Merge git://git.kernel.org/pub/scm/linux/kernel/git/sam/kbuild-fixes
[linux-2.6/mini2440.git] / fs / exec.c
blob639177b0eeac9bc74ccaca2c1b2f6296f7b0f23d
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/ima.h>
49 #include <linux/syscalls.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/tracehook.h>
54 #include <linux/kmod.h>
55 #include <linux/fsnotify.h>
56 #include <linux/fs_struct.h>
58 #include <asm/uaccess.h>
59 #include <asm/mmu_context.h>
60 #include <asm/tlb.h>
61 #include "internal.h"
63 int core_uses_pid;
64 char core_pattern[CORENAME_MAX_SIZE] = "core";
65 int suid_dumpable = 0;
67 /* The maximal length of core_pattern is also specified in sysctl.c */
69 static LIST_HEAD(formats);
70 static DEFINE_RWLOCK(binfmt_lock);
72 int __register_binfmt(struct linux_binfmt * fmt, int insert)
74 if (!fmt)
75 return -EINVAL;
76 write_lock(&binfmt_lock);
77 insert ? list_add(&fmt->lh, &formats) :
78 list_add_tail(&fmt->lh, &formats);
79 write_unlock(&binfmt_lock);
80 return 0;
83 EXPORT_SYMBOL(__register_binfmt);
85 void unregister_binfmt(struct linux_binfmt * fmt)
87 write_lock(&binfmt_lock);
88 list_del(&fmt->lh);
89 write_unlock(&binfmt_lock);
92 EXPORT_SYMBOL(unregister_binfmt);
94 static inline void put_binfmt(struct linux_binfmt * fmt)
96 module_put(fmt->module);
100 * Note that a shared library must be both readable and executable due to
101 * security reasons.
103 * Also note that we take the address to load from from the file itself.
105 SYSCALL_DEFINE1(uselib, const char __user *, library)
107 struct file *file;
108 struct nameidata nd;
109 char *tmp = getname(library);
110 int error = PTR_ERR(tmp);
112 if (!IS_ERR(tmp)) {
113 error = path_lookup_open(AT_FDCWD, tmp,
114 LOOKUP_FOLLOW, &nd,
115 FMODE_READ|FMODE_EXEC);
116 putname(tmp);
118 if (error)
119 goto out;
121 error = -EINVAL;
122 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
123 goto exit;
125 error = -EACCES;
126 if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
127 goto exit;
129 error = inode_permission(nd.path.dentry->d_inode,
130 MAY_READ | MAY_EXEC | MAY_OPEN);
131 if (error)
132 goto exit;
133 error = ima_path_check(&nd.path, MAY_READ | MAY_EXEC | MAY_OPEN);
134 if (error)
135 goto exit;
137 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
138 error = PTR_ERR(file);
139 if (IS_ERR(file))
140 goto out;
142 fsnotify_open(file->f_path.dentry);
144 error = -ENOEXEC;
145 if(file->f_op) {
146 struct linux_binfmt * fmt;
148 read_lock(&binfmt_lock);
149 list_for_each_entry(fmt, &formats, lh) {
150 if (!fmt->load_shlib)
151 continue;
152 if (!try_module_get(fmt->module))
153 continue;
154 read_unlock(&binfmt_lock);
155 error = fmt->load_shlib(file);
156 read_lock(&binfmt_lock);
157 put_binfmt(fmt);
158 if (error != -ENOEXEC)
159 break;
161 read_unlock(&binfmt_lock);
163 fput(file);
164 out:
165 return error;
166 exit:
167 release_open_intent(&nd);
168 path_put(&nd.path);
169 goto out;
172 #ifdef CONFIG_MMU
174 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
175 int write)
177 struct page *page;
178 int ret;
180 #ifdef CONFIG_STACK_GROWSUP
181 if (write) {
182 ret = expand_stack_downwards(bprm->vma, pos);
183 if (ret < 0)
184 return NULL;
186 #endif
187 ret = get_user_pages(current, bprm->mm, pos,
188 1, write, 1, &page, NULL);
189 if (ret <= 0)
190 return NULL;
192 if (write) {
193 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
194 struct rlimit *rlim;
197 * We've historically supported up to 32 pages (ARG_MAX)
198 * of argument strings even with small stacks
200 if (size <= ARG_MAX)
201 return page;
204 * Limit to 1/4-th the stack size for the argv+env strings.
205 * This ensures that:
206 * - the remaining binfmt code will not run out of stack space,
207 * - the program will have a reasonable amount of stack left
208 * to work from.
210 rlim = current->signal->rlim;
211 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
212 put_page(page);
213 return NULL;
217 return page;
220 static void put_arg_page(struct page *page)
222 put_page(page);
225 static void free_arg_page(struct linux_binprm *bprm, int i)
229 static void free_arg_pages(struct linux_binprm *bprm)
233 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
234 struct page *page)
236 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
239 static int __bprm_mm_init(struct linux_binprm *bprm)
241 int err;
242 struct vm_area_struct *vma = NULL;
243 struct mm_struct *mm = bprm->mm;
245 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
246 if (!vma)
247 return -ENOMEM;
249 down_write(&mm->mmap_sem);
250 vma->vm_mm = mm;
253 * Place the stack at the largest stack address the architecture
254 * supports. Later, we'll move this to an appropriate place. We don't
255 * use STACK_TOP because that can depend on attributes which aren't
256 * configured yet.
