2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/memcontrol.h>
48 #include <linux/debugobjects.h>
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
55 * Array of node states.
57 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
58 [N_POSSIBLE
] = NODE_MASK_ALL
,
59 [N_ONLINE
] = { { [0] = 1UL } },
61 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
63 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
65 [N_CPU
] = { { [0] = 1UL } },
68 EXPORT_SYMBOL(node_states
);
70 unsigned long totalram_pages __read_mostly
;
71 unsigned long totalreserve_pages __read_mostly
;
73 int percpu_pagelist_fraction
;
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly
;
79 static void __free_pages_ok(struct page
*page
, unsigned int order
);
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 * 1G machine -> (16M dma, 784M normal, 224M high)
85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
92 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
93 #ifdef CONFIG_ZONE_DMA
96 #ifdef CONFIG_ZONE_DMA32
105 EXPORT_SYMBOL(totalram_pages
);
107 static char * const zone_names
[MAX_NR_ZONES
] = {
108 #ifdef CONFIG_ZONE_DMA
111 #ifdef CONFIG_ZONE_DMA32
115 #ifdef CONFIG_HIGHMEM
121 int min_free_kbytes
= 1024;
123 unsigned long __meminitdata nr_kernel_pages
;
124 unsigned long __meminitdata nr_all_pages
;
125 static unsigned long __meminitdata dma_reserve
;
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130 * ranges of memory (RAM) that may be registered with add_active_range().
131 * Ranges passed to add_active_range() will be merged if possible
132 * so the number of times add_active_range() can be called is
133 * related to the number of nodes and the number of holes
135 #ifdef CONFIG_MAX_ACTIVE_REGIONS
136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139 #if MAX_NUMNODES >= 32
140 /* If there can be many nodes, allow up to 50 holes per node */
141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143 /* By default, allow up to 256 distinct regions */
144 #define MAX_ACTIVE_REGIONS 256
148 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
149 static int __meminitdata nr_nodemap_entries
;
150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
151 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153 static unsigned long __meminitdata node_boundary_start_pfn
[MAX_NUMNODES
];
154 static unsigned long __meminitdata node_boundary_end_pfn
[MAX_NUMNODES
];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156 static unsigned long __initdata required_kernelcore
;
157 static unsigned long __initdata required_movablecore
;
158 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
162 EXPORT_SYMBOL(movable_zone
);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
166 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
167 EXPORT_SYMBOL(nr_node_ids
);
170 int page_group_by_mobility_disabled __read_mostly
;
172 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
174 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
175 PB_migrate
, PB_migrate_end
);
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
183 unsigned long pfn
= page_to_pfn(page
);
186 seq
= zone_span_seqbegin(zone
);
187 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
189 else if (pfn
< zone
->zone_start_pfn
)
191 } while (zone_span_seqretry(zone
, seq
));
196 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
198 if (!pfn_valid_within(page_to_pfn(page
)))
200 if (zone
!= page_zone(page
))
206 * Temporary debugging check for pages not lying within a given zone.
208 static int bad_range(struct zone
*zone
, struct page
*page
)
210 if (page_outside_zone_boundaries(zone
, page
))
212 if (!page_is_consistent(zone
, page
))
218 static inline int bad_range(struct zone
*zone
, struct page
*page
)
224 static void bad_page(struct page
*page
)
226 void *pc
= page_get_page_cgroup(page
);
228 printk(KERN_EMERG
"Bad page state in process '%s'\n" KERN_EMERG
229 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
230 current
->comm
, page
, (int)(2*sizeof(unsigned long)),
231 (unsigned long)page
->flags
, page
->mapping
,
232 page_mapcount(page
), page_count(page
));
234 printk(KERN_EMERG
"cgroup:%p\n", pc
);
235 page_reset_bad_cgroup(page
);
237 printk(KERN_EMERG
"Trying to fix it up, but a reboot is needed\n"
238 KERN_EMERG
"Backtrace:\n");
240 page
->flags
&= ~PAGE_FLAGS_CLEAR_WHEN_BAD
;
241 set_page_count(page
, 0);
242 reset_page_mapcount(page
);
243 page
->mapping
= NULL
;
244 add_taint(TAINT_BAD_PAGE
);
248 * Higher-order pages are called "compound pages". They are structured thusly:
250 * The first PAGE_SIZE page is called the "head page".
252 * The remaining PAGE_SIZE pages are called "tail pages".
254 * All pages have PG_compound set. All pages have their ->private pointing at
255 * the head page (even the head page has this).
257 * The first tail page's ->lru.next holds the address of the compound page's
258 * put_page() function. Its ->lru.prev holds the order of allocation.
259 * This usage means that zero-order pages may not be compound.
262 static void free_compound_page(struct page
*page
)
264 __free_pages_ok(page
, compound_order(page
));
267 void prep_compound_page(struct page
*page
, unsigned long order
)
270 int nr_pages
= 1 << order
;
272 set_compound_page_dtor(page
, free_compound_page
);
273 set_compound_order(page
, order
);
275 for (i
= 1; i
< nr_pages
; i
++) {
276 struct page
*p
= page
+ i
;
279 p
->first_page
= page
;
283 static void destroy_compound_page(struct page
*page
, unsigned long order
)
286 int nr_pages
= 1 << order
;
288 if (unlikely(compound_order(page
) != order
))
291 if (unlikely(!PageHead(page
)))
293 __ClearPageHead(page
);
294 for (i
= 1; i
< nr_pages
; i
++) {
295 struct page
*p
= page
+ i
;
297 if (unlikely(!PageTail(p
) |
298 (p
->first_page
!= page
)))
304 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
309 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
310 * and __GFP_HIGHMEM from hard or soft interrupt context.
312 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
313 for (i
= 0; i
< (1 << order
); i
++)
314 clear_highpage(page
+ i
);
317 static inline void set_page_order(struct page
*page
, int order
)
319 set_page_private(page
, order
);
320 __SetPageBuddy(page
);
323 static inline void rmv_page_order(struct page
*page
)
325 __ClearPageBuddy(page
);
326 set_page_private(page
, 0);
330 * Locate the struct page for both the matching buddy in our
331 * pair (buddy1) and the combined O(n+1) page they form (page).
333 * 1) Any buddy B1 will have an order O twin B2 which satisfies
334 * the following equation:
336 * For example, if the starting buddy (buddy2) is #8 its order
338 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
340 * 2) Any buddy B will have an order O+1 parent P which
341 * satisfies the following equation:
344 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
346 static inline struct page
*
347 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
349 unsigned long buddy_idx
= page_idx
^ (1 << order
);
351 return page
+ (buddy_idx
- page_idx
);
354 static inline unsigned long
355 __find_combined_index(unsigned long page_idx
, unsigned int order
)
357 return (page_idx
& ~(1 << order
));
361 * This function checks whether a page is free && is the buddy
362 * we can do coalesce a page and its buddy if
363 * (a) the buddy is not in a hole &&
364 * (b) the buddy is in the buddy system &&
365 * (c) a page and its buddy have the same order &&
366 * (d) a page and its buddy are in the same zone.
368 * For recording whether a page is in the buddy system, we use PG_buddy.
369 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
371 * For recording page's order, we use page_private(page).
373 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
376 if (!pfn_valid_within(page_to_pfn(buddy
)))
379 if (page_zone_id(page
) != page_zone_id(buddy
))
382 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
383 BUG_ON(page_count(buddy
) != 0);
390 * Freeing function for a buddy system allocator.
392 * The concept of a buddy system is to maintain direct-mapped table
393 * (containing bit values) for memory blocks of various "orders".
394 * The bottom level table contains the map for the smallest allocatable
395 * units of memory (here, pages), and each level above it describes
396 * pairs of units from the levels below, hence, "buddies".
397 * At a high level, all that happens here is marking the table entry
398 * at the bottom level available, and propagating the changes upward
399 * as necessary, plus some accounting needed to play nicely with other
400 * parts of the VM system.
401 * At each level, we keep a list of pages, which are heads of continuous
402 * free pages of length of (1 << order) and marked with PG_buddy. Page's
403 * order is recorded in page_private(page) field.
404 * So when we are allocating or freeing one, we can derive the state of the
405 * other. That is, if we allocate a small block, and both were
406 * free, the remainder of the region must be split into blocks.
407 * If a block is freed, and its buddy is also free, then this
408 * triggers coalescing into a block of larger size.
413 static inline void __free_one_page(struct page
*page
,
414 struct zone
*zone
, unsigned int order
)
416 unsigned long page_idx
;
417 int order_size
= 1 << order
;
418 int migratetype
= get_pageblock_migratetype(page
);
420 if (unlikely(PageCompound(page
)))
421 destroy_compound_page(page
, order
);
423 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
425 VM_BUG_ON(page_idx
& (order_size
- 1));
426 VM_BUG_ON(bad_range(zone
, page
));
428 __mod_zone_page_state(zone
, NR_FREE_PAGES
, order_size
);
429 while (order
< MAX_ORDER
-1) {
430 unsigned long combined_idx
;
433 buddy
= __page_find_buddy(page
, page_idx
, order
);
434 if (!page_is_buddy(page
, buddy
, order
))
437 /* Our buddy is free, merge with it and move up one order. */
438 list_del(&buddy
->lru
);
439 zone
->free_area
[order
].nr_free
--;
440 rmv_page_order(buddy
);
441 combined_idx
= __find_combined_index(page_idx
, order
);
442 page
= page
+ (combined_idx
- page_idx
);
443 page_idx
= combined_idx
;
446 set_page_order(page
, order
);
448 &zone
->free_area
[order
].free_list
[migratetype
]);
449 zone
->free_area
[order
].nr_free
++;
452 static inline int free_pages_check(struct page
*page
)
454 if (unlikely(page_mapcount(page
) |
455 (page
->mapping
!= NULL
) |
456 (page_get_page_cgroup(page
) != NULL
) |
457 (page_count(page
) != 0) |
458 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)))
461 __ClearPageDirty(page
);
463 * For now, we report if PG_reserved was found set, but do not
464 * clear it, and do not free the page. But we shall soon need
465 * to do more, for when the ZERO_PAGE count wraps negative.
467 return PageReserved(page
);
471 * Frees a list of pages.
472 * Assumes all pages on list are in same zone, and of same order.
473 * count is the number of pages to free.
475 * If the zone was previously in an "all pages pinned" state then look to
476 * see if this freeing clears that state.
478 * And clear the zone's pages_scanned counter, to hold off the "all pages are
479 * pinned" detection logic.
481 static void free_pages_bulk(struct zone
*zone
, int count
,
482 struct list_head
*list
, int order
)
484 spin_lock(&zone
->lock
);
485 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
486 zone
->pages_scanned
= 0;
490 VM_BUG_ON(list_empty(list
));
491 page
= list_entry(list
->prev
, struct page
, lru
);
492 /* have to delete it as __free_one_page list manipulates */
493 list_del(&page
->lru
);
494 __free_one_page(page
, zone
, order
);
496 spin_unlock(&zone
->lock
);
499 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
)
501 spin_lock(&zone
->lock
);
502 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
503 zone
->pages_scanned
= 0;
504 __free_one_page(page
, zone
, order
);
505 spin_unlock(&zone
->lock
);
508 static void __free_pages_ok(struct page
*page
, unsigned int order
)
514 for (i
= 0 ; i
< (1 << order
) ; ++i
)
515 reserved
+= free_pages_check(page
+ i
);
519 if (!PageHighMem(page
)) {
520 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
521 debug_check_no_obj_freed(page_address(page
),
524 arch_free_page(page
, order
);
525 kernel_map_pages(page
, 1 << order
, 0);
527 local_irq_save(flags
);
528 __count_vm_events(PGFREE
, 1 << order
);
529 free_one_page(page_zone(page
), page
, order
);
530 local_irq_restore(flags
);
534 * permit the bootmem allocator to evade page validation on high-order frees
536 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
539 __ClearPageReserved(page
);
540 set_page_count(page
, 0);
541 set_page_refcounted(page
);
547 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
548 struct page
*p
= &page
[loop
];
550 if (loop
+ 1 < BITS_PER_LONG
)
552 __ClearPageReserved(p
);
553 set_page_count(p
, 0);
556 set_page_refcounted(page
);
557 __free_pages(page
, order
);
563 * The order of subdivision here is critical for the IO subsystem.
564 * Please do not alter this order without good reasons and regression
565 * testing. Specifically, as large blocks of memory are subdivided,
566 * the order in which smaller blocks are delivered depends on the order
567 * they're subdivided in this function. This is the primary factor
568 * influencing the order in which pages are delivered to the IO
569 * subsystem according to empirical testing, and this is also justified
570 * by considering the behavior of a buddy system containing a single
571 * large block of memory acted on by a series of small allocations.
572 * This behavior is a critical factor in sglist merging's success.
576 static inline void expand(struct zone
*zone
, struct page
*page
,
577 int low
, int high
, struct free_area
*area
,
580 unsigned long size
= 1 << high
;
586 VM_BUG_ON(bad_range(zone
, &page
[size
]));
587 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
589 set_page_order(&page
[size
], high
);
594 * This page is about to be returned from the page allocator
596 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
598 if (unlikely(page_mapcount(page
) |
599 (page
->mapping
!= NULL
) |
600 (page_get_page_cgroup(page
) != NULL
) |
601 (page_count(page
) != 0) |
602 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)))
606 * For now, we report if PG_reserved was found set, but do not
607 * clear it, and do not allocate the page: as a safety net.
