1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/skbuff.h>
67 #include <linux/init.h>
68 #include <linux/delay.h>
69 #include <linux/stddef.h>
70 #include <linux/ioctl.h>
71 #include <linux/timex.h>
72 #include <linux/ethtool.h>
73 #include <linux/workqueue.h>
74 #include <linux/if_vlan.h>
76 #include <linux/tcp.h>
79 #include <asm/system.h>
80 #include <asm/uaccess.h>
82 #include <asm/div64.h>
87 #include "s2io-regs.h"
89 #define DRV_VERSION "2.0.26.19"
91 /* S2io Driver name & version. */
92 static char s2io_driver_name
[] = "Neterion";
93 static char s2io_driver_version
[] = DRV_VERSION
;
95 static int rxd_size
[2] = {32,48};
96 static int rxd_count
[2] = {127,85};
98 static inline int RXD_IS_UP2DT(struct RxD_t
*rxdp
)
102 ret
= ((!(rxdp
->Control_1
& RXD_OWN_XENA
)) &&
103 (GET_RXD_MARKER(rxdp
->Control_2
) != THE_RXD_MARK
));
109 * Cards with following subsystem_id have a link state indication
110 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
111 * macro below identifies these cards given the subsystem_id.
113 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
114 (dev_type == XFRAME_I_DEVICE) ? \
115 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
116 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
118 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
119 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
120 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
123 static inline int rx_buffer_level(struct s2io_nic
* sp
, int rxb_size
, int ring
)
125 struct mac_info
*mac_control
;
127 mac_control
= &sp
->mac_control
;
128 if (rxb_size
<= rxd_count
[sp
->rxd_mode
])
130 else if ((mac_control
->rings
[ring
].pkt_cnt
- rxb_size
) > 16)
135 static inline int is_s2io_card_up(const struct s2io_nic
* sp
)
137 return test_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
140 /* Ethtool related variables and Macros. */
141 static char s2io_gstrings
[][ETH_GSTRING_LEN
] = {
142 "Register test\t(offline)",
143 "Eeprom test\t(offline)",
144 "Link test\t(online)",
145 "RLDRAM test\t(offline)",
146 "BIST Test\t(offline)"
149 static char ethtool_xena_stats_keys
[][ETH_GSTRING_LEN
] = {
151 {"tmac_data_octets"},
155 {"tmac_pause_ctrl_frms"},
159 {"tmac_any_err_frms"},
160 {"tmac_ttl_less_fb_octets"},
161 {"tmac_vld_ip_octets"},
169 {"rmac_data_octets"},
170 {"rmac_fcs_err_frms"},
172 {"rmac_vld_mcst_frms"},
173 {"rmac_vld_bcst_frms"},
174 {"rmac_in_rng_len_err_frms"},
175 {"rmac_out_rng_len_err_frms"},
177 {"rmac_pause_ctrl_frms"},
178 {"rmac_unsup_ctrl_frms"},
180 {"rmac_accepted_ucst_frms"},
181 {"rmac_accepted_nucst_frms"},
182 {"rmac_discarded_frms"},
183 {"rmac_drop_events"},
184 {"rmac_ttl_less_fb_octets"},
186 {"rmac_usized_frms"},
187 {"rmac_osized_frms"},
189 {"rmac_jabber_frms"},
190 {"rmac_ttl_64_frms"},
191 {"rmac_ttl_65_127_frms"},
192 {"rmac_ttl_128_255_frms"},
193 {"rmac_ttl_256_511_frms"},
194 {"rmac_ttl_512_1023_frms"},
195 {"rmac_ttl_1024_1518_frms"},
203 {"rmac_err_drp_udp"},
204 {"rmac_xgmii_err_sym"},
222 {"rmac_xgmii_data_err_cnt"},
223 {"rmac_xgmii_ctrl_err_cnt"},
224 {"rmac_accepted_ip"},
228 {"new_rd_req_rtry_cnt"},
230 {"wr_rtry_rd_ack_cnt"},
233 {"new_wr_req_rtry_cnt"},
236 {"rd_rtry_wr_ack_cnt"},
246 static char ethtool_enhanced_stats_keys
[][ETH_GSTRING_LEN
] = {
247 {"rmac_ttl_1519_4095_frms"},
248 {"rmac_ttl_4096_8191_frms"},
249 {"rmac_ttl_8192_max_frms"},
250 {"rmac_ttl_gt_max_frms"},
251 {"rmac_osized_alt_frms"},
252 {"rmac_jabber_alt_frms"},
253 {"rmac_gt_max_alt_frms"},
255 {"rmac_len_discard"},
256 {"rmac_fcs_discard"},
259 {"rmac_red_discard"},
260 {"rmac_rts_discard"},
261 {"rmac_ingm_full_discard"},
265 static char ethtool_driver_stats_keys
[][ETH_GSTRING_LEN
] = {
266 {"\n DRIVER STATISTICS"},
267 {"single_bit_ecc_errs"},
268 {"double_bit_ecc_errs"},
281 {"alarm_transceiver_temp_high"},
282 {"alarm_transceiver_temp_low"},
283 {"alarm_laser_bias_current_high"},
284 {"alarm_laser_bias_current_low"},
285 {"alarm_laser_output_power_high"},
286 {"alarm_laser_output_power_low"},
287 {"warn_transceiver_temp_high"},
288 {"warn_transceiver_temp_low"},
289 {"warn_laser_bias_current_high"},
290 {"warn_laser_bias_current_low"},
291 {"warn_laser_output_power_high"},
292 {"warn_laser_output_power_low"},
293 {"lro_aggregated_pkts"},
294 {"lro_flush_both_count"},
295 {"lro_out_of_sequence_pkts"},
296 {"lro_flush_due_to_max_pkts"},
297 {"lro_avg_aggr_pkts"},
298 {"mem_alloc_fail_cnt"},
299 {"pci_map_fail_cnt"},
300 {"watchdog_timer_cnt"},
307 {"tx_tcode_buf_abort_cnt"},
308 {"tx_tcode_desc_abort_cnt"},
309 {"tx_tcode_parity_err_cnt"},
310 {"tx_tcode_link_loss_cnt"},
311 {"tx_tcode_list_proc_err_cnt"},
312 {"rx_tcode_parity_err_cnt"},
313 {"rx_tcode_abort_cnt"},
314 {"rx_tcode_parity_abort_cnt"},
315 {"rx_tcode_rda_fail_cnt"},
316 {"rx_tcode_unkn_prot_cnt"},
317 {"rx_tcode_fcs_err_cnt"},
318 {"rx_tcode_buf_size_err_cnt"},
319 {"rx_tcode_rxd_corrupt_cnt"},
320 {"rx_tcode_unkn_err_cnt"},
328 {"mac_tmac_err_cnt"},
329 {"mac_rmac_err_cnt"},
330 {"xgxs_txgxs_err_cnt"},
331 {"xgxs_rxgxs_err_cnt"},
333 {"prc_pcix_err_cnt"},
340 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
341 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
342 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
344 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
345 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
347 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
348 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
350 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
351 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
353 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
354 init_timer(&timer); \
355 timer.function = handle; \
356 timer.data = (unsigned long) arg; \
357 mod_timer(&timer, (jiffies + exp)) \
359 /* copy mac addr to def_mac_addr array */
360 static void do_s2io_copy_mac_addr(struct s2io_nic
*sp
, int offset
, u64 mac_addr
)
362 sp
->def_mac_addr
[offset
].mac_addr
[5] = (u8
) (mac_addr
);
363 sp
->def_mac_addr
[offset
].mac_addr
[4] = (u8
) (mac_addr
>> 8);
364 sp
->def_mac_addr
[offset
].mac_addr
[3] = (u8
) (mac_addr
>> 16);
365 sp
->def_mac_addr
[offset
].mac_addr
[2] = (u8
) (mac_addr
>> 24);
366 sp
->def_mac_addr
[offset
].mac_addr
[1] = (u8
) (mac_addr
>> 32);
367 sp
->def_mac_addr
[offset
].mac_addr
[0] = (u8
) (mac_addr
>> 40);
370 static void s2io_vlan_rx_register(struct net_device
*dev
,
371 struct vlan_group
*grp
)
374 struct s2io_nic
*nic
= dev
->priv
;
375 unsigned long flags
[MAX_TX_FIFOS
];
376 struct mac_info
*mac_control
= &nic
->mac_control
;
377 struct config_param
*config
= &nic
->config
;
379 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
380 spin_lock_irqsave(&mac_control
->fifos
[i
].tx_lock
, flags
[i
]);
383 for (i
= config
->tx_fifo_num
- 1; i
>= 0; i
--)
384 spin_unlock_irqrestore(&mac_control
->fifos
[i
].tx_lock
,
388 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
389 static int vlan_strip_flag
;
391 /* Unregister the vlan */
392 static void s2io_vlan_rx_kill_vid(struct net_device
*dev
, unsigned long vid
)
395 struct s2io_nic
*nic
= dev
->priv
;
396 unsigned long flags
[MAX_TX_FIFOS
];
397 struct mac_info
*mac_control
= &nic
->mac_control
;
398 struct config_param
*config
= &nic
->config
;
400 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
401 spin_lock_irqsave(&mac_control
->fifos
[i
].tx_lock
, flags
[i
]);
404 vlan_group_set_device(nic
->vlgrp
, vid
, NULL
);
406 for (i
= config
->tx_fifo_num
- 1; i
>= 0; i
--)
407 spin_unlock_irqrestore(&mac_control
->fifos
[i
].tx_lock
,
412 * Constants to be programmed into the Xena's registers, to configure
417 static const u64 herc_act_dtx_cfg
[] = {
419 0x8000051536750000ULL
, 0x80000515367500E0ULL
,
421 0x8000051536750004ULL
, 0x80000515367500E4ULL
,
423 0x80010515003F0000ULL
, 0x80010515003F00E0ULL
,
425 0x80010515003F0004ULL
, 0x80010515003F00E4ULL
,
427 0x801205150D440000ULL
, 0x801205150D4400E0ULL
,
429 0x801205150D440004ULL
, 0x801205150D4400E4ULL
,
431 0x80020515F2100000ULL
, 0x80020515F21000E0ULL
,
433 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
438 static const u64 xena_dtx_cfg
[] = {
440 0x8000051500000000ULL
, 0x80000515000000E0ULL
,
442 0x80000515D9350004ULL
, 0x80000515D93500E4ULL
,
444 0x8001051500000000ULL
, 0x80010515000000E0ULL
,
446 0x80010515001E0004ULL
, 0x80010515001E00E4ULL
,
448 0x8002051500000000ULL
, 0x80020515000000E0ULL
,
450 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
455 * Constants for Fixing the MacAddress problem seen mostly on
458 static const u64 fix_mac
[] = {
459 0x0060000000000000ULL
, 0x0060600000000000ULL
,
460 0x0040600000000000ULL
, 0x0000600000000000ULL
,
461 0x0020600000000000ULL
, 0x0060600000000000ULL
,
462 0x0020600000000000ULL
, 0x0060600000000000ULL
,
463 0x0020600000000000ULL
, 0x0060600000000000ULL
,
464 0x0020600000000000ULL
, 0x0060600000000000ULL
,
465 0x0020600000000000ULL
, 0x0060600000000000ULL
,
466 0x0020600000000000ULL
, 0x0060600000000000ULL
,
467 0x0020600000000000ULL
, 0x0060600000000000ULL
,
468 0x0020600000000000ULL
, 0x0060600000000000ULL
,
469 0x0020600000000000ULL
, 0x0060600000000000ULL
,
470 0x0020600000000000ULL
, 0x0060600000000000ULL
,
471 0x0020600000000000ULL
, 0x0000600000000000ULL
,
472 0x0040600000000000ULL
, 0x0060600000000000ULL
,
476 MODULE_LICENSE("GPL");
477 MODULE_VERSION(DRV_VERSION
);
480 /* Module Loadable parameters. */
481 S2IO_PARM_INT(tx_fifo_num
, FIFO_DEFAULT_NUM
);
482 S2IO_PARM_INT(rx_ring_num
, 1);
483 S2IO_PARM_INT(multiq
, 0);
484 S2IO_PARM_INT(rx_ring_mode
, 1);
485 S2IO_PARM_INT(use_continuous_tx_intrs
, 1);
486 S2IO_PARM_INT(rmac_pause_time
, 0x100);
487 S2IO_PARM_INT(mc_pause_threshold_q0q3
, 187);
488 S2IO_PARM_INT(mc_pause_threshold_q4q7
, 187);
489 S2IO_PARM_INT(shared_splits
, 0);
490 S2IO_PARM_INT(tmac_util_period
, 5);
491 S2IO_PARM_INT(rmac_util_period
, 5);
492 S2IO_PARM_INT(l3l4hdr_size
, 128);
493 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
494 S2IO_PARM_INT(tx_steering_type
, TX_DEFAULT_STEERING
);
495 /* Frequency of Rx desc syncs expressed as power of 2 */
496 S2IO_PARM_INT(rxsync_frequency
, 3);
497 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
498 S2IO_PARM_INT(intr_type
, 2);
499 /* Large receive offload feature */
500 static unsigned int lro_enable
;
501 module_param_named(lro
, lro_enable
, uint
, 0);
503 /* Max pkts to be aggregated by LRO at one time. If not specified,
504 * aggregation happens until we hit max IP pkt size(64K)
506 S2IO_PARM_INT(lro_max_pkts
, 0xFFFF);
507 S2IO_PARM_INT(indicate_max_pkts
, 0);
509 S2IO_PARM_INT(napi
, 1);
510 S2IO_PARM_INT(ufo
, 0);
511 S2IO_PARM_INT(vlan_tag_strip
, NO_STRIP_IN_PROMISC
);
513 static unsigned int tx_fifo_len
[MAX_TX_FIFOS
] =
514 {DEFAULT_FIFO_0_LEN
, [1 ...(MAX_TX_FIFOS
- 1)] = DEFAULT_FIFO_1_7_LEN
};
515 static unsigned int rx_ring_sz
[MAX_RX_RINGS
] =
516 {[0 ...(MAX_RX_RINGS
- 1)] = SMALL_BLK_CNT
};
517 static unsigned int rts_frm_len
[MAX_RX_RINGS
] =
518 {[0 ...(MAX_RX_RINGS
- 1)] = 0 };
520 module_param_array(tx_fifo_len
, uint
, NULL
, 0);
521 module_param_array(rx_ring_sz
, uint
, NULL
, 0);
522 module_param_array(rts_frm_len
, uint
, NULL
, 0);
526 * This table lists all the devices that this driver supports.
