2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
51 #include <linux/memcontrol.h>
52 #include <linux/mmu_notifier.h>
54 #include <asm/tlbflush.h>
56 struct kmem_cache
*anon_vma_cachep
;
58 /* This must be called under the mmap_sem. */
59 int anon_vma_prepare(struct vm_area_struct
*vma
)
61 struct anon_vma
*anon_vma
= vma
->anon_vma
;
64 if (unlikely(!anon_vma
)) {
65 struct mm_struct
*mm
= vma
->vm_mm
;
66 struct anon_vma
*allocated
, *locked
;
68 anon_vma
= find_mergeable_anon_vma(vma
);
72 spin_lock(&locked
->lock
);
74 anon_vma
= anon_vma_alloc();
75 if (unlikely(!anon_vma
))
81 /* page_table_lock to protect against threads */
82 spin_lock(&mm
->page_table_lock
);
83 if (likely(!vma
->anon_vma
)) {
84 vma
->anon_vma
= anon_vma
;
85 list_add_tail(&vma
->anon_vma_node
, &anon_vma
->head
);
88 spin_unlock(&mm
->page_table_lock
);
91 spin_unlock(&locked
->lock
);
92 if (unlikely(allocated
))
93 anon_vma_free(allocated
);
98 void __anon_vma_merge(struct vm_area_struct
*vma
, struct vm_area_struct
*next
)
100 BUG_ON(vma
->anon_vma
!= next
->anon_vma
);
101 list_del(&next
->anon_vma_node
);
104 void __anon_vma_link(struct vm_area_struct
*vma
)
106 struct anon_vma
*anon_vma
= vma
->anon_vma
;
109 list_add_tail(&vma
->anon_vma_node
, &anon_vma
->head
);
112 void anon_vma_link(struct vm_area_struct
*vma
)
114 struct anon_vma
*anon_vma
= vma
->anon_vma
;
117 spin_lock(&anon_vma
->lock
);
118 list_add_tail(&vma
->anon_vma_node
, &anon_vma
->head
);
119 spin_unlock(&anon_vma
->lock
);
123 void anon_vma_unlink(struct vm_area_struct
*vma
)
125 struct anon_vma
*anon_vma
= vma
->anon_vma
;
131 spin_lock(&anon_vma
->lock
);
132 list_del(&vma
->anon_vma_node
);
134 /* We must garbage collect the anon_vma if it's empty */
135 empty
= list_empty(&anon_vma
->head
);
136 spin_unlock(&anon_vma
->lock
);
139 anon_vma_free(anon_vma
);
142 static void anon_vma_ctor(void *data
)
144 struct anon_vma
*anon_vma
= data
;
146 spin_lock_init(&anon_vma
->lock
);
147 INIT_LIST_HEAD(&anon_vma
->head
);
150 void __init
anon_vma_init(void)
152 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
153 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
);
157 * Getting a lock on a stable anon_vma from a page off the LRU is
158 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
160 static struct anon_vma
*page_lock_anon_vma(struct page
*page
)
162 struct anon_vma
*anon_vma
;
163 unsigned long anon_mapping
;
166 anon_mapping
= (unsigned long) page
->mapping
;
167 if (!(anon_mapping
& PAGE_MAPPING_ANON
))
169 if (!page_mapped(page
))
172 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
173 spin_lock(&anon_vma
->lock
);
180 static void page_unlock_anon_vma(struct anon_vma
*anon_vma
)
182 spin_unlock(&anon_vma
->lock
);
187 * At what user virtual address is page expected in @vma?
188 * Returns virtual address or -EFAULT if page's index/offset is not
189 * within the range mapped the @vma.