609 if (PageReserved(page
))
612 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
| 1 << PG_reclaim
|
613 1 << PG_referenced
| 1 << PG_arch_1
|
614 1 << PG_owner_priv_1
| 1 << PG_mappedtodisk
);
615 set_page_private(page
, 0);
616 set_page_refcounted(page
);
618 arch_alloc_page(page
, order
);
619 kernel_map_pages(page
, 1 << order
, 1);
621 if (gfp_flags
& __GFP_ZERO
)
622 prep_zero_page(page
, order
, gfp_flags
);
624 if (order
&& (gfp_flags
& __GFP_COMP
))
625 prep_compound_page(page
, order
);
631 * Go through the free lists for the given migratetype and remove
632 * the smallest available page from the freelists
634 static struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
637 unsigned int current_order
;
638 struct free_area
* area
;
641 /* Find a page of the appropriate size in the preferred list */
642 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
643 area
= &(zone
->free_area
[current_order
]);
644 if (list_empty(&area
->free_list
[migratetype
]))
647 page
= list_entry(area
->free_list
[migratetype
].next
,
649 list_del(&page
->lru
);
650 rmv_page_order(page
);
652 __mod_zone_page_state(zone
, NR_FREE_PAGES
, - (1UL << order
));
653 expand(zone
, page
, order
, current_order
, area
, migratetype
);
662 * This array describes the order lists are fallen back to when
663 * the free lists for the desirable migrate type are depleted
665 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
666 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
667 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
668 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
669 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
673 * Move the free pages in a range to the free lists of the requested type.
674 * Note that start_page and end_pages are not aligned on a pageblock
675 * boundary. If alignment is required, use move_freepages_block()
677 static int move_freepages(struct zone
*zone
,
678 struct page
*start_page
, struct page
*end_page
,
685 #ifndef CONFIG_HOLES_IN_ZONE
687 * page_zone is not safe to call in this context when
688 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
689 * anyway as we check zone boundaries in move_freepages_block().
690 * Remove at a later date when no bug reports exist related to
691 * grouping pages by mobility
693 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
696 for (page
= start_page
; page
<= end_page
;) {
697 /* Make sure we are not inadvertently changing nodes */
698 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
700 if (!pfn_valid_within(page_to_pfn(page
))) {
705 if (!PageBuddy(page
)) {
710 order
= page_order(page
);
711 list_del(&page
->lru
);
713 &zone
->free_area
[order
].free_list
[migratetype
]);
715 pages_moved
+= 1 << order
;
721 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
724 unsigned long start_pfn
, end_pfn
;
725 struct page
*start_page
, *end_page
;
727 start_pfn
= page_to_pfn(page
);
728 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
729 start_page
= pfn_to_page(start_pfn
);
730 end_page
= start_page
+ pageblock_nr_pages
- 1;
731 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
733 /* Do not cross zone boundaries */
734 if (start_pfn
< zone
->zone_start_pfn
)
736 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
739 return move_freepages(zone
, start_page
, end_page
, migratetype
);
742 /* Remove an element from the buddy allocator from the fallback list */
743 static struct page
*__rmqueue_fallback(struct zone
*zone
, int order
,
744 int start_migratetype
)
746 struct free_area
* area
;
751 /* Find the largest possible block of pages in the other list */
752 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
754 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
755 migratetype
= fallbacks
[start_migratetype
][i
];
757 /* MIGRATE_RESERVE handled later if necessary */
758 if (migratetype
== MIGRATE_RESERVE
)
761 area
= &(zone
->free_area
[current_order
]);
762 if (list_empty(&area
->free_list
[migratetype
]))
765 page
= list_entry(area
->free_list
[migratetype
].next
,
770 * If breaking a large block of pages, move all free
771 * pages to the preferred allocation list. If falling
772 * back for a reclaimable kernel allocation, be more
773 * agressive about taking ownership of free pages
775 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
776 start_migratetype
== MIGRATE_RECLAIMABLE
) {
778 pages
= move_freepages_block(zone
, page
,
781 /* Claim the whole block if over half of it is free */
782 if (pages
>= (1 << (pageblock_order
-1)))
783 set_pageblock_migratetype(page
,
786 migratetype
= start_migratetype
;
789 /* Remove the page from the freelists */
790 list_del(&page
->lru
);
791 rmv_page_order(page
);
792 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
795 if (current_order
== pageblock_order
)
796 set_pageblock_migratetype(page
,
799 expand(zone
, page
, order
, current_order
, area
, migratetype
);
804 /* Use MIGRATE_RESERVE rather than fail an allocation */
805 return __rmqueue_smallest(zone
, order
, MIGRATE_RESERVE
);
809 * Do the hard work of removing an element from the buddy allocator.
810 * Call me with the zone->lock already held.
812 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
817 page
= __rmqueue_smallest(zone
, order
, migratetype
);
820 page
= __rmqueue_fallback(zone
, order
, migratetype
);
826 * Obtain a specified number of elements from the buddy allocator, all under
827 * a single hold of the lock, for efficiency. Add them to the supplied list.
828 * Returns the number of new pages which were placed at *list.
830 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
831 unsigned long count
, struct list_head
*list
,
836 spin_lock(&zone
->lock
);
837 for (i
= 0; i
< count
; ++i
) {
838 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
839 if (unlikely(page
== NULL
))
843 * Split buddy pages returned by expand() are received here
844 * in physical page order. The page is added to the callers and
845 * list and the list head then moves forward. From the callers
846 * perspective, the linked list is ordered by page number in
847 * some conditions. This is useful for IO devices that can
848 * merge IO requests if the physical pages are ordered
851 list_add(&page
->lru
, list
);
852 set_page_private(page
, migratetype
);
855 spin_unlock(&zone
->lock
);
861 * Called from the vmstat counter updater to drain pagesets of this
862 * currently executing processor on remote nodes after they have
865 * Note that this function must be called with the thread pinned to
866 * a single processor.
868 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
873 local_irq_save(flags
);
874 if (pcp
->count
>= pcp
->batch
)
875 to_drain
= pcp
->batch
;
877 to_drain
= pcp
->count
;
878 free_pages_bulk(zone
, to_drain
, &pcp
->list
, 0);
879 pcp
->count
-= to_drain
;
880 local_irq_restore(flags
);
885 * Drain pages of the indicated processor.
887 * The processor must either be the current processor and the
888 * thread pinned to the current processor or a processor that
891 static void drain_pages(unsigned int cpu
)
896 for_each_zone(zone
) {
897 struct per_cpu_pageset
*pset
;
898 struct per_cpu_pages
*pcp
;
900 if (!populated_zone(zone
))
903 pset
= zone_pcp(zone
, cpu
);
906 local_irq_save(flags
);
907 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
909 local_irq_restore(flags
);
914 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
916 void drain_local_pages(void *arg
)
918 drain_pages(smp_processor_id());
922 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
924 void drain_all_pages(void)
926 on_each_cpu(drain_local_pages
, NULL
, 1);
929 #ifdef CONFIG_HIBERNATION
931 void mark_free_pages(struct zone
*zone
)
933 unsigned long pfn
, max_zone_pfn
;
936 struct list_head
*curr
;
938 if (!zone
->spanned_pages
)
941 spin_lock_irqsave(&zone
->lock
, flags
);
943 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
944 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
945 if (pfn_valid(pfn
)) {
946 struct page
*page
= pfn_to_page(pfn
);
948 if (!swsusp_page_is_forbidden(page
))
949 swsusp_unset_page_free(page
);
952 for_each_migratetype_order(order
, t
) {
953 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
956 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
957 for (i
= 0; i
< (1UL << order
); i
++)
958 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
961 spin_unlock_irqrestore(&zone
->lock
, flags
);
963 #endif /* CONFIG_PM */
966 * Free a 0-order page
968 static void free_hot_cold_page(struct page
*page
, int cold
)
970 struct zone
*zone
= page_zone(page
);
971 struct per_cpu_pages
*pcp
;
975 page
->mapping
= NULL
;
976 if (free_pages_check(page
))
979 if (!PageHighMem(page
)) {
980 debug_check_no_locks_freed(page_address(page
), PAGE_SIZE
);
981 debug_check_no_obj_freed(page_address(page
), PAGE_SIZE
);
983 arch_free_page(page
, 0);
984 kernel_map_pages(page
, 1, 0);
986 pcp
= &zone_pcp(zone
, get_cpu())->pcp
;
987 local_irq_save(flags
);
988 __count_vm_event(PGFREE
);
990 list_add_tail(&page
->lru
, &pcp
->list
);
992 list_add(&page
->lru
, &pcp
->list
);
993 set_page_private(page
, get_pageblock_migratetype(page
));
995 if (pcp
->count
>= pcp
->high
) {
996 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
997 pcp
->count
-= pcp
->batch
;
999 local_irq_restore(flags
);
1003 void free_hot_page(struct page
*page
)
1005 free_hot_cold_page(page
, 0);
1008 void free_cold_page(struct page
*page
)
1010 free_hot_cold_page(page
, 1);
1014 * split_page takes a non-compound higher-order page, and splits it into
1015 * n (1<<order) sub-pages: page[0..n]
1016 * Each sub-page must be freed individually.
1018 * Note: this is probably too low level an operation for use in drivers.
1019 * Please consult with lkml before using this in your driver.
1021 void split_page(struct page
*page
, unsigned int order
)
1025 VM_BUG_ON(PageCompound(page
));
1026 VM_BUG_ON(!page_count(page
));
1027 for (i
= 1; i
< (1 << order
); i
++)
1028 set_page_refcounted(page
+ i
);
1032 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1033 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1036 static struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1037 struct zone
*zone
, int order
, gfp_t gfp_flags
)
1039 unsigned long flags
;
1041 int cold
= !!(gfp_flags
& __GFP_COLD
);
1043 int migratetype
= allocflags_to_migratetype(gfp_flags
);
1047 if (likely(order
== 0)) {
1048 struct per_cpu_pages
*pcp
;
1050 pcp
= &zone_pcp(zone
, cpu
)->pcp
;
1051 local_irq_save(flags
);
1053 pcp
->count
= rmqueue_bulk(zone
, 0,
1054 pcp
->batch
, &pcp
->list
, migratetype
);
1055 if (unlikely(!pcp
->count
))
1059 /* Find a page of the appropriate migrate type */
1061 list_for_each_entry_reverse(page
, &pcp
->list
, lru
)
1062 if (page_private(page
) == migratetype
)
1065 list_for_each_entry(page
, &pcp
->list
, lru
)
1066 if (page_private(page
) == migratetype
)
1070 /* Allocate more to the pcp list if necessary */
1071 if (unlikely(&page
->lru
== &pcp
->list
)) {
1072 pcp
->count
+= rmqueue_bulk(zone
, 0,
1073 pcp
->batch
, &pcp
->list
, migratetype
);
1074 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
1077 list_del(&page
->lru
);
1080 spin_lock_irqsave(&zone
->lock
, flags
);
1081 page
= __rmqueue(zone
, order
, migratetype
);
1082 spin_unlock(&zone
->lock
);
1087 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1088 zone_statistics(preferred_zone
, zone
);
1089 local_irq_restore(flags
);
1092 VM_BUG_ON(bad_range(zone
, page
));
1093 if (prep_new_page(page
, order
, gfp_flags
))
1098 local_irq_restore(flags
);
1103 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1104 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1105 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1106 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1107 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1108 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1109 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1111 #ifdef CONFIG_FAIL_PAGE_ALLOC
1113 static struct fail_page_alloc_attr
{
1114 struct fault_attr attr
;
1116 u32 ignore_gfp_highmem
;
1117 u32 ignore_gfp_wait
;
1120 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1122 struct dentry
*ignore_gfp_highmem_file
;
1123 struct dentry
*ignore_gfp_wait_file
;
1124 struct dentry
*min_order_file
;
1126 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1128 } fail_page_alloc
= {
1129 .attr
= FAULT_ATTR_INITIALIZER
,
1130 .ignore_gfp_wait
= 1,
1131 .ignore_gfp_highmem
= 1,
1135 static int __init
setup_fail_page_alloc(char *str
)
1137 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1139 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1141 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1143 if (order
< fail_page_alloc
.min_order
)
1145 if (gfp_mask
& __GFP_NOFAIL
)
1147 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1149 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1152 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1155 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1157 static int __init
fail_page_alloc_debugfs(void)
1159 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1163 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1167 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1169 fail_page_alloc
.ignore_gfp_wait_file
=
1170 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1171 &fail_page_alloc
.ignore_gfp_wait
);
1173 fail_page_alloc
.ignore_gfp_highmem_file
=
1174 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1175 &fail_page_alloc
.ignore_gfp_highmem
);
1176 fail_page_alloc
.min_order_file
=
1177 debugfs_create_u32("min-order", mode
, dir
,
1178 &fail_page_alloc
.min_order
);
1180 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1181 !fail_page_alloc
.ignore_gfp_highmem_file
||
1182 !fail_page_alloc
.min_order_file
) {
1184 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1185 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1186 debugfs_remove(fail_page_alloc
.min_order_file
);
1187 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1193 late_initcall(fail_page_alloc_debugfs
);
1195 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1197 #else /* CONFIG_FAIL_PAGE_ALLOC */
1199 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1204 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1207 * Return 1 if free pages are above 'mark'. This takes into account the order
1208 * of the allocation.
1210 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1211 int classzone_idx
, int alloc_flags
)
1213 /* free_pages my go negative - that's OK */
1215 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
) - (1 << order
) + 1;
1218 if (alloc_flags
& ALLOC_HIGH
)
1220 if (alloc_flags
& ALLOC_HARDER
)
1223 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1225 for (o
= 0; o
< order
; o
++) {
1226 /* At the next order, this order's pages become unavailable */
1227 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1229 /* Require fewer higher order pages to be free */
1232 if (free_pages
<= min
)
1240 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1241 * skip over zones that are not allowed by the cpuset, or that have
1242 * been recently (in last second) found to be nearly full. See further
1243 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1244 * that have to skip over a lot of full or unallowed zones.
1246 * If the zonelist cache is present in the passed in zonelist, then
1247 * returns a pointer to the allowed node mask (either the current
1248 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1250 * If the zonelist cache is not available for this zonelist, does
1251 * nothing and returns NULL.
1253 * If the fullzones BITMAP in the zonelist cache is stale (more than
1254 * a second since last zap'd) then we zap it out (clear its bits.)
1256 * We hold off even calling zlc_setup, until after we've checked the
1257 * first zone in the zonelist, on the theory that most allocations will
1258 * be satisfied from that first zone, so best to examine that zone as
1259 * quickly as we can.
