use no_pci_devices() in pci/search.c
[linux-2.6/mini2440.git] / mm / filemap.c
blobadbac104f34c80fdee280438058c2c6b0a8fe857
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
33 #include "filemap.h"
34 #include "internal.h"
37 * FIXME: remove all knowledge of the buffer layer from the core VM
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
41 #include <asm/mman.h>
43 static ssize_t
44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45 loff_t offset, unsigned long nr_segs);
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
51 * Shared mappings now work. 15.8.1995 Bruno.
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 * Lock ordering:
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
67 * ->i_mutex
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
70 * ->mmap_sem
71 * ->i_mmap_lock
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 * ->i_mutex
82 * ->i_alloc_sem (various)
84 * ->inode_lock
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
88 * ->i_mmap_lock
89 * ->anon_vma.lock (vma_adjust)
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 * ->task->proc_lock
107 * ->dcache_lock (proc_pid_lookup)
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
115 void __remove_from_page_cache(struct page *page)
117 struct address_space *mapping = page->mapping;
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
122 __dec_zone_page_state(page, NR_FILE_PAGES);
123 BUG_ON(page_mapped(page));
126 void remove_from_page_cache(struct page *page)
128 struct address_space *mapping = page->mapping;
130 BUG_ON(!PageLocked(page));
132 write_lock_irq(&mapping->tree_lock);
133 __remove_from_page_cache(page);
134 write_unlock_irq(&mapping->tree_lock);
137 static int sync_page(void *word)
139 struct address_space *mapping;
140 struct page *page;
142 page = container_of((unsigned long *)word, struct page, flags);
145 * page_mapping() is being called without PG_locked held.
146 * Some knowledge of the state and use of the page is used to
147 * reduce the requirements down to a memory barrier.
148 * The danger here is of a stale page_mapping() return value
149 * indicating a struct address_space different from the one it's
150 * associated with when it is associated with one.
151 * After smp_mb(), it's either the correct page_mapping() for
152 * the page, or an old page_mapping() and the page's own
153 * page_mapping() has gone NULL.
154 * The ->sync_page() address_space operation must tolerate
155 * page_mapping() going NULL. By an amazing coincidence,
156 * this comes about because none of the users of the page
157 * in the ->sync_page() methods make essential use of the
158 * page_mapping(), merely passing the page down to the backing
159 * device's unplug functions when it's non-NULL, which in turn
160 * ignore it for all cases but swap, where only page_private(page) is
161 * of interest. When page_mapping() does go NULL, the entire
162 * call stack gracefully ignores the page and returns.
163 * -- wli
165 smp_mb();
166 mapping = page_mapping(page);
167 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
168 mapping->a_ops->sync_page(page);
169 io_schedule();
170 return 0;
174 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
175 * @mapping: address space structure to write
176 * @start: offset in bytes where the range starts
177 * @end: offset in bytes where the range ends (inclusive)
178 * @sync_mode: enable synchronous operation
180 * Start writeback against all of a mapping's dirty pages that lie
181 * within the byte offsets <start, end> inclusive.
183 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
184 * opposed to a regular memory cleansing writeback. The difference between
185 * these two operations is that if a dirty page/buffer is encountered, it must
186 * be waited upon, and not just skipped over.
188 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
189 loff_t end, int sync_mode)
191 int ret;
192 struct writeback_control wbc = {
193 .sync_mode = sync_mode,
194 .nr_to_write = mapping->nrpages * 2,
195 .range_start = start,
196 .range_end = end,
199 if (!mapping_cap_writeback_dirty(mapping))
200 return 0;
202 ret = do_writepages(mapping, &wbc);
203 return ret;
206 static inline int __filemap_fdatawrite(struct address_space *mapping,
207 int sync_mode)
209 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
212 int filemap_fdatawrite(struct address_space *mapping)
214 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
216 EXPORT_SYMBOL(filemap_fdatawrite);
218 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
219 loff_t end)
221 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
225 * filemap_flush - mostly a non-blocking flush
226 * @mapping: target address_space
228 * This is a mostly non-blocking flush. Not suitable for data-integrity
229 * purposes - I/O may not be started against all dirty pages.
231 int filemap_flush(struct address_space *mapping)
233 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
235 EXPORT_SYMBOL(filemap_flush);
238 * wait_on_page_writeback_range - wait for writeback to complete
239 * @mapping: target address_space
240 * @start: beginning page index
241 * @end: ending page index
243 * Wait for writeback to complete against pages indexed by start->end
244 * inclusive
246 int wait_on_page_writeback_range(struct address_space *mapping,
247 pgoff_t start, pgoff_t end)
249 struct pagevec pvec;
250 int nr_pages;
251 int ret = 0;
252 pgoff_t index;
254 if (end < start)
255 return 0;
257 pagevec_init(&pvec, 0);
258 index = start;
259 while ((index <= end) &&
260 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
261 PAGECACHE_TAG_WRITEBACK,
262 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
263 unsigned i;
265 for (i = 0; i < nr_pages; i++) {
266 struct page *page = pvec.pages[i];
268 /* until radix tree lookup accepts end_index */
269 if (page->index > end)
270 continue;
272 wait_on_page_writeback(page);
273 if (PageError(page))
274 ret = -EIO;
276 pagevec_release(&pvec);
277 cond_resched();
280 /* Check for outstanding write errors */
281 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
282 ret = -ENOSPC;
283 if (test_and_clear_bit(AS_EIO, &mapping->flags))
284 ret = -EIO;
286 return ret;
290 * sync_page_range - write and wait on all pages in the passed range
291 * @inode: target inode
292 * @mapping: target address_space
293 * @pos: beginning offset in pages to write
294 * @count: number of bytes to write
296 * Write and wait upon all the pages in the passed range. This is a "data
297 * integrity" operation. It waits upon in-flight writeout before starting and
298 * waiting upon new writeout. If there was an IO error, return it.
300 * We need to re-take i_mutex during the generic_osync_inode list walk because
301 * it is otherwise livelockable.
303 int sync_page_range(struct inode *inode, struct address_space *mapping,
304 loff_t pos, loff_t count)
306 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
307 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
308 int ret;
310 if (!mapping_cap_writeback_dirty(mapping) || !count)
311 return 0;
312 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
313 if (ret == 0) {
314 mutex_lock(&inode->i_mutex);
315 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
316 mutex_unlock(&inode->i_mutex);
318 if (ret == 0)
319 ret = wait_on_page_writeback_range(mapping, start, end);
320 return ret;
322 EXPORT_SYMBOL(sync_page_range);
325 * sync_page_range_nolock
326 * @inode: target inode
327 * @mapping: target address_space
328 * @pos: beginning offset in pages to write
329 * @count: number of bytes to write
331 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
332 * as it forces O_SYNC writers to different parts of the same file
333 * to be serialised right until io completion.
335 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
336 loff_t pos, loff_t count)
338 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
339 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
340 int ret;
342 if (!mapping_cap_writeback_dirty(mapping) || !count)
343 return 0;
344 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
345 if (ret == 0)
346 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
347 if (ret == 0)
348 ret = wait_on_page_writeback_range(mapping, start, end);
349 return ret;
351 EXPORT_SYMBOL(sync_page_range_nolock);
354 * filemap_fdatawait - wait for all under-writeback pages to complete
355 * @mapping: address space structure to wait for
357 * Walk the list of under-writeback pages of the given address space
358 * and wait for all of them.
360 int filemap_fdatawait(struct address_space *mapping)
362 loff_t i_size = i_size_read(mapping->host);
364 if (i_size == 0)
365 return 0;
367 return wait_on_page_writeback_range(mapping, 0,
368 (i_size - 1) >> PAGE_CACHE_SHIFT);
370 EXPORT_SYMBOL(filemap_fdatawait);
372 int filemap_write_and_wait(struct address_space *mapping)
374 int err = 0;
376 if (mapping->nrpages) {
377 err = filemap_fdatawrite(mapping);
379 * Even if the above returned error, the pages may be
380 * written partially (e.g. -ENOSPC), so we wait for it.
