[IA64] mca.c:121: warning: 'cpe_poll_timer' defined but not used
[linux-2.6/mini2440.git] / arch / ia64 / kernel / mca.c
blob26814de6c29ace5955dc65b3b0eac36b97f36e69
1 /*
2 * File: mca.c
3 * Purpose: Generic MCA handling layer
5 * Updated for latest kernel
6 * Copyright (C) 2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
9 * Copyright (C) 2002 Dell Inc.
10 * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
12 * Copyright (C) 2002 Intel
13 * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
15 * Copyright (C) 2001 Intel
16 * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
18 * Copyright (C) 2000 Intel
19 * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
21 * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22 * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
24 * 03/04/15 D. Mosberger Added INIT backtrace support.
25 * 02/03/25 M. Domsch GUID cleanups
27 * 02/01/04 J. Hall Aligned MCA stack to 16 bytes, added platform vs. CPU
28 * error flag, set SAL default return values, changed
29 * error record structure to linked list, added init call
30 * to sal_get_state_info_size().
32 * 01/01/03 F. Lewis Added setup of CMCI and CPEI IRQs, logging of corrected
33 * platform errors, completed code for logging of
34 * corrected & uncorrected machine check errors, and
35 * updated for conformance with Nov. 2000 revision of the
36 * SAL 3.0 spec.
37 * 00/03/29 C. Fleckenstein Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38 * added min save state dump, added INIT handler.
40 * 2003-12-08 Keith Owens <kaos@sgi.com>
41 * smp_call_function() must not be called from interrupt context (can
42 * deadlock on tasklist_lock). Use keventd to call smp_call_function().
44 * 2004-02-01 Keith Owens <kaos@sgi.com>
45 * Avoid deadlock when using printk() for MCA and INIT records.
46 * Delete all record printing code, moved to salinfo_decode in user space.
47 * Mark variables and functions static where possible.
48 * Delete dead variables and functions.
49 * Reorder to remove the need for forward declarations and to consolidate
50 * related code.
52 * 2005-08-12 Keith Owens <kaos@sgi.com>
53 * Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
55 * 2005-10-07 Keith Owens <kaos@sgi.com>
56 * Add notify_die() hooks.
58 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
59 * Add printing support for MCA/INIT.
61 #include <linux/types.h>
62 #include <linux/init.h>
63 #include <linux/sched.h>
64 #include <linux/interrupt.h>
65 #include <linux/irq.h>
66 #include <linux/bootmem.h>
67 #include <linux/acpi.h>
68 #include <linux/timer.h>
69 #include <linux/module.h>
70 #include <linux/kernel.h>
71 #include <linux/smp.h>
72 #include <linux/workqueue.h>
73 #include <linux/cpumask.h>
74 #include <linux/kdebug.h>
76 #include <asm/delay.h>
77 #include <asm/machvec.h>
78 #include <asm/meminit.h>
79 #include <asm/page.h>
80 #include <asm/ptrace.h>
81 #include <asm/system.h>
82 #include <asm/sal.h>
83 #include <asm/mca.h>
84 #include <asm/kexec.h>
86 #include <asm/irq.h>
87 #include <asm/hw_irq.h>
89 #include "mca_drv.h"
90 #include "entry.h"
92 #if defined(IA64_MCA_DEBUG_INFO)
93 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
94 #else
95 # define IA64_MCA_DEBUG(fmt...)
96 #endif
98 /* Used by mca_asm.S */
99 u32 ia64_mca_serialize;
100 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
101 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
102 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
103 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
105 unsigned long __per_cpu_mca[NR_CPUS];
107 /* In mca_asm.S */
108 extern void ia64_os_init_dispatch_monarch (void);
109 extern void ia64_os_init_dispatch_slave (void);
111 static int monarch_cpu = -1;
113 static ia64_mc_info_t ia64_mc_info;
115 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
116 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
117 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
118 #define CPE_HISTORY_LENGTH 5
119 #define CMC_HISTORY_LENGTH 5
121 #ifdef CONFIG_ACPI
122 static struct timer_list cpe_poll_timer;
123 #endif
124 static struct timer_list cmc_poll_timer;
126 * This variable tells whether we are currently in polling mode.
127 * Start with this in the wrong state so we won't play w/ timers
128 * before the system is ready.
130 static int cmc_polling_enabled = 1;
133 * Clearing this variable prevents CPE polling from getting activated
134 * in mca_late_init. Use it if your system doesn't provide a CPEI,
135 * but encounters problems retrieving CPE logs. This should only be
136 * necessary for debugging.
138 static int cpe_poll_enabled = 1;
140 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
142 static int mca_init __initdata;
145 * limited & delayed printing support for MCA/INIT handler
148 #define mprintk(fmt...) ia64_mca_printk(fmt)
150 #define MLOGBUF_SIZE (512+256*NR_CPUS)
151 #define MLOGBUF_MSGMAX 256
152 static char mlogbuf[MLOGBUF_SIZE];
153 static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
154 static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
155 static unsigned long mlogbuf_start;
156 static unsigned long mlogbuf_end;
157 static unsigned int mlogbuf_finished = 0;
158 static unsigned long mlogbuf_timestamp = 0;
160 static int loglevel_save = -1;
161 #define BREAK_LOGLEVEL(__console_loglevel) \
162 oops_in_progress = 1; \
163 if (loglevel_save < 0) \
164 loglevel_save = __console_loglevel; \
165 __console_loglevel = 15;
167 #define RESTORE_LOGLEVEL(__console_loglevel) \
168 if (loglevel_save >= 0) { \
169 __console_loglevel = loglevel_save; \
170 loglevel_save = -1; \
172 mlogbuf_finished = 0; \
173 oops_in_progress = 0;
176 * Push messages into buffer, print them later if not urgent.
178 void ia64_mca_printk(const char *fmt, ...)
180 va_list args;
181 int printed_len;
182 char temp_buf[MLOGBUF_MSGMAX];
183 char *p;
185 va_start(args, fmt);
186 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
187 va_end(args);
189 /* Copy the output into mlogbuf */
190 if (oops_in_progress) {
191 /* mlogbuf was abandoned, use printk directly instead. */
192 printk(temp_buf);
193 } else {
194 spin_lock(&mlogbuf_wlock);
195 for (p = temp_buf; *p; p++) {
196 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
197 if (next != mlogbuf_start) {
198 mlogbuf[mlogbuf_end] = *p;
199 mlogbuf_end = next;
200 } else {
201 /* buffer full */
202 break;
205 mlogbuf[mlogbuf_end] = '\0';
206 spin_unlock(&mlogbuf_wlock);
209 EXPORT_SYMBOL(ia64_mca_printk);
212 * Print buffered messages.