191 static inline unsigned long
192 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
194 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
195 unsigned long address
;
197 address
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
198 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
)) {
199 /* page should be within @vma mapping range */
206 * At what user virtual address is page expected in vma? checking that the
207 * page matches the vma: currently only used on anon pages, by unuse_vma;
209 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
211 if (PageAnon(page
)) {
212 if ((void *)vma
->anon_vma
!=
213 (void *)page
->mapping
- PAGE_MAPPING_ANON
)
215 } else if (page
->mapping
&& !(vma
->vm_flags
& VM_NONLINEAR
)) {
217 vma
->vm_file
->f_mapping
!= page
->mapping
)
221 return vma_address(page
, vma
);
225 * Check that @page is mapped at @address into @mm.
227 * If @sync is false, page_check_address may perform a racy check to avoid
228 * the page table lock when the pte is not present (helpful when reclaiming
229 * highly shared pages).
231 * On success returns with pte mapped and locked.
233 pte_t
*page_check_address(struct page
*page
, struct mm_struct
*mm
,
234 unsigned long address
, spinlock_t
**ptlp
, int sync
)
242 pgd
= pgd_offset(mm
, address
);
243 if (!pgd_present(*pgd
))
246 pud
= pud_offset(pgd
, address
);
247 if (!pud_present(*pud
))
250 pmd
= pmd_offset(pud
, address
);
251 if (!pmd_present(*pmd
))
254 pte
= pte_offset_map(pmd
, address
);
255 /* Make a quick check before getting the lock */
256 if (!sync
&& !pte_present(*pte
)) {
261 ptl
= pte_lockptr(mm
, pmd
);
263 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
267 pte_unmap_unlock(pte
, ptl
);
272 * Subfunctions of page_referenced: page_referenced_one called
273 * repeatedly from either page_referenced_anon or page_referenced_file.
275 static int page_referenced_one(struct page
*page
,
276 struct vm_area_struct
*vma
, unsigned int *mapcount
)
278 struct mm_struct
*mm
= vma
->vm_mm
;
279 unsigned long address
;
284 address
= vma_address(page
, vma
);
285 if (address
== -EFAULT
)
288 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
292 if (vma
->vm_flags
& VM_LOCKED
) {
294 *mapcount
= 1; /* break early from loop */
295 } else if (ptep_clear_flush_young_notify(vma
, address
, pte
))
298 /* Pretend the page is referenced if the task has the
299 swap token and is in the middle of a page fault. */
300 if (mm
!= current
->mm
&& has_swap_token(mm
) &&
301 rwsem_is_locked(&mm
->mmap_sem
))
305 pte_unmap_unlock(pte
, ptl
);
310 static int page_referenced_anon(struct page
*page
,
311 struct mem_cgroup
*mem_cont
)
313 unsigned int mapcount
;
314 struct anon_vma
*anon_vma
;
315 struct vm_area_struct
*vma
;
318 anon_vma
= page_lock_anon_vma(page
);
322 mapcount
= page_mapcount(page
);
323 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
) {
325 * If we are reclaiming on behalf of a cgroup, skip
326 * counting on behalf of references from different
329 if (mem_cont
&& !mm_match_cgroup(vma
->vm_mm
, mem_cont
))
331 referenced
+= page_referenced_one(page
, vma
, &mapcount
);
336 page_unlock_anon_vma(anon_vma
);
341 * page_referenced_file - referenced check for object-based rmap
342 * @page: the page we're checking references on.
343 * @mem_cont: target memory controller
345 * For an object-based mapped page, find all the places it is mapped and
346 * check/clear the referenced flag. This is done by following the page->mapping
347 * pointer, then walking the chain of vmas it holds. It returns the number
348 * of references it found.
350 * This function is only called from page_referenced for object-based pages.
352 static int page_referenced_file(struct page
*page
,
353 struct mem_cgroup
*mem_cont
)
355 unsigned int mapcount
;
356 struct address_space
*mapping
= page
->mapping
;
357 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
358 struct vm_area_struct
*vma
;
359 struct prio_tree_iter iter
;
363 * The caller's checks on page->mapping and !PageAnon have made
364 * sure that this is a file page: the check for page->mapping
365 * excludes the case just before it gets set on an anon page.
