs2_truncate_log_append(struct ocfs2_super
*osb
,
5488 unsigned int num_clusters
)
5491 unsigned int start_cluster
, tl_count
;
5492 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5493 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5494 struct ocfs2_dinode
*di
;
5495 struct ocfs2_truncate_log
*tl
;
5497 mlog_entry("start_blk = %llu, num_clusters = %u\n",
5498 (unsigned long long)start_blk
, num_clusters
);
5500 BUG_ON(mutex_trylock(&tl_inode
->i_mutex
));
5502 start_cluster
= ocfs2_blocks_to_clusters(osb
->sb
, start_blk
);
5504 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5506 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5507 * by the underlying call to ocfs2_read_inode_block(), so any
5508 * corruption is a code bug */
5509 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
5511 tl
= &di
->id2
.i_dealloc
;
5512 tl_count
= le16_to_cpu(tl
->tl_count
);
5513 mlog_bug_on_msg(tl_count
> ocfs2_truncate_recs_per_inode(osb
->sb
) ||
5515 "Truncate record count on #%llu invalid "
5516 "wanted %u, actual %u\n",
5517 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
,
5518 ocfs2_truncate_recs_per_inode(osb
->sb
),
5519 le16_to_cpu(tl
->tl_count
));
5521 /* Caller should have known to flush before calling us. */
5522 index
= le16_to_cpu(tl
->tl_used
);
5523 if (index
>= tl_count
) {
5529 status
= ocfs2_journal_access_di(handle
, tl_inode
, tl_bh
,
5530 OCFS2_JOURNAL_ACCESS_WRITE
);
5536 mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5537 "%llu (index = %d)\n", num_clusters
, start_cluster
,
5538 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
, index
);
5540 if (ocfs2_truncate_log_can_coalesce(tl
, start_cluster
)) {
5542 * Move index back to the record we are coalescing with.
5543 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5547 num_clusters
+= le32_to_cpu(tl
->tl_recs
[index
].t_clusters
);
5548 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5549 index
, le32_to_cpu(tl
->tl_recs
[index
].t_start
),
5552 tl
->tl_recs
[index
].t_start
= cpu_to_le32(start_cluster
);
5553 tl
->tl_used
= cpu_to_le16(index
+ 1);
5555 tl
->tl_recs
[index
].t_clusters
= cpu_to_le32(num_clusters
);
5557 status
= ocfs2_journal_dirty(handle
, tl_bh
);
5568 static int ocfs2_replay_truncate_records(struct ocfs2_super
*osb
,
5570 struct inode
*data_alloc_inode
,
5571 struct buffer_head
*data_alloc_bh
)
5575 unsigned int num_clusters
;
5577 struct ocfs2_truncate_rec rec
;
5578 struct ocfs2_dinode
*di
;
5579 struct ocfs2_truncate_log
*tl
;
5580 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5581 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5585 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5586 tl
= &di
->id2
.i_dealloc
;
5587 i
= le16_to_cpu(tl
->tl_used
) - 1;
5589 /* Caller has given us at least enough credits to
5590 * update the truncate log dinode */
5591 status
= ocfs2_journal_access_di(handle
, tl_inode
, tl_bh
,
5592 OCFS2_JOURNAL_ACCESS_WRITE
);
5598 tl
->tl_used
= cpu_to_le16(i
);
5600 status
= ocfs2_journal_dirty(handle
, tl_bh
);
5606 /* TODO: Perhaps we can calculate the bulk of the
5607 * credits up front rather than extending like
5609 status
= ocfs2_extend_trans(handle
,
5610 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC
);
5616 rec
= tl
->tl_recs
[i
];
5617 start_blk
= ocfs2_clusters_to_blocks(data_alloc_inode
->i_sb
,
5618 le32_to_cpu(rec
.t_start
));
5619 num_clusters
= le32_to_cpu(rec
.t_clusters
);
5621 /* if start_blk is not set, we ignore the record as
5624 mlog(0, "free record %d, start = %u, clusters = %u\n",
5625 i
, le32_to_cpu(rec
.t_start
), num_clusters
);
5627 status
= ocfs2_free_clusters(handle
, data_alloc_inode
,
5628 data_alloc_bh
, start_blk
,
5643 /* Expects you to already be holding tl_inode->i_mutex */
5644 int __ocfs2_flush_truncate_log(struct ocfs2_super
*osb
)
5647 unsigned int num_to_flush
;
5649 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5650 struct inode
*data_alloc_inode
= NULL
;
5651 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5652 struct buffer_head
*data_alloc_bh
= NULL
;
5653 struct ocfs2_dinode
*di
;
5654 struct ocfs2_truncate_log
*tl
;
5658 BUG_ON(mutex_trylock(&tl_inode
->i_mutex
));
5660 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5662 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5663 * by the underlying call to ocfs2_read_inode_block(), so any
5664 * corruption is a code bug */
5665 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
5667 tl
= &di
->id2
.i_dealloc
;
5668 num_to_flush
= le16_to_cpu(tl
->tl_used
);
5669 mlog(0, "Flush %u records from truncate log #%llu\n",
5670 num_to_flush
, (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
);
5671 if (!num_to_flush
) {
5676 data_alloc_inode
= ocfs2_get_system_file_inode(osb
,
5677 GLOBAL_BITMAP_SYSTEM_INODE
,
5678 OCFS2_INVALID_SLOT
);
5679 if (!data_alloc_inode
) {
5681 mlog(ML_ERROR
, "Could not get bitmap inode!\n");
5685 mutex_lock(&data_alloc_inode
->i_mutex
);
5687 status
= ocfs2_inode_lock(data_alloc_inode
, &data_alloc_bh
, 1);
5693 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
5694 if (IS_ERR(handle
)) {
5695 status
= PTR_ERR(handle
);
5700 status
= ocfs2_replay_truncate_records(osb