528 static struct pci_device_id s2io_tbl
[] __devinitdata
= {
529 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_WIN
,
530 PCI_ANY_ID
, PCI_ANY_ID
},
531 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_UNI
,
532 PCI_ANY_ID
, PCI_ANY_ID
},
533 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_WIN
,
534 PCI_ANY_ID
, PCI_ANY_ID
},
535 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_UNI
,
536 PCI_ANY_ID
, PCI_ANY_ID
},
540 MODULE_DEVICE_TABLE(pci
, s2io_tbl
);
542 static struct pci_error_handlers s2io_err_handler
= {
543 .error_detected
= s2io_io_error_detected
,
544 .slot_reset
= s2io_io_slot_reset
,
545 .resume
= s2io_io_resume
,
548 static struct pci_driver s2io_driver
= {
550 .id_table
= s2io_tbl
,
551 .probe
= s2io_init_nic
,
552 .remove
= __devexit_p(s2io_rem_nic
),
553 .err_handler
= &s2io_err_handler
,
556 /* A simplifier macro used both by init and free shared_mem Fns(). */
557 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
559 /* netqueue manipulation helper functions */
560 static inline void s2io_stop_all_tx_queue(struct s2io_nic
*sp
)
563 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
564 if (sp
->config
.multiq
) {
565 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
566 netif_stop_subqueue(sp
->dev
, i
);
570 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
571 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_STOP
;
572 netif_stop_queue(sp
->dev
);
576 static inline void s2io_stop_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
578 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
579 if (sp
->config
.multiq
)
580 netif_stop_subqueue(sp
->dev
, fifo_no
);
584 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
586 netif_stop_queue(sp
->dev
);
590 static inline void s2io_start_all_tx_queue(struct s2io_nic
*sp
)
593 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
594 if (sp
->config
.multiq
) {
595 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
596 netif_start_subqueue(sp
->dev
, i
);
600 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
601 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
602 netif_start_queue(sp
->dev
);
606 static inline void s2io_start_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
608 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
609 if (sp
->config
.multiq
)
610 netif_start_subqueue(sp
->dev
, fifo_no
);
614 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
616 netif_start_queue(sp
->dev
);
620 static inline void s2io_wake_all_tx_queue(struct s2io_nic
*sp
)
623 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
624 if (sp
->config
.multiq
) {
625 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
626 netif_wake_subqueue(sp
->dev
, i
);
630 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
631 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
632 netif_wake_queue(sp
->dev
);
636 static inline void s2io_wake_tx_queue(
637 struct fifo_info
*fifo
, int cnt
, u8 multiq
)
640 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
642 if (cnt
&& __netif_subqueue_stopped(fifo
->dev
, fifo
->fifo_no
))
643 netif_wake_subqueue(fifo
->dev
, fifo
->fifo_no
);
646 if (cnt
&& (fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
647 if (netif_queue_stopped(fifo
->dev
)) {
648 fifo
->queue_state
= FIFO_QUEUE_START
;
649 netif_wake_queue(fifo
->dev
);
655 * init_shared_mem - Allocation and Initialization of Memory
656 * @nic: Device private variable.
657 * Description: The function allocates all the memory areas shared
658 * between the NIC and the driver. This includes Tx descriptors,
659 * Rx descriptors and the statistics block.
662 static int init_shared_mem(struct s2io_nic
*nic
)
665 void *tmp_v_addr
, *tmp_v_addr_next
;
666 dma_addr_t tmp_p_addr
, tmp_p_addr_next
;
667 struct RxD_block
*pre_rxd_blk
= NULL
;
669 int lst_size
, lst_per_page
;
670 struct net_device
*dev
= nic
->dev
;
674 struct mac_info
*mac_control
;
675 struct config_param
*config
;
676 unsigned long long mem_allocated
= 0;
678 mac_control
= &nic
->mac_control
;
679 config
= &nic
->config
;
682 /* Allocation and initialization of TXDLs in FIOFs */
684 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
685 size
+= config
->tx_cfg
[i
].fifo_len
;
687 if (size
> MAX_AVAILABLE_TXDS
) {
688 DBG_PRINT(ERR_DBG
, "s2io: Requested TxDs too high, ");
689 DBG_PRINT(ERR_DBG
, "Requested: %d, max supported: 8192\n", size
);
694 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
695 size
= config
->tx_cfg
[i
].fifo_len
;
697 * Legal values are from 2 to 8192
700 DBG_PRINT(ERR_DBG
, "s2io: Invalid fifo len (%d)", size
);
701 DBG_PRINT(ERR_DBG
, "for fifo %d\n", i
);
702 DBG_PRINT(ERR_DBG
, "s2io: Legal values for fifo len"
708 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
709 lst_per_page
= PAGE_SIZE
/ lst_size
;
711 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
712 int fifo_len
= config
->tx_cfg
[i
].fifo_len
;
713 int list_holder_size
= fifo_len
* sizeof(struct list_info_hold
);
714 mac_control
->fifos
[i
].list_info
= kzalloc(list_holder_size
,
716 if (!mac_control
->fifos
[i
].list_info
) {
718 "Malloc failed for list_info\n");
721 mem_allocated
+= list_holder_size
;
723 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
724 int page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
726 mac_control
->fifos
[i
].tx_curr_put_info
.offset
= 0;
727 mac_control
->fifos
[i
].tx_curr_put_info
.fifo_len
=
728 config
->tx_cfg
[i
].fifo_len
- 1;
729 mac_control
->fifos
[i
].tx_curr_get_info
.offset
= 0;
730 mac_control
->fifos
[i
].tx_curr_get_info
.fifo_len
=
731 config
->tx_cfg
[i
].fifo_len
- 1;
732 mac_control
->fifos
[i
].fifo_no
= i
;
733 mac_control
->fifos
[i
].nic
= nic
;
734 mac_control
->fifos
[i
].max_txds
= MAX_SKB_FRAGS
+ 2;
735 mac_control
->fifos
[i
].dev
= dev
;
737 for (j
= 0; j
< page_num
; j
++) {
741 tmp_v
= pci_alloc_consistent(nic
->pdev
,
745 "pci_alloc_consistent ");
746 DBG_PRINT(INFO_DBG
, "failed for TxDL\n");
749 /* If we got a zero DMA address(can happen on
750 * certain platforms like PPC), reallocate.
751 * Store virtual address of page we don't want,
755 mac_control
->zerodma_virt_addr
= tmp_v
;
757 "%s: Zero DMA address for TxDL. ", dev
->name
);
759 "Virtual address %p\n", tmp_v
);
760 tmp_v
= pci_alloc_consistent(nic
->pdev
,
764 "pci_alloc_consistent ");
765 DBG_PRINT(INFO_DBG
, "failed for TxDL\n");
768 mem_allocated
+= PAGE_SIZE
;
770 while (k
< lst_per_page
) {
771 int l
= (j
* lst_per_page
) + k
;
772 if (l
== config
->tx_cfg
[i
].fifo_len
)
774 mac_control
->fifos
[i
].list_info
[l
].list_virt_addr
=
775 tmp_v
+ (k
* lst_size
);
776 mac_control
->fifos
[i
].list_info
[l
].list_phy_addr
=
777 tmp_p
+ (k
* lst_size
);
783 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
784 size
= config
->tx_cfg
[i
].fifo_len
;
785 mac_control
->fifos
[i
].ufo_in_band_v
786 = kcalloc(size
, sizeof(u64
), GFP_KERNEL
);
787 if (!mac_control
->fifos
[i
].ufo_in_band_v
)
789 mem_allocated
+= (size
* sizeof(u64
));
792 /* Allocation and initialization of RXDs in Rings */
794 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
795 if (config
->rx_cfg
[i
].num_rxd
%
796 (rxd_count
[nic
->rxd_mode
] + 1)) {
797 DBG_PRINT(ERR_DBG
, "%s: RxD count of ", dev
->name
);
798 DBG_PRINT(ERR_DBG
, "Ring%d is not a multiple of ",
800 DBG_PRINT(ERR_DBG
, "RxDs per Block");
803 size
+= config
->rx_cfg
[i
].num_rxd
;
804 mac_control
->rings
[i
].block_count
=
805 config
->rx_cfg
[i
].num_rxd
/
806 (rxd_count
[nic
->rxd_mode
] + 1 );
807 mac_control
->rings
[i
].pkt_cnt
= config
->rx_cfg
[i
].num_rxd
-
808 mac_control
->rings
[i
].block_count
;
810 if (nic
->rxd_mode
== RXD_MODE_1
)
811 size
= (size
* (sizeof(struct RxD1
)));
813 size
= (size
* (sizeof(struct RxD3
)));
815 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
816 mac_control
->rings
[i
].rx_curr_get_info
.block_index
= 0;
817 mac_control
->rings
[i
].rx_curr_get_info
.offset
= 0;
818 mac_control
->rings
[i
].rx_curr_get_info
.ring_len
=
819 config
->rx_cfg
[i
].num_rxd
- 1;
820 mac_control
->rings
[i
].rx_curr_put_info
.block_index
= 0;
821 mac_control
->rings
[i
].rx_curr_put_info
.offset
= 0;
822 mac_control
->rings
[i
].rx_curr_put_info
.ring_len
=
823 config
->rx_cfg
[i
].num_rxd
- 1;
824 mac_control
->rings
[i
].nic
= nic
;
825 mac_control
->rings
[i
].ring_no
= i
;
827 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
828 (rxd_count
[nic
->rxd_mode
] + 1);
829 /* Allocating all the Rx blocks */
830 for (j
= 0; j
< blk_cnt
; j
++) {
831 struct rx_block_info
*rx_blocks
;
834 rx_blocks
= &mac_control
->rings
[i
].rx_blocks
[j
];
835 size
= SIZE_OF_BLOCK
; //size is always page size
836 tmp_v_addr
= pci_alloc_consistent(nic
->pdev
, size
,
838 if (tmp_v_addr
== NULL
) {
840 * In case of failure, free_shared_mem()
841 * is called, which should free any
842 * memory that was alloced till the
845 rx_blocks
->block_virt_addr
= tmp_v_addr
;
848 mem_allocated
+= size
;
849 memset(tmp_v_addr
, 0, size
);
850 rx_blocks
->block_virt_addr
= tmp_v_addr
;
851 rx_blocks
->block_dma_addr
= tmp_p_addr
;
852 rx_blocks
->rxds
= kmalloc(sizeof(struct rxd_info
)*
853 rxd_count
[nic
->rxd_mode
],
855 if (!rx_blocks
->rxds
)
858 (sizeof(struct rxd_info
)* rxd_count
[nic
->rxd_mode
]);
859 for (l
=0; l
<rxd_count
[nic
->rxd_mode
];l
++) {
860 rx_blocks
->rxds
[l
].virt_addr
=
861 rx_blocks
->block_virt_addr
+
862 (rxd_size
[nic
->rxd_mode
] * l
);
863 rx_blocks
->rxds
[l
].dma_addr
=
864 rx_blocks
->block_dma_addr
+
865 (rxd_size
[nic
->rxd_mode
] * l
);
868 /* Interlinking all Rx Blocks */
869 for (j
= 0; j
< blk_cnt
; j
++) {
871 mac_control
->rings
[i
].rx_blocks
[j
].block_virt_addr
;
873 mac_control
->rings
[i
].rx_blocks
[(j
+ 1) %
874 blk_cnt
].block_virt_addr
;
876 mac_control
->rings
[i
].rx_blocks
[j
].block_dma_addr
;
878 mac_control
->rings
[i
].rx_blocks
[(j
+ 1) %
879 blk_cnt
].block_dma_addr
;
881 pre_rxd_blk
= (struct RxD_block
*) tmp_v_addr
;
882 pre_rxd_blk
->reserved_2_pNext_RxD_block
=
883 (unsigned long) tmp_v_addr_next
;
884 pre_rxd_blk
->pNext_RxD_Blk_physical
=
885 (u64
) tmp_p_addr_next
;
888 if (nic
->rxd_mode
== RXD_MODE_3B
) {
890 * Allocation of Storages for buffer addresses in 2BUFF mode
891 * and the buffers as well.