381 * But the -EIO is special case, it may indicate the worst
382 * thing (e.g. bug) happened, so we avoid waiting for it.
384 if (err != -EIO) {
385 int err2 = filemap_fdatawait(mapping);
386 if (!err)
387 err = err2;
390 return err;
392 EXPORT_SYMBOL(filemap_write_and_wait);
395 * filemap_write_and_wait_range - write out & wait on a file range
396 * @mapping: the address_space for the pages
397 * @lstart: offset in bytes where the range starts
398 * @lend: offset in bytes where the range ends (inclusive)
400 * Write out and wait upon file offsets lstart->lend, inclusive.
402 * Note that `lend' is inclusive (describes the last byte to be written) so
403 * that this function can be used to write to the very end-of-file (end = -1).
405 int filemap_write_and_wait_range(struct address_space *mapping,
406 loff_t lstart, loff_t lend)
408 int err = 0;
410 if (mapping->nrpages) {
411 err = __filemap_fdatawrite_range(mapping, lstart, lend,
412 WB_SYNC_ALL);
413 /* See comment of filemap_write_and_wait() */
414 if (err != -EIO) {
415 int err2 = wait_on_page_writeback_range(mapping,
416 lstart >> PAGE_CACHE_SHIFT,
417 lend >> PAGE_CACHE_SHIFT);
418 if (!err)
419 err = err2;
422 return err;
426 * add_to_page_cache - add newly allocated pagecache pages
427 * @page: page to add
428 * @mapping: the page's address_space
429 * @offset: page index
430 * @gfp_mask: page allocation mode
432 * This function is used to add newly allocated pagecache pages;
433 * the page is new, so we can just run SetPageLocked() against it.
434 * The other page state flags were set by rmqueue().
436 * This function does not add the page to the LRU. The caller must do that.
438 int add_to_page_cache(struct page *page, struct address_space *mapping,
439 pgoff_t offset, gfp_t gfp_mask)
441 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
443 if (error == 0) {
444 write_lock_irq(&mapping->tree_lock);
445 error = radix_tree_insert(&mapping->page_tree, offset, page);
446 if (!error) {
447 page_cache_get(page);
448 SetPageLocked(page);
449 page->mapping = mapping;
450 page->index = offset;
451 mapping->nrpages++;
452 __inc_zone_page_state(page, NR_FILE_PAGES);
454 write_unlock_irq(&mapping->tree_lock);
455 radix_tree_preload_end();
457 return error;
459 EXPORT_SYMBOL(add_to_page_cache);
461 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
462 pgoff_t offset, gfp_t gfp_mask)
464 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
465 if (ret == 0)
466 lru_cache_add(page);
467 return ret;
470 #ifdef CONFIG_NUMA
471 struct page *__page_cache_alloc(gfp_t gfp)
473 if (cpuset_do_page_mem_spread()) {
474 int n = cpuset_mem_spread_node();
475 return alloc_pages_node(n, gfp, 0);
477 return alloc_pages(gfp, 0);
479 EXPORT_SYMBOL(__page_cache_alloc);
480 #endif
482 static int __sleep_on_page_lock(void *word)
484 io_schedule();
485 return 0;
489 * In order to wait for pages to become available there must be
490 * waitqueues associated with pages. By using a hash table of
491 * waitqueues where the bucket discipline is to maintain all
492 * waiters on the same queue and wake all when any of the pages
493 * become available, and for the woken contexts to check to be
494 * sure the appropriate page became available, this saves space
495 * at a cost of "thundering herd" phenomena during rare hash
496 * collisions.
498 static wait_queue_head_t *page_waitqueue(struct page *page)
500 const struct zone *zone = page_zone(page);
502 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
505 static inline void wake_up_page(struct page *page, int bit)
507 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
510 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
512 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
514 if (test_bit(bit_nr, &page->flags))
515 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
516 TASK_UNINTERRUPTIBLE);
518 EXPORT_SYMBOL(wait_on_page_bit);
521 * unlock_page - unlock a locked page
522 * @page: the page
524 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
525 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
526 * mechananism between PageLocked pages and PageWriteback pages is shared.
527 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
529 * The first mb is necessary to safely close the critical section opened by the
530 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
531 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
532 * parallel wait_on_page_locked()).
534 void fastcall unlock_page(struct page *page)
536 smp_mb__before_clear_bit();
537 if (!TestClearPageLocked(page))
538 BUG();
539 smp_mb__after_clear_bit();
540 wake_up_page(page, PG_locked);
542 EXPORT_SYMBOL(unlock_page);
545 * end_page_writeback - end writeback against a page
546 * @page: the page
548 void end_page_writeback(struct page *page)
550 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
551 if (!test_clear_page_writeback(page))
552 BUG();
554 smp_mb__after_clear_bit();
555 wake_up_page(page, PG_writeback);
557 EXPORT_SYMBOL(end_page_writeback);
560 * __lock_page - get a lock on the page, assuming we need to sleep to get it
561 * @page: the page to lock
563 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
564 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
565 * chances are that on the second loop, the block layer's plug list is empty,
566 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
568 void fastcall __lock_page(struct page *page)
570 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
572 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
573 TASK_UNINTERRUPTIBLE);
575 EXPORT_SYMBOL(__lock_page);
578 * Variant of lock_page that does not require the caller to hold a reference
579 * on the page's mapping.
581 void fastcall __lock_page_nosync(struct page *page)
583 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
584 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
585 TASK_UNINTERRUPTIBLE);
589 * find_get_page - find and get a page reference
590 * @mapping: the address_space to search
591 * @offset: the page index
593 * Is there a pagecache struct page at the given (mapping, offset) tuple?
594 * If yes, increment its refcount and return it; if no, return NULL.
596 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
598 struct page *page;
600 read_lock_irq(&mapping->tree_lock);
601 page = radix_tree_lookup(&mapping->page_tree, offset);
602 if (page)
603 page_cache_get(page);
604 read_unlock_irq(&mapping->tree_lock);
605 return page;
607 EXPORT_SYMBOL(find_get_page);
610 * find_lock_page - locate, pin and lock a pagecache page
611 * @mapping: the address_space to search
612 * @offset: the page index
614 * Locates the desired pagecache page, locks it, increments its reference
615 * count and returns its address.
617 * Returns zero if the page was not present. find_lock_page() may sleep.
619 struct page *find_lock_page(struct address_space *mapping,
620 unsigned long offset)
622 struct page *page;
624 read_lock_irq(&mapping->tree_lock);
625 repeat:
626 page = radix_tree_lookup(&mapping->page_tree, offset);
627 if (page) {
628 page_cache_get(page);
629 if (TestSetPageLocked(page)) {
630 read_unlock_irq(&mapping->tree_lock);
631 __lock_page(page);
632 read_lock_irq(&mapping->tree_lock);
634 /* Has the page been truncated while we slept? */
635 if (unlikely(page->mapping != mapping ||
636 page->index != offset)) {
637 unlock_page(page);
638 page_cache_release(page);
639 goto repeat;
643 read_unlock_irq(&mapping->tree_lock);
644 return page;
646 EXPORT_SYMBOL(find_lock_page);
649 * find_or_create_page - locate or add a pagecache page
650 * @mapping: the page's address_space
651 * @index: the page's index into the mapping
652 * @gfp_mask: page allocation mode
654 * Locates a page in the pagecache. If the page is not present, a new page
655 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
656 * LRU list. The returned page is locked and has its reference count
657 * incremented.
659 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
660 * allocation!
662 * find_or_create_page() returns the desired page's address, or zero on
663 * memory exhaustion.