258 vma->vm_end = STACK_TOP_MAX;
259 vma->vm_start = vma->vm_end - PAGE_SIZE;
260 vma->vm_flags = VM_STACK_FLAGS;
261 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
262 err = insert_vm_struct(mm, vma);
263 if (err)
264 goto err;
266 mm->stack_vm = mm->total_vm = 1;
267 up_write(&mm->mmap_sem);
268 bprm->p = vma->vm_end - sizeof(void *);
269 return 0;
270 err:
271 up_write(&mm->mmap_sem);
272 bprm->vma = NULL;
273 kmem_cache_free(vm_area_cachep, vma);
274 return err;
277 static bool valid_arg_len(struct linux_binprm *bprm, long len)
279 return len <= MAX_ARG_STRLEN;
282 #else
284 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
285 int write)
287 struct page *page;
289 page = bprm->page[pos / PAGE_SIZE];
290 if (!page && write) {
291 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
292 if (!page)
293 return NULL;
294 bprm->page[pos / PAGE_SIZE] = page;
297 return page;
300 static void put_arg_page(struct page *page)
304 static void free_arg_page(struct linux_binprm *bprm, int i)
306 if (bprm->page[i]) {
307 __free_page(bprm->page[i]);
308 bprm->page[i] = NULL;
312 static void free_arg_pages(struct linux_binprm *bprm)
314 int i;
316 for (i = 0; i < MAX_ARG_PAGES; i++)
317 free_arg_page(bprm, i);
320 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
321 struct page *page)
325 static int __bprm_mm_init(struct linux_binprm *bprm)
327 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
328 return 0;
331 static bool valid_arg_len(struct linux_binprm *bprm, long len)
333 return len <= bprm->p;
336 #endif /* CONFIG_MMU */
339 * Create a new mm_struct and populate it with a temporary stack
340 * vm_area_struct. We don't have enough context at this point to set the stack
341 * flags, permissions, and offset, so we use temporary values. We'll update
342 * them later in setup_arg_pages().
344 int bprm_mm_init(struct linux_binprm *bprm)
346 int err;
347 struct mm_struct *mm = NULL;
349 bprm->mm = mm = mm_alloc();
350 err = -ENOMEM;
351 if (!mm)
352 goto err;
354 err = init_new_context(current, mm);
355 if (err)
356 goto err;
358 err = __bprm_mm_init(bprm);
359 if (err)
360 goto err;
362 return 0;
364 err:
365 if (mm) {
366 bprm->mm = NULL;
367 mmdrop(mm);
370 return err;
374 * count() counts the number of strings in array ARGV.
376 static int count(char __user * __user * argv, int max)
378 int i = 0;
380 if (argv != NULL) {
381 for (;;) {
382 char __user * p;
384 if (get_user(p, argv))
385 return -EFAULT;
386 if (!p)
387 break;
388 argv++;
389 if (i++ >= max)
390 return -E2BIG;
391 cond_resched();
394 return i;
398 * 'copy_strings()' copies argument/environment strings from the old
399 * processes's memory to the new process's stack. The call to get_user_pages()
400 * ensures the destination page is created and not swapped out.
402 static int copy_strings(int argc, char __user * __user * argv,
403 struct linux_binprm *bprm)
405 struct page *kmapped_page = NULL;
406 char *kaddr = NULL;
407 unsigned long kpos = 0;
408 int ret;
410 while (argc-- > 0) {
411 char __user *str;
412 int len;
413 unsigned long pos;
415 if (get_user(str, argv+argc) ||
416 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
417 ret = -EFAULT;
418 goto out;
421 if (!valid_arg_len(bprm, len)) {
422 ret = -E2BIG;
423 goto out;
426 /* We're going to work our way backwords. */
427 pos = bprm->p;
428 str += len;
429 bprm->p -= len;
431 while (len > 0) {
432 int offset, bytes_to_copy;
434 offset = pos % PAGE_SIZE;
435 if (offset == 0)
436 offset = PAGE_SIZE;
438 bytes_to_copy = offset;
439 if (bytes_to_copy > len)
440 bytes_to_copy = len;
442 offset -= bytes_to_copy;
443 pos -= bytes_to_copy;
444 str -= bytes_to_copy;
445 len -= bytes_to_copy;
447 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
448 struct page *page;
450 page = get_arg_page(bprm, pos, 1);
451 if (!page) {
452 ret = -E2BIG;
453 goto out;
456 if (kmapped_page) {
457 flush_kernel_dcache_page(kmapped_page);
458 kunmap(kmapped_page);
459 put_arg_page(kmapped_page);
461 kmapped_page = page;
462 kaddr = kmap(kmapped_page);
463 kpos = pos & PAGE_MASK;
464 flush_arg_page(bprm, kpos, kmapped_page);
466 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
467 ret = -EFAULT;
468 goto out;
472 ret = 0;
473 out:
474 if (kmapped_page) {
475 flush_kernel_dcache_page(kmapped_page);
476 kunmap(kmapped_page);
477 put_arg_page(kmapped_page);
479 return ret;
483 * Like copy_strings, but get argv and its values from kernel memory.
485 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
487 int r;
488 mm_segment_t oldfs = get_fs();
489 set_fs(KERNEL_DS);
490 r = copy_strings(argc, (char __user * __user *)argv, bprm);
491 set_fs(oldfs);
492 return r;
494 EXPORT_SYMBOL(copy_strings_kernel);
496 #ifdef CONFIG_MMU
499 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
500 * the binfmt code determines where the new stack should reside, we shift it to
501 * its final location. The process proceeds as follows:
503 * 1) Use shift to calculate the new vma endpoints.
504 * 2) Extend vma to cover both the old and new ranges. This ensures the
505 * arguments passed to subsequent functions are consistent.
506 * 3) Move vma's page tables to the new range.
507 * 4) Free up any cleared pgd range.
508 * 5) Shrink the vma to cover only the new range.
510 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
512 struct mm_struct *mm = vma->vm_mm;
513 unsigned long old_start = vma->vm_start;
514 unsigned long old_end = vma->vm_end;
515 unsigned long length = old_end - old_start;
516 unsigned long new_start = old_start - shift;
517 unsigned long new_end = old_end - shift;
518 struct mmu_gather *tlb;
520 BUG_ON(new_start > new_end);
523 * ensure there are no vmas between where we want to go
524 * and where we are
526 if (vma != find_vma(mm, new_start))
527 return -EFAULT;
530 * cover the whole range: [new_start, old_end)
532 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
535 * move the page tables downwards, on failure we rely on
536 * process cleanup to remove whatever mess we made.
538 if (length != move_page_tables(vma, old_start,
539 vma, new_start, length))
540 return -ENOMEM;
542 lru_add_drain();
543 tlb = tlb_gather_mmu(mm, 0);
544 if (new_end > old_start) {
546 * when the old and new regions overlap clear from new_end.
548 free_pgd_range(tlb, new_end, old_end, new_end,
549 vma->vm_next ? vma->vm_next->vm_start : 0);
550 } else {
552 * otherwise, clean from old_start; this is done to not touch
553 * the address space in [new_end, old_start) some architectures
554 * have constraints on va-space that make this illegal (IA64) -
555 * for the others its just a little faster.