367 BUG_ON(PageAnon(page
));
370 * The page lock not only makes sure that page->mapping cannot
371 * suddenly be NULLified by truncation, it makes sure that the
372 * structure at mapping cannot be freed and reused yet,
373 * so we can safely take mapping->i_mmap_lock.
375 BUG_ON(!PageLocked(page
));
377 spin_lock(&mapping
->i_mmap_lock
);
380 * i_mmap_lock does not stabilize mapcount at all, but mapcount
381 * is more likely to be accurate if we note it after spinning.
383 mapcount
= page_mapcount(page
);
385 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
387 * If we are reclaiming on behalf of a cgroup, skip
388 * counting on behalf of references from different
391 if (mem_cont
&& !mm_match_cgroup(vma
->vm_mm
, mem_cont
))
393 if ((vma
->vm_flags
& (VM_LOCKED
|VM_MAYSHARE
))
394 == (VM_LOCKED
|VM_MAYSHARE
)) {
398 referenced
+= page_referenced_one(page
, vma
, &mapcount
);
403 spin_unlock(&mapping
->i_mmap_lock
);
408 * page_referenced - test if the page was referenced
409 * @page: the page to test
410 * @is_locked: caller holds lock on the page
411 * @mem_cont: target memory controller
413 * Quick test_and_clear_referenced for all mappings to a page,
414 * returns the number of ptes which referenced the page.
416 int page_referenced(struct page
*page
, int is_locked
,
417 struct mem_cgroup
*mem_cont
)
421 if (TestClearPageReferenced(page
))
424 if (page_mapped(page
) && page
->mapping
) {
426 referenced
+= page_referenced_anon(page
, mem_cont
);
428 referenced
+= page_referenced_file(page
, mem_cont
);
429 else if (!trylock_page(page
))
434 page_referenced_file(page
, mem_cont
);
439 if (page_test_and_clear_young(page
))
445 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
)
447 struct mm_struct
*mm
= vma
->vm_mm
;
448 unsigned long address
;
453 address
= vma_address(page
, vma
);
454 if (address
== -EFAULT
)
457 pte
= page_check_address(page
, mm
, address
, &ptl
, 1);
461 if (pte_dirty(*pte
) || pte_write(*pte
)) {
464 flush_cache_page(vma
, address
, pte_pfn(*pte
));
465 entry
= ptep_clear_flush_notify(vma
, address
, pte
);
466 entry
= pte_wrprotect(entry
);
467 entry
= pte_mkclean(entry
);
468 set_pte_at(mm
, address
, pte
, entry
);
472 pte_unmap_unlock(pte
, ptl
);
477 static int page_mkclean_file(struct address_space
*mapping
, struct page
*page
)
479 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
480 struct vm_area_struct
*vma
;
481 struct prio_tree_iter iter
;
484 BUG_ON(PageAnon(page
));
486 spin_lock(&mapping
->i_mmap_lock
);
487 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
488 if (vma
->vm_flags
& VM_SHARED
)
489 ret
+= page_mkclean_one(page
, vma
);
491 spin_unlock(&mapping
->i_mmap_lock
);
495 int page_mkclean(struct page
*page
)
499 BUG_ON(!PageLocked(page
));
501 if (page_mapped(page
)) {
502 struct address_space
*mapping
= page_mapping(page
);
504 ret
= page_mkclean_file(mapping
, page
);
505 if (page_test_dirty(page
)) {
506 page_clear_dirty(page
);
514 EXPORT_SYMBOL_GPL(page_mkclean
);
517 * __page_set_anon_rmap - setup new anonymous rmap
518 * @page: the page to add the mapping to
519 * @vma: the vm area in which the mapping is added
520 * @address: the user virtual address mapped
522 static void __page_set_anon_rmap(struct page
*page
,
523 struct vm_area_struct
*vma
, unsigned long address
)
525 struct anon_vma
*anon_vma
= vma
->anon_vma
;
528 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
529 page
->mapping
= (struct address_space
*) anon_vma
;
531 page
->index
= linear_page_index(vma
, address
);
534 * nr_mapped state can be updated without turning off
535 * interrupts because it is not modified via interrupt.
