drm/i915: fix up error path leak in i915_cmdbuffer
[linux-2.6/mini2440.git] / fs / buffer.c
blobff8bb1f2333a05c96eb96fba2b24d49fa6218948
1 /*
2 * linux/fs/buffer.c
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 bh->b_end_io = handler;
53 bh->b_private = private;
56 static int sync_buffer(void *word)
58 struct block_device *bd;
59 struct buffer_head *bh
60 = container_of(word, struct buffer_head, b_state);
62 smp_mb();
63 bd = bh->b_bdev;
64 if (bd)
65 blk_run_address_space(bd->bd_inode->i_mapping);
66 io_schedule();
67 return 0;
70 void __lock_buffer(struct buffer_head *bh)
72 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 TASK_UNINTERRUPTIBLE);
75 EXPORT_SYMBOL(__lock_buffer);
77 void unlock_buffer(struct buffer_head *bh)
79 clear_bit_unlock(BH_Lock, &bh->b_state);
80 smp_mb__after_clear_bit();
81 wake_up_bit(&bh->b_state, BH_Lock);
85 * Block until a buffer comes unlocked. This doesn't stop it
86 * from becoming locked again - you have to lock it yourself
87 * if you want to preserve its state.
89 void __wait_on_buffer(struct buffer_head * bh)
91 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94 static void
95 __clear_page_buffers(struct page *page)
97 ClearPagePrivate(page);
98 set_page_private(page, 0);
99 page_cache_release(page);
103 static int quiet_error(struct buffer_head *bh)
105 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
106 return 0;
107 return 1;
111 static void buffer_io_error(struct buffer_head *bh)
113 char b[BDEVNAME_SIZE];
114 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
115 bdevname(bh->b_bdev, b),
116 (unsigned long long)bh->b_blocknr);
120 * End-of-IO handler helper function which does not touch the bh after
121 * unlocking it.
122 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
123 * a race there is benign: unlock_buffer() only use the bh's address for
124 * hashing after unlocking the buffer, so it doesn't actually touch the bh
125 * itself.
127 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
129 if (uptodate) {
130 set_buffer_uptodate(bh);
131 } else {
132 /* This happens, due to failed READA attempts. */
133 clear_buffer_uptodate(bh);
135 unlock_buffer(bh);
139 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
140 * unlock the buffer. This is what ll_rw_block uses too.
142 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
144 __end_buffer_read_notouch(bh, uptodate);
145 put_bh(bh);
148 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
150 char b[BDEVNAME_SIZE];
152 if (uptodate) {
153 set_buffer_uptodate(bh);
154 } else {
155 if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) {
156 buffer_io_error(bh);
157 printk(KERN_WARNING "lost page write due to "
158 "I/O error on %s\n",
159 bdevname(bh->b_bdev, b));
161 set_buffer_write_io_error(bh);
162 clear_buffer_uptodate(bh);
164 unlock_buffer(bh);
165 put_bh(bh);
169 * Various filesystems appear to want __find_get_block to be non-blocking.
170 * But it's the page lock which protects the buffers. To get around this,
171 * we get exclusion from try_to_free_buffers with the blockdev mapping's
172 * private_lock.
174 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
175 * may be quite high. This code could TryLock the page, and if that
176 * succeeds, there is no need to take private_lock. (But if
177 * private_lock is contended then so is mapping->tree_lock).
179 static struct buffer_head *
180 __find_get_block_slow(struct block_device *bdev, sector_t block)
182 struct inode *bd_inode = bdev->bd_inode;
183 struct address_space *bd_mapping = bd_inode->i_mapping;
184 struct buffer_head *ret = NULL;
185 pgoff_t index;
186 struct buffer_head *bh;
187 struct buffer_head *head;
188 struct page *page;
189 int all_mapped = 1;
191 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
192 page = find_get_page(bd_mapping, index);
193 if (!page)
194 goto out;
196 spin_lock(&bd_mapping->private_lock);
197 if (!page_has_buffers(page))
198 goto out_unlock;
199 head = page_buffers(page);
200 bh = head;
201 do {
202 if (!buffer_mapped(bh))
203 all_mapped = 0;
204 else if (bh->b_blocknr == block) {
205 ret = bh;
206 get_bh(bh);
207 goto out_unlock;
209 bh = bh->b_this_page;
210 } while (bh != head);
212 /* we might be here because some of the buffers on this page are
213 * not mapped. This is due to various races between
214 * file io on the block device and getblk. It gets dealt with
215 * elsewhere, don't buffer_error if we had some unmapped buffers
217 if (all_mapped) {
218 printk("__find_get_block_slow() failed. "
219 "block=%llu, b_blocknr=%llu\n",
220 (unsigned long long)block,
221 (unsigned long long)bh->b_blocknr);
222 printk("b_state=0x%08lx, b_size=%zu\n",
223 bh->b_state, bh->b_size);
224 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
226 out_unlock:
227 spin_unlock(&bd_mapping->private_lock);
228 page_cache_release(page);
229 out:
230 return ret;
233 /* If invalidate_buffers() will trash dirty buffers, it means some kind
234 of fs corruption is going on. Trashing dirty data always imply losing
235 information that was supposed to be just stored on the physical layer
236 by the user.
238 Thus invalidate_buffers in general usage is not allwowed to trash
239 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
240 be preserved. These buffers are simply skipped.
242 We also skip buffers which are still in use. For example this can
243 happen if a userspace program is reading the block device.
245 NOTE: In the case where the user removed a removable-media-disk even if
246 there's still dirty data not synced on disk (due a bug in the device driver
247 or due an error of the user), by not destroying the dirty buffers we could
248 generate corruption also on the next media inserted, thus a parameter is
249 necessary to handle this case in the most safe way possible (trying
250 to not corrupt also the new disk inserted with the data belonging to
251 the old now corrupted disk). Also for the ramdisk the natural thing
252 to do in order to release the ramdisk memory is to destroy dirty buffers.
254 These are two special cases. Normal usage imply the device driver
255 to issue a sync on the device (without waiting I/O completion) and
256 then an invalidate_buffers call that doesn't trash dirty buffers.
258 For handling cache coherency with the blkdev pagecache the 'update' case
259 is been introduced. It is needed to re-read from disk any pinned
260 buffer. NOTE: re-reading from disk is destructive so we can do it only
261 when we assume nobody is changing the buffercache under our I/O and when
262 we think the disk contains more recent information than the buffercache.
263 The update == 1 pass marks the buffers we need to update, the update == 2
264 pass does the actual I/O. */
265 void invalidate_bdev(struct block_device *bdev)
267 struct address_space *mapping = bdev->bd_inode->i_mapping;
269 if (mapping->nrpages == 0)
270 return;
272 invalidate_bh_lrus();
273 invalidate_mapping_pages(mapping, 0, -1);
277 * Kick pdflush then try to free up some ZONE_NORMAL memory.
279 static void free_more_memory(void)
281 struct zone *zone;
282 int nid;
284 wakeup_pdflush(1024);
285 yield();
287 for_each_online_node(nid) {
288 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
289 gfp_zone(GFP_NOFS), NULL,
290 &zone);
291 if (zone)
292 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
293 GFP_NOFS, NULL);
298 * I/O completion handler for block_read_full_page() - pages
299 * which come unlocked at the end of I/O.
301 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
303 unsigned long flags;
304 struct buffer_head *first;
305 struct buffer_head *tmp;
306 struct page *page;
307 int page_uptodate = 1;
309 BUG_ON(!buffer_async_read(bh));
311 page = bh->b_page;
312 if (uptodate) {
313 set_buffer_uptodate(bh);
314 } else {
315 clear_buffer_uptodate(bh);
316 if (!quiet_error(bh))
317 buffer_io_error(bh);
318 SetPageError(page);
322 * Be _very_ careful from here on. Bad things can happen if
323 * two buffer heads end IO at almost the same time and both
324 * decide that the page is now completely done.
326 first = page_buffers(page);
327 local_irq_save(flags);
328 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
329 clear_buffer_async_read(bh);
330 unlock_buffer(bh);
331 tmp = bh;
332 do {
333 if (!buffer_uptodate(tmp))
334 page_uptodate = 0;
335 if (buffer_async_read(tmp)) {
336 BUG_ON(!buffer_locked(tmp));
337 goto still_busy;
339 tmp = tmp->b_this_page;
340 } while (tmp != bh);
341 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
342 local_irq_restore(flags);
345 * If none of the buffers had errors and they are all
346 * uptodate then we can set the page uptodate.
348 if (page_uptodate && !PageError(page))
349 SetPageUptodate(page);
350 unlock_page(page);
351 return;
353 still_busy:
354 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
355 local_irq_restore(flags);
356 return;
360 * Completion handler for block_write_full_page() - pages which are unlocked
361 * during I/O, and which have PageWriteback cleared upon I/O completion.
363 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
365 char b[BDEVNAME_SIZE];
366 unsigned long flags;
367 struct buffer_head *first;
368 struct buffer_head *tmp;
369 struct page *page;
371 BUG_ON(!buffer_async_write(bh));
373 page = bh->b_page;
374 if (uptodate) {
375 set_buffer_uptodate(bh);
376 } else {
377 if (!quiet_error(bh)) {
378 buffer_io_error(bh);
379 printk(KERN_WARNING "lost page write due to "
380 "I/O error on %s\n",
381 bdevname(bh->b_bdev, b));
383 set_bit(AS_EIO, &page->mapping->flags);
384 set_buffer_write_io_error(bh);
385 clear_buffer_uptodate(bh);
386 SetPageError(page);
389 first = page_buffers(page);
390 local_irq_save(flags);
391 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
393 clear_buffer_async_write(bh);
394 unlock_buffer(bh);
395 tmp = bh->b_this_page;
396 while (tmp != bh) {
397 if (buffer_async_write(tmp)) {
398 BUG_ON(!buffer_locked(tmp));
399 goto still_busy;
401 tmp = tmp->b_this_page;
403 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
404 local_irq_restore(flags);
405 end_page_writeback(page);
406 return;
408 still_busy:
409 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
410 local_irq_restore(flags);
411 return;
415 * If a page's buffers are under async readin (end_buffer_async_read
416 * completion) then there is a possibility that another thread of
417 * control could lock one of the buffers after it has completed
418 * but while some of the other buffers have not completed. This
419 * locked buffer would confuse end_buffer_async_read() into not unlocking
420 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
421 * that this buffer is not under async I/O.
423 * The page comes unlocked when it has no locked buffer_async buffers
424 * left.
426 * PageLocked prevents anyone starting new async I/O reads any of
427 * the buffers.
429 * PageWriteback is used to prevent simultaneous writeout of the same
430 * page.
432 * PageLocked prevents anyone from starting writeback of a page which is
433 * under read I/O (PageWriteback is only ever set against a locked page).
435 static void mark_buffer_async_read(struct buffer_head *bh)
437 bh->b_end_io = end_buffer_async_read;
438 set_buffer_async_read(bh);
441 void mark_buffer_async_write(struct buffer_head *bh)
443 bh->b_end_io = end_buffer_async_write;
444 set_buffer_async_write(bh);
446 EXPORT_SYMBOL(mark_buffer_async_write);
450 * fs/buffer.c contains helper functions for buffer-backed address space's
451 * fsync functions. A common requirement for buffer-based filesystems is
452 * that certain data from the backing blockdev needs to be written out for
453 * a successful fsync(). For example, ext2 indirect blocks need to be
454 * written back and waited upon before fsync() returns.
456 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
457 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
458 * management of a list of dependent buffers at ->i_mapping->private_list.
460 * Locking is a little subtle: try_to_free_buffers() will remove buffers
461 * from their controlling inode's queue when they are being freed. But
462 * try_to_free_buffers() will be operating against the *blockdev* mapping
463 * at the time, not against the S_ISREG file which depends on those buffers.
464 * So the locking for private_list is via the private_lock in the address_space
465 * which backs the buffers. Which is different from the address_space
466 * against which the buffers are listed. So for a particular address_space,
467 * mapping->private_lock does *not* protect mapping->private_list! In fact,
468 * mapping->private_list will always be protected by the backing blockdev's
469 * ->private_lock.