557 free_pgd_range(tlb, old_start, old_end, new_end,
558 vma->vm_next ? vma->vm_next->vm_start : 0);
560 tlb_finish_mmu(tlb, new_end, old_end);
563 * shrink the vma to just the new range.
565 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
567 return 0;
570 #define EXTRA_STACK_VM_PAGES 20 /* random */
573 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
574 * the stack is optionally relocated, and some extra space is added.
576 int setup_arg_pages(struct linux_binprm *bprm,
577 unsigned long stack_top,
578 int executable_stack)
580 unsigned long ret;
581 unsigned long stack_shift;
582 struct mm_struct *mm = current->mm;
583 struct vm_area_struct *vma = bprm->vma;
584 struct vm_area_struct *prev = NULL;
585 unsigned long vm_flags;
586 unsigned long stack_base;
588 #ifdef CONFIG_STACK_GROWSUP
589 /* Limit stack size to 1GB */
590 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
591 if (stack_base > (1 << 30))
592 stack_base = 1 << 30;
594 /* Make sure we didn't let the argument array grow too large. */
595 if (vma->vm_end - vma->vm_start > stack_base)
596 return -ENOMEM;
598 stack_base = PAGE_ALIGN(stack_top - stack_base);
600 stack_shift = vma->vm_start - stack_base;
601 mm->arg_start = bprm->p - stack_shift;
602 bprm->p = vma->vm_end - stack_shift;
603 #else
604 stack_top = arch_align_stack(stack_top);
605 stack_top = PAGE_ALIGN(stack_top);
606 stack_shift = vma->vm_end - stack_top;
608 bprm->p -= stack_shift;
609 mm->arg_start = bprm->p;
610 #endif
612 if (bprm->loader)
613 bprm->loader -= stack_shift;
614 bprm->exec -= stack_shift;
616 down_write(&mm->mmap_sem);
617 vm_flags = VM_STACK_FLAGS;
620 * Adjust stack execute permissions; explicitly enable for
621 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
622 * (arch default) otherwise.
624 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
625 vm_flags |= VM_EXEC;
626 else if (executable_stack == EXSTACK_DISABLE_X)
627 vm_flags &= ~VM_EXEC;
628 vm_flags |= mm->def_flags;
630 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
631 vm_flags);
632 if (ret)
633 goto out_unlock;
634 BUG_ON(prev != vma);
636 /* Move stack pages down in memory. */
637 if (stack_shift) {
638 ret = shift_arg_pages(vma, stack_shift);
639 if (ret) {
640 up_write(&mm->mmap_sem);
641 return ret;
645 #ifdef CONFIG_STACK_GROWSUP
646 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
647 #else
648 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
649 #endif
650 ret = expand_stack(vma, stack_base);
651 if (ret)
652 ret = -EFAULT;
654 out_unlock:
655 up_write(&mm->mmap_sem);
656 return 0;
658 EXPORT_SYMBOL(setup_arg_pages);
660 #endif /* CONFIG_MMU */
662 struct file *open_exec(const char *name)
664 struct nameidata nd;
665 struct file *file;
666 int err;
668 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd,
669 FMODE_READ|FMODE_EXEC);
670 if (err)
671 goto out;
673 err = -EACCES;
674 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
675 goto out_path_put;
677 if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
678 goto out_path_put;
680 err = inode_permission(nd.path.dentry->d_inode, MAY_EXEC | MAY_OPEN);
681 if (err)
682 goto out_path_put;
683 err = ima_path_check(&nd.path, MAY_EXEC | MAY_OPEN);
684 if (err)
685 goto out_path_put;
687 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
688 if (IS_ERR(file))
689 return file;
691 fsnotify_open(file->f_path.dentry);
693 err = deny_write_access(file);
694 if (err) {
695 fput(file);
696 goto out;
699 return file;
701 out_path_put:
702 release_open_intent(&nd);
703 path_put(&nd.path);
704 out:
705 return ERR_PTR(err);
707 EXPORT_SYMBOL(open_exec);
709 int kernel_read(struct file *file, unsigned long offset,
710 char *addr, unsigned long count)
712 mm_segment_t old_fs;
713 loff_t pos = offset;
714 int result;
716 old_fs = get_fs();
717 set_fs(get_ds());
718 /* The cast to a user pointer is valid due to the set_fs() */
719 result = vfs_read(file, (void __user *)addr, count, &pos);
720 set_fs(old_fs);
721 return result;
724 EXPORT_SYMBOL(kernel_read);
726 static int exec_mmap(struct mm_struct *mm)
728 struct task_struct *tsk;
729 struct mm_struct * old_mm, *active_mm;
731 /* Notify parent that we're no longer interested in the old VM */
732 tsk = current;
733 old_mm = current->mm;
734 mm_release(tsk, old_mm);
736 if (old_mm) {
738 * Make sure that if there is a core dump in progress
739 * for the old mm, we get out and die instead of going
740 * through with the exec. We must hold mmap_sem around
741 * checking core_state and changing tsk->mm.
743 down_read(&old_mm->mmap_sem);
744 if (unlikely(old_mm->core_state)) {
745 up_read(&old_mm->mmap_sem);
746 return -EINTR;
749 task_lock(tsk);
750 active_mm = tsk->active_mm;
751 tsk->mm = mm;
752 tsk->active_mm = mm;
753 activate_mm(active_mm, mm);
754 task_unlock(tsk);
755 arch_pick_mmap_layout(mm);
756 if (old_mm) {
757 up_read(&old_mm->mmap_sem);
758 BUG_ON(active_mm != old_mm);
759 mm_update_next_owner(old_mm);
760 mmput(old_mm);
761 return 0;
763 mmdrop(active_mm);
764 return 0;
768 * This function makes sure the current process has its own signal table,
769 * so that flush_signal_handlers can later reset the handlers without
770 * disturbing other processes. (Other processes might share the signal
771 * table via the CLONE_SIGHAND option to clone().)
773 static int de_thread(struct task_struct *tsk)
775 struct signal_struct *sig = tsk->signal;
776 struct sighand_struct *oldsighand = tsk->sighand;
777 spinlock_t *lock = &oldsighand->siglock;
778 int count;
780 if (thread_group_empty(tsk))
781 goto no_thread_group;
784 * Kill all other threads in the thread group.
786 spin_lock_irq(lock);
787 if (signal_group_exit(sig)) {
789 * Another group action in progress, just
790 * return so that the signal is processed.
