2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
21 #include "transaction.h"
24 #include "print-tree.h"
28 /* magic values for the inode_only field in btrfs_log_inode:
30 * LOG_INODE_ALL means to log everything
31 * LOG_INODE_EXISTS means to log just enough to recreate the inode
34 #define LOG_INODE_ALL 0
35 #define LOG_INODE_EXISTS 1
38 * directory trouble cases
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
47 * rename foo/some_dir foo2/some_dir
49 * fsync foo/some_dir/some_file
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
89 #define LOG_WALK_PIN_ONLY 0
90 #define LOG_WALK_REPLAY_INODES 1
91 #define LOG_WALK_REPLAY_ALL 2
93 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
94 struct btrfs_root
*root
, struct inode
*inode
,
96 static int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
97 struct btrfs_root
*root
,
98 struct btrfs_path
*path
, u64 objectid
);
99 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
100 struct btrfs_root
*root
,
101 struct btrfs_root
*log
,
102 struct btrfs_path
*path
,
103 u64 dirid
, int del_all
);
106 * tree logging is a special write ahead log used to make sure that
107 * fsyncs and O_SYNCs can happen without doing full tree commits.
109 * Full tree commits are expensive because they require commonly
110 * modified blocks to be recowed, creating many dirty pages in the
111 * extent tree an 4x-6x higher write load than ext3.
113 * Instead of doing a tree commit on every fsync, we use the
114 * key ranges and transaction ids to find items for a given file or directory
115 * that have changed in this transaction. Those items are copied into
116 * a special tree (one per subvolume root), that tree is written to disk
117 * and then the fsync is considered complete.
119 * After a crash, items are copied out of the log-tree back into the
120 * subvolume tree. Any file data extents found are recorded in the extent
121 * allocation tree, and the log-tree freed.
123 * The log tree is read three times, once to pin down all the extents it is
124 * using in ram and once, once to create all the inodes logged in the tree
125 * and once to do all the other items.
129 * start a sub transaction and setup the log tree
130 * this increments the log tree writer count to make the people
131 * syncing the tree wait for us to finish
133 static int start_log_trans(struct btrfs_trans_handle
*trans
,
134 struct btrfs_root
*root
)
138 mutex_lock(&root
->log_mutex
);
139 if (root
->log_root
) {
141 atomic_inc(&root
->log_writers
);
142 mutex_unlock(&root
->log_mutex
);
145 mutex_lock(&root
->fs_info
->tree_log_mutex
);
146 if (!root
->fs_info
->log_root_tree
) {
147 ret
= btrfs_init_log_root_tree(trans
, root
->fs_info
);
150 if (!root
->log_root
) {
151 ret
= btrfs_add_log_tree(trans
, root
);
154 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
156 atomic_inc(&root
->log_writers
);
157 mutex_unlock(&root
->log_mutex
);
162 * returns 0 if there was a log transaction running and we were able
163 * to join, or returns -ENOENT if there were not transactions
166 static int join_running_log_trans(struct btrfs_root
*root
)
174 mutex_lock(&root
->log_mutex
);
175 if (root
->log_root
) {
177 atomic_inc(&root
->log_writers
);
179 mutex_unlock(&root
->log_mutex
);
184 * This either makes the current running log transaction wait
185 * until you call btrfs_end_log_trans() or it makes any future
186 * log transactions wait until you call btrfs_end_log_trans()
188 int btrfs_pin_log_trans(struct btrfs_root
*root
)
192 mutex_lock(&root
->log_mutex
);
193 atomic_inc(&root
->log_writers
);
194 mutex_unlock(&root
->log_mutex
);
199 * indicate we're done making changes to the log tree
200 * and wake up anyone waiting to do a sync
202 int btrfs_end_log_trans(struct btrfs_root
*root
)
204 if (atomic_dec_and_test(&root
->log_writers
)) {
206 if (waitqueue_active(&root
->log_writer_wait
))
207 wake_up(&root
->log_writer_wait
);
214 * the walk control struct is used to pass state down the chain when
215 * processing the log tree. The stage field tells us which part
216 * of the log tree processing we are currently doing. The others
217 * are state fields used for that specific part
219 struct walk_control
{
220 /* should we free the extent on disk when done? This is used
221 * at transaction commit time while freeing a log tree
225 /* should we write out the extent buffer? This is used
226 * while flushing the log tree to disk during a sync
230 /* should we wait for the extent buffer io to finish? Also used
231 * while flushing the log tree to disk for a sync
235 /* pin only walk, we record which extents on disk belong to the
240 /* what stage of the replay code we're currently in */
243 /* the root we are currently replaying */
244 struct btrfs_root
*replay_dest
;
246 /* the trans handle for the current replay */
247 struct btrfs_trans_handle
*trans
;
249 /* the function that gets used to process blocks we find in the
250 * tree. Note the extent_buffer might not be up to date when it is
251 * passed in, and it must be checked or read if you need the data
254 int (*process_func
)(struct btrfs_root
*log
, struct extent_buffer
*eb
,
255 struct walk_control
*wc
, u64 gen
);
259 * process_func used to pin down extents, write them or wait on them
261 static int process_one_buffer(struct btrfs_root
*log
,
262 struct extent_buffer
*eb
,
263 struct walk_control
*wc
, u64 gen
)
266 btrfs_update_pinned_extents(log
->fs_info
->extent_root
,
267 eb
->start
, eb
->len
, 1);
269 if (btrfs_buffer_uptodate(eb
, gen
)) {
271 btrfs_write_tree_block(eb
);
273 btrfs_wait_tree_block_writeback(eb
);
279 * Item overwrite used by replay and tree logging. eb, slot and key all refer
280 * to the src data we are copying out.
282 * root is the tree we are copying into, and path is a scratch
283 * path for use in this function (it should be released on entry and
284 * will be released on exit).
286 * If the key is already in the destination tree the existing item is
287 * overwritten. If the existing item isn't big enough, it is extended.
288 * If it is too large, it is truncated.
290 * If the key isn't in the destination yet, a new item is inserted.
292 static noinline
int overwrite_item(struct btrfs_trans_handle
*trans
,
293 struct btrfs_root
*root
,
294 struct btrfs_path
*path
,
295 struct extent_buffer
*eb
, int slot
,
296 struct btrfs_key
*key
)
300 u64 saved_i_size
= 0;
301 int save_old_i_size
= 0;
302 unsigned long src_ptr
;
303 unsigned long dst_ptr
;
304 int overwrite_root
= 0;
306 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
309 item_size
= btrfs_item_size_nr(eb
, slot
);
310 src_ptr
= btrfs_item_ptr_offset(eb
, slot
);
312 /* look for the key in the destination tree */
313 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
317 u32 dst_size
= btrfs_item_size_nr(path
->nodes
[0],
319 if (dst_size
!= item_size
)
322 if (item_size
== 0) {
323 btrfs_release_path(root
, path
);
326 dst_copy
= kmalloc(item_size
, GFP_NOFS
);
327 src_copy
= kmalloc(item_size
, GFP_NOFS
);
329 read_extent_buffer(eb
, src_copy
, src_ptr
, item_size
);
331 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
332 read_extent_buffer(path
->nodes
[0], dst_copy
, dst_ptr
,
334 ret
= memcmp(dst_copy
, src_copy
, item_size
);
339 * they have the same contents, just return, this saves
340 * us from cowing blocks in the destination tree and doing
341 * extra writes that may not have been done by a previous
345 btrfs_release_path(root
, path
);
351 btrfs_release_path(root
, path
);
352 /* try to insert the key into the destination tree */
353 ret
= btrfs_insert_empty_item(trans
, root
, path
,
356 /* make sure any existing item is the correct size */
357 if (ret
== -EEXIST
) {
359 found_size
= btrfs_item_size_nr(path
->nodes
[0],
361 if (found_size
> item_size
) {
362 btrfs_truncate_item(trans
, root
, path
, item_size
, 1);
363 } else if (found_size
< item_size
) {
364 ret
= btrfs_extend_item(trans
, root
, path
,
365 item_size
- found_size
);
371 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0],
374 /* don't overwrite an existing inode if the generation number
375 * was logged as zero. This is done when the tree logging code
376 * is just logging an inode to make sure it exists after recovery.
378 * Also, don't overwrite i_size on directories during replay.
379 * log replay inserts and removes directory items based on the
380 * state of the tree found in the subvolume, and i_size is modified
383 if (key
->type
== BTRFS_INODE_ITEM_KEY
&& ret
== -EEXIST
) {
384 struct btrfs_inode_item
*src_item
;
385 struct btrfs_inode_item
*dst_item
;
387 src_item
= (struct btrfs_inode_item
*)src_ptr
;
388 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
390 if (btrfs_inode_generation(eb
, src_item
) == 0)
393 if (overwrite_root
&&
394 S_ISDIR(btrfs_inode_mode(eb
, src_item
)) &&
395 S_ISDIR(btrfs_inode_mode(path
->nodes
[0], dst_item
))) {
397 saved_i_size
= btrfs_inode_size(path
->nodes
[0],
402 copy_extent_buffer(path
->nodes
[0], eb
, dst_ptr
,
405 if (save_old_i_size
) {
406 struct btrfs_inode_item
*dst_item
;
407 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
408 btrfs_set_inode_size(path
->nodes
[0], dst_item
, saved_i_size
);
411 /* make sure the generation is filled in */
412 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
413 struct btrfs_inode_item
*dst_item
;
414 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
415 if (btrfs_inode_generation(path
->nodes
[0], dst_item
) == 0) {
416 btrfs_set_inode_generation(path
->nodes
[0], dst_item
,
421 btrfs_mark_buffer_dirty(path
->nodes
[0]);
422 btrfs_release_path(root
, path
);
427 * simple helper to read an inode off the disk from a given root
428 * This can only be called for subvolume roots and not for the log
430 static noinline
struct inode
*read_one_inode(struct btrfs_root
*root
,
434 inode
= btrfs_iget_locked(root
->fs_info
->sb
, objectid
, root
);
435 if (inode
->i_state
& I_NEW
) {
436 BTRFS_I(inode
)->root
= root
;
437 BTRFS_I(inode
)->location
.objectid
= objectid
;
438 BTRFS_I(inode
)->location
.type
= BTRFS_INODE_ITEM_KEY
;
439 BTRFS_I(inode
)->location
.offset
= 0;
440 btrfs_read_locked_inode(inode
);
441 unlock_new_inode(inode
);
444 if (is_bad_inode(inode
)) {
451 /* replays a single extent in 'eb' at 'slot' with 'key' into the
452 * subvolume 'root'. path is released on entry and should be released
455 * extents in the log tree have not been allocated out of the extent
456 * tree yet. So, this completes the allocation, taking a reference
457 * as required if the extent already exists or creating a new extent
458 * if it isn't in the extent allocation tree yet.