1261 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1263 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1264 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1266 zlc
= zonelist
->zlcache_ptr
;
1270 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1271 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1272 zlc
->last_full_zap
= jiffies
;
1275 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1276 &cpuset_current_mems_allowed
:
1277 &node_states
[N_HIGH_MEMORY
];
1278 return allowednodes
;
1282 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1283 * if it is worth looking at further for free memory:
1284 * 1) Check that the zone isn't thought to be full (doesn't have its
1285 * bit set in the zonelist_cache fullzones BITMAP).
1286 * 2) Check that the zones node (obtained from the zonelist_cache
1287 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1288 * Return true (non-zero) if zone is worth looking at further, or
1289 * else return false (zero) if it is not.
1291 * This check -ignores- the distinction between various watermarks,
1292 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1293 * found to be full for any variation of these watermarks, it will
1294 * be considered full for up to one second by all requests, unless
1295 * we are so low on memory on all allowed nodes that we are forced
1296 * into the second scan of the zonelist.
1298 * In the second scan we ignore this zonelist cache and exactly
1299 * apply the watermarks to all zones, even it is slower to do so.
1300 * We are low on memory in the second scan, and should leave no stone
1301 * unturned looking for a free page.
1303 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1304 nodemask_t
*allowednodes
)
1306 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1307 int i
; /* index of *z in zonelist zones */
1308 int n
; /* node that zone *z is on */
1310 zlc
= zonelist
->zlcache_ptr
;
1314 i
= z
- zonelist
->_zonerefs
;
1317 /* This zone is worth trying if it is allowed but not full */
1318 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1322 * Given 'z' scanning a zonelist, set the corresponding bit in
1323 * zlc->fullzones, so that subsequent attempts to allocate a page
1324 * from that zone don't waste time re-examining it.
1326 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1328 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1329 int i
; /* index of *z in zonelist zones */
1331 zlc
= zonelist
->zlcache_ptr
;
1335 i
= z
- zonelist
->_zonerefs
;
1337 set_bit(i
, zlc
->fullzones
);
1340 #else /* CONFIG_NUMA */
1342 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1347 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1348 nodemask_t
*allowednodes
)
1353 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1356 #endif /* CONFIG_NUMA */
1359 * get_page_from_freelist goes through the zonelist trying to allocate
1362 static struct page
*
1363 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1364 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
)
1367 struct page
*page
= NULL
;
1369 struct zone
*zone
, *preferred_zone
;
1370 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1371 int zlc_active
= 0; /* set if using zonelist_cache */
1372 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1374 (void)first_zones_zonelist(zonelist
, high_zoneidx
, nodemask
,
1376 if (!preferred_zone
)
1379 classzone_idx
= zone_idx(preferred_zone
);
1383 * Scan zonelist, looking for a zone with enough free.
1384 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1386 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1387 high_zoneidx
, nodemask
) {
1388 if (NUMA_BUILD
&& zlc_active
&&
1389 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1391 if ((alloc_flags
& ALLOC_CPUSET
) &&
1392 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1395 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1397 if (alloc_flags
& ALLOC_WMARK_MIN
)
1398 mark
= zone
->pages_min
;
1399 else if (alloc_flags
& ALLOC_WMARK_LOW
)
1400 mark
= zone
->pages_low
;
1402 mark
= zone
->pages_high
;
1403 if (!zone_watermark_ok(zone
, order
, mark
,
1404 classzone_idx
, alloc_flags
)) {
1405 if (!zone_reclaim_mode
||
1406 !zone_reclaim(zone
, gfp_mask
, order
))
1407 goto this_zone_full
;
1411 page
= buffered_rmqueue(preferred_zone
, zone
, order
, gfp_mask
);
1416 zlc_mark_zone_full(zonelist
, z
);
1418 if (NUMA_BUILD
&& !did_zlc_setup
) {
1419 /* we do zlc_setup after the first zone is tried */
1420 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1426 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1427 /* Disable zlc cache for second zonelist scan */
1435 * This is the 'heart' of the zoned buddy allocator.
1438 __alloc_pages_internal(gfp_t gfp_mask
, unsigned int order
,
1439 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
1441 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1442 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
1446 struct reclaim_state reclaim_state
;
1447 struct task_struct
*p
= current
;
1450 unsigned long did_some_progress
;
1451 unsigned long pages_reclaimed
= 0;
1453 might_sleep_if(wait
);
1455 if (should_fail_alloc_page(gfp_mask
, order
))
1459 z
= zonelist
->_zonerefs
; /* the list of zones suitable for gfp_mask */
1461 if (unlikely(!z
->zone
)) {
1463 * Happens if we have an empty zonelist as a result of
1464 * GFP_THISNODE being used on a memoryless node
1469 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
1470 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
);
1475 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1476 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1477 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1478 * using a larger set of nodes after it has established that the
1479 * allowed per node queues are empty and that nodes are
1482 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
1485 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
1486 wakeup_kswapd(zone
, order
);
1489 * OK, we're below the kswapd watermark and have kicked background
1490 * reclaim. Now things get more complex, so set up alloc_flags according
1491 * to how we want to proceed.
1493 * The caller may dip into page reserves a bit more if the caller
1494 * cannot run direct reclaim, or if the caller has realtime scheduling
1495 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1496 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1498 alloc_flags
= ALLOC_WMARK_MIN
;
1499 if ((unlikely(rt_task(p
)) && !in_interrupt()) || !wait
)
1500 alloc_flags
|= ALLOC_HARDER
;
1501 if (gfp_mask
& __GFP_HIGH
)
1502 alloc_flags
|= ALLOC_HIGH
;
1504 alloc_flags
|= ALLOC_CPUSET
;
1507 * Go through the zonelist again. Let __GFP_HIGH and allocations
1508 * coming from realtime tasks go deeper into reserves.
1510 * This is the last chance, in general, before the goto nopage.
1511 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1512 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1514 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
1515 high_zoneidx
, alloc_flags
);
1519 /* This allocation should allow future memory freeing. */
1522 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
1523 && !in_interrupt()) {
1524 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
1526 /* go through the zonelist yet again, ignoring mins */
1527 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1528 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
);
1531 if (gfp_mask
& __GFP_NOFAIL
) {
1532 congestion_wait(WRITE
, HZ
/50);
1539 /* Atomic allocations - we can't balance anything */
1545 /* We now go into synchronous reclaim */
1546 cpuset_memory_pressure_bump();
1547 p
->flags
|= PF_MEMALLOC
;
1548 reclaim_state
.reclaimed_slab
= 0;
1549 p
->reclaim_state
= &reclaim_state
;
1551 did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
);
1553 p
->reclaim_state
= NULL
;
1554 p
->flags
&= ~PF_MEMALLOC
;
1561 if (likely(did_some_progress
)) {
1562 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1563 zonelist
, high_zoneidx
, alloc_flags
);
1566 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1567 if (!try_set_zone_oom(zonelist
, gfp_mask
)) {
1568 schedule_timeout_uninterruptible(1);
1573 * Go through the zonelist yet one more time, keep
1574 * very high watermark here, this is only to catch
1575 * a parallel oom killing, we must fail if we're still
1576 * under heavy pressure.
1578 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1579 order
, zonelist
, high_zoneidx
,
1580 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
);
1582 clear_zonelist_oom(zonelist
, gfp_mask
);
1586 /* The OOM killer will not help higher order allocs so fail */
1587 if (order
> PAGE_ALLOC_COSTLY_ORDER
) {
1588 clear_zonelist_oom(zonelist
, gfp_mask
);
1592 out_of_memory(zonelist
, gfp_mask
, order
);
1593 clear_zonelist_oom(zonelist
, gfp_mask
);
1598 * Don't let big-order allocations loop unless the caller explicitly
1599 * requests that. Wait for some write requests to complete then retry.
1601 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1602 * means __GFP_NOFAIL, but that may not be true in other
1605 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1606 * specified, then we retry until we no longer reclaim any pages
1607 * (above), or we've reclaimed an order of pages at least as
1608 * large as the allocation's order. In both cases, if the
1609 * allocation still fails, we stop retrying.
1611 pages_reclaimed
+= did_some_progress
;
1613 if (!(gfp_mask
& __GFP_NORETRY
)) {
1614 if (order
<= PAGE_ALLOC_COSTLY_ORDER
) {
1617 if (gfp_mask
& __GFP_REPEAT
&&
1618 pages_reclaimed
< (1 << order
))
1621 if (gfp_mask
& __GFP_NOFAIL
)
1625 congestion_wait(WRITE
, HZ
/50);
1630 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1631 printk(KERN_WARNING
"%s: page allocation failure."
1632 " order:%d, mode:0x%x\n",
1633 p
->comm
, order
, gfp_mask
);
1640 EXPORT_SYMBOL(__alloc_pages_internal
);
1643 * Common helper functions.
1645 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1648 page
= alloc_pages(gfp_mask
, order
);
1651 return (unsigned long) page_address(page
);
1654 EXPORT_SYMBOL(__get_free_pages
);
1656 unsigned long get_zeroed_page(gfp_t gfp_mask
)
1661 * get_zeroed_page() returns a 32-bit address, which cannot represent
1664 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1666 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1668 return (unsigned long) page_address(page
);
1672 EXPORT_SYMBOL(get_zeroed_page
);
1674 void __pagevec_free(struct pagevec
*pvec
)
1676 int i
= pagevec_count(pvec
);
1679 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1682 void __free_pages(struct page
*page
, unsigned int order
)
1684 if (put_page_testzero(page
)) {
1686 free_hot_page(page
);
1688 __free_pages_ok(page
, order
);
1692 EXPORT_SYMBOL(__free_pages
);
1694 void free_pages(unsigned long addr
, unsigned int order
)
1697 VM_BUG_ON(!virt_addr_valid((void *)addr
));
1698 __free_pages(virt_to_page((void *)addr
), order
);
1702 EXPORT_SYMBOL(free_pages
);
1705 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1706 * @size: the number of bytes to allocate
1707 * @gfp_mask: GFP flags for the allocation
1709 * This function is similar to alloc_pages(), except that it allocates the
1710 * minimum number of pages to satisfy the request. alloc_pages() can only
1711 * allocate memory in power-of-two pages.
1713 * This function is also limited by MAX_ORDER.
1715 * Memory allocated by this function must be released by free_pages_exact().
1717 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
1719 unsigned int order
= get_order(size
);
1722 addr
= __get_free_pages(gfp_mask
, order
);
1724 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
1725 unsigned long used
= addr
+ PAGE_ALIGN(size
);
1727 split_page(virt_to_page(addr
), order
);
1728 while (used
< alloc_end
) {
1734 return (void *)addr
;
1736 EXPORT_SYMBOL(alloc_pages_exact
);
1739 * free_pages_exact - release memory allocated via alloc_pages_exact()
1740 * @virt: the value returned by alloc_pages_exact.
1741 * @size: size of allocation, same value as passed to alloc_pages_exact().
1743 * Release the memory allocated by a previous call to alloc_pages_exact.
1745 void free_pages_exact(void *virt
, size_t size
)
1747 unsigned long addr
= (unsigned long)virt
;
1748 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1750 while (addr
< end
) {
1755 EXPORT_SYMBOL(free_pages_exact
);
1757 static unsigned int nr_free_zone_pages(int offset
)
1762 /* Just pick one node, since fallback list is circular */
1763 unsigned int sum
= 0;
1765 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
1767 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
1768 unsigned long size
= zone
->present_pages
;
1769 unsigned long high
= zone
->pages_high
;
1778 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1780 unsigned int nr_free_buffer_pages(void)
1782 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1784 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
1787 * Amount of free RAM allocatable within all zones
1789 unsigned int nr_free_pagecache_pages(void)
1791 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
1794 static inline void show_node(struct zone
*zone
)
1797 printk("Node %d ", zone_to_nid(zone
));
1800 void si_meminfo(struct sysinfo
*val
)
1802 val
->totalram
= totalram_pages
;
1804 val
->freeram
= global_page_state(NR_FREE_PAGES
);
1805 val
->bufferram
= nr_blockdev_pages();
1806 val
->totalhigh
= totalhigh_pages
;
1807 val
->freehigh
= nr_free_highpages();
1808 val
->mem_unit
= PAGE_SIZE
;
1811 EXPORT_SYMBOL(si_meminfo
);
1814 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1816 pg_data_t
*pgdat
= NODE_DATA(nid
);
1818 val
->totalram
= pgdat
->node_present_pages
;
1819 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
1820 #ifdef CONFIG_HIGHMEM
1821 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1822 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
1828 val
->mem_unit
= PAGE_SIZE
;
1832 #define K(x) ((x) << (PAGE_SHIFT-10))
1835 * Show free area list (used inside shift_scroll-lock stuff)
1836 * We also calculate the percentage fragmentation. We do this by counting the
1837 * memory on each free list with the exception of the first item on the list.
1839 void show_free_areas(void)
1844 for_each_zone(zone
) {
1845 if (!populated_zone(zone
))
1849 printk("%s per-cpu:\n", zone
->name
);
1851 for_each_online_cpu(cpu
) {
1852 struct per_cpu_pageset
*pageset
;
1854 pageset
= zone_pcp(zone
, cpu
);
1856 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1857 cpu
, pageset
->pcp
.high
,
1858 pageset
->pcp
.batch
, pageset
->pcp
.count
);
1862 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1863 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1864 global_page_state(NR_ACTIVE
),
1865 global_page_state(NR_INACTIVE
),
1866 global_page_state(NR_FILE_DIRTY
),
1867 global_page_state(NR_WRITEBACK
),
1868 global_page_state(NR_UNSTABLE_NFS
),
1869 global_page_state(NR_FREE_PAGES
),
1870 global_page_state(NR_SLAB_RECLAIMABLE
) +
1871 global_page_state(NR_SLAB_UNRECLAIMABLE
),
1872 global_page_state(NR_FILE_MAPPED
),
1873 global_page_state(NR_PAGETABLE
),
1874 global_page_state(NR_BOUNCE
));
1876 for_each_zone(zone
) {
1879 if (!populated_zone(zone
))
1891 " pages_scanned:%lu"
1892 " all_unreclaimable? %s"
1895 K(zone_page_state(zone
, NR_FREE_PAGES
)),
1898 K(zone
->pages_high
),
1899 K(zone_page_state(zone
, NR_ACTIVE
)),
1900 K(zone_page_state(zone
, NR_INACTIVE
)),
1901 K(zone
->present_pages
),
1902 zone
->pages_scanned
,
1903 (zone_is_all_unreclaimable(zone
) ? "yes" : "no")
1905 printk("lowmem_reserve[]:");
1906 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1907 printk(" %lu", zone
->lowmem_reserve
[i
]);
1911 for_each_zone(zone
) {
1912 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
1914 if (!populated_zone(zone
))
1918 printk("%s: ", zone
->name
);
1920 spin_lock_irqsave(&zone
->lock
, flags
);
1921 for (order
= 0; order
< MAX_ORDER
; order
++) {
1922 nr
[order
] = zone
->free_area
[order
].nr_free
;
1923 total
+= nr
[order
] << order
;
1925 spin_unlock_irqrestore(&zone
->lock
, flags
);
1926 for (order
= 0; order
< MAX_ORDER
; order
++)
1927 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
1928 printk("= %lukB\n", K(total
));
1931 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
1933 show_swap_cache_info();
1936 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
1938 zoneref
->zone
= zone
;
1939 zoneref
->zone_idx
= zone_idx(zone
);
1943 * Builds allocation fallback zone lists.