, handle
, data_alloc_inode
,
5705 ocfs2_commit_trans(osb
, handle
);
5708 brelse(data_alloc_bh
);
5709 ocfs2_inode_unlock(data_alloc_inode
, 1);
5712 mutex_unlock(&data_alloc_inode
->i_mutex
);
5713 iput(data_alloc_inode
);
5720 int ocfs2_flush_truncate_log(struct ocfs2_super
*osb
)
5723 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5725 mutex_lock(&tl_inode
->i_mutex
);
5726 status
= __ocfs2_flush_truncate_log(osb
);
5727 mutex_unlock(&tl_inode
->i_mutex
);
5732 static void ocfs2_truncate_log_worker(struct work_struct
*work
)
5735 struct ocfs2_super
*osb
=
5736 container_of(work
, struct ocfs2_super
,
5737 osb_truncate_log_wq
.work
);
5741 status
= ocfs2_flush_truncate_log(osb
);
5745 ocfs2_init_inode_steal_slot(osb
);
5750 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5751 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super
*osb
,
5754 if (osb
->osb_tl_inode
) {
5755 /* We want to push off log flushes while truncates are
5758 cancel_delayed_work(&osb
->osb_truncate_log_wq
);
5760 queue_delayed_work(ocfs2_wq
, &osb
->osb_truncate_log_wq
,
5761 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL
);
5765 static int ocfs2_get_truncate_log_info(struct ocfs2_super
*osb
,
5767 struct inode
**tl_inode
,
5768 struct buffer_head
**tl_bh
)
5771 struct inode
*inode
= NULL
;
5772 struct buffer_head
*bh
= NULL
;
5774 inode
= ocfs2_get_system_file_inode(osb
,
5775 TRUNCATE_LOG_SYSTEM_INODE
,
5779 mlog(ML_ERROR
, "Could not get load truncate log inode!\n");
5783 status
= ocfs2_read_inode_block(inode
, &bh
);
5797 /* called during the 1st stage of node recovery. we stamp a clean
5798 * truncate log and pass back a copy for processing later. if the
5799 * truncate log does not require processing, a *tl_copy is set to
5801 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super
*osb
,
5803 struct ocfs2_dinode
**tl_copy
)
5806 struct inode
*tl_inode
= NULL
;
5807 struct buffer_head
*tl_bh
= NULL
;
5808 struct ocfs2_dinode
*di
;
5809 struct ocfs2_truncate_log
*tl
;
5813 mlog(0, "recover truncate log from slot %d\n", slot_num
);
5815 status
= ocfs2_get_truncate_log_info(osb
, slot_num
, &tl_inode
, &tl_bh
);
5821 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5823 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's
5824 * validated by the underlying call to ocfs2_read_inode_block(),
5825 * so any corruption is a code bug */
5826 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
5828 tl
= &di
->id2
.i_dealloc
;
5829 if (le16_to_cpu(tl
->tl_used
)) {
5830 mlog(0, "We'll have %u logs to recover\n",
5831 le16_to_cpu(tl
->tl_used
));
5833 *tl_copy
= kmalloc(tl_bh
->b_size
, GFP_KERNEL
);
5840 /* Assuming the write-out below goes well, this copy
5841 * will be passed back to recovery for processing. */
5842 memcpy(*tl_copy
, tl_bh
->b_data
, tl_bh
->b_size
);
5844 /* All we need to do to clear the truncate log is set
5848 ocfs2_compute_meta_ecc(osb
->sb
, tl_bh
->b_data
, &di
->i_check
);
5849 status
= ocfs2_write_block(osb
, tl_bh
, tl_inode
);
5861 if (status
< 0 && (*tl_copy
)) {
5870 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super
*osb
,
5871 struct ocfs2_dinode
*tl_copy
)
5875 unsigned int clusters
, num_recs
, start_cluster
;
5878 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5879 struct ocfs2_truncate_log
*tl
;
5883 if (OCFS2_I(tl_inode
)->ip_blkno
== le64_to_cpu(tl_copy
->i_blkno
)) {
5884 mlog(ML_ERROR
, "Asked to recover my own truncate log!\n");
5888 tl
= &tl_copy
->id2
.i_dealloc
;
5889 num_recs
= le16_to_cpu(tl
->tl_used
);
5890 mlog(0, "cleanup %u records from %llu\n", num_recs
,
5891 (unsigned long long)le64_to_cpu(tl_copy
->i_blkno
));
5893 mutex_lock(&tl_inode
->i_mutex
);
5894 for(i
= 0; i
< num_recs
; i
++) {
5895 if (ocfs2_truncate_log_needs_flush(osb
)) {
5896 status
= __ocfs2_flush_truncate_log(osb
);
5903 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
5904 if (IS_ERR(handle
)) {
5905 status
= PTR_ERR(handle
);
5910 clusters
= le32_to_cpu(tl
->tl_recs
[i
].t_clusters
);
5911 start_cluster
= le32_to_cpu(tl
->tl_recs
[i
].t_start
);
5912 start_blk
= ocfs2_clusters_to_blocks(osb
->sb
, start_cluster
);
5914 status
= ocfs2_truncate_log_append(osb
, handle
,
5915 start_blk
, clusters
);
5916 ocfs2_commit_trans(osb
, handle
);
5924 mutex_unlock(&tl_inode
->i_mutex
);
5930 void ocfs2_truncate_log_shutdown(struct ocfs2_super
*osb
)
5933 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5938 cancel_delayed_work(&osb
->osb_truncate_log_wq
);
5939 flush_workqueue(ocfs2_wq
);
5941 status
= ocfs2_flush_truncate_log(osb
);
5945 brelse(osb
->osb_tl_bh
);
5946 iput(osb
->osb_tl_inode
);
5952 int ocfs2_truncate_log_init(struct ocfs2_super
*osb
)
5955 struct inode
*tl_inode
= NULL
;
5956 struct buffer_head
*tl_bh
= NULL
;
5960 status
= ocfs2_get_truncate_log_info(osb
,
5967 /* ocfs2_truncate_log_shutdown keys on the existence of
5968 * osb->osb_tl_inode so we don't set any of the osb variables
5969 * until we're sure all is well. */
5970 INIT_DELAYED_WORK(&osb
->osb_truncate_log_wq
,
5971 ocfs2_truncate_log_worker
);
5972 osb
->osb_tl_bh
= tl_bh
;
5973 osb
->osb_tl_inode
= tl_inode
;
5980 * Delayed de-allocation of suballocator blocks.