460 * The extent is inserted into the file, dropping any existing extents
461 * from the file that overlap the new one.
463 static noinline
int replay_one_extent(struct btrfs_trans_handle
*trans
,
464 struct btrfs_root
*root
,
465 struct btrfs_path
*path
,
466 struct extent_buffer
*eb
, int slot
,
467 struct btrfs_key
*key
)
470 u64 mask
= root
->sectorsize
- 1;
473 u64 start
= key
->offset
;
475 struct btrfs_file_extent_item
*item
;
476 struct inode
*inode
= NULL
;
480 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
481 found_type
= btrfs_file_extent_type(eb
, item
);
483 if (found_type
== BTRFS_FILE_EXTENT_REG
||
484 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
485 extent_end
= start
+ btrfs_file_extent_num_bytes(eb
, item
);
486 else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
487 size
= btrfs_file_extent_inline_len(eb
, item
);
488 extent_end
= (start
+ size
+ mask
) & ~mask
;
494 inode
= read_one_inode(root
, key
->objectid
);
501 * first check to see if we already have this extent in the
502 * file. This must be done before the btrfs_drop_extents run
503 * so we don't try to drop this extent.
505 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
509 (found_type
== BTRFS_FILE_EXTENT_REG
||
510 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)) {
511 struct btrfs_file_extent_item cmp1
;
512 struct btrfs_file_extent_item cmp2
;
513 struct btrfs_file_extent_item
*existing
;
514 struct extent_buffer
*leaf
;
516 leaf
= path
->nodes
[0];
517 existing
= btrfs_item_ptr(leaf
, path
->slots
[0],
518 struct btrfs_file_extent_item
);
520 read_extent_buffer(eb
, &cmp1
, (unsigned long)item
,
522 read_extent_buffer(leaf
, &cmp2
, (unsigned long)existing
,
526 * we already have a pointer to this exact extent,
527 * we don't have to do anything
529 if (memcmp(&cmp1
, &cmp2
, sizeof(cmp1
)) == 0) {
530 btrfs_release_path(root
, path
);
534 btrfs_release_path(root
, path
);
536 saved_nbytes
= inode_get_bytes(inode
);
537 /* drop any overlapping extents */
538 ret
= btrfs_drop_extents(trans
, root
, inode
,
539 start
, extent_end
, start
, &alloc_hint
);
542 if (found_type
== BTRFS_FILE_EXTENT_REG
||
543 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
544 unsigned long dest_offset
;
545 struct btrfs_key ins
;
547 ret
= btrfs_insert_empty_item(trans
, root
, path
, key
,
550 dest_offset
= btrfs_item_ptr_offset(path
->nodes
[0],
552 copy_extent_buffer(path
->nodes
[0], eb
, dest_offset
,
553 (unsigned long)item
, sizeof(*item
));
555 ins
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
556 ins
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
557 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
559 if (ins
.objectid
> 0) {
562 LIST_HEAD(ordered_sums
);
564 * is this extent already allocated in the extent
565 * allocation tree? If so, just add a reference
567 ret
= btrfs_lookup_extent(root
, ins
.objectid
,
570 ret
= btrfs_inc_extent_ref(trans
, root
,
571 ins
.objectid
, ins
.offset
,
572 path
->nodes
[0]->start
,
573 root
->root_key
.objectid
,
574 trans
->transid
, key
->objectid
);
577 * insert the extent pointer in the extent
580 ret
= btrfs_alloc_logged_extent(trans
, root
,
581 path
->nodes
[0]->start
,
582 root
->root_key
.objectid
,
583 trans
->transid
, key
->objectid
,
587 btrfs_release_path(root
, path
);
589 if (btrfs_file_extent_compression(eb
, item
)) {
590 csum_start
= ins
.objectid
;
591 csum_end
= csum_start
+ ins
.offset
;
593 csum_start
= ins
.objectid
+
594 btrfs_file_extent_offset(eb
, item
);
595 csum_end
= csum_start
+
596 btrfs_file_extent_num_bytes(eb
, item
);
599 ret
= btrfs_lookup_csums_range(root
->log_root
,
600 csum_start
, csum_end
- 1,
603 while (!list_empty(&ordered_sums
)) {
604 struct btrfs_ordered_sum
*sums
;
605 sums
= list_entry(ordered_sums
.next
,
606 struct btrfs_ordered_sum
,
608 ret
= btrfs_csum_file_blocks(trans
,
609 root
->fs_info
->csum_root
,
612 list_del(&sums
->list
);
616 btrfs_release_path(root
, path
);
618 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
619 /* inline extents are easy, we just overwrite them */
620 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
624 inode_set_bytes(inode
, saved_nbytes
);
625 btrfs_update_inode(trans
, root
, inode
);
633 * when cleaning up conflicts between the directory names in the
634 * subvolume, directory names in the log and directory names in the
635 * inode back references, we may have to unlink inodes from directories.
637 * This is a helper function to do the unlink of a specific directory
640 static noinline
int drop_one_dir_item(struct btrfs_trans_handle
*trans
,
641 struct btrfs_root
*root
,
642 struct btrfs_path
*path
,
644 struct btrfs_dir_item
*di
)
649 struct extent_buffer
*leaf
;
650 struct btrfs_key location
;
653 leaf
= path
->nodes
[0];
655 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
656 name_len
= btrfs_dir_name_len(leaf
, di
);
657 name
= kmalloc(name_len
, GFP_NOFS
);
658 read_extent_buffer(leaf
, name
, (unsigned long)(di
+ 1), name_len
);
659 btrfs_release_path(root
, path
);
661 inode
= read_one_inode(root
, location
.objectid
);
664 ret
= link_to_fixup_dir(trans
, root
, path
, location
.objectid
);
667 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
676 * helper function to see if a given name and sequence number found
677 * in an inode back reference are already in a directory and correctly
678 * point to this inode
680 static noinline
int inode_in_dir(struct btrfs_root
*root
,
681 struct btrfs_path
*path
,
682 u64 dirid
, u64 objectid
, u64 index
,
683 const char *name
, int name_len
)
685 struct btrfs_dir_item
*di
;
686 struct btrfs_key location
;
689 di
= btrfs_lookup_dir_index_item(NULL
, root
, path
, dirid
,
690 index
, name
, name_len
, 0);
691 if (di
&& !IS_ERR(di
)) {
692 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
693 if (location
.objectid
!= objectid
)
697 btrfs_release_path(root
, path
);
699 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dirid
, name
, name_len
, 0);
700 if (di
&& !IS_ERR(di
)) {
701 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
702 if (location
.objectid
!= objectid
)
708 btrfs_release_path(root
, path
);
713 * helper function to check a log tree for a named back reference in
714 * an inode. This is used to decide if a back reference that is
715 * found in the subvolume conflicts with what we find in the log.
717 * inode backreferences may have multiple refs in a single item,
718 * during replay we process one reference at a time, and we don't
719 * want to delete valid links to a file from the subvolume if that
720 * link is also in the log.
722 static noinline
int backref_in_log(struct btrfs_root
*log
,
723 struct btrfs_key
*key
,
724 char *name
, int namelen
)
726 struct btrfs_path
*path
;
727 struct btrfs_inode_ref
*ref
;
729 unsigned long ptr_end
;
730 unsigned long name_ptr
;
736 path
= btrfs_alloc_path();
737 ret
= btrfs_search_slot(NULL
, log
, key
, path
, 0, 0);
741 item_size
= btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]);
742 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
743 ptr_end
= ptr
+ item_size
;
744 while (ptr
< ptr_end
) {
745 ref
= (struct btrfs_inode_ref
*)ptr
;
746 found_name_len
= btrfs_inode_ref_name_len(path
->nodes
[0], ref
);
747 if (found_name_len
== namelen
) {
748 name_ptr
= (unsigned long)(ref
+ 1);
749 ret
= memcmp_extent_buffer(path
->nodes
[0], name
,
756 ptr
= (unsigned long)(ref
+ 1) + found_name_len
;
759 btrfs_free_path(path
);
765 * replay one inode back reference item found in the log tree.
766 * eb, slot and key refer to the buffer and key found in the log tree.
767 * root is the destination we are replaying into, and path is for temp
768 * use by this function. (it should be released on return).
770 static noinline
int add_inode_ref(struct btrfs_trans_handle
*trans
,
771 struct btrfs_root
*root
,
772 struct btrfs_root
*log
,
773 struct btrfs_path
*path
,
774 struct extent_buffer
*eb
, int slot
,
775 struct btrfs_key
*key
)
779 struct btrfs_key location
;
780 struct btrfs_inode_ref
*ref
;
781 struct btrfs_dir_item
*di
;
785 unsigned long ref_ptr
;
786 unsigned long ref_end
;
788 location
.objectid
= key
->objectid
;
789 location
.type
= BTRFS_INODE_ITEM_KEY
;
793 * it is possible that we didn't log all the parent directories
794 * for a given inode. If we don't find the dir, just don't
795 * copy the back ref in. The link count fixup code will take
798 dir
= read_one_inode(root
, key
->offset
);
802 inode
= read_one_inode(root
, key
->objectid
);
805 ref_ptr
= btrfs_item_ptr_offset(eb
, slot
);
806 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, slot
);
809 ref
= (struct btrfs_inode_ref
*)ref_ptr
;
811 namelen
= btrfs_inode_ref_name_len(eb
, ref
);
812 name
= kmalloc(namelen
, GFP_NOFS
);
815 read_extent_buffer(eb
, name
, (unsigned long)(ref
+ 1), namelen
);
817 /* if we already have a perfect match, we're done */
818 if (inode_in_dir(root
, path
, dir
->i_ino
, inode
->i_ino
,
819 btrfs_inode_ref_index(eb
, ref
),
825 * look for a conflicting back reference in the metadata.
826 * if we find one we have to unlink that name of the file
827 * before we add our new link. Later on, we overwrite any
828 * existing back reference, and we don't want to create
829 * dangling pointers in the directory.