471 * Which introduces a requirement: all buffers on an address_space's
472 * ->private_list must be from the same address_space: the blockdev's.
474 * address_spaces which do not place buffers at ->private_list via these
475 * utility functions are free to use private_lock and private_list for
476 * whatever they want. The only requirement is that list_empty(private_list)
477 * be true at clear_inode() time.
479 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
480 * filesystems should do that. invalidate_inode_buffers() should just go
481 * BUG_ON(!list_empty).
483 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
484 * take an address_space, not an inode. And it should be called
485 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
486 * queued up.
488 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
489 * list if it is already on a list. Because if the buffer is on a list,
490 * it *must* already be on the right one. If not, the filesystem is being
491 * silly. This will save a ton of locking. But first we have to ensure
492 * that buffers are taken *off* the old inode's list when they are freed
493 * (presumably in truncate). That requires careful auditing of all
494 * filesystems (do it inside bforget()). It could also be done by bringing
495 * b_inode back.
499 * The buffer's backing address_space's private_lock must be held
501 static void __remove_assoc_queue(struct buffer_head *bh)
503 list_del_init(&bh->b_assoc_buffers);
504 WARN_ON(!bh->b_assoc_map);
505 if (buffer_write_io_error(bh))
506 set_bit(AS_EIO, &bh->b_assoc_map->flags);
507 bh->b_assoc_map = NULL;
510 int inode_has_buffers(struct inode *inode)
512 return !list_empty(&inode->i_data.private_list);
516 * osync is designed to support O_SYNC io. It waits synchronously for
517 * all already-submitted IO to complete, but does not queue any new
518 * writes to the disk.
520 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
521 * you dirty the buffers, and then use osync_inode_buffers to wait for
522 * completion. Any other dirty buffers which are not yet queued for
523 * write will not be flushed to disk by the osync.
525 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
527 struct buffer_head *bh;
528 struct list_head *p;
529 int err = 0;
531 spin_lock(lock);
532 repeat:
533 list_for_each_prev(p, list) {
534 bh = BH_ENTRY(p);
535 if (buffer_locked(bh)) {
536 get_bh(bh);
537 spin_unlock(lock);
538 wait_on_buffer(bh);
539 if (!buffer_uptodate(bh))
540 err = -EIO;
541 brelse(bh);
542 spin_lock(lock);
543 goto repeat;
546 spin_unlock(lock);
547 return err;
550 void do_thaw_all(struct work_struct *work)
552 struct super_block *sb;
553 char b[BDEVNAME_SIZE];
555 spin_lock(&sb_lock);
556 restart:
557 list_for_each_entry(sb, &super_blocks, s_list) {
558 sb->s_count++;
559 spin_unlock(&sb_lock);
560 down_read(&sb->s_umount);
561 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
562 printk(KERN_WARNING "Emergency Thaw on %s\n",
563 bdevname(sb->s_bdev, b));
564 up_read(&sb->s_umount);
565 spin_lock(&sb_lock);
566 if (__put_super_and_need_restart(sb))
567 goto restart;
569 spin_unlock(&sb_lock);
570 kfree(work);
571 printk(KERN_WARNING "Emergency Thaw complete\n");
575 * emergency_thaw_all -- forcibly thaw every frozen filesystem
577 * Used for emergency unfreeze of all filesystems via SysRq
579 void emergency_thaw_all(void)
581 struct work_struct *work;
583 work = kmalloc(sizeof(*work), GFP_ATOMIC);
584 if (work) {
585 INIT_WORK(work, do_thaw_all);
586 schedule_work(work);
591 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
592 * @mapping: the mapping which wants those buffers written
594 * Starts I/O against the buffers at mapping->private_list, and waits upon
595 * that I/O.
597 * Basically, this is a convenience function for fsync().
598 * @mapping is a file or directory which needs those buffers to be written for
599 * a successful fsync().
601 int sync_mapping_buffers(struct address_space *mapping)
603 struct address_space *buffer_mapping = mapping->assoc_mapping;
605 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
606 return 0;
608 return fsync_buffers_list(&buffer_mapping->private_lock,
609 &mapping->private_list);
611 EXPORT_SYMBOL(sync_mapping_buffers);
614 * Called when we've recently written block `bblock', and it is known that
615 * `bblock' was for a buffer_boundary() buffer. This means that the block at
616 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
617 * dirty, schedule it for IO. So that indirects merge nicely with their data.
619 void write_boundary_block(struct block_device *bdev,
620 sector_t bblock, unsigned blocksize)
622 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
623 if (bh) {
624 if (buffer_dirty(bh))
625 ll_rw_block(WRITE, 1, &bh);
626 put_bh(bh);
630 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
632 struct address_space *mapping = inode->i_mapping;
633 struct address_space *buffer_mapping = bh->b_page->mapping;
635 mark_buffer_dirty(bh);
636 if (!mapping->assoc_mapping) {
637 mapping->assoc_mapping = buffer_mapping;
638 } else {
639 BUG_ON(mapping->assoc_mapping != buffer_mapping);
641 if (!bh->b_assoc_map) {
642 spin_lock(&buffer_mapping->private_lock);
643 list_move_tail(&bh->b_assoc_buffers,
644 &mapping->private_list);
645 bh->b_assoc_map = mapping;
646 spin_unlock(&buffer_mapping->private_lock);
649 EXPORT_SYMBOL(mark_buffer_dirty_inode);
652 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
653 * dirty.
655 * If warn is true, then emit a warning if the page is not uptodate and has
656 * not been truncated.
658 static void __set_page_dirty(struct page *page,
659 struct address_space *mapping, int warn)
661 spin_lock_irq(&mapping->tree_lock);
662 if (page->mapping) { /* Race with truncate? */
663 WARN_ON_ONCE(warn && !PageUptodate(page));
664 account_page_dirtied(page, mapping);
665 radix_tree_tag_set(&mapping->page_tree,
666 page_index(page), PAGECACHE_TAG_DIRTY);
668 spin_unlock_irq(&mapping->tree_lock);
669 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
673 * Add a page to the dirty page list.
675 * It is a sad fact of life that this function is called from several places
676 * deeply under spinlocking. It may not sleep.
678 * If the page has buffers, the uptodate buffers are set dirty, to preserve
679 * dirty-state coherency between the page and the buffers. It the page does
680 * not have buffers then when they are later attached they will all be set
681 * dirty.
683 * The buffers are dirtied before the page is dirtied. There's a small race
684 * window in which a writepage caller may see the page cleanness but not the
685 * buffer dirtiness. That's fine. If this code were to set the page dirty
686 * before the buffers, a concurrent writepage caller could clear the page dirty
687 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
688 * page on the dirty page list.
690 * We use private_lock to lock against try_to_free_buffers while using the
691 * page's buffer list. Also use this to protect against clean buffers being
692 * added to the page after it was set dirty.
694 * FIXME: may need to call ->reservepage here as well. That's rather up to the
695 * address_space though.
697 int __set_page_dirty_buffers(struct page *page)
699 int newly_dirty;
700 struct address_space *mapping = page_mapping(page);
702 if (unlikely(!mapping))
703 return !TestSetPageDirty(page);
705 spin_lock(&mapping->private_lock);
706 if (page_has_buffers(page)) {
707 struct buffer_head *head = page_buffers(page);
708 struct buffer_head *bh = head;
710 do {
711 set_buffer_dirty(bh);
712 bh = bh->b_this_page;
713 } while (bh != head);
715 newly_dirty = !TestSetPageDirty(page);
716 spin_unlock(&mapping->private_lock);
718 if (newly_dirty)
719 __set_page_dirty(page, mapping, 1);
720 return newly_dirty;
722 EXPORT_SYMBOL(__set_page_dirty_buffers);
725 * Write out and wait upon a list of buffers.
727 * We have conflicting pressures: we want to make sure that all
728 * initially dirty buffers get waited on, but that any subsequently
729 * dirtied buffers don't. After all, we don't want fsync to last
730 * forever if somebody is actively writing to the file.
732 * Do this in two main stages: first we copy dirty buffers to a
733 * temporary inode list, queueing the writes as we go. Then we clean
734 * up, waiting for those writes to complete.
736 * During this second stage, any subsequent updates to the file may end
737 * up refiling the buffer on the original inode's dirty list again, so
738 * there is a chance we will end up with a buffer queued for write but
739 * not yet completed on that list. So, as a final cleanup we go through
740 * the osync code to catch these locked, dirty buffers without requeuing
741 * any newly dirty buffers for write.
743 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
745 struct buffer_head *bh;
746 struct list_head tmp;
747 struct address_space *mapping, *prev_mapping = NULL;
748 int err = 0, err2;
750 INIT_LIST_HEAD(&tmp);
752 spin_lock(lock);
753 while (!list_empty(list)) {
754 bh = BH_ENTRY(list->next);
755 mapping = bh->b_assoc_map;
756 __remove_assoc_queue(bh);
757 /* Avoid race with mark_buffer_dirty_inode() which does
758 * a lockless check and we rely on seeing the dirty bit */
759 smp_mb();
760 if (buffer_dirty(bh) || buffer_locked(bh)) {
761 list_add(&bh->b_assoc_buffers, &tmp);
762 bh->b_assoc_map = mapping;
763 if (buffer_dirty(bh)) {
764 get_bh(bh);
765 spin_unlock(lock);
767 * Ensure any pending I/O completes so that
768 * ll_rw_block() actually writes the current
769 * contents - it is a noop if I/O is still in
770 * flight on potentially older contents.
772 ll_rw_block(SWRITE_SYNC_PLUG, 1, &bh);
775 * Kick off IO for the previous mapping. Note
776 * that we will not run the very last mapping,
777 * wait_on_buffer() will do that for us
778 * through sync_buffer().
780 if (prev_mapping && prev_mapping != mapping)
781 blk_run_address_space(prev_mapping);
782 prev_mapping = mapping;
784 brelse(bh);
785 spin_lock(lock);
790 while (!list_empty(&tmp)) {
791 bh = BH_ENTRY(tmp.prev);
792 get_bh(bh);
793 mapping = bh->b_assoc_map;
794 __remove_assoc_queue(bh);
795 /* Avoid race with mark_buffer_dirty_inode() which does
796 * a lockless check and we rely on seeing the dirty bit */
797 smp_mb();
798 if (buffer_dirty(bh)) {
799 list_add(&bh->b_assoc_buffers,
800 &mapping->private_list);
801 bh->b_assoc_map = mapping;
803 spin_unlock(lock);
804 wait_on_buffer(bh);
805 if (!buffer_uptodate(bh))
806 err = -EIO;
807 brelse(bh);
808 spin_lock(lock);
811 spin_unlock(lock);
812 err2 = osync_buffers_list(lock, list);
813 if (err)
814 return err;
815 else
816 return err2;
820 * Invalidate any and all dirty buffers on a given inode. We are
821 * probably unmounting the fs, but that doesn't mean we have already
822 * done a sync(). Just drop the buffers from the inode list.
824 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
825 * assumes that all the buffers are against the blockdev. Not true
826 * for reiserfs.
828 void invalidate_inode_buffers(struct inode *inode)
830 if (inode_has_buffers(inode)) {
831 struct address_space *mapping = &inode->i_data;
832 struct list_head *list = &mapping->private_list;
833 struct address_space *buffer_mapping = mapping->assoc_mapping;
835 spin_lock(&buffer_mapping->private_lock);
836 while (!list_empty(list))
837 __remove_assoc_queue(BH_ENTRY(list->next));
838 spin_unlock(&buffer_mapping->private_lock);
841 EXPORT_SYMBOL(invalidate_inode_buffers);
844 * Remove any clean buffers from the inode's buffer list. This is called
845 * when we're trying to free the inode itself. Those buffers can pin it.
847 * Returns true if all buffers were removed.