5982 * Some sets of block de-allocations might involve multiple suballocator inodes.
5984 * The locking for this can get extremely complicated, especially when
5985 * the suballocator inodes to delete from aren't known until deep
5986 * within an unrelated codepath.
5988 * ocfs2_extent_block structures are a good example of this - an inode
5989 * btree could have been grown by any number of nodes each allocating
5990 * out of their own suballoc inode.
5992 * These structures allow the delay of block de-allocation until a
5993 * later time, when locking of multiple cluster inodes won't cause
5998 * Describe a single bit freed from a suballocator. For the block
5999 * suballocators, it represents one block. For the global cluster
6000 * allocator, it represents some clusters and free_bit indicates
6003 struct ocfs2_cached_block_free
{
6004 struct ocfs2_cached_block_free
*free_next
;
6006 unsigned int free_bit
;
6009 struct ocfs2_per_slot_free_list
{
6010 struct ocfs2_per_slot_free_list
*f_next_suballocator
;
6013 struct ocfs2_cached_block_free
*f_first
;
6016 static int ocfs2_free_cached_blocks(struct ocfs2_super
*osb
,
6019 struct ocfs2_cached_block_free
*head
)
6024 struct inode
*inode
;
6025 struct buffer_head
*di_bh
= NULL
;
6026 struct ocfs2_cached_block_free
*tmp
;
6028 inode
= ocfs2_get_system_file_inode(osb
, sysfile_type
, slot
);
6035 mutex_lock(&inode
->i_mutex
);
6037 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
6043 handle
= ocfs2_start_trans(osb
, OCFS2_SUBALLOC_FREE
);
6044 if (IS_ERR(handle
)) {
6045 ret
= PTR_ERR(handle
);
6051 bg_blkno
= ocfs2_which_suballoc_group(head
->free_blk
,
6053 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6054 head
->free_bit
, (unsigned long long)head
->free_blk
);
6056 ret
= ocfs2_free_suballoc_bits(handle
, inode
, di_bh
,
6057 head
->free_bit
, bg_blkno
, 1);
6063 ret
= ocfs2_extend_trans(handle
, OCFS2_SUBALLOC_FREE
);
6070 head
= head
->free_next
;
6075 ocfs2_commit_trans(osb
, handle
);
6078 ocfs2_inode_unlock(inode
, 1);
6081 mutex_unlock(&inode
->i_mutex
);
6085 /* Premature exit may have left some dangling items. */
6087 head
= head
->free_next
;
6094 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
6095 u64 blkno
, unsigned int bit
)
6098 struct ocfs2_cached_block_free
*item
;
6100 item
= kmalloc(sizeof(*item
), GFP_NOFS
);
6107 mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6108 bit
, (unsigned long long)blkno
);
6110 item
->free_blk
= blkno
;
6111 item
->free_bit
= bit
;
6112 item
->free_next
= ctxt
->c_global_allocator
;
6114 ctxt
->c_global_allocator
= item
;
6118 static int ocfs2_free_cached_clusters(struct ocfs2_super
*osb
,
6119 struct ocfs2_cached_block_free
*head
)
6121 struct ocfs2_cached_block_free
*tmp
;
6122 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6126 mutex_lock(&tl_inode
->i_mutex
);
6129 if (ocfs2_truncate_log_needs_flush(osb
)) {
6130 ret
= __ocfs2_flush_truncate_log(osb
);
6137 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
6138 if (IS_ERR(handle
)) {
6139 ret
= PTR_ERR(handle
);
6144 ret
= ocfs2_truncate_log_append(osb
, handle
, head
->free_blk
,
6147 ocfs2_commit_trans(osb
, handle
);
6149 head
= head
->free_next
;
6158 mutex_unlock(&tl_inode
->i_mutex
);
6161 /* Premature exit may have left some dangling items. */
6163 head
= head
->free_next
;
6170 int ocfs2_run_deallocs(struct ocfs2_super
*osb
,
6171 struct ocfs2_cached_dealloc_ctxt
*ctxt
)
6174 struct ocfs2_per_slot_free_list
*fl
;
6179 while (ctxt
->c_first_suballocator
) {
6180 fl
= ctxt
->c_first_suballocator
;
6183 mlog(0, "Free items: (type %u, slot %d)\n",
6184 fl
->f_inode_type
, fl
->f_slot
);
6185 ret2
= ocfs2_free_cached_blocks(osb
,
6195 ctxt
->c_first_suballocator
= fl
->f_next_suballocator
;
6199 if (ctxt
->c_global_allocator
) {
6200 ret2
= ocfs2_free_cached_clusters(osb
,
6201 ctxt
->c_global_allocator
);
6207 ctxt
->c_global_allocator
= NULL
;
6213 static struct ocfs2_per_slot_free_list
*
6214 ocfs2_find_per_slot_free_list(int type
,
6216 struct ocfs2_cached_dealloc_ctxt
*ctxt
)
6218 struct ocfs2_per_slot_free_list
*fl
= ctxt
->c_first_suballocator
;
6221 if (fl
->f_inode_type
== type
&& fl
->f_slot
== slot
)
6224 fl
= fl
->f_next_suballocator
;
6227 fl
= kmalloc(sizeof(*fl
), GFP_NOFS
);
6229 fl
->f_inode_type
= type
;
6232 fl
->f_next_suballocator
= ctxt
->c_first_suballocator
;
6234 ctxt
->c_first_suballocator
= fl
;
6239 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
6240 int type
, int slot
, u64 blkno
,
6244 struct ocfs2_per_slot_free_list
*fl
;
6245 struct ocfs2_cached_block_free
*item
;
6247 fl
= ocfs2_find_per_slot_free_list(type
, slot
, ctxt
);
6254 item
= kmalloc(sizeof(*item
), GFP_NOFS
);
6261 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6262 type
, slot
, bit
, (unsigned long long)blkno
);
6264 item
->free_blk
= blkno
;
6265 item
->free_bit
= bit
;
6266 item
->free_next
= fl
->f_first
;
6275 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
6276 struct ocfs2_extent_block
*eb
)
6278 return ocfs2_cache_block_dealloc(ctxt
, EXTENT_ALLOC_SYSTEM_INODE
,