832 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
836 struct btrfs_inode_ref
*victim_ref
;
838 unsigned long ptr_end
;
839 struct extent_buffer
*leaf
= path
->nodes
[0];
841 /* are we trying to overwrite a back ref for the root directory
842 * if so, just jump out, we're done
844 if (key
->objectid
== key
->offset
)
847 /* check all the names in this back reference to see
848 * if they are in the log. if so, we allow them to stay
849 * otherwise they must be unlinked as a conflict
851 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
852 ptr_end
= ptr
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
853 while (ptr
< ptr_end
) {
854 victim_ref
= (struct btrfs_inode_ref
*)ptr
;
855 victim_name_len
= btrfs_inode_ref_name_len(leaf
,
857 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
858 BUG_ON(!victim_name
);
860 read_extent_buffer(leaf
, victim_name
,
861 (unsigned long)(victim_ref
+ 1),
864 if (!backref_in_log(log
, key
, victim_name
,
866 btrfs_inc_nlink(inode
);
867 btrfs_release_path(root
, path
);
869 ret
= btrfs_unlink_inode(trans
, root
, dir
,
873 btrfs_release_path(root
, path
);
877 ptr
= (unsigned long)(victim_ref
+ 1) + victim_name_len
;
881 btrfs_release_path(root
, path
);
883 /* look for a conflicting sequence number */
884 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
885 btrfs_inode_ref_index(eb
, ref
),
887 if (di
&& !IS_ERR(di
)) {
888 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
891 btrfs_release_path(root
, path
);
894 /* look for a conflicting name */
895 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
897 if (di
&& !IS_ERR(di
)) {
898 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
901 btrfs_release_path(root
, path
);
903 /* insert our name */
904 ret
= btrfs_add_link(trans
, dir
, inode
, name
, namelen
, 0,
905 btrfs_inode_ref_index(eb
, ref
));
908 btrfs_update_inode(trans
, root
, inode
);
911 ref_ptr
= (unsigned long)(ref
+ 1) + namelen
;
913 if (ref_ptr
< ref_end
)
916 /* finally write the back reference in the inode */
917 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
921 btrfs_release_path(root
, path
);
928 * There are a few corners where the link count of the file can't
929 * be properly maintained during replay. So, instead of adding
930 * lots of complexity to the log code, we just scan the backrefs
931 * for any file that has been through replay.
933 * The scan will update the link count on the inode to reflect the
934 * number of back refs found. If it goes down to zero, the iput
935 * will free the inode.
937 static noinline
int fixup_inode_link_count(struct btrfs_trans_handle
*trans
,
938 struct btrfs_root
*root
,
941 struct btrfs_path
*path
;
943 struct btrfs_key key
;
946 unsigned long ptr_end
;
949 key
.objectid
= inode
->i_ino
;
950 key
.type
= BTRFS_INODE_REF_KEY
;
951 key
.offset
= (u64
)-1;
953 path
= btrfs_alloc_path();
956 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
960 if (path
->slots
[0] == 0)
964 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
966 if (key
.objectid
!= inode
->i_ino
||
967 key
.type
!= BTRFS_INODE_REF_KEY
)
969 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
970 ptr_end
= ptr
+ btrfs_item_size_nr(path
->nodes
[0],
972 while (ptr
< ptr_end
) {
973 struct btrfs_inode_ref
*ref
;
975 ref
= (struct btrfs_inode_ref
*)ptr
;
976 name_len
= btrfs_inode_ref_name_len(path
->nodes
[0],
978 ptr
= (unsigned long)(ref
+ 1) + name_len
;
985 btrfs_release_path(root
, path
);
987 btrfs_release_path(root
, path
);
988 if (nlink
!= inode
->i_nlink
) {
989 inode
->i_nlink
= nlink
;
990 btrfs_update_inode(trans
, root
, inode
);
992 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
994 if (inode
->i_nlink
== 0 && S_ISDIR(inode
->i_mode
)) {
995 ret
= replay_dir_deletes(trans
, root
, NULL
, path
,
999 btrfs_free_path(path
);
1004 static noinline
int fixup_inode_link_counts(struct btrfs_trans_handle
*trans
,
1005 struct btrfs_root
*root
,
1006 struct btrfs_path
*path
)
1009 struct btrfs_key key
;
1010 struct inode
*inode
;
1012 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1013 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1014 key
.offset
= (u64
)-1;
1016 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1021 if (path
->slots
[0] == 0)
1026 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1027 if (key
.objectid
!= BTRFS_TREE_LOG_FIXUP_OBJECTID
||
1028 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
1031 ret
= btrfs_del_item(trans
, root
, path
);
1034 btrfs_release_path(root
, path
);
1035 inode
= read_one_inode(root
, key
.offset
);
1038 ret
= fixup_inode_link_count(trans
, root
, inode
);
1044 * fixup on a directory may create new entries,
1045 * make sure we always look for the highset possible
1048 key
.offset
= (u64
)-1;
1050 btrfs_release_path(root
, path
);
1056 * record a given inode in the fixup dir so we can check its link
1057 * count when replay is done. The link count is incremented here
1058 * so the inode won't go away until we check it
1060 static noinline
int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
1061 struct btrfs_root
*root
,
1062 struct btrfs_path
*path
,
1065 struct btrfs_key key
;
1067 struct inode
*inode
;
1069 inode
= read_one_inode(root
, objectid
);
1072 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1073 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
1074 key
.offset
= objectid
;
1076 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1078 btrfs_release_path(root
, path
);
1080 btrfs_inc_nlink(inode
);
1081 btrfs_update_inode(trans
, root
, inode
);
1082 } else if (ret
== -EEXIST
) {
1093 * when replaying the log for a directory, we only insert names
1094 * for inodes that actually exist. This means an fsync on a directory
1095 * does not implicitly fsync all the new files in it
1097 static noinline
int insert_one_name(struct btrfs_trans_handle
*trans
,
1098 struct btrfs_root
*root
,
1099 struct btrfs_path
*path
,
1100 u64 dirid
, u64 index
,
1101 char *name
, int name_len
, u8 type
,
1102 struct btrfs_key
*location
)
1104 struct inode
*inode
;
1108 inode
= read_one_inode(root
, location
->objectid
);
1112 dir
= read_one_inode(root
, dirid
);
1117 ret
= btrfs_add_link(trans
, dir
, inode
, name
, name_len
, 1, index
);
1119 /* FIXME, put inode into FIXUP list */
1127 * take a single entry in a log directory item and replay it into
1130 * if a conflicting item exists in the subdirectory already,
1131 * the inode it points to is unlinked and put into the link count
1134 * If a name from the log points to a file or directory that does
1135 * not exist in the FS, it is skipped. fsyncs on directories
1136 * do not force down inodes inside that directory, just changes to the
1137 * names or unlinks in a directory.
1139 static noinline
int replay_one_name(struct btrfs_trans_handle
*trans
,
1140 struct btrfs_root
*root
,
1141 struct btrfs_path
*path
,
1142 struct extent_buffer
*eb
,
1143 struct btrfs_dir_item
*di
,
1144 struct btrfs_key
*key
)
1148 struct btrfs_dir_item
*dst_di
;
1149 struct btrfs_key found_key
;
1150 struct btrfs_key log_key
;
1156 dir
= read_one_inode(root
, key
->objectid
);
1159 name_len
= btrfs_dir_name_len(eb
, di
);
1160 name
= kmalloc(name_len
, GFP_NOFS
);
1161 log_type
= btrfs_dir_type(eb
, di
);
1162 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1165 btrfs_dir_item_key_to_cpu(eb
, di
, &log_key
);
1166 exists
= btrfs_lookup_inode(trans
, root
, path
, &log_key
, 0);
1171 btrfs_release_path(root
, path
);
1173 if (key
->type
== BTRFS_DIR_ITEM_KEY
) {
1174 dst_di
= btrfs_lookup_dir_item(trans
, root
, path
, key
->objectid
,
1176 } else if (key
->type
== BTRFS_DIR_INDEX_KEY
) {
1177 dst_di
= btrfs_lookup_dir_index_item(trans
, root
, path
,
1184 if (!dst_di
|| IS_ERR(dst_di
)) {
1185 /* we need a sequence number to insert, so we only
1186 * do inserts for the BTRFS_DIR_INDEX_KEY types
1188 if (key
->type
!= BTRFS_DIR_INDEX_KEY
)
1193 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dst_di
, &found_key
);
1194 /* the existing item matches the logged item */
1195 if (found_key
.objectid
== log_key
.objectid
&&
1196 found_key
.type
== log_key
.type
&&
1197 found_key
.offset
== log_key
.offset
&&
1198 btrfs_dir_type(path
->nodes
[0], dst_di
) == log_type
) {
1203 * don't drop the conflicting directory entry if the inode
1204 * for the new entry doesn't exist
1209 ret
= drop_one_dir_item(trans
, root
, path
, dir
, dst_di
);
1212 if (key
->type
== BTRFS_DIR_INDEX_KEY
)
1215 btrfs_release_path(root
, path
);
1221 btrfs_release_path(root
, path
);
1222 ret
= insert_one_name(trans
, root
, path
, key
->objectid
, key
->offset
,
1223 name
, name_len
, log_type
, &log_key
);
1225 BUG_ON(ret
&& ret
!= -ENOENT
);
1230 * find all the names in a directory item and reconcile them into
1231 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1232 * one name in a directory item, but the same code gets used for
1233 * both directory index types
1235 static noinline
int replay_one_dir_item(struct btrfs_trans_handle
*trans
,
1236 struct btrfs_root
*root
,
1237 struct btrfs_path
*path
,
1238 struct extent_buffer
*eb
, int slot
,
1239 struct btrfs_key
*key
)
1242 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
1243 struct btrfs_dir_item
*di
;
1246 unsigned long ptr_end
;
1248 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1249 ptr_end
= ptr
+ item_size
;
1250 while (ptr
< ptr_end
) {
1251 di
= (struct btrfs_dir_item
*)ptr
;
1252 name_len
= btrfs_dir_name_len(eb
, di
);
1253 ret
= replay_one_name(trans
, root
, path
, eb
, di
, key
);
1255 ptr
= (unsigned long)(di
+ 1);
1262 * directory replay has two parts. There are the standard directory
1263 * items in the log copied from the subvolume, and range items
1264 * created in the log while the subvolume was logged.
1266 * The range items tell us which parts of the key space the log
1267 * is authoritative for. During replay, if a key in the subvolume
1268 * directory is in a logged range item, but not actually in the log
1269 * that means it was deleted from the directory before the fsync
1270 * and should be removed.