849 int remove_inode_buffers(struct inode *inode)
851 int ret = 1;
853 if (inode_has_buffers(inode)) {
854 struct address_space *mapping = &inode->i_data;
855 struct list_head *list = &mapping->private_list;
856 struct address_space *buffer_mapping = mapping->assoc_mapping;
858 spin_lock(&buffer_mapping->private_lock);
859 while (!list_empty(list)) {
860 struct buffer_head *bh = BH_ENTRY(list->next);
861 if (buffer_dirty(bh)) {
862 ret = 0;
863 break;
865 __remove_assoc_queue(bh);
867 spin_unlock(&buffer_mapping->private_lock);
869 return ret;
873 * Create the appropriate buffers when given a page for data area and
874 * the size of each buffer.. Use the bh->b_this_page linked list to
875 * follow the buffers created. Return NULL if unable to create more
876 * buffers.
878 * The retry flag is used to differentiate async IO (paging, swapping)
879 * which may not fail from ordinary buffer allocations.
881 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
882 int retry)
884 struct buffer_head *bh, *head;
885 long offset;
887 try_again:
888 head = NULL;
889 offset = PAGE_SIZE;
890 while ((offset -= size) >= 0) {
891 bh = alloc_buffer_head(GFP_NOFS);
892 if (!bh)
893 goto no_grow;
895 bh->b_bdev = NULL;
896 bh->b_this_page = head;
897 bh->b_blocknr = -1;
898 head = bh;
900 bh->b_state = 0;
901 atomic_set(&bh->b_count, 0);
902 bh->b_private = NULL;
903 bh->b_size = size;
905 /* Link the buffer to its page */
906 set_bh_page(bh, page, offset);
908 init_buffer(bh, NULL, NULL);
910 return head;
912 * In case anything failed, we just free everything we got.
914 no_grow:
915 if (head) {
916 do {
917 bh = head;
918 head = head->b_this_page;
919 free_buffer_head(bh);
920 } while (head);
924 * Return failure for non-async IO requests. Async IO requests
925 * are not allowed to fail, so we have to wait until buffer heads
926 * become available. But we don't want tasks sleeping with
927 * partially complete buffers, so all were released above.
929 if (!retry)
930 return NULL;
932 /* We're _really_ low on memory. Now we just
933 * wait for old buffer heads to become free due to
934 * finishing IO. Since this is an async request and
935 * the reserve list is empty, we're sure there are
936 * async buffer heads in use.
938 free_more_memory();
939 goto try_again;
941 EXPORT_SYMBOL_GPL(alloc_page_buffers);
943 static inline void
944 link_dev_buffers(struct page *page, struct buffer_head *head)
946 struct buffer_head *bh, *tail;
948 bh = head;
949 do {
950 tail = bh;
951 bh = bh->b_this_page;
952 } while (bh);
953 tail->b_this_page = head;
954 attach_page_buffers(page, head);
958 * Initialise the state of a blockdev page's buffers.
960 static void
961 init_page_buffers(struct page *page, struct block_device *bdev,
962 sector_t block, int size)
964 struct buffer_head *head = page_buffers(page);
965 struct buffer_head *bh = head;
966 int uptodate = PageUptodate(page);
968 do {
969 if (!buffer_mapped(bh)) {
970 init_buffer(bh, NULL, NULL);
971 bh->b_bdev = bdev;
972 bh->b_blocknr = block;
973 if (uptodate)
974 set_buffer_uptodate(bh);
975 set_buffer_mapped(bh);
977 block++;
978 bh = bh->b_this_page;
979 } while (bh != head);
983 * Create the page-cache page that contains the requested block.
985 * This is user purely for blockdev mappings.
987 static struct page *
988 grow_dev_page(struct block_device *bdev, sector_t block,
989 pgoff_t index, int size)
991 struct inode *inode = bdev->bd_inode;
992 struct page *page;
993 struct buffer_head *bh;
995 page = find_or_create_page(inode->i_mapping, index,
996 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
997 if (!page)
998 return NULL;
1000 BUG_ON(!PageLocked(page));
1002 if (page_has_buffers(page)) {
1003 bh = page_buffers(page);
1004 if (bh->b_size == size) {
1005 init_page_buffers(page, bdev, block, size);
1006 return page;
1008 if (!try_to_free_buffers(page))
1009 goto failed;
1013 * Allocate some buffers for this page
1015 bh = alloc_page_buffers(page, size, 0);
1016 if (!bh)
1017 goto failed;
1020 * Link the page to the buffers and initialise them. Take the
1021 * lock to be atomic wrt __find_get_block(), which does not
1022 * run under the page lock.
1024 spin_lock(&inode->i_mapping->private_lock);
1025 link_dev_buffers(page, bh);
1026 init_page_buffers(page, bdev, block, size);
1027 spin_unlock(&inode->i_mapping->private_lock);
1028 return page;
1030 failed:
1031 BUG();
1032 unlock_page(page);
1033 page_cache_release(page);
1034 return NULL;
1038 * Create buffers for the specified block device block's page. If
1039 * that page was dirty, the buffers are set dirty also.
1041 static int
1042 grow_buffers(struct block_device *bdev, sector_t block, int size)
1044 struct page *page;
1045 pgoff_t index;
1046 int sizebits;
1048 sizebits = -1;
1049 do {
1050 sizebits++;
1051 } while ((size << sizebits) < PAGE_SIZE);
1053 index = block >> sizebits;
1056 * Check for a block which wants to lie outside our maximum possible
1057 * pagecache index. (this comparison is done using sector_t types).
1059 if (unlikely(index != block >> sizebits)) {
1060 char b[BDEVNAME_SIZE];
1062 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1063 "device %s\n",
1064 __func__, (unsigned long long)block,
1065 bdevname(bdev, b));
1066 return -EIO;
1068 block = index << sizebits;
1069 /* Create a page with the proper size buffers.. */
1070 page = grow_dev_page(bdev, block, index, size);
1071 if (!page)
1072 return 0;
1073 unlock_page(page);
1074 page_cache_release(page);
1075 return 1;
1078 static struct buffer_head *
1079 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1081 /* Size must be multiple of hard sectorsize */
1082 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1083 (size < 512 || size > PAGE_SIZE))) {
1084 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1085 size);
1086 printk(KERN_ERR "hardsect size: %d\n",
1087 bdev_hardsect_size(bdev));
1089 dump_stack();
1090 return NULL;
1093 for (;;) {
1094 struct buffer_head * bh;
1095 int ret;
1097 bh = __find_get_block(bdev, block, size);
1098 if (bh)
1099 return bh;
1101 ret = grow_buffers(bdev, block, size);
1102 if (ret < 0)
1103 return NULL;
1104 if (ret == 0)
1105 free_more_memory();
1110 * The relationship between dirty buffers and dirty pages:
1112 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1113 * the page is tagged dirty in its radix tree.
1115 * At all times, the dirtiness of the buffers represents the dirtiness of
1116 * subsections of the page. If the page has buffers, the page dirty bit is
1117 * merely a hint about the true dirty state.
1119 * When a page is set dirty in its entirety, all its buffers are marked dirty
1120 * (if the page has buffers).
1122 * When a buffer is marked dirty, its page is dirtied, but the page's other
1123 * buffers are not.
1125 * Also. When blockdev buffers are explicitly read with bread(), they
1126 * individually become uptodate. But their backing page remains not
1127 * uptodate - even if all of its buffers are uptodate. A subsequent
1128 * block_read_full_page() against that page will discover all the uptodate
1129 * buffers, will set the page uptodate and will perform no I/O.
1133 * mark_buffer_dirty - mark a buffer_head as needing writeout
1134 * @bh: the buffer_head to mark dirty
1136 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1137 * backing page dirty, then tag the page as dirty in its address_space's radix
1138 * tree and then attach the address_space's inode to its superblock's dirty
1139 * inode list.
1141 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1142 * mapping->tree_lock and the global inode_lock.
1144 void mark_buffer_dirty(struct buffer_head *bh)
1146 WARN_ON_ONCE(!buffer_uptodate(bh));
1149 * Very *carefully* optimize the it-is-already-dirty case.
1151 * Don't let the final "is it dirty" escape to before we
1152 * perhaps modified the buffer.
1154 if (buffer_dirty(bh)) {
1155 smp_mb();
1156 if (buffer_dirty(bh))
1157 return;
1160 if (!test_set_buffer_dirty(bh)) {
1161 struct page *page = bh->b_page;
1162 if (!TestSetPageDirty(page))
1163 __set_page_dirty(page, page_mapping(page), 0);
1168 * Decrement a buffer_head's reference count. If all buffers against a page
1169 * have zero reference count, are clean and unlocked, and if the page is clean
1170 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1171 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1172 * a page but it ends up not being freed, and buffers may later be reattached).
1174 void __brelse(struct buffer_head * buf)
1176 if (atomic_read(&buf->b_count)) {
1177 put_bh(buf);
1178 return;
1180 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1184 * bforget() is like brelse(), except it discards any
1185 * potentially dirty data.
1187 void __bforget(struct buffer_head *bh)
1189 clear_buffer_dirty(bh);
1190 if (bh->b_assoc_map) {
1191 struct address_space *buffer_mapping = bh->b_page->mapping;
1193 spin_lock(&buffer_mapping->private_lock);
1194 list_del_init(&bh->b_assoc_buffers);
1195 bh->b_assoc_map = NULL;
1196 spin_unlock(&buffer_mapping->private_lock);
1198 __brelse(bh);
1201 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1203 lock_buffer(bh);
1204 if (buffer_uptodate(bh)) {
1205 unlock_buffer(bh);
1206 return bh;
1207 } else {
1208 get_bh(bh);
1209 bh->b_end_io = end_buffer_read_sync;
1210 submit_bh(READ, bh);
1211 wait_on_buffer(bh);
1212 if (buffer_uptodate(bh))
1213 return bh;
1215 brelse(bh);
1216 return NULL;
1220 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1221 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1222 * refcount elevated by one when they're in an LRU. A buffer can only appear
1223 * once in a particular CPU's LRU. A single buffer can be present in multiple
1224 * CPU's LRUs at the same time.
1226 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1227 * sb_find_get_block().
1229 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1230 * a local interrupt disable for that.
1233 #define BH_LRU_SIZE 8
1235 struct bh_lru {
1236 struct buffer_head *bhs[BH_LRU_SIZE];
1239 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1241 #ifdef CONFIG_SMP
1242 #define bh_lru_lock() local_irq_disable()
1243 #define bh_lru_unlock() local_irq_enable()
1244 #else
1245 #define bh_lru_lock() preempt_disable()
1246 #define bh_lru_unlock() preempt_enable()
1247 #endif
1249 static inline void check_irqs_on(void)
1251 #ifdef irqs_disabled
1252 BUG_ON(irqs_disabled());
1253 #endif
1257 * The LRU management algorithm is dopey-but-simple. Sorry.