792 spin_unlock_irq(lock);
793 return -EAGAIN;
795 sig->group_exit_task = tsk;
796 zap_other_threads(tsk);
798 /* Account for the thread group leader hanging around: */
799 count = thread_group_leader(tsk) ? 1 : 2;
800 sig->notify_count = count;
801 while (atomic_read(&sig->count) > count) {
802 __set_current_state(TASK_UNINTERRUPTIBLE);
803 spin_unlock_irq(lock);
804 schedule();
805 spin_lock_irq(lock);
807 spin_unlock_irq(lock);
810 * At this point all other threads have exited, all we have to
811 * do is to wait for the thread group leader to become inactive,
812 * and to assume its PID:
814 if (!thread_group_leader(tsk)) {
815 struct task_struct *leader = tsk->group_leader;
817 sig->notify_count = -1; /* for exit_notify() */
818 for (;;) {
819 write_lock_irq(&tasklist_lock);
820 if (likely(leader->exit_state))
821 break;
822 __set_current_state(TASK_UNINTERRUPTIBLE);
823 write_unlock_irq(&tasklist_lock);
824 schedule();
828 * The only record we have of the real-time age of a
829 * process, regardless of execs it's done, is start_time.
830 * All the past CPU time is accumulated in signal_struct
831 * from sister threads now dead. But in this non-leader
832 * exec, nothing survives from the original leader thread,
833 * whose birth marks the true age of this process now.
834 * When we take on its identity by switching to its PID, we
835 * also take its birthdate (always earlier than our own).
837 tsk->start_time = leader->start_time;
839 BUG_ON(!same_thread_group(leader, tsk));
840 BUG_ON(has_group_leader_pid(tsk));
842 * An exec() starts a new thread group with the
843 * TGID of the previous thread group. Rehash the
844 * two threads with a switched PID, and release
845 * the former thread group leader:
848 /* Become a process group leader with the old leader's pid.
849 * The old leader becomes a thread of the this thread group.
850 * Note: The old leader also uses this pid until release_task
851 * is called. Odd but simple and correct.
853 detach_pid(tsk, PIDTYPE_PID);
854 tsk->pid = leader->pid;
855 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
856 transfer_pid(leader, tsk, PIDTYPE_PGID);
857 transfer_pid(leader, tsk, PIDTYPE_SID);
858 list_replace_rcu(&leader->tasks, &tsk->tasks);
860 tsk->group_leader = tsk;
861 leader->group_leader = tsk;
863 tsk->exit_signal = SIGCHLD;
865 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
866 leader->exit_state = EXIT_DEAD;
867 write_unlock_irq(&tasklist_lock);
869 release_task(leader);
872 sig->group_exit_task = NULL;
873 sig->notify_count = 0;
875 no_thread_group:
876 exit_itimers(sig);
877 flush_itimer_signals();
879 if (atomic_read(&oldsighand->count) != 1) {
880 struct sighand_struct *newsighand;
882 * This ->sighand is shared with the CLONE_SIGHAND
883 * but not CLONE_THREAD task, switch to the new one.
885 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
886 if (!newsighand)
887 return -ENOMEM;
889 atomic_set(&newsighand->count, 1);
890 memcpy(newsighand->action, oldsighand->action,
891 sizeof(newsighand->action));
893 write_lock_irq(&tasklist_lock);
894 spin_lock(&oldsighand->siglock);
895 rcu_assign_pointer(tsk->sighand, newsighand);
896 spin_unlock(&oldsighand->siglock);
897 write_unlock_irq(&tasklist_lock);
899 __cleanup_sighand(oldsighand);
902 BUG_ON(!thread_group_leader(tsk));
903 return 0;
907 * These functions flushes out all traces of the currently running executable
908 * so that a new one can be started
910 static void flush_old_files(struct files_struct * files)
912 long j = -1;
913 struct fdtable *fdt;
915 spin_lock(&files->file_lock);
916 for (;;) {
917 unsigned long set, i;
919 j++;
920 i = j * __NFDBITS;
921 fdt = files_fdtable(files);
922 if (i >= fdt->max_fds)
923 break;
924 set = fdt->close_on_exec->fds_bits[j];
925 if (!set)
926 continue;
927 fdt->close_on_exec->fds_bits[j] = 0;
928 spin_unlock(&files->file_lock);
929 for ( ; set ; i++,set >>= 1) {
930 if (set & 1) {
931 sys_close(i);
934 spin_lock(&files->file_lock);
937 spin_unlock(&files->file_lock);
940 char *get_task_comm(char *buf, struct task_struct *tsk)
942 /* buf must be at least sizeof(tsk->comm) in size */
943 task_lock(tsk);
944 strncpy(buf, tsk->comm, sizeof(tsk->comm));
945 task_unlock(tsk);
946 return buf;
949 void set_task_comm(struct task_struct *tsk, char *buf)
951 task_lock(tsk);
952 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
953 task_unlock(tsk);
956 int flush_old_exec(struct linux_binprm * bprm)
958 char * name;
959 int i, ch, retval;
960 char tcomm[sizeof(current->comm)];
963 * Make sure we have a private signal table and that
964 * we are unassociated from the previous thread group.