1272 static noinline
int find_dir_range(struct btrfs_root
*root
,
1273 struct btrfs_path
*path
,
1274 u64 dirid
, int key_type
,
1275 u64
*start_ret
, u64
*end_ret
)
1277 struct btrfs_key key
;
1279 struct btrfs_dir_log_item
*item
;
1283 if (*start_ret
== (u64
)-1)
1286 key
.objectid
= dirid
;
1287 key
.type
= key_type
;
1288 key
.offset
= *start_ret
;
1290 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1294 if (path
->slots
[0] == 0)
1299 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1301 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1305 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1306 struct btrfs_dir_log_item
);
1307 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1309 if (*start_ret
>= key
.offset
&& *start_ret
<= found_end
) {
1311 *start_ret
= key
.offset
;
1312 *end_ret
= found_end
;
1317 /* check the next slot in the tree to see if it is a valid item */
1318 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1319 if (path
->slots
[0] >= nritems
) {
1320 ret
= btrfs_next_leaf(root
, path
);
1327 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1329 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1333 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1334 struct btrfs_dir_log_item
);
1335 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1336 *start_ret
= key
.offset
;
1337 *end_ret
= found_end
;
1340 btrfs_release_path(root
, path
);
1345 * this looks for a given directory item in the log. If the directory
1346 * item is not in the log, the item is removed and the inode it points
1349 static noinline
int check_item_in_log(struct btrfs_trans_handle
*trans
,
1350 struct btrfs_root
*root
,
1351 struct btrfs_root
*log
,
1352 struct btrfs_path
*path
,
1353 struct btrfs_path
*log_path
,
1355 struct btrfs_key
*dir_key
)
1358 struct extent_buffer
*eb
;
1361 struct btrfs_dir_item
*di
;
1362 struct btrfs_dir_item
*log_di
;
1365 unsigned long ptr_end
;
1367 struct inode
*inode
;
1368 struct btrfs_key location
;
1371 eb
= path
->nodes
[0];
1372 slot
= path
->slots
[0];
1373 item_size
= btrfs_item_size_nr(eb
, slot
);
1374 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1375 ptr_end
= ptr
+ item_size
;
1376 while (ptr
< ptr_end
) {
1377 di
= (struct btrfs_dir_item
*)ptr
;
1378 name_len
= btrfs_dir_name_len(eb
, di
);
1379 name
= kmalloc(name_len
, GFP_NOFS
);
1384 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1387 if (log
&& dir_key
->type
== BTRFS_DIR_ITEM_KEY
) {
1388 log_di
= btrfs_lookup_dir_item(trans
, log
, log_path
,
1391 } else if (log
&& dir_key
->type
== BTRFS_DIR_INDEX_KEY
) {
1392 log_di
= btrfs_lookup_dir_index_item(trans
, log
,
1398 if (!log_di
|| IS_ERR(log_di
)) {
1399 btrfs_dir_item_key_to_cpu(eb
, di
, &location
);
1400 btrfs_release_path(root
, path
);
1401 btrfs_release_path(log
, log_path
);
1402 inode
= read_one_inode(root
, location
.objectid
);
1405 ret
= link_to_fixup_dir(trans
, root
,
1406 path
, location
.objectid
);
1408 btrfs_inc_nlink(inode
);
1409 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
,
1415 /* there might still be more names under this key
1416 * check and repeat if required
1418 ret
= btrfs_search_slot(NULL
, root
, dir_key
, path
,
1425 btrfs_release_path(log
, log_path
);
1428 ptr
= (unsigned long)(di
+ 1);
1433 btrfs_release_path(root
, path
);
1434 btrfs_release_path(log
, log_path
);
1439 * deletion replay happens before we copy any new directory items
1440 * out of the log or out of backreferences from inodes. It
1441 * scans the log to find ranges of keys that log is authoritative for,
1442 * and then scans the directory to find items in those ranges that are
1443 * not present in the log.
1445 * Anything we don't find in the log is unlinked and removed from the
1448 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
1449 struct btrfs_root
*root
,
1450 struct btrfs_root
*log
,
1451 struct btrfs_path
*path
,
1452 u64 dirid
, int del_all
)
1456 int key_type
= BTRFS_DIR_LOG_ITEM_KEY
;
1458 struct btrfs_key dir_key
;
1459 struct btrfs_key found_key
;
1460 struct btrfs_path
*log_path
;
1463 dir_key
.objectid
= dirid
;
1464 dir_key
.type
= BTRFS_DIR_ITEM_KEY
;
1465 log_path
= btrfs_alloc_path();
1469 dir
= read_one_inode(root
, dirid
);
1470 /* it isn't an error if the inode isn't there, that can happen
1471 * because we replay the deletes before we copy in the inode item
1475 btrfs_free_path(log_path
);
1483 range_end
= (u64
)-1;
1485 ret
= find_dir_range(log
, path
, dirid
, key_type
,
1486 &range_start
, &range_end
);
1491 dir_key
.offset
= range_start
;
1494 ret
= btrfs_search_slot(NULL
, root
, &dir_key
, path
,
1499 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1500 if (path
->slots
[0] >= nritems
) {
1501 ret
= btrfs_next_leaf(root
, path
);
1505 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1507 if (found_key
.objectid
!= dirid
||
1508 found_key
.type
!= dir_key
.type
)
1511 if (found_key
.offset
> range_end
)
1514 ret
= check_item_in_log(trans
, root
, log
, path
,
1518 if (found_key
.offset
== (u64
)-1)
1520 dir_key
.offset
= found_key
.offset
+ 1;
1522 btrfs_release_path(root
, path
);
1523 if (range_end
== (u64
)-1)
1525 range_start
= range_end
+ 1;
1530 if (key_type
== BTRFS_DIR_LOG_ITEM_KEY
) {
1531 key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
1532 dir_key
.type
= BTRFS_DIR_INDEX_KEY
;
1533 btrfs_release_path(root
, path
);
1537 btrfs_release_path(root
, path
);
1538 btrfs_free_path(log_path
);
1544 * the process_func used to replay items from the log tree. This
1545 * gets called in two different stages. The first stage just looks
1546 * for inodes and makes sure they are all copied into the subvolume.
1548 * The second stage copies all the other item types from the log into
1549 * the subvolume. The two stage approach is slower, but gets rid of
1550 * lots of complexity around inodes referencing other inodes that exist
1551 * only in the log (references come from either directory items or inode
1554 static int replay_one_buffer(struct btrfs_root
*log
, struct extent_buffer
*eb
,
1555 struct walk_control
*wc
, u64 gen
)
1558 struct btrfs_path
*path
;
1559 struct btrfs_root
*root
= wc
->replay_dest
;
1560 struct btrfs_key key
;
1566 btrfs_read_buffer(eb
, gen
);
1568 level
= btrfs_header_level(eb
);
1573 path
= btrfs_alloc_path();
1576 nritems
= btrfs_header_nritems(eb
);
1577 for (i
= 0; i
< nritems
; i
++) {
1578 btrfs_item_key_to_cpu(eb
, &key
, i
);
1579 item_size
= btrfs_item_size_nr(eb
, i
);
1581 /* inode keys are done during the first stage */
1582 if (key
.type
== BTRFS_INODE_ITEM_KEY
&&
1583 wc
->stage
== LOG_WALK_REPLAY_INODES
) {
1584 struct inode
*inode
;
1585 struct btrfs_inode_item
*inode_item
;
1588 inode_item
= btrfs_item_ptr(eb
, i
,
1589 struct btrfs_inode_item
);
1590 mode
= btrfs_inode_mode(eb
, inode_item
);
1591 if (S_ISDIR(mode
)) {
1592 ret
= replay_dir_deletes(wc
->trans
,
1593 root
, log
, path
, key
.objectid
, 0);
1596 ret
= overwrite_item(wc
->trans
, root
, path
,
1600 /* for regular files, truncate away
1601 * extents past the new EOF
1603 if (S_ISREG(mode
)) {
1604 inode
= read_one_inode(root
,
1608 ret
= btrfs_truncate_inode_items(wc
->trans
,
1609 root
, inode
, inode
->i_size
,
1610 BTRFS_EXTENT_DATA_KEY
);
1613 /* if the nlink count is zero here, the iput
1614 * will free the inode. We bump it to make
1615 * sure it doesn't get freed until the link
1616 * count fixup is done
1618 if (inode
->i_nlink
== 0) {
1619 btrfs_inc_nlink(inode
);
1620 btrfs_update_inode(wc
->trans
,
1625 ret
= link_to_fixup_dir(wc
->trans
, root
,
1626 path
, key
.objectid
);
1629 if (wc
->stage
< LOG_WALK_REPLAY_ALL
)
1632 /* these keys are simply copied */
1633 if (key
.type
== BTRFS_XATTR_ITEM_KEY
) {
1634 ret
= overwrite_item(wc
->trans
, root
, path
,
1637 } else if (key
.type
== BTRFS_INODE_REF_KEY
) {
1638 ret
= add_inode_ref(wc
->trans
, root
, log
, path
,
1640 BUG_ON(ret
&& ret
!= -ENOENT
);
1641 } else if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
1642 ret
= replay_one_extent(wc
->trans
, root
, path
,
1645 } else if (key
.type
== BTRFS_DIR_ITEM_KEY
||
1646 key
.type
== BTRFS_DIR_INDEX_KEY
) {
1647 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
1652 btrfs_free_path(path
);
1656 static noinline
int walk_down_log_tree(struct btrfs_trans_handle
*trans
,
1657 struct btrfs_root
*root
,
1658 struct btrfs_path
*path
, int *level
,
1659 struct walk_control
*wc
)
1665 struct extent_buffer
*next
;
1666 struct extent_buffer
*cur
;
1667 struct extent_buffer
*parent
;
1671 WARN_ON(*level
< 0);
1672 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1674 while (*level
> 0) {
1675 WARN_ON(*level
< 0);
1676 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1677 cur
= path
->nodes
[*level
];
1679 if (btrfs_header_level(cur
) != *level
)
1682 if (path
->slots
[*level
] >=
1683 btrfs_header_nritems(cur
))
1686 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[*level