1259 static void bh_lru_install(struct buffer_head *bh)
1261 struct buffer_head *evictee = NULL;
1262 struct bh_lru *lru;
1264 check_irqs_on();
1265 bh_lru_lock();
1266 lru = &__get_cpu_var(bh_lrus);
1267 if (lru->bhs[0] != bh) {
1268 struct buffer_head *bhs[BH_LRU_SIZE];
1269 int in;
1270 int out = 0;
1272 get_bh(bh);
1273 bhs[out++] = bh;
1274 for (in = 0; in < BH_LRU_SIZE; in++) {
1275 struct buffer_head *bh2 = lru->bhs[in];
1277 if (bh2 == bh) {
1278 __brelse(bh2);
1279 } else {
1280 if (out >= BH_LRU_SIZE) {
1281 BUG_ON(evictee != NULL);
1282 evictee = bh2;
1283 } else {
1284 bhs[out++] = bh2;
1288 while (out < BH_LRU_SIZE)
1289 bhs[out++] = NULL;
1290 memcpy(lru->bhs, bhs, sizeof(bhs));
1292 bh_lru_unlock();
1294 if (evictee)
1295 __brelse(evictee);
1299 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1301 static struct buffer_head *
1302 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1304 struct buffer_head *ret = NULL;
1305 struct bh_lru *lru;
1306 unsigned int i;
1308 check_irqs_on();
1309 bh_lru_lock();
1310 lru = &__get_cpu_var(bh_lrus);
1311 for (i = 0; i < BH_LRU_SIZE; i++) {
1312 struct buffer_head *bh = lru->bhs[i];
1314 if (bh && bh->b_bdev == bdev &&
1315 bh->b_blocknr == block && bh->b_size == size) {
1316 if (i) {
1317 while (i) {
1318 lru->bhs[i] = lru->bhs[i - 1];
1319 i--;
1321 lru->bhs[0] = bh;
1323 get_bh(bh);
1324 ret = bh;
1325 break;
1328 bh_lru_unlock();
1329 return ret;
1333 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1334 * it in the LRU and mark it as accessed. If it is not present then return
1335 * NULL
1337 struct buffer_head *
1338 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1340 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1342 if (bh == NULL) {
1343 bh = __find_get_block_slow(bdev, block);
1344 if (bh)
1345 bh_lru_install(bh);
1347 if (bh)
1348 touch_buffer(bh);
1349 return bh;
1351 EXPORT_SYMBOL(__find_get_block);
1354 * __getblk will locate (and, if necessary, create) the buffer_head
1355 * which corresponds to the passed block_device, block and size. The
1356 * returned buffer has its reference count incremented.
1358 * __getblk() cannot fail - it just keeps trying. If you pass it an
1359 * illegal block number, __getblk() will happily return a buffer_head
1360 * which represents the non-existent block. Very weird.
1362 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1363 * attempt is failing. FIXME, perhaps?
1365 struct buffer_head *
1366 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1368 struct buffer_head *bh = __find_get_block(bdev, block, size);
1370 might_sleep();
1371 if (bh == NULL)
1372 bh = __getblk_slow(bdev, block, size);
1373 return bh;
1375 EXPORT_SYMBOL(__getblk);
1378 * Do async read-ahead on a buffer..
1380 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1382 struct buffer_head *bh = __getblk(bdev, block, size);
1383 if (likely(bh)) {
1384 ll_rw_block(READA, 1, &bh);
1385 brelse(bh);
1388 EXPORT_SYMBOL(__breadahead);
1391 * __bread() - reads a specified block and returns the bh
1392 * @bdev: the block_device to read from
1393 * @block: number of block
1394 * @size: size (in bytes) to read
1396 * Reads a specified block, and returns buffer head that contains it.
1397 * It returns NULL if the block was unreadable.
1399 struct buffer_head *
1400 __bread(struct block_device *bdev, sector_t block, unsigned size)
1402 struct buffer_head *bh = __getblk(bdev, block, size);
1404 if (likely(bh) && !buffer_uptodate(bh))
1405 bh = __bread_slow(bh);
1406 return bh;
1408 EXPORT_SYMBOL(__bread);
1411 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1412 * This doesn't race because it runs in each cpu either in irq
1413 * or with preempt disabled.
1415 static void invalidate_bh_lru(void *arg)
1417 struct bh_lru *b = &get_cpu_var(bh_lrus);
1418 int i;
1420 for (i = 0; i < BH_LRU_SIZE; i++) {
1421 brelse(b->bhs[i]);
1422 b->bhs[i] = NULL;
1424 put_cpu_var(bh_lrus);
1427 void invalidate_bh_lrus(void)
1429 on_each_cpu(invalidate_bh_lru, NULL, 1);
1431 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1433 void set_bh_page(struct buffer_head *bh,
1434 struct page *page, unsigned long offset)
1436 bh->b_page = page;
1437 BUG_ON(offset >= PAGE_SIZE);
1438 if (PageHighMem(page))
1440 * This catches illegal uses and preserves the offset:
1442 bh->b_data = (char *)(0 + offset);
1443 else
1444 bh->b_data = page_address(page) + offset;
1446 EXPORT_SYMBOL(set_bh_page);
1449 * Called when truncating a buffer on a page completely.
1451 static void discard_buffer(struct buffer_head * bh)
1453 lock_buffer(bh);
1454 clear_buffer_dirty(bh);
1455 bh->b_bdev = NULL;
1456 clear_buffer_mapped(bh);
1457 clear_buffer_req(bh);
1458 clear_buffer_new(bh);
1459 clear_buffer_delay(bh);
1460 clear_buffer_unwritten(bh);
1461 unlock_buffer(bh);
1465 * block_invalidatepage - invalidate part of all of a buffer-backed page
1467 * @page: the page which is affected
1468 * @offset: the index of the truncation point
1470 * block_invalidatepage() is called when all or part of the page has become
1471 * invalidatedby a truncate operation.
1473 * block_invalidatepage() does not have to release all buffers, but it must
1474 * ensure that no dirty buffer is left outside @offset and that no I/O
1475 * is underway against any of the blocks which are outside the truncation
1476 * point. Because the caller is about to free (and possibly reuse) those
1477 * blocks on-disk.
1479 void block_invalidatepage(struct page *page, unsigned long offset)
1481 struct buffer_head *head, *bh, *next;
1482 unsigned int curr_off = 0;
1484 BUG_ON(!PageLocked(page));
1485 if (!page_has_buffers(page))
1486 goto out;
1488 head = page_buffers(page);
1489 bh = head;
1490 do {
1491 unsigned int next_off = curr_off + bh->b_size;
1492 next = bh->b_this_page;
1495 * is this block fully invalidated?
1497 if (offset <= curr_off)
1498 discard_buffer(bh);
1499 curr_off = next_off;
1500 bh = next;
1501 } while (bh != head);
1504 * We release buffers only if the entire page is being invalidated.
1505 * The get_block cached value has been unconditionally invalidated,
1506 * so real IO is not possible anymore.
1508 if (offset == 0)
1509 try_to_release_page(page, 0);
1510 out:
1511 return;
1513 EXPORT_SYMBOL(block_invalidatepage);
1516 * We attach and possibly dirty the buffers atomically wrt
1517 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1518 * is already excluded via the page lock.
1520 void create_empty_buffers(struct page *page,
1521 unsigned long blocksize, unsigned long b_state)
1523 struct buffer_head *bh, *head, *tail;
1525 head = alloc_page_buffers(page, blocksize, 1);
1526 bh = head;
1527 do {
1528 bh->b_state |= b_state;
1529 tail = bh;
1530 bh = bh->b_this_page;
1531 } while (bh);
1532 tail->b_this_page = head;
1534 spin_lock(&page->mapping->private_lock);
1535 if (PageUptodate(page) || PageDirty(page)) {
1536 bh = head;
1537 do {
1538 if (PageDirty(page))
1539 set_buffer_dirty(bh);
1540 if (PageUptodate(page))
1541 set_buffer_uptodate(bh);
1542 bh = bh->b_this_page;
1543 } while (bh != head);
1545 attach_page_buffers(page, head);
1546 spin_unlock(&page->mapping->private_lock);
1548 EXPORT_SYMBOL(create_empty_buffers);
1551 * We are taking a block for data and we don't want any output from any
1552 * buffer-cache aliases starting from return from that function and
1553 * until the moment when something will explicitly mark the buffer
1554 * dirty (hopefully that will not happen until we will free that block ;-)
1555 * We don't even need to mark it not-uptodate - nobody can expect
1556 * anything from a newly allocated buffer anyway. We used to used
1557 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1558 * don't want to mark the alias unmapped, for example - it would confuse
1559 * anyone who might pick it with bread() afterwards...
1561 * Also.. Note that bforget() doesn't lock the buffer. So there can
1562 * be writeout I/O going on against recently-freed buffers. We don't
1563 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1564 * only if we really need to. That happens here.
1566 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1568 struct buffer_head *old_bh;
1570 might_sleep();
1572 old_bh = __find_get_block_slow(bdev, block);
1573 if (old_bh) {
1574 clear_buffer_dirty(old_bh);
1575 wait_on_buffer(old_bh);
1576 clear_buffer_req(old_bh);
1577 __brelse(old_bh);
1580 EXPORT_SYMBOL(unmap_underlying_metadata);
1583 * NOTE! All mapped/uptodate combinations are valid:
1585 * Mapped Uptodate Meaning
1587 * No No "unknown" - must do get_block()
1588 * No Yes "hole" - zero-filled
1589 * Yes No "allocated" - allocated on disk, not read in
1590 * Yes Yes "valid" - allocated and up-to-date in memory.
1592 * "Dirty" is valid only with the last case (mapped+uptodate).
1596 * While block_write_full_page is writing back the dirty buffers under
1597 * the page lock, whoever dirtied the buffers may decide to clean them
1598 * again at any time. We handle that by only looking at the buffer
1599 * state inside lock_buffer().
1601 * If block_write_full_page() is called for regular writeback
1602 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1603 * locked buffer. This only can happen if someone has written the buffer
1604 * directly, with submit_bh(). At the address_space level PageWriteback
1605 * prevents this contention from occurring.
1607 * If block_write_full_page() is called with wbc->sync_mode ==
1608 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this
1609 * causes the writes to be flagged as synchronous writes, but the
1610 * block device queue will NOT be unplugged, since usually many pages
1611 * will be pushed to the out before the higher-level caller actually
1612 * waits for the writes to be completed. The various wait functions,
1613 * such as wait_on_writeback_range() will ultimately call sync_page()
1614 * which will ultimately call blk_run_backing_dev(), which will end up
1615 * unplugging the device queue.
1617 static int __block_write_full_page(struct inode *inode, struct page *page,
1618 get_block_t *get_block, struct writeback_control *wbc)
1620 int err;
1621 sector_t block;
1622 sector_t last_block;
1623 struct buffer_head *bh, *head;
1624 const unsigned blocksize = 1 << inode->i_blkbits;
1625 int nr_underway = 0;
1626 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1627 WRITE_SYNC_PLUG : WRITE);
1629 BUG_ON(!PageLocked(page));
1631 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1633 if (!page_has_buffers(page)) {
1634 create_empty_buffers(page, blocksize,
1635 (1 << BH_Dirty)|(1 << BH_Uptodate));
1639 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1640 * here, and the (potentially unmapped) buffers may become dirty at
1641 * any time. If a buffer becomes dirty here after we've inspected it
1642 * then we just miss that fact, and the page stays dirty.
1644 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1645 * handle that here by just cleaning them.
1648 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1649 head = page_buffers(page);
1650 bh = head;
1653 * Get all the dirty buffers mapped to disk addresses and
1654 * handle any aliases from the underlying blockdev's mapping.
1656 do {
1657 if (block > last_block) {
1659 * mapped buffers outside i_size will occur, because
1660 * this page can be outside i_size when there is a
1661 * truncate in progress.
1664 * The buffer was zeroed by block_write_full_page()
1666 clear_buffer_dirty(bh);
1667 set_buffer_uptodate(bh);
1668 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1669 buffer_dirty(bh)) {
1670 WARN_ON(bh->b_size != blocksize);
1671 err = get_block(inode, block, bh, 1);
1672 if (err)
1673 goto recover;
1674 clear_buffer_delay(bh);
1675 if (buffer_new(bh)) {
1676 /* blockdev mappings never come here */
1677 clear_buffer_new(bh);
1678 unmap_underlying_metadata(bh->b_bdev,
1679 bh->b_blocknr);
1682 bh = bh->b_this_page;
1683 block++;
1684 } while (bh != head);
1686 do {
1687 if (!buffer_mapped(bh))
1688 continue;
1690 * If it's a fully non-blocking write attempt and we cannot
1691 * lock the buffer then redirty the page. Note that this can
1692 * potentially cause a busy-wait loop from pdflush and kswapd
1693 * activity, but those code paths have their own higher-level
1694 * throttling.
1696 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1697 lock_buffer(bh);
1698 } else if (!trylock_buffer(bh)) {
1699 redirty_page_for_writepage(wbc, page);
1700 continue;
1702 if (test_clear_buffer_dirty(bh)) {
1703 mark_buffer_async_write(bh);
1704 } else {
1705 unlock_buffer(bh);
1707 } while ((bh = bh->b_this_page) != head);
1710 * The page and its buffers are protected by PageWriteback(), so we can
1711 * drop the bh refcounts early.