213 * NOTE: call this after returning normal context. (ex. from salinfod)
215 void ia64_mlogbuf_dump(void)
217 char temp_buf[MLOGBUF_MSGMAX];
218 char *p;
219 unsigned long index;
220 unsigned long flags;
221 unsigned int printed_len;
223 /* Get output from mlogbuf */
224 while (mlogbuf_start != mlogbuf_end) {
225 temp_buf[0] = '\0';
226 p = temp_buf;
227 printed_len = 0;
229 spin_lock_irqsave(&mlogbuf_rlock, flags);
231 index = mlogbuf_start;
232 while (index != mlogbuf_end) {
233 *p = mlogbuf[index];
234 index = (index + 1) % MLOGBUF_SIZE;
235 if (!*p)
236 break;
237 p++;
238 if (++printed_len >= MLOGBUF_MSGMAX - 1)
239 break;
241 *p = '\0';
242 if (temp_buf[0])
243 printk(temp_buf);
244 mlogbuf_start = index;
246 mlogbuf_timestamp = 0;
247 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
250 EXPORT_SYMBOL(ia64_mlogbuf_dump);
253 * Call this if system is going to down or if immediate flushing messages to
254 * console is required. (ex. recovery was failed, crash dump is going to be
255 * invoked, long-wait rendezvous etc.)
256 * NOTE: this should be called from monarch.
258 static void ia64_mlogbuf_finish(int wait)
260 BREAK_LOGLEVEL(console_loglevel);
262 spin_lock_init(&mlogbuf_rlock);
263 ia64_mlogbuf_dump();
264 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
265 "MCA/INIT might be dodgy or fail.\n");
267 if (!wait)
268 return;
270 /* wait for console */
271 printk("Delaying for 5 seconds...\n");
272 udelay(5*1000000);
274 mlogbuf_finished = 1;
276 EXPORT_SYMBOL(ia64_mlogbuf_finish);
279 * Print buffered messages from INIT context.
281 static void ia64_mlogbuf_dump_from_init(void)
283 if (mlogbuf_finished)
284 return;
286 if (mlogbuf_timestamp && (mlogbuf_timestamp + 30*HZ > jiffies)) {
287 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
288 " and the system seems to be messed up.\n");
289 ia64_mlogbuf_finish(0);
290 return;
293 if (!spin_trylock(&mlogbuf_rlock)) {
294 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
295 "Generated messages other than stack dump will be "
296 "buffered to mlogbuf and will be printed later.\n");
297 printk(KERN_ERR "INIT: If messages would not printed after "
298 "this INIT, wait 30sec and assert INIT again.\n");
299 if (!mlogbuf_timestamp)
300 mlogbuf_timestamp = jiffies;
301 return;
303 spin_unlock(&mlogbuf_rlock);
304 ia64_mlogbuf_dump();
307 static void inline
308 ia64_mca_spin(const char *func)
310 if (monarch_cpu == smp_processor_id())
311 ia64_mlogbuf_finish(0);
312 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
313 while (1)
314 cpu_relax();
317 * IA64_MCA log support
319 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
320 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
322 typedef struct ia64_state_log_s
324 spinlock_t isl_lock;
325 int isl_index;
326 unsigned long isl_count;
327 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
328 } ia64_state_log_t;
330 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
332 #define IA64_LOG_ALLOCATE(it, size) \
333 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
334 (ia64_err_rec_t *)alloc_bootmem(size); \
335 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
336 (ia64_err_rec_t *)alloc_bootmem(size);}
337 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
338 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
339 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
340 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
341 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
342 #define IA64_LOG_INDEX_INC(it) \
343 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
344 ia64_state_log[it].isl_count++;}
345 #define IA64_LOG_INDEX_DEC(it) \
346 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
347 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
348 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
349 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
352 * ia64_log_init
353 * Reset the OS ia64 log buffer
354 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
355 * Outputs : None
357 static void __init
358 ia64_log_init(int sal_info_type)
360 u64 max_size = 0;
362 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
363 IA64_LOG_LOCK_INIT(sal_info_type);
365 // SAL will tell us the maximum size of any error record of this type
366 max_size = ia64_sal_get_state_info_size(sal_info_type);
367 if (!max_size)
368 /* alloc_bootmem() doesn't like zero-sized allocations! */
369 return;
371 // set up OS data structures to hold error info
372 IA64_LOG_ALLOCATE(sal_info_type, max_size);
373 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
374 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
378 * ia64_log_get
380 * Get the current MCA log from SAL and copy it into the OS log buffer.
382 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
383 * irq_safe whether you can use printk at this point
384 * Outputs : size (total record length)
385 * *buffer (ptr to error record)
388 static u64
389 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
391 sal_log_record_header_t *log_buffer;
392 u64 total_len = 0;
393 unsigned long s;
395 IA64_LOG_LOCK(sal_info_type);
397 /* Get the process state information */
398 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
400 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
402 if (total_len) {
403 IA64_LOG_INDEX_INC(sal_info_type);
404 IA64_LOG_UNLOCK(sal_info_type);
405 if (irq_safe) {
406 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
407 "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
409 *buffer = (u8 *) log_buffer;
410 return total_len;
411 } else {
412 IA64_LOG_UNLOCK(sal_info_type);
413 return 0;
418 * ia64_mca_log_sal_error_record
420 * This function retrieves a specified error record type from SAL
421 * and wakes up any processes waiting for error records.
423 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
424 * FIXME: remove MCA and irq_safe.
426 static void
427 ia64_mca_log_sal_error_record(int sal_info_type)
429 u8 *buffer;
430 sal_log_record_header_t *rh;
431 u64 size;
432 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
433 #ifdef IA64_MCA_DEBUG_INFO
434 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
435 #endif
437 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
438 if (!size)
439 return;
441 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
443 if (irq_safe)
444 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
445 smp_processor_id(),
446 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
448 /* Clear logs from corrected errors in case there's no user-level logger */
449 rh = (sal_log_record_header_t *)buffer;
450 if (rh->severity == sal_log_severity_corrected)
451 ia64_sal_clear_state_info(sal_info_type);
455 * search_mca_table
456 * See if the MCA surfaced in an instruction range
457 * that has been tagged as recoverable.