6279 le16_to_cpu(eb
->h_suballoc_slot
),
6280 le64_to_cpu(eb
->h_blkno
),
6281 le16_to_cpu(eb
->h_suballoc_bit
));
6284 /* This function will figure out whether the currently last extent
6285 * block will be deleted, and if it will, what the new last extent
6286 * block will be so we can update his h_next_leaf_blk field, as well
6287 * as the dinodes i_last_eb_blk */
6288 static int ocfs2_find_new_last_ext_blk(struct inode
*inode
,
6289 unsigned int clusters_to_del
,
6290 struct ocfs2_path
*path
,
6291 struct buffer_head
**new_last_eb
)
6293 int next_free
, ret
= 0;
6295 struct ocfs2_extent_rec
*rec
;
6296 struct ocfs2_extent_block
*eb
;
6297 struct ocfs2_extent_list
*el
;
6298 struct buffer_head
*bh
= NULL
;
6300 *new_last_eb
= NULL
;
6302 /* we have no tree, so of course, no last_eb. */
6303 if (!path
->p_tree_depth
)
6306 /* trunc to zero special case - this makes tree_depth = 0
6307 * regardless of what it is. */
6308 if (OCFS2_I(inode
)->ip_clusters
== clusters_to_del
)
6311 el
= path_leaf_el(path
);
6312 BUG_ON(!el
->l_next_free_rec
);
6315 * Make sure that this extent list will actually be empty
6316 * after we clear away the data. We can shortcut out if
6317 * there's more than one non-empty extent in the
6318 * list. Otherwise, a check of the remaining extent is
6321 next_free
= le16_to_cpu(el
->l_next_free_rec
);
6323 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
6327 /* We may have a valid extent in index 1, check it. */
6329 rec
= &el
->l_recs
[1];
6332 * Fall through - no more nonempty extents, so we want
6333 * to delete this leaf.
6339 rec
= &el
->l_recs
[0];
6344 * Check it we'll only be trimming off the end of this
6347 if (le16_to_cpu(rec
->e_leaf_clusters
) > clusters_to_del
)
6351 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, path
, &cpos
);
6357 ret
= ocfs2_find_leaf(inode
, path_root_el(path
), cpos
, &bh
);
6363 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
6366 /* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block().
6367 * Any corruption is a code bug. */
6368 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb
));
6371 get_bh(*new_last_eb
);
6372 mlog(0, "returning block %llu, (cpos: %u)\n",
6373 (unsigned long long)le64_to_cpu(eb
->h_blkno
), cpos
);
6381 * Trim some clusters off the rightmost edge of a tree. Only called
6384 * The caller needs to:
6385 * - start journaling of each path component.
6386 * - compute and fully set up any new last ext block
6388 static int ocfs2_trim_tree(struct inode
*inode
, struct ocfs2_path
*path
,
6389 handle_t
*handle
, struct ocfs2_truncate_context
*tc
,
6390 u32 clusters_to_del
, u64
*delete_start
)
6392 int ret
, i
, index
= path
->p_tree_depth
;
6395 struct buffer_head
*bh
;
6396 struct ocfs2_extent_list
*el
;
6397 struct ocfs2_extent_rec
*rec
;
6401 while (index
>= 0) {
6402 bh
= path
->p_node
[index
].bh
;
6403 el
= path
->p_node
[index
].el
;
6405 mlog(0, "traveling tree (index = %d, block = %llu)\n",
6406 index
, (unsigned long long)bh
->b_blocknr
);
6408 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) == 0);
6411 (path
->p_tree_depth
- le16_to_cpu(el
->l_tree_depth
))) {
6412 ocfs2_error(inode
->i_sb
,
6413 "Inode %lu has invalid ext. block %llu",
6415 (unsigned long long)bh
->b_blocknr
);
6421 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
6422 rec
= &el
->l_recs
[i
];
6424 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6425 "next = %u\n", i
, le32_to_cpu(rec
->e_cpos
),
6426 ocfs2_rec_clusters(el
, rec
),
6427 (unsigned long long)le64_to_cpu(rec
->e_blkno
),
6428 le16_to_cpu(el
->l_next_free_rec
));
6430 BUG_ON(ocfs2_rec_clusters(el
, rec
) < clusters_to_del
);
6432 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
6434 * If the leaf block contains a single empty
6435 * extent and no records, we can just remove
6438 if (i
== 0 && ocfs2_is_empty_extent(rec
)) {
6440 sizeof(struct ocfs2_extent_rec
));
6441 el
->l_next_free_rec
= cpu_to_le16(0);
6447 * Remove any empty extents by shifting things
6448 * left. That should make life much easier on
6449 * the code below. This condition is rare
6450 * enough that we shouldn't see a performance
6453 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
6454 le16_add_cpu(&el
->l_next_free_rec
, -1);
6457 i
< le16_to_cpu(el
->l_next_free_rec
); i
++)
6458 el
->l_recs
[i
] = el
->l_recs
[i
+ 1];
6460 memset(&el
->l_recs
[i
], 0,
6461 sizeof(struct ocfs2_extent_rec
));
6464 * We've modified our extent list. The
6465 * simplest way to handle this change
6466 * is to being the search from the
6469 goto find_tail_record
;
6472 le16_add_cpu(&rec
->e_leaf_clusters
, -clusters_to_del
);
6475 * We'll use "new_edge" on our way back up the
6476 * tree to know what our rightmost cpos is.
6478 new_edge
= le16_to_cpu(rec
->e_leaf_clusters
);
6479 new_edge
+= le32_to_cpu(rec
->e_cpos
);
6482 * The caller will use this to delete data blocks.
6484 *delete_start
= le64_to_cpu(rec
->e_blkno
)
6485 + ocfs2_clusters_to_blocks(inode
->i_sb
,
6486 le16_to_cpu(rec
->e_leaf_clusters
));
6489 * If it's now empty, remove this record.