537 __inc_zone_page_state(page
, NR_ANON_PAGES
);
541 * __page_check_anon_rmap - sanity check anonymous rmap addition
542 * @page: the page to add the mapping to
543 * @vma: the vm area in which the mapping is added
544 * @address: the user virtual address mapped
546 static void __page_check_anon_rmap(struct page
*page
,
547 struct vm_area_struct
*vma
, unsigned long address
)
549 #ifdef CONFIG_DEBUG_VM
551 * The page's anon-rmap details (mapping and index) are guaranteed to
552 * be set up correctly at this point.
554 * We have exclusion against page_add_anon_rmap because the caller
555 * always holds the page locked, except if called from page_dup_rmap,
556 * in which case the page is already known to be setup.
558 * We have exclusion against page_add_new_anon_rmap because those pages
559 * are initially only visible via the pagetables, and the pte is locked
560 * over the call to page_add_new_anon_rmap.
562 struct anon_vma
*anon_vma
= vma
->anon_vma
;
563 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
564 BUG_ON(page
->mapping
!= (struct address_space
*)anon_vma
);
565 BUG_ON(page
->index
!= linear_page_index(vma
, address
));
570 * page_add_anon_rmap - add pte mapping to an anonymous page
571 * @page: the page to add the mapping to
572 * @vma: the vm area in which the mapping is added
573 * @address: the user virtual address mapped
575 * The caller needs to hold the pte lock and the page must be locked.
577 void page_add_anon_rmap(struct page
*page
,
578 struct vm_area_struct
*vma
, unsigned long address
)
580 VM_BUG_ON(!PageLocked(page
));
581 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
582 if (atomic_inc_and_test(&page
->_mapcount
))
583 __page_set_anon_rmap(page
, vma
, address
);
585 __page_check_anon_rmap(page
, vma
, address
);
589 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
590 * @page: the page to add the mapping to
591 * @vma: the vm area in which the mapping is added
592 * @address: the user virtual address mapped
594 * Same as page_add_anon_rmap but must only be called on *new* pages.
595 * This means the inc-and-test can be bypassed.
596 * Page does not have to be locked.
598 void page_add_new_anon_rmap(struct page
*page
,
599 struct vm_area_struct
*vma
, unsigned long address
)
601 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
602 atomic_set(&page
->_mapcount
, 0); /* elevate count by 1 (starts at -1) */
603 __page_set_anon_rmap(page
, vma
, address
);
607 * page_add_file_rmap - add pte mapping to a file page
608 * @page: the page to add the mapping to
610 * The caller needs to hold the pte lock.
612 void page_add_file_rmap(struct page
*page
)
614 if (atomic_inc_and_test(&page
->_mapcount
))
615 __inc_zone_page_state(page
, NR_FILE_MAPPED
);
618 #ifdef CONFIG_DEBUG_VM
620 * page_dup_rmap - duplicate pte mapping to a page
621 * @page: the page to add the mapping to
622 * @vma: the vm area being duplicated
623 * @address: the user virtual address mapped
625 * For copy_page_range only: minimal extract from page_add_file_rmap /
626 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
629 * The caller needs to hold the pte lock.
631 void page_dup_rmap(struct page
*page
, struct vm_area_struct
*vma
, unsigned long address
)
633 BUG_ON(page_mapcount(page
) == 0);
635 __page_check_anon_rmap(page
, vma
, address
);
636 atomic_inc(&page
->_mapcount
);
641 * page_remove_rmap - take down pte mapping from a page
642 * @page: page to remove mapping from
643 * @vma: the vm area in which the mapping is removed
645 * The caller needs to hold the pte lock.