966 retval = de_thread(current);
967 if (retval)
968 goto out;
970 set_mm_exe_file(bprm->mm, bprm->file);
973 * Release all of the old mmap stuff
975 retval = exec_mmap(bprm->mm);
976 if (retval)
977 goto out;
979 bprm->mm = NULL; /* We're using it now */
981 /* This is the point of no return */
982 current->sas_ss_sp = current->sas_ss_size = 0;
984 if (current_euid() == current_uid() && current_egid() == current_gid())
985 set_dumpable(current->mm, 1);
986 else
987 set_dumpable(current->mm, suid_dumpable);
989 name = bprm->filename;
991 /* Copies the binary name from after last slash */
992 for (i=0; (ch = *(name++)) != '\0';) {
993 if (ch == '/')
994 i = 0; /* overwrite what we wrote */
995 else
996 if (i < (sizeof(tcomm) - 1))
997 tcomm[i++] = ch;
999 tcomm[i] = '\0';
1000 set_task_comm(current, tcomm);
1002 current->flags &= ~PF_RANDOMIZE;
1003 flush_thread();
1005 /* Set the new mm task size. We have to do that late because it may
1006 * depend on TIF_32BIT which is only updated in flush_thread() on
1007 * some architectures like powerpc
1009 current->mm->task_size = TASK_SIZE;
1011 /* install the new credentials */
1012 if (bprm->cred->uid != current_euid() ||
1013 bprm->cred->gid != current_egid()) {
1014 current->pdeath_signal = 0;
1015 } else if (file_permission(bprm->file, MAY_READ) ||
1016 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1017 set_dumpable(current->mm, suid_dumpable);
1020 current->personality &= ~bprm->per_clear;
1022 /* An exec changes our domain. We are no longer part of the thread
1023 group */
1025 current->self_exec_id++;
1027 flush_signal_handlers(current, 0);
1028 flush_old_files(current->files);
1030 return 0;
1032 out:
1033 return retval;
1036 EXPORT_SYMBOL(flush_old_exec);
1039 * install the new credentials for this executable
1041 void install_exec_creds(struct linux_binprm *bprm)
1043 security_bprm_committing_creds(bprm);
1045 commit_creds(bprm->cred);
1046 bprm->cred = NULL;
1048 /* cred_exec_mutex must be held at least to this point to prevent
1049 * ptrace_attach() from altering our determination of the task's
1050 * credentials; any time after this it may be unlocked */
1052 security_bprm_committed_creds(bprm);
1054 EXPORT_SYMBOL(install_exec_creds);
1057 * determine how safe it is to execute the proposed program
1058 * - the caller must hold current->cred_exec_mutex to protect against
1059 * PTRACE_ATTACH
1061 int check_unsafe_exec(struct linux_binprm *bprm)
1063 struct task_struct *p = current, *t;
1064 unsigned n_fs;
1065 int res = 0;
1067 bprm->unsafe = tracehook_unsafe_exec(p);
1069 n_fs = 1;
1070 write_lock(&p->fs->lock);
1071 rcu_read_lock();
1072 for (t = next_thread(p); t != p; t = next_thread(t)) {
1073 if (t->fs == p->fs)
1074 n_fs++;
1076 rcu_read_unlock();
1078 if (p->fs->users > n_fs) {
1079 bprm->unsafe |= LSM_UNSAFE_SHARE;
1080 } else {
1081 res = -EAGAIN;
1082 if (!p->fs->in_exec) {
1083 p->fs->in_exec = 1;
1084 res = 1;
1087 write_unlock(&p->fs->lock);
1089 return res;
1093 * Fill the binprm structure from the inode.
1094 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1096 * This may be called multiple times for binary chains (scripts for example).
1098 int prepare_binprm(struct linux_binprm *bprm)
1100 umode_t mode;
1101 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1102 int retval;
1104 mode = inode->i_mode;
1105 if (bprm->file->f_op == NULL)
1106 return -EACCES;
1108 /* clear any previous set[ug]id data from a previous binary */
1109 bprm->cred->euid = current_euid();
1110 bprm->cred->egid = current_egid();
1112 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1113 /* Set-uid? */
1114 if (mode & S_ISUID) {
1115 bprm->per_clear |= PER_CLEAR_ON_SETID;
1116 bprm->cred->euid = inode->i_uid;
1119 /* Set-gid? */
1121 * If setgid is set but no group execute bit then this
1122 * is a candidate for mandatory locking, not a setgid
1123 * executable.
1125 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1126 bprm->per_clear |= PER_CLEAR_ON_SETID;
1127 bprm->cred->egid = inode->i_gid;
1131 /* fill in binprm security blob */
1132 retval = security_bprm_set_creds(bprm);
1133 if (retval)
1134 return retval;
1135 bprm->cred_prepared = 1;
1137 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1138 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1141 EXPORT_SYMBOL(prepare_binprm);
1144 * Arguments are '\0' separated strings found at the location bprm->p
1145 * points to; chop off the first by relocating brpm->p to right after
1146 * the first '\0' encountered.
1148 int remove_arg_zero(struct linux_binprm *bprm)
1150 int ret = 0;
1151 unsigned long offset;
1152 char *kaddr;
1153 struct page *page;
1155 if (!bprm->argc)
1156 return 0;
1158 do {
1159 offset = bprm->p & ~PAGE_MASK;
1160 page = get_arg_page(bprm, bprm->p, 0);
1161 if (!page) {
1162 ret = -EFAULT;
1163 goto out;
1165 kaddr = kmap_atomic(page, KM_USER0);
1167 for (; offset < PAGE_SIZE && kaddr[offset];
1168 offset++, bprm->p++)
1171 kunmap_atomic(kaddr, KM_USER0);
1172 put_arg_page(page);
1174 if (offset == PAGE_SIZE)
1175 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1176 } while (offset == PAGE_SIZE);
1178 bprm->p++;
1179 bprm->argc--;
1180 ret = 0;
1182 out:
1183 return ret;
1185 EXPORT_SYMBOL(remove_arg_zero);
1188 * cycle the list of binary formats handler, until one recognizes the image
1190 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1192 unsigned int depth = bprm->recursion_depth;
1193 int try,retval;
1194 struct linux_binfmt *fmt;
1196 retval = security_bprm_check(bprm);
1197 if (retval)
1198 return retval;
1199 retval = ima_bprm_check(bprm);
1200 if (retval)
1201 return retval;
1203 /* kernel module loader fixup */
1204 /* so we don't try to load run modprobe in kernel space. */
1205 set_fs(USER_DS);
1207 retval = audit_bprm(bprm);
1208 if (retval)
1209 return retval;
1211 retval = -ENOENT;
1212 for (try=0; try<2; try++) {
1213 read_lock(&binfmt_lock);
1214 list_for_each_entry(fmt, &formats, lh) {
1215 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1216 if (!fn)
1217 continue;
1218 if (!try_module_get(fmt->module))
1219 continue;
1220 read_unlock(&binfmt_lock);
1221 retval = fn(bprm, regs);
1223 * Restore the depth counter to its starting value
1224 * in this call, so we don't have to rely on every
1225 * load_binary function to restore it on return.