459 * Inputs
460 * first First address range to check
461 * last Last address range to check
462 * ip Instruction pointer, address we are looking for
464 * Return value:
465 * 1 on Success (in the table)/ 0 on Failure (not in the table)
468 search_mca_table (const struct mca_table_entry *first,
469 const struct mca_table_entry *last,
470 unsigned long ip)
472 const struct mca_table_entry *curr;
473 u64 curr_start, curr_end;
475 curr = first;
476 while (curr <= last) {
477 curr_start = (u64) &curr->start_addr + curr->start_addr;
478 curr_end = (u64) &curr->end_addr + curr->end_addr;
480 if ((ip >= curr_start) && (ip <= curr_end)) {
481 return 1;
483 curr++;
485 return 0;
488 /* Given an address, look for it in the mca tables. */
489 int mca_recover_range(unsigned long addr)
491 extern struct mca_table_entry __start___mca_table[];
492 extern struct mca_table_entry __stop___mca_table[];
494 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
496 EXPORT_SYMBOL_GPL(mca_recover_range);
498 #ifdef CONFIG_ACPI
500 int cpe_vector = -1;
501 int ia64_cpe_irq = -1;
503 static irqreturn_t
504 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
506 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
507 static int index;
508 static DEFINE_SPINLOCK(cpe_history_lock);
510 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
511 __FUNCTION__, cpe_irq, smp_processor_id());
513 /* SAL spec states this should run w/ interrupts enabled */
514 local_irq_enable();
516 spin_lock(&cpe_history_lock);
517 if (!cpe_poll_enabled && cpe_vector >= 0) {
519 int i, count = 1; /* we know 1 happened now */
520 unsigned long now = jiffies;
522 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
523 if (now - cpe_history[i] <= HZ)
524 count++;
527 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
528 if (count >= CPE_HISTORY_LENGTH) {
530 cpe_poll_enabled = 1;
531 spin_unlock(&cpe_history_lock);
532 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
535 * Corrected errors will still be corrected, but
536 * make sure there's a log somewhere that indicates
537 * something is generating more than we can handle.
539 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
541 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
543 /* lock already released, get out now */
544 goto out;
545 } else {
546 cpe_history[index++] = now;
547 if (index == CPE_HISTORY_LENGTH)
548 index = 0;
551 spin_unlock(&cpe_history_lock);
552 out:
553 /* Get the CPE error record and log it */
554 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
556 return IRQ_HANDLED;
559 #endif /* CONFIG_ACPI */
561 #ifdef CONFIG_ACPI
563 * ia64_mca_register_cpev
565 * Register the corrected platform error vector with SAL.
567 * Inputs
568 * cpev Corrected Platform Error Vector number
570 * Outputs
571 * None
573 static void __init
574 ia64_mca_register_cpev (int cpev)
576 /* Register the CPE interrupt vector with SAL */
577 struct ia64_sal_retval isrv;
579 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
580 if (isrv.status) {
581 printk(KERN_ERR "Failed to register Corrected Platform "
582 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
583 return;
586 IA64_MCA_DEBUG("%s: corrected platform error "
587 "vector %#x registered\n", __FUNCTION__, cpev);
589 #endif /* CONFIG_ACPI */
592 * ia64_mca_cmc_vector_setup
594 * Setup the corrected machine check vector register in the processor.
595 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
596 * This function is invoked on a per-processor basis.
598 * Inputs
599 * None
601 * Outputs
602 * None
604 void __cpuinit
605 ia64_mca_cmc_vector_setup (void)
607 cmcv_reg_t cmcv;
609 cmcv.cmcv_regval = 0;
610 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
611 cmcv.cmcv_vector = IA64_CMC_VECTOR;
612 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
614 IA64_MCA_DEBUG("%s: CPU %d corrected "
615 "machine check vector %#x registered.\n",
616 __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
618 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
619 __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
623 * ia64_mca_cmc_vector_disable
625 * Mask the corrected machine check vector register in the processor.
626 * This function is invoked on a per-processor basis.
628 * Inputs
629 * dummy(unused)
631 * Outputs
632 * None
634 static void
635 ia64_mca_cmc_vector_disable (void *dummy)
637 cmcv_reg_t cmcv;
639 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
641 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
642 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
644 IA64_MCA_DEBUG("%s: CPU %d corrected "
645 "machine check vector %#x disabled.\n",
646 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
650 * ia64_mca_cmc_vector_enable
652 * Unmask the corrected machine check vector register in the processor.
653 * This function is invoked on a per-processor basis.
655 * Inputs
656 * dummy(unused)
658 * Outputs
659 * None
661 static void
662 ia64_mca_cmc_vector_enable (void *dummy)
664 cmcv_reg_t cmcv;
666 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
668 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
669 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
671 IA64_MCA_DEBUG("%s: CPU %d corrected "
672 "machine check vector %#x enabled.\n",
673 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
677 * ia64_mca_cmc_vector_disable_keventd
679 * Called via keventd (smp_call_function() is not safe in interrupt context) to
680 * disable the cmc interrupt vector.
682 static void
683 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
685 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
689 * ia64_mca_cmc_vector_enable_keventd
691 * Called via keventd (smp_call_function() is not safe in interrupt context) to
692 * enable the cmc interrupt vector.
694 static void
695 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
697 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
701 * ia64_mca_wakeup
703 * Send an inter-cpu interrupt to wake-up a particular cpu
704 * and mark that cpu to be out of rendez.
706 * Inputs : cpuid
707 * Outputs : None
709 static void
710 ia64_mca_wakeup(int cpu)
712 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
713 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
718 * ia64_mca_wakeup_all
720 * Wakeup all the cpus which have rendez'ed previously.
722 * Inputs : None
723 * Outputs : None
725 static void
726 ia64_mca_wakeup_all(void)
728 int cpu;
730 /* Clear the Rendez checkin flag for all cpus */
731 for_each_online_cpu(cpu) {
732 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
733 ia64_mca_wakeup(cpu);
739 * ia64_mca_rendez_interrupt_handler
741 * This is handler used to put slave processors into spinloop
742 * while the monarch processor does the mca handling and later
743 * wake each slave up once the monarch is done.
745 * Inputs : None
746 * Outputs : None
748 static irqreturn_t
749 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
751 unsigned long flags;
752 int cpu = smp_processor_id();
753 struct ia64_mca_notify_die nd =
754 { .sos = NULL, .monarch_cpu = &monarch_cpu };
756 /* Mask all interrupts */
757 local_irq_save(flags);
758 if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", get_irq_regs(),
759 (long)&nd, 0, 0) == NOTIFY_STOP)
760 ia64_mca_spin(__FUNCTION__);
762 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
763 /* Register with the SAL monarch that the slave has
764 * reached SAL
766 ia64_sal_mc_rendez();
768 if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", get_irq_regs(),
769 (long)&nd, 0, 0) == NOTIFY_STOP)
770 ia64_mca_spin(__FUNCTION__);
772 /* Wait for the monarch cpu to exit. */
773 while (monarch_cpu != -1)
774 cpu_relax(); /* spin until monarch leaves */
776 if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", get_irq_regs(),
777 (long)&nd, 0, 0) == NOTIFY_STOP)
778 ia64_mca_spin(__FUNCTION__);
780 /* Enable all interrupts */
781 local_irq_restore(flags);
782 return IRQ_HANDLED;
786 * ia64_mca_wakeup_int_handler
788 * The interrupt handler for processing the inter-cpu interrupt to the
789 * slave cpu which was spinning in the rendez loop.
790 * Since this spinning is done by turning off the interrupts and
791 * polling on the wakeup-interrupt bit in the IRR, there is
792 * nothing useful to be done in the handler.