893 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
894 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
895 (rxd_count
[nic
->rxd_mode
]+ 1);
896 mac_control
->rings
[i
].ba
=
897 kmalloc((sizeof(struct buffAdd
*) * blk_cnt
),
899 if (!mac_control
->rings
[i
].ba
)
901 mem_allocated
+=(sizeof(struct buffAdd
*) * blk_cnt
);
902 for (j
= 0; j
< blk_cnt
; j
++) {
904 mac_control
->rings
[i
].ba
[j
] =
905 kmalloc((sizeof(struct buffAdd
) *
906 (rxd_count
[nic
->rxd_mode
] + 1)),
908 if (!mac_control
->rings
[i
].ba
[j
])
910 mem_allocated
+= (sizeof(struct buffAdd
) * \
911 (rxd_count
[nic
->rxd_mode
] + 1));
912 while (k
!= rxd_count
[nic
->rxd_mode
]) {
913 ba
= &mac_control
->rings
[i
].ba
[j
][k
];
915 ba
->ba_0_org
= (void *) kmalloc
916 (BUF0_LEN
+ ALIGN_SIZE
, GFP_KERNEL
);
920 (BUF0_LEN
+ ALIGN_SIZE
);
921 tmp
= (unsigned long)ba
->ba_0_org
;
923 tmp
&= ~((unsigned long) ALIGN_SIZE
);
924 ba
->ba_0
= (void *) tmp
;
926 ba
->ba_1_org
= (void *) kmalloc
927 (BUF1_LEN
+ ALIGN_SIZE
, GFP_KERNEL
);
931 += (BUF1_LEN
+ ALIGN_SIZE
);
932 tmp
= (unsigned long) ba
->ba_1_org
;
934 tmp
&= ~((unsigned long) ALIGN_SIZE
);
935 ba
->ba_1
= (void *) tmp
;
942 /* Allocation and initialization of Statistics block */
943 size
= sizeof(struct stat_block
);
944 mac_control
->stats_mem
= pci_alloc_consistent
945 (nic
->pdev
, size
, &mac_control
->stats_mem_phy
);
947 if (!mac_control
->stats_mem
) {
949 * In case of failure, free_shared_mem() is called, which
950 * should free any memory that was alloced till the
955 mem_allocated
+= size
;
956 mac_control
->stats_mem_sz
= size
;
958 tmp_v_addr
= mac_control
->stats_mem
;
959 mac_control
->stats_info
= (struct stat_block
*) tmp_v_addr
;
960 memset(tmp_v_addr
, 0, size
);
961 DBG_PRINT(INIT_DBG
, "%s:Ring Mem PHY: 0x%llx\n", dev
->name
,
962 (unsigned long long) tmp_p_addr
);
963 mac_control
->stats_info
->sw_stat
.mem_allocated
+= mem_allocated
;
968 * free_shared_mem - Free the allocated Memory
969 * @nic: Device private variable.
970 * Description: This function is to free all memory locations allocated by
971 * the init_shared_mem() function and return it to the kernel.
974 static void free_shared_mem(struct s2io_nic
*nic
)
976 int i
, j
, blk_cnt
, size
;
978 dma_addr_t tmp_p_addr
;
979 struct mac_info
*mac_control
;
980 struct config_param
*config
;
981 int lst_size
, lst_per_page
;
982 struct net_device
*dev
;
990 mac_control
= &nic
->mac_control
;
991 config
= &nic
->config
;
993 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
994 lst_per_page
= PAGE_SIZE
/ lst_size
;
996 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
997 page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
999 for (j
= 0; j
< page_num
; j
++) {
1000 int mem_blks
= (j
* lst_per_page
);
1001 if (!mac_control
->fifos
[i
].list_info
)
1003 if (!mac_control
->fifos
[i
].list_info
[mem_blks
].
1006 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
1007 mac_control
->fifos
[i
].
1008 list_info
[mem_blks
].
1010 mac_control
->fifos
[i
].
1011 list_info
[mem_blks
].
1013 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
1016 /* If we got a zero DMA address during allocation,
1019 if (mac_control
->zerodma_virt_addr
) {
1020 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
1021 mac_control
->zerodma_virt_addr
,
1024 "%s: Freeing TxDL with zero DMA addr. ",
1026 DBG_PRINT(INIT_DBG
, "Virtual address %p\n",
1027 mac_control
->zerodma_virt_addr
);
1028 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
1031 kfree(mac_control
->fifos
[i
].list_info
);
1032 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
1033 (nic
->config
.tx_cfg
[i
].fifo_len
*sizeof(struct list_info_hold
));
1036 size
= SIZE_OF_BLOCK
;
1037 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1038 blk_cnt
= mac_control
->rings
[i
].block_count
;
1039 for (j
= 0; j
< blk_cnt
; j
++) {
1040 tmp_v_addr
= mac_control
->rings
[i
].rx_blocks
[j
].
1042 tmp_p_addr
= mac_control
->rings
[i
].rx_blocks
[j
].
1044 if (tmp_v_addr
== NULL
)
1046 pci_free_consistent(nic
->pdev
, size
,
1047 tmp_v_addr
, tmp_p_addr
);
1048 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= size
;
1049 kfree(mac_control
->rings
[i
].rx_blocks
[j
].rxds
);
1050 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
1051 ( sizeof(struct rxd_info
)* rxd_count
[nic
->rxd_mode
]);
1055 if (nic
->rxd_mode
== RXD_MODE_3B
) {
1056 /* Freeing buffer storage addresses in 2BUFF mode. */
1057 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1058 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
1059 (rxd_count
[nic
->rxd_mode
] + 1);
1060 for (j
= 0; j
< blk_cnt
; j
++) {
1062 if (!mac_control
->rings
[i
].ba
[j
])
1064 while (k
!= rxd_count
[nic
->rxd_mode
]) {
1065 struct buffAdd
*ba
=
1066 &mac_control
->rings
[i
].ba
[j
][k
];
1067 kfree(ba
->ba_0_org
);
1068 nic
->mac_control
.stats_info
->sw_stat
.\
1069 mem_freed
+= (BUF0_LEN
+ ALIGN_SIZE
);
1070 kfree(ba
->ba_1_org
);
1071 nic
->mac_control
.stats_info
->sw_stat
.\
1072 mem_freed
+= (BUF1_LEN
+ ALIGN_SIZE
);
1075 kfree(mac_control
->rings
[i
].ba
[j
]);
1076 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
1077 (sizeof(struct buffAdd
) *
1078 (rxd_count
[nic
->rxd_mode
] + 1));
1080 kfree(mac_control
->rings
[i
].ba
);
1081 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
1082 (sizeof(struct buffAdd
*) * blk_cnt
);
1086 for (i
= 0; i
< nic
->config
.tx_fifo_num
; i
++) {
1087 if (mac_control
->fifos
[i
].ufo_in_band_v
) {
1088 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
1089 += (config
->tx_cfg
[i
].fifo_len
* sizeof(u64
));
1090 kfree(mac_control
->fifos
[i
].ufo_in_band_v
);
1094 if (mac_control
->stats_mem
) {
1095 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
1096 mac_control
->stats_mem_sz
;
1097 pci_free_consistent(nic
->pdev
,
1098 mac_control
->stats_mem_sz
,
1099 mac_control
->stats_mem
,
1100 mac_control
->stats_mem_phy
);
1105 * s2io_verify_pci_mode -
1108 static int s2io_verify_pci_mode(struct s2io_nic
*nic
)
1110 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1111 register u64 val64
= 0;
1114 val64
= readq(&bar0
->pci_mode
);
1115 mode
= (u8
)GET_PCI_MODE(val64
);
1117 if ( val64
& PCI_MODE_UNKNOWN_MODE
)
1118 return -1; /* Unknown PCI mode */
1122 #define NEC_VENID 0x1033
1123 #define NEC_DEVID 0x0125
1124 static int s2io_on_nec_bridge(struct pci_dev
*s2io_pdev
)
1126 struct pci_dev
*tdev
= NULL
;
1127 while ((tdev
= pci_get_device(PCI_ANY_ID
, PCI_ANY_ID
, tdev
)) != NULL
) {
1128 if (tdev
->vendor
== NEC_VENID
&& tdev
->device
== NEC_DEVID
) {
1129 if (tdev
->bus
== s2io_pdev
->bus
->parent
)
1137 static int bus_speed
[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1139 * s2io_print_pci_mode -
1141 static int s2io_print_pci_mode(struct s2io_nic
*nic
)
1143 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1144 register u64 val64
= 0;
1146 struct config_param
*config
= &nic
->config
;
1148 val64
= readq(&bar0
->pci_mode
);
1149 mode
= (u8
)GET_PCI_MODE(val64
);
1151 if ( val64
& PCI_MODE_UNKNOWN_MODE
)
1152 return -1; /* Unknown PCI mode */
1154 config
->bus_speed
= bus_speed
[mode
];
1156 if (s2io_on_nec_bridge(nic
->pdev
)) {
1157 DBG_PRINT(ERR_DBG
, "%s: Device is on PCI-E bus\n",
1162 if (val64
& PCI_MODE_32_BITS
) {
1163 DBG_PRINT(ERR_DBG
, "%s: Device is on 32 bit ", nic
->dev
->name
);
1165 DBG_PRINT(ERR_DBG
, "%s: Device is on 64 bit ", nic
->dev
->name
);
1169 case PCI_MODE_PCI_33
:
1170 DBG_PRINT(ERR_DBG
, "33MHz PCI bus\n");
1172 case PCI_MODE_PCI_66
:
1173 DBG_PRINT(ERR_DBG
, "66MHz PCI bus\n");
1175 case PCI_MODE_PCIX_M1_66
:
1176 DBG_PRINT(ERR_DBG
, "66MHz PCIX(M1) bus\n");
1178 case PCI_MODE_PCIX_M1_100
:
1179 DBG_PRINT(ERR_DBG
, "100MHz PCIX(M1) bus\n");
1181 case PCI_MODE_PCIX_M1_133
:
1182 DBG_PRINT(ERR_DBG
, "133MHz PCIX(M1) bus\n");
1184 case PCI_MODE_PCIX_M2_66
:
1185 DBG_PRINT(ERR_DBG
, "133MHz PCIX(M2) bus\n");
1187 case PCI_MODE_PCIX_M2_100
:
1188 DBG_PRINT(ERR_DBG
, "200MHz PCIX(M2) bus\n");
1190 case PCI_MODE_PCIX_M2_133
:
1191 DBG_PRINT(ERR_DBG
, "266MHz PCIX(M2) bus\n");
1194 return -1; /* Unsupported bus speed */
1201 * init_tti - Initialization transmit traffic interrupt scheme
1202 * @nic: device private variable
1203 * @link: link status (UP/DOWN) used to enable/disable continuous
1204 * transmit interrupts
1205 * Description: The function configures transmit traffic interrupts
1206 * Return Value: SUCCESS on success and
1210 static int init_tti(struct s2io_nic
*nic
, int link
)
1212 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1213 register u64 val64
= 0;
1215 struct config_param
*config
;
1217 config
= &nic
->config
;
1219 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
1221 * TTI Initialization. Default Tx timer gets us about
1222 * 250 interrupts per sec. Continuous interrupts are enabled
1225 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1226 int count
= (nic
->config
.bus_speed
* 125)/2;
1227 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(count
);
1229 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1231 val64
|= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1232 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1233 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1234 TTI_DATA1_MEM_TX_TIMER_AC_EN
;
1236 if (use_continuous_tx_intrs
&& (link
== LINK_UP
))
1237 val64
|= TTI_DATA1_MEM_TX_TIMER_CI_EN
;
1238 writeq(val64
, &bar0
->tti_data1_mem
);
1240 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1241 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1242 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1243 TTI_DATA2_MEM_TX_UFC_D(0x80);
1245 writeq(val64
, &bar0
->tti_data2_mem
);
1247 val64
= TTI_CMD_MEM_WE
| TTI_CMD_MEM_STROBE_NEW_CMD
|
1248 TTI_CMD_MEM_OFFSET(i
);
1249 writeq(val64
, &bar0
->tti_command_mem
);
1251 if (wait_for_cmd_complete(&bar0
->tti_command_mem
,
1252 TTI_CMD_MEM_STROBE_NEW_CMD
, S2IO_BIT_RESET
) != SUCCESS
)
1260 * init_nic - Initialization of hardware
1261 * @nic: device private variable
1262 * Description: The function sequentially configures every block
1263 * of the H/W from their reset values.
1264 * Return Value: SUCCESS on success and
1265 * '-1' on failure (endian settings incorrect).
1268 static int init_nic(struct s2io_nic
*nic
)
1270 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1271 struct net_device
*dev
= nic
->dev
;
1272 register u64 val64
= 0;
1276 struct mac_info
*mac_control
;
1277 struct config_param
*config
;
1279 unsigned long long mem_share
;
1282 mac_control
= &nic
->mac_control
;
1283 config
= &nic
->config
;
1285 /* to set the swapper controle on the card */
1286 if(s2io_set_swapper(nic
)) {
1287 DBG_PRINT(ERR_DBG
,"ERROR: Setting Swapper failed\n");
1292 * Herc requires EOI to be removed from reset before XGXS, so..