665 struct page *find_or_create_page(struct address_space *mapping,
666 unsigned long index, gfp_t gfp_mask)
668 struct page *page, *cached_page = NULL;
669 int err;
670 repeat:
671 page = find_lock_page(mapping, index);
672 if (!page) {
673 if (!cached_page) {
674 cached_page =
675 __page_cache_alloc(gfp_mask);
676 if (!cached_page)
677 return NULL;
679 err = add_to_page_cache_lru(cached_page, mapping,
680 index, gfp_mask);
681 if (!err) {
682 page = cached_page;
683 cached_page = NULL;
684 } else if (err == -EEXIST)
685 goto repeat;
687 if (cached_page)
688 page_cache_release(cached_page);
689 return page;
691 EXPORT_SYMBOL(find_or_create_page);
694 * find_get_pages - gang pagecache lookup
695 * @mapping: The address_space to search
696 * @start: The starting page index
697 * @nr_pages: The maximum number of pages
698 * @pages: Where the resulting pages are placed
700 * find_get_pages() will search for and return a group of up to
701 * @nr_pages pages in the mapping. The pages are placed at @pages.
702 * find_get_pages() takes a reference against the returned pages.
704 * The search returns a group of mapping-contiguous pages with ascending
705 * indexes. There may be holes in the indices due to not-present pages.
707 * find_get_pages() returns the number of pages which were found.
709 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
710 unsigned int nr_pages, struct page **pages)
712 unsigned int i;
713 unsigned int ret;
715 read_lock_irq(&mapping->tree_lock);
716 ret = radix_tree_gang_lookup(&mapping->page_tree,
717 (void **)pages, start, nr_pages);
718 for (i = 0; i < ret; i++)
719 page_cache_get(pages[i]);
720 read_unlock_irq(&mapping->tree_lock);
721 return ret;
725 * find_get_pages_contig - gang contiguous pagecache lookup
726 * @mapping: The address_space to search
727 * @index: The starting page index
728 * @nr_pages: The maximum number of pages
729 * @pages: Where the resulting pages are placed
731 * find_get_pages_contig() works exactly like find_get_pages(), except
732 * that the returned number of pages are guaranteed to be contiguous.
734 * find_get_pages_contig() returns the number of pages which were found.
736 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
737 unsigned int nr_pages, struct page **pages)
739 unsigned int i;
740 unsigned int ret;
742 read_lock_irq(&mapping->tree_lock);
743 ret = radix_tree_gang_lookup(&mapping->page_tree,
744 (void **)pages, index, nr_pages);
745 for (i = 0; i < ret; i++) {
746 if (pages[i]->mapping == NULL || pages[i]->index != index)
747 break;
749 page_cache_get(pages[i]);
750 index++;
752 read_unlock_irq(&mapping->tree_lock);
753 return i;
755 EXPORT_SYMBOL(find_get_pages_contig);
758 * find_get_pages_tag - find and return pages that match @tag
759 * @mapping: the address_space to search
760 * @index: the starting page index
761 * @tag: the tag index
762 * @nr_pages: the maximum number of pages
763 * @pages: where the resulting pages are placed
765 * Like find_get_pages, except we only return pages which are tagged with
766 * @tag. We update @index to index the next page for the traversal.
768 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
769 int tag, unsigned int nr_pages, struct page **pages)
771 unsigned int i;
772 unsigned int ret;
774 read_lock_irq(&mapping->tree_lock);
775 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
776 (void **)pages, *index, nr_pages, tag);
777 for (i = 0; i < ret; i++)
778 page_cache_get(pages[i]);
779 if (ret)
780 *index = pages[ret - 1]->index + 1;
781 read_unlock_irq(&mapping->tree_lock);
782 return ret;
784 EXPORT_SYMBOL(find_get_pages_tag);
787 * grab_cache_page_nowait - returns locked page at given index in given cache
788 * @mapping: target address_space
789 * @index: the page index
791 * Same as grab_cache_page(), but do not wait if the page is unavailable.
792 * This is intended for speculative data generators, where the data can
793 * be regenerated if the page couldn't be grabbed. This routine should
794 * be safe to call while holding the lock for another page.
796 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
797 * and deadlock against the caller's locked page.
799 struct page *
800 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
802 struct page *page = find_get_page(mapping, index);
804 if (page) {
805 if (!TestSetPageLocked(page))
806 return page;
807 page_cache_release(page);
808 return NULL;
810 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
811 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
812 page_cache_release(page);
813 page = NULL;
815 return page;
817 EXPORT_SYMBOL(grab_cache_page_nowait);
820 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
821 * a _large_ part of the i/o request. Imagine the worst scenario:
823 * ---R__________________________________________B__________
824 * ^ reading here ^ bad block(assume 4k)
826 * read(R) => miss => readahead(R...B) => media error => frustrating retries
827 * => failing the whole request => read(R) => read(R+1) =>
828 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
829 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
830 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
832 * It is going insane. Fix it by quickly scaling down the readahead size.
834 static void shrink_readahead_size_eio(struct file *filp,
835 struct file_ra_state *ra)
837 if (!ra->ra_pages)
838 return;
840 ra->ra_pages /= 4;
844 * do_generic_mapping_read - generic file read routine
845 * @mapping: address_space to be read
846 * @_ra: file's readahead state
847 * @filp: the file to read
848 * @ppos: current file position
849 * @desc: read_descriptor
850 * @actor: read method
852 * This is a generic file read routine, and uses the
853 * mapping->a_ops->readpage() function for the actual low-level stuff.
855 * This is really ugly. But the goto's actually try to clarify some
856 * of the logic when it comes to error handling etc.
858 * Note the struct file* is only passed for the use of readpage.
859 * It may be NULL.
861 void do_generic_mapping_read(struct address_space *mapping,
862 struct file_ra_state *_ra,
863 struct file *filp,
864 loff_t *ppos,
865 read_descriptor_t *desc,
866 read_actor_t actor)
868 struct inode *inode = mapping->host;
869 unsigned long index;
870 unsigned long end_index;
871 unsigned long offset;
872 unsigned long last_index;
873 unsigned long next_index;
874 unsigned long prev_index;
875 unsigned int prev_offset;
876 loff_t isize;
877 struct page *cached_page;
878 int error;
879 struct file_ra_state ra = *_ra;
881 cached_page = NULL;
882 index = *ppos >> PAGE_CACHE_SHIFT;
883 next_index = index;
884 prev_index = ra.prev_index;
885 prev_offset = ra.prev_offset;
886 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
887 offset = *ppos & ~PAGE_CACHE_MASK;
889 isize = i_size_read(inode);
890 if (!isize)
891 goto out;
893 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
894 for (;;) {
895 struct page *page;
896 unsigned long nr, ret;
898 /* nr is the maximum number of bytes to copy from this page */
899 nr = PAGE_CACHE_SIZE;
900 if (index >= end_index) {
901 if (index > end_index)
902 goto out;
903 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
904 if (nr <= offset) {
905 goto out;
908 nr = nr - offset;
910 cond_resched();
911 if (index == next_index)
912 next_index = page_cache_readahead(mapping, &ra, filp,
913 index, last_index - index);
915 find_page:
916 page = find_get_page(mapping, index);
917 if (unlikely(page == NULL)) {
918 handle_ra_miss(mapping, &ra, index);
919 goto no_cached_page;
921 if (!PageUptodate(page))
922 goto page_not_up_to_date;
923 page_ok:
925 /* If users can be writing to this page using arbitrary
926 * virtual addresses, take care about potential aliasing
927 * before reading the page on the kernel side.
929 if (mapping_writably_mapped(mapping))
930 flush_dcache_page(page);
933 * When a sequential read accesses a page several times,
934 * only mark it as accessed the first time.
936 if (prev_index != index || offset != prev_offset)
937 mark_page_accessed(page);
938 prev_index = index;
941 * Ok, we have the page, and it's up-to-date, so
942 * now we can copy it to user space...
944 * The actor routine returns how many bytes were actually used..
945 * NOTE! This may not be the same as how much of a user buffer
946 * we filled up (we may be padding etc), so we can only update
947 * "pos" here (the actor routine has to update the user buffer
948 * pointers and the remaining count).