]);
1687 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[*level
]);
1688 blocksize
= btrfs_level_size(root
, *level
- 1);
1690 parent
= path
->nodes
[*level
];
1691 root_owner
= btrfs_header_owner(parent
);
1692 root_gen
= btrfs_header_generation(parent
);
1694 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1696 wc
->process_func(root
, next
, wc
, ptr_gen
);
1699 path
->slots
[*level
]++;
1701 btrfs_read_buffer(next
, ptr_gen
);
1703 btrfs_tree_lock(next
);
1704 clean_tree_block(trans
, root
, next
);
1705 btrfs_set_lock_blocking(next
);
1706 btrfs_wait_tree_block_writeback(next
);
1707 btrfs_tree_unlock(next
);
1709 ret
= btrfs_drop_leaf_ref(trans
, root
, next
);
1712 WARN_ON(root_owner
!=
1713 BTRFS_TREE_LOG_OBJECTID
);
1714 ret
= btrfs_free_reserved_extent(root
,
1718 free_extent_buffer(next
);
1721 btrfs_read_buffer(next
, ptr_gen
);
1723 WARN_ON(*level
<= 0);
1724 if (path
->nodes
[*level
-1])
1725 free_extent_buffer(path
->nodes
[*level
-1]);
1726 path
->nodes
[*level
-1] = next
;
1727 *level
= btrfs_header_level(next
);
1728 path
->slots
[*level
] = 0;
1731 WARN_ON(*level
< 0);
1732 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1734 if (path
->nodes
[*level
] == root
->node
)
1735 parent
= path
->nodes
[*level
];
1737 parent
= path
->nodes
[*level
+ 1];
1739 bytenr
= path
->nodes
[*level
]->start
;
1741 blocksize
= btrfs_level_size(root
, *level
);
1742 root_owner
= btrfs_header_owner(parent
);
1743 root_gen
= btrfs_header_generation(parent
);
1745 wc
->process_func(root
, path
->nodes
[*level
], wc
,
1746 btrfs_header_generation(path
->nodes
[*level
]));
1749 next
= path
->nodes
[*level
];
1750 btrfs_tree_lock(next
);
1751 clean_tree_block(trans
, root
, next
);
1752 btrfs_set_lock_blocking(next
);
1753 btrfs_wait_tree_block_writeback(next
);
1754 btrfs_tree_unlock(next
);
1757 ret
= btrfs_drop_leaf_ref(trans
, root
, next
);
1760 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
1761 ret
= btrfs_free_reserved_extent(root
, bytenr
, blocksize
);
1764 free_extent_buffer(path
->nodes
[*level
]);
1765 path
->nodes
[*level
] = NULL
;
1772 static noinline
int walk_up_log_tree(struct btrfs_trans_handle
*trans
,
1773 struct btrfs_root
*root
,
1774 struct btrfs_path
*path
, int *level
,
1775 struct walk_control
*wc
)
1783 for (i
= *level
; i
< BTRFS_MAX_LEVEL
- 1 && path
->nodes
[i
]; i
++) {
1784 slot
= path
->slots
[i
];
1785 if (slot
< btrfs_header_nritems(path
->nodes
[i
]) - 1) {
1786 struct extent_buffer
*node
;
1787 node
= path
->nodes
[i
];
1790 WARN_ON(*level
== 0);
1793 struct extent_buffer
*parent
;
1794 if (path
->nodes
[*level
] == root
->node
)
1795 parent
= path
->nodes
[*level
];
1797 parent
= path
->nodes
[*level
+ 1];
1799 root_owner
= btrfs_header_owner(parent
);
1800 root_gen
= btrfs_header_generation(parent
);
1801 wc
->process_func(root
, path
->nodes
[*level
], wc
,
1802 btrfs_header_generation(path
->nodes
[*level
]));
1804 struct extent_buffer
*next
;
1806 next
= path
->nodes
[*level
];
1808 btrfs_tree_lock(next
);
1809 clean_tree_block(trans
, root
, next
);
1810 btrfs_set_lock_blocking(next
);
1811 btrfs_wait_tree_block_writeback(next
);
1812 btrfs_tree_unlock(next
);
1815 ret
= btrfs_drop_leaf_ref(trans
, root
,
1820 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
1821 ret
= btrfs_free_reserved_extent(root
,
1822 path
->nodes
[*level
]->start
,
1823 path
->nodes
[*level
]->len
);
1826 free_extent_buffer(path
->nodes
[*level
]);
1827 path
->nodes
[*level
] = NULL
;
1835 * drop the reference count on the tree rooted at 'snap'. This traverses
1836 * the tree freeing any blocks that have a ref count of zero after being
1839 static int walk_log_tree(struct btrfs_trans_handle
*trans
,
1840 struct btrfs_root
*log
, struct walk_control
*wc
)
1845 struct btrfs_path
*path
;
1849 path
= btrfs_alloc_path();
1852 level
= btrfs_header_level(log
->node
);
1854 path
->nodes
[level
] = log
->node
;
1855 extent_buffer_get(log
->node
);
1856 path
->slots
[level
] = 0;
1859 wret
= walk_down_log_tree(trans
, log
, path
, &level
, wc
);
1865 wret
= walk_up_log_tree(trans
, log
, path
, &level
, wc
);
1872 /* was the root node processed? if not, catch it here */
1873 if (path
->nodes
[orig_level
]) {
1874 wc
->process_func(log
, path
->nodes
[orig_level
], wc
,
1875 btrfs_header_generation(path
->nodes
[orig_level
]));
1877 struct extent_buffer
*next
;
1879 next
= path
->nodes
[orig_level
];
1881 btrfs_tree_lock(next
);
1882 clean_tree_block(trans
, log
, next
);
1883 btrfs_set_lock_blocking(next
);
1884 btrfs_wait_tree_block_writeback(next
);
1885 btrfs_tree_unlock(next
);
1887 if (orig_level
== 0) {
1888 ret
= btrfs_drop_leaf_ref(trans
, log
,
1892 WARN_ON(log
->root_key
.objectid
!=
1893 BTRFS_TREE_LOG_OBJECTID
);
1894 ret
= btrfs_free_reserved_extent(log
, next
->start
,
1900 for (i
= 0; i
<= orig_level
; i
++) {
1901 if (path
->nodes
[i
]) {
1902 free_extent_buffer(path
->nodes
[i
]);
1903 path
->nodes
[i
] = NULL
;
1906 btrfs_free_path(path
);
1911 * helper function to update the item for a given subvolumes log root
1912 * in the tree of log roots
1914 static int update_log_root(struct btrfs_trans_handle
*trans
,
1915 struct btrfs_root
*log
)
1919 if (log
->log_transid
== 1) {
1920 /* insert root item on the first sync */
1921 ret
= btrfs_insert_root(trans
, log
->fs_info
->log_root_tree
,
1922 &log
->root_key
, &log
->root_item
);
1924 ret
= btrfs_update_root(trans
, log
->fs_info
->log_root_tree
,
1925 &log
->root_key
, &log
->root_item
);
1930 static int wait_log_commit(struct btrfs_trans_handle
*trans
,
1931 struct btrfs_root
*root
, unsigned long transid
)
1934 int index
= transid
% 2;
1937 * we only allow two pending log transactions at a time,
1938 * so we know that if ours is more than 2 older than the
1939 * current transaction, we're done
1942 prepare_to_wait(&root
->log_commit_wait
[index
],
1943 &wait
, TASK_UNINTERRUPTIBLE
);
1944 mutex_unlock(&root
->log_mutex
);
1946 if (root
->fs_info
->last_trans_log_full_commit
!=
1947 trans
->transid
&& root
->log_transid
< transid
+ 2 &&
1948 atomic_read(&root
->log_commit
[index
]))
1951 finish_wait(&root
->log_commit_wait
[index
], &wait
);
1952 mutex_lock(&root
->log_mutex
);
1953 } while (root
->log_transid
< transid
+ 2 &&
1954 atomic_read(&root
->log_commit
[index
]));
1958 static int wait_for_writer(struct btrfs_trans_handle
*trans
,
1959 struct btrfs_root
*root
)
1962 while (atomic_read(&root
->log_writers
)) {
1963 prepare_to_wait(&root
->log_writer_wait
,
1964 &wait
, TASK_UNINTERRUPTIBLE
);
1965 mutex_unlock(&root
->log_mutex
);
1966 if (root
->fs_info
->last_trans_log_full_commit
!=
1967 trans
->transid
&& atomic_read(&root
->log_writers
))
1969 mutex_lock(&root
->log_mutex
);
1970 finish_wait(&root
->log_writer_wait
, &wait
);
1976 * btrfs_sync_log does sends a given tree log down to the disk and
1977 * updates the super blocks to record it. When this call is done,
1978 * you know that any inodes previously logged are safely on disk only
1981 * Any other return value means you need to call btrfs_commit_transaction.
1982 * Some of the edge cases for fsyncing directories that have had unlinks
1983 * or renames done in the past mean that sometimes the only safe
1984 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1985 * that has happened.
1987 int btrfs_sync_log(struct btrfs_trans_handle
*trans
,
1988 struct btrfs_root
*root
)
1993 struct btrfs_root
*log
= root
->log_root
;
1994 struct btrfs_root
*log_root_tree
= root
->fs_info
->log_root_tree
;
1996 mutex_lock(&root
->log_mutex
);
1997 index1
= root
->log_transid
% 2;
1998 if (atomic_read(&root
->log_commit
[index1
])) {
1999 wait_log_commit(trans
, root
, root
->log_transid
);
2000 mutex_unlock(&root
->log_mutex
);
2003 atomic_set(&root
->log_commit
[index1
], 1);
2005 /* wait for previous tree log sync to complete */
2006 if (atomic_read(&root
->log_commit
[(index1
+ 1) % 2]))
2007 wait_log_commit(trans
, root
, root
->log_transid
- 1);
2010 unsigned long batch
= root
->log_batch
;
2011 mutex_unlock(&root
->log_mutex
);
2012 schedule_timeout_uninterruptible(1);
2013 mutex_lock(&root
->log_mutex
);
2015 wait_for_writer(trans
, root
);
2016 if (batch
== root
->log_batch
)
2020 /* bail out if we need to do a full commit */
2021 if (root
->fs_info
->last_trans_log_full_commit
== trans
->transid
) {
2023 mutex_unlock(&root
->log_mutex
);
2027 ret
= btrfs_write_and_wait_marked_extents(log
, &log
->dirty_log_pages
);
2030 btrfs_set_root_bytenr(&log
->root_item
, log
->node
->start
);
2031 btrfs_set_root_generation(&log
->root_item
, trans
->transid
);
2032 btrfs_set_root_level(&log
->root_item
, btrfs_header_level(log
->node
));
2034 root
->log_batch
= 0;
2035 root
->log_transid
++;
2036 log
->log_transid
= root
->log_transid
;
2039 * log tree has been flushed to disk, new modifications of
2040 * the log will be written to new positions. so it's safe to
2041 * allow log writers to go in.