1713 BUG_ON(PageWriteback(page));
1714 set_page_writeback(page);
1716 do {
1717 struct buffer_head *next = bh->b_this_page;
1718 if (buffer_async_write(bh)) {
1719 submit_bh(write_op, bh);
1720 nr_underway++;
1722 bh = next;
1723 } while (bh != head);
1724 unlock_page(page);
1726 err = 0;
1727 done:
1728 if (nr_underway == 0) {
1730 * The page was marked dirty, but the buffers were
1731 * clean. Someone wrote them back by hand with
1732 * ll_rw_block/submit_bh. A rare case.
1734 end_page_writeback(page);
1737 * The page and buffer_heads can be released at any time from
1738 * here on.
1741 return err;
1743 recover:
1745 * ENOSPC, or some other error. We may already have added some
1746 * blocks to the file, so we need to write these out to avoid
1747 * exposing stale data.
1748 * The page is currently locked and not marked for writeback
1750 bh = head;
1751 /* Recovery: lock and submit the mapped buffers */
1752 do {
1753 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1754 !buffer_delay(bh)) {
1755 lock_buffer(bh);
1756 mark_buffer_async_write(bh);
1757 } else {
1759 * The buffer may have been set dirty during
1760 * attachment to a dirty page.
1762 clear_buffer_dirty(bh);
1764 } while ((bh = bh->b_this_page) != head);
1765 SetPageError(page);
1766 BUG_ON(PageWriteback(page));
1767 mapping_set_error(page->mapping, err);
1768 set_page_writeback(page);
1769 do {
1770 struct buffer_head *next = bh->b_this_page;
1771 if (buffer_async_write(bh)) {
1772 clear_buffer_dirty(bh);
1773 submit_bh(write_op, bh);
1774 nr_underway++;
1776 bh = next;
1777 } while (bh != head);
1778 unlock_page(page);
1779 goto done;
1783 * If a page has any new buffers, zero them out here, and mark them uptodate
1784 * and dirty so they'll be written out (in order to prevent uninitialised
1785 * block data from leaking). And clear the new bit.
1787 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1789 unsigned int block_start, block_end;
1790 struct buffer_head *head, *bh;
1792 BUG_ON(!PageLocked(page));
1793 if (!page_has_buffers(page))
1794 return;
1796 bh = head = page_buffers(page);
1797 block_start = 0;
1798 do {
1799 block_end = block_start + bh->b_size;
1801 if (buffer_new(bh)) {
1802 if (block_end > from && block_start < to) {
1803 if (!PageUptodate(page)) {
1804 unsigned start, size;
1806 start = max(from, block_start);
1807 size = min(to, block_end) - start;
1809 zero_user(page, start, size);
1810 set_buffer_uptodate(bh);
1813 clear_buffer_new(bh);
1814 mark_buffer_dirty(bh);
1818 block_start = block_end;
1819 bh = bh->b_this_page;
1820 } while (bh != head);
1822 EXPORT_SYMBOL(page_zero_new_buffers);
1824 static int __block_prepare_write(struct inode *inode, struct page *page,
1825 unsigned from, unsigned to, get_block_t *get_block)
1827 unsigned block_start, block_end;
1828 sector_t block;
1829 int err = 0;
1830 unsigned blocksize, bbits;
1831 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1833 BUG_ON(!PageLocked(page));
1834 BUG_ON(from > PAGE_CACHE_SIZE);
1835 BUG_ON(to > PAGE_CACHE_SIZE);
1836 BUG_ON(from > to);
1838 blocksize = 1 << inode->i_blkbits;
1839 if (!page_has_buffers(page))
1840 create_empty_buffers(page, blocksize, 0);
1841 head = page_buffers(page);
1843 bbits = inode->i_blkbits;
1844 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1846 for(bh = head, block_start = 0; bh != head || !block_start;
1847 block++, block_start=block_end, bh = bh->b_this_page) {
1848 block_end = block_start + blocksize;
1849 if (block_end <= from || block_start >= to) {
1850 if (PageUptodate(page)) {
1851 if (!buffer_uptodate(bh))
1852 set_buffer_uptodate(bh);
1854 continue;
1856 if (buffer_new(bh))
1857 clear_buffer_new(bh);
1858 if (!buffer_mapped(bh)) {
1859 WARN_ON(bh->b_size != blocksize);
1860 err = get_block(inode, block, bh, 1);
1861 if (err)
1862 break;
1863 if (buffer_new(bh)) {
1864 unmap_underlying_metadata(bh->b_bdev,
1865 bh->b_blocknr);
1866 if (PageUptodate(page)) {
1867 clear_buffer_new(bh);
1868 set_buffer_uptodate(bh);
1869 mark_buffer_dirty(bh);
1870 continue;
1872 if (block_end > to || block_start < from)
1873 zero_user_segments(page,
1874 to, block_end,
1875 block_start, from);
1876 continue;
1879 if (PageUptodate(page)) {
1880 if (!buffer_uptodate(bh))
1881 set_buffer_uptodate(bh);
1882 continue;
1884 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1885 !buffer_unwritten(bh) &&
1886 (block_start < from || block_end > to)) {
1887 ll_rw_block(READ, 1, &bh);
1888 *wait_bh++=bh;
1892 * If we issued read requests - let them complete.
1894 while(wait_bh > wait) {
1895 wait_on_buffer(*--wait_bh);
1896 if (!buffer_uptodate(*wait_bh))
1897 err = -EIO;
1899 if (unlikely(err))
1900 page_zero_new_buffers(page, from, to);
1901 return err;
1904 static int __block_commit_write(struct inode *inode, struct page *page,
1905 unsigned from, unsigned to)
1907 unsigned block_start, block_end;
1908 int partial = 0;
1909 unsigned blocksize;
1910 struct buffer_head *bh, *head;
1912 blocksize = 1 << inode->i_blkbits;
1914 for(bh = head = page_buffers(page), block_start = 0;
1915 bh != head || !block_start;
1916 block_start=block_end, bh = bh->b_this_page) {
1917 block_end = block_start + blocksize;
1918 if (block_end <= from || block_start >= to) {
1919 if (!buffer_uptodate(bh))
1920 partial = 1;
1921 } else {
1922 set_buffer_uptodate(bh);
1923 mark_buffer_dirty(bh);
1925 clear_buffer_new(bh);
1929 * If this is a partial write which happened to make all buffers
1930 * uptodate then we can optimize away a bogus readpage() for
1931 * the next read(). Here we 'discover' whether the page went
1932 * uptodate as a result of this (potentially partial) write.
1934 if (!partial)
1935 SetPageUptodate(page);
1936 return 0;
1940 * block_write_begin takes care of the basic task of block allocation and
1941 * bringing partial write blocks uptodate first.
1943 * If *pagep is not NULL, then block_write_begin uses the locked page
1944 * at *pagep rather than allocating its own. In this case, the page will
1945 * not be unlocked or deallocated on failure.
1947 int block_write_begin(struct file *file, struct address_space *mapping,
1948 loff_t pos, unsigned len, unsigned flags,
1949 struct page **pagep, void **fsdata,
1950 get_block_t *get_block)
1952 struct inode *inode = mapping->host;
1953 int status = 0;
1954 struct page *page;
1955 pgoff_t index;
1956 unsigned start, end;
1957 int ownpage = 0;
1959 index = pos >> PAGE_CACHE_SHIFT;
1960 start = pos & (PAGE_CACHE_SIZE - 1);
1961 end = start + len;
1963 page = *pagep;
1964 if (page == NULL) {
1965 ownpage = 1;
1966 page = grab_cache_page_write_begin(mapping, index, flags);
1967 if (!page) {
1968 status = -ENOMEM;
1969 goto out;
1971 *pagep = page;
1972 } else
1973 BUG_ON(!PageLocked(page));
1975 status = __block_prepare_write(inode, page, start, end, get_block);
1976 if (unlikely(status)) {
1977 ClearPageUptodate(page);
1979 if (ownpage) {
1980 unlock_page(page);
1981 page_cache_release(page);
1982 *pagep = NULL;
1985 * prepare_write() may have instantiated a few blocks
1986 * outside i_size. Trim these off again. Don't need
1987 * i_size_read because we hold i_mutex.
1989 if (pos + len > inode->i_size)
1990 vmtruncate(inode, inode->i_size);
1994 out:
1995 return status;
1997 EXPORT_SYMBOL(block_write_begin);
1999 int block_write_end(struct file *file, struct address_space *mapping,
2000 loff_t pos, unsigned len, unsigned copied,
2001 struct page *page, void *fsdata)
2003 struct inode *inode = mapping->host;
2004 unsigned start;
2006 start = pos & (PAGE_CACHE_SIZE - 1);
2008 if (unlikely(copied < len)) {
2010 * The buffers that were written will now be uptodate, so we
2011 * don't have to worry about a readpage reading them and
2012 * overwriting a partial write. However if we have encountered
2013 * a short write and only partially written into a buffer, it
2014 * will not be marked uptodate, so a readpage might come in and
2015 * destroy our partial write.
2017 * Do the simplest thing, and just treat any short write to a
2018 * non uptodate page as a zero-length write, and force the
2019 * caller to redo the whole thing.
2021 if (!PageUptodate(page))
2022 copied = 0;
2024 page_zero_new_buffers(page, start+copied, start+len);
2026 flush_dcache_page(page);
2028 /* This could be a short (even 0-length) commit */
2029 __block_commit_write(inode, page, start, start+copied);
2031 return copied;
2033 EXPORT_SYMBOL(block_write_end);
2035 int generic_write_end(struct file *file, struct address_space *mapping,
2036 loff_t pos, unsigned len, unsigned copied,
2037 struct page *page, void *fsdata)
2039 struct inode *inode = mapping->host;
2040 int i_size_changed = 0;
2042 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2045 * No need to use i_size_read() here, the i_size
2046 * cannot change under us because we hold i_mutex.
2048 * But it's important to update i_size while still holding page lock:
2049 * page writeout could otherwise come in and zero beyond i_size.
2051 if (pos+copied > inode->i_size) {
2052 i_size_write(inode, pos+copied);
2053 i_size_changed = 1;
2056 unlock_page(page);
2057 page_cache_release(page);
2060 * Don't mark the inode dirty under page lock. First, it unnecessarily
2061 * makes the holding time of page lock longer. Second, it forces lock
2062 * ordering of page lock and transaction start for journaling
2063 * filesystems.
2065 if (i_size_changed)
2066 mark_inode_dirty(inode);
2068 return copied;
2070 EXPORT_SYMBOL(generic_write_end);
2073 * block_is_partially_uptodate checks whether buffers within a page are
2074 * uptodate or not.
2076 * Returns true if all buffers which correspond to a file portion
2077 * we want to read are uptodate.
2079 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2080 unsigned long from)
2082 struct inode *inode = page->mapping->host;
2083 unsigned block_start, block_end, blocksize;
2084 unsigned to;
2085 struct buffer_head *bh, *head;
2086 int ret = 1;
2088 if (!page_has_buffers(page))
2089 return 0;
2091 blocksize = 1 << inode->i_blkbits;
2092 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2093 to = from + to;
2094 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2095 return 0;
2097 head = page_buffers(page);
2098 bh = head;
2099 block_start = 0;
2100 do {
2101 block_end = block_start + blocksize;
2102 if (block_end > from && block_start < to) {
2103 if (!buffer_uptodate(bh)) {
2104 ret = 0;
2105 break;
2107 if (block_end >= to)
2108 break;
2110 block_start = block_end;
2111 bh = bh->b_this_page;
2112 } while (bh != head);
2114 return ret;
2116 EXPORT_SYMBOL(block_is_partially_uptodate);
2119 * Generic "read page" function for block devices that have the normal
2120 * get_block functionality. This is most of the block device filesystems.
2121 * Reads the page asynchronously --- the unlock_buffer() and
2122 * set/clear_buffer_uptodate() functions propagate buffer state into the
2123 * page struct once IO has completed.