950 ret = actor(desc, page, offset, nr);
951 offset += ret;
952 index += offset >> PAGE_CACHE_SHIFT;
953 offset &= ~PAGE_CACHE_MASK;
954 prev_offset = offset;
955 ra.prev_offset = offset;
957 page_cache_release(page);
958 if (ret == nr && desc->count)
959 continue;
960 goto out;
962 page_not_up_to_date:
963 /* Get exclusive access to the page ... */
964 lock_page(page);
966 /* Did it get truncated before we got the lock? */
967 if (!page->mapping) {
968 unlock_page(page);
969 page_cache_release(page);
970 continue;
973 /* Did somebody else fill it already? */
974 if (PageUptodate(page)) {
975 unlock_page(page);
976 goto page_ok;
979 readpage:
980 /* Start the actual read. The read will unlock the page. */
981 error = mapping->a_ops->readpage(filp, page);
983 if (unlikely(error)) {
984 if (error == AOP_TRUNCATED_PAGE) {
985 page_cache_release(page);
986 goto find_page;
988 goto readpage_error;
991 if (!PageUptodate(page)) {
992 lock_page(page);
993 if (!PageUptodate(page)) {
994 if (page->mapping == NULL) {
996 * invalidate_inode_pages got it
998 unlock_page(page);
999 page_cache_release(page);
1000 goto find_page;
1002 unlock_page(page);
1003 error = -EIO;
1004 shrink_readahead_size_eio(filp, &ra);
1005 goto readpage_error;
1007 unlock_page(page);
1011 * i_size must be checked after we have done ->readpage.
1013 * Checking i_size after the readpage allows us to calculate
1014 * the correct value for "nr", which means the zero-filled
1015 * part of the page is not copied back to userspace (unless
1016 * another truncate extends the file - this is desired though).
1018 isize = i_size_read(inode);
1019 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1020 if (unlikely(!isize || index > end_index)) {
1021 page_cache_release(page);
1022 goto out;
1025 /* nr is the maximum number of bytes to copy from this page */
1026 nr = PAGE_CACHE_SIZE;
1027 if (index == end_index) {
1028 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1029 if (nr <= offset) {
1030 page_cache_release(page);
1031 goto out;
1034 nr = nr - offset;
1035 goto page_ok;
1037 readpage_error:
1038 /* UHHUH! A synchronous read error occurred. Report it */
1039 desc->error = error;
1040 page_cache_release(page);
1041 goto out;
1043 no_cached_page:
1045 * Ok, it wasn't cached, so we need to create a new
1046 * page..
1048 if (!cached_page) {
1049 cached_page = page_cache_alloc_cold(mapping);
1050 if (!cached_page) {
1051 desc->error = -ENOMEM;
1052 goto out;
1055 error = add_to_page_cache_lru(cached_page, mapping,
1056 index, GFP_KERNEL);
1057 if (error) {
1058 if (error == -EEXIST)
1059 goto find_page;
1060 desc->error = error;
1061 goto out;
1063 page = cached_page;
1064 cached_page = NULL;
1065 goto readpage;
1068 out:
1069 *_ra = ra;
1071 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1072 if (cached_page)
1073 page_cache_release(cached_page);
1074 if (filp)
1075 file_accessed(filp);
1077 EXPORT_SYMBOL(do_generic_mapping_read);
1079 int file_read_actor(read_descriptor_t *desc, struct page *page,
1080 unsigned long offset, unsigned long size)
1082 char *kaddr;
1083 unsigned long left, count = desc->count;
1085 if (size > count)
1086 size = count;
1089 * Faults on the destination of a read are common, so do it before
1090 * taking the kmap.
1092 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1093 kaddr = kmap_atomic(page, KM_USER0);
1094 left = __copy_to_user_inatomic(desc->arg.buf,
1095 kaddr + offset, size);
1096 kunmap_atomic(kaddr, KM_USER0);
1097 if (left == 0)
1098 goto success;
1101 /* Do it the slow way */
1102 kaddr = kmap(page);
1103 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1104 kunmap(page);
1106 if (left) {
1107 size -= left;
1108 desc->error = -EFAULT;
1110 success:
1111 desc->count = count - size;
1112 desc->written += size;
1113 desc->arg.buf += size;
1114 return size;
1118 * Performs necessary checks before doing a write
1119 * @iov: io vector request
1120 * @nr_segs: number of segments in the iovec
1121 * @count: number of bytes to write
1122 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1124 * Adjust number of segments and amount of bytes to write (nr_segs should be
1125 * properly initialized first). Returns appropriate error code that caller
1126 * should return or zero in case that write should be allowed.
1128 int generic_segment_checks(const struct iovec *iov,
1129 unsigned long *nr_segs, size_t *count, int access_flags)
1131 unsigned long seg;
1132 size_t cnt = 0;
1133 for (seg = 0; seg < *nr_segs; seg++) {
1134 const struct iovec *iv = &iov[seg];
1137 * If any segment has a negative length, or the cumulative
1138 * length ever wraps negative then return -EINVAL.
1140 cnt += iv->iov_len;
1141 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1142 return -EINVAL;
1143 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1144 continue;
1145 if (seg == 0)
1146 return -EFAULT;
1147 *nr_segs = seg;
1148 cnt -= iv->iov_len; /* This segment is no good */
1149 break;
1151 *count = cnt;
1152 return 0;
1154 EXPORT_SYMBOL(generic_segment_checks);
1157 * generic_file_aio_read - generic filesystem read routine
1158 * @iocb: kernel I/O control block
1159 * @iov: io vector request
1160 * @nr_segs: number of segments in the iovec
1161 * @pos: current file position
1163 * This is the "read()" routine for all filesystems
1164 * that can use the page cache directly.
1166 ssize_t
1167 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1168 unsigned long nr_segs, loff_t pos)
1170 struct file *filp = iocb->ki_filp;
1171 ssize_t retval;
1172 unsigned long seg;
1173 size_t count;
1174 loff_t *ppos = &iocb->ki_pos;
1176 count = 0;
1177 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1178 if (retval)
1179 return retval;
1181 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1182 if (filp->f_flags & O_DIRECT) {
1183 loff_t size;
1184 struct address_space *mapping;
1185 struct inode *inode;
1187 mapping = filp->f_mapping;
1188 inode = mapping->host;
1189 retval = 0;
1190 if (!count)
1191 goto out; /* skip atime */
1192 size = i_size_read(inode);
1193 if (pos < size) {
1194 retval = generic_file_direct_IO(READ, iocb,
1195 iov, pos, nr_segs);
1196 if (retval > 0)
1197 *ppos = pos + retval;
1199 if (likely(retval != 0)) {
1200 file_accessed(filp);
1201 goto out;
1205 retval = 0;
1206 if (count) {
1207 for (seg = 0; seg < nr_segs; seg++) {
1208 read_descriptor_t desc;
1210 desc.written = 0;
1211 desc.arg.buf = iov[seg].iov_base;
1212 desc.count = iov[seg].iov_len;
1213 if (desc.count == 0)
1214 continue;
1215 desc.error = 0;
1216 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1217 retval += desc.written;
1218 if (desc.error) {
1219 retval = retval ?: desc.error;
1220 break;
1222 if (desc.count > 0)
1223 break;
1226 out:
1227 return retval;
1229 EXPORT_SYMBOL(generic_file_aio_read);
1231 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1233 ssize_t written;
1234 unsigned long count = desc->count;
1235 struct file *file = desc->arg.data;
1237 if (size > count)
1238 size = count;
1240 written = file->f_op->sendpage(file, page, offset,
1241 size, &file->f_pos, size<count);
1242 if (written < 0) {
1243 desc->error = written;
1244 written = 0;
1246 desc->count = count - written;
1247 desc->written += written;
1248 return written;
1251 static ssize_t
1252 do_readahead(struct address_space *mapping, struct file *filp,
1253 unsigned long index, unsigned long nr)
1255 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1256 return -EINVAL;
1258 force_page_cache_readahead(mapping, filp, index,
1259 max_sane_readahead(nr));
1260 return 0;
1263 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1265 ssize_t ret;
1266 struct file *file;
1268 ret = -EBADF;
1269 file = fget(fd);
1270 if (file) {
1271 if (file->f_mode & FMODE_READ) {
1272 struct address_space *mapping = file->f_mapping;
1273 unsigned long start = offset >> PAGE_CACHE_SHIFT;
1274 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1275 unsigned long len = end - start + 1;
1276 ret = do_readahead(mapping, file, start, len);
1278 fput(file);
1280 return ret;
1283 #ifdef CONFIG_MMU
1284 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1286 * page_cache_read - adds requested page to the page cache if not already there
1287 * @file: file to read
1288 * @offset: page index
1290 * This adds the requested page to the page cache if it isn't already there,
1291 * and schedules an I/O to read in its contents from disk.