1945 * Add all populated zones of a node to the zonelist.
1947 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
1948 int nr_zones
, enum zone_type zone_type
)
1952 BUG_ON(zone_type
>= MAX_NR_ZONES
);
1957 zone
= pgdat
->node_zones
+ zone_type
;
1958 if (populated_zone(zone
)) {
1959 zoneref_set_zone(zone
,
1960 &zonelist
->_zonerefs
[nr_zones
++]);
1961 check_highest_zone(zone_type
);
1964 } while (zone_type
);
1971 * 0 = automatic detection of better ordering.
1972 * 1 = order by ([node] distance, -zonetype)
1973 * 2 = order by (-zonetype, [node] distance)
1975 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1976 * the same zonelist. So only NUMA can configure this param.
1978 #define ZONELIST_ORDER_DEFAULT 0
1979 #define ZONELIST_ORDER_NODE 1
1980 #define ZONELIST_ORDER_ZONE 2
1982 /* zonelist order in the kernel.
1983 * set_zonelist_order() will set this to NODE or ZONE.
1985 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1986 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
1990 /* The value user specified ....changed by config */
1991 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1992 /* string for sysctl */
1993 #define NUMA_ZONELIST_ORDER_LEN 16
1994 char numa_zonelist_order
[16] = "default";
1997 * interface for configure zonelist ordering.
1998 * command line option "numa_zonelist_order"
1999 * = "[dD]efault - default, automatic configuration.
2000 * = "[nN]ode - order by node locality, then by zone within node
2001 * = "[zZ]one - order by zone, then by locality within zone
2004 static int __parse_numa_zonelist_order(char *s
)
2006 if (*s
== 'd' || *s
== 'D') {
2007 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2008 } else if (*s
== 'n' || *s
== 'N') {
2009 user_zonelist_order
= ZONELIST_ORDER_NODE
;
2010 } else if (*s
== 'z' || *s
== 'Z') {
2011 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
2014 "Ignoring invalid numa_zonelist_order value: "
2021 static __init
int setup_numa_zonelist_order(char *s
)
2024 return __parse_numa_zonelist_order(s
);
2027 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2030 * sysctl handler for numa_zonelist_order
2032 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2033 struct file
*file
, void __user
*buffer
, size_t *length
,
2036 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2040 strncpy(saved_string
, (char*)table
->data
,
2041 NUMA_ZONELIST_ORDER_LEN
);
2042 ret
= proc_dostring(table
, write
, file
, buffer
, length
, ppos
);
2046 int oldval
= user_zonelist_order
;
2047 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2049 * bogus value. restore saved string
2051 strncpy((char*)table
->data
, saved_string
,
2052 NUMA_ZONELIST_ORDER_LEN
);
2053 user_zonelist_order
= oldval
;
2054 } else if (oldval
!= user_zonelist_order
)
2055 build_all_zonelists();
2061 #define MAX_NODE_LOAD (num_online_nodes())
2062 static int node_load
[MAX_NUMNODES
];
2065 * find_next_best_node - find the next node that should appear in a given node's fallback list
2066 * @node: node whose fallback list we're appending
2067 * @used_node_mask: nodemask_t of already used nodes
2069 * We use a number of factors to determine which is the next node that should
2070 * appear on a given node's fallback list. The node should not have appeared
2071 * already in @node's fallback list, and it should be the next closest node
2072 * according to the distance array (which contains arbitrary distance values
2073 * from each node to each node in the system), and should also prefer nodes
2074 * with no CPUs, since presumably they'll have very little allocation pressure
2075 * on them otherwise.
2076 * It returns -1 if no node is found.
2078 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2081 int min_val
= INT_MAX
;
2083 node_to_cpumask_ptr(tmp
, 0);
2085 /* Use the local node if we haven't already */
2086 if (!node_isset(node
, *used_node_mask
)) {
2087 node_set(node
, *used_node_mask
);
2091 for_each_node_state(n
, N_HIGH_MEMORY
) {
2093 /* Don't want a node to appear more than once */
2094 if (node_isset(n
, *used_node_mask
))
2097 /* Use the distance array to find the distance */
2098 val
= node_distance(node
, n
);
2100 /* Penalize nodes under us ("prefer the next node") */
2103 /* Give preference to headless and unused nodes */
2104 node_to_cpumask_ptr_next(tmp
, n
);
2105 if (!cpus_empty(*tmp
))
2106 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2108 /* Slight preference for less loaded node */
2109 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2110 val
+= node_load
[n
];
2112 if (val
< min_val
) {
2119 node_set(best_node
, *used_node_mask
);
2126 * Build zonelists ordered by node and zones within node.
2127 * This results in maximum locality--normal zone overflows into local
2128 * DMA zone, if any--but risks exhausting DMA zone.
2130 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2133 struct zonelist
*zonelist
;
2135 zonelist
= &pgdat
->node_zonelists
[0];
2136 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2138 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2140 zonelist
->_zonerefs
[j
].zone
= NULL
;
2141 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2145 * Build gfp_thisnode zonelists
2147 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2150 struct zonelist
*zonelist
;
2152 zonelist
= &pgdat
->node_zonelists
[1];
2153 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2154 zonelist
->_zonerefs
[j
].zone
= NULL
;
2155 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2159 * Build zonelists ordered by zone and nodes within zones.
2160 * This results in conserving DMA zone[s] until all Normal memory is
2161 * exhausted, but results in overflowing to remote node while memory
2162 * may still exist in local DMA zone.
2164 static int node_order
[MAX_NUMNODES
];
2166 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2169 int zone_type
; /* needs to be signed */
2171 struct zonelist
*zonelist
;
2173 zonelist
= &pgdat
->node_zonelists
[0];
2175 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2176 for (j
= 0; j
< nr_nodes
; j
++) {
2177 node
= node_order
[j
];
2178 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2179 if (populated_zone(z
)) {
2181 &zonelist
->_zonerefs
[pos
++]);
2182 check_highest_zone(zone_type
);
2186 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2187 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2190 static int default_zonelist_order(void)
2193 unsigned long low_kmem_size
,total_size
;
2197 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2198 * If they are really small and used heavily, the system can fall
2199 * into OOM very easily.
2200 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2202 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2205 for_each_online_node(nid
) {
2206 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2207 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2208 if (populated_zone(z
)) {
2209 if (zone_type
< ZONE_NORMAL
)
2210 low_kmem_size
+= z
->present_pages
;
2211 total_size
+= z
->present_pages
;
2215 if (!low_kmem_size
|| /* there are no DMA area. */
2216 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2217 return ZONELIST_ORDER_NODE
;
2219 * look into each node's config.
2220 * If there is a node whose DMA/DMA32 memory is very big area on
2221 * local memory, NODE_ORDER may be suitable.
2223 average_size
= total_size
/
2224 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2225 for_each_online_node(nid
) {
2228 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2229 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2230 if (populated_zone(z
)) {
2231 if (zone_type
< ZONE_NORMAL
)
2232 low_kmem_size
+= z
->present_pages
;
2233 total_size
+= z
->present_pages
;
2236 if (low_kmem_size
&&
2237 total_size
> average_size
&& /* ignore small node */
2238 low_kmem_size
> total_size
* 70/100)
2239 return ZONELIST_ORDER_NODE
;
2241 return ZONELIST_ORDER_ZONE
;
2244 static void set_zonelist_order(void)
2246 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2247 current_zonelist_order
= default_zonelist_order();
2249 current_zonelist_order
= user_zonelist_order
;
2252 static void build_zonelists(pg_data_t
*pgdat
)
2256 nodemask_t used_mask
;
2257 int local_node
, prev_node
;
2258 struct zonelist
*zonelist
;
2259 int order
= current_zonelist_order
;
2261 /* initialize zonelists */
2262 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2263 zonelist
= pgdat
->node_zonelists
+ i
;
2264 zonelist
->_zonerefs
[0].zone
= NULL
;
2265 zonelist
->_zonerefs
[0].zone_idx
= 0;
2268 /* NUMA-aware ordering of nodes */
2269 local_node
= pgdat
->node_id
;
2270 load
= num_online_nodes();
2271 prev_node
= local_node
;
2272 nodes_clear(used_mask
);
2274 memset(node_load
, 0, sizeof(node_load
));
2275 memset(node_order
, 0, sizeof(node_order
));
2278 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2279 int distance
= node_distance(local_node
, node
);
2282 * If another node is sufficiently far away then it is better
2283 * to reclaim pages in a zone before going off node.
2285 if (distance
> RECLAIM_DISTANCE
)
2286 zone_reclaim_mode
= 1;
2289 * We don't want to pressure a particular node.
2290 * So adding penalty to the first node in same
2291 * distance group to make it round-robin.
2293 if (distance
!= node_distance(local_node
, prev_node
))
2294 node_load
[node
] = load
;
2298 if (order
== ZONELIST_ORDER_NODE
)
2299 build_zonelists_in_node_order(pgdat
, node
);
2301 node_order
[j
++] = node
; /* remember order */
2304 if (order
== ZONELIST_ORDER_ZONE
) {
2305 /* calculate node order -- i.e., DMA last! */
2306 build_zonelists_in_zone_order(pgdat
, j
);
2309 build_thisnode_zonelists(pgdat
);
2312 /* Construct the zonelist performance cache - see further mmzone.h */
2313 static void build_zonelist_cache(pg_data_t
*pgdat
)
2315 struct zonelist
*zonelist
;
2316 struct zonelist_cache
*zlc
;
2319 zonelist
= &pgdat
->node_zonelists
[0];
2320 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2321 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2322 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
2323 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
2327 #else /* CONFIG_NUMA */
2329 static void set_zonelist_order(void)
2331 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2334 static void build_zonelists(pg_data_t
*pgdat
)
2336 int node
, local_node
;
2338 struct zonelist
*zonelist
;
2340 local_node
= pgdat
->node_id
;
2342 zonelist
= &pgdat
->node_zonelists
[0];
2343 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2346 * Now we build the zonelist so that it contains the zones
2347 * of all the other nodes.
2348 * We don't want to pressure a particular node, so when
2349 * building the zones for node N, we make sure that the
2350 * zones coming right after the local ones are those from
2351 * node N+1 (modulo N)
2353 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
2354 if (!node_online(node
))
2356 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2359 for (node
= 0; node
< local_node
; node
++) {
2360 if (!node_online(node
))
2362 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2366 zonelist
->_zonerefs
[j
].zone
= NULL
;
2367 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2370 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2371 static void build_zonelist_cache(pg_data_t
*pgdat
)
2373 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
2376 #endif /* CONFIG_NUMA */
2378 /* return values int ....just for stop_machine() */
2379 static int __build_all_zonelists(void *dummy
)
2383 for_each_online_node(nid
) {
2384 pg_data_t
*pgdat
= NODE_DATA(nid
);
2386 build_zonelists(pgdat
);
2387 build_zonelist_cache(pgdat
);
2392 void build_all_zonelists(void)
2394 set_zonelist_order();
2396 if (system_state
== SYSTEM_BOOTING
) {
2397 __build_all_zonelists(NULL
);
2398 mminit_verify_zonelist();
2399 cpuset_init_current_mems_allowed();
2401 /* we have to stop all cpus to guarantee there is no user
2403 stop_machine(__build_all_zonelists
, NULL
, NULL
);
2404 /* cpuset refresh routine should be here */
2406 vm_total_pages
= nr_free_pagecache_pages();
2408 * Disable grouping by mobility if the number of pages in the
2409 * system is too low to allow the mechanism to work. It would be
2410 * more accurate, but expensive to check per-zone. This check is
2411 * made on memory-hotadd so a system can start with mobility
2412 * disabled and enable it later
2414 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
2415 page_group_by_mobility_disabled
= 1;
2417 page_group_by_mobility_disabled
= 0;
2419 printk("Built %i zonelists in %s order, mobility grouping %s. "
2420 "Total pages: %ld\n",
2422 zonelist_order_name
[current_zonelist_order
],
2423 page_group_by_mobility_disabled
? "off" : "on",
2426 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
2431 * Helper functions to size the waitqueue hash table.
2432 * Essentially these want to choose hash table sizes sufficiently
2433 * large so that collisions trying to wait on pages are rare.
2434 * But in fact, the number of active page waitqueues on typical
2435 * systems is ridiculously low, less than 200. So this is even
2436 * conservative, even though it seems large.
2438 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2439 * waitqueues, i.e. the size of the waitq table given the number of pages.
2441 #define PAGES_PER_WAITQUEUE 256
2443 #ifndef CONFIG_MEMORY_HOTPLUG
2444 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2446 unsigned long size
= 1;
2448 pages
/= PAGES_PER_WAITQUEUE
;
2450 while (size
< pages
)
2454 * Once we have dozens or even hundreds of threads sleeping
2455 * on IO we've got bigger problems than wait queue collision.
2456 * Limit the size of the wait table to a reasonable size.