1227 bprm->recursion_depth = depth;
1228 if (retval >= 0) {
1229 if (depth == 0)
1230 tracehook_report_exec(fmt, bprm, regs);
1231 put_binfmt(fmt);
1232 allow_write_access(bprm->file);
1233 if (bprm->file)
1234 fput(bprm->file);
1235 bprm->file = NULL;
1236 current->did_exec = 1;
1237 proc_exec_connector(current);
1238 return retval;
1240 read_lock(&binfmt_lock);
1241 put_binfmt(fmt);
1242 if (retval != -ENOEXEC || bprm->mm == NULL)
1243 break;
1244 if (!bprm->file) {
1245 read_unlock(&binfmt_lock);
1246 return retval;
1249 read_unlock(&binfmt_lock);
1250 if (retval != -ENOEXEC || bprm->mm == NULL) {
1251 break;
1252 #ifdef CONFIG_MODULES
1253 } else {
1254 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1255 if (printable(bprm->buf[0]) &&
1256 printable(bprm->buf[1]) &&
1257 printable(bprm->buf[2]) &&
1258 printable(bprm->buf[3]))
1259 break; /* -ENOEXEC */
1260 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1261 #endif
1264 return retval;
1267 EXPORT_SYMBOL(search_binary_handler);
1269 void free_bprm(struct linux_binprm *bprm)
1271 free_arg_pages(bprm);
1272 if (bprm->cred)
1273 abort_creds(bprm->cred);
1274 kfree(bprm);
1278 * sys_execve() executes a new program.
1280 int do_execve(char * filename,
1281 char __user *__user *argv,
1282 char __user *__user *envp,
1283 struct pt_regs * regs)
1285 struct linux_binprm *bprm;
1286 struct file *file;
1287 struct files_struct *displaced;
1288 bool clear_in_exec;
1289 int retval;
1291 retval = unshare_files(&displaced);
1292 if (retval)
1293 goto out_ret;
1295 retval = -ENOMEM;
1296 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1297 if (!bprm)
1298 goto out_files;
1300 retval = mutex_lock_interruptible(&current->cred_exec_mutex);
1301 if (retval < 0)
1302 goto out_free;
1303 current->in_execve = 1;
1305 retval = -ENOMEM;
1306 bprm->cred = prepare_exec_creds();
1307 if (!bprm->cred)
1308 goto out_unlock;
1310 retval = check_unsafe_exec(bprm);
1311 if (retval < 0)
1312 goto out_unlock;
1313 clear_in_exec = retval;
1315 file = open_exec(filename);
1316 retval = PTR_ERR(file);
1317 if (IS_ERR(file))
1318 goto out_unmark;
1320 sched_exec();
1322 bprm->file = file;
1323 bprm->filename = filename;
1324 bprm->interp = filename;
1326 retval = bprm_mm_init(bprm);
1327 if (retval)
1328 goto out_file;
1330 bprm->argc = count(argv, MAX_ARG_STRINGS);
1331 if ((retval = bprm->argc) < 0)
1332 goto out;
1334 bprm->envc = count(envp, MAX_ARG_STRINGS);
1335 if ((retval = bprm->envc) < 0)
1336 goto out;
1338 retval = prepare_binprm(bprm);
1339 if (retval < 0)
1340 goto out;
1342 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1343 if (retval < 0)
1344 goto out;
1346 bprm->exec = bprm->p;
1347 retval = copy_strings(bprm->envc, envp, bprm);
1348 if (retval < 0)
1349 goto out;
1351 retval = copy_strings(bprm->argc, argv, bprm);
1352 if (retval < 0)
1353 goto out;
1355 current->flags &= ~PF_KTHREAD;
1356 retval = search_binary_handler(bprm,regs);
1357 if (retval < 0)
1358 goto out;
1360 /* execve succeeded */
1361 current->fs->in_exec = 0;
1362 current->in_execve = 0;
1363 mutex_unlock(&current->cred_exec_mutex);
1364 acct_update_integrals(current);
1365 free_bprm(bprm);
1366 if (displaced)
1367 put_files_struct(displaced);
1368 return retval;
1370 out:
1371 if (bprm->mm)
1372 mmput (bprm->mm);
1374 out_file:
1375 if (bprm->file) {
1376 allow_write_access(bprm->file);
1377 fput(bprm->file);
1380 out_unmark:
1381 if (clear_in_exec)
1382 current->fs->in_exec = 0;
1384 out_unlock:
1385 current->in_execve = 0;
1386 mutex_unlock(&current->cred_exec_mutex);
1388 out_free:
1389 free_bprm(bprm);
1391 out_files:
1392 if (displaced)
1393 reset_files_struct(displaced);
1394 out_ret:
1395 return retval;
1398 int set_binfmt(struct linux_binfmt *new)
1400 struct linux_binfmt *old = current->binfmt;
1402 if (new) {
1403 if (!try_module_get(new->module))
1404 return -1;
1406 current->binfmt = new;
1407 if (old)
1408 module_put(old->module);
1409 return 0;
1412 EXPORT_SYMBOL(set_binfmt);
1414 /* format_corename will inspect the pattern parameter, and output a
1415 * name into corename, which must have space for at least
1416 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1418 static int format_corename(char *corename, long signr)
1420 const struct cred *cred = current_cred();
1421 const char *pat_ptr = core_pattern;
1422 int ispipe = (*pat_ptr == '|');
1423 char *out_ptr = corename;
1424 char *const out_end = corename + CORENAME_MAX_SIZE;
1425 int rc;
1426 int pid_in_pattern = 0;
1428 /* Repeat as long as we have more pattern to process and more output
1429 space */
1430 while (*pat_ptr) {
1431 if (*pat_ptr != '%') {
1432 if (out_ptr == out_end)
1433 goto out;
1434 *out_ptr++ = *pat_ptr++;
1435 } else {
1436 switch (*++pat_ptr) {
1437 case 0:
1438 goto out;
1439 /* Double percent, output one percent */
1440 case '%':
1441 if (out_ptr == out_end)
1442 goto out;
1443 *out_ptr++ = '%';
1444 break;
1445 /* pid */
1446 case 'p':
1447 pid_in_pattern = 1;
1448 rc = snprintf(out_ptr, out_end - out_ptr,
1449 "%d", task_tgid_vnr(current));
1450 if (rc > out_end - out_ptr)
1451 goto out;
1452 out_ptr += rc;
1453 break;
1454 /* uid */
1455 case 'u':
1456 rc = snprintf(out_ptr, out_end - out_ptr,
1457 "%d", cred->uid);
1458 if (rc > out_end - out_ptr)
1459 goto out;
1460 out_ptr += rc;
1461 break;
1462 /* gid */
1463 case 'g':
1464 rc = snprintf(out_ptr, out_end - out_ptr,
1465 "%d", cred->gid);
1466 if (rc > out_end - out_ptr)
1467 goto out;