1294 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1295 val64
= 0xA500000000ULL
;
1296 writeq(val64
, &bar0
->sw_reset
);
1298 val64
= readq(&bar0
->sw_reset
);
1301 /* Remove XGXS from reset state */
1303 writeq(val64
, &bar0
->sw_reset
);
1305 val64
= readq(&bar0
->sw_reset
);
1307 /* Ensure that it's safe to access registers by checking
1308 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1310 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1311 for (i
= 0; i
< 50; i
++) {
1312 val64
= readq(&bar0
->adapter_status
);
1313 if (!(val64
& ADAPTER_STATUS_RIC_RUNNING
))
1321 /* Enable Receiving broadcasts */
1322 add
= &bar0
->mac_cfg
;
1323 val64
= readq(&bar0
->mac_cfg
);
1324 val64
|= MAC_RMAC_BCAST_ENABLE
;
1325 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1326 writel((u32
) val64
, add
);
1327 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1328 writel((u32
) (val64
>> 32), (add
+ 4));
1330 /* Read registers in all blocks */
1331 val64
= readq(&bar0
->mac_int_mask
);
1332 val64
= readq(&bar0
->mc_int_mask
);
1333 val64
= readq(&bar0
->xgxs_int_mask
);
1337 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
1339 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1340 while (herc_act_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1341 SPECIAL_REG_WRITE(herc_act_dtx_cfg
[dtx_cnt
],
1342 &bar0
->dtx_control
, UF
);
1344 msleep(1); /* Necessary!! */
1348 while (xena_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1349 SPECIAL_REG_WRITE(xena_dtx_cfg
[dtx_cnt
],
1350 &bar0
->dtx_control
, UF
);
1351 val64
= readq(&bar0
->dtx_control
);
1356 /* Tx DMA Initialization */
1358 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1359 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1360 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1361 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1364 for (i
= 0, j
= 0; i
< config
->tx_fifo_num
; i
++) {
1366 vBIT(config
->tx_cfg
[i
].fifo_len
- 1, ((j
* 32) + 19),
1367 13) | vBIT(config
->tx_cfg
[i
].fifo_priority
,
1370 if (i
== (config
->tx_fifo_num
- 1)) {
1377 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1382 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1387 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1392 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1403 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1404 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1406 if ((nic
->device_type
== XFRAME_I_DEVICE
) &&
1407 (nic
->pdev
->revision
< 4))
1408 writeq(PCC_ENABLE_FOUR
, &bar0
->pcc_enable
);
1410 val64
= readq(&bar0
->tx_fifo_partition_0
);
1411 DBG_PRINT(INIT_DBG
, "Fifo partition at: 0x%p is: 0x%llx\n",
1412 &bar0
->tx_fifo_partition_0
, (unsigned long long) val64
);
1415 * Initialization of Tx_PA_CONFIG register to ignore packet
1416 * integrity checking.
1418 val64
= readq(&bar0
->tx_pa_cfg
);
1419 val64
|= TX_PA_CFG_IGNORE_FRM_ERR
| TX_PA_CFG_IGNORE_SNAP_OUI
|
1420 TX_PA_CFG_IGNORE_LLC_CTRL
| TX_PA_CFG_IGNORE_L2_ERR
;
1421 writeq(val64
, &bar0
->tx_pa_cfg
);
1423 /* Rx DMA intialization. */
1425 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1427 vBIT(config
->rx_cfg
[i
].ring_priority
, (5 + (i
* 8)),
1430 writeq(val64
, &bar0
->rx_queue_priority
);
1433 * Allocating equal share of memory to all the
1437 if (nic
->device_type
& XFRAME_II_DEVICE
)
1442 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1445 mem_share
= (mem_size
/ config
->rx_ring_num
+
1446 mem_size
% config
->rx_ring_num
);
1447 val64
|= RX_QUEUE_CFG_Q0_SZ(mem_share
);
1450 mem_share
= (mem_size
/ config
->rx_ring_num
);
1451 val64
|= RX_QUEUE_CFG_Q1_SZ(mem_share
);
1454 mem_share
= (mem_size
/ config
->rx_ring_num
);
1455 val64
|= RX_QUEUE_CFG_Q2_SZ(mem_share
);
1458 mem_share
= (mem_size
/ config
->rx_ring_num
);
1459 val64
|= RX_QUEUE_CFG_Q3_SZ(mem_share
);
1462 mem_share
= (mem_size
/ config
->rx_ring_num
);
1463 val64
|= RX_QUEUE_CFG_Q4_SZ(mem_share
);
1466 mem_share
= (mem_size
/ config
->rx_ring_num
);
1467 val64
|= RX_QUEUE_CFG_Q5_SZ(mem_share
);
1470 mem_share
= (mem_size
/ config
->rx_ring_num
);
1471 val64
|= RX_QUEUE_CFG_Q6_SZ(mem_share
);
1474 mem_share
= (mem_size
/ config
->rx_ring_num
);
1475 val64
|= RX_QUEUE_CFG_Q7_SZ(mem_share
);
1479 writeq(val64
, &bar0
->rx_queue_cfg
);
1482 * Filling Tx round robin registers
1483 * as per the number of FIFOs for equal scheduling priority
1485 switch (config
->tx_fifo_num
) {
1488 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1489 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1490 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1491 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1492 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1495 val64
= 0x0001000100010001ULL
;
1496 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1497 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1498 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1499 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1500 val64
= 0x0001000100000000ULL
;
1501 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1504 val64
= 0x0001020001020001ULL
;
1505 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1506 val64
= 0x0200010200010200ULL
;
1507 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1508 val64
= 0x0102000102000102ULL
;
1509 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1510 val64
= 0x0001020001020001ULL
;
1511 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1512 val64
= 0x0200010200000000ULL
;
1513 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1516 val64
= 0x0001020300010203ULL
;
1517 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1518 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1519 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1520 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1521 val64
= 0x0001020300000000ULL
;
1522 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1525 val64
= 0x0001020304000102ULL
;
1526 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1527 val64
= 0x0304000102030400ULL
;
1528 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1529 val64
= 0x0102030400010203ULL
;
1530 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1531 val64
= 0x0400010203040001ULL
;
1532 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1533 val64
= 0x0203040000000000ULL
;
1534 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1537 val64
= 0x0001020304050001ULL
;
1538 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1539 val64
= 0x0203040500010203ULL
;
1540 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1541 val64
= 0x0405000102030405ULL
;
1542 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1543 val64
= 0x0001020304050001ULL
;
1544 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1545 val64
= 0x0203040500000000ULL
;
1546 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1549 val64
= 0x0001020304050600ULL
;
1550 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1551 val64
= 0x0102030405060001ULL
;
1552 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1553 val64
= 0x0203040506000102ULL
;
1554 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1555 val64
= 0x0304050600010203ULL
;
1556 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1557 val64
= 0x0405060000000000ULL
;
1558 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1561 val64
= 0x0001020304050607ULL
;
1562 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1563 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1564 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1565 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1566 val64
= 0x0001020300000000ULL
;
1567 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1571 /* Enable all configured Tx FIFO partitions */
1572 val64
= readq(&bar0
->tx_fifo_partition_0
);
1573 val64
|= (TX_FIFO_PARTITION_EN
);
1574 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1576 /* Filling the Rx round robin registers as per the
1577 * number of Rings and steering based on QoS.
1579 switch (config
->rx_ring_num
) {
1581 val64
= 0x8080808080808080ULL
;
1582 writeq(val64
, &bar0
->rts_qos_steering
);
1585 val64
= 0x0000010000010000ULL
;
1586 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1587 val64
= 0x0100000100000100ULL
;
1588 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1589 val64
= 0x0001000001000001ULL
;
1590 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1591 val64
= 0x0000010000010000ULL
;
1592 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1593 val64
= 0x0100000000000000ULL
;
1594 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1596 val64
= 0x8080808040404040ULL
;
1597 writeq(val64
, &bar0
->rts_qos_steering
);
1600 val64
= 0x0001000102000001ULL
;
1601 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1602 val64
= 0x0001020000010001ULL
;
1603 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1604 val64
= 0x0200000100010200ULL
;
1605 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1606 val64
= 0x0001000102000001ULL
;
1607 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1608 val64
= 0x0001020000000000ULL
;
1609 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1611 val64
= 0x8080804040402020ULL
;
1612 writeq(val64
, &bar0
->rts_qos_steering
);
1615 val64
= 0x0001020300010200ULL
;
1616 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1617 val64
= 0x0100000102030001ULL
;
1618 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1619 val64
= 0x0200010000010203ULL
;
1620 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1621 val64
= 0x0001020001000001ULL
;
1622 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1623 val64
= 0x0203000100000000ULL
;
1624 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1626 val64
= 0x8080404020201010ULL
;
1627 writeq(val64
, &bar0
->rts_qos_steering
);
1630 val64
= 0x0001000203000102ULL
;
1631 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1632 val64
= 0x0001020001030004ULL
;
1633 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1634 val64
= 0x0001000203000102ULL
;
1635 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1636 val64
= 0x0001020001030004ULL
;
1637 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1638 val64
= 0x0001000000000000ULL
;
1639 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1641 val64
= 0x8080404020201008ULL
;
1642 writeq(val64
, &bar0
->rts_qos_steering
);
1645 val64
= 0x0001020304000102ULL
;
1646 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1647 val64
= 0x0304050001020001ULL
;
1648 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1649 val64
= 0x0203000100000102ULL
;
1650 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1651 val64
= 0x0304000102030405ULL
;
1652 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1653 val64
= 0x0001000200000000ULL
;
1654 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1656 val64
= 0x8080404020100804ULL
;
1657 writeq(val64
, &bar0
->rts_qos_steering
);
1660 val64
= 0x0001020001020300ULL
;
1661 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1662 val64
= 0x0102030400010203ULL
;
1663 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1664 val64
= 0x0405060001020001ULL
;
1665 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1666 val64
= 0x0304050000010200ULL
;
1667 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1668 val64
= 0x0102030000000000ULL
;
1669 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1671 val64
= 0x8080402010080402ULL
;
1672 writeq(val64
, &bar0
->rts_qos_steering
);
1675 val64
= 0x0001020300040105ULL
;
1676 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1677 val64
= 0x0200030106000204ULL
;
1678 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1679 val64
= 0x0103000502010007ULL
;
1680 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1681 val64
= 0x0304010002060500ULL
;
1682 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1683 val64
= 0x0103020400000000ULL
;
1684 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1686 val64
= 0x8040201008040201ULL
;
1687 writeq(val64
, &bar0
->rts_qos_steering
);
1693 for (i
= 0; i
< 8; i
++)
1694 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1696 /* Set the default rts frame length for the rings configured */
1697 val64
= MAC_RTS_FRM_LEN_SET(dev
->mtu
+22);
1698 for (i
= 0 ; i
< config
->rx_ring_num
; i
++)
1699 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1701 /* Set the frame length for the configured rings
1702 * desired by the user
1704 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1705 /* If rts_frm_len[i] == 0 then it is assumed that user not
1706 * specified frame length steering.
1707 * If the user provides the frame length then program
1708 * the rts_frm_len register for those values or else
1709 * leave it as it is.
1711 if (rts_frm_len
[i
] != 0) {
1712 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len
[i
]),
1713 &bar0
->rts_frm_len_n
[i
]);
1717 /* Disable differentiated services steering logic */
1718 for (i
= 0; i
< 64; i
++) {
1719 if (rts_ds_steer(nic
, i
, 0) == FAILURE
) {
1720 DBG_PRINT(ERR_DBG
, "%s: failed rts ds steering",
1722 DBG_PRINT(ERR_DBG
, "set on codepoint %d\n", i
);
1727 /* Program statistics memory */
1728 writeq(mac_control
->stats_mem_phy
, &bar0
->stat_addr
);
1730 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1731 val64
= STAT_BC(0x320);
1732 writeq(val64
, &bar0
->stat_byte_cnt
);
1736 * Initializing the sampling rate for the device to calculate the
1737 * bandwidth utilization.
1739 val64
= MAC_TX_LINK_UTIL_VAL(tmac_util_period
) |
1740 MAC_RX_LINK_UTIL_VAL(rmac_util_period
);
1741 writeq(val64
, &bar0
->mac_link_util
);
1744 * Initializing the Transmit and Receive Traffic Interrupt
1748 /* Initialize TTI */
1749 if (SUCCESS
!= init_tti(nic
, nic
->last_link_state
))
1752 /* RTI Initialization */
1753 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1755 * Programmed to generate Apprx 500 Intrs per
1758 int count
= (nic
->config
.bus_speed
* 125)/4;
1759 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(count
);
1761 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1762 val64
|= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1763 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1764 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN
;
1766 writeq(val64
, &bar0
->rti_data1_mem
);
1768 val64
= RTI_DATA2_MEM_RX_UFC_A(0x1) |
1769 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1770 if (nic
->config
.intr_type
== MSI_X
)
1771 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1772 RTI_DATA2_MEM_RX_UFC_D(0x40));
1774 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1775 RTI_DATA2_MEM_RX_UFC_D(0x80));
1776 writeq(val64
, &bar0
->rti_data2_mem
);
1778 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1779 val64
= RTI_CMD_MEM_WE
| RTI_CMD_MEM_STROBE_NEW_CMD
1780 | RTI_CMD_MEM_OFFSET(i
);
1781 writeq(val64
, &bar0
->rti_command_mem
);
1784 * Once the operation completes, the Strobe bit of the
1785 * command register will be reset. We poll for this
1786 * particular condition. We wait for a maximum of 500ms
1787 * for the operation to complete, if it's not complete
1788 * by then we return error.
1792 val64
= readq(&bar0
->rti_command_mem
);
1793 if (!(val64
& RTI_CMD_MEM_STROBE_NEW_CMD
))
1797 DBG_PRINT(ERR_DBG
, "%s: RTI init Failed\n",
1807 * Initializing proper values as Pause threshold into all
1808 * the 8 Queues on Rx side.