2458 size
= min(size
, 4096UL);
2460 return max(size
, 4UL);
2464 * A zone's size might be changed by hot-add, so it is not possible to determine
2465 * a suitable size for its wait_table. So we use the maximum size now.
2467 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2469 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2470 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2471 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2473 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2474 * or more by the traditional way. (See above). It equals:
2476 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2477 * ia64(16K page size) : = ( 8G + 4M)byte.
2478 * powerpc (64K page size) : = (32G +16M)byte.
2480 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2487 * This is an integer logarithm so that shifts can be used later
2488 * to extract the more random high bits from the multiplicative
2489 * hash function before the remainder is taken.
2491 static inline unsigned long wait_table_bits(unsigned long size
)
2496 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2499 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2500 * of blocks reserved is based on zone->pages_min. The memory within the
2501 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2502 * higher will lead to a bigger reserve which will get freed as contiguous
2503 * blocks as reclaim kicks in
2505 static void setup_zone_migrate_reserve(struct zone
*zone
)
2507 unsigned long start_pfn
, pfn
, end_pfn
;
2509 unsigned long reserve
, block_migratetype
;
2511 /* Get the start pfn, end pfn and the number of blocks to reserve */
2512 start_pfn
= zone
->zone_start_pfn
;
2513 end_pfn
= start_pfn
+ zone
->spanned_pages
;
2514 reserve
= roundup(zone
->pages_min
, pageblock_nr_pages
) >>
2517 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
2518 if (!pfn_valid(pfn
))
2520 page
= pfn_to_page(pfn
);
2522 /* Watch out for overlapping nodes */
2523 if (page_to_nid(page
) != zone_to_nid(zone
))
2526 /* Blocks with reserved pages will never free, skip them. */
2527 if (PageReserved(page
))
2530 block_migratetype
= get_pageblock_migratetype(page
);
2532 /* If this block is reserved, account for it */
2533 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
2538 /* Suitable for reserving if this block is movable */
2539 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
2540 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
2541 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
2547 * If the reserve is met and this is a previous reserved block,
2550 if (block_migratetype
== MIGRATE_RESERVE
) {
2551 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2552 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
2558 * Initially all pages are reserved - free ones are freed
2559 * up by free_all_bootmem() once the early boot process is
2560 * done. Non-atomic initialization, single-pass.
2562 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
2563 unsigned long start_pfn
, enum memmap_context context
)
2566 unsigned long end_pfn
= start_pfn
+ size
;
2570 z
= &NODE_DATA(nid
)->node_zones
[zone
];
2571 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
2573 * There can be holes in boot-time mem_map[]s
2574 * handed to this function. They do not
2575 * exist on hotplugged memory.
2577 if (context
== MEMMAP_EARLY
) {
2578 if (!early_pfn_valid(pfn
))
2580 if (!early_pfn_in_nid(pfn
, nid
))
2583 page
= pfn_to_page(pfn
);
2584 set_page_links(page
, zone
, nid
, pfn
);
2585 mminit_verify_page_links(page
, zone
, nid
, pfn
);
2586 init_page_count(page
);
2587 reset_page_mapcount(page
);
2588 SetPageReserved(page
);
2590 * Mark the block movable so that blocks are reserved for
2591 * movable at startup. This will force kernel allocations
2592 * to reserve their blocks rather than leaking throughout
2593 * the address space during boot when many long-lived
2594 * kernel allocations are made. Later some blocks near
2595 * the start are marked MIGRATE_RESERVE by
2596 * setup_zone_migrate_reserve()
2598 * bitmap is created for zone's valid pfn range. but memmap
2599 * can be created for invalid pages (for alignment)
2600 * check here not to call set_pageblock_migratetype() against
2603 if ((z
->zone_start_pfn
<= pfn
)
2604 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
2605 && !(pfn
& (pageblock_nr_pages
- 1)))
2606 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2608 INIT_LIST_HEAD(&page
->lru
);
2609 #ifdef WANT_PAGE_VIRTUAL
2610 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2611 if (!is_highmem_idx(zone
))
2612 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
2617 static void __meminit
zone_init_free_lists(struct zone
*zone
)
2620 for_each_migratetype_order(order
, t
) {
2621 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
2622 zone
->free_area
[order
].nr_free
= 0;
2626 #ifndef __HAVE_ARCH_MEMMAP_INIT
2627 #define memmap_init(size, nid, zone, start_pfn) \
2628 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2631 static int zone_batchsize(struct zone
*zone
)
2636 * The per-cpu-pages pools are set to around 1000th of the
2637 * size of the zone. But no more than 1/2 of a meg.
2639 * OK, so we don't know how big the cache is. So guess.
2641 batch
= zone
->present_pages
/ 1024;
2642 if (batch
* PAGE_SIZE
> 512 * 1024)
2643 batch
= (512 * 1024) / PAGE_SIZE
;
2644 batch
/= 4; /* We effectively *= 4 below */
2649 * Clamp the batch to a 2^n - 1 value. Having a power
2650 * of 2 value was found to be more likely to have
2651 * suboptimal cache aliasing properties in some cases.
2653 * For example if 2 tasks are alternately allocating
2654 * batches of pages, one task can end up with a lot
2655 * of pages of one half of the possible page colors
2656 * and the other with pages of the other colors.
2658 batch
= (1 << (fls(batch
+ batch
/2)-1)) - 1;
2663 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
2665 struct per_cpu_pages
*pcp
;
2667 memset(p
, 0, sizeof(*p
));
2671 pcp
->high
= 6 * batch
;
2672 pcp
->batch
= max(1UL, 1 * batch
);
2673 INIT_LIST_HEAD(&pcp
->list
);
2677 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2678 * to the value high for the pageset p.
2681 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
2684 struct per_cpu_pages
*pcp
;
2688 pcp
->batch
= max(1UL, high
/4);
2689 if ((high
/4) > (PAGE_SHIFT
* 8))
2690 pcp
->batch
= PAGE_SHIFT
* 8;
2696 * Boot pageset table. One per cpu which is going to be used for all
2697 * zones and all nodes. The parameters will be set in such a way
2698 * that an item put on a list will immediately be handed over to
2699 * the buddy list. This is safe since pageset manipulation is done
2700 * with interrupts disabled.
2702 * Some NUMA counter updates may also be caught by the boot pagesets.
2704 * The boot_pagesets must be kept even after bootup is complete for
2705 * unused processors and/or zones. They do play a role for bootstrapping
2706 * hotplugged processors.
2708 * zoneinfo_show() and maybe other functions do
2709 * not check if the processor is online before following the pageset pointer.
2710 * Other parts of the kernel may not check if the zone is available.
2712 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
2715 * Dynamically allocate memory for the
2716 * per cpu pageset array in struct zone.
2718 static int __cpuinit
process_zones(int cpu
)
2720 struct zone
*zone
, *dzone
;
2721 int node
= cpu_to_node(cpu
);
2723 node_set_state(node
, N_CPU
); /* this node has a cpu */
2725 for_each_zone(zone
) {
2727 if (!populated_zone(zone
))
2730 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
2732 if (!zone_pcp(zone
, cpu
))
2735 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
2737 if (percpu_pagelist_fraction
)
2738 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
2739 (zone
->present_pages
/ percpu_pagelist_fraction
));
2744 for_each_zone(dzone
) {
2745 if (!populated_zone(dzone
))
2749 kfree(zone_pcp(dzone
, cpu
));
2750 zone_pcp(dzone
, cpu
) = NULL
;
2755 static inline void free_zone_pagesets(int cpu
)
2759 for_each_zone(zone
) {
2760 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
2762 /* Free per_cpu_pageset if it is slab allocated */
2763 if (pset
!= &boot_pageset
[cpu
])
2765 zone_pcp(zone
, cpu
) = NULL
;
2769 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
2770 unsigned long action
,
2773 int cpu
= (long)hcpu
;
2774 int ret
= NOTIFY_OK
;
2777 case CPU_UP_PREPARE
:
2778 case CPU_UP_PREPARE_FROZEN
:
2779 if (process_zones(cpu
))
2782 case CPU_UP_CANCELED
:
2783 case CPU_UP_CANCELED_FROZEN
:
2785 case CPU_DEAD_FROZEN
:
2786 free_zone_pagesets(cpu
);
2794 static struct notifier_block __cpuinitdata pageset_notifier
=
2795 { &pageset_cpuup_callback
, NULL
, 0 };
2797 void __init
setup_per_cpu_pageset(void)
2801 /* Initialize per_cpu_pageset for cpu 0.
2802 * A cpuup callback will do this for every cpu
2803 * as it comes online
2805 err
= process_zones(smp_processor_id());
2807 register_cpu_notifier(&pageset_notifier
);
2812 static noinline __init_refok
2813 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
2816 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2820 * The per-page waitqueue mechanism uses hashed waitqueues
2823 zone
->wait_table_hash_nr_entries
=
2824 wait_table_hash_nr_entries(zone_size_pages
);
2825 zone
->wait_table_bits
=
2826 wait_table_bits(zone
->wait_table_hash_nr_entries
);
2827 alloc_size
= zone
->wait_table_hash_nr_entries
2828 * sizeof(wait_queue_head_t
);
2830 if (!slab_is_available()) {
2831 zone
->wait_table
= (wait_queue_head_t
*)
2832 alloc_bootmem_node(pgdat
, alloc_size
);
2835 * This case means that a zone whose size was 0 gets new memory
2836 * via memory hot-add.
2837 * But it may be the case that a new node was hot-added. In
2838 * this case vmalloc() will not be able to use this new node's
2839 * memory - this wait_table must be initialized to use this new
2840 * node itself as well.
2841 * To use this new node's memory, further consideration will be
2844 zone
->wait_table
= vmalloc(alloc_size
);
2846 if (!zone
->wait_table
)
2849 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
2850 init_waitqueue_head(zone
->wait_table
+ i
);
2855 static __meminit
void zone_pcp_init(struct zone
*zone
)
2858 unsigned long batch
= zone_batchsize(zone
);
2860 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
2862 /* Early boot. Slab allocator not functional yet */
2863 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
2864 setup_pageset(&boot_pageset
[cpu
],0);
2866 setup_pageset(zone_pcp(zone
,cpu
), batch
);
2869 if (zone
->present_pages
)
2870 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
2871 zone
->name
, zone
->present_pages
, batch
);
2874 __meminit
int init_currently_empty_zone(struct zone
*zone
,
2875 unsigned long zone_start_pfn
,
2877 enum memmap_context context
)
2879 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2881 ret
= zone_wait_table_init(zone
, size
);
2884 pgdat
->nr_zones
= zone_idx(zone
) + 1;
2886 zone
->zone_start_pfn
= zone_start_pfn
;
2888 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
2889 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
2891 (unsigned long)zone_idx(zone
),
2892 zone_start_pfn
, (zone_start_pfn
+ size
));
2894 zone_init_free_lists(zone
);
2899 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2901 * Basic iterator support. Return the first range of PFNs for a node
2902 * Note: nid == MAX_NUMNODES returns first region regardless of node
2904 static int __meminit
first_active_region_index_in_nid(int nid
)
2908 for (i
= 0; i
< nr_nodemap_entries
; i
++)
2909 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
2916 * Basic iterator support. Return the next active range of PFNs for a node
2917 * Note: nid == MAX_NUMNODES returns next region regardless of node
2919 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
2921 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
2922 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
2928 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2930 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2931 * Architectures may implement their own version but if add_active_range()
2932 * was used and there are no special requirements, this is a convenient
2935 int __meminit
early_pfn_to_nid(unsigned long pfn
)
2939 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
2940 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
2941 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2943 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
2944 return early_node_map
[i
].nid
;
2949 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2951 /* Basic iterator support to walk early_node_map[] */
2952 #define for_each_active_range_index_in_nid(i, nid) \
2953 for (i = first_active_region_index_in_nid(nid); i != -1; \
2954 i = next_active_region_index_in_nid(i, nid))
2957 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2958 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2959 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2961 * If an architecture guarantees that all ranges registered with
2962 * add_active_ranges() contain no holes and may be freed, this
2963 * this function may be used instead of calling free_bootmem() manually.
2965 void __init
free_bootmem_with_active_regions(int nid
,
2966 unsigned long max_low_pfn
)
2970 for_each_active_range_index_in_nid(i
, nid
) {
2971 unsigned long size_pages
= 0;
2972 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2974 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
2977 if (end_pfn
> max_low_pfn
)
2978 end_pfn
= max_low_pfn
;
2980 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
2981 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
2982 PFN_PHYS(early_node_map
[i
].start_pfn
),
2983 size_pages
<< PAGE_SHIFT
);
2987 void __init
work_with_active_regions(int nid
, work_fn_t work_fn
, void *data
)
2992 for_each_active_range_index_in_nid(i
, nid
) {
2993 ret
= work_fn(early_node_map
[i
].start_pfn
,
2994 early_node_map
[i
].end_pfn
, data
);
3000 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3001 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3003 * If an architecture guarantees that all ranges registered with
3004 * add_active_ranges() contain no holes and may be freed, this
3005 * function may be used instead of calling memory_present() manually.