2043 mutex_unlock(&root
->log_mutex
);
2045 mutex_lock(&log_root_tree
->log_mutex
);
2046 log_root_tree
->log_batch
++;
2047 atomic_inc(&log_root_tree
->log_writers
);
2048 mutex_unlock(&log_root_tree
->log_mutex
);
2050 ret
= update_log_root(trans
, log
);
2053 mutex_lock(&log_root_tree
->log_mutex
);
2054 if (atomic_dec_and_test(&log_root_tree
->log_writers
)) {
2056 if (waitqueue_active(&log_root_tree
->log_writer_wait
))
2057 wake_up(&log_root_tree
->log_writer_wait
);
2060 index2
= log_root_tree
->log_transid
% 2;
2061 if (atomic_read(&log_root_tree
->log_commit
[index2
])) {
2062 wait_log_commit(trans
, log_root_tree
,
2063 log_root_tree
->log_transid
);
2064 mutex_unlock(&log_root_tree
->log_mutex
);
2067 atomic_set(&log_root_tree
->log_commit
[index2
], 1);
2069 if (atomic_read(&log_root_tree
->log_commit
[(index2
+ 1) % 2])) {
2070 wait_log_commit(trans
, log_root_tree
,
2071 log_root_tree
->log_transid
- 1);
2074 wait_for_writer(trans
, log_root_tree
);
2077 * now that we've moved on to the tree of log tree roots,
2078 * check the full commit flag again
2080 if (root
->fs_info
->last_trans_log_full_commit
== trans
->transid
) {
2081 mutex_unlock(&log_root_tree
->log_mutex
);
2083 goto out_wake_log_root
;
2086 ret
= btrfs_write_and_wait_marked_extents(log_root_tree
,
2087 &log_root_tree
->dirty_log_pages
);
2090 btrfs_set_super_log_root(&root
->fs_info
->super_for_commit
,
2091 log_root_tree
->node
->start
);
2092 btrfs_set_super_log_root_level(&root
->fs_info
->super_for_commit
,
2093 btrfs_header_level(log_root_tree
->node
));
2095 log_root_tree
->log_batch
= 0;
2096 log_root_tree
->log_transid
++;
2099 mutex_unlock(&log_root_tree
->log_mutex
);
2102 * nobody else is going to jump in and write the the ctree
2103 * super here because the log_commit atomic below is protecting
2104 * us. We must be called with a transaction handle pinning
2105 * the running transaction open, so a full commit can't hop
2106 * in and cause problems either.
2108 write_ctree_super(trans
, root
->fs_info
->tree_root
, 2);
2112 atomic_set(&log_root_tree
->log_commit
[index2
], 0);
2114 if (waitqueue_active(&log_root_tree
->log_commit_wait
[index2
]))
2115 wake_up(&log_root_tree
->log_commit_wait
[index2
]);
2117 atomic_set(&root
->log_commit
[index1
], 0);
2119 if (waitqueue_active(&root
->log_commit_wait
[index1
]))
2120 wake_up(&root
->log_commit_wait
[index1
]);
2125 * free all the extents used by the tree log. This should be called
2126 * at commit time of the full transaction
2128 int btrfs_free_log(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
)
2131 struct btrfs_root
*log
;
2135 struct walk_control wc
= {
2137 .process_func
= process_one_buffer
2140 if (!root
->log_root
|| root
->fs_info
->log_root_recovering
)
2143 log
= root
->log_root
;
2144 ret
= walk_log_tree(trans
, log
, &wc
);
2148 ret
= find_first_extent_bit(&log
->dirty_log_pages
,
2149 0, &start
, &end
, EXTENT_DIRTY
);
2153 clear_extent_dirty(&log
->dirty_log_pages
,
2154 start
, end
, GFP_NOFS
);
2157 if (log
->log_transid
> 0) {
2158 ret
= btrfs_del_root(trans
, root
->fs_info
->log_root_tree
,
2162 root
->log_root
= NULL
;
2163 free_extent_buffer(log
->node
);
2169 * If both a file and directory are logged, and unlinks or renames are
2170 * mixed in, we have a few interesting corners:
2172 * create file X in dir Y
2173 * link file X to X.link in dir Y
2175 * unlink file X but leave X.link
2178 * After a crash we would expect only X.link to exist. But file X
2179 * didn't get fsync'd again so the log has back refs for X and X.link.
2181 * We solve this by removing directory entries and inode backrefs from the
2182 * log when a file that was logged in the current transaction is
2183 * unlinked. Any later fsync will include the updated log entries, and
2184 * we'll be able to reconstruct the proper directory items from backrefs.
2186 * This optimizations allows us to avoid relogging the entire inode
2187 * or the entire directory.
2189 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle
*trans
,
2190 struct btrfs_root
*root
,
2191 const char *name
, int name_len
,
2192 struct inode
*dir
, u64 index
)
2194 struct btrfs_root
*log
;
2195 struct btrfs_dir_item
*di
;
2196 struct btrfs_path
*path
;
2200 if (BTRFS_I(dir
)->logged_trans
< trans
->transid
)
2203 ret
= join_running_log_trans(root
);
2207 mutex_lock(&BTRFS_I(dir
)->log_mutex
);
2209 log
= root
->log_root
;
2210 path
= btrfs_alloc_path();
2211 di
= btrfs_lookup_dir_item(trans
, log
, path
, dir
->i_ino
,
2212 name
, name_len
, -1);
2213 if (di
&& !IS_ERR(di
)) {
2214 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2215 bytes_del
+= name_len
;
2218 btrfs_release_path(log
, path
);
2219 di
= btrfs_lookup_dir_index_item(trans
, log
, path
, dir
->i_ino
,
2220 index
, name
, name_len
, -1);
2221 if (di
&& !IS_ERR(di
)) {
2222 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2223 bytes_del
+= name_len
;
2227 /* update the directory size in the log to reflect the names
2231 struct btrfs_key key
;
2233 key
.objectid
= dir
->i_ino
;
2235 key
.type
= BTRFS_INODE_ITEM_KEY
;
2236 btrfs_release_path(log
, path
);
2238 ret
= btrfs_search_slot(trans
, log
, &key
, path
, 0, 1);
2240 struct btrfs_inode_item
*item
;
2243 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2244 struct btrfs_inode_item
);
2245 i_size
= btrfs_inode_size(path
->nodes
[0], item
);
2246 if (i_size
> bytes_del
)
2247 i_size
-= bytes_del
;
2250 btrfs_set_inode_size(path
->nodes
[0], item
, i_size
);
2251 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2254 btrfs_release_path(log
, path
);
2257 btrfs_free_path(path
);
2258 mutex_unlock(&BTRFS_I(dir
)->log_mutex
);
2259 btrfs_end_log_trans(root
);
2264 /* see comments for btrfs_del_dir_entries_in_log */
2265 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle
*trans
,
2266 struct btrfs_root
*root
,
2267 const char *name
, int name_len
,
2268 struct inode
*inode
, u64 dirid
)
2270 struct btrfs_root
*log
;
2274 if (BTRFS_I(inode
)->logged_trans
< trans
->transid
)
2277 ret
= join_running_log_trans(root
);
2280 log
= root
->log_root
;
2281 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
2283 ret
= btrfs_del_inode_ref(trans
, log
, name
, name_len
, inode
->i_ino
,
2285 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
2286 btrfs_end_log_trans(root
);
2292 * creates a range item in the log for 'dirid'. first_offset and
2293 * last_offset tell us which parts of the key space the log should
2294 * be considered authoritative for.
2296 static noinline
int insert_dir_log_key(struct btrfs_trans_handle
*trans
,
2297 struct btrfs_root
*log
,
2298 struct btrfs_path
*path
,
2299 int key_type
, u64 dirid
,
2300 u64 first_offset
, u64 last_offset
)
2303 struct btrfs_key key
;
2304 struct btrfs_dir_log_item
*item
;
2306 key
.objectid
= dirid
;
2307 key
.offset
= first_offset
;
2308 if (key_type
== BTRFS_DIR_ITEM_KEY
)
2309 key
.type
= BTRFS_DIR_LOG_ITEM_KEY
;
2311 key
.type
= BTRFS_DIR_LOG_INDEX_KEY
;
2312 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
, sizeof(*item
));
2315 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2316 struct btrfs_dir_log_item
);
2317 btrfs_set_dir_log_end(path
->nodes
[0], item
, last_offset
);
2318 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2319 btrfs_release_path(log
, path
);
2324 * log all the items included in the current transaction for a given
2325 * directory. This also creates the range items in the log tree required
2326 * to replay anything deleted before the fsync
2328 static noinline
int log_dir_items(struct btrfs_trans_handle
*trans
,
2329 struct btrfs_root
*root
, struct inode
*inode
,
2330 struct btrfs_path
*path
,
2331 struct btrfs_path
*dst_path
, int key_type
,
2332 u64 min_offset
, u64
*last_offset_ret
)
2334 struct btrfs_key min_key
;
2335 struct btrfs_key max_key
;
2336 struct btrfs_root
*log
= root
->log_root
;
2337 struct extent_buffer
*src
;
2341 u64 first_offset
= min_offset
;
2342 u64 last_offset
= (u64
)-1;
2344 log
= root
->log_root
;
2345 max_key
.objectid
= inode
->i_ino
;
2346 max_key
.offset
= (u64
)-1;
2347 max_key
.type
= key_type
;
2349 min_key
.objectid
= inode
->i_ino
;
2350 min_key
.type
= key_type
;
2351 min_key
.offset
= min_offset
;
2353 path
->keep_locks
= 1;
2355 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
2356 path
, 0, trans
->transid
);
2359 * we didn't find anything from this transaction, see if there
2360 * is anything at all
2362 if (ret
!= 0 || min_key
.objectid
!= inode
->i_ino
||
2363 min_key
.type
!= key_type
) {
2364 min_key
.objectid
= inode
->i_ino
;
2365 min_key
.type
= key_type
;
2366 min_key
.offset
= (u64
)-1;
2367 btrfs_release_path(root
, path
);
2368 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
2370 btrfs_release_path(root
, path
);
2373 ret
= btrfs_previous_item(root
, path
, inode
->i_ino
, key_type
);
2375 /* if ret == 0 there are items for this type,
2376 * create a range to tell us the last key of this type.
2377 * otherwise, there are no items in this directory after
2378 * *min_offset, and we create a range to indicate that.