647 void page_remove_rmap(struct page
*page
, struct vm_area_struct
*vma
)
649 if (atomic_add_negative(-1, &page
->_mapcount
)) {
650 if (unlikely(page_mapcount(page
) < 0)) {
651 printk (KERN_EMERG
"Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page
));
652 printk (KERN_EMERG
" page pfn = %lx\n", page_to_pfn(page
));
653 printk (KERN_EMERG
" page->flags = %lx\n", page
->flags
);
654 printk (KERN_EMERG
" page->count = %x\n", page_count(page
));
655 printk (KERN_EMERG
" page->mapping = %p\n", page
->mapping
);
656 print_symbol (KERN_EMERG
" vma->vm_ops = %s\n", (unsigned long)vma
->vm_ops
);
658 print_symbol (KERN_EMERG
" vma->vm_ops->fault = %s\n", (unsigned long)vma
->vm_ops
->fault
);
660 if (vma
->vm_file
&& vma
->vm_file
->f_op
)
661 print_symbol (KERN_EMERG
" vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma
->vm_file
->f_op
->mmap
);
666 * Now that the last pte has gone, s390 must transfer dirty
667 * flag from storage key to struct page. We can usually skip
668 * this if the page is anon, so about to be freed; but perhaps
669 * not if it's in swapcache - there might be another pte slot
670 * containing the swap entry, but page not yet written to swap.
672 if ((!PageAnon(page
) || PageSwapCache(page
)) &&
673 page_test_dirty(page
)) {
674 page_clear_dirty(page
);
675 set_page_dirty(page
);
678 mem_cgroup_uncharge_page(page
);
679 __dec_zone_page_state(page
,
680 PageAnon(page
) ? NR_ANON_PAGES
: NR_FILE_MAPPED
);
682 * It would be tidy to reset the PageAnon mapping here,
683 * but that might overwrite a racing page_add_anon_rmap
684 * which increments mapcount after us but sets mapping
685 * before us: so leave the reset to free_hot_cold_page,
686 * and remember that it's only reliable while mapped.
687 * Leaving it set also helps swapoff to reinstate ptes
688 * faster for those pages still in swapcache.
694 * Subfunctions of try_to_unmap: try_to_unmap_one called
695 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
697 static int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
700 struct mm_struct
*mm
= vma
->vm_mm
;
701 unsigned long address
;
705 int ret
= SWAP_AGAIN
;
707 address
= vma_address(page
, vma
);
708 if (address
== -EFAULT
)
711 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
716 * If the page is mlock()d, we cannot swap it out.
717 * If it's recently referenced (perhaps page_referenced
718 * skipped over this mm) then we should reactivate it.
720 if (!migration
&& ((vma
->vm_flags
& VM_LOCKED
) ||
721 (ptep_clear_flush_young_notify(vma
, address
, pte
)))) {
726 /* Nuke the page table entry. */
727 flush_cache_page(vma
, address
, page_to_pfn(page
));
728 pteval
= ptep_clear_flush_notify(vma
, address
, pte
);
730 /* Move the dirty bit to the physical page now the pte is gone. */
731 if (pte_dirty(pteval
))
732 set_page_dirty(page
);
734 /* Update high watermark before we lower rss */
735 update_hiwater_rss(mm
);
737 if (PageAnon(page
)) {
738 swp_entry_t entry
= { .val
= page_private(page
) };
740 if (PageSwapCache(page
)) {
742 * Store the swap location in the pte.
743 * See handle_pte_fault() ...
745 swap_duplicate(entry
);
746 if (list_empty(&mm
->mmlist
)) {
747 spin_lock(&mmlist_lock
);
748 if (list_empty(&mm
->mmlist
))
749 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
750 spin_unlock(&mmlist_lock
);
752 dec_mm_counter(mm
, anon_rss
);
753 #ifdef CONFIG_MIGRATION
756 * Store the pfn of the page in a special migration
757 * pte. do_swap_page() will wait until the migration
758 * pte is removed and then restart fault handling.