6491 if (le16_to_cpu(rec
->e_leaf_clusters
) == 0) {
6493 sizeof(struct ocfs2_extent_rec
));
6494 le16_add_cpu(&el
->l_next_free_rec
, -1);
6497 if (le64_to_cpu(rec
->e_blkno
) == deleted_eb
) {
6499 sizeof(struct ocfs2_extent_rec
));
6500 le16_add_cpu(&el
->l_next_free_rec
, -1);
6505 /* Can this actually happen? */
6506 if (le16_to_cpu(el
->l_next_free_rec
) == 0)
6510 * We never actually deleted any clusters
6511 * because our leaf was empty. There's no
6512 * reason to adjust the rightmost edge then.
6517 rec
->e_int_clusters
= cpu_to_le32(new_edge
);
6518 le32_add_cpu(&rec
->e_int_clusters
,
6519 -le32_to_cpu(rec
->e_cpos
));
6522 * A deleted child record should have been
6525 BUG_ON(le32_to_cpu(rec
->e_int_clusters
) == 0);
6529 ret
= ocfs2_journal_dirty(handle
, bh
);
6535 mlog(0, "extent list container %llu, after: record %d: "
6536 "(%u, %u, %llu), next = %u.\n",
6537 (unsigned long long)bh
->b_blocknr
, i
,
6538 le32_to_cpu(rec
->e_cpos
), ocfs2_rec_clusters(el
, rec
),
6539 (unsigned long long)le64_to_cpu(rec
->e_blkno
),
6540 le16_to_cpu(el
->l_next_free_rec
));
6543 * We must be careful to only attempt delete of an
6544 * extent block (and not the root inode block).
6546 if (index
> 0 && le16_to_cpu(el
->l_next_free_rec
) == 0) {
6547 struct ocfs2_extent_block
*eb
=
6548 (struct ocfs2_extent_block
*)bh
->b_data
;
6551 * Save this for use when processing the
6554 deleted_eb
= le64_to_cpu(eb
->h_blkno
);
6556 mlog(0, "deleting this extent block.\n");
6558 ocfs2_remove_from_cache(inode
, bh
);
6560 BUG_ON(ocfs2_rec_clusters(el
, &el
->l_recs
[0]));
6561 BUG_ON(le32_to_cpu(el
->l_recs
[0].e_cpos
));
6562 BUG_ON(le64_to_cpu(el
->l_recs
[0].e_blkno
));
6564 ret
= ocfs2_cache_extent_block_free(&tc
->tc_dealloc
, eb
);
6565 /* An error here is not fatal. */
6580 static int ocfs2_do_truncate(struct ocfs2_super
*osb
,
6581 unsigned int clusters_to_del
,
6582 struct inode
*inode
,
6583 struct buffer_head
*fe_bh
,
6585 struct ocfs2_truncate_context
*tc
,
6586 struct ocfs2_path
*path
)
6589 struct ocfs2_dinode
*fe
;
6590 struct ocfs2_extent_block
*last_eb
= NULL
;
6591 struct ocfs2_extent_list
*el
;
6592 struct buffer_head
*last_eb_bh
= NULL
;
6595 fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
6597 status
= ocfs2_find_new_last_ext_blk(inode
, clusters_to_del
,
6605 * Each component will be touched, so we might as well journal
6606 * here to avoid having to handle errors later.
6608 status
= ocfs2_journal_access_path(inode
, handle
, path
);
6615 status
= ocfs2_journal_access_eb(handle
, inode
, last_eb_bh
,
6616 OCFS2_JOURNAL_ACCESS_WRITE
);
6622 last_eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
6625 el
= &(fe
->id2
.i_list
);
6628 * Lower levels depend on this never happening, but it's best
6629 * to check it up here before changing the tree.
6631 if (el
->l_tree_depth
&& el
->l_recs
[0].e_int_clusters
== 0) {
6632 ocfs2_error(inode
->i_sb
,
6633 "Inode %lu has an empty extent record, depth %u\n",
6634 inode
->i_ino
, le16_to_cpu(el
->l_tree_depth
));
6639 vfs_dq_free_space_nodirty(inode
,
6640 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_del
));
6641 spin_lock(&OCFS2_I(inode
)->ip_lock
);
6642 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(fe
->i_clusters
) -
6644 spin_unlock(&OCFS2_I(inode
)->ip_lock
);
6645 le32_add_cpu(&fe
->i_clusters
, -clusters_to_del
);
6646 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
6648 status
= ocfs2_trim_tree(inode
, path
, handle
, tc
,
6649 clusters_to_del
, &delete_blk
);
6655 if (le32_to_cpu(fe
->i_clusters
) == 0) {
6656 /* trunc to zero is a special case. */
6657 el
->l_tree_depth
= 0;
6658 fe
->i_last_eb_blk
= 0;
6660 fe
->i_last_eb_blk
= last_eb
->h_blkno
;
6662 status
= ocfs2_journal_dirty(handle
, fe_bh
);
6669 /* If there will be a new last extent block, then by
6670 * definition, there cannot be any leaves to the right of
6672 last_eb
->h_next_leaf_blk
= 0;
6673 status
= ocfs2_journal_dirty(handle
, last_eb_bh
);
6681 status
= ocfs2_truncate_log_append(osb
, handle
, delete_blk
,
6695 static int ocfs2_zero_func(handle_t
*handle
, struct buffer_head
*bh
)
6697 set_buffer_uptodate(bh
);
6698 mark_buffer_dirty(bh
);
6702 static void ocfs2_map_and_dirty_page(struct inode
*inode
, handle_t
*handle
,
6703 unsigned int from
, unsigned int to
,
6704 struct page
*page
, int zero
, u64
*phys
)
6706 int ret
, partial
= 0;
6708 ret
= ocfs2_map_page_blocks(page
, phys
, inode
, from
, to
, 0);
6713 zero_user_segment(page
, from
, to
);
6716 * Need to set the buffers we zero'd into uptodate
6717 * here if they aren't - ocfs2_map_page_blocks()
6718 * might've skipped some
6720 ret