2381 struct btrfs_key tmp
;
2382 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
,
2384 if (key_type
== tmp
.type
)
2385 first_offset
= max(min_offset
, tmp
.offset
) + 1;
2390 /* go backward to find any previous key */
2391 ret
= btrfs_previous_item(root
, path
, inode
->i_ino
, key_type
);
2393 struct btrfs_key tmp
;
2394 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
2395 if (key_type
== tmp
.type
) {
2396 first_offset
= tmp
.offset
;
2397 ret
= overwrite_item(trans
, log
, dst_path
,
2398 path
->nodes
[0], path
->slots
[0],
2402 btrfs_release_path(root
, path
);
2404 /* find the first key from this transaction again */
2405 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
2412 * we have a block from this transaction, log every item in it
2413 * from our directory
2416 struct btrfs_key tmp
;
2417 src
= path
->nodes
[0];
2418 nritems
= btrfs_header_nritems(src
);
2419 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
2420 btrfs_item_key_to_cpu(src
, &min_key
, i
);
2422 if (min_key
.objectid
!= inode
->i_ino
||
2423 min_key
.type
!= key_type
)
2425 ret
= overwrite_item(trans
, log
, dst_path
, src
, i
,
2429 path
->slots
[0] = nritems
;
2432 * look ahead to the next item and see if it is also
2433 * from this directory and from this transaction
2435 ret
= btrfs_next_leaf(root
, path
);
2437 last_offset
= (u64
)-1;
2440 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
2441 if (tmp
.objectid
!= inode
->i_ino
|| tmp
.type
!= key_type
) {
2442 last_offset
= (u64
)-1;
2445 if (btrfs_header_generation(path
->nodes
[0]) != trans
->transid
) {
2446 ret
= overwrite_item(trans
, log
, dst_path
,
2447 path
->nodes
[0], path
->slots
[0],
2451 last_offset
= tmp
.offset
;
2456 *last_offset_ret
= last_offset
;
2457 btrfs_release_path(root
, path
);
2458 btrfs_release_path(log
, dst_path
);
2460 /* insert the log range keys to indicate where the log is valid */
2461 ret
= insert_dir_log_key(trans
, log
, path
, key_type
, inode
->i_ino
,
2462 first_offset
, last_offset
);
2468 * logging directories is very similar to logging inodes, We find all the items
2469 * from the current transaction and write them to the log.
2471 * The recovery code scans the directory in the subvolume, and if it finds a
2472 * key in the range logged that is not present in the log tree, then it means
2473 * that dir entry was unlinked during the transaction.
2475 * In order for that scan to work, we must include one key smaller than
2476 * the smallest logged by this transaction and one key larger than the largest
2477 * key logged by this transaction.
2479 static noinline
int log_directory_changes(struct btrfs_trans_handle
*trans
,
2480 struct btrfs_root
*root
, struct inode
*inode
,
2481 struct btrfs_path
*path
,
2482 struct btrfs_path
*dst_path
)
2487 int key_type
= BTRFS_DIR_ITEM_KEY
;
2493 ret
= log_dir_items(trans
, root
, inode
, path
,
2494 dst_path
, key_type
, min_key
,
2497 if (max_key
== (u64
)-1)
2499 min_key
= max_key
+ 1;
2502 if (key_type
== BTRFS_DIR_ITEM_KEY
) {
2503 key_type
= BTRFS_DIR_INDEX_KEY
;
2510 * a helper function to drop items from the log before we relog an
2511 * inode. max_key_type indicates the highest item type to remove.
2512 * This cannot be run for file data extents because it does not
2513 * free the extents they point to.
2515 static int drop_objectid_items(struct btrfs_trans_handle
*trans
,
2516 struct btrfs_root
*log
,
2517 struct btrfs_path
*path
,
2518 u64 objectid
, int max_key_type
)
2521 struct btrfs_key key
;
2522 struct btrfs_key found_key
;
2524 key
.objectid
= objectid
;
2525 key
.type
= max_key_type
;
2526 key
.offset
= (u64
)-1;
2529 ret
= btrfs_search_slot(trans
, log
, &key
, path
, -1, 1);
2534 if (path
->slots
[0] == 0)
2538 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2541 if (found_key
.objectid
!= objectid
)
2544 ret
= btrfs_del_item(trans
, log
, path
);
2546 btrfs_release_path(log
, path
);
2548 btrfs_release_path(log
, path
);
2552 static noinline
int copy_items(struct btrfs_trans_handle
*trans
,
2553 struct btrfs_root
*log
,
2554 struct btrfs_path
*dst_path
,
2555 struct extent_buffer
*src
,
2556 int start_slot
, int nr
, int inode_only
)
2558 unsigned long src_offset
;
2559 unsigned long dst_offset
;
2560 struct btrfs_file_extent_item
*extent
;
2561 struct btrfs_inode_item
*inode_item
;
2563 struct btrfs_key
*ins_keys
;
2567 struct list_head ordered_sums
;
2569 INIT_LIST_HEAD(&ordered_sums
);
2571 ins_data
= kmalloc(nr
* sizeof(struct btrfs_key
) +
2572 nr
* sizeof(u32
), GFP_NOFS
);
2573 ins_sizes
= (u32
*)ins_data
;
2574 ins_keys
= (struct btrfs_key
*)(ins_data
+ nr
* sizeof(u32
));
2576 for (i
= 0; i
< nr
; i
++) {
2577 ins_sizes
[i
] = btrfs_item_size_nr(src
, i
+ start_slot
);
2578 btrfs_item_key_to_cpu(src
, ins_keys
+ i
, i
+ start_slot
);
2580 ret
= btrfs_insert_empty_items(trans
, log
, dst_path
,
2581 ins_keys
, ins_sizes
, nr
);
2584 for (i
= 0; i
< nr
; i
++) {
2585 dst_offset
= btrfs_item_ptr_offset(dst_path
->nodes
[0],
2586 dst_path
->slots
[0]);
2588 src_offset
= btrfs_item_ptr_offset(src
, start_slot
+ i
);
2590 copy_extent_buffer(dst_path
->nodes
[0], src
, dst_offset
,
2591 src_offset
, ins_sizes
[i
]);
2593 if (inode_only
== LOG_INODE_EXISTS
&&
2594 ins_keys
[i
].type
== BTRFS_INODE_ITEM_KEY
) {
2595 inode_item
= btrfs_item_ptr(dst_path
->nodes
[0],
2597 struct btrfs_inode_item
);
2598 btrfs_set_inode_size(dst_path
->nodes
[0], inode_item
, 0);
2600 /* set the generation to zero so the recover code
2601 * can tell the difference between an logging
2602 * just to say 'this inode exists' and a logging
2603 * to say 'update this inode with these values'
2605 btrfs_set_inode_generation(dst_path
->nodes
[0],
2608 /* take a reference on file data extents so that truncates
2609 * or deletes of this inode don't have to relog the inode
2612 if (btrfs_key_type(ins_keys
+ i
) == BTRFS_EXTENT_DATA_KEY
) {
2614 extent
= btrfs_item_ptr(src
, start_slot
+ i
,
2615 struct btrfs_file_extent_item
);
2617 found_type
= btrfs_file_extent_type(src
, extent
);
2618 if (found_type
== BTRFS_FILE_EXTENT_REG
||
2619 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
2620 u64 ds
= btrfs_file_extent_disk_bytenr(src
,
2622 u64 dl
= btrfs_file_extent_disk_num_bytes(src
,
2624 u64 cs
= btrfs_file_extent_offset(src
, extent
);
2625 u64 cl
= btrfs_file_extent_num_bytes(src
,
2627 if (btrfs_file_extent_compression(src
,
2632 /* ds == 0 is a hole */
2634 ret
= btrfs_inc_extent_ref(trans
, log
,
2636 dst_path
->nodes
[0]->start
,
2637 BTRFS_TREE_LOG_OBJECTID
,
2639 ins_keys
[i
].objectid
);
2641 ret
= btrfs_lookup_csums_range(
2642 log
->fs_info
->csum_root
,
2643 ds
+ cs
, ds
+ cs
+ cl
- 1,
2649 dst_path
->slots
[0]++;
2652 btrfs_mark_buffer_dirty(dst_path
->nodes
[0]);
2653 btrfs_release_path(log
, dst_path
);
2657 * we have to do this after the loop above to avoid changing the
2658 * log tree while trying to change the log tree.
2660 while (!list_empty(&ordered_sums
)) {
2661 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
2662 struct btrfs_ordered_sum
,
2664 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
2666 list_del(&sums
->list
);
2672 /* log a single inode in the tree log.
2673 * At least one parent directory for this inode must exist in the tree
2674 * or be logged already.
2676 * Any items from this inode changed by the current transaction are copied
2677 * to the log tree. An extra reference is taken on any extents in this
2678 * file, allowing us to avoid a whole pile of corner cases around logging
2679 * blocks that have been removed from the tree.
2681 * See LOG_INODE_ALL and related defines for a description of what inode_only
2684 * This handles both files and directories.
2686 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
2687 struct btrfs_root
*root
, struct inode
*inode
,
2690 struct btrfs_path
*path
;
2691 struct btrfs_path
*dst_path
;
2692 struct btrfs_key min_key
;
2693 struct btrfs_key max_key
;
2694 struct btrfs_root
*log
= root
->log_root
;
2695 struct extent_buffer
*src
= NULL
;
2699 int ins_start_slot
= 0;
2702 log
= root
->log_root
;
2704 path
= btrfs_alloc_path();
2705 dst_path
= btrfs_alloc_path();
2707 min_key
.objectid
= inode
->i_ino
;
2708 min_key
.type
= BTRFS_INODE_ITEM_KEY
;
2711 max_key
.objectid
= inode
->i_ino
;
2713 /* today the code can only do partial logging of directories */
2714 if (!S_ISDIR(inode
->i_mode
))
2715 inode_only
= LOG_INODE_ALL
;
2717 if (inode_only
== LOG_INODE_EXISTS
|| S_ISDIR(inode
->i_mode
))
2718 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
2720 max_key
.type
= (u8
)-1;
2721 max_key
.offset
= (u64
)-1;
2723 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
2726 * a brute force approach to making sure we get the most uptodate
2727 * copies of everything.