1810 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q0q3
);
1811 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q4q7
);
1813 /* Disable RMAC PAD STRIPPING */
1814 add
= &bar0
->mac_cfg
;
1815 val64
= readq(&bar0
->mac_cfg
);
1816 val64
&= ~(MAC_CFG_RMAC_STRIP_PAD
);
1817 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1818 writel((u32
) (val64
), add
);
1819 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1820 writel((u32
) (val64
>> 32), (add
+ 4));
1821 val64
= readq(&bar0
->mac_cfg
);
1823 /* Enable FCS stripping by adapter */
1824 add
= &bar0
->mac_cfg
;
1825 val64
= readq(&bar0
->mac_cfg
);
1826 val64
|= MAC_CFG_RMAC_STRIP_FCS
;
1827 if (nic
->device_type
== XFRAME_II_DEVICE
)
1828 writeq(val64
, &bar0
->mac_cfg
);
1830 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1831 writel((u32
) (val64
), add
);
1832 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1833 writel((u32
) (val64
>> 32), (add
+ 4));
1837 * Set the time value to be inserted in the pause frame
1838 * generated by xena.
1840 val64
= readq(&bar0
->rmac_pause_cfg
);
1841 val64
&= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1842 val64
|= RMAC_PAUSE_HG_PTIME(nic
->mac_control
.rmac_pause_time
);
1843 writeq(val64
, &bar0
->rmac_pause_cfg
);
1846 * Set the Threshold Limit for Generating the pause frame
1847 * If the amount of data in any Queue exceeds ratio of
1848 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1849 * pause frame is generated
1852 for (i
= 0; i
< 4; i
++) {
1854 (((u64
) 0xFF00 | nic
->mac_control
.
1855 mc_pause_threshold_q0q3
)
1858 writeq(val64
, &bar0
->mc_pause_thresh_q0q3
);
1861 for (i
= 0; i
< 4; i
++) {
1863 (((u64
) 0xFF00 | nic
->mac_control
.
1864 mc_pause_threshold_q4q7
)
1867 writeq(val64
, &bar0
->mc_pause_thresh_q4q7
);
1870 * TxDMA will stop Read request if the number of read split has
1871 * exceeded the limit pointed by shared_splits
1873 val64
= readq(&bar0
->pic_control
);
1874 val64
|= PIC_CNTL_SHARED_SPLITS(shared_splits
);
1875 writeq(val64
, &bar0
->pic_control
);
1877 if (nic
->config
.bus_speed
== 266) {
1878 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN
, &bar0
->txreqtimeout
);
1879 writeq(0x0, &bar0
->read_retry_delay
);
1880 writeq(0x0, &bar0
->write_retry_delay
);
1884 * Programming the Herc to split every write transaction
1885 * that does not start on an ADB to reduce disconnects.
1887 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1888 val64
= FAULT_BEHAVIOUR
| EXT_REQ_EN
|
1889 MISC_LINK_STABILITY_PRD(3);
1890 writeq(val64
, &bar0
->misc_control
);
1891 val64
= readq(&bar0
->pic_control2
);
1892 val64
&= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1893 writeq(val64
, &bar0
->pic_control2
);
1895 if (strstr(nic
->product_name
, "CX4")) {
1896 val64
= TMAC_AVG_IPG(0x17);
1897 writeq(val64
, &bar0
->tmac_avg_ipg
);
1902 #define LINK_UP_DOWN_INTERRUPT 1
1903 #define MAC_RMAC_ERR_TIMER 2
1905 static int s2io_link_fault_indication(struct s2io_nic
*nic
)
1907 if (nic
->config
.intr_type
!= INTA
)
1908 return MAC_RMAC_ERR_TIMER
;
1909 if (nic
->device_type
== XFRAME_II_DEVICE
)
1910 return LINK_UP_DOWN_INTERRUPT
;
1912 return MAC_RMAC_ERR_TIMER
;
1916 * do_s2io_write_bits - update alarm bits in alarm register
1917 * @value: alarm bits
1918 * @flag: interrupt status
1919 * @addr: address value
1920 * Description: update alarm bits in alarm register
1924 static void do_s2io_write_bits(u64 value
, int flag
, void __iomem
*addr
)
1928 temp64
= readq(addr
);
1930 if(flag
== ENABLE_INTRS
)
1931 temp64
&= ~((u64
) value
);
1933 temp64
|= ((u64
) value
);
1934 writeq(temp64
, addr
);
1937 static void en_dis_err_alarms(struct s2io_nic
*nic
, u16 mask
, int flag
)
1939 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1940 register u64 gen_int_mask
= 0;
1942 if (mask
& TX_DMA_INTR
) {
1944 gen_int_mask
|= TXDMA_INT_M
;
1946 do_s2io_write_bits(TXDMA_TDA_INT
| TXDMA_PFC_INT
|
1947 TXDMA_PCC_INT
| TXDMA_TTI_INT
|
1948 TXDMA_LSO_INT
| TXDMA_TPA_INT
|
1949 TXDMA_SM_INT
, flag
, &bar0
->txdma_int_mask
);
1951 do_s2io_write_bits(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
1952 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
1953 PFC_PCIX_ERR
| PFC_ECC_SG_ERR
, flag
,
1954 &bar0
->pfc_err_mask
);
1956 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
1957 TDA_SM1_ERR_ALARM
| TDA_Fn_ECC_SG_ERR
|
1958 TDA_PCIX_ERR
, flag
, &bar0
->tda_err_mask
);
1960 do_s2io_write_bits(PCC_FB_ECC_DB_ERR
| PCC_TXB_ECC_DB_ERR
|
1961 PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
1962 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
1963 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
1964 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_SG_ERR
|
1965 PCC_TXB_ECC_SG_ERR
, flag
, &bar0
->pcc_err_mask
);
1967 do_s2io_write_bits(TTI_SM_ERR_ALARM
| TTI_ECC_SG_ERR
|
1968 TTI_ECC_DB_ERR
, flag
, &bar0
->tti_err_mask
);
1970 do_s2io_write_bits(LSO6_ABORT
| LSO7_ABORT
|
1971 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
|
1972 LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
1973 flag
, &bar0
->lso_err_mask
);
1975 do_s2io_write_bits(TPA_SM_ERR_ALARM
| TPA_TX_FRM_DROP
,
1976 flag
, &bar0
->tpa_err_mask
);
1978 do_s2io_write_bits(SM_SM_ERR_ALARM
, flag
, &bar0
->sm_err_mask
);
1982 if (mask
& TX_MAC_INTR
) {
1983 gen_int_mask
|= TXMAC_INT_M
;
1984 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT
, flag
,
1985 &bar0
->mac_int_mask
);
1986 do_s2io_write_bits(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
|
1987 TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
1988 TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
1989 flag
, &bar0
->mac_tmac_err_mask
);
1992 if (mask
& TX_XGXS_INTR
) {
1993 gen_int_mask
|= TXXGXS_INT_M
;
1994 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS
, flag
,
1995 &bar0
->xgxs_int_mask
);
1996 do_s2io_write_bits(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
|
1997 TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
1998 flag
, &bar0
->xgxs_txgxs_err_mask
);
2001 if (mask
& RX_DMA_INTR
) {
2002 gen_int_mask
|= RXDMA_INT_M
;
2003 do_s2io_write_bits(RXDMA_INT_RC_INT_M
| RXDMA_INT_RPA_INT_M
|
2004 RXDMA_INT_RDA_INT_M
| RXDMA_INT_RTI_INT_M
,
2005 flag
, &bar0
->rxdma_int_mask
);
2006 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
|
2007 RC_PRCn_SM_ERR_ALARM
| RC_FTC_SM_ERR_ALARM
|
2008 RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
|
2009 RC_RDA_FAIL_WR_Rn
, flag
, &bar0
->rc_err_mask
);
2010 do_s2io_write_bits(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
|
2011 PRC_PCI_AB_F_WR_Rn
| PRC_PCI_DP_RD_Rn
|
2012 PRC_PCI_DP_WR_Rn
| PRC_PCI_DP_F_WR_Rn
, flag
,
2013 &bar0
->prc_pcix_err_mask
);
2014 do_s2io_write_bits(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
|
2015 RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
, flag
,
2016 &bar0
->rpa_err_mask
);
2017 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR
| RDA_FRM_ECC_DB_N_AERR
|
2018 RDA_SM1_ERR_ALARM
| RDA_SM0_ERR_ALARM
|
2019 RDA_RXD_ECC_DB_SERR
| RDA_RXDn_ECC_SG_ERR
|
2020 RDA_FRM_ECC_SG_ERR
| RDA_MISC_ERR
|RDA_PCIX_ERR
,
2021 flag
, &bar0
->rda_err_mask
);
2022 do_s2io_write_bits(RTI_SM_ERR_ALARM
|
2023 RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
2024 flag
, &bar0
->rti_err_mask
);
2027 if (mask
& RX_MAC_INTR
) {
2028 gen_int_mask
|= RXMAC_INT_M
;
2029 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT
, flag
,
2030 &bar0
->mac_int_mask
);
2031 do_s2io_write_bits(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
|
2032 RMAC_UNUSED_INT
| RMAC_SINGLE_ECC_ERR
|
2033 RMAC_DOUBLE_ECC_ERR
|
2034 RMAC_LINK_STATE_CHANGE_INT
,
2035 flag
, &bar0
->mac_rmac_err_mask
);
2038 if (mask
& RX_XGXS_INTR
)
2040 gen_int_mask
|= RXXGXS_INT_M
;
2041 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS
, flag
,
2042 &bar0
->xgxs_int_mask
);
2043 do_s2io_write_bits(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
, flag
,
2044 &bar0
->xgxs_rxgxs_err_mask
);
2047 if (mask
& MC_INTR
) {
2048 gen_int_mask
|= MC_INT_M
;
2049 do_s2io_write_bits(MC_INT_MASK_MC_INT
, flag
, &bar0
->mc_int_mask
);
2050 do_s2io_write_bits(MC_ERR_REG_SM_ERR
| MC_ERR_REG_ECC_ALL_SNG
|
2051 MC_ERR_REG_ECC_ALL_DBL
| PLL_LOCK_N
, flag
,
2052 &bar0
->mc_err_mask
);
2054 nic
->general_int_mask
= gen_int_mask
;
2056 /* Remove this line when alarm interrupts are enabled */
2057 nic
->general_int_mask
= 0;
2060 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2061 * @nic: device private variable,
2062 * @mask: A mask indicating which Intr block must be modified and,
2063 * @flag: A flag indicating whether to enable or disable the Intrs.
2064 * Description: This function will either disable or enable the interrupts
2065 * depending on the flag argument. The mask argument can be used to
2066 * enable/disable any Intr block.
2067 * Return Value: NONE.
2070 static void en_dis_able_nic_intrs(struct s2io_nic
*nic
, u16 mask
, int flag
)
2072 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2073 register u64 temp64
= 0, intr_mask
= 0;
2075 intr_mask
= nic
->general_int_mask
;
2077 /* Top level interrupt classification */
2078 /* PIC Interrupts */
2079 if (mask
& TX_PIC_INTR
) {
2080 /* Enable PIC Intrs in the general intr mask register */
2081 intr_mask
|= TXPIC_INT_M
;
2082 if (flag
== ENABLE_INTRS
) {
2084 * If Hercules adapter enable GPIO otherwise
2085 * disable all PCIX, Flash, MDIO, IIC and GPIO
2086 * interrupts for now.