794 * Inputs : wakeup_irq (Wakeup-interrupt bit)
795 * arg (Interrupt handler specific argument)
796 * Outputs : None
799 static irqreturn_t
800 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
802 return IRQ_HANDLED;
805 /* Function pointer for extra MCA recovery */
806 int (*ia64_mca_ucmc_extension)
807 (void*,struct ia64_sal_os_state*)
808 = NULL;
811 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
813 if (ia64_mca_ucmc_extension)
814 return 1;
816 ia64_mca_ucmc_extension = fn;
817 return 0;
820 void
821 ia64_unreg_MCA_extension(void)
823 if (ia64_mca_ucmc_extension)
824 ia64_mca_ucmc_extension = NULL;
827 EXPORT_SYMBOL(ia64_reg_MCA_extension);
828 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
831 static inline void
832 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
834 u64 fslot, tslot, nat;
835 *tr = *fr;
836 fslot = ((unsigned long)fr >> 3) & 63;
837 tslot = ((unsigned long)tr >> 3) & 63;
838 *tnat &= ~(1UL << tslot);
839 nat = (fnat >> fslot) & 1;
840 *tnat |= (nat << tslot);
843 /* Change the comm field on the MCA/INT task to include the pid that
844 * was interrupted, it makes for easier debugging. If that pid was 0
845 * (swapper or nested MCA/INIT) then use the start of the previous comm
846 * field suffixed with its cpu.
849 static void
850 ia64_mca_modify_comm(const struct task_struct *previous_current)
852 char *p, comm[sizeof(current->comm)];
853 if (previous_current->pid)
854 snprintf(comm, sizeof(comm), "%s %d",
855 current->comm, previous_current->pid);
856 else {
857 int l;
858 if ((p = strchr(previous_current->comm, ' ')))
859 l = p - previous_current->comm;
860 else
861 l = strlen(previous_current->comm);
862 snprintf(comm, sizeof(comm), "%s %*s %d",
863 current->comm, l, previous_current->comm,
864 task_thread_info(previous_current)->cpu);
866 memcpy(current->comm, comm, sizeof(current->comm));
869 /* On entry to this routine, we are running on the per cpu stack, see
870 * mca_asm.h. The original stack has not been touched by this event. Some of
871 * the original stack's registers will be in the RBS on this stack. This stack
872 * also contains a partial pt_regs and switch_stack, the rest of the data is in
873 * PAL minstate.
875 * The first thing to do is modify the original stack to look like a blocked
876 * task so we can run backtrace on the original task. Also mark the per cpu
877 * stack as current to ensure that we use the correct task state, it also means
878 * that we can do backtrace on the MCA/INIT handler code itself.
881 static struct task_struct *
882 ia64_mca_modify_original_stack(struct pt_regs *regs,
883 const struct switch_stack *sw,
884 struct ia64_sal_os_state *sos,
885 const char *type)
887 char *p;
888 ia64_va va;
889 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
890 const pal_min_state_area_t *ms = sos->pal_min_state;
891 struct task_struct *previous_current;
892 struct pt_regs *old_regs;
893 struct switch_stack *old_sw;
894 unsigned size = sizeof(struct pt_regs) +
895 sizeof(struct switch_stack) + 16;
896 u64 *old_bspstore, *old_bsp;
897 u64 *new_bspstore, *new_bsp;
898 u64 old_unat, old_rnat, new_rnat, nat;
899 u64 slots, loadrs = regs->loadrs;
900 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
901 u64 ar_bspstore = regs->ar_bspstore;
902 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
903 const u64 *bank;
904 const char *msg;
905 int cpu = smp_processor_id();
907 previous_current = curr_task(cpu);
908 set_curr_task(cpu, current);
909 if ((p = strchr(current->comm, ' ')))
910 *p = '\0';
912 /* Best effort attempt to cope with MCA/INIT delivered while in
913 * physical mode.
915 regs->cr_ipsr = ms->pmsa_ipsr;
916 if (ia64_psr(regs)->dt == 0) {
917 va.l = r12;
918 if (va.f.reg == 0) {
919 va.f.reg = 7;
920 r12 = va.l;
922 va.l = r13;
923 if (va.f.reg == 0) {
924 va.f.reg = 7;
925 r13 = va.l;
928 if (ia64_psr(regs)->rt == 0) {
929 va.l = ar_bspstore;
930 if (va.f.reg == 0) {
931 va.f.reg = 7;
932 ar_bspstore = va.l;
934 va.l = ar_bsp;
935 if (va.f.reg == 0) {
936 va.f.reg = 7;
937 ar_bsp = va.l;
941 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
942 * have been copied to the old stack, the old stack may fail the
943 * validation tests below. So ia64_old_stack() must restore the dirty
944 * registers from the new stack. The old and new bspstore probably
945 * have different alignments, so loadrs calculated on the old bsp
946 * cannot be used to restore from the new bsp. Calculate a suitable
947 * loadrs for the new stack and save it in the new pt_regs, where
948 * ia64_old_stack() can get it.
950 old_bspstore = (u64 *)ar_bspstore;
951 old_bsp = (u64 *)ar_bsp;
952 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
953 new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
954 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
955 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
957 /* Verify the previous stack state before we change it */
958 if (user_mode(regs)) {
959 msg = "occurred in user space";
960 /* previous_current is guaranteed to be valid when the task was
961 * in user space, so ...
963 ia64_mca_modify_comm(previous_current);
964 goto no_mod;
967 if (!mca_recover_range(ms->pmsa_iip)) {
968 if (r13 != sos->prev_IA64_KR_CURRENT) {
969 msg = "inconsistent previous current and r13";
970 goto no_mod;
972 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
973 msg = "inconsistent r12 and r13";
974 goto no_mod;
976 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
977 msg = "inconsistent ar.bspstore and r13";
978 goto no_mod;
980 va.p = old_bspstore;
981 if (va.f.reg < 5) {
982 msg = "old_bspstore is in the wrong region";
983 goto no_mod;
985 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
986 msg = "inconsistent ar.bsp and r13";
987 goto no_mod;
989 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
990 if (ar_bspstore + size > r12) {
991 msg = "no room for blocked state";
992 goto no_mod;
996 ia64_mca_modify_comm(previous_current);
998 /* Make the original task look blocked. First stack a struct pt_regs,
999 * describing the state at the time of interrupt. mca_asm.S built a
1000 * partial pt_regs, copy it and fill in the blanks using minstate.