761 entry
= make_migration_entry(page
, pte_write(pteval
));
764 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
765 BUG_ON(pte_file(*pte
));
767 #ifdef CONFIG_MIGRATION
769 /* Establish migration entry for a file page */
771 entry
= make_migration_entry(page
, pte_write(pteval
));
772 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
775 dec_mm_counter(mm
, file_rss
);
778 page_remove_rmap(page
, vma
);
779 page_cache_release(page
);
782 pte_unmap_unlock(pte
, ptl
);
788 * objrmap doesn't work for nonlinear VMAs because the assumption that
789 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
790 * Consequently, given a particular page and its ->index, we cannot locate the
791 * ptes which are mapping that page without an exhaustive linear search.
793 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
794 * maps the file to which the target page belongs. The ->vm_private_data field
795 * holds the current cursor into that scan. Successive searches will circulate
796 * around the vma's virtual address space.
798 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
799 * more scanning pressure is placed against them as well. Eventually pages
800 * will become fully unmapped and are eligible for eviction.
802 * For very sparsely populated VMAs this is a little inefficient - chances are
803 * there there won't be many ptes located within the scan cluster. In this case
804 * maybe we could scan further - to the end of the pte page, perhaps.
806 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
807 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
809 static void try_to_unmap_cluster(unsigned long cursor
,
810 unsigned int *mapcount
, struct vm_area_struct
*vma
)
812 struct mm_struct
*mm
= vma
->vm_mm
;
820 unsigned long address
;
823 address
= (vma
->vm_start
+ cursor
) & CLUSTER_MASK
;
824 end
= address
+ CLUSTER_SIZE
;
825 if (address
< vma
->vm_start
)
826 address
= vma
->vm_start
;
827 if (end
> vma
->vm_end
)
830 pgd
= pgd_offset(mm
, address
);
831 if (!pgd_present(*pgd
))
834 pud
= pud_offset(pgd
, address
);
835 if (!pud_present(*pud
))
838 pmd
= pmd_offset(pud
, address
);
839 if (!pmd_present(*pmd
))
842 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
844 /* Update high watermark before we lower rss */
845 update_hiwater_rss(mm
);
847 for (; address
< end
; pte
++, address
+= PAGE_SIZE
) {
848 if (!pte_present(*pte
))
850 page
= vm_normal_page(vma
, address
, *pte
);
851 BUG_ON(!page
|| PageAnon(page
));
853 if (ptep_clear_flush_young_notify(vma
, address
, pte
))
856 /* Nuke the page table entry. */
857 flush_cache_page(vma
, address
, pte_pfn(*pte
));
858 pteval
= ptep_clear_flush_notify(vma
, address
, pte
);
860 /* If nonlinear, store the file page offset in the pte. */
861 if (page
->index
!= linear_page_index(vma
, address
))
862 set_pte_at(mm
, address
, pte
, pgoff_to_pte(page
->index
));
864 /* Move the dirty bit to the physical page now the pte is gone. */
865 if (pte_dirty(pteval
))
866 set_page_dirty(page
);
868 page_remove_rmap(page
, vma
);
869 page_cache_release(page
);
870 dec_mm_counter(mm
, file_rss
);
873 pte_unmap_unlock(pte
- 1, ptl
);
876 static int try_to_unmap_anon(struct page
*page
, int migration
)
878 struct anon_vma
*anon_vma
;
879 struct vm_area_struct
*vma
;
880 int ret
= SWAP_AGAIN
;
882 anon_vma
= page_lock_anon_vma(page
);
886 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
) {
887 ret
= try_to_unmap_one(page
, vma
, migration
);
888 if (ret
== SWAP_FAIL
|| !page_mapped(page
))
892 page_unlock_anon_vma(anon_vma
);
897 * try_to_unmap_file - unmap file page using the object-based rmap method
898 * @page: the page to unmap
899 * @migration: migration flag
901 * Find all the mappings of a page using the mapping pointer and the vma chains
902 * contained in the address_space struct it points to.