2089 if (s2io_link_fault_indication(nic
) ==
2090 LINK_UP_DOWN_INTERRUPT
) {
2091 do_s2io_write_bits(PIC_INT_GPIO
, flag
,
2092 &bar0
->pic_int_mask
);
2093 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP
, flag
,
2094 &bar0
->gpio_int_mask
);
2096 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2097 } else if (flag
== DISABLE_INTRS
) {
2099 * Disable PIC Intrs in the general
2100 * intr mask register
2102 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2106 /* Tx traffic interrupts */
2107 if (mask
& TX_TRAFFIC_INTR
) {
2108 intr_mask
|= TXTRAFFIC_INT_M
;
2109 if (flag
== ENABLE_INTRS
) {
2111 * Enable all the Tx side interrupts
2112 * writing 0 Enables all 64 TX interrupt levels
2114 writeq(0x0, &bar0
->tx_traffic_mask
);
2115 } else if (flag
== DISABLE_INTRS
) {
2117 * Disable Tx Traffic Intrs in the general intr mask
2120 writeq(DISABLE_ALL_INTRS
, &bar0
->tx_traffic_mask
);
2124 /* Rx traffic interrupts */
2125 if (mask
& RX_TRAFFIC_INTR
) {
2126 intr_mask
|= RXTRAFFIC_INT_M
;
2127 if (flag
== ENABLE_INTRS
) {
2128 /* writing 0 Enables all 8 RX interrupt levels */
2129 writeq(0x0, &bar0
->rx_traffic_mask
);
2130 } else if (flag
== DISABLE_INTRS
) {
2132 * Disable Rx Traffic Intrs in the general intr mask
2135 writeq(DISABLE_ALL_INTRS
, &bar0
->rx_traffic_mask
);
2139 temp64
= readq(&bar0
->general_int_mask
);
2140 if (flag
== ENABLE_INTRS
)
2141 temp64
&= ~((u64
) intr_mask
);
2143 temp64
= DISABLE_ALL_INTRS
;
2144 writeq(temp64
, &bar0
->general_int_mask
);
2146 nic
->general_int_mask
= readq(&bar0
->general_int_mask
);
2150 * verify_pcc_quiescent- Checks for PCC quiescent state
2151 * Return: 1 If PCC is quiescence
2152 * 0 If PCC is not quiescence
2154 static int verify_pcc_quiescent(struct s2io_nic
*sp
, int flag
)
2157 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2158 u64 val64
= readq(&bar0
->adapter_status
);
2160 herc
= (sp
->device_type
== XFRAME_II_DEVICE
);
2162 if (flag
== FALSE
) {
2163 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2164 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
))
2167 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2171 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2172 if (((val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
) ==
2173 ADAPTER_STATUS_RMAC_PCC_IDLE
))
2176 if (((val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
) ==
2177 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2185 * verify_xena_quiescence - Checks whether the H/W is ready
2186 * Description: Returns whether the H/W is ready to go or not. Depending
2187 * on whether adapter enable bit was written or not the comparison
2188 * differs and the calling function passes the input argument flag to
2190 * Return: 1 If xena is quiescence
2191 * 0 If Xena is not quiescence
2194 static int verify_xena_quiescence(struct s2io_nic
*sp
)
2197 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2198 u64 val64
= readq(&bar0
->adapter_status
);
2199 mode
= s2io_verify_pci_mode(sp
);
2201 if (!(val64
& ADAPTER_STATUS_TDMA_READY
)) {
2202 DBG_PRINT(ERR_DBG
, "%s", "TDMA is not ready!");
2205 if (!(val64
& ADAPTER_STATUS_RDMA_READY
)) {
2206 DBG_PRINT(ERR_DBG
, "%s", "RDMA is not ready!");
2209 if (!(val64
& ADAPTER_STATUS_PFC_READY
)) {
2210 DBG_PRINT(ERR_DBG
, "%s", "PFC is not ready!");
2213 if (!(val64
& ADAPTER_STATUS_TMAC_BUF_EMPTY
)) {
2214 DBG_PRINT(ERR_DBG
, "%s", "TMAC BUF is not empty!");
2217 if (!(val64
& ADAPTER_STATUS_PIC_QUIESCENT
)) {
2218 DBG_PRINT(ERR_DBG
, "%s", "PIC is not QUIESCENT!");
2221 if (!(val64
& ADAPTER_STATUS_MC_DRAM_READY
)) {
2222 DBG_PRINT(ERR_DBG
, "%s", "MC_DRAM is not ready!");
2225 if (!(val64
& ADAPTER_STATUS_MC_QUEUES_READY
)) {
2226 DBG_PRINT(ERR_DBG
, "%s", "MC_QUEUES is not ready!");
2229 if (!(val64
& ADAPTER_STATUS_M_PLL_LOCK
)) {
2230 DBG_PRINT(ERR_DBG
, "%s", "M_PLL is not locked!");
2235 * In PCI 33 mode, the P_PLL is not used, and therefore,
2236 * the the P_PLL_LOCK bit in the adapter_status register will
2239 if (!(val64
& ADAPTER_STATUS_P_PLL_LOCK
) &&
2240 sp
->device_type
== XFRAME_II_DEVICE
&& mode
!=
2242 DBG_PRINT(ERR_DBG
, "%s", "P_PLL is not locked!");
2245 if (!((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
2246 ADAPTER_STATUS_RC_PRC_QUIESCENT
)) {
2247 DBG_PRINT(ERR_DBG
, "%s", "RC_PRC is not QUIESCENT!");
2254 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2255 * @sp: Pointer to device specifc structure
2257 * New procedure to clear mac address reading problems on Alpha platforms
2261 static void fix_mac_address(struct s2io_nic
* sp
)
2263 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2267 while (fix_mac
[i
] != END_SIGN
) {
2268 writeq(fix_mac
[i
++], &bar0
->gpio_control
);
2270 val64
= readq(&bar0
->gpio_control
);
2275 * start_nic - Turns the device on
2276 * @nic : device private variable.
2278 * This function actually turns the device on. Before this function is
2279 * called,all Registers are configured from their reset states
2280 * and shared memory is allocated but the NIC is still quiescent. On
2281 * calling this function, the device interrupts are cleared and the NIC is
2282 * literally switched on by writing into the adapter control register.
2284 * SUCCESS on success and -1 on failure.
2287 static int start_nic(struct s2io_nic
*nic
)
2289 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2290 struct net_device
*dev
= nic
->dev
;
2291 register u64 val64
= 0;
2293 struct mac_info
*mac_control
;
2294 struct config_param
*config
;
2296 mac_control
= &nic
->mac_control
;
2297 config
= &nic
->config
;
2299 /* PRC Initialization and configuration */
2300 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2301 writeq((u64
) mac_control
->rings
[i
].rx_blocks
[0].block_dma_addr
,
2302 &bar0
->prc_rxd0_n
[i
]);
2304 val64
= readq(&bar0
->prc_ctrl_n
[i
]);
2305 if (nic
->rxd_mode
== RXD_MODE_1
)
2306 val64
|= PRC_CTRL_RC_ENABLED
;
2308 val64
|= PRC_CTRL_RC_ENABLED
| PRC_CTRL_RING_MODE_3
;
2309 if (nic
->device_type
== XFRAME_II_DEVICE
)
2310 val64
|= PRC_CTRL_GROUP_READS
;
2311 val64
&= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2312 val64
|= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2313 writeq(val64
, &bar0
->prc_ctrl_n
[i
]);
2316 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2317 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2318 val64
= readq(&bar0
->rx_pa_cfg
);
2319 val64
|= RX_PA_CFG_IGNORE_L2_ERR
;
2320 writeq(val64
, &bar0
->rx_pa_cfg
);
2323 if (vlan_tag_strip
== 0) {
2324 val64
= readq(&bar0
->rx_pa_cfg
);
2325 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
2326 writeq(val64
, &bar0
->rx_pa_cfg
);
2327 vlan_strip_flag
= 0;
2331 * Enabling MC-RLDRAM. After enabling the device, we timeout
2332 * for around 100ms, which is approximately the time required
2333 * for the device to be ready for operation.
2335 val64
= readq(&bar0
->mc_rldram_mrs
);
2336 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
| MC_RLDRAM_MRS_ENABLE
;
2337 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
2338 val64
= readq(&bar0
->mc_rldram_mrs
);
2340 msleep(100); /* Delay by around 100 ms. */
2342 /* Enabling ECC Protection. */
2343 val64
= readq(&bar0
->adapter_control
);
2344 val64
&= ~ADAPTER_ECC_EN
;
2345 writeq(val64
, &bar0
->adapter_control
);
2348 * Verify if the device is ready to be enabled, if so enable
2351 val64
= readq(&bar0
->adapter_status
);
2352 if (!verify_xena_quiescence(nic
)) {
2353 DBG_PRINT(ERR_DBG
, "%s: device is not ready, ", dev
->name
);
2354 DBG_PRINT(ERR_DBG
, "Adapter status reads: 0x%llx\n",
2355 (unsigned long long) val64
);
2360 * With some switches, link might be already up at this point.
2361 * Because of this weird behavior, when we enable laser,
2362 * we may not get link. We need to handle this. We cannot
2363 * figure out which switch is misbehaving. So we are forced to
2364 * make a global change.
2367 /* Enabling Laser. */
2368 val64
= readq(&bar0
->adapter_control
);
2369 val64
|= ADAPTER_EOI_TX_ON
;
2370 writeq(val64
, &bar0
->adapter_control
);
2372 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
2374 * Dont see link state interrupts initally on some switches,
2375 * so directly scheduling the link state task here.
2377 schedule_work(&nic
->set_link_task
);
2379 /* SXE-002: Initialize link and activity LED */
2380 subid
= nic
->pdev
->subsystem_device
;
2381 if (((subid
& 0xFF) >= 0x07) &&
2382 (nic
->device_type
== XFRAME_I_DEVICE
)) {
2383 val64
= readq(&bar0
->gpio_control
);
2384 val64
|= 0x0000800000000000ULL
;
2385 writeq(val64
, &bar0
->gpio_control
);
2386 val64
= 0x0411040400000000ULL
;
2387 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
2393 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2395 static struct sk_buff
*s2io_txdl_getskb(struct fifo_info
*fifo_data
, struct \
2396 TxD
*txdlp
, int get_off
)
2398 struct s2io_nic
*nic
= fifo_data
->nic
;
2399 struct sk_buff
*skb
;
2404 if (txds
->Host_Control
== (u64
)(long)fifo_data
->ufo_in_band_v
) {
2405 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2406 txds
->Buffer_Pointer
, sizeof(u64
),
2411 skb
= (struct sk_buff
*) ((unsigned long)
2412 txds
->Host_Control
);
2414 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2417 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2418 txds
->Buffer_Pointer
,
2419 skb
->len
- skb
->data_len
,
2421 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2424 for (j
= 0; j
< frg_cnt
; j
++, txds
++) {
2425 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[j
];
2426 if (!txds
->Buffer_Pointer
)
2428 pci_unmap_page(nic
->pdev
, (dma_addr_t
)
2429 txds
->Buffer_Pointer
,
2430 frag
->size
, PCI_DMA_TODEVICE
);
2433 memset(txdlp
,0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2438 * free_tx_buffers - Free all queued Tx buffers
2439 * @nic : device private variable.
2441 * Free all queued Tx buffers.
2442 * Return Value: void
2445 static void free_tx_buffers(struct s2io_nic
*nic
)
2447 struct net_device
*dev
= nic
->dev
;
2448 struct sk_buff
*skb
;
2451 struct mac_info
*mac_control
;
2452 struct config_param
*config
;
2455 mac_control
= &nic
->mac_control
;
2456 config
= &nic
->config
;
2458 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
2459 unsigned long flags
;
2460 spin_lock_irqsave(&mac_control
->fifos
[i
].tx_lock
, flags
);
2461 for (j
= 0; j
< config
->tx_cfg
[i
].fifo_len
- 1; j
++) {
2462 txdp
= (struct TxD
*) \
2463 mac_control
->fifos
[i
].list_info
[j
].list_virt_addr
;
2464 skb
= s2io_txdl_getskb(&mac_control
->fifos
[i
], txdp
, j
);
2466 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
2473 "%s:forcibly freeing %d skbs on FIFO%d\n",
2475 mac_control
->fifos
[i
].tx_curr_get_info
.offset
= 0;
2476 mac_control
->fifos
[i
].tx_curr_put_info
.offset
= 0;
2477 spin_unlock_irqrestore(&mac_control
->fifos
[i
].tx_lock
, flags
);
2482 * stop_nic - To stop the nic
2483 * @nic ; device private variable.
2485 * This function does exactly the opposite of what the start_nic()
2486 * function does. This function is called to stop the device.
2491 static void stop_nic(struct s2io_nic
*nic
)
2493 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2494 register u64 val64
= 0;
2496 struct mac_info
*mac_control
;
2497 struct config_param
*config
;
2499 mac_control
= &nic
->mac_control
;
2500 config
= &nic
->config
;
2502 /* Disable all interrupts */
2503 en_dis_err_alarms(nic
, ENA_ALL_INTRS
, DISABLE_INTRS
);
2504 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
2505 interruptible
|= TX_PIC_INTR
;
2506 en_dis_able_nic_intrs(nic
, interruptible
, DISABLE_INTRS
);
2508 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2509 val64
= readq(&bar0
->adapter_control
);
2510 val64
&= ~(ADAPTER_CNTL_EN
);
2511 writeq(val64
, &bar0
->adapter_control
);
2515 * fill_rx_buffers - Allocates the Rx side skbs
2516 * @nic: device private variable
2517 * @ring_no: ring number
2519 * The function allocates Rx side skbs and puts the physical
2520 * address of these buffers into the RxD buffer pointers, so that the NIC
2521 * can DMA the received frame into these locations.
2522 * The NIC supports 3 receive modes, viz
2524 * 2. three buffer and
2525 * 3. Five buffer modes.
2526 * Each mode defines how many fragments the received frame will be split
2527 * up into by the NIC. The frame is split into L3 header, L4 Header,
2528 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2529 * is split into 3 fragments. As of now only single buffer mode is
2532 * SUCCESS on success or an appropriate -ve value on failure.
2535 static int fill_rx_buffers(struct s2io_nic
*nic
, int ring_no
)
2537 struct net_device
*dev
= nic
->dev
;
2538 struct sk_buff
*skb
;
2540 int off
, off1
, size
, block_no
, block_no1
;
2543 struct mac_info
*mac_control
;
2544 struct config_param
*config
;
2547 unsigned long flags
;
2548 struct RxD_t
*first_rxdp
= NULL
;
2549 u64 Buffer0_ptr
= 0, Buffer1_ptr
= 0;
2552 struct swStat
*stats
= &nic
->mac_control
.stats_info
->sw_stat
;
2554 mac_control
= &nic
->mac_control
;
2555 config
= &nic
->config
;
2556 alloc_cnt
= mac_control
->rings
[ring_no
].pkt_cnt
-
2557 atomic_read(&nic
->rx_bufs_left
[ring_no
]);
2559 block_no1
= mac_control
->rings
[ring_no
].rx_curr_get_info
.block_index
;
2560 off1
= mac_control
->rings
[ring_no
].rx_curr_get_info
.offset
;
2561 while (alloc_tab
< alloc_cnt
) {
2562 block_no
= mac_control
->rings
[ring_no
].rx_curr_put_info
.
2564 off
= mac_control
->rings
[ring_no
].rx_curr_put_info
.offset
;
2566 rxdp
= mac_control
->rings
[ring_no
].
2567 rx_blocks
[block_no
].rxds
[off
].virt_addr
;
2569 if ((block_no
== block_no1
) && (off
== off1
) &&
2570 (rxdp
->Host_Control
)) {
2571 DBG_PRINT(INTR_DBG
, "%s: Get and Put",
2573 DBG_PRINT(INTR_DBG
, " info equated\n");
2576 if (off
&& (off
== rxd_count
[nic
->rxd_mode
])) {
2577 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2579 if (mac_control
->rings
[ring_no
].rx_curr_put_info
.