3007 void __init
sparse_memory_present_with_active_regions(int nid
)
3011 for_each_active_range_index_in_nid(i
, nid
)
3012 memory_present(early_node_map
[i
].nid
,
3013 early_node_map
[i
].start_pfn
,
3014 early_node_map
[i
].end_pfn
);
3018 * push_node_boundaries - Push node boundaries to at least the requested boundary
3019 * @nid: The nid of the node to push the boundary for
3020 * @start_pfn: The start pfn of the node
3021 * @end_pfn: The end pfn of the node
3023 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3024 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3025 * be hotplugged even though no physical memory exists. This function allows
3026 * an arch to push out the node boundaries so mem_map is allocated that can
3029 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3030 void __init
push_node_boundaries(unsigned int nid
,
3031 unsigned long start_pfn
, unsigned long end_pfn
)
3033 mminit_dprintk(MMINIT_TRACE
, "zoneboundary",
3034 "Entering push_node_boundaries(%u, %lu, %lu)\n",
3035 nid
, start_pfn
, end_pfn
);
3037 /* Initialise the boundary for this node if necessary */
3038 if (node_boundary_end_pfn
[nid
] == 0)
3039 node_boundary_start_pfn
[nid
] = -1UL;
3041 /* Update the boundaries */
3042 if (node_boundary_start_pfn
[nid
] > start_pfn
)
3043 node_boundary_start_pfn
[nid
] = start_pfn
;
3044 if (node_boundary_end_pfn
[nid
] < end_pfn
)
3045 node_boundary_end_pfn
[nid
] = end_pfn
;
3048 /* If necessary, push the node boundary out for reserve hotadd */
3049 static void __meminit
account_node_boundary(unsigned int nid
,
3050 unsigned long *start_pfn
, unsigned long *end_pfn
)
3052 mminit_dprintk(MMINIT_TRACE
, "zoneboundary",
3053 "Entering account_node_boundary(%u, %lu, %lu)\n",
3054 nid
, *start_pfn
, *end_pfn
);
3056 /* Return if boundary information has not been provided */
3057 if (node_boundary_end_pfn
[nid
] == 0)
3060 /* Check the boundaries and update if necessary */
3061 if (node_boundary_start_pfn
[nid
] < *start_pfn
)
3062 *start_pfn
= node_boundary_start_pfn
[nid
];
3063 if (node_boundary_end_pfn
[nid
] > *end_pfn
)
3064 *end_pfn
= node_boundary_end_pfn
[nid
];
3067 void __init
push_node_boundaries(unsigned int nid
,
3068 unsigned long start_pfn
, unsigned long end_pfn
) {}
3070 static void __meminit
account_node_boundary(unsigned int nid
,
3071 unsigned long *start_pfn
, unsigned long *end_pfn
) {}
3076 * get_pfn_range_for_nid - Return the start and end page frames for a node
3077 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3078 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3079 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3081 * It returns the start and end page frame of a node based on information
3082 * provided by an arch calling add_active_range(). If called for a node
3083 * with no available memory, a warning is printed and the start and end
3086 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3087 unsigned long *start_pfn
, unsigned long *end_pfn
)
3093 for_each_active_range_index_in_nid(i
, nid
) {
3094 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3095 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3098 if (*start_pfn
== -1UL)
3101 /* Push the node boundaries out if requested */
3102 account_node_boundary(nid
, start_pfn
, end_pfn
);
3106 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3107 * assumption is made that zones within a node are ordered in monotonic
3108 * increasing memory addresses so that the "highest" populated zone is used
3110 static void __init
find_usable_zone_for_movable(void)
3113 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3114 if (zone_index
== ZONE_MOVABLE
)
3117 if (arch_zone_highest_possible_pfn
[zone_index
] >
3118 arch_zone_lowest_possible_pfn
[zone_index
])
3122 VM_BUG_ON(zone_index
== -1);
3123 movable_zone
= zone_index
;
3127 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3128 * because it is sized independant of architecture. Unlike the other zones,
3129 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3130 * in each node depending on the size of each node and how evenly kernelcore
3131 * is distributed. This helper function adjusts the zone ranges
3132 * provided by the architecture for a given node by using the end of the
3133 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3134 * zones within a node are in order of monotonic increases memory addresses
3136 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3137 unsigned long zone_type
,
3138 unsigned long node_start_pfn
,
3139 unsigned long node_end_pfn
,
3140 unsigned long *zone_start_pfn
,
3141 unsigned long *zone_end_pfn
)
3143 /* Only adjust if ZONE_MOVABLE is on this node */
3144 if (zone_movable_pfn
[nid
]) {
3145 /* Size ZONE_MOVABLE */
3146 if (zone_type
== ZONE_MOVABLE
) {
3147 *zone_start_pfn
= zone_movable_pfn
[nid
];
3148 *zone_end_pfn
= min(node_end_pfn
,
3149 arch_zone_highest_possible_pfn
[movable_zone
]);
3151 /* Adjust for ZONE_MOVABLE starting within this range */
3152 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3153 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3154 *zone_end_pfn
= zone_movable_pfn
[nid
];
3156 /* Check if this whole range is within ZONE_MOVABLE */
3157 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3158 *zone_start_pfn
= *zone_end_pfn
;
3163 * Return the number of pages a zone spans in a node, including holes
3164 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3166 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3167 unsigned long zone_type
,
3168 unsigned long *ignored
)
3170 unsigned long node_start_pfn
, node_end_pfn
;
3171 unsigned long zone_start_pfn
, zone_end_pfn
;
3173 /* Get the start and end of the node and zone */
3174 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3175 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3176 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3177 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3178 node_start_pfn
, node_end_pfn
,
3179 &zone_start_pfn
, &zone_end_pfn
);
3181 /* Check that this node has pages within the zone's required range */
3182 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3185 /* Move the zone boundaries inside the node if necessary */
3186 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3187 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3189 /* Return the spanned pages */
3190 return zone_end_pfn
- zone_start_pfn
;
3194 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3195 * then all holes in the requested range will be accounted for.
3197 static unsigned long __meminit
__absent_pages_in_range(int nid
,
3198 unsigned long range_start_pfn
,
3199 unsigned long range_end_pfn
)
3202 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
3203 unsigned long start_pfn
;
3205 /* Find the end_pfn of the first active range of pfns in the node */
3206 i
= first_active_region_index_in_nid(nid
);
3210 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3212 /* Account for ranges before physical memory on this node */
3213 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
3214 hole_pages
= prev_end_pfn
- range_start_pfn
;
3216 /* Find all holes for the zone within the node */
3217 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
3219 /* No need to continue if prev_end_pfn is outside the zone */
3220 if (prev_end_pfn
>= range_end_pfn
)
3223 /* Make sure the end of the zone is not within the hole */
3224 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3225 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
3227 /* Update the hole size cound and move on */
3228 if (start_pfn
> range_start_pfn
) {
3229 BUG_ON(prev_end_pfn
> start_pfn
);
3230 hole_pages
+= start_pfn
- prev_end_pfn
;
3232 prev_end_pfn
= early_node_map
[i
].end_pfn
;
3235 /* Account for ranges past physical memory on this node */
3236 if (range_end_pfn
> prev_end_pfn
)
3237 hole_pages
+= range_end_pfn
-
3238 max(range_start_pfn
, prev_end_pfn
);
3244 * absent_pages_in_range - Return number of page frames in holes within a range
3245 * @start_pfn: The start PFN to start searching for holes
3246 * @end_pfn: The end PFN to stop searching for holes
3248 * It returns the number of pages frames in memory holes within a range.
3250 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
3251 unsigned long end_pfn
)
3253 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
3256 /* Return the number of page frames in holes in a zone on a node */
3257 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3258 unsigned long zone_type
,
3259 unsigned long *ignored
)
3261 unsigned long node_start_pfn
, node_end_pfn
;
3262 unsigned long zone_start_pfn
, zone_end_pfn
;
3264 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3265 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
3267 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
3270 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3271 node_start_pfn
, node_end_pfn
,
3272 &zone_start_pfn
, &zone_end_pfn
);
3273 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
3277 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3278 unsigned long zone_type
,
3279 unsigned long *zones_size
)
3281 return zones_size
[zone_type
];
3284 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3285 unsigned long zone_type
,
3286 unsigned long *zholes_size
)
3291 return zholes_size
[zone_type
];
3296 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
3297 unsigned long *zones_size
, unsigned long *zholes_size
)
3299 unsigned long realtotalpages
, totalpages
= 0;
3302 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3303 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
3305 pgdat
->node_spanned_pages
= totalpages
;
3307 realtotalpages
= totalpages
;
3308 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3310 zone_absent_pages_in_node(pgdat
->node_id
, i
,
3312 pgdat
->node_present_pages
= realtotalpages
;
3313 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
3317 #ifndef CONFIG_SPARSEMEM
3319 * Calculate the size of the zone->blockflags rounded to an unsigned long
3320 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3321 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3322 * round what is now in bits to nearest long in bits, then return it in
3325 static unsigned long __init
usemap_size(unsigned long zonesize
)
3327 unsigned long usemapsize
;
3329 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
3330 usemapsize
= usemapsize
>> pageblock_order
;
3331 usemapsize
*= NR_PAGEBLOCK_BITS
;
3332 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
3334 return usemapsize
/ 8;
3337 static void __init
setup_usemap(struct pglist_data
*pgdat
,
3338 struct zone
*zone
, unsigned long zonesize
)
3340 unsigned long usemapsize
= usemap_size(zonesize
);
3341 zone
->pageblock_flags
= NULL
;
3343 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
3344 memset(zone
->pageblock_flags
, 0, usemapsize
);
3348 static void inline setup_usemap(struct pglist_data
*pgdat
,
3349 struct zone
*zone
, unsigned long zonesize
) {}
3350 #endif /* CONFIG_SPARSEMEM */
3352 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3354 /* Return a sensible default order for the pageblock size. */
3355 static inline int pageblock_default_order(void)
3357 if (HPAGE_SHIFT
> PAGE_SHIFT
)
3358 return HUGETLB_PAGE_ORDER
;
3363 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3364 static inline void __init
set_pageblock_order(unsigned int order
)
3366 /* Check that pageblock_nr_pages has not already been setup */
3367 if (pageblock_order
)
3371 * Assume the largest contiguous order of interest is a huge page.
3372 * This value may be variable depending on boot parameters on IA64
3374 pageblock_order
= order
;
3376 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3379 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3380 * and pageblock_default_order() are unused as pageblock_order is set
3381 * at compile-time. See include/linux/pageblock-flags.h for the values of
3382 * pageblock_order based on the kernel config
3384 static inline int pageblock_default_order(unsigned int order
)
3388 #define set_pageblock_order(x) do {} while (0)
3390 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3393 * Set up the zone data structures:
3394 * - mark all pages reserved
3395 * - mark all memory queues empty
3396 * - clear the memory bitmaps
3398 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
3399 unsigned long *zones_size
, unsigned long *zholes_size
)
3402 int nid
= pgdat
->node_id
;
3403 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
3406 pgdat_resize_init(pgdat
);
3407 pgdat
->nr_zones
= 0;
3408 init_waitqueue_head(&pgdat
->kswapd_wait
);
3409 pgdat
->kswapd_max_order
= 0;
3411 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
3412 struct zone
*zone
= pgdat
->node_zones
+ j
;
3413 unsigned long size
, realsize
, memmap_pages
;
3415 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
3416 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
3420 * Adjust realsize so that it accounts for how much memory
3421 * is used by this zone for memmap. This affects the watermark
3422 * and per-cpu initialisations
3425 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
3426 if (realsize
>= memmap_pages
) {
3427 realsize
-= memmap_pages
;
3428 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3429 "%s zone: %lu pages used for memmap\n",
3430 zone_names
[j
], memmap_pages
);
3433 " %s zone: %lu pages exceeds realsize %lu\n",
3434 zone_names
[j
], memmap_pages
, realsize
);
3436 /* Account for reserved pages */
3437 if (j
== 0 && realsize
> dma_reserve
) {
3438 realsize
-= dma_reserve
;
3439 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3440 "%s zone: %lu pages reserved\n",
3441 zone_names
[0], dma_reserve
);
3444 if (!is_highmem_idx(j
))
3445 nr_kernel_pages
+= realsize
;
3446 nr_all_pages
+= realsize
;
3448 zone
->spanned_pages
= size
;
3449 zone
->present_pages
= realsize
;
3452 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
3454 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
3456 zone
->name
= zone_names
[j
];
3457 spin_lock_init(&zone
->lock
);
3458 spin_lock_init(&zone
->lru_lock
);
3459 zone_seqlock_init(zone
);
3460 zone
->zone_pgdat
= pgdat
;
3462 zone
->prev_priority
= DEF_PRIORITY
;
3464 zone_pcp_init(zone
);
3465 INIT_LIST_HEAD(&zone
->active_list
);
3466 INIT_LIST_HEAD(&zone
->inactive_list
);
3467 zone
->nr_scan_active
= 0;
3468 zone
->nr_scan_inactive
= 0;
3469 zap_zone_vm_stats(zone
);
3474 set_pageblock_order(pageblock_default_order());
3475 setup_usemap(pgdat
, zone
, size
);
3476 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
3477 size
, MEMMAP_EARLY
);
3479 memmap_init(size
, nid
, j
, zone_start_pfn
);
3480 zone_start_pfn
+= size
;
3484 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
3486 /* Skip empty nodes */
3487 if (!pgdat
->node_spanned_pages
)
3490 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3491 /* ia64 gets its own node_mem_map, before this, without bootmem */
3492 if (!pgdat
->node_mem_map
) {
3493 unsigned long size
, start
, end
;
3497 * The zone's endpoints aren't required to be MAX_ORDER
3498 * aligned but the node_mem_map endpoints must be in order
3499 * for the buddy allocator to function correctly.
3501 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
3502 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
3503 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
3504 size
= (end
- start
) * sizeof(struct page
);
3505 map
= alloc_remap(pgdat
->node_id
, size
);
3507 map
= alloc_bootmem_node(pgdat
, size
);
3508 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
3510 #ifndef CONFIG_NEED_MULTIPLE_NODES
3512 * With no DISCONTIG, the global mem_map is just set as node 0's
3514 if (pgdat
== NODE_DATA(0)) {
3515 mem_map
= NODE_DATA(0)->node_mem_map
;
3516 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3517 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
3518 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
3519 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3522 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3525 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
3526 unsigned long node_start_pfn
, unsigned long *zholes_size
)
3528 pg_data_t
*pgdat
= NODE_DATA(nid
);
3530 pgdat
->node_id
= nid
;
3531 pgdat
->node_start_pfn
= node_start_pfn
;
3532 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
3534 alloc_node_mem_map(pgdat
);
3535 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3536 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3537 nid
, (unsigned long)pgdat
,
3538 (unsigned long)pgdat
->node_mem_map
);
3541 free_area_init_core(pgdat
, zones_size
, zholes_size
);
3544 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3546 #if MAX_NUMNODES > 1
3548 * Figure out the number of possible node ids.