2125 int block_read_full_page(struct page *page, get_block_t *get_block)
2127 struct inode *inode = page->mapping->host;
2128 sector_t iblock, lblock;
2129 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2130 unsigned int blocksize;
2131 int nr, i;
2132 int fully_mapped = 1;
2134 BUG_ON(!PageLocked(page));
2135 blocksize = 1 << inode->i_blkbits;
2136 if (!page_has_buffers(page))
2137 create_empty_buffers(page, blocksize, 0);
2138 head = page_buffers(page);
2140 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2141 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2142 bh = head;
2143 nr = 0;
2144 i = 0;
2146 do {
2147 if (buffer_uptodate(bh))
2148 continue;
2150 if (!buffer_mapped(bh)) {
2151 int err = 0;
2153 fully_mapped = 0;
2154 if (iblock < lblock) {
2155 WARN_ON(bh->b_size != blocksize);
2156 err = get_block(inode, iblock, bh, 0);
2157 if (err)
2158 SetPageError(page);
2160 if (!buffer_mapped(bh)) {
2161 zero_user(page, i * blocksize, blocksize);
2162 if (!err)
2163 set_buffer_uptodate(bh);
2164 continue;
2167 * get_block() might have updated the buffer
2168 * synchronously
2170 if (buffer_uptodate(bh))
2171 continue;
2173 arr[nr++] = bh;
2174 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2176 if (fully_mapped)
2177 SetPageMappedToDisk(page);
2179 if (!nr) {
2181 * All buffers are uptodate - we can set the page uptodate
2182 * as well. But not if get_block() returned an error.
2184 if (!PageError(page))
2185 SetPageUptodate(page);
2186 unlock_page(page);
2187 return 0;
2190 /* Stage two: lock the buffers */
2191 for (i = 0; i < nr; i++) {
2192 bh = arr[i];
2193 lock_buffer(bh);
2194 mark_buffer_async_read(bh);
2198 * Stage 3: start the IO. Check for uptodateness
2199 * inside the buffer lock in case another process reading
2200 * the underlying blockdev brought it uptodate (the sct fix).
2202 for (i = 0; i < nr; i++) {
2203 bh = arr[i];
2204 if (buffer_uptodate(bh))
2205 end_buffer_async_read(bh, 1);
2206 else
2207 submit_bh(READ, bh);
2209 return 0;
2212 /* utility function for filesystems that need to do work on expanding
2213 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2214 * deal with the hole.
2216 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2218 struct address_space *mapping = inode->i_mapping;
2219 struct page *page;
2220 void *fsdata;
2221 unsigned long limit;
2222 int err;
2224 err = -EFBIG;
2225 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2226 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2227 send_sig(SIGXFSZ, current, 0);
2228 goto out;
2230 if (size > inode->i_sb->s_maxbytes)
2231 goto out;
2233 err = pagecache_write_begin(NULL, mapping, size, 0,
2234 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2235 &page, &fsdata);
2236 if (err)
2237 goto out;
2239 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2240 BUG_ON(err > 0);
2242 out:
2243 return err;
2246 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2247 loff_t pos, loff_t *bytes)
2249 struct inode *inode = mapping->host;
2250 unsigned blocksize = 1 << inode->i_blkbits;
2251 struct page *page;
2252 void *fsdata;
2253 pgoff_t index, curidx;
2254 loff_t curpos;
2255 unsigned zerofrom, offset, len;
2256 int err = 0;
2258 index = pos >> PAGE_CACHE_SHIFT;
2259 offset = pos & ~PAGE_CACHE_MASK;
2261 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2262 zerofrom = curpos & ~PAGE_CACHE_MASK;
2263 if (zerofrom & (blocksize-1)) {
2264 *bytes |= (blocksize-1);
2265 (*bytes)++;
2267 len = PAGE_CACHE_SIZE - zerofrom;
2269 err = pagecache_write_begin(file, mapping, curpos, len,
2270 AOP_FLAG_UNINTERRUPTIBLE,
2271 &page, &fsdata);
2272 if (err)
2273 goto out;
2274 zero_user(page, zerofrom, len);
2275 err = pagecache_write_end(file, mapping, curpos, len, len,
2276 page, fsdata);
2277 if (err < 0)
2278 goto out;
2279 BUG_ON(err != len);
2280 err = 0;
2282 balance_dirty_pages_ratelimited(mapping);
2285 /* page covers the boundary, find the boundary offset */
2286 if (index == curidx) {
2287 zerofrom = curpos & ~PAGE_CACHE_MASK;
2288 /* if we will expand the thing last block will be filled */
2289 if (offset <= zerofrom) {
2290 goto out;
2292 if (zerofrom & (blocksize-1)) {
2293 *bytes |= (blocksize-1);
2294 (*bytes)++;
2296 len = offset - zerofrom;
2298 err = pagecache_write_begin(file, mapping, curpos, len,
2299 AOP_FLAG_UNINTERRUPTIBLE,
2300 &page, &fsdata);
2301 if (err)
2302 goto out;
2303 zero_user(page, zerofrom, len);
2304 err = pagecache_write_end(file, mapping, curpos, len, len,
2305 page, fsdata);
2306 if (err < 0)
2307 goto out;
2308 BUG_ON(err != len);
2309 err = 0;
2311 out:
2312 return err;
2316 * For moronic filesystems that do not allow holes in file.
2317 * We may have to extend the file.
2319 int cont_write_begin(struct file *file, struct address_space *mapping,
2320 loff_t pos, unsigned len, unsigned flags,
2321 struct page **pagep, void **fsdata,
2322 get_block_t *get_block, loff_t *bytes)
2324 struct inode *inode = mapping->host;
2325 unsigned blocksize = 1 << inode->i_blkbits;
2326 unsigned zerofrom;
2327 int err;
2329 err = cont_expand_zero(file, mapping, pos, bytes);
2330 if (err)
2331 goto out;
2333 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2334 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2335 *bytes |= (blocksize-1);
2336 (*bytes)++;
2339 *pagep = NULL;
2340 err = block_write_begin(file, mapping, pos, len,
2341 flags, pagep, fsdata, get_block);
2342 out:
2343 return err;
2346 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2347 get_block_t *get_block)
2349 struct inode *inode = page->mapping->host;
2350 int err = __block_prepare_write(inode, page, from, to, get_block);
2351 if (err)
2352 ClearPageUptodate(page);
2353 return err;
2356 int block_commit_write(struct page *page, unsigned from, unsigned to)
2358 struct inode *inode = page->mapping->host;
2359 __block_commit_write(inode,page,from,to);
2360 return 0;
2364 * block_page_mkwrite() is not allowed to change the file size as it gets
2365 * called from a page fault handler when a page is first dirtied. Hence we must
2366 * be careful to check for EOF conditions here. We set the page up correctly
2367 * for a written page which means we get ENOSPC checking when writing into
2368 * holes and correct delalloc and unwritten extent mapping on filesystems that
2369 * support these features.
2371 * We are not allowed to take the i_mutex here so we have to play games to
2372 * protect against truncate races as the page could now be beyond EOF. Because
2373 * vmtruncate() writes the inode size before removing pages, once we have the
2374 * page lock we can determine safely if the page is beyond EOF. If it is not
2375 * beyond EOF, then the page is guaranteed safe against truncation until we
2376 * unlock the page.
2379 block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2380 get_block_t get_block)
2382 struct page *page = vmf->page;
2383 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2384 unsigned long end;
2385 loff_t size;
2386 int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
2388 lock_page(page);
2389 size = i_size_read(inode);
2390 if ((page->mapping != inode->i_mapping) ||
2391 (page_offset(page) > size)) {
2392 /* page got truncated out from underneath us */
2393 goto out_unlock;
2396 /* page is wholly or partially inside EOF */
2397 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2398 end = size & ~PAGE_CACHE_MASK;
2399 else
2400 end = PAGE_CACHE_SIZE;
2402 ret = block_prepare_write(page, 0, end, get_block);
2403 if (!ret)
2404 ret = block_commit_write(page, 0, end);
2406 if (unlikely(ret)) {
2407 if (ret == -ENOMEM)
2408 ret = VM_FAULT_OOM;
2409 else /* -ENOSPC, -EIO, etc */
2410 ret = VM_FAULT_SIGBUS;
2413 out_unlock:
2414 unlock_page(page);
2415 return ret;
2419 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2420 * immediately, while under the page lock. So it needs a special end_io
2421 * handler which does not touch the bh after unlocking it.
2423 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2425 __end_buffer_read_notouch(bh, uptodate);
2429 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2430 * the page (converting it to circular linked list and taking care of page
2431 * dirty races).
2433 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2435 struct buffer_head *bh;
2437 BUG_ON(!PageLocked(page));
2439 spin_lock(&page->mapping->private_lock);
2440 bh = head;
2441 do {
2442 if (PageDirty(page))
2443 set_buffer_dirty(bh);
2444 if (!bh->b_this_page)
2445 bh->b_this_page = head;
2446 bh = bh->b_this_page;
2447 } while (bh != head);
2448 attach_page_buffers(page, head);
2449 spin_unlock(&page->mapping->private_lock);
2453 * On entry, the page is fully not uptodate.
2454 * On exit the page is fully uptodate in the areas outside (from,to)
2456 int nobh_write_begin(struct file *file, struct address_space *mapping,
2457 loff_t pos, unsigned len, unsigned flags,
2458 struct page **pagep, void **fsdata,
2459 get_block_t *get_block)
2461 struct inode *inode = mapping->host;
2462 const unsigned blkbits = inode->i_blkbits;
2463 const unsigned blocksize = 1 << blkbits;
2464 struct buffer_head *head, *bh;
2465 struct page *page;
2466 pgoff_t index;
2467 unsigned from, to;
2468 unsigned block_in_page;
2469 unsigned block_start, block_end;
2470 sector_t block_in_file;
2471 int nr_reads = 0;
2472 int ret = 0;
2473 int is_mapped_to_disk = 1;
2475 index = pos >> PAGE_CACHE_SHIFT;
2476 from = pos & (PAGE_CACHE_SIZE - 1);
2477 to = from + len;
2479 page = grab_cache_page_write_begin(mapping, index, flags);
2480 if (!page)
2481 return -ENOMEM;
2482 *pagep = page;
2483 *fsdata = NULL;
2485 if (page_has_buffers(page)) {
2486 unlock_page(page);
2487 page_cache_release(page);
2488 *pagep = NULL;
2489 return block_write_begin(file, mapping, pos, len, flags, pagep,
2490 fsdata, get_block);
2493 if (PageMappedToDisk(page))
2494 return 0;
2497 * Allocate buffers so that we can keep track of state, and potentially
2498 * attach them to the page if an error occurs. In the common case of
2499 * no error, they will just be freed again without ever being attached
2500 * to the page (which is all OK, because we're under the page lock).
2502 * Be careful: the buffer linked list is a NULL terminated one, rather
2503 * than the circular one we're used to.
2505 head = alloc_page_buffers(page, blocksize, 0);
2506 if (!head) {
2507 ret = -ENOMEM;
2508 goto out_release;
2511 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2514 * We loop across all blocks in the page, whether or not they are
2515 * part of the affected region. This is so we can discover if the
2516 * page is fully mapped-to-disk.
2518 for (block_start = 0, block_in_page = 0, bh = head;
2519 block_start < PAGE_CACHE_SIZE;
2520 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2521 int create;
2523 block_end = block_start + blocksize;
2524 bh->b_state = 0;
2525 create = 1;
2526 if (block_start >= to)
2527 create = 0;
2528 ret = get_block(inode, block_in_file + block_in_page,
2529 bh, create);
2530 if (ret)
2531 goto failed;
2532 if (!buffer_mapped(bh))
2533 is_mapped_to_disk = 0;
2534 if (buffer_new(bh))
2535 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2536 if (PageUptodate(page)) {
2537 set_buffer_uptodate(bh);
2538 continue;
2540 if (buffer_new(bh) || !buffer_mapped(bh)) {
2541 zero_user_segments(page, block_start, from,
2542 to, block_end);
2543 continue;
2545 if (buffer_uptodate(bh))
2546 continue; /* reiserfs does this */
2547 if (block_start < from || block_end > to) {
2548 lock_buffer(bh);
2549 bh->b_end_io = end_buffer_read_nobh;
2550 submit_bh(READ, bh);
2551 nr_reads++;
2555 if (nr_reads) {
2557 * The page is locked, so these buffers are protected from
2558 * any VM or truncate activity. Hence we don't need to care
2559 * for the buffer_head refcounts.