1002 p = (char *)r12 - sizeof(*regs);
1003 old_regs = (struct pt_regs *)p;
1004 memcpy(old_regs, regs, sizeof(*regs));
1005 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
1006 * pmsa_{xip,xpsr,xfs}
1008 if (ia64_psr(regs)->ic) {
1009 old_regs->cr_iip = ms->pmsa_iip;
1010 old_regs->cr_ipsr = ms->pmsa_ipsr;
1011 old_regs->cr_ifs = ms->pmsa_ifs;
1012 } else {
1013 old_regs->cr_iip = ms->pmsa_xip;
1014 old_regs->cr_ipsr = ms->pmsa_xpsr;
1015 old_regs->cr_ifs = ms->pmsa_xfs;
1017 old_regs->pr = ms->pmsa_pr;
1018 old_regs->b0 = ms->pmsa_br0;
1019 old_regs->loadrs = loadrs;
1020 old_regs->ar_rsc = ms->pmsa_rsc;
1021 old_unat = old_regs->ar_unat;
1022 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
1023 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
1024 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
1025 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
1026 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
1027 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
1028 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
1029 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
1030 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
1031 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
1032 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
1033 if (ia64_psr(old_regs)->bn)
1034 bank = ms->pmsa_bank1_gr;
1035 else
1036 bank = ms->pmsa_bank0_gr;
1037 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
1038 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
1039 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
1040 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
1041 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
1042 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
1043 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
1044 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
1045 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
1046 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
1047 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
1048 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
1049 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
1050 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
1051 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
1052 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
1054 /* Next stack a struct switch_stack. mca_asm.S built a partial
1055 * switch_stack, copy it and fill in the blanks using pt_regs and
1056 * minstate.
1058 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1059 * ar.pfs is set to 0.
1061 * unwind.c::unw_unwind() does special processing for interrupt frames.
1062 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1063 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1064 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1065 * switch_stack on the original stack so it will unwind correctly when
1066 * unwind.c reads pt_regs.
1068 * thread.ksp is updated to point to the synthesized switch_stack.
1070 p -= sizeof(struct switch_stack);
1071 old_sw = (struct switch_stack *)p;
1072 memcpy(old_sw, sw, sizeof(*sw));
1073 old_sw->caller_unat = old_unat;
1074 old_sw->ar_fpsr = old_regs->ar_fpsr;
1075 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1076 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1077 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1078 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1079 old_sw->b0 = (u64)ia64_leave_kernel;
1080 old_sw->b1 = ms->pmsa_br1;
1081 old_sw->ar_pfs = 0;
1082 old_sw->ar_unat = old_unat;
1083 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1084 previous_current->thread.ksp = (u64)p - 16;
1086 /* Finally copy the original stack's registers back to its RBS.
1087 * Registers from ar.bspstore through ar.bsp at the time of the event
1088 * are in the current RBS, copy them back to the original stack. The
1089 * copy must be done register by register because the original bspstore
1090 * and the current one have different alignments, so the saved RNAT
1091 * data occurs at different places.
1093 * mca_asm does cover, so the old_bsp already includes all registers at
1094 * the time of MCA/INIT. It also does flushrs, so all registers before
1095 * this function have been written to backing store on the MCA/INIT
1096 * stack.
1098 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1099 old_rnat = regs->ar_rnat;
1100 while (slots--) {
1101 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1102 new_rnat = ia64_get_rnat(new_bspstore++);
1104 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1105 *old_bspstore++ = old_rnat;
1106 old_rnat = 0;
1108 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1109 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1110 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1111 *old_bspstore++ = *new_bspstore++;
1113 old_sw->ar_bspstore = (unsigned long)old_bspstore;
1114 old_sw->ar_rnat = old_rnat;
1116 sos->prev_task = previous_current;
1117 return previous_current;
1119 no_mod:
1120 printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1121 smp_processor_id(), type, msg);
1122 return previous_current;
1125 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1126 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1127 * not entered rendezvous yet then wait a bit. The assumption is that any
1128 * slave that has not rendezvoused after a reasonable time is never going to do
1129 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1130 * interrupt, as well as cpus that receive the INIT slave event.
1133 static void
1134 ia64_wait_for_slaves(int monarch, const char *type)
1136 int c, wait = 0, missing = 0;
1137 for_each_online_cpu(c) {
1138 if (c == monarch)
1139 continue;
1140 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1141 udelay(1000); /* short wait first */
1142 wait = 1;
1143 break;
1146 if (!wait)
1147 goto all_in;
1148 for_each_online_cpu(c) {
1149 if (c == monarch)
1150 continue;
1151 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1152 udelay(5*1000000); /* wait 5 seconds for slaves (arbitrary) */
1153 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1154 missing = 1;
1155 break;
1158 if (!missing)
1159 goto all_in;
1161 * Maybe slave(s) dead. Print buffered messages immediately.
1163 ia64_mlogbuf_finish(0);
1164 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1165 for_each_online_cpu(c) {
1166 if (c == monarch)
1167 continue;
1168 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1169 mprintk(" %d", c);
1171 mprintk("\n");
1172 return;
1174 all_in:
1175 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1176 return;
1180 * ia64_mca_handler
1182 * This is uncorrectable machine check handler called from OS_MCA
1183 * dispatch code which is in turn called from SAL_CHECK().
1184 * This is the place where the core of OS MCA handling is done.
1185 * Right now the logs are extracted and displayed in a well-defined
1186 * format. This handler code is supposed to be run only on the
1187 * monarch processor. Once the monarch is done with MCA handling
1188 * further MCA logging is enabled by clearing logs.
1189 * Monarch also has the duty of sending wakeup-IPIs to pull the
1190 * slave processors out of rendezvous spinloop.
1192 void
1193 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1194 struct ia64_sal_os_state *sos)
1196 int recover, cpu = smp_processor_id();
1197 struct task_struct *previous_current;
1198 struct ia64_mca_notify_die nd =
1199 { .sos = sos, .monarch_cpu = &monarch_cpu };
1201 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1202 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1204 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1205 monarch_cpu = cpu;
1206 if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, (long)&nd, 0, 0)
1207 == NOTIFY_STOP)
1208 ia64_mca_spin(__FUNCTION__);
1209 ia64_wait_for_slaves(cpu, "MCA");
1211 /* Wakeup all the processors which are spinning in the rendezvous loop.
1212 * They will leave SAL, then spin in the OS with interrupts disabled
1213 * until this monarch cpu leaves the MCA handler. That gets control
1214 * back to the OS so we can backtrace the other cpus, backtrace when
1215 * spinning in SAL does not work.
1217 ia64_mca_wakeup_all();
1218 if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, (long)&nd, 0, 0)
1219 == NOTIFY_STOP)
1220 ia64_mca_spin(__FUNCTION__);
1222 /* Get the MCA error record and log it */
1223 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1225 /* MCA error recovery */
1226 recover = (ia64_mca_ucmc_extension
1227 && ia64_mca_ucmc_extension(
1228 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1229 sos));
1231 if (recover) {
1232 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1233 rh->severity = sal_log_severity_corrected;
1234 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1235 sos->os_status = IA64_MCA_CORRECTED;
1236 } else {
1237 /* Dump buffered message to console */
1238 ia64_mlogbuf_finish(1);
1239 #ifdef CONFIG_KEXEC
1240 atomic_set(&kdump_in_progress, 1);
1241 monarch_cpu = -1;
1242 #endif
1244 if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, (long)&nd, 0, recover)
1245 == NOTIFY_STOP)
1246 ia64_mca_spin(__FUNCTION__);
1248 set_curr_task(cpu, previous_current);
1249 monarch_cpu = -1;
1252 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1253 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1256 * ia64_mca_cmc_int_handler
1258 * This is corrected machine check interrupt handler.