1468 out_ptr += rc;
1469 break;
1470 /* signal that caused the coredump */
1471 case 's':
1472 rc = snprintf(out_ptr, out_end - out_ptr,
1473 "%ld", signr);
1474 if (rc > out_end - out_ptr)
1475 goto out;
1476 out_ptr += rc;
1477 break;
1478 /* UNIX time of coredump */
1479 case 't': {
1480 struct timeval tv;
1481 do_gettimeofday(&tv);
1482 rc = snprintf(out_ptr, out_end - out_ptr,
1483 "%lu", tv.tv_sec);
1484 if (rc > out_end - out_ptr)
1485 goto out;
1486 out_ptr += rc;
1487 break;
1489 /* hostname */
1490 case 'h':
1491 down_read(&uts_sem);
1492 rc = snprintf(out_ptr, out_end - out_ptr,
1493 "%s", utsname()->nodename);
1494 up_read(&uts_sem);
1495 if (rc > out_end - out_ptr)
1496 goto out;
1497 out_ptr += rc;
1498 break;
1499 /* executable */
1500 case 'e':
1501 rc = snprintf(out_ptr, out_end - out_ptr,
1502 "%s", current->comm);
1503 if (rc > out_end - out_ptr)
1504 goto out;
1505 out_ptr += rc;
1506 break;
1507 /* core limit size */
1508 case 'c':
1509 rc = snprintf(out_ptr, out_end - out_ptr,
1510 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1511 if (rc > out_end - out_ptr)
1512 goto out;
1513 out_ptr += rc;
1514 break;
1515 default:
1516 break;
1518 ++pat_ptr;
1521 /* Backward compatibility with core_uses_pid:
1523 * If core_pattern does not include a %p (as is the default)
1524 * and core_uses_pid is set, then .%pid will be appended to
1525 * the filename. Do not do this for piped commands. */
1526 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1527 rc = snprintf(out_ptr, out_end - out_ptr,
1528 ".%d", task_tgid_vnr(current));
1529 if (rc > out_end - out_ptr)
1530 goto out;
1531 out_ptr += rc;
1533 out:
1534 *out_ptr = 0;
1535 return ispipe;
1538 static int zap_process(struct task_struct *start)
1540 struct task_struct *t;
1541 int nr = 0;
1543 start->signal->flags = SIGNAL_GROUP_EXIT;
1544 start->signal->group_stop_count = 0;
1546 t = start;
1547 do {
1548 if (t != current && t->mm) {
1549 sigaddset(&t->pending.signal, SIGKILL);
1550 signal_wake_up(t, 1);
1551 nr++;
1553 } while_each_thread(start, t);
1555 return nr;
1558 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1559 struct core_state *core_state, int exit_code)
1561 struct task_struct *g, *p;
1562 unsigned long flags;
1563 int nr = -EAGAIN;
1565 spin_lock_irq(&tsk->sighand->siglock);
1566 if (!signal_group_exit(tsk->signal)) {
1567 mm->core_state = core_state;
1568 tsk->signal->group_exit_code = exit_code;
1569 nr = zap_process(tsk);
1571 spin_unlock_irq(&tsk->sighand->siglock);
1572 if (unlikely(nr < 0))
1573 return nr;
1575 if (atomic_read(&mm->mm_users) == nr + 1)
1576 goto done;
1578 * We should find and kill all tasks which use this mm, and we should
1579 * count them correctly into ->nr_threads. We don't take tasklist
1580 * lock, but this is safe wrt:
1582 * fork:
1583 * None of sub-threads can fork after zap_process(leader). All
1584 * processes which were created before this point should be
1585 * visible to zap_threads() because copy_process() adds the new
1586 * process to the tail of init_task.tasks list, and lock/unlock
1587 * of ->siglock provides a memory barrier.
1589 * do_exit:
1590 * The caller holds mm->mmap_sem. This means that the task which
1591 * uses this mm can't pass exit_mm(), so it can't exit or clear
1592 * its ->mm.
1594 * de_thread:
1595 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1596 * we must see either old or new leader, this does not matter.
1597 * However, it can change p->sighand, so lock_task_sighand(p)
1598 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1599 * it can't fail.
1601 * Note also that "g" can be the old leader with ->mm == NULL
1602 * and already unhashed and thus removed from ->thread_group.
1603 * This is OK, __unhash_process()->list_del_rcu() does not
1604 * clear the ->next pointer, we will find the new leader via
1605 * next_thread().
1607 rcu_read_lock();
1608 for_each_process(g) {
1609 if (g == tsk->group_leader)
1610 continue;
1611 if (g->flags & PF_KTHREAD)
1612 continue;
1613 p = g;
1614 do {
1615 if (p->mm) {
1616 if (unlikely(p->mm == mm)) {
1617 lock_task_sighand(p, &flags);
1618 nr += zap_process(p);
1619 unlock_task_sighand(p, &flags);
1621 break;
1623 } while_each_thread(g, p);
1625 rcu_read_unlock();
1626 done:
1627 atomic_set(&core_state->nr_threads, nr);
1628 return nr;
1631 static int coredump_wait(int exit_code, struct core_state *core_state)
1633 struct task_struct *tsk = current;
1634 struct mm_struct *mm = tsk->mm;
1635 struct completion *vfork_done;
1636 int core_waiters;
1638 init_completion(&core_state->startup);
1639 core_state->dumper.task = tsk;
1640 core_state->dumper.next = NULL;
1641 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1642 up_write(&mm->mmap_sem);
1644 if (unlikely(core_waiters < 0))
1645 goto fail;
1648 * Make sure nobody is waiting for us to release the VM,
1649 * otherwise we can deadlock when we wait on each other
1651 vfork_done = tsk->vfork_done;
1652 if (vfork_done) {
1653 tsk->vfork_done = NULL;
1654 complete(vfork_done);
1657 if (core_waiters)
1658 wait_for_completion(&core_state->startup);
1659 fail:
1660 return core_waiters;
1663 static void coredump_finish(struct mm_struct *mm)
1665 struct core_thread *curr, *next;
1666 struct task_struct *task;
1668 next = mm->core_state->dumper.next;
1669 while ((curr = next) != NULL) {
1670 next = curr->next;
1671 task = curr->task;
1673 * see exit_mm(), curr->task must not see
1674 * ->task == NULL before we read ->next.