2729 if (S_ISDIR(inode
->i_mode
)) {
2730 int max_key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
2732 if (inode_only
== LOG_INODE_EXISTS
)
2733 max_key_type
= BTRFS_XATTR_ITEM_KEY
;
2734 ret
= drop_objectid_items(trans
, log
, path
,
2735 inode
->i_ino
, max_key_type
);
2737 ret
= btrfs_truncate_inode_items(trans
, log
, inode
, 0, 0);
2740 path
->keep_locks
= 1;
2744 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
2745 path
, 0, trans
->transid
);
2749 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2750 if (min_key
.objectid
!= inode
->i_ino
)
2752 if (min_key
.type
> max_key
.type
)
2755 src
= path
->nodes
[0];
2756 size
= btrfs_item_size_nr(src
, path
->slots
[0]);
2757 if (ins_nr
&& ins_start_slot
+ ins_nr
== path
->slots
[0]) {
2760 } else if (!ins_nr
) {
2761 ins_start_slot
= path
->slots
[0];
2766 ret
= copy_items(trans
, log
, dst_path
, src
, ins_start_slot
,
2767 ins_nr
, inode_only
);
2770 ins_start_slot
= path
->slots
[0];
2773 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2775 if (path
->slots
[0] < nritems
) {
2776 btrfs_item_key_to_cpu(path
->nodes
[0], &min_key
,
2781 ret
= copy_items(trans
, log
, dst_path
, src
,
2783 ins_nr
, inode_only
);
2787 btrfs_release_path(root
, path
);
2789 if (min_key
.offset
< (u64
)-1)
2791 else if (min_key
.type
< (u8
)-1)
2793 else if (min_key
.objectid
< (u64
)-1)
2799 ret
= copy_items(trans
, log
, dst_path
, src
,
2801 ins_nr
, inode_only
);
2806 if (inode_only
== LOG_INODE_ALL
&& S_ISDIR(inode
->i_mode
)) {
2807 btrfs_release_path(root
, path
);
2808 btrfs_release_path(log
, dst_path
);
2809 ret
= log_directory_changes(trans
, root
, inode
, path
, dst_path
);
2812 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
2813 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
2815 btrfs_free_path(path
);
2816 btrfs_free_path(dst_path
);
2821 * follow the dentry parent pointers up the chain and see if any
2822 * of the directories in it require a full commit before they can
2823 * be logged. Returns zero if nothing special needs to be done or 1 if
2824 * a full commit is required.
2826 static noinline
int check_parent_dirs_for_sync(struct btrfs_trans_handle
*trans
,
2827 struct inode
*inode
,
2828 struct dentry
*parent
,
2829 struct super_block
*sb
,
2833 struct btrfs_root
*root
;
2836 * for regular files, if its inode is already on disk, we don't
2837 * have to worry about the parents at all. This is because
2838 * we can use the last_unlink_trans field to record renames
2839 * and other fun in this file.
2841 if (S_ISREG(inode
->i_mode
) &&
2842 BTRFS_I(inode
)->generation
<= last_committed
&&
2843 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
)
2846 if (!S_ISDIR(inode
->i_mode
)) {
2847 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
2849 inode
= parent
->d_inode
;
2853 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
2856 if (BTRFS_I(inode
)->last_unlink_trans
> last_committed
) {
2857 root
= BTRFS_I(inode
)->root
;
2860 * make sure any commits to the log are forced
2861 * to be full commits
2863 root
->fs_info
->last_trans_log_full_commit
=
2869 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
2872 if (parent
== sb
->s_root
)
2875 parent
= parent
->d_parent
;
2876 inode
= parent
->d_inode
;
2884 * helper function around btrfs_log_inode to make sure newly created
2885 * parent directories also end up in the log. A minimal inode and backref
2886 * only logging is done of any parent directories that are older than
2887 * the last committed transaction
2889 int btrfs_log_inode_parent(struct btrfs_trans_handle
*trans
,
2890 struct btrfs_root
*root
, struct inode
*inode
,
2891 struct dentry
*parent
, int exists_only
)
2893 int inode_only
= exists_only
? LOG_INODE_EXISTS
: LOG_INODE_ALL
;
2894 struct super_block
*sb
;
2896 u64 last_committed
= root
->fs_info
->last_trans_committed
;
2900 if (btrfs_test_opt(root
, NOTREELOG
)) {
2905 if (root
->fs_info
->last_trans_log_full_commit
>
2906 root
->fs_info
->last_trans_committed
) {
2911 ret
= check_parent_dirs_for_sync(trans
, inode
, parent
,
2912 sb
, last_committed
);
2916 start_log_trans(trans
, root
);
2918 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
);
2922 * for regular files, if its inode is already on disk, we don't
2923 * have to worry about the parents at all. This is because
2924 * we can use the last_unlink_trans field to record renames
2925 * and other fun in this file.
2927 if (S_ISREG(inode
->i_mode
) &&
2928 BTRFS_I(inode
)->generation
<= last_committed
&&
2929 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
)
2932 inode_only
= LOG_INODE_EXISTS
;
2934 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
2937 inode
= parent
->d_inode
;
2938 if (BTRFS_I(inode
)->generation
>
2939 root
->fs_info
->last_trans_committed
) {
2940 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
);
2943 if (parent
== sb
->s_root
)
2946 parent
= parent
->d_parent
;
2950 btrfs_end_log_trans(root
);
2956 * it is not safe to log dentry if the chunk root has added new
2957 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
2958 * If this returns 1, you must commit the transaction to safely get your
2961 int btrfs_log_dentry_safe(struct btrfs_trans_handle
*trans
,
2962 struct btrfs_root
*root
, struct dentry
*dentry
)
2964 return btrfs_log_inode_parent(trans
, root
, dentry
->d_inode
,
2965 dentry
->d_parent
, 0);
2969 * should be called during mount to recover any replay any log trees
2972 int btrfs_recover_log_trees(struct btrfs_root
*log_root_tree
)
2975 struct btrfs_path
*path
;
2976 struct btrfs_trans_handle
*trans
;
2977 struct btrfs_key key
;
2978 struct btrfs_key found_key
;
2979 struct btrfs_key tmp_key
;
2980 struct btrfs_root
*log
;
2981 struct btrfs_fs_info
*fs_info
= log_root_tree
->fs_info
;
2983 struct walk_control wc
= {
2984 .process_func
= process_one_buffer
,
2988 fs_info
->log_root_recovering
= 1;
2989 path
= btrfs_alloc_path();
2992 trans
= btrfs_start_transaction(fs_info
->tree_root
, 1);
2997 walk_log_tree(trans
, log_root_tree
, &wc
);
3000 key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
3001 key
.offset
= (u64
)-1;
3002 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
3005 ret
= btrfs_search_slot(NULL
, log_root_tree
, &key
, path
, 0, 0);
3009 if (path
->slots
[0] == 0)
3013 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
3015 btrfs_release_path(log_root_tree
, path
);
3016 if (found_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
3019 log
= btrfs_read_fs_root_no_radix(log_root_tree
,
3024 tmp_key
.objectid
= found_key
.offset
;
3025 tmp_key
.type
= BTRFS_ROOT_ITEM_KEY
;
3026 tmp_key
.offset
= (u64
)-1;
3028 wc
.replay_dest
= btrfs_read_fs_root_no_name(fs_info
, &tmp_key
);
3029 BUG_ON(!wc
.replay_dest
);
3031 wc
.replay_dest
->log_root
= log
;
3032 mutex_lock(&fs_info
->trans_mutex
);
3033 btrfs_record_root_in_trans(wc
.replay_dest
);
3034 mutex_unlock(&fs_info
->trans_mutex
);
3035 ret
= walk_log_tree(trans
, log
, &wc
);
3038 if (wc
.stage
== LOG_WALK_REPLAY_ALL
) {
3039 ret
= fixup_inode_link_counts(trans
, wc
.replay_dest
,
3043 ret
= btrfs_find_highest_inode(wc
.replay_dest
, &highest_inode
);
3045 wc
.replay_dest
->highest_inode
= highest_inode
;
3046 wc
.replay_dest
->last_inode_alloc
= highest_inode
;
3049 key
.offset
= found_key
.offset
- 1;
3050 wc
.replay_dest
->log_root
= NULL
;
3051 free_extent_buffer(log
->node
);
3054 if (found_key
.offset
== 0)
3057 btrfs_release_path(log_root_tree
, path
);
3059 /* step one is to pin it all, step two is to replay just inodes */
3062 wc
.process_func
= replay_one_buffer
;
3063 wc
.stage
= LOG_WALK_REPLAY_INODES
;
3066 /* step three is to replay everything */
3067 if (wc
.stage
< LOG_WALK_REPLAY_ALL
) {
3072 btrfs_free_path(path
);
3074 free_extent_buffer(log_root_tree
->node
);
3075 log_root_tree
->log_root
= NULL
;
3076 fs_info
->log_root_recovering
= 0;
3078 /* step 4: commit the transaction, which also unpins the blocks */
3079 btrfs_commit_transaction(trans
, fs_info
->tree_root
);
3081 kfree(log_root_tree
);
3086 * there are some corner cases where we want to force a full
3087 * commit instead of allowing a directory to be logged.
3089 * They revolve around files there were unlinked from the directory, and
3090 * this function updates the parent directory so that a full commit is
3091 * properly done if it is fsync'd later after the unlinks are done.
3093 void btrfs_record_unlink_dir(struct btrfs_trans_handle
*trans
,
3094 struct inode
*dir
, struct inode
*inode
,
3098 * when we're logging a file, if it hasn't been renamed
3099 * or unlinked, and its inode is fully committed on disk,
3100 * we don't have to worry about walking up the directory chain
3101 * to log its parents.
3103 * So, we use the last_unlink_trans field to put this transid
3104 * into the file. When the file is logged we check it and
3105 * don't log the parents if the file is fully on disk.
3107 if (S_ISREG(inode
->i_mode
))
3108 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
3111 * if this directory was already logged any new
3112 * names for this file/dir will get recorded
3115 if (BTRFS_I(dir
)->logged_trans
== trans
->transid
)
3119 * if the inode we're about to unlink was logged,
3120 * the log will be properly updated for any new names
3122 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
)
3126 * when renaming files across directories, if the directory
3127 * there we're unlinking from gets fsync'd later on, there's
3128 * no way to find the destination directory later and fsync it
3129 * properly. So, we have to be conservative and force commits
3130 * so the new name gets discovered.
3135 /* we can safely do the unlink without any special recording */
3139 BTRFS_I(dir
)->last_unlink_trans
= trans
->transid
;
3143 * Call this after adding a new name for a file and it will properly
3144 * update the log to reflect the new name.
3146 * It will return zero if all goes well, and it will return 1 if a
3147 * full transaction commit is required.
3149 int btrfs_log_new_name(struct btrfs_trans_handle
*trans
,
3150 struct inode
*inode
, struct inode
*old_dir
,
3151 struct dentry
*parent
)
3153 struct btrfs_root
* root
= BTRFS_I(inode
)->root
;
3156 * this will force the logging code to walk the dentry chain
3159 if (S_ISREG(inode
->i_mode
))
3160 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
3163 * if this inode hasn't been logged and directory we're renaming it
3164 * from hasn't been logged, we don't need to log it
3166 if (BTRFS_I(inode
)->logged_trans
<=
3167 root
->fs_info
->last_trans_committed
&&
3168 (!old_dir
|| BTRFS_I(old_dir
)->logged_trans
<=
3169 root
->fs_info
->last_trans_committed
))
3172 return btrfs_log_inode_parent(trans
, root
, inode
, parent
, 1);