= walk_page_buffers(handle
, page_buffers(page
),
6725 else if (ocfs2_should_order_data(inode
)) {
6726 ret
= ocfs2_jbd2_file_inode(handle
, inode
);
6732 SetPageUptodate(page
);
6734 flush_dcache_page(page
);
6737 static void ocfs2_zero_cluster_pages(struct inode
*inode
, loff_t start
,
6738 loff_t end
, struct page
**pages
,
6739 int numpages
, u64 phys
, handle_t
*handle
)
6743 unsigned int from
, to
= PAGE_CACHE_SIZE
;
6744 struct super_block
*sb
= inode
->i_sb
;
6746 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb
)));
6751 to
= PAGE_CACHE_SIZE
;
6752 for(i
= 0; i
< numpages
; i
++) {
6755 from
= start
& (PAGE_CACHE_SIZE
- 1);
6756 if ((end
>> PAGE_CACHE_SHIFT
) == page
->index
)
6757 to
= end
& (PAGE_CACHE_SIZE
- 1);
6759 BUG_ON(from
> PAGE_CACHE_SIZE
);
6760 BUG_ON(to
> PAGE_CACHE_SIZE
);
6762 ocfs2_map_and_dirty_page(inode
, handle
, from
, to
, page
, 1,
6765 start
= (page
->index
+ 1) << PAGE_CACHE_SHIFT
;
6769 ocfs2_unlock_and_free_pages(pages
, numpages
);
6772 static int ocfs2_grab_eof_pages(struct inode
*inode
, loff_t start
, loff_t end
,
6773 struct page
**pages
, int *num
)
6775 int numpages
, ret
= 0;
6776 struct super_block
*sb
= inode
->i_sb
;
6777 struct address_space
*mapping
= inode
->i_mapping
;
6778 unsigned long index
;
6779 loff_t last_page_bytes
;
6781 BUG_ON(start
> end
);
6783 BUG_ON(start
>> OCFS2_SB(sb
)->s_clustersize_bits
!=
6784 (end
- 1) >> OCFS2_SB(sb
)->s_clustersize_bits
);
6787 last_page_bytes
= PAGE_ALIGN(end
);
6788 index
= start
>> PAGE_CACHE_SHIFT
;
6790 pages
[numpages
] = grab_cache_page(mapping
, index
);
6791 if (!pages
[numpages
]) {
6799 } while (index
< (last_page_bytes
>> PAGE_CACHE_SHIFT
));
6804 ocfs2_unlock_and_free_pages(pages
, numpages
);
6814 * Zero the area past i_size but still within an allocated
6815 * cluster. This avoids exposing nonzero data on subsequent file
6818 * We need to call this before i_size is updated on the inode because
6819 * otherwise block_write_full_page() will skip writeout of pages past
6820 * i_size. The new_i_size parameter is passed for this reason.
6822 int ocfs2_zero_range_for_truncate(struct inode
*inode
, handle_t
*handle
,
6823 u64 range_start
, u64 range_end
)
6825 int ret
= 0, numpages
;
6826 struct page
**pages
= NULL
;
6828 unsigned int ext_flags
;
6829 struct super_block
*sb
= inode
->i_sb
;
6832 * File systems which don't support sparse files zero on every
6835 if (!ocfs2_sparse_alloc(OCFS2_SB(sb
)))
6838 pages
= kcalloc(ocfs2_pages_per_cluster(sb
),
6839 sizeof(struct page
*), GFP_NOFS
);
6840 if (pages
== NULL
) {
6846 if (range_start
== range_end
)
6849 ret
= ocfs2_extent_map_get_blocks(inode
,
6850 range_start
>> sb
->s_blocksize_bits
,
6851 &phys
, NULL
, &ext_flags
);
6858 * Tail is a hole, or is marked unwritten. In either case, we
6859 * can count on read and write to return/push zero's.
6861 if (phys
== 0 || ext_flags
& OCFS2_EXT_UNWRITTEN
)
6864 ret
= ocfs2_grab_eof_pages(inode
, range_start
, range_end
, pages
,
6871 ocfs2_zero_cluster_pages(inode
, range_start
, range_end
, pages
,
6872 numpages
, phys
, handle
);
6875 * Initiate writeout of the pages we zero'd here. We don't
6876 * wait on them - the truncate_inode_pages() call later will
6879 ret
= do_sync_mapping_range(inode
->i_mapping
, range_start
,
6880 range_end
- 1, SYNC_FILE_RANGE_WRITE
);
6891 static void ocfs2_zero_dinode_id2_with_xattr(struct inode
*inode
,
6892 struct ocfs2_dinode
*di
)
6894 unsigned int blocksize
= 1 << inode
->i_sb
->s_blocksize_bits
;
6895 unsigned int xattrsize
= le16_to_cpu(di
->i_xattr_inline_size
);
6897 if (le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_XATTR_FL
)
6898 memset(&di
->id2
, 0, blocksize
-
6899 offsetof(struct ocfs2_dinode
, id2
) -
6902 memset(&di
->id2
, 0, blocksize
-
6903 offsetof(struct ocfs2_dinode
, id2
));
6906 void ocfs2_dinode_new_extent_list(struct inode
*inode
,
6907 struct ocfs2_dinode
*di
)
6909 ocfs2_zero_dinode_id2_with_xattr(inode
, di
);
6910 di
->id2
.i_list
.l_tree_depth
= 0;
6911 di
->id2
.i_list
.l_next_free_rec
= 0;
6912 di
->id2
.i_list
.l_count
= cpu_to_le16(
6913 ocfs2_extent_recs_per_inode_with_xattr(inode
->i_sb
, di
));
6916 void ocfs2_set_inode_data_inline(struct inode
*inode
, struct ocfs2_dinode
*di
)
6918 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
6919 struct ocfs2_inline_data
*idata
= &di
->id2
.i_data
;
6921 spin_lock(&oi
->ip_lock
);
6922 oi
->ip_dyn_features
|= OCFS2_INLINE_DATA_FL
;
6923 di
->i_dyn_features
= cpu_to_le16(oi
->ip_dyn_features
);
6924 spin_unlock(&oi
->ip_lock
);
6927 * We clear the entire i_data structure here so that all
6928 * fields can be properly initialized.