1676 smp_mb();
1677 curr->task = NULL;
1678 wake_up_process(task);
1681 mm->core_state = NULL;
1685 * set_dumpable converts traditional three-value dumpable to two flags and
1686 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1687 * these bits are not changed atomically. So get_dumpable can observe the
1688 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1689 * return either old dumpable or new one by paying attention to the order of
1690 * modifying the bits.
1692 * dumpable | mm->flags (binary)
1693 * old new | initial interim final
1694 * ---------+-----------------------
1695 * 0 1 | 00 01 01
1696 * 0 2 | 00 10(*) 11
1697 * 1 0 | 01 00 00
1698 * 1 2 | 01 11 11
1699 * 2 0 | 11 10(*) 00
1700 * 2 1 | 11 11 01
1702 * (*) get_dumpable regards interim value of 10 as 11.
1704 void set_dumpable(struct mm_struct *mm, int value)
1706 switch (value) {
1707 case 0:
1708 clear_bit(MMF_DUMPABLE, &mm->flags);
1709 smp_wmb();
1710 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1711 break;
1712 case 1:
1713 set_bit(MMF_DUMPABLE, &mm->flags);
1714 smp_wmb();
1715 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1716 break;
1717 case 2:
1718 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1719 smp_wmb();
1720 set_bit(MMF_DUMPABLE, &mm->flags);
1721 break;
1725 int get_dumpable(struct mm_struct *mm)
1727 int ret;
1729 ret = mm->flags & 0x3;
1730 return (ret >= 2) ? 2 : ret;
1733 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1735 struct core_state core_state;
1736 char corename[CORENAME_MAX_SIZE + 1];
1737 struct mm_struct *mm = current->mm;
1738 struct linux_binfmt * binfmt;
1739 struct inode * inode;
1740 struct file * file;
1741 const struct cred *old_cred;
1742 struct cred *cred;
1743 int retval = 0;
1744 int flag = 0;
1745 int ispipe = 0;
1746 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1747 char **helper_argv = NULL;
1748 int helper_argc = 0;
1749 char *delimit;
1751 audit_core_dumps(signr);
1753 binfmt = current->binfmt;
1754 if (!binfmt || !binfmt->core_dump)
1755 goto fail;
1757 cred = prepare_creds();
1758 if (!cred) {
1759 retval = -ENOMEM;
1760 goto fail;
1763 down_write(&mm->mmap_sem);
1765 * If another thread got here first, or we are not dumpable, bail out.
1767 if (mm->core_state || !get_dumpable(mm)) {
1768 up_write(&mm->mmap_sem);
1769 put_cred(cred);
1770 goto fail;
1774 * We cannot trust fsuid as being the "true" uid of the
1775 * process nor do we know its entire history. We only know it
1776 * was tainted so we dump it as root in mode 2.
1778 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1779 flag = O_EXCL; /* Stop rewrite attacks */
1780 cred->fsuid = 0; /* Dump root private */
1783 retval = coredump_wait(exit_code, &core_state);
1784 if (retval < 0) {
1785 put_cred(cred);
1786 goto fail;
1789 old_cred = override_creds(cred);
1792 * Clear any false indication of pending signals that might
1793 * be seen by the filesystem code called to write the core file.
1795 clear_thread_flag(TIF_SIGPENDING);
1798 * lock_kernel() because format_corename() is controlled by sysctl, which
1799 * uses lock_kernel()
1801 lock_kernel();
1802 ispipe = format_corename(corename, signr);
1803 unlock_kernel();
1805 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1806 * to a pipe. Since we're not writing directly to the filesystem
1807 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1808 * created unless the pipe reader choses to write out the core file
1809 * at which point file size limits and permissions will be imposed
1810 * as it does with any other process
1812 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1813 goto fail_unlock;
1815 if (ispipe) {
1816 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1817 if (!helper_argv) {
1818 printk(KERN_WARNING "%s failed to allocate memory\n",
1819 __func__);
1820 goto fail_unlock;
1822 /* Terminate the string before the first option */
1823 delimit = strchr(corename, ' ');
1824 if (delimit)
1825 *delimit = '\0';
1826 delimit = strrchr(helper_argv[0], '/');
1827 if (delimit)
1828 delimit++;
1829 else
1830 delimit = helper_argv[0];
1831 if (!strcmp(delimit, current->comm)) {
1832 printk(KERN_NOTICE "Recursive core dump detected, "
1833 "aborting\n");
1834 goto fail_unlock;
1837 core_limit = RLIM_INFINITY;
1839 /* SIGPIPE can happen, but it's just never processed */
1840 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1841 &file)) {
1842 printk(KERN_INFO "Core dump to %s pipe failed\n",
1843 corename);
1844 goto fail_unlock;
1846 } else
1847 file = filp_open(corename,
1848 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1849 0600);
1850 if (IS_ERR(file))
1851 goto fail_unlock;
1852 inode = file->f_path.dentry->d_inode;
1853 if (inode->i_nlink > 1)
1854 goto close_fail; /* multiple links - don't dump */
1855 if (!ispipe && d_unhashed(file->f_path.dentry))
1856 goto close_fail;
1858 /* AK: actually i see no reason to not allow this for named pipes etc.,
1859 but keep the previous behaviour for now. */
1860 if (!ispipe && !S_ISREG(inode->i_mode))
1861 goto close_fail;
1863 * Dont allow local users get cute and trick others to coredump
1864 * into their pre-created files:
1866 if (inode->i_uid != current_fsuid())
1867 goto close_fail;
1868 if (!file->f_op)
1869 goto close_fail;
1870 if (!file->f_op->write)
1871 goto close_fail;
1872 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1873 goto close_fail;
1875 retval = binfmt->core_dump(signr, regs, file, core_limit);
1877 if (retval)
1878 current->signal->group_exit_code |= 0x80;
1879 close_fail:
1880 filp_close(file, NULL);
1881 fail_unlock:
1882 if (helper_argv)
1883 argv_free(helper_argv);
1885 revert_creds(old_cred);
1886 put_cred(cred);
1887 coredump_finish(mm);
1888 fail:
1889 return;