3550 static void __init
setup_nr_node_ids(void)
3553 unsigned int highest
= 0;
3555 for_each_node_mask(node
, node_possible_map
)
3557 nr_node_ids
= highest
+ 1;
3560 static inline void setup_nr_node_ids(void)
3566 * add_active_range - Register a range of PFNs backed by physical memory
3567 * @nid: The node ID the range resides on
3568 * @start_pfn: The start PFN of the available physical memory
3569 * @end_pfn: The end PFN of the available physical memory
3571 * These ranges are stored in an early_node_map[] and later used by
3572 * free_area_init_nodes() to calculate zone sizes and holes. If the
3573 * range spans a memory hole, it is up to the architecture to ensure
3574 * the memory is not freed by the bootmem allocator. If possible
3575 * the range being registered will be merged with existing ranges.
3577 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
3578 unsigned long end_pfn
)
3582 mminit_dprintk(MMINIT_TRACE
, "memory_register",
3583 "Entering add_active_range(%d, %#lx, %#lx) "
3584 "%d entries of %d used\n",
3585 nid
, start_pfn
, end_pfn
,
3586 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
3588 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
3590 /* Merge with existing active regions if possible */
3591 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3592 if (early_node_map
[i
].nid
!= nid
)
3595 /* Skip if an existing region covers this new one */
3596 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
3597 end_pfn
<= early_node_map
[i
].end_pfn
)
3600 /* Merge forward if suitable */
3601 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
3602 end_pfn
> early_node_map
[i
].end_pfn
) {
3603 early_node_map
[i
].end_pfn
= end_pfn
;
3607 /* Merge backward if suitable */
3608 if (start_pfn
< early_node_map
[i
].end_pfn
&&
3609 end_pfn
>= early_node_map
[i
].start_pfn
) {
3610 early_node_map
[i
].start_pfn
= start_pfn
;
3615 /* Check that early_node_map is large enough */
3616 if (i
>= MAX_ACTIVE_REGIONS
) {
3617 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
3618 MAX_ACTIVE_REGIONS
);
3622 early_node_map
[i
].nid
= nid
;
3623 early_node_map
[i
].start_pfn
= start_pfn
;
3624 early_node_map
[i
].end_pfn
= end_pfn
;
3625 nr_nodemap_entries
= i
+ 1;
3629 * remove_active_range - Shrink an existing registered range of PFNs
3630 * @nid: The node id the range is on that should be shrunk
3631 * @start_pfn: The new PFN of the range
3632 * @end_pfn: The new PFN of the range
3634 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3635 * The map is kept near the end physical page range that has already been
3636 * registered. This function allows an arch to shrink an existing registered
3639 void __init
remove_active_range(unsigned int nid
, unsigned long start_pfn
,
3640 unsigned long end_pfn
)
3645 printk(KERN_DEBUG
"remove_active_range (%d, %lu, %lu)\n",
3646 nid
, start_pfn
, end_pfn
);
3648 /* Find the old active region end and shrink */
3649 for_each_active_range_index_in_nid(i
, nid
) {
3650 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
3651 early_node_map
[i
].end_pfn
<= end_pfn
) {
3653 early_node_map
[i
].start_pfn
= 0;
3654 early_node_map
[i
].end_pfn
= 0;
3658 if (early_node_map
[i
].start_pfn
< start_pfn
&&
3659 early_node_map
[i
].end_pfn
> start_pfn
) {
3660 unsigned long temp_end_pfn
= early_node_map
[i
].end_pfn
;
3661 early_node_map
[i
].end_pfn
= start_pfn
;
3662 if (temp_end_pfn
> end_pfn
)
3663 add_active_range(nid
, end_pfn
, temp_end_pfn
);
3666 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
3667 early_node_map
[i
].end_pfn
> end_pfn
&&
3668 early_node_map
[i
].start_pfn
< end_pfn
) {
3669 early_node_map
[i
].start_pfn
= end_pfn
;
3677 /* remove the blank ones */
3678 for (i
= nr_nodemap_entries
- 1; i
> 0; i
--) {
3679 if (early_node_map
[i
].nid
!= nid
)
3681 if (early_node_map
[i
].end_pfn
)
3683 /* we found it, get rid of it */
3684 for (j
= i
; j
< nr_nodemap_entries
- 1; j
++)
3685 memcpy(&early_node_map
[j
], &early_node_map
[j
+1],
3686 sizeof(early_node_map
[j
]));
3687 j
= nr_nodemap_entries
- 1;
3688 memset(&early_node_map
[j
], 0, sizeof(early_node_map
[j
]));
3689 nr_nodemap_entries
--;
3694 * remove_all_active_ranges - Remove all currently registered regions
3696 * During discovery, it may be found that a table like SRAT is invalid
3697 * and an alternative discovery method must be used. This function removes
3698 * all currently registered regions.
3700 void __init
remove_all_active_ranges(void)
3702 memset(early_node_map
, 0, sizeof(early_node_map
));
3703 nr_nodemap_entries
= 0;
3704 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3705 memset(node_boundary_start_pfn
, 0, sizeof(node_boundary_start_pfn
));
3706 memset(node_boundary_end_pfn
, 0, sizeof(node_boundary_end_pfn
));
3707 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3710 /* Compare two active node_active_regions */
3711 static int __init
cmp_node_active_region(const void *a
, const void *b
)
3713 struct node_active_region
*arange
= (struct node_active_region
*)a
;
3714 struct node_active_region
*brange
= (struct node_active_region
*)b
;
3716 /* Done this way to avoid overflows */
3717 if (arange
->start_pfn
> brange
->start_pfn
)
3719 if (arange
->start_pfn
< brange
->start_pfn
)
3725 /* sort the node_map by start_pfn */
3726 static void __init
sort_node_map(void)
3728 sort(early_node_map
, (size_t)nr_nodemap_entries
,
3729 sizeof(struct node_active_region
),
3730 cmp_node_active_region
, NULL
);
3733 /* Find the lowest pfn for a node */
3734 static unsigned long __init
find_min_pfn_for_node(int nid
)
3737 unsigned long min_pfn
= ULONG_MAX
;
3739 /* Assuming a sorted map, the first range found has the starting pfn */
3740 for_each_active_range_index_in_nid(i
, nid
)
3741 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
3743 if (min_pfn
== ULONG_MAX
) {
3745 "Could not find start_pfn for node %d\n", nid
);
3753 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3755 * It returns the minimum PFN based on information provided via
3756 * add_active_range().
3758 unsigned long __init
find_min_pfn_with_active_regions(void)
3760 return find_min_pfn_for_node(MAX_NUMNODES
);
3764 * early_calculate_totalpages()
3765 * Sum pages in active regions for movable zone.
3766 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3768 static unsigned long __init
early_calculate_totalpages(void)
3771 unsigned long totalpages
= 0;
3773 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3774 unsigned long pages
= early_node_map
[i
].end_pfn
-
3775 early_node_map
[i
].start_pfn
;
3776 totalpages
+= pages
;
3778 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
3784 * Find the PFN the Movable zone begins in each node. Kernel memory
3785 * is spread evenly between nodes as long as the nodes have enough
3786 * memory. When they don't, some nodes will have more kernelcore than
3789 static void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
3792 unsigned long usable_startpfn
;
3793 unsigned long kernelcore_node
, kernelcore_remaining
;
3794 unsigned long totalpages
= early_calculate_totalpages();
3795 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
3798 * If movablecore was specified, calculate what size of
3799 * kernelcore that corresponds so that memory usable for
3800 * any allocation type is evenly spread. If both kernelcore
3801 * and movablecore are specified, then the value of kernelcore
3802 * will be used for required_kernelcore if it's greater than
3803 * what movablecore would have allowed.
3805 if (required_movablecore
) {
3806 unsigned long corepages
;
3809 * Round-up so that ZONE_MOVABLE is at least as large as what
3810 * was requested by the user
3812 required_movablecore
=
3813 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
3814 corepages
= totalpages
- required_movablecore
;
3816 required_kernelcore
= max(required_kernelcore
, corepages
);
3819 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3820 if (!required_kernelcore
)
3823 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3824 find_usable_zone_for_movable();
3825 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
3828 /* Spread kernelcore memory as evenly as possible throughout nodes */
3829 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3830 for_each_node_state(nid
, N_HIGH_MEMORY
) {
3832 * Recalculate kernelcore_node if the division per node
3833 * now exceeds what is necessary to satisfy the requested
3834 * amount of memory for the kernel
3836 if (required_kernelcore
< kernelcore_node
)
3837 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3840 * As the map is walked, we track how much memory is usable
3841 * by the kernel using kernelcore_remaining. When it is
3842 * 0, the rest of the node is usable by ZONE_MOVABLE
3844 kernelcore_remaining
= kernelcore_node
;
3846 /* Go through each range of PFNs within this node */
3847 for_each_active_range_index_in_nid(i
, nid
) {
3848 unsigned long start_pfn
, end_pfn
;
3849 unsigned long size_pages
;
3851 start_pfn
= max(early_node_map
[i
].start_pfn
,
3852 zone_movable_pfn
[nid
]);
3853 end_pfn
= early_node_map
[i
].end_pfn
;
3854 if (start_pfn
>= end_pfn
)
3857 /* Account for what is only usable for kernelcore */
3858 if (start_pfn
< usable_startpfn
) {
3859 unsigned long kernel_pages
;
3860 kernel_pages
= min(end_pfn
, usable_startpfn
)
3863 kernelcore_remaining
-= min(kernel_pages
,
3864 kernelcore_remaining
);
3865 required_kernelcore
-= min(kernel_pages
,
3866 required_kernelcore
);
3868 /* Continue if range is now fully accounted */
3869 if (end_pfn
<= usable_startpfn
) {
3872 * Push zone_movable_pfn to the end so
3873 * that if we have to rebalance
3874 * kernelcore across nodes, we will
3875 * not double account here
3877 zone_movable_pfn
[nid
] = end_pfn
;
3880 start_pfn
= usable_startpfn
;
3884 * The usable PFN range for ZONE_MOVABLE is from
3885 * start_pfn->end_pfn. Calculate size_pages as the
3886 * number of pages used as kernelcore
3888 size_pages
= end_pfn
- start_pfn
;
3889 if (size_pages
> kernelcore_remaining
)
3890 size_pages
= kernelcore_remaining
;
3891 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
3894 * Some kernelcore has been met, update counts and
3895 * break if the kernelcore for this node has been
3898 required_kernelcore
-= min(required_kernelcore
,
3900 kernelcore_remaining
-= size_pages
;
3901 if (!kernelcore_remaining
)
3907 * If there is still required_kernelcore, we do another pass with one
3908 * less node in the count. This will push zone_movable_pfn[nid] further
3909 * along on the nodes that still have memory until kernelcore is
3913 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
3916 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3917 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
3918 zone_movable_pfn
[nid
] =
3919 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
3922 /* Any regular memory on that node ? */
3923 static void check_for_regular_memory(pg_data_t
*pgdat
)
3925 #ifdef CONFIG_HIGHMEM
3926 enum zone_type zone_type
;
3928 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
3929 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
3930 if (zone
->present_pages
)
3931 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
3937 * free_area_init_nodes - Initialise all pg_data_t and zone data
3938 * @max_zone_pfn: an array of max PFNs for each zone
3940 * This will call free_area_init_node() for each active node in the system.
3941 * Using the page ranges provided by add_active_range(), the size of each
3942 * zone in each node and their holes is calculated. If the maximum PFN
3943 * between two adjacent zones match, it is assumed that the zone is empty.
3944 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3945 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3946 * starts where the previous one ended. For example, ZONE_DMA32 starts
3947 * at arch_max_dma_pfn.
3949 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
3954 /* Sort early_node_map as initialisation assumes it is sorted */
3957 /* Record where the zone boundaries are */
3958 memset(arch_zone_lowest_possible_pfn
, 0,
3959 sizeof(arch_zone_lowest_possible_pfn
));
3960 memset(arch_zone_highest_possible_pfn
, 0,
3961 sizeof(arch_zone_highest_possible_pfn
));
3962 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
3963 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
3964 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
3965 if (i
== ZONE_MOVABLE
)
3967 arch_zone_lowest_possible_pfn
[i
] =
3968 arch_zone_highest_possible_pfn
[i
-1];
3969 arch_zone_highest_possible_pfn
[i
] =
3970 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
3972 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
3973 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
3975 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3976 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
3977 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
3979 /* Print out the zone ranges */
3980 printk("Zone PFN ranges:\n");
3981 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
3982 if (i
== ZONE_MOVABLE
)
3984 printk(" %-8s %0#10lx -> %0#10lx\n",
3986 arch_zone_lowest_possible_pfn
[i
],
3987 arch_zone_highest_possible_pfn
[i
]);
3990 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3991 printk("Movable zone start PFN for each node\n");
3992 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
3993 if (zone_movable_pfn
[i
])
3994 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
3997 /* Print out the early_node_map[] */
3998 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
3999 for (i
= 0; i
< nr_nodemap_entries
; i
++)
4000 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map
[i
].nid
,
4001 early_node_map
[i
].start_pfn
,
4002 early_node_map
[i
].end_pfn
);
4004 /* Initialise every node */
4005 mminit_verify_pageflags_layout();
4006 setup_nr_node_ids();
4007 for_each_online_node(nid
) {
4008 pg_data_t
*pgdat
= NODE_DATA(nid
);
4009 free_area_init_node(nid
, NULL
,
4010 find_min_pfn_for_node(nid
), NULL
);
4012 /* Any memory on that node */
4013 if (pgdat
->node_present_pages
)
4014 node_set_state(nid
, N_HIGH_MEMORY
);
4015 check_for_regular_memory(pgdat
);
4019 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
4021 unsigned long long coremem
;
4025 coremem
= memparse(p
, &p
);
4026 *core
= coremem
>> PAGE_SHIFT
;
4028 /* Paranoid check that UL is enough for the coremem value */
4029 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
4035 * kernelcore=size sets the amount of memory for use for allocations that
4036 * cannot be reclaimed or migrated.
4038 static int __init
cmdline_parse_kernelcore(char *p
)
4040 return cmdline_parse_core(p
, &required_kernelcore
);
4044 * movablecore=size sets the amount of memory for use for allocations that
4045 * can be reclaimed or migrated.