1293 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1295 struct address_space *mapping = file->f_mapping;
1296 struct page *page;
1297 int ret;
1299 do {
1300 page = page_cache_alloc_cold(mapping);
1301 if (!page)
1302 return -ENOMEM;
1304 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1305 if (ret == 0)
1306 ret = mapping->a_ops->readpage(file, page);
1307 else if (ret == -EEXIST)
1308 ret = 0; /* losing race to add is OK */
1310 page_cache_release(page);
1312 } while (ret == AOP_TRUNCATED_PAGE);
1314 return ret;
1317 #define MMAP_LOTSAMISS (100)
1320 * filemap_nopage - read in file data for page fault handling
1321 * @area: the applicable vm_area
1322 * @address: target address to read in
1323 * @type: returned with VM_FAULT_{MINOR,MAJOR} if not %NULL
1325 * filemap_nopage() is invoked via the vma operations vector for a
1326 * mapped memory region to read in file data during a page fault.
1328 * The goto's are kind of ugly, but this streamlines the normal case of having
1329 * it in the page cache, and handles the special cases reasonably without
1330 * having a lot of duplicated code.
1332 struct page *filemap_nopage(struct vm_area_struct *area,
1333 unsigned long address, int *type)
1335 int error;
1336 struct file *file = area->vm_file;
1337 struct address_space *mapping = file->f_mapping;
1338 struct file_ra_state *ra = &file->f_ra;
1339 struct inode *inode = mapping->host;
1340 struct page *page;
1341 unsigned long size, pgoff;
1342 int did_readaround = 0, majmin = VM_FAULT_MINOR;
1344 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1346 retry_all:
1347 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1348 if (pgoff >= size)
1349 goto outside_data_content;
1351 /* If we don't want any read-ahead, don't bother */
1352 if (VM_RandomReadHint(area))
1353 goto no_cached_page;
1356 * The readahead code wants to be told about each and every page
1357 * so it can build and shrink its windows appropriately
1359 * For sequential accesses, we use the generic readahead logic.
1361 if (VM_SequentialReadHint(area))
1362 page_cache_readahead(mapping, ra, file, pgoff, 1);
1365 * Do we have something in the page cache already?
1367 retry_find:
1368 page = find_get_page(mapping, pgoff);
1369 if (!page) {
1370 unsigned long ra_pages;
1372 if (VM_SequentialReadHint(area)) {
1373 handle_ra_miss(mapping, ra, pgoff);
1374 goto no_cached_page;
1376 ra->mmap_miss++;
1379 * Do we miss much more than hit in this file? If so,
1380 * stop bothering with read-ahead. It will only hurt.
1382 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1383 goto no_cached_page;
1386 * To keep the pgmajfault counter straight, we need to
1387 * check did_readaround, as this is an inner loop.
1389 if (!did_readaround) {
1390 majmin = VM_FAULT_MAJOR;
1391 count_vm_event(PGMAJFAULT);
1393 did_readaround = 1;
1394 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1395 if (ra_pages) {
1396 pgoff_t start = 0;
1398 if (pgoff > ra_pages / 2)
1399 start = pgoff - ra_pages / 2;
1400 do_page_cache_readahead(mapping, file, start, ra_pages);
1402 page = find_get_page(mapping, pgoff);
1403 if (!page)
1404 goto no_cached_page;
1407 if (!did_readaround)
1408 ra->mmap_hit++;
1411 * Ok, found a page in the page cache, now we need to check
1412 * that it's up-to-date.
1414 if (!PageUptodate(page))
1415 goto page_not_uptodate;
1417 success:
1419 * Found the page and have a reference on it.
1421 mark_page_accessed(page);
1422 if (type)
1423 *type = majmin;
1424 return page;
1426 outside_data_content:
1428 * An external ptracer can access pages that normally aren't
1429 * accessible..
1431 if (area->vm_mm == current->mm)
1432 return NOPAGE_SIGBUS;
1433 /* Fall through to the non-read-ahead case */
1434 no_cached_page:
1436 * We're only likely to ever get here if MADV_RANDOM is in
1437 * effect.
1439 error = page_cache_read(file, pgoff);
1442 * The page we want has now been added to the page cache.
1443 * In the unlikely event that someone removed it in the
1444 * meantime, we'll just come back here and read it again.
1446 if (error >= 0)
1447 goto retry_find;
1450 * An error return from page_cache_read can result if the
1451 * system is low on memory, or a problem occurs while trying
1452 * to schedule I/O.
1454 if (error == -ENOMEM)
1455 return NOPAGE_OOM;
1456 return NOPAGE_SIGBUS;
1458 page_not_uptodate:
1459 if (!did_readaround) {
1460 majmin = VM_FAULT_MAJOR;
1461 count_vm_event(PGMAJFAULT);
1465 * Umm, take care of errors if the page isn't up-to-date.
1466 * Try to re-read it _once_. We do this synchronously,
1467 * because there really aren't any performance issues here
1468 * and we need to check for errors.
1470 lock_page(page);
1472 /* Somebody truncated the page on us? */
1473 if (!page->mapping) {
1474 unlock_page(page);
1475 page_cache_release(page);
1476 goto retry_all;
1479 /* Somebody else successfully read it in? */
1480 if (PageUptodate(page)) {
1481 unlock_page(page);
1482 goto success;
1484 ClearPageError(page);
1485 error = mapping->a_ops->readpage(file, page);
1486 if (!error) {
1487 wait_on_page_locked(page);
1488 if (PageUptodate(page))
1489 goto success;
1490 } else if (error == AOP_TRUNCATED_PAGE) {
1491 page_cache_release(page);
1492 goto retry_find;
1496 * Things didn't work out. Return zero to tell the
1497 * mm layer so, possibly freeing the page cache page first.
1499 shrink_readahead_size_eio(file, ra);
1500 page_cache_release(page);
1501 return NOPAGE_SIGBUS;
1503 EXPORT_SYMBOL(filemap_nopage);
1505 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1506 int nonblock)
1508 struct address_space *mapping = file->f_mapping;
1509 struct page *page;
1510 int error;
1513 * Do we have something in the page cache already?
1515 retry_find:
1516 page = find_get_page(mapping, pgoff);
1517 if (!page) {
1518 if (nonblock)
1519 return NULL;
1520 goto no_cached_page;
1524 * Ok, found a page in the page cache, now we need to check
1525 * that it's up-to-date.
1527 if (!PageUptodate(page)) {
1528 if (nonblock) {
1529 page_cache_release(page);
1530 return NULL;
1532 goto page_not_uptodate;
1535 success:
1537 * Found the page and have a reference on it.
1539 mark_page_accessed(page);
1540 return page;
1542 no_cached_page:
1543 error = page_cache_read(file, pgoff);
1546 * The page we want has now been added to the page cache.
1547 * In the unlikely event that someone removed it in the
1548 * meantime, we'll just come back here and read it again.
1550 if (error >= 0)
1551 goto retry_find;
1554 * An error return from page_cache_read can result if the
1555 * system is low on memory, or a problem occurs while trying
1556 * to schedule I/O.
1558 return NULL;
1560 page_not_uptodate:
1561 lock_page(page);
1563 /* Did it get truncated while we waited for it? */
1564 if (!page->mapping) {
1565 unlock_page(page);
1566 goto err;
1569 /* Did somebody else get it up-to-date? */
1570 if (PageUptodate(page)) {
1571 unlock_page(page);
1572 goto success;
1575 error = mapping->a_ops->readpage(file, page);
1576 if (!error) {
1577 wait_on_page_locked(page);
1578 if (PageUptodate(page))
1579 goto success;
1580 } else if (error == AOP_TRUNCATED_PAGE) {
1581 page_cache_release(page);
1582 goto retry_find;
1586 * Umm, take care of errors if the page isn't up-to-date.