904 * This function is only called from try_to_unmap for object-based pages.
906 static int try_to_unmap_file(struct page
*page
, int migration
)
908 struct address_space
*mapping
= page
->mapping
;
909 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
910 struct vm_area_struct
*vma
;
911 struct prio_tree_iter iter
;
912 int ret
= SWAP_AGAIN
;
913 unsigned long cursor
;
914 unsigned long max_nl_cursor
= 0;
915 unsigned long max_nl_size
= 0;
916 unsigned int mapcount
;
918 spin_lock(&mapping
->i_mmap_lock
);
919 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
920 ret
= try_to_unmap_one(page
, vma
, migration
);
921 if (ret
== SWAP_FAIL
|| !page_mapped(page
))
925 if (list_empty(&mapping
->i_mmap_nonlinear
))
928 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
929 shared
.vm_set
.list
) {
930 if ((vma
->vm_flags
& VM_LOCKED
) && !migration
)
932 cursor
= (unsigned long) vma
->vm_private_data
;
933 if (cursor
> max_nl_cursor
)
934 max_nl_cursor
= cursor
;
935 cursor
= vma
->vm_end
- vma
->vm_start
;
936 if (cursor
> max_nl_size
)
937 max_nl_size
= cursor
;
940 if (max_nl_size
== 0) { /* any nonlinears locked or reserved */
946 * We don't try to search for this page in the nonlinear vmas,
947 * and page_referenced wouldn't have found it anyway. Instead
948 * just walk the nonlinear vmas trying to age and unmap some.
949 * The mapcount of the page we came in with is irrelevant,
950 * but even so use it as a guide to how hard we should try?
952 mapcount
= page_mapcount(page
);
955 cond_resched_lock(&mapping
->i_mmap_lock
);
957 max_nl_size
= (max_nl_size
+ CLUSTER_SIZE
- 1) & CLUSTER_MASK
;
958 if (max_nl_cursor
== 0)
959 max_nl_cursor
= CLUSTER_SIZE
;
962 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
963 shared
.vm_set
.list
) {
964 if ((vma
->vm_flags
& VM_LOCKED
) && !migration
)
966 cursor
= (unsigned long) vma
->vm_private_data
;
967 while ( cursor
< max_nl_cursor
&&
968 cursor
< vma
->vm_end
- vma
->vm_start
) {
969 try_to_unmap_cluster(cursor
, &mapcount
, vma
);
970 cursor
+= CLUSTER_SIZE
;
971 vma
->vm_private_data
= (void *) cursor
;
972 if ((int)mapcount
<= 0)
975 vma
->vm_private_data
= (void *) max_nl_cursor
;
977 cond_resched_lock(&mapping
->i_mmap_lock
);
978 max_nl_cursor
+= CLUSTER_SIZE
;
979 } while (max_nl_cursor
<= max_nl_size
);
982 * Don't loop forever (perhaps all the remaining pages are
983 * in locked vmas). Reset cursor on all unreserved nonlinear
984 * vmas, now forgetting on which ones it had fallen behind.
986 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
987 vma
->vm_private_data
= NULL
;
989 spin_unlock(&mapping
->i_mmap_lock
);
994 * try_to_unmap - try to remove all page table mappings to a page
995 * @page: the page to get unmapped
996 * @migration: migration flag
998 * Tries to remove all the page table entries which are mapping this
999 * page, used in the pageout path. Caller must hold the page lock.
1000 * Return values are:
1002 * SWAP_SUCCESS - we succeeded in removing all mappings
1003 * SWAP_AGAIN - we missed a mapping, try again later
1004 * SWAP_FAIL - the page is unswappable
1006 int try_to_unmap(struct page
*page
, int migration
)
1010 BUG_ON(!PageLocked(page
));
1013 ret
= try_to_unmap_anon(page
, migration
);
1015 ret
= try_to_unmap_file(page
, migration
);
1017 if (!page_mapped(page
))