2561 for (bh = head; bh; bh = bh->b_this_page) {
2562 wait_on_buffer(bh);
2563 if (!buffer_uptodate(bh))
2564 ret = -EIO;
2566 if (ret)
2567 goto failed;
2570 if (is_mapped_to_disk)
2571 SetPageMappedToDisk(page);
2573 *fsdata = head; /* to be released by nobh_write_end */
2575 return 0;
2577 failed:
2578 BUG_ON(!ret);
2580 * Error recovery is a bit difficult. We need to zero out blocks that
2581 * were newly allocated, and dirty them to ensure they get written out.
2582 * Buffers need to be attached to the page at this point, otherwise
2583 * the handling of potential IO errors during writeout would be hard
2584 * (could try doing synchronous writeout, but what if that fails too?)
2586 attach_nobh_buffers(page, head);
2587 page_zero_new_buffers(page, from, to);
2589 out_release:
2590 unlock_page(page);
2591 page_cache_release(page);
2592 *pagep = NULL;
2594 if (pos + len > inode->i_size)
2595 vmtruncate(inode, inode->i_size);
2597 return ret;
2599 EXPORT_SYMBOL(nobh_write_begin);
2601 int nobh_write_end(struct file *file, struct address_space *mapping,
2602 loff_t pos, unsigned len, unsigned copied,
2603 struct page *page, void *fsdata)
2605 struct inode *inode = page->mapping->host;
2606 struct buffer_head *head = fsdata;
2607 struct buffer_head *bh;
2608 BUG_ON(fsdata != NULL && page_has_buffers(page));
2610 if (unlikely(copied < len) && head)
2611 attach_nobh_buffers(page, head);
2612 if (page_has_buffers(page))
2613 return generic_write_end(file, mapping, pos, len,
2614 copied, page, fsdata);
2616 SetPageUptodate(page);
2617 set_page_dirty(page);
2618 if (pos+copied > inode->i_size) {
2619 i_size_write(inode, pos+copied);
2620 mark_inode_dirty(inode);
2623 unlock_page(page);
2624 page_cache_release(page);
2626 while (head) {
2627 bh = head;
2628 head = head->b_this_page;
2629 free_buffer_head(bh);
2632 return copied;
2634 EXPORT_SYMBOL(nobh_write_end);
2637 * nobh_writepage() - based on block_full_write_page() except
2638 * that it tries to operate without attaching bufferheads to
2639 * the page.
2641 int nobh_writepage(struct page *page, get_block_t *get_block,
2642 struct writeback_control *wbc)
2644 struct inode * const inode = page->mapping->host;
2645 loff_t i_size = i_size_read(inode);
2646 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2647 unsigned offset;
2648 int ret;
2650 /* Is the page fully inside i_size? */
2651 if (page->index < end_index)
2652 goto out;
2654 /* Is the page fully outside i_size? (truncate in progress) */
2655 offset = i_size & (PAGE_CACHE_SIZE-1);
2656 if (page->index >= end_index+1 || !offset) {
2658 * The page may have dirty, unmapped buffers. For example,
2659 * they may have been added in ext3_writepage(). Make them
2660 * freeable here, so the page does not leak.
2662 #if 0
2663 /* Not really sure about this - do we need this ? */
2664 if (page->mapping->a_ops->invalidatepage)
2665 page->mapping->a_ops->invalidatepage(page, offset);
2666 #endif
2667 unlock_page(page);
2668 return 0; /* don't care */
2672 * The page straddles i_size. It must be zeroed out on each and every
2673 * writepage invocation because it may be mmapped. "A file is mapped
2674 * in multiples of the page size. For a file that is not a multiple of
2675 * the page size, the remaining memory is zeroed when mapped, and
2676 * writes to that region are not written out to the file."
2678 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2679 out:
2680 ret = mpage_writepage(page, get_block, wbc);
2681 if (ret == -EAGAIN)
2682 ret = __block_write_full_page(inode, page, get_block, wbc);
2683 return ret;
2685 EXPORT_SYMBOL(nobh_writepage);
2687 int nobh_truncate_page(struct address_space *mapping,
2688 loff_t from, get_block_t *get_block)
2690 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2691 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2692 unsigned blocksize;
2693 sector_t iblock;
2694 unsigned length, pos;
2695 struct inode *inode = mapping->host;
2696 struct page *page;
2697 struct buffer_head map_bh;
2698 int err;
2700 blocksize = 1 << inode->i_blkbits;
2701 length = offset & (blocksize - 1);
2703 /* Block boundary? Nothing to do */
2704 if (!length)
2705 return 0;
2707 length = blocksize - length;
2708 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2710 page = grab_cache_page(mapping, index);
2711 err = -ENOMEM;
2712 if (!page)
2713 goto out;
2715 if (page_has_buffers(page)) {
2716 has_buffers:
2717 unlock_page(page);
2718 page_cache_release(page);
2719 return block_truncate_page(mapping, from, get_block);
2722 /* Find the buffer that contains "offset" */
2723 pos = blocksize;
2724 while (offset >= pos) {
2725 iblock++;
2726 pos += blocksize;
2729 err = get_block(inode, iblock, &map_bh, 0);
2730 if (err)
2731 goto unlock;
2732 /* unmapped? It's a hole - nothing to do */
2733 if (!buffer_mapped(&map_bh))
2734 goto unlock;
2736 /* Ok, it's mapped. Make sure it's up-to-date */
2737 if (!PageUptodate(page)) {
2738 err = mapping->a_ops->readpage(NULL, page);
2739 if (err) {
2740 page_cache_release(page);
2741 goto out;
2743 lock_page(page);
2744 if (!PageUptodate(page)) {
2745 err = -EIO;
2746 goto unlock;
2748 if (page_has_buffers(page))
2749 goto has_buffers;
2751 zero_user(page, offset, length);
2752 set_page_dirty(page);
2753 err = 0;
2755 unlock:
2756 unlock_page(page);
2757 page_cache_release(page);
2758 out:
2759 return err;
2761 EXPORT_SYMBOL(nobh_truncate_page);
2763 int block_truncate_page(struct address_space *mapping,
2764 loff_t from, get_block_t *get_block)
2766 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2767 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2768 unsigned blocksize;
2769 sector_t iblock;
2770 unsigned length, pos;
2771 struct inode *inode = mapping->host;
2772 struct page *page;
2773 struct buffer_head *bh;
2774 int err;
2776 blocksize = 1 << inode->i_blkbits;
2777 length = offset & (blocksize - 1);
2779 /* Block boundary? Nothing to do */
2780 if (!length)
2781 return 0;
2783 length = blocksize - length;
2784 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2786 page = grab_cache_page(mapping, index);
2787 err = -ENOMEM;
2788 if (!page)
2789 goto out;
2791 if (!page_has_buffers(page))
2792 create_empty_buffers(page, blocksize, 0);
2794 /* Find the buffer that contains "offset" */
2795 bh = page_buffers(page);
2796 pos = blocksize;
2797 while (offset >= pos) {
2798 bh = bh->b_this_page;
2799 iblock++;
2800 pos += blocksize;
2803 err = 0;
2804 if (!buffer_mapped(bh)) {
2805 WARN_ON(bh->b_size != blocksize);
2806 err = get_block(inode, iblock, bh, 0);
2807 if (err)
2808 goto unlock;
2809 /* unmapped? It's a hole - nothing to do */
2810 if (!buffer_mapped(bh))
2811 goto unlock;
2814 /* Ok, it's mapped. Make sure it's up-to-date */
2815 if (PageUptodate(page))
2816 set_buffer_uptodate(bh);
2818 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2819 err = -EIO;
2820 ll_rw_block(READ, 1, &bh);
2821 wait_on_buffer(bh);
2822 /* Uhhuh. Read error. Complain and punt. */
2823 if (!buffer_uptodate(bh))
2824 goto unlock;
2827 zero_user(page, offset, length);
2828 mark_buffer_dirty(bh);
2829 err = 0;
2831 unlock:
2832 unlock_page(page);
2833 page_cache_release(page);
2834 out:
2835 return err;
2839 * The generic ->writepage function for buffer-backed address_spaces
2841 int block_write_full_page(struct page *page, get_block_t *get_block,
2842 struct writeback_control *wbc)
2844 struct inode * const inode = page->mapping->host;
2845 loff_t i_size = i_size_read(inode);
2846 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2847 unsigned offset;
2849 /* Is the page fully inside i_size? */
2850 if (page->index < end_index)
2851 return __block_write_full_page(inode, page, get_block, wbc);
2853 /* Is the page fully outside i_size? (truncate in progress) */
2854 offset = i_size & (PAGE_CACHE_SIZE-1);
2855 if (page->index >= end_index+1 || !offset) {
2857 * The page may have dirty, unmapped buffers. For example,
2858 * they may have been added in ext3_writepage(). Make them
2859 * freeable here, so the page does not leak.
2861 do_invalidatepage(page, 0);
2862 unlock_page(page);
2863 return 0; /* don't care */
2867 * The page straddles i_size. It must be zeroed out on each and every
2868 * writepage invokation because it may be mmapped. "A file is mapped
2869 * in multiples of the page size. For a file that is not a multiple of
2870 * the page size, the remaining memory is zeroed when mapped, and
2871 * writes to that region are not written out to the file."
2873 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2874 return __block_write_full_page(inode, page, get_block, wbc);
2877 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2878 get_block_t *get_block)
2880 struct buffer_head tmp;
2881 struct inode *inode = mapping->host;
2882 tmp.b_state = 0;
2883 tmp.b_blocknr = 0;
2884 tmp.b_size = 1 << inode->i_blkbits;
2885 get_block(inode, block, &tmp, 0);
2886 return tmp.b_blocknr;
2889 static void end_bio_bh_io_sync(struct bio *bio, int err)
2891 struct buffer_head *bh = bio->bi_private;
2893 if (err == -EOPNOTSUPP) {
2894 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2895 set_bit(BH_Eopnotsupp, &bh->b_state);
2898 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2899 set_bit(BH_Quiet, &bh->b_state);
2901 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2902 bio_put(bio);
2905 int submit_bh(int rw, struct buffer_head * bh)
2907 struct bio *bio;
2908 int ret = 0;
2910 BUG_ON(!buffer_locked(bh));
2911 BUG_ON(!buffer_mapped(bh));
2912 BUG_ON(!bh->b_end_io);
2915 * Mask in barrier bit for a write (could be either a WRITE or a
2916 * WRITE_SYNC
2918 if (buffer_ordered(bh) && (rw & WRITE))
2919 rw |= WRITE_BARRIER;
2922 * Only clear out a write error when rewriting
2924 if (test_set_buffer_req(bh) && (rw & WRITE))
2925 clear_buffer_write_io_error(bh);
2928 * from here on down, it's all bio -- do the initial mapping,
2929 * submit_bio -> generic_make_request may further map this bio around
2931 bio = bio_alloc(GFP_NOIO, 1);
2933 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2934 bio->bi_bdev = bh->b_bdev;
2935 bio->bi_io_vec[0].bv_page = bh->b_page;
2936 bio->bi_io_vec[0].bv_len = bh->b_size;
2937 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2939 bio->bi_vcnt = 1;
2940 bio->bi_idx = 0;
2941 bio->bi_size = bh->b_size;
2943 bio->bi_end_io = end_bio_bh_io_sync;
2944 bio->bi_private = bh;
2946 bio_get(bio);
2947 submit_bio(rw, bio);
2949 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2950 ret = -EOPNOTSUPP;
2952 bio_put(bio);
2953 return ret;
2957 * ll_rw_block: low-level access to block devices (DEPRECATED)
2958 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2959 * @nr: number of &struct buffer_heads in the array
2960 * @bhs: array of pointers to &struct buffer_head
2962 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2963 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2964 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2965 * are sent to disk. The fourth %READA option is described in the documentation
2966 * for generic_make_request() which ll_rw_block() calls.