1587 * Try to re-read it _once_. We do this synchronously,
1588 * because there really aren't any performance issues here
1589 * and we need to check for errors.
1591 lock_page(page);
1593 /* Somebody truncated the page on us? */
1594 if (!page->mapping) {
1595 unlock_page(page);
1596 goto err;
1598 /* Somebody else successfully read it in? */
1599 if (PageUptodate(page)) {
1600 unlock_page(page);
1601 goto success;
1604 ClearPageError(page);
1605 error = mapping->a_ops->readpage(file, page);
1606 if (!error) {
1607 wait_on_page_locked(page);
1608 if (PageUptodate(page))
1609 goto success;
1610 } else if (error == AOP_TRUNCATED_PAGE) {
1611 page_cache_release(page);
1612 goto retry_find;
1616 * Things didn't work out. Return zero to tell the
1617 * mm layer so, possibly freeing the page cache page first.
1619 err:
1620 page_cache_release(page);
1622 return NULL;
1625 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1626 unsigned long len, pgprot_t prot, unsigned long pgoff,
1627 int nonblock)
1629 struct file *file = vma->vm_file;
1630 struct address_space *mapping = file->f_mapping;
1631 struct inode *inode = mapping->host;
1632 unsigned long size;
1633 struct mm_struct *mm = vma->vm_mm;
1634 struct page *page;
1635 int err;
1637 if (!nonblock)
1638 force_page_cache_readahead(mapping, vma->vm_file,
1639 pgoff, len >> PAGE_CACHE_SHIFT);
1641 repeat:
1642 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1643 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1644 return -EINVAL;
1646 page = filemap_getpage(file, pgoff, nonblock);
1648 /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1649 * done in shmem_populate calling shmem_getpage */
1650 if (!page && !nonblock)
1651 return -ENOMEM;
1653 if (page) {
1654 err = install_page(mm, vma, addr, page, prot);
1655 if (err) {
1656 page_cache_release(page);
1657 return err;
1659 } else if (vma->vm_flags & VM_NONLINEAR) {
1660 /* No page was found just because we can't read it in now (being
1661 * here implies nonblock != 0), but the page may exist, so set
1662 * the PTE to fault it in later. */
1663 err = install_file_pte(mm, vma, addr, pgoff, prot);
1664 if (err)
1665 return err;
1668 len -= PAGE_SIZE;
1669 addr += PAGE_SIZE;
1670 pgoff++;
1671 if (len)
1672 goto repeat;
1674 return 0;
1676 EXPORT_SYMBOL(filemap_populate);
1678 struct vm_operations_struct generic_file_vm_ops = {
1679 .nopage = filemap_nopage,
1680 .populate = filemap_populate,
1683 /* This is used for a general mmap of a disk file */
1685 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1687 struct address_space *mapping = file->f_mapping;
1689 if (!mapping->a_ops->readpage)
1690 return -ENOEXEC;
1691 file_accessed(file);
1692 vma->vm_ops = &generic_file_vm_ops;
1693 return 0;
1697 * This is for filesystems which do not implement ->writepage.
1699 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1701 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1702 return -EINVAL;
1703 return generic_file_mmap(file, vma);
1705 #else
1706 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1708 return -ENOSYS;
1710 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1712 return -ENOSYS;
1714 #endif /* CONFIG_MMU */
1716 EXPORT_SYMBOL(generic_file_mmap);
1717 EXPORT_SYMBOL(generic_file_readonly_mmap);
1719 static struct page *__read_cache_page(struct address_space *mapping,
1720 unsigned long index,
1721 int (*filler)(void *,struct page*),
1722 void *data)
1724 struct page *page, *cached_page = NULL;
1725 int err;
1726 repeat:
1727 page = find_get_page(mapping, index);
1728 if (!page) {
1729 if (!cached_page) {
1730 cached_page = page_cache_alloc_cold(mapping);
1731 if (!cached_page)
1732 return ERR_PTR(-ENOMEM);
1734 err = add_to_page_cache_lru(cached_page, mapping,
1735 index, GFP_KERNEL);
1736 if (err == -EEXIST)
1737 goto repeat;
1738 if (err < 0) {
1739 /* Presumably ENOMEM for radix tree node */
1740 page_cache_release(cached_page);
1741 return ERR_PTR(err);
1743 page = cached_page;
1744 cached_page = NULL;
1745 err = filler(data, page);
1746 if (err < 0) {
1747 page_cache_release(page);
1748 page = ERR_PTR(err);
1751 if (cached_page)
1752 page_cache_release(cached_page);
1753 return page;
1757 * Same as read_cache_page, but don't wait for page to become unlocked
1758 * after submitting it to the filler.
1760 struct page *read_cache_page_async(struct address_space *mapping,
1761 unsigned long index,
1762 int (*filler)(void *,struct page*),
1763 void *data)
1765 struct page *page;
1766 int err;
1768 retry:
1769 page = __read_cache_page(mapping, index, filler, data);
1770 if (IS_ERR(page))
1771 return page;
1772 if (PageUptodate(page))
1773 goto out;
1775 lock_page(page);
1776 if (!page->mapping) {
1777 unlock_page(page);
1778 page_cache_release(page);
1779 goto retry;
1781 if (PageUptodate(page)) {
1782 unlock_page(page);
1783 goto out;
1785 err = filler(data, page);
1786 if (err < 0) {
1787 page_cache_release(page);
1788 return ERR_PTR(err);
1790 out:
1791 mark_page_accessed(page);
1792 return page;
1794 EXPORT_SYMBOL(read_cache_page_async);
1797 * read_cache_page - read into page cache, fill it if needed
1798 * @mapping: the page's address_space
1799 * @index: the page index
1800 * @filler: function to perform the read
1801 * @data: destination for read data
1803 * Read into the page cache. If a page already exists, and PageUptodate() is
1804 * not set, try to fill the page then wait for it to become unlocked.
1806 * If the page does not get brought uptodate, return -EIO.
1808 struct page *read_cache_page(struct address_space *mapping,
1809 unsigned long index,
1810 int (*filler)(void *,struct page*),
1811 void *data)
1813 struct page *page;
1815 page = read_cache_page_async(mapping, index, filler, data);
1816 if (IS_ERR(page))
1817 goto out;
1818 wait_on_page_locked(page);
1819 if (!PageUptodate(page)) {
1820 page_cache_release(page);
1821 page = ERR_PTR(-EIO);
1823 out:
1824 return page;
1826 EXPORT_SYMBOL(read_cache_page);
1829 * If the page was newly created, increment its refcount and add it to the
1830 * caller's lru-buffering pagevec. This function is specifically for
1831 * generic_file_write().
1833 static inline struct page *
1834 __grab_cache_page(struct address_space *mapping, unsigned long index,
1835 struct page **cached_page, struct pagevec *lru_pvec)
1837 int err;
1838 struct page *page;
1839 repeat:
1840 page = find_lock_page(mapping, index);
1841 if (!page) {
1842 if (!*cached_page) {
1843 *cached_page = page_cache_alloc(mapping);
1844 if (!*cached_page)
1845 return NULL;
1847 err = add_to_page_cache(*cached_page, mapping,
1848 index, GFP_KERNEL);
1849 if (err == -EEXIST)
1850 goto repeat;
1851 if (err == 0) {
1852 page = *cached_page;
1853 page_cache_get(page);
1854 if (!pagevec_add(lru_pvec, page))
1855 __pagevec_lru_add(lru_pvec);
1856 *cached_page = NULL;
1859 return page;
1863 * The logic we want is
1865 * if suid or (sgid and xgrp)
1866 * remove privs
1868 int should_remove_suid(struct dentry *dentry)
1870 mode_t mode = dentry->d_inode->i_mode;
1871 int kill = 0;
1873 /* suid always must be killed */
1874 if (unlikely(mode & S_ISUID))
1875 kill = ATTR_KILL_SUID;
1878 * sgid without any exec bits is just a mandatory locking mark; leave
1879 * it alone. If some exec bits are set, it's a real sgid; kill it.