6930 ocfs2_zero_dinode_id2_with_xattr(inode
, di
);
6932 idata
->id_count
= cpu_to_le16(
6933 ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
));
6936 int ocfs2_convert_inline_data_to_extents(struct inode
*inode
,
6937 struct buffer_head
*di_bh
)
6939 int ret
, i
, has_data
, num_pages
= 0;
6941 u64
uninitialized_var(block
);
6942 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
6943 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
6944 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
6945 struct ocfs2_alloc_context
*data_ac
= NULL
;
6946 struct page
**pages
= NULL
;
6947 loff_t end
= osb
->s_clustersize
;
6948 struct ocfs2_extent_tree et
;
6951 has_data
= i_size_read(inode
) ? 1 : 0;
6954 pages
= kcalloc(ocfs2_pages_per_cluster(osb
->sb
),
6955 sizeof(struct page
*), GFP_NOFS
);
6956 if (pages
== NULL
) {
6962 ret
= ocfs2_reserve_clusters(osb
, 1, &data_ac
);
6969 handle
= ocfs2_start_trans(osb
,
6970 ocfs2_inline_to_extents_credits(osb
->sb
));
6971 if (IS_ERR(handle
)) {
6972 ret
= PTR_ERR(handle
);
6977 ret
= ocfs2_journal_access_di(handle
, inode
, di_bh
,
6978 OCFS2_JOURNAL_ACCESS_WRITE
);
6986 unsigned int page_end
;
6989 if (vfs_dq_alloc_space_nodirty(inode
,
6990 ocfs2_clusters_to_bytes(osb
->sb
, 1))) {
6996 ret
= ocfs2_claim_clusters(osb
, handle
, data_ac
, 1, &bit_off
,
7004 * Save two copies, one for insert, and one that can
7005 * be changed by ocfs2_map_and_dirty_page() below.
7007 block
= phys
= ocfs2_clusters_to_blocks(inode
->i_sb
, bit_off
);
7010 * Non sparse file systems zero on extend, so no need
7013 if (!ocfs2_sparse_alloc(osb
) &&
7014 PAGE_CACHE_SIZE
< osb
->s_clustersize
)
7015 end
= PAGE_CACHE_SIZE
;
7017 ret
= ocfs2_grab_eof_pages(inode
, 0, end
, pages
, &num_pages
);
7024 * This should populate the 1st page for us and mark
7027 ret
= ocfs2_read_inline_data(inode
, pages
[0], di_bh
);
7033 page_end
= PAGE_CACHE_SIZE
;
7034 if (PAGE_CACHE_SIZE
> osb
->s_clustersize
)
7035 page_end
= osb
->s_clustersize
;
7037 for (i
= 0; i
< num_pages
; i
++)
7038 ocfs2_map_and_dirty_page(inode
, handle
, 0, page_end
,
7039 pages
[i
], i
> 0, &phys
);
7042 spin_lock(&oi
->ip_lock
);
7043 oi
->ip_dyn_features
&= ~OCFS2_INLINE_DATA_FL
;
7044 di
->i_dyn_features
= cpu_to_le16(oi
->ip_dyn_features
);
7045 spin_unlock(&oi
->ip_lock
);
7047 ocfs2_dinode_new_extent_list(inode
, di
);
7049 ocfs2_journal_dirty(handle
, di_bh
);
7053 * An error at this point should be extremely rare. If
7054 * this proves to be false, we could always re-build
7055 * the in-inode data from our pages.
7057 ocfs2_init_dinode_extent_tree(&et
, inode
, di_bh
);
7058 ret
= ocfs2_insert_extent(osb
, handle
, inode
, &et
,
7059 0, block
, 1, 0, NULL
);
7065 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
7069 if (ret
< 0 && did_quota
)
7070 vfs_dq_free_space_nodirty(inode
,
7071 ocfs2_clusters_to_bytes(osb
->sb
, 1));
7073 ocfs2_commit_trans(osb
, handle
);
7077 ocfs2_free_alloc_context(data_ac
);
7081 ocfs2_unlock_and_free_pages(pages
, num_pages
);
7089 * It is expected, that by the time you call this function,
7090 * inode->i_size and fe->i_size have been adjusted.
7092 * WARNING: This will kfree the truncate context
7094 int ocfs2_commit_truncate(struct ocfs2_super
*osb
,
7095 struct inode
*inode
,
7096 struct buffer_head
*fe_bh
,
7097 struct ocfs2_truncate_context
*tc
)
7099 int status
, i
, credits
, tl_sem
= 0;
7100 u32 clusters_to_del
, new_highest_cpos
, range
;
7101 struct ocfs2_extent_list
*el
;
7102 handle_t
*handle
= NULL
;
7103 struct inode
*tl_inode
= osb
->osb_tl_inode
;
7104 struct ocfs2_path
*path
= NULL
;
7105 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)fe_bh
->b_data
;
7109 new_highest_cpos
= ocfs2_clusters_for_bytes(osb
->sb
,
7110 i_size_read(inode
));
7112 path
= ocfs2_new_path(fe_bh
, &di
->id2
.i_list
,
7113 ocfs2_journal_access_di
);
7120 ocfs2_extent_map_trunc(inode
, new_highest_cpos
);
7124 * Check that we still have allocation to delete.
7126 if (OCFS2_I(inode
)->ip_clusters
== 0) {
7132 * Truncate always works against the rightmost tree branch.