4047 static int __init
cmdline_parse_movablecore(char *p
)
4049 return cmdline_parse_core(p
, &required_movablecore
);
4052 early_param("kernelcore", cmdline_parse_kernelcore
);
4053 early_param("movablecore", cmdline_parse_movablecore
);
4055 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4058 * set_dma_reserve - set the specified number of pages reserved in the first zone
4059 * @new_dma_reserve: The number of pages to mark reserved
4061 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4062 * In the DMA zone, a significant percentage may be consumed by kernel image
4063 * and other unfreeable allocations which can skew the watermarks badly. This
4064 * function may optionally be used to account for unfreeable pages in the
4065 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4066 * smaller per-cpu batchsize.
4068 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
4070 dma_reserve
= new_dma_reserve
;
4073 #ifndef CONFIG_NEED_MULTIPLE_NODES
4074 struct pglist_data __refdata contig_page_data
= { .bdata
= &bootmem_node_data
[0] };
4075 EXPORT_SYMBOL(contig_page_data
);
4078 void __init
free_area_init(unsigned long *zones_size
)
4080 free_area_init_node(0, zones_size
,
4081 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4084 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4085 unsigned long action
, void *hcpu
)
4087 int cpu
= (unsigned long)hcpu
;
4089 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4093 * Spill the event counters of the dead processor
4094 * into the current processors event counters.
4095 * This artificially elevates the count of the current
4098 vm_events_fold_cpu(cpu
);
4101 * Zero the differential counters of the dead processor
4102 * so that the vm statistics are consistent.
4104 * This is only okay since the processor is dead and cannot
4105 * race with what we are doing.
4107 refresh_cpu_vm_stats(cpu
);
4112 void __init
page_alloc_init(void)
4114 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4118 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4119 * or min_free_kbytes changes.
4121 static void calculate_totalreserve_pages(void)
4123 struct pglist_data
*pgdat
;
4124 unsigned long reserve_pages
= 0;
4125 enum zone_type i
, j
;
4127 for_each_online_pgdat(pgdat
) {
4128 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4129 struct zone
*zone
= pgdat
->node_zones
+ i
;
4130 unsigned long max
= 0;
4132 /* Find valid and maximum lowmem_reserve in the zone */
4133 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4134 if (zone
->lowmem_reserve
[j
] > max
)
4135 max
= zone
->lowmem_reserve
[j
];
4138 /* we treat pages_high as reserved pages. */
4139 max
+= zone
->pages_high
;
4141 if (max
> zone
->present_pages
)
4142 max
= zone
->present_pages
;
4143 reserve_pages
+= max
;
4146 totalreserve_pages
= reserve_pages
;
4150 * setup_per_zone_lowmem_reserve - called whenever
4151 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4152 * has a correct pages reserved value, so an adequate number of
4153 * pages are left in the zone after a successful __alloc_pages().
4155 static void setup_per_zone_lowmem_reserve(void)
4157 struct pglist_data
*pgdat
;
4158 enum zone_type j
, idx
;
4160 for_each_online_pgdat(pgdat
) {
4161 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4162 struct zone
*zone
= pgdat
->node_zones
+ j
;
4163 unsigned long present_pages
= zone
->present_pages
;
4165 zone
->lowmem_reserve
[j
] = 0;
4169 struct zone
*lower_zone
;
4173 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4174 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4176 lower_zone
= pgdat
->node_zones
+ idx
;
4177 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4178 sysctl_lowmem_reserve_ratio
[idx
];
4179 present_pages
+= lower_zone
->present_pages
;
4184 /* update totalreserve_pages */
4185 calculate_totalreserve_pages();
4189 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4191 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4192 * with respect to min_free_kbytes.
4194 void setup_per_zone_pages_min(void)
4196 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4197 unsigned long lowmem_pages
= 0;
4199 unsigned long flags
;
4201 /* Calculate total number of !ZONE_HIGHMEM pages */
4202 for_each_zone(zone
) {
4203 if (!is_highmem(zone
))
4204 lowmem_pages
+= zone
->present_pages
;
4207 for_each_zone(zone
) {
4210 spin_lock_irqsave(&zone
->lru_lock
, flags
);
4211 tmp
= (u64
)pages_min
* zone
->present_pages
;
4212 do_div(tmp
, lowmem_pages
);
4213 if (is_highmem(zone
)) {
4215 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4216 * need highmem pages, so cap pages_min to a small
4219 * The (pages_high-pages_low) and (pages_low-pages_min)
4220 * deltas controls asynch page reclaim, and so should
4221 * not be capped for highmem.
4225 min_pages
= zone
->present_pages
/ 1024;
4226 if (min_pages
< SWAP_CLUSTER_MAX
)
4227 min_pages
= SWAP_CLUSTER_MAX
;
4228 if (min_pages
> 128)
4230 zone
->pages_min
= min_pages
;
4233 * If it's a lowmem zone, reserve a number of pages
4234 * proportionate to the zone's size.
4236 zone
->pages_min
= tmp
;
4239 zone
->pages_low
= zone
->pages_min
+ (tmp
>> 2);
4240 zone
->pages_high
= zone
->pages_min
+ (tmp
>> 1);
4241 setup_zone_migrate_reserve(zone
);
4242 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4245 /* update totalreserve_pages */
4246 calculate_totalreserve_pages();
4250 * Initialise min_free_kbytes.
4252 * For small machines we want it small (128k min). For large machines
4253 * we want it large (64MB max). But it is not linear, because network
4254 * bandwidth does not increase linearly with machine size. We use
4256 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4257 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4273 static int __init
init_per_zone_pages_min(void)
4275 unsigned long lowmem_kbytes
;
4277 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
4279 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
4280 if (min_free_kbytes
< 128)
4281 min_free_kbytes
= 128;
4282 if (min_free_kbytes
> 65536)
4283 min_free_kbytes
= 65536;
4284 setup_per_zone_pages_min();
4285 setup_per_zone_lowmem_reserve();
4288 module_init(init_per_zone_pages_min
)
4291 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4292 * that we can call two helper functions whenever min_free_kbytes
4295 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
4296 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4298 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
4300 setup_per_zone_pages_min();
4305 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
4306 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4311 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4316 zone
->min_unmapped_pages
= (zone
->present_pages
*
4317 sysctl_min_unmapped_ratio
) / 100;
4321 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
4322 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4327 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4332 zone
->min_slab_pages
= (zone
->present_pages
*
4333 sysctl_min_slab_ratio
) / 100;
4339 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4340 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4341 * whenever sysctl_lowmem_reserve_ratio changes.
4343 * The reserve ratio obviously has absolutely no relation with the
4344 * pages_min watermarks. The lowmem reserve ratio can only make sense
4345 * if in function of the boot time zone sizes.
4347 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
4348 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4350 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4351 setup_per_zone_lowmem_reserve();
4356 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4357 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4358 * can have before it gets flushed back to buddy allocator.
4361 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
4362 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4368 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4369 if (!write
|| (ret
== -EINVAL
))
4371 for_each_zone(zone
) {
4372 for_each_online_cpu(cpu
) {
4374 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
4375 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
4381 int hashdist
= HASHDIST_DEFAULT
;
4384 static int __init
set_hashdist(char *str
)
4388 hashdist
= simple_strtoul(str
, &str
, 0);
4391 __setup("hashdist=", set_hashdist
);
4395 * allocate a large system hash table from bootmem
4396 * - it is assumed that the hash table must contain an exact power-of-2
4397 * quantity of entries
4398 * - limit is the number of hash buckets, not the total allocation size
4400 void *__init
alloc_large_system_hash(const char *tablename
,
4401 unsigned long bucketsize
,
4402 unsigned long numentries
,
4405 unsigned int *_hash_shift
,
4406 unsigned int *_hash_mask
,
4407 unsigned long limit
)
4409 unsigned long long max
= limit
;
4410 unsigned long log2qty
, size
;
4413 /* allow the kernel cmdline to have a say */
4415 /* round applicable memory size up to nearest megabyte */
4416 numentries
= nr_kernel_pages
;
4417 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
4418 numentries
>>= 20 - PAGE_SHIFT
;
4419 numentries
<<= 20 - PAGE_SHIFT
;
4421 /* limit to 1 bucket per 2^scale bytes of low memory */
4422 if (scale
> PAGE_SHIFT
)
4423 numentries
>>= (scale
- PAGE_SHIFT
);
4425 numentries
<<= (PAGE_SHIFT
- scale
);
4427 /* Make sure we've got at least a 0-order allocation.. */
4428 if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
4429 numentries
= PAGE_SIZE
/ bucketsize
;
4431 numentries
= roundup_pow_of_two(numentries
);
4433 /* limit allocation size to 1/16 total memory by default */
4435 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
4436 do_div(max
, bucketsize
);
4439 if (numentries
> max
)
4442 log2qty
= ilog2(numentries
);
4445 size
= bucketsize
<< log2qty
;
4446 if (flags
& HASH_EARLY
)
4447 table
= alloc_bootmem_nopanic(size
);
4449 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
4451 unsigned long order
= get_order(size
);
4452 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
4454 * If bucketsize is not a power-of-two, we may free
4455 * some pages at the end of hash table.
4458 unsigned long alloc_end
= (unsigned long)table
+
4459 (PAGE_SIZE
<< order
);
4460 unsigned long used
= (unsigned long)table
+
4462 split_page(virt_to_page(table
), order
);
4463 while (used
< alloc_end
) {
4469 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
4472 panic("Failed to allocate %s hash table\n", tablename
);
4474 printk(KERN_INFO
"%s hash table entries: %d (order: %d, %lu bytes)\n",
4477 ilog2(size
) - PAGE_SHIFT
,
4481 *_hash_shift
= log2qty
;
4483 *_hash_mask
= (1 << log2qty
) - 1;
4488 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4489 struct page
*pfn_to_page(unsigned long pfn
)
4491 return __pfn_to_page(pfn
);
4493 unsigned long page_to_pfn(struct page
*page
)
4495 return __page_to_pfn(page
);
4497 EXPORT_SYMBOL(pfn_to_page
);
4498 EXPORT_SYMBOL(page_to_pfn
);
4499 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4501 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4502 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
4505 #ifdef CONFIG_SPARSEMEM
4506 return __pfn_to_section(pfn
)->pageblock_flags
;
4508 return zone
->pageblock_flags
;
4509 #endif /* CONFIG_SPARSEMEM */
4512 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
4514 #ifdef CONFIG_SPARSEMEM
4515 pfn
&= (PAGES_PER_SECTION
-1);
4516 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4518 pfn
= pfn
- zone
->zone_start_pfn
;
4519 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4520 #endif /* CONFIG_SPARSEMEM */
4524 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4525 * @page: The page within the block of interest
4526 * @start_bitidx: The first bit of interest to retrieve
4527 * @end_bitidx: The last bit of interest
4528 * returns pageblock_bits flags
4530 unsigned long get_pageblock_flags_group(struct page
*page
,
4531 int start_bitidx
, int end_bitidx
)
4534 unsigned long *bitmap
;
4535 unsigned long pfn
, bitidx
;
4536 unsigned long flags
= 0;
4537 unsigned long value
= 1;
4539 zone
= page_zone(page
);
4540 pfn
= page_to_pfn(page
);
4541 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4542 bitidx
= pfn_to_bitidx(zone
, pfn
);
4544 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4545 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
4552 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4553 * @page: The page within the block of interest
4554 * @start_bitidx: The first bit of interest
4555 * @end_bitidx: The last bit of interest
4556 * @flags: The flags to set
4558 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
4559 int start_bitidx
, int end_bitidx
)
4562 unsigned long *bitmap
;
4563 unsigned long pfn
, bitidx
;
4564 unsigned long value
= 1;
4566 zone
= page_zone(page
);
4567 pfn
= page_to_pfn(page
);
4568 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4569 bitidx
= pfn_to_bitidx(zone
, pfn
);
4570 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
4571 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
4573 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4575 __set_bit(bitidx
+ start_bitidx
, bitmap
);
4577 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
4581 * This is designed as sub function...plz see page_isolation.c also.
4582 * set/clear page block's type to be ISOLATE.
4583 * page allocater never alloc memory from ISOLATE block.
4586 int set_migratetype_isolate(struct page
*page
)
4589 unsigned long flags
;
4592 zone
= page_zone(page
);
4593 spin_lock_irqsave(&zone
->lock
, flags
);
4595 * In future, more migrate types will be able to be isolation target.
4597 if (get_pageblock_migratetype(page
) != MIGRATE_MOVABLE
)
4599 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
4600 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
4603 spin_unlock_irqrestore(&zone
->lock
, flags
);
4609 void unset_migratetype_isolate(struct page
*page
)
4612 unsigned long flags
;
4613 zone
= page_zone(page
);
4614 spin_lock_irqsave(&zone
->lock
, flags
);
4615 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
4617 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4618 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
4620 spin_unlock_irqrestore(&zone
->lock
, flags
);
4623 #ifdef CONFIG_MEMORY_HOTREMOVE
4625 * All pages in the range must be isolated before calling this.
4628 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
4634 unsigned long flags
;
4635 /* find the first valid pfn */
4636 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
4641 zone
= page_zone(pfn_to_page(pfn
));
4642 spin_lock_irqsave(&zone
->lock
, flags
);
4644 while (pfn
< end_pfn
) {
4645 if (!pfn_valid(pfn
)) {
4649 page
= pfn_to_page(pfn
);
4650 BUG_ON(page_count(page
));
4651 BUG_ON(!PageBuddy(page
));
4652 order
= page_order(page
);
4653 #ifdef CONFIG_DEBUG_VM
4654 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
4655 pfn
, 1 << order
, end_pfn
);
4657 list_del(&page
->lru
);
4658 rmv_page_order(page
);
4659 zone
->free_area
[order
].nr_free
--;
4660 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
4662 for (i
= 0; i
< (1 << order
); i
++)
4663 SetPageReserved((page
+i
));
4664 pfn
+= (1 << order
);
4666 spin_unlock_irqrestore(&zone
->lock
, flags
);