1259 * Right now the logs are extracted and displayed in a well-defined
1260 * format.
1262 * Inputs
1263 * interrupt number
1264 * client data arg ptr
1266 * Outputs
1267 * None
1269 static irqreturn_t
1270 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1272 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1273 static int index;
1274 static DEFINE_SPINLOCK(cmc_history_lock);
1276 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1277 __FUNCTION__, cmc_irq, smp_processor_id());
1279 /* SAL spec states this should run w/ interrupts enabled */
1280 local_irq_enable();
1282 spin_lock(&cmc_history_lock);
1283 if (!cmc_polling_enabled) {
1284 int i, count = 1; /* we know 1 happened now */
1285 unsigned long now = jiffies;
1287 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1288 if (now - cmc_history[i] <= HZ)
1289 count++;
1292 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1293 if (count >= CMC_HISTORY_LENGTH) {
1295 cmc_polling_enabled = 1;
1296 spin_unlock(&cmc_history_lock);
1297 /* If we're being hit with CMC interrupts, we won't
1298 * ever execute the schedule_work() below. Need to
1299 * disable CMC interrupts on this processor now.
1301 ia64_mca_cmc_vector_disable(NULL);
1302 schedule_work(&cmc_disable_work);
1305 * Corrected errors will still be corrected, but
1306 * make sure there's a log somewhere that indicates
1307 * something is generating more than we can handle.
1309 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1311 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1313 /* lock already released, get out now */
1314 goto out;
1315 } else {
1316 cmc_history[index++] = now;
1317 if (index == CMC_HISTORY_LENGTH)
1318 index = 0;
1321 spin_unlock(&cmc_history_lock);
1322 out:
1323 /* Get the CMC error record and log it */
1324 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1326 return IRQ_HANDLED;
1330 * ia64_mca_cmc_int_caller
1332 * Triggered by sw interrupt from CMC polling routine. Calls
1333 * real interrupt handler and either triggers a sw interrupt
1334 * on the next cpu or does cleanup at the end.
1336 * Inputs
1337 * interrupt number
1338 * client data arg ptr
1339 * Outputs
1340 * handled
1342 static irqreturn_t
1343 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1345 static int start_count = -1;
1346 unsigned int cpuid;
1348 cpuid = smp_processor_id();
1350 /* If first cpu, update count */
1351 if (start_count == -1)
1352 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1354 ia64_mca_cmc_int_handler(cmc_irq, arg);
1356 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1358 if (cpuid < NR_CPUS) {
1359 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1360 } else {
1361 /* If no log record, switch out of polling mode */
1362 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1364 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1365 schedule_work(&cmc_enable_work);
1366 cmc_polling_enabled = 0;
1368 } else {
1370 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1373 start_count = -1;
1376 return IRQ_HANDLED;
1380 * ia64_mca_cmc_poll
1382 * Poll for Corrected Machine Checks (CMCs)
1384 * Inputs : dummy(unused)
1385 * Outputs : None
1388 static void
1389 ia64_mca_cmc_poll (unsigned long dummy)
1391 /* Trigger a CMC interrupt cascade */
1392 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1396 * ia64_mca_cpe_int_caller
1398 * Triggered by sw interrupt from CPE polling routine. Calls
1399 * real interrupt handler and either triggers a sw interrupt
1400 * on the next cpu or does cleanup at the end.
1402 * Inputs
1403 * interrupt number
1404 * client data arg ptr
1405 * Outputs
1406 * handled
1408 #ifdef CONFIG_ACPI
1410 static irqreturn_t
1411 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1413 static int start_count = -1;
1414 static int poll_time = MIN_CPE_POLL_INTERVAL;
1415 unsigned int cpuid;
1417 cpuid = smp_processor_id();
1419 /* If first cpu, update count */
1420 if (start_count == -1)
1421 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1423 ia64_mca_cpe_int_handler(cpe_irq, arg);
1425 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1427 if (cpuid < NR_CPUS) {
1428 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1429 } else {
1431 * If a log was recorded, increase our polling frequency,
1432 * otherwise, backoff or return to interrupt mode.
1434 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1435 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1436 } else if (cpe_vector < 0) {
1437 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1438 } else {
1439 poll_time = MIN_CPE_POLL_INTERVAL;
1441 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1442 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1443 cpe_poll_enabled = 0;
1446 if (cpe_poll_enabled)
1447 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1448 start_count = -1;
1451 return IRQ_HANDLED;
1455 * ia64_mca_cpe_poll
1457 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1458 * on first cpu, from there it will trickle through all the cpus.
1460 * Inputs : dummy(unused)
1461 * Outputs : None
1464 static void
1465 ia64_mca_cpe_poll (unsigned long dummy)
1467 /* Trigger a CPE interrupt cascade */
1468 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1471 #endif /* CONFIG_ACPI */
1473 static int
1474 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1476 int c;
1477 struct task_struct *g, *t;
1478 if (val != DIE_INIT_MONARCH_PROCESS)
1479 return NOTIFY_DONE;
1482 * FIXME: mlogbuf will brim over with INIT stack dumps.
1483 * To enable show_stack from INIT, we use oops_in_progress which should
1484 * be used in real oops. This would cause something wrong after INIT.
1486 BREAK_LOGLEVEL(console_loglevel);
1487 ia64_mlogbuf_dump_from_init();
1489 printk(KERN_ERR "Processes interrupted by INIT -");
1490 for_each_online_cpu(c) {
1491 struct ia64_sal_os_state *s;
1492 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1493 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1494 g = s->prev_task;
1495 if (g) {
1496 if (g->pid)
1497 printk(" %d", g->pid);
1498 else
1499 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1502 printk("\n\n");
1503 if (read_trylock(&tasklist_lock)) {
1504 do_each_thread (g, t) {
1505 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1506 show_stack(t, NULL);
1507 } while_each_thread (g, t);
1508 read_unlock(&tasklist_lock);
1510 /* FIXME: This will not restore zapped printk locks. */
1511 RESTORE_LOGLEVEL(console_loglevel);
1512 return NOTIFY_DONE;
1516 * C portion of the OS INIT handler
1518 * Called from ia64_os_init_dispatch
1520 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1521 * this event. This code is used for both monarch and slave INIT events, see
1522 * sos->monarch.
1524 * All INIT events switch to the INIT stack and change the previous process to
1525 * blocked status. If one of the INIT events is the monarch then we are
1526 * probably processing the nmi button/command. Use the monarch cpu to dump all
1527 * the processes. The slave INIT events all spin until the monarch cpu
1528 * returns. We can also get INIT slave events for MCA, in which case the MCA
1529 * process is the monarch.