2580 block_index
== mac_control
->rings
[ring_no
].
2582 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2584 block_no
= mac_control
->rings
[ring_no
].
2585 rx_curr_put_info
.block_index
;
2586 if (off
== rxd_count
[nic
->rxd_mode
])
2588 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2590 rxdp
= mac_control
->rings
[ring_no
].
2591 rx_blocks
[block_no
].block_virt_addr
;
2592 DBG_PRINT(INTR_DBG
, "%s: Next block at: %p\n",
2596 spin_lock_irqsave(&nic
->put_lock
, flags
);
2597 mac_control
->rings
[ring_no
].put_pos
=
2598 (block_no
* (rxd_count
[nic
->rxd_mode
] + 1)) + off
;
2599 spin_unlock_irqrestore(&nic
->put_lock
, flags
);
2601 mac_control
->rings
[ring_no
].put_pos
=
2602 (block_no
* (rxd_count
[nic
->rxd_mode
] + 1)) + off
;
2604 if ((rxdp
->Control_1
& RXD_OWN_XENA
) &&
2605 ((nic
->rxd_mode
== RXD_MODE_3B
) &&
2606 (rxdp
->Control_2
& s2BIT(0)))) {
2607 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2611 /* calculate size of skb based on ring mode */
2612 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
2613 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
2614 if (nic
->rxd_mode
== RXD_MODE_1
)
2615 size
+= NET_IP_ALIGN
;
2617 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2620 skb
= dev_alloc_skb(size
);
2622 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
2623 DBG_PRINT(INFO_DBG
, "memory to allocate SKBs\n");
2626 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2628 nic
->mac_control
.stats_info
->sw_stat
. \
2629 mem_alloc_fail_cnt
++;
2632 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
2634 if (nic
->rxd_mode
== RXD_MODE_1
) {
2635 /* 1 buffer mode - normal operation mode */
2636 rxdp1
= (struct RxD1
*)rxdp
;
2637 memset(rxdp
, 0, sizeof(struct RxD1
));
2638 skb_reserve(skb
, NET_IP_ALIGN
);
2639 rxdp1
->Buffer0_ptr
= pci_map_single
2640 (nic
->pdev
, skb
->data
, size
- NET_IP_ALIGN
,
2641 PCI_DMA_FROMDEVICE
);
2642 if( (rxdp1
->Buffer0_ptr
== 0) ||
2643 (rxdp1
->Buffer0_ptr
==
2645 goto pci_map_failed
;
2648 SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
2650 } else if (nic
->rxd_mode
== RXD_MODE_3B
) {
2653 * 2 buffer mode provides 128
2654 * byte aligned receive buffers.
2657 rxdp3
= (struct RxD3
*)rxdp
;
2658 /* save buffer pointers to avoid frequent dma mapping */
2659 Buffer0_ptr
= rxdp3
->Buffer0_ptr
;
2660 Buffer1_ptr
= rxdp3
->Buffer1_ptr
;
2661 memset(rxdp
, 0, sizeof(struct RxD3
));
2662 /* restore the buffer pointers for dma sync*/
2663 rxdp3
->Buffer0_ptr
= Buffer0_ptr
;
2664 rxdp3
->Buffer1_ptr
= Buffer1_ptr
;
2666 ba
= &mac_control
->rings
[ring_no
].ba
[block_no
][off
];
2667 skb_reserve(skb
, BUF0_LEN
);
2668 tmp
= (u64
)(unsigned long) skb
->data
;
2671 skb
->data
= (void *) (unsigned long)tmp
;
2672 skb_reset_tail_pointer(skb
);
2674 if (!(rxdp3
->Buffer0_ptr
))
2675 rxdp3
->Buffer0_ptr
=
2676 pci_map_single(nic
->pdev
, ba
->ba_0
, BUF0_LEN
,
2677 PCI_DMA_FROMDEVICE
);
2679 pci_dma_sync_single_for_device(nic
->pdev
,
2680 (dma_addr_t
) rxdp3
->Buffer0_ptr
,
2681 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
2682 if( (rxdp3
->Buffer0_ptr
== 0) ||
2683 (rxdp3
->Buffer0_ptr
== DMA_ERROR_CODE
))
2684 goto pci_map_failed
;
2686 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
2687 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2688 /* Two buffer mode */
2691 * Buffer2 will have L3/L4 header plus
2694 rxdp3
->Buffer2_ptr
= pci_map_single
2695 (nic
->pdev
, skb
->data
, dev
->mtu
+ 4,
2696 PCI_DMA_FROMDEVICE
);
2698 if( (rxdp3
->Buffer2_ptr
== 0) ||
2699 (rxdp3
->Buffer2_ptr
== DMA_ERROR_CODE
))
2700 goto pci_map_failed
;
2702 rxdp3
->Buffer1_ptr
=
2703 pci_map_single(nic
->pdev
,
2705 PCI_DMA_FROMDEVICE
);
2706 if( (rxdp3
->Buffer1_ptr
== 0) ||
2707 (rxdp3
->Buffer1_ptr
== DMA_ERROR_CODE
)) {
2710 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
2712 PCI_DMA_FROMDEVICE
);
2713 goto pci_map_failed
;
2715 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
2716 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3
2719 rxdp
->Control_2
|= s2BIT(0);
2721 rxdp
->Host_Control
= (unsigned long) (skb
);
2722 if (alloc_tab
& ((1 << rxsync_frequency
) - 1))
2723 rxdp
->Control_1
|= RXD_OWN_XENA
;
2725 if (off
== (rxd_count
[nic
->rxd_mode
] + 1))
2727 mac_control
->rings
[ring_no
].rx_curr_put_info
.offset
= off
;
2729 rxdp
->Control_2
|= SET_RXD_MARKER
;
2730 if (!(alloc_tab
& ((1 << rxsync_frequency
) - 1))) {
2733 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2737 atomic_inc(&nic
->rx_bufs_left
[ring_no
]);
2742 /* Transfer ownership of first descriptor to adapter just before
2743 * exiting. Before that, use memory barrier so that ownership
2744 * and other fields are seen by adapter correctly.
2748 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2753 stats
->pci_map_fail_cnt
++;
2754 stats
->mem_freed
+= skb
->truesize
;
2755 dev_kfree_skb_irq(skb
);
2759 static void free_rxd_blk(struct s2io_nic
*sp
, int ring_no
, int blk
)
2761 struct net_device
*dev
= sp
->dev
;
2763 struct sk_buff
*skb
;
2765 struct mac_info
*mac_control
;
2770 mac_control
= &sp
->mac_control
;
2771 for (j
= 0 ; j
< rxd_count
[sp
->rxd_mode
]; j
++) {
2772 rxdp
= mac_control
->rings
[ring_no
].
2773 rx_blocks
[blk
].rxds
[j
].virt_addr
;
2774 skb
= (struct sk_buff
*)
2775 ((unsigned long) rxdp
->Host_Control
);
2779 if (sp
->rxd_mode
== RXD_MODE_1
) {
2780 rxdp1
= (struct RxD1
*)rxdp
;
2781 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2784 HEADER_ETHERNET_II_802_3_SIZE
2785 + HEADER_802_2_SIZE
+
2787 PCI_DMA_FROMDEVICE
);
2788 memset(rxdp
, 0, sizeof(struct RxD1
));
2789 } else if(sp
->rxd_mode
== RXD_MODE_3B
) {
2790 rxdp3
= (struct RxD3
*)rxdp
;
2791 ba
= &mac_control
->rings
[ring_no
].
2793 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2796 PCI_DMA_FROMDEVICE
);
2797 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2800 PCI_DMA_FROMDEVICE
);
2801 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2804 PCI_DMA_FROMDEVICE
);
2805 memset(rxdp
, 0, sizeof(struct RxD3
));
2807 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
2809 atomic_dec(&sp
->rx_bufs_left
[ring_no
]);
2814 * free_rx_buffers - Frees all Rx buffers
2815 * @sp: device private variable.
2817 * This function will free all Rx buffers allocated by host.
2822 static void free_rx_buffers(struct s2io_nic
*sp
)
2824 struct net_device
*dev
= sp
->dev
;
2825 int i
, blk
= 0, buf_cnt
= 0;
2826 struct mac_info
*mac_control
;
2827 struct config_param
*config
;
2829 mac_control
= &sp
->mac_control
;
2830 config
= &sp
->config
;
2832 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2833 for (blk
= 0; blk
< rx_ring_sz
[i
]; blk
++)
2834 free_rxd_blk(sp
,i
,blk
);
2836 mac_control
->rings
[i
].rx_curr_put_info
.block_index
= 0;
2837 mac_control
->rings
[i
].rx_curr_get_info
.block_index
= 0;
2838 mac_control
->rings
[i
].rx_curr_put_info
.offset
= 0;
2839 mac_control
->rings
[i
].rx_curr_get_info
.offset
= 0;
2840 atomic_set(&sp
->rx_bufs_left
[i
], 0);
2841 DBG_PRINT(INIT_DBG
, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2842 dev
->name
, buf_cnt
, i
);
2847 * s2io_poll - Rx interrupt handler for NAPI support
2848 * @napi : pointer to the napi structure.
2849 * @budget : The number of packets that were budgeted to be processed
2850 * during one pass through the 'Poll" function.
2852 * Comes into picture only if NAPI support has been incorporated. It does
2853 * the same thing that rx_intr_handler does, but not in a interrupt context
2854 * also It will process only a given number of packets.
2856 * 0 on success and 1 if there are No Rx packets to be processed.
2859 static int s2io_poll(struct napi_struct
*napi
, int budget
)
2861 struct s2io_nic
*nic
= container_of(napi
, struct s2io_nic
, napi
);
2862 struct net_device
*dev
= nic
->dev
;
2863 int pkt_cnt
= 0, org_pkts_to_process
;
2864 struct mac_info
*mac_control
;
2865 struct config_param
*config
;
2866 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2869 mac_control
= &nic
->mac_control
;
2870 config
= &nic
->config
;
2872 nic
->pkts_to_process
= budget
;
2873 org_pkts_to_process
= nic
->pkts_to_process
;
2875 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
2876 readl(&bar0
->rx_traffic_int
);
2878 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2879 rx_intr_handler(&mac_control
->rings
[i
]);
2880 pkt_cnt
= org_pkts_to_process
- nic
->pkts_to_process
;
2881 if (!nic
->pkts_to_process
) {
2882 /* Quota for the current iteration has been met */
2887 netif_rx_complete(dev
, napi
);
2889 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2890 if (fill_rx_buffers(nic
, i
) == -ENOMEM
) {
2891 DBG_PRINT(INFO_DBG
, "%s:Out of memory", dev
->name
);
2892 DBG_PRINT(INFO_DBG
, " in Rx Poll!!\n");
2896 /* Re enable the Rx interrupts. */
2897 writeq(0x0, &bar0
->rx_traffic_mask
);
2898 readl(&bar0
->rx_traffic_mask
);
2902 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2903 if (fill_rx_buffers(nic
, i
) == -ENOMEM
) {
2904 DBG_PRINT(INFO_DBG
, "%s:Out of memory", dev
->name
);
2905 DBG_PRINT(INFO_DBG
, " in Rx Poll!!\n");
2912 #ifdef CONFIG_NET_POLL_CONTROLLER
2914 * s2io_netpoll - netpoll event handler entry point
2915 * @dev : pointer to the device structure.
2917 * This function will be called by upper layer to check for events on the
2918 * interface in situations where interrupts are disabled. It is used for
2919 * specific in-kernel networking tasks, such as remote consoles and kernel
2920 * debugging over the network (example netdump in RedHat).
2922 static void s2io_netpoll(struct net_device
*dev
)
2924 struct s2io_nic
*nic
= dev
->priv
;
2925 struct mac_info
*mac_control
;
2926 struct config_param
*config
;
2927 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2928 u64 val64
= 0xFFFFFFFFFFFFFFFFULL
;
2931 if (pci_channel_offline(nic
->pdev
))
2934 disable_irq(dev
->irq
);
2936 mac_control
= &nic
->mac_control
;
2937 config
= &nic
->config
;
2939 writeq(val64
, &bar0
->rx_traffic_int
);
2940 writeq(val64
, &bar0
->tx_traffic_int
);
2942 /* we need to free up the transmitted skbufs or else netpoll will
2943 * run out of skbs and will fail and eventually netpoll application such
2944 * as netdump will fail.
2946 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
2947 tx_intr_handler(&mac_control
->fifos
[i
]);
2949 /* check for received packet and indicate up to network */
2950 for (i
= 0; i
< config
->rx_ring_num
; i
++)
2951 rx_intr_handler(&mac_control
->rings
[i
]);
2953 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2954 if (fill_rx_buffers(nic
, i
) == -ENOMEM
) {
2955 DBG_PRINT(INFO_DBG
, "%s:Out of memory", dev
->name
);
2956 DBG_PRINT(INFO_DBG
, " in Rx Netpoll!!\n");
2960 enable_irq(dev
->irq
);
2966 * rx_intr_handler - Rx interrupt handler
2967 * @nic: device private variable.