1881 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1882 kill |= ATTR_KILL_SGID;
1884 if (unlikely(kill && !capable(CAP_FSETID)))
1885 return kill;
1887 return 0;
1889 EXPORT_SYMBOL(should_remove_suid);
1891 int __remove_suid(struct dentry *dentry, int kill)
1893 struct iattr newattrs;
1895 newattrs.ia_valid = ATTR_FORCE | kill;
1896 return notify_change(dentry, &newattrs);
1899 int remove_suid(struct dentry *dentry)
1901 int kill = should_remove_suid(dentry);
1903 if (unlikely(kill))
1904 return __remove_suid(dentry, kill);
1906 return 0;
1908 EXPORT_SYMBOL(remove_suid);
1910 size_t
1911 __filemap_copy_from_user_iovec_inatomic(char *vaddr,
1912 const struct iovec *iov, size_t base, size_t bytes)
1914 size_t copied = 0, left = 0;
1916 while (bytes) {
1917 char __user *buf = iov->iov_base + base;
1918 int copy = min(bytes, iov->iov_len - base);
1920 base = 0;
1921 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1922 copied += copy;
1923 bytes -= copy;
1924 vaddr += copy;
1925 iov++;
1927 if (unlikely(left))
1928 break;
1930 return copied - left;
1934 * Performs necessary checks before doing a write
1936 * Can adjust writing position or amount of bytes to write.
1937 * Returns appropriate error code that caller should return or
1938 * zero in case that write should be allowed.
1940 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1942 struct inode *inode = file->f_mapping->host;
1943 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1945 if (unlikely(*pos < 0))
1946 return -EINVAL;
1948 if (!isblk) {
1949 /* FIXME: this is for backwards compatibility with 2.4 */
1950 if (file->f_flags & O_APPEND)
1951 *pos = i_size_read(inode);
1953 if (limit != RLIM_INFINITY) {
1954 if (*pos >= limit) {
1955 send_sig(SIGXFSZ, current, 0);
1956 return -EFBIG;
1958 if (*count > limit - (typeof(limit))*pos) {
1959 *count = limit - (typeof(limit))*pos;
1965 * LFS rule
1967 if (unlikely(*pos + *count > MAX_NON_LFS &&
1968 !(file->f_flags & O_LARGEFILE))) {
1969 if (*pos >= MAX_NON_LFS) {
1970 send_sig(SIGXFSZ, current, 0);
1971 return -EFBIG;
1973 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1974 *count = MAX_NON_LFS - (unsigned long)*pos;
1979 * Are we about to exceed the fs block limit ?
1981 * If we have written data it becomes a short write. If we have
1982 * exceeded without writing data we send a signal and return EFBIG.
1983 * Linus frestrict idea will clean these up nicely..
1985 if (likely(!isblk)) {
1986 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1987 if (*count || *pos > inode->i_sb->s_maxbytes) {
1988 send_sig(SIGXFSZ, current, 0);
1989 return -EFBIG;
1991 /* zero-length writes at ->s_maxbytes are OK */
1994 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1995 *count = inode->i_sb->s_maxbytes - *pos;
1996 } else {
1997 #ifdef CONFIG_BLOCK
1998 loff_t isize;
1999 if (bdev_read_only(I_BDEV(inode)))
2000 return -EPERM;
2001 isize = i_size_read(inode);
2002 if (*pos >= isize) {
2003 if (*count || *pos > isize)
2004 return -ENOSPC;
2007 if (*pos + *count > isize)
2008 *count = isize - *pos;
2009 #else
2010 return -EPERM;
2011 #endif
2013 return 0;
2015 EXPORT_SYMBOL(generic_write_checks);
2017 ssize_t
2018 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2019 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2020 size_t count, size_t ocount)
2022 struct file *file = iocb->ki_filp;
2023 struct address_space *mapping = file->f_mapping;
2024 struct inode *inode = mapping->host;
2025 ssize_t written;
2027 if (count != ocount)
2028 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2030 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2031 if (written > 0) {
2032 loff_t end = pos + written;
2033 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2034 i_size_write(inode, end);
2035 mark_inode_dirty(inode);
2037 *ppos = end;
2041 * Sync the fs metadata but not the minor inode changes and
2042 * of course not the data as we did direct DMA for the IO.
2043 * i_mutex is held, which protects generic_osync_inode() from
2044 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
2046 if ((written >= 0 || written == -EIOCBQUEUED) &&
2047 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2048 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2049 if (err < 0)
2050 written = err;
2052 return written;
2054 EXPORT_SYMBOL(generic_file_direct_write);
2056 ssize_t
2057 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2058 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2059 size_t count, ssize_t written)
2061 struct file *file = iocb->ki_filp;
2062 struct address_space * mapping = file->f_mapping;
2063 const struct address_space_operations *a_ops = mapping->a_ops;
2064 struct inode *inode = mapping->host;
2065 long status = 0;
2066 struct page *page;
2067 struct page *cached_page = NULL;
2068 size_t bytes;
2069 struct pagevec lru_pvec;
2070 const struct iovec *cur_iov = iov; /* current iovec */
2071 size_t iov_base = 0; /* offset in the current iovec */
2072 char __user *buf;
2074 pagevec_init(&lru_pvec, 0);
2077 * handle partial DIO write. Adjust cur_iov if needed.
2079 if (likely(nr_segs == 1))
2080 buf = iov->iov_base + written;
2081 else {
2082 filemap_set_next_iovec(&cur_iov, &iov_base, written);
2083 buf = cur_iov->iov_base + iov_base;
2086 do {
2087 unsigned long index;
2088 unsigned long offset;
2089 size_t copied;
2091 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
2092 index = pos >> PAGE_CACHE_SHIFT;
2093 bytes = PAGE_CACHE_SIZE - offset;
2095 /* Limit the size of the copy to the caller's write size */
2096 bytes = min(bytes, count);
2098 /* We only need to worry about prefaulting when writes are from
2099 * user-space. NFSd uses vfs_writev with several non-aligned
2100 * segments in the vector, and limiting to one segment a time is
2101 * a noticeable performance for re-write
2103 if (!segment_eq(get_fs(), KERNEL_DS)) {
2105 * Limit the size of the copy to that of the current
2106 * segment, because fault_in_pages_readable() doesn't
2107 * know how to walk segments.
2109 bytes = min(bytes, cur_iov->iov_len - iov_base);
2112 * Bring in the user page that we will copy from
2113 * _first_. Otherwise there's a nasty deadlock on
2114 * copying from the same page as we're writing to,
2115 * without it being marked up-to-date.
2117 fault_in_pages_readable(buf, bytes);
2119 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
2120 if (!page) {
2121 status = -ENOMEM;
2122 break;
2125 if (unlikely(bytes == 0)) {
2126 status = 0;
2127 copied = 0;
2128 goto zero_length_segment;
2131 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2132 if (unlikely(status)) {
2133 loff_t isize = i_size_read(inode);
2135 if (status != AOP_TRUNCATED_PAGE)
2136 unlock_page(page);
2137 page_cache_release(page);
2138 if (status == AOP_TRUNCATED_PAGE)
2139 continue;
2141 * prepare_write() may have instantiated a few blocks
2142 * outside i_size. Trim these off again.