2968 * This function drops any buffer that it cannot get a lock on (with the
2969 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2970 * clean when doing a write request, and any buffer that appears to be
2971 * up-to-date when doing read request. Further it marks as clean buffers that
2972 * are processed for writing (the buffer cache won't assume that they are
2973 * actually clean until the buffer gets unlocked).
2975 * ll_rw_block sets b_end_io to simple completion handler that marks
2976 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2977 * any waiters.
2979 * All of the buffers must be for the same device, and must also be a
2980 * multiple of the current approved size for the device.
2982 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2984 int i;
2986 for (i = 0; i < nr; i++) {
2987 struct buffer_head *bh = bhs[i];
2989 if (rw == SWRITE || rw == SWRITE_SYNC || rw == SWRITE_SYNC_PLUG)
2990 lock_buffer(bh);
2991 else if (!trylock_buffer(bh))
2992 continue;
2994 if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC ||
2995 rw == SWRITE_SYNC_PLUG) {
2996 if (test_clear_buffer_dirty(bh)) {
2997 bh->b_end_io = end_buffer_write_sync;
2998 get_bh(bh);
2999 if (rw == SWRITE_SYNC)
3000 submit_bh(WRITE_SYNC, bh);
3001 else
3002 submit_bh(WRITE, bh);
3003 continue;
3005 } else {
3006 if (!buffer_uptodate(bh)) {
3007 bh->b_end_io = end_buffer_read_sync;
3008 get_bh(bh);
3009 submit_bh(rw, bh);
3010 continue;
3013 unlock_buffer(bh);
3018 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3019 * and then start new I/O and then wait upon it. The caller must have a ref on
3020 * the buffer_head.
3022 int sync_dirty_buffer(struct buffer_head *bh)
3024 int ret = 0;
3026 WARN_ON(atomic_read(&bh->b_count) < 1);
3027 lock_buffer(bh);
3028 if (test_clear_buffer_dirty(bh)) {
3029 get_bh(bh);
3030 bh->b_end_io = end_buffer_write_sync;
3031 ret = submit_bh(WRITE_SYNC, bh);
3032 wait_on_buffer(bh);
3033 if (buffer_eopnotsupp(bh)) {
3034 clear_buffer_eopnotsupp(bh);
3035 ret = -EOPNOTSUPP;
3037 if (!ret && !buffer_uptodate(bh))
3038 ret = -EIO;
3039 } else {
3040 unlock_buffer(bh);
3042 return ret;
3046 * try_to_free_buffers() checks if all the buffers on this particular page
3047 * are unused, and releases them if so.
3049 * Exclusion against try_to_free_buffers may be obtained by either
3050 * locking the page or by holding its mapping's private_lock.
3052 * If the page is dirty but all the buffers are clean then we need to
3053 * be sure to mark the page clean as well. This is because the page
3054 * may be against a block device, and a later reattachment of buffers
3055 * to a dirty page will set *all* buffers dirty. Which would corrupt
3056 * filesystem data on the same device.
3058 * The same applies to regular filesystem pages: if all the buffers are
3059 * clean then we set the page clean and proceed. To do that, we require
3060 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3061 * private_lock.
3063 * try_to_free_buffers() is non-blocking.
3065 static inline int buffer_busy(struct buffer_head *bh)
3067 return atomic_read(&bh->b_count) |
3068 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3071 static int
3072 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3074 struct buffer_head *head = page_buffers(page);
3075 struct buffer_head *bh;
3077 bh = head;
3078 do {
3079 if (buffer_write_io_error(bh) && page->mapping)
3080 set_bit(AS_EIO, &page->mapping->flags);
3081 if (buffer_busy(bh))
3082 goto failed;
3083 bh = bh->b_this_page;
3084 } while (bh != head);
3086 do {
3087 struct buffer_head *next = bh->b_this_page;
3089 if (bh->b_assoc_map)
3090 __remove_assoc_queue(bh);
3091 bh = next;
3092 } while (bh != head);
3093 *buffers_to_free = head;
3094 __clear_page_buffers(page);
3095 return 1;
3096 failed:
3097 return 0;
3100 int try_to_free_buffers(struct page *page)
3102 struct address_space * const mapping = page->mapping;
3103 struct buffer_head *buffers_to_free = NULL;
3104 int ret = 0;
3106 BUG_ON(!PageLocked(page));
3107 if (PageWriteback(page))
3108 return 0;
3110 if (mapping == NULL) { /* can this still happen? */
3111 ret = drop_buffers(page, &buffers_to_free);
3112 goto out;
3115 spin_lock(&mapping->private_lock);
3116 ret = drop_buffers(page, &buffers_to_free);
3119 * If the filesystem writes its buffers by hand (eg ext3)
3120 * then we can have clean buffers against a dirty page. We
3121 * clean the page here; otherwise the VM will never notice
3122 * that the filesystem did any IO at all.
3124 * Also, during truncate, discard_buffer will have marked all
3125 * the page's buffers clean. We discover that here and clean
3126 * the page also.
3128 * private_lock must be held over this entire operation in order
3129 * to synchronise against __set_page_dirty_buffers and prevent the
3130 * dirty bit from being lost.
3132 if (ret)
3133 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3134 spin_unlock(&mapping->private_lock);
3135 out:
3136 if (buffers_to_free) {
3137 struct buffer_head *bh = buffers_to_free;
3139 do {
3140 struct buffer_head *next = bh->b_this_page;
3141 free_buffer_head(bh);
3142 bh = next;
3143 } while (bh != buffers_to_free);
3145 return ret;
3147 EXPORT_SYMBOL(try_to_free_buffers);
3149 void block_sync_page(struct page *page)
3151 struct address_space *mapping;
3153 smp_mb();
3154 mapping = page_mapping(page);
3155 if (mapping)
3156 blk_run_backing_dev(mapping->backing_dev_info, page);
3160 * There are no bdflush tunables left. But distributions are
3161 * still running obsolete flush daemons, so we terminate them here.
3163 * Use of bdflush() is deprecated and will be removed in a future kernel.
3164 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3166 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3168 static int msg_count;
3170 if (!capable(CAP_SYS_ADMIN))
3171 return -EPERM;
3173 if (msg_count < 5) {
3174 msg_count++;
3175 printk(KERN_INFO
3176 "warning: process `%s' used the obsolete bdflush"
3177 " system call\n", current->comm);
3178 printk(KERN_INFO "Fix your initscripts?\n");
3181 if (func == 1)
3182 do_exit(0);
3183 return 0;
3187 * Buffer-head allocation
3189 static struct kmem_cache *bh_cachep;
3192 * Once the number of bh's in the machine exceeds this level, we start
3193 * stripping them in writeback.
3195 static int max_buffer_heads;
3197 int buffer_heads_over_limit;
3199 struct bh_accounting {
3200 int nr; /* Number of live bh's */
3201 int ratelimit; /* Limit cacheline bouncing */
3204 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3206 static void recalc_bh_state(void)
3208 int i;
3209 int tot = 0;
3211 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3212 return;
3213 __get_cpu_var(bh_accounting).ratelimit = 0;
3214 for_each_online_cpu(i)
3215 tot += per_cpu(bh_accounting, i).nr;
3216 buffer_heads_over_limit = (tot > max_buffer_heads);
3219 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3221 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3222 if (ret) {
3223 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3224 get_cpu_var(bh_accounting).nr++;
3225 recalc_bh_state();
3226 put_cpu_var(bh_accounting);
3228 return ret;
3230 EXPORT_SYMBOL(alloc_buffer_head);
3232 void free_buffer_head(struct buffer_head *bh)
3234 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3235 kmem_cache_free(bh_cachep, bh);
3236 get_cpu_var(bh_accounting).nr--;
3237 recalc_bh_state();
3238 put_cpu_var(bh_accounting);
3240 EXPORT_SYMBOL(free_buffer_head);
3242 static void buffer_exit_cpu(int cpu)
3244 int i;
3245 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3247 for (i = 0; i < BH_LRU_SIZE; i++) {
3248 brelse(b->bhs[i]);
3249 b->bhs[i] = NULL;
3251 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3252 per_cpu(bh_accounting, cpu).nr = 0;
3253 put_cpu_var(bh_accounting);
3256 static int buffer_cpu_notify(struct notifier_block *self,
3257 unsigned long action, void *hcpu)
3259 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3260 buffer_exit_cpu((unsigned long)hcpu);
3261 return NOTIFY_OK;
3265 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3266 * @bh: struct buffer_head
3268 * Return true if the buffer is up-to-date and false,
3269 * with the buffer locked, if not.
3271 int bh_uptodate_or_lock(struct buffer_head *bh)
3273 if (!buffer_uptodate(bh)) {
3274 lock_buffer(bh);
3275 if (!buffer_uptodate(bh))
3276 return 0;
3277 unlock_buffer(bh);
3279 return 1;
3281 EXPORT_SYMBOL(bh_uptodate_or_lock);
3284 * bh_submit_read - Submit a locked buffer for reading
3285 * @bh: struct buffer_head
3287 * Returns zero on success and -EIO on error.
3289 int bh_submit_read(struct buffer_head *bh)
3291 BUG_ON(!buffer_locked(bh));
3293 if (buffer_uptodate(bh)) {
3294 unlock_buffer(bh);
3295 return 0;
3298 get_bh(bh);
3299 bh->b_end_io = end_buffer_read_sync;
3300 submit_bh(READ, bh);
3301 wait_on_buffer(bh);
3302 if (buffer_uptodate(bh))
3303 return 0;
3304 return -EIO;
3306 EXPORT_SYMBOL(bh_submit_read);
3308 static void
3309 init_buffer_head(void *data)
3311 struct buffer_head *bh = data;
3313 memset(bh, 0, sizeof(*bh));
3314 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3317 void __init buffer_init(void)
3319 int nrpages;
3321 bh_cachep = kmem_cache_create("buffer_head",
3322 sizeof(struct buffer_head), 0,
3323 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3324 SLAB_MEM_SPREAD),
3325 init_buffer_head);
3328 * Limit the bh occupancy to 10% of ZONE_NORMAL
3330 nrpages = (nr_free_buffer_pages() * 10) / 100;
3331 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3332 hotcpu_notifier(buffer_cpu_notify, 0);
3335 EXPORT_SYMBOL(__bforget);
3336 EXPORT_SYMBOL(__brelse);
3337 EXPORT_SYMBOL(__wait_on_buffer);
3338 EXPORT_SYMBOL(block_commit_write);
3339 EXPORT_SYMBOL(block_prepare_write);
3340 EXPORT_SYMBOL(block_page_mkwrite);
3341 EXPORT_SYMBOL(block_read_full_page);
3342 EXPORT_SYMBOL(block_sync_page);
3343 EXPORT_SYMBOL(block_truncate_page);
3344 EXPORT_SYMBOL(block_write_full_page);
3345 EXPORT_SYMBOL(cont_write_begin);
3346 EXPORT_SYMBOL(end_buffer_read_sync);
3347 EXPORT_SYMBOL(end_buffer_write_sync);
3348 EXPORT_SYMBOL(file_fsync);
3349 EXPORT_SYMBOL(generic_block_bmap);
3350 EXPORT_SYMBOL(generic_cont_expand_simple);
3351 EXPORT_SYMBOL(init_buffer);
3352 EXPORT_SYMBOL(invalidate_bdev);
3353 EXPORT_SYMBOL(ll_rw_block);
3354 EXPORT_SYMBOL(mark_buffer_dirty);
3355 EXPORT_SYMBOL(submit_bh);
3356 EXPORT_SYMBOL(sync_dirty_buffer);
3357 EXPORT_SYMBOL(unlock_buffer);