7134 status
= ocfs2_find_path(inode
, path
, UINT_MAX
);
7140 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7141 OCFS2_I(inode
)->ip_clusters
, path
->p_tree_depth
);
7144 * By now, el will point to the extent list on the bottom most
7145 * portion of this tree. Only the tail record is considered in
7148 * We handle the following cases, in order:
7149 * - empty extent: delete the remaining branch
7150 * - remove the entire record
7151 * - remove a partial record
7152 * - no record needs to be removed (truncate has completed)
7154 el
= path_leaf_el(path
);
7155 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
7156 ocfs2_error(inode
->i_sb
,
7157 "Inode %llu has empty extent block at %llu\n",
7158 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
7159 (unsigned long long)path_leaf_bh(path
)->b_blocknr
);
7164 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
7165 range
= le32_to_cpu(el
->l_recs
[i
].e_cpos
) +
7166 ocfs2_rec_clusters(el
, &el
->l_recs
[i
]);
7167 if (i
== 0 && ocfs2_is_empty_extent(&el
->l_recs
[i
])) {
7168 clusters_to_del
= 0;
7169 } else if (le32_to_cpu(el
->l_recs
[i
].e_cpos
) >= new_highest_cpos
) {
7170 clusters_to_del
= ocfs2_rec_clusters(el
, &el
->l_recs
[i
]);
7171 } else if (range
> new_highest_cpos
) {
7172 clusters_to_del
= (ocfs2_rec_clusters(el
, &el
->l_recs
[i
]) +
7173 le32_to_cpu(el
->l_recs
[i
].e_cpos
)) -
7180 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7181 clusters_to_del
, (unsigned long long)path_leaf_bh(path
)->b_blocknr
);
7183 mutex_lock(&tl_inode
->i_mutex
);
7185 /* ocfs2_truncate_log_needs_flush guarantees us at least one
7186 * record is free for use. If there isn't any, we flush to get
7187 * an empty truncate log. */
7188 if (ocfs2_truncate_log_needs_flush(osb
)) {
7189 status
= __ocfs2_flush_truncate_log(osb
);
7196 credits
= ocfs2_calc_tree_trunc_credits(osb
->sb
, clusters_to_del
,
7197 (struct ocfs2_dinode
*)fe_bh
->b_data
,
7199 handle
= ocfs2_start_trans(osb
, credits
);
7200 if (IS_ERR(handle
)) {
7201 status
= PTR_ERR(handle
);
7207 status
= ocfs2_do_truncate(osb
, clusters_to_del
, inode
, fe_bh
, handle
,
7214 mutex_unlock(&tl_inode
->i_mutex
);
7217 ocfs2_commit_trans(osb
, handle
);
7220 ocfs2_reinit_path(path
, 1);
7223 * The check above will catch the case where we've truncated
7224 * away all allocation.
7230 ocfs2_schedule_truncate_log_flush(osb
, 1);
7233 mutex_unlock(&tl_inode
->i_mutex
);
7236 ocfs2_commit_trans(osb
, handle
);
7238 ocfs2_run_deallocs(osb
, &tc
->tc_dealloc
);
7240 ocfs2_free_path(path
);
7242 /* This will drop the ext_alloc cluster lock for us */
7243 ocfs2_free_truncate_context(tc
);
7250 * Expects the inode to already be locked.
7252 int ocfs2_prepare_truncate(struct ocfs2_super
*osb
,
7253 struct inode
*inode
,
7254 struct buffer_head
*fe_bh
,
7255 struct ocfs2_truncate_context
**tc
)
7258 unsigned int new_i_clusters
;
7259 struct ocfs2_dinode
*fe
;
7260 struct ocfs2_extent_block
*eb
;
7261 struct buffer_head
*last_eb_bh
= NULL
;
7267 new_i_clusters
= ocfs2_clusters_for_bytes(osb
->sb
,
7268 i_size_read(inode
));
7269 fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
7271 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7272 "%llu\n", le32_to_cpu(fe
->i_clusters
), new_i_clusters
,
7273 (unsigned long long)le64_to_cpu(fe
->i_size
));
7275 *tc
= kzalloc(sizeof(struct ocfs2_truncate_context
), GFP_KERNEL
);
7281 ocfs2_init_dealloc_ctxt(&(*tc
)->tc_dealloc
);
7283 if (fe
->id2
.i_list
.l_tree_depth
) {
7284 status
= ocfs2_read_extent_block(inode
,
7285 le64_to_cpu(fe
->i_last_eb_blk
),
7291 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
7294 (*tc
)->tc_last_eb_bh
= last_eb_bh
;
7300 ocfs2_free_truncate_context(*tc
);
7308 * 'start' is inclusive, 'end' is not.
7310 int ocfs2_truncate_inline(struct inode
*inode
, struct buffer_head
*di_bh
,
7311 unsigned int start
, unsigned int end
, int trunc
)
7314 unsigned int numbytes
;
7316 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
7317 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
7318 struct ocfs2_inline_data
*idata
= &di
->id2
.i_data
;
7320 if (end
> i_size_read(inode
))
7321 end
= i_size_read(inode
);
7323 BUG_ON(start
>= end
);
7325 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) ||
7326 !(le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_DATA_FL
) ||
7327 !ocfs2_supports_inline_data(osb
)) {
7328 ocfs2_error(inode
->i_sb
,
7329 "Inline data flags for inode %llu don't agree! "
7330 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7331 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
7332 le16_to_cpu(di
->i_dyn_features
),
7333 OCFS2_I(inode
)->ip_dyn_features
,
7334 osb
->s_feature_incompat
);
7339 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
7340 if (IS_ERR(handle
)) {
7341 ret
= PTR_ERR(handle
);
7346 ret
= ocfs2_journal_access_di(handle
, inode
, di_bh
,
7347 OCFS2_JOURNAL_ACCESS_WRITE
);
7353 numbytes
= end
- start
;
7354 memset(idata
->id_data
+ start
, 0, numbytes
);
7357 * No need to worry about the data page here - it's been
7358 * truncated already and inline data doesn't need it for
7359 * pushing zero's to disk, so we'll let readpage pick it up
7363 i_size_write(inode
, start
);
7364 di
->i_size
= cpu_to_le64(start
);
7367 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
7368 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
7370 di
->i_ctime
= di
->i_mtime
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
7371 di
->i_ctime_nsec
= di
->i_mtime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
7373 ocfs2_journal_dirty(handle
, di_bh
);
7376 ocfs2_commit_trans(osb
, handle
);
7382 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context
*tc
)
7385 * The caller is responsible for completing deallocation
7386 * before freeing the context.
7388 if (tc
->tc_dealloc
.c_first_suballocator
!= NULL
)
7390 "Truncate completion has non-empty dealloc context\n");
7392 brelse(tc
->tc_last_eb_bh
);