2144 if (pos + bytes > isize)
2145 vmtruncate(inode, isize);
2146 break;
2148 if (likely(nr_segs == 1))
2149 copied = filemap_copy_from_user(page, offset,
2150 buf, bytes);
2151 else
2152 copied = filemap_copy_from_user_iovec(page, offset,
2153 cur_iov, iov_base, bytes);
2154 flush_dcache_page(page);
2155 status = a_ops->commit_write(file, page, offset, offset+bytes);
2156 if (status == AOP_TRUNCATED_PAGE) {
2157 page_cache_release(page);
2158 continue;
2160 zero_length_segment:
2161 if (likely(copied >= 0)) {
2162 if (!status)
2163 status = copied;
2165 if (status >= 0) {
2166 written += status;
2167 count -= status;
2168 pos += status;
2169 buf += status;
2170 if (unlikely(nr_segs > 1)) {
2171 filemap_set_next_iovec(&cur_iov,
2172 &iov_base, status);
2173 if (count)
2174 buf = cur_iov->iov_base +
2175 iov_base;
2176 } else {
2177 iov_base += status;
2181 if (unlikely(copied != bytes))
2182 if (status >= 0)
2183 status = -EFAULT;
2184 unlock_page(page);
2185 mark_page_accessed(page);
2186 page_cache_release(page);
2187 if (status < 0)
2188 break;
2189 balance_dirty_pages_ratelimited(mapping);
2190 cond_resched();
2191 } while (count);
2192 *ppos = pos;
2194 if (cached_page)
2195 page_cache_release(cached_page);
2198 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2200 if (likely(status >= 0)) {
2201 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2202 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2203 status = generic_osync_inode(inode, mapping,
2204 OSYNC_METADATA|OSYNC_DATA);
2209 * If we get here for O_DIRECT writes then we must have fallen through
2210 * to buffered writes (block instantiation inside i_size). So we sync
2211 * the file data here, to try to honour O_DIRECT expectations.
2213 if (unlikely(file->f_flags & O_DIRECT) && written)
2214 status = filemap_write_and_wait(mapping);
2216 pagevec_lru_add(&lru_pvec);
2217 return written ? written : status;
2219 EXPORT_SYMBOL(generic_file_buffered_write);
2221 static ssize_t
2222 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2223 unsigned long nr_segs, loff_t *ppos)
2225 struct file *file = iocb->ki_filp;
2226 struct address_space * mapping = file->f_mapping;
2227 size_t ocount; /* original count */
2228 size_t count; /* after file limit checks */
2229 struct inode *inode = mapping->host;
2230 loff_t pos;
2231 ssize_t written;
2232 ssize_t err;
2234 ocount = 0;
2235 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2236 if (err)
2237 return err;
2239 count = ocount;
2240 pos = *ppos;
2242 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2244 /* We can write back this queue in page reclaim */
2245 current->backing_dev_info = mapping->backing_dev_info;
2246 written = 0;
2248 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2249 if (err)
2250 goto out;
2252 if (count == 0)
2253 goto out;
2255 err = remove_suid(file->f_path.dentry);
2256 if (err)
2257 goto out;
2259 file_update_time(file);
2261 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2262 if (unlikely(file->f_flags & O_DIRECT)) {
2263 loff_t endbyte;
2264 ssize_t written_buffered;
2266 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2267 ppos, count, ocount);
2268 if (written < 0 || written == count)
2269 goto out;
2271 * direct-io write to a hole: fall through to buffered I/O
2272 * for completing the rest of the request.
2274 pos += written;
2275 count -= written;
2276 written_buffered = generic_file_buffered_write(iocb, iov,
2277 nr_segs, pos, ppos, count,
2278 written);
2280 * If generic_file_buffered_write() retuned a synchronous error
2281 * then we want to return the number of bytes which were
2282 * direct-written, or the error code if that was zero. Note
2283 * that this differs from normal direct-io semantics, which
2284 * will return -EFOO even if some bytes were written.
2286 if (written_buffered < 0) {
2287 err = written_buffered;
2288 goto out;
2292 * We need to ensure that the page cache pages are written to
2293 * disk and invalidated to preserve the expected O_DIRECT
2294 * semantics.
2296 endbyte = pos + written_buffered - written - 1;
2297 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2298 SYNC_FILE_RANGE_WAIT_BEFORE|
2299 SYNC_FILE_RANGE_WRITE|
2300 SYNC_FILE_RANGE_WAIT_AFTER);
2301 if (err == 0) {
2302 written = written_buffered;
2303 invalidate_mapping_pages(mapping,
2304 pos >> PAGE_CACHE_SHIFT,
2305 endbyte >> PAGE_CACHE_SHIFT);
2306 } else {
2308 * We don't know how much we wrote, so just return
2309 * the number of bytes which were direct-written
2312 } else {
2313 written = generic_file_buffered_write(iocb, iov, nr_segs,
2314 pos, ppos, count, written);
2316 out:
2317 current->backing_dev_info = NULL;
2318 return written ? written : err;
2321 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2322 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2324 struct file *file = iocb->ki_filp;
2325 struct address_space *mapping = file->f_mapping;
2326 struct inode *inode = mapping->host;
2327 ssize_t ret;
2329 BUG_ON(iocb->ki_pos != pos);
2331 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2332 &iocb->ki_pos);
2334 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2335 ssize_t err;
2337 err = sync_page_range_nolock(inode, mapping, pos, ret);
2338 if (err < 0)
2339 ret = err;
2341 return ret;
2343 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2345 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2346 unsigned long nr_segs, loff_t pos)
2348 struct file *file = iocb->ki_filp;
2349 struct address_space *mapping = file->f_mapping;
2350 struct inode *inode = mapping->host;
2351 ssize_t ret;
2353 BUG_ON(iocb->ki_pos != pos);
2355 mutex_lock(&inode->i_mutex);
2356 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2357 &iocb->ki_pos);
2358 mutex_unlock(&inode->i_mutex);
2360 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2361 ssize_t err;
2363 err = sync_page_range(inode, mapping, pos, ret);
2364 if (err < 0)
2365 ret = err;
2367 return ret;
2369 EXPORT_SYMBOL(generic_file_aio_write);
2372 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2373 * went wrong during pagecache shootdown.
2375 static ssize_t
2376 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2377 loff_t offset, unsigned long nr_segs)
2379 struct file *file = iocb->ki_filp;
2380 struct address_space *mapping = file->f_mapping;
2381 ssize_t retval;
2382 size_t write_len;
2383 pgoff_t end = 0; /* silence gcc */
2386 * If it's a write, unmap all mmappings of the file up-front. This
2387 * will cause any pte dirty bits to be propagated into the pageframes
2388 * for the subsequent filemap_write_and_wait().
2390 if (rw == WRITE) {
2391 write_len = iov_length(iov, nr_segs);
2392 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2393 if (mapping_mapped(mapping))
2394 unmap_mapping_range(mapping, offset, write_len, 0);
2397 retval = filemap_write_and_wait(mapping);
2398 if (retval)
2399 goto out;
2402 * After a write we want buffered reads to be sure to go to disk to get
2403 * the new data. We invalidate clean cached page from the region we're
2404 * about to write. We do this *before* the write so that we can return
2405 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2407 if (rw == WRITE && mapping->nrpages) {
2408 retval = invalidate_inode_pages2_range(mapping,
2409 offset >> PAGE_CACHE_SHIFT, end);
2410 if (retval)
2411 goto out;
2414 retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2415 if (retval)
2416 goto out;
2419 * Finally, try again to invalidate clean pages which might have been
2420 * faulted in by get_user_pages() if the source of the write was an
2421 * mmap()ed region of the file we're writing. That's a pretty crazy
2422 * thing to do, so we don't support it 100%. If this invalidation
2423 * fails and we have -EIOCBQUEUED we ignore the failure.
2425 if (rw == WRITE && mapping->nrpages) {
2426 int err = invalidate_inode_pages2_range(mapping,
2427 offset >> PAGE_CACHE_SHIFT, end);
2428 if (err && retval >= 0)
2429 retval = err;
2431 out:
2432 return retval;
2436 * try_to_release_page() - release old fs-specific metadata on a page
2438 * @page: the page which the kernel is trying to free
2439 * @gfp_mask: memory allocation flags (and I/O mode)
2441 * The address_space is to try to release any data against the page
2442 * (presumably at page->private). If the release was successful, return `1'.
2443 * Otherwise return zero.
2445 * The @gfp_mask argument specifies whether I/O may be performed to release
2446 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2448 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2450 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2452 struct address_space * const mapping = page->mapping;
2454 BUG_ON(!PageLocked(page));
2455 if (PageWriteback(page))
2456 return 0;
2458 if (mapping && mapping->a_ops->releasepage)
2459 return mapping->a_ops->releasepage(page, gfp_mask);
2460 return try_to_free_buffers(page);
2463 EXPORT_SYMBOL(try_to_release_page);