1532 void
1533 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1534 struct ia64_sal_os_state *sos)
1536 static atomic_t slaves;
1537 static atomic_t monarchs;
1538 struct task_struct *previous_current;
1539 int cpu = smp_processor_id();
1540 struct ia64_mca_notify_die nd =
1541 { .sos = sos, .monarch_cpu = &monarch_cpu };
1543 (void) notify_die(DIE_INIT_ENTER, "INIT", regs, (long)&nd, 0, 0);
1545 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1546 sos->proc_state_param, cpu, sos->monarch);
1547 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1549 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1550 sos->os_status = IA64_INIT_RESUME;
1552 /* FIXME: Workaround for broken proms that drive all INIT events as
1553 * slaves. The last slave that enters is promoted to be a monarch.
1554 * Remove this code in September 2006, that gives platforms a year to
1555 * fix their proms and get their customers updated.
1557 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1558 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1559 __FUNCTION__, cpu);
1560 atomic_dec(&slaves);
1561 sos->monarch = 1;
1564 /* FIXME: Workaround for broken proms that drive all INIT events as
1565 * monarchs. Second and subsequent monarchs are demoted to slaves.
1566 * Remove this code in September 2006, that gives platforms a year to
1567 * fix their proms and get their customers updated.
1569 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1570 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1571 __FUNCTION__, cpu);
1572 atomic_dec(&monarchs);
1573 sos->monarch = 0;
1576 if (!sos->monarch) {
1577 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1578 while (monarch_cpu == -1)
1579 cpu_relax(); /* spin until monarch enters */
1580 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, (long)&nd, 0, 0)
1581 == NOTIFY_STOP)
1582 ia64_mca_spin(__FUNCTION__);
1583 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1584 == NOTIFY_STOP)
1585 ia64_mca_spin(__FUNCTION__);
1586 while (monarch_cpu != -1)
1587 cpu_relax(); /* spin until monarch leaves */
1588 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1589 == NOTIFY_STOP)
1590 ia64_mca_spin(__FUNCTION__);
1591 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1592 set_curr_task(cpu, previous_current);
1593 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1594 atomic_dec(&slaves);
1595 return;
1598 monarch_cpu = cpu;
1599 if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, (long)&nd, 0, 0)
1600 == NOTIFY_STOP)
1601 ia64_mca_spin(__FUNCTION__);
1604 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1605 * generated via the BMC's command-line interface, but since the console is on the
1606 * same serial line, the user will need some time to switch out of the BMC before
1607 * the dump begins.
1609 mprintk("Delaying for 5 seconds...\n");
1610 udelay(5*1000000);
1611 ia64_wait_for_slaves(cpu, "INIT");
1612 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1613 * to default_monarch_init_process() above and just print all the
1614 * tasks.
1616 if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1617 == NOTIFY_STOP)
1618 ia64_mca_spin(__FUNCTION__);
1619 if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1620 == NOTIFY_STOP)
1621 ia64_mca_spin(__FUNCTION__);
1622 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1623 atomic_dec(&monarchs);
1624 set_curr_task(cpu, previous_current);
1625 monarch_cpu = -1;
1626 return;
1629 static int __init
1630 ia64_mca_disable_cpe_polling(char *str)
1632 cpe_poll_enabled = 0;
1633 return 1;
1636 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1638 static struct irqaction cmci_irqaction = {
1639 .handler = ia64_mca_cmc_int_handler,
1640 .flags = IRQF_DISABLED,
1641 .name = "cmc_hndlr"
1644 static struct irqaction cmcp_irqaction = {
1645 .handler = ia64_mca_cmc_int_caller,
1646 .flags = IRQF_DISABLED,
1647 .name = "cmc_poll"
1650 static struct irqaction mca_rdzv_irqaction = {
1651 .handler = ia64_mca_rendez_int_handler,
1652 .flags = IRQF_DISABLED,
1653 .name = "mca_rdzv"
1656 static struct irqaction mca_wkup_irqaction = {
1657 .handler = ia64_mca_wakeup_int_handler,
1658 .flags = IRQF_DISABLED,
1659 .name = "mca_wkup"
1662 #ifdef CONFIG_ACPI
1663 static struct irqaction mca_cpe_irqaction = {
1664 .handler = ia64_mca_cpe_int_handler,
1665 .flags = IRQF_DISABLED,
1666 .name = "cpe_hndlr"
1669 static struct irqaction mca_cpep_irqaction = {
1670 .handler = ia64_mca_cpe_int_caller,
1671 .flags = IRQF_DISABLED,
1672 .name = "cpe_poll"
1674 #endif /* CONFIG_ACPI */
1676 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1677 * these stacks can never sleep, they cannot return from the kernel to user
1678 * space, they do not appear in a normal ps listing. So there is no need to
1679 * format most of the fields.
1682 static void __cpuinit
1683 format_mca_init_stack(void *mca_data, unsigned long offset,
1684 const char *type, int cpu)
1686 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1687 struct thread_info *ti;
1688 memset(p, 0, KERNEL_STACK_SIZE);
1689 ti = task_thread_info(p);
1690 ti->flags = _TIF_MCA_INIT;
1691 ti->preempt_count = 1;
1692 ti->task = p;
1693 ti->cpu = cpu;
1694 p->stack = ti;
1695 p->state = TASK_UNINTERRUPTIBLE;
1696 cpu_set(cpu, p->cpus_allowed);
1697 INIT_LIST_HEAD(&p->tasks);
1698 p->parent = p->real_parent = p->group_leader = p;
1699 INIT_LIST_HEAD(&p->children);
1700 INIT_LIST_HEAD(&p->sibling);
1701 strncpy(p->comm, type, sizeof(p->comm)-1);
1704 /* Do per-CPU MCA-related initialization. */
1706 void __cpuinit
1707 ia64_mca_cpu_init(void *cpu_data)
1709 void *pal_vaddr;
1710 static int first_time = 1;
1712 if (first_time) {
1713 void *mca_data;
1714 int cpu;
1716 first_time = 0;
1717 mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
1718 * NR_CPUS + KERNEL_STACK_SIZE);
1719 mca_data = (void *)(((unsigned long)mca_data +
1720 KERNEL_STACK_SIZE - 1) &
1721 (-KERNEL_STACK_SIZE));
1722 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1723 format_mca_init_stack(mca_data,
1724 offsetof(struct ia64_mca_cpu, mca_stack),
1725 "MCA", cpu);
1726 format_mca_init_stack(mca_data,
1727 offsetof(struct ia64_mca_cpu, init_stack),
1728 "INIT", cpu);
1729 __per_cpu_mca[cpu] = __pa(mca_data);
1730 mca_data += sizeof(struct ia64_mca_cpu);
1735 * The MCA info structure was allocated earlier and its
1736 * physical address saved in __per_cpu_mca[cpu]. Copy that
1737 * address * to ia64_mca_data so we can access it as a per-CPU
1738 * variable.
1740 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1743 * Stash away a copy of the PTE needed to map the per-CPU page.
1744 * We may need it during MCA recovery.
1746 __get_cpu_var(ia64_mca_per_cpu_pte) =
1747 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1750 * Also, stash away a copy of the PAL address and the PTE
1751 * needed to map it.
1753 pal_vaddr = efi_get_pal_addr();
1754 if (!pal_vaddr)
1755 return;
1756 __get_cpu_var(ia64_mca_pal_base) =
1757 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1758 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1759 PAGE_KERNEL));
1763 * ia64_mca_init
1765 * Do all the system level mca specific initialization.
1767 * 1. Register spinloop and wakeup request interrupt vectors
1769 * 2. Register OS_MCA handler entry point
1771 * 3. Register OS_INIT handler entry point
1773 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1775 * Note that this initialization is done very early before some kernel
1776 * services are available.
1778 * Inputs : None
1780 * Outputs : None
1782 void __init
1783 ia64_mca_init(void)
1785 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1786 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1787 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1788 int i;
1789 s64 rc;
1790 struct ia64_sal_retval isrv;
1791 u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1792 static struct notifier_block default_init_monarch_nb = {
1793 .notifier_call = default_monarch_init_process,
1794 .priority = 0/* we need to notified last */
1797 IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1799 /* Clear the Rendez checkin flag for all cpus */
1800 for(i = 0 ; i < NR_CPUS; i++)
1801 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1804 * Register the rendezvous spinloop and wakeup mechanism with SAL
1807 /* Register the rendezvous interrupt vector with SAL */
1808 while (1) {
1809 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1810 SAL_MC_PARAM_MECHANISM_INT,
1811 IA64_MCA_RENDEZ_VECTOR,
1812 timeout,
1813 SAL_MC_PARAM_RZ_ALWAYS);
1814 rc = isrv.status;
1815 if (rc == 0)
1816 break;
1817 if (rc == -2) {
1818 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1819 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1820 timeout = isrv.v0;
1821 (void) notify_die(DIE_MCA_NEW_TIMEOUT, "MCA", NULL, timeout, 0, 0);
1822 continue;
1824 printk(KERN_ERR "Failed to register rendezvous interrupt "
1825 "with SAL (status %ld)\n", rc);
1826 return;
1829 /* Register the wakeup interrupt vector with SAL */
1830 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1831 SAL_MC_PARAM_MECHANISM_INT,
1832 IA64_MCA_WAKEUP_VECTOR,
1833 0, 0);
1834 rc = isrv.status;
1835 if (rc) {
1836 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1837 "(status %ld)\n", rc);
1838 return;
1841 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1843 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1845 * XXX - disable SAL checksum by setting size to 0; should be
1846 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1848 ia64_mc_info.imi_mca_handler_size = 0;
1850 /* Register the os mca handler with SAL */
1851 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1852 ia64_mc_info.imi_mca_handler,
1853 ia64_tpa(mca_hldlr_ptr->gp),
1854 ia64_mc_info.imi_mca_handler_size,
1855 0, 0, 0)))
1857 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1858 "(status %ld)\n", rc);
1859 return;
1862 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1863 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1866 * XXX - disable SAL checksum by setting size to 0, should be
1867 * size of the actual init handler in mca_asm.S.
1869 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
1870 ia64_mc_info.imi_monarch_init_handler_size = 0;
1871 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
1872 ia64_mc_info.imi_slave_init_handler_size = 0;
1874 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1875 ia64_mc_info.imi_monarch_init_handler);
1877 /* Register the os init handler with SAL */
1878 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1879 ia64_mc_info.imi_monarch_init_handler,
1880 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1881 ia64_mc_info.imi_monarch_init_handler_size,
1882 ia64_mc_info.imi_slave_init_handler,
1883 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1884 ia64_mc_info.imi_slave_init_handler_size)))
1886 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1887 "(status %ld)\n", rc);
1888 return;
1890 if (register_die_notifier(&default_init_monarch_nb)) {
1891 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1892 return;
1895 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1898 * Configure the CMCI/P vector and handler. Interrupts for CMC are
1899 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1901 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1902 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1903 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
1905 /* Setup the MCA rendezvous interrupt vector */
1906 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1908 /* Setup the MCA wakeup interrupt vector */
1909 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1911 #ifdef CONFIG_ACPI
1912 /* Setup the CPEI/P handler */
1913 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1914 #endif
1916 /* Initialize the areas set aside by the OS to buffer the
1917 * platform/processor error states for MCA/INIT/CMC
1918 * handling.
1920 ia64_log_init(SAL_INFO_TYPE_MCA);
1921 ia64_log_init(SAL_INFO_TYPE_INIT);
1922 ia64_log_init(SAL_INFO_TYPE_CMC);
1923 ia64_log_init(SAL_INFO_TYPE_CPE);
1925 mca_init = 1;
1926 printk(KERN_INFO "MCA related initialization done\n");
1930 * ia64_mca_late_init
1932 * Opportunity to setup things that require initialization later
1933 * than ia64_mca_init. Setup a timer to poll for CPEs if the
1934 * platform doesn't support an interrupt driven mechanism.
1936 * Inputs : None
1937 * Outputs : Status
1939 static int __init
1940 ia64_mca_late_init(void)
1942 if (!mca_init)
1943 return 0;
1945 /* Setup the CMCI/P vector and handler */
1946 init_timer(&cmc_poll_timer);
1947 cmc_poll_timer.function = ia64_mca_cmc_poll;
1949 /* Unmask/enable the vector */
1950 cmc_polling_enabled = 0;
1951 schedule_work(&cmc_enable_work);
1953 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
1955 #ifdef CONFIG_ACPI
1956 /* Setup the CPEI/P vector and handler */
1957 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
1958 init_timer(&cpe_poll_timer);
1959 cpe_poll_timer.function = ia64_mca_cpe_poll;
1962 irq_desc_t *desc;
1963 unsigned int irq;
1965 if (cpe_vector >= 0) {
1966 /* If platform supports CPEI, enable the irq. */
1967 cpe_poll_enabled = 0;
1968 for (irq = 0; irq < NR_IRQS; ++irq)
1969 if (irq_to_vector(irq) == cpe_vector) {
1970 desc = irq_desc + irq;
1971 desc->status |= IRQ_PER_CPU;
1972 setup_irq(irq, &mca_cpe_irqaction);
1973 ia64_cpe_irq = irq;
1975 ia64_mca_register_cpev(cpe_vector);
1976 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
1977 } else {
1978 /* If platform doesn't support CPEI, get the timer going. */
1979 if (cpe_poll_enabled) {
1980 ia64_mca_cpe_poll(0UL);
1981 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
1985 #endif
1987 return 0;
1990 device_initcall(ia64_mca_late_init);