2969 * If the interrupt is because of a received frame or if the
2970 * receive ring contains fresh as yet un-processed frames,this function is
2971 * called. It picks out the RxD at which place the last Rx processing had
2972 * stopped and sends the skb to the OSM's Rx handler and then increments
2977 static void rx_intr_handler(struct ring_info
*ring_data
)
2979 struct s2io_nic
*nic
= ring_data
->nic
;
2980 struct net_device
*dev
= (struct net_device
*) nic
->dev
;
2981 int get_block
, put_block
, put_offset
;
2982 struct rx_curr_get_info get_info
, put_info
;
2984 struct sk_buff
*skb
;
2990 spin_lock(&nic
->rx_lock
);
2992 get_info
= ring_data
->rx_curr_get_info
;
2993 get_block
= get_info
.block_index
;
2994 memcpy(&put_info
, &ring_data
->rx_curr_put_info
, sizeof(put_info
));
2995 put_block
= put_info
.block_index
;
2996 rxdp
= ring_data
->rx_blocks
[get_block
].rxds
[get_info
.offset
].virt_addr
;
2998 spin_lock(&nic
->put_lock
);
2999 put_offset
= ring_data
->put_pos
;
3000 spin_unlock(&nic
->put_lock
);
3002 put_offset
= ring_data
->put_pos
;
3004 while (RXD_IS_UP2DT(rxdp
)) {
3006 * If your are next to put index then it's
3007 * FIFO full condition
3009 if ((get_block
== put_block
) &&
3010 (get_info
.offset
+ 1) == put_info
.offset
) {
3011 DBG_PRINT(INTR_DBG
, "%s: Ring Full\n",dev
->name
);
3014 skb
= (struct sk_buff
*) ((unsigned long)rxdp
->Host_Control
);
3016 DBG_PRINT(ERR_DBG
, "%s: The skb is ",
3018 DBG_PRINT(ERR_DBG
, "Null in Rx Intr\n");
3019 spin_unlock(&nic
->rx_lock
);
3022 if (nic
->rxd_mode
== RXD_MODE_1
) {
3023 rxdp1
= (struct RxD1
*)rxdp
;
3024 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
3027 HEADER_ETHERNET_II_802_3_SIZE
+
3030 PCI_DMA_FROMDEVICE
);
3031 } else if (nic
->rxd_mode
== RXD_MODE_3B
) {
3032 rxdp3
= (struct RxD3
*)rxdp
;
3033 pci_dma_sync_single_for_cpu(nic
->pdev
, (dma_addr_t
)
3035 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
3036 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
3039 PCI_DMA_FROMDEVICE
);
3041 prefetch(skb
->data
);
3042 rx_osm_handler(ring_data
, rxdp
);
3044 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
3045 rxdp
= ring_data
->rx_blocks
[get_block
].
3046 rxds
[get_info
.offset
].virt_addr
;
3047 if (get_info
.offset
== rxd_count
[nic
->rxd_mode
]) {
3048 get_info
.offset
= 0;
3049 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
3051 if (get_block
== ring_data
->block_count
)
3053 ring_data
->rx_curr_get_info
.block_index
= get_block
;
3054 rxdp
= ring_data
->rx_blocks
[get_block
].block_virt_addr
;
3057 nic
->pkts_to_process
-= 1;
3058 if ((napi
) && (!nic
->pkts_to_process
))
3061 if ((indicate_max_pkts
) && (pkt_cnt
> indicate_max_pkts
))
3065 /* Clear all LRO sessions before exiting */
3066 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
3067 struct lro
*lro
= &nic
->lro0_n
[i
];
3069 update_L3L4_header(nic
, lro
);
3070 queue_rx_frame(lro
->parent
, lro
->vlan_tag
);
3071 clear_lro_session(lro
);
3076 spin_unlock(&nic
->rx_lock
);
3080 * tx_intr_handler - Transmit interrupt handler
3081 * @nic : device private variable
3083 * If an interrupt was raised to indicate DMA complete of the
3084 * Tx packet, this function is called. It identifies the last TxD
3085 * whose buffer was freed and frees all skbs whose data have already
3086 * DMA'ed into the NICs internal memory.
3091 static void tx_intr_handler(struct fifo_info
*fifo_data
)
3093 struct s2io_nic
*nic
= fifo_data
->nic
;
3094 struct tx_curr_get_info get_info
, put_info
;
3095 struct sk_buff
*skb
= NULL
;
3098 unsigned long flags
= 0;
3101 if (!spin_trylock_irqsave(&fifo_data
->tx_lock
, flags
))
3104 get_info
= fifo_data
->tx_curr_get_info
;
3105 memcpy(&put_info
, &fifo_data
->tx_curr_put_info
, sizeof(put_info
));
3106 txdlp
= (struct TxD
*) fifo_data
->list_info
[get_info
.offset
].
3108 while ((!(txdlp
->Control_1
& TXD_LIST_OWN_XENA
)) &&
3109 (get_info
.offset
!= put_info
.offset
) &&
3110 (txdlp
->Host_Control
)) {
3111 /* Check for TxD errors */
3112 if (txdlp
->Control_1
& TXD_T_CODE
) {
3113 unsigned long long err
;
3114 err
= txdlp
->Control_1
& TXD_T_CODE
;
3116 nic
->mac_control
.stats_info
->sw_stat
.
3120 /* update t_code statistics */
3121 err_mask
= err
>> 48;
3124 nic
->mac_control
.stats_info
->sw_stat
.
3129 nic
->mac_control
.stats_info
->sw_stat
.
3130 tx_desc_abort_cnt
++;
3134 nic
->mac_control
.stats_info
->sw_stat
.
3135 tx_parity_err_cnt
++;
3139 nic
->mac_control
.stats_info
->sw_stat
.
3144 nic
->mac_control
.stats_info
->sw_stat
.
3145 tx_list_proc_err_cnt
++;
3150 skb
= s2io_txdl_getskb(fifo_data
, txdlp
, get_info
.offset
);
3152 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3153 DBG_PRINT(ERR_DBG
, "%s: Null skb ",
3155 DBG_PRINT(ERR_DBG
, "in Tx Free Intr\n");
3160 /* Updating the statistics block */
3161 nic
->stats
.tx_bytes
+= skb
->len
;
3162 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
3163 dev_kfree_skb_irq(skb
);
3166 if (get_info
.offset
== get_info
.fifo_len
+ 1)
3167 get_info
.offset
= 0;
3168 txdlp
= (struct TxD
*) fifo_data
->list_info
3169 [get_info
.offset
].list_virt_addr
;
3170 fifo_data
->tx_curr_get_info
.offset
=
3174 s2io_wake_tx_queue(fifo_data
, pkt_cnt
, nic
->config
.multiq
);
3176 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3180 * s2io_mdio_write - Function to write in to MDIO registers
3181 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3182 * @addr : address value
3183 * @value : data value
3184 * @dev : pointer to net_device structure
3186 * This function is used to write values to the MDIO registers
3189 static void s2io_mdio_write(u32 mmd_type
, u64 addr
, u16 value
, struct net_device
*dev
)
3192 struct s2io_nic
*sp
= dev
->priv
;
3193 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3195 //address transaction
3196 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3197 | MDIO_MMD_DEV_ADDR(mmd_type
)
3198 | MDIO_MMS_PRT_ADDR(0x0);
3199 writeq(val64
, &bar0
->mdio_control
);
3200 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3201 writeq(val64
, &bar0
->mdio_control
);
3206 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3207 | MDIO_MMD_DEV_ADDR(mmd_type
)
3208 | MDIO_MMS_PRT_ADDR(0x0)
3209 | MDIO_MDIO_DATA(value
)
3210 | MDIO_OP(MDIO_OP_WRITE_TRANS
);
3211 writeq(val64
, &bar0
->mdio_control
);
3212 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3213 writeq(val64
, &bar0
->mdio_control
);
3217 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3218 | MDIO_MMD_DEV_ADDR(mmd_type
)
3219 | MDIO_MMS_PRT_ADDR(0x0)
3220 | MDIO_OP(MDIO_OP_READ_TRANS
);
3221 writeq(val64
, &bar0
->mdio_control
);
3222 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3223 writeq(val64
, &bar0
->mdio_control
);
3229 * s2io_mdio_read - Function to write in to MDIO registers
3230 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3231 * @addr : address value
3232 * @dev : pointer to net_device structure
3234 * This function is used to read values to the MDIO registers
3237 static u64
s2io_mdio_read(u32 mmd_type
, u64 addr
, struct net_device
*dev
)
3241 struct s2io_nic
*sp
= dev
->priv
;
3242 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3244 /* address transaction */
3245 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3246 | MDIO_MMD_DEV_ADDR(mmd_type
)
3247 | MDIO_MMS_PRT_ADDR(0x0);
3248 writeq(val64
, &bar0
->mdio_control
);
3249 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3250 writeq(val64
, &bar0
->mdio_control
);
3253 /* Data transaction */
3255 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3256 | MDIO_MMD_DEV_ADDR(mmd_type
)
3257 | MDIO_MMS_PRT_ADDR(0x0)
3258 | MDIO_OP(MDIO_OP_READ_TRANS
);
3259 writeq(val64
, &bar0
->mdio_control
);
3260 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3261 writeq(val64
, &bar0
->mdio_control
);
3264 /* Read the value from regs */
3265 rval64
= readq(&bar0
->mdio_control
);
3266 rval64
= rval64
& 0xFFFF0000;
3267 rval64
= rval64
>> 16;
3271 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3272 * @counter : couter value to be updated
3273 * @flag : flag to indicate the status
3274 * @type : counter type
3276 * This function is to check the status of the xpak counters value
3280 static void s2io_chk_xpak_counter(u64
*counter
, u64
* regs_stat
, u32 index
, u16 flag
, u16 type
)
3285 for(i
= 0; i
<index
; i
++)
3290 *counter
= *counter
+ 1;
3291 val64
= *regs_stat
& mask
;
3292 val64
= val64
>> (index
* 0x2);
3299 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3300 "service. Excessive temperatures may "
3301 "result in premature transceiver "
3305 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3306 "service Excessive bias currents may "
3307 "indicate imminent laser diode "
3311 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3312 "service Excessive laser output "
3313 "power may saturate far-end "
3317 DBG_PRINT(ERR_DBG
, "Incorrect XPAK Alarm "
3322 val64
= val64
<< (index
* 0x2);
3323 *regs_stat
= (*regs_stat
& (~mask
)) | (val64
);
3326 *regs_stat
= *regs_stat
& (~mask
);
3331 * s2io_updt_xpak_counter - Function to update the xpak counters
3332 * @dev : pointer to net_device struct
3334 * This function is to upate the status of the xpak counters value
3337 static void s2io_updt_xpak_counter(struct net_device
*dev
)
3345 struct s2io_nic
*sp
= dev
->priv
;
3346 struct stat_block
*stat_info
= sp
->mac_control
.stats_info
;
3348 /* Check the communication with the MDIO slave */
3351 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3352 if((val64
== 0xFFFF) || (val64
== 0x0000))
3354 DBG_PRINT(ERR_DBG
, "ERR: MDIO slave access failed - "
3355 "Returned %llx\n", (unsigned long long)val64
);
3359 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3362 DBG_PRINT(ERR_DBG
, "Incorrect value at PMA address 0x0000 - ");
3363 DBG_PRINT(ERR_DBG
, "Returned: %llx- Expected: 0x2040\n",
3364 (unsigned long long)val64
);
3368 /* Loading the DOM register to MDIO register */
3370 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR
, addr
, val16
, dev
);
3371 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3373 /* Reading the Alarm flags */
3376 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3378 flag
= CHECKBIT(val64
, 0x7);
3380 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_transceiver_temp_high
,
3381 &stat_info
->xpak_stat
.xpak_regs_stat
,
3384 if(CHECKBIT(val64
, 0x6))
3385 stat_info
->xpak_stat
.alarm_transceiver_temp_low
++;
3387 flag
= CHECKBIT(val64
, 0x3);
3389 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_laser_bias_current_high
,
3390 &stat_info
->xpak_stat
.xpak_regs_stat
,
3393 if(CHECKBIT(val64
, 0x2))
3394 stat_info
->xpak_stat
.alarm_laser_bias_current_low
++;
3396 flag
= CHECKBIT(val64
, 0x1);
3398 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_laser_output_power_high
,
3399 &stat_info
->xpak_stat
.xpak_regs_stat
,
3402 if(CHECKBIT(val64
, 0x0))
3403 stat_info
->xpak_stat
.alarm_laser_output_power_low
++;
3405 /* Reading the Warning flags */
3408 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3410 if(CHECKBIT(val64
, 0x7))
3411 stat_info
->xpak_stat
.warn_transceiver_temp_high
++;
3413 if(CHECKBIT(val64
, 0x6))
3414 stat_info
->xpak_stat
.warn_transceiver_temp_low
++;
3416 if(CHECKBIT(val64
, 0x3))
3417 stat_info
->xpak_stat
.warn_laser_bias_current_high
++;
3419 if(CHECKBIT(val64
, 0x2))
3420 stat_info
->xpak_stat
.warn_laser_bias_current_low
++;
3422 if(CHECKBIT(val64
, 0x1))
3423 stat_info
->xpak_stat
.warn_laser_output_power_high
++;
3425 if(CHECKBIT(val64
, 0x0))
3426 stat_info
->xpak_stat
.warn_laser_output_power_low
++;
3430 * wait_for_cmd_complete - waits for a command to complete.
3431 * @sp : private member of the device structure, which is a pointer to the
3432 * s2io_nic structure.
3433 * Description: Function that waits for a command to Write into RMAC
3434 * ADDR DATA registers to be completed and returns either success or
3435 * error depending on whether the command was complete or not.
3437 * SUCCESS on success and FAILURE on failure.
3440 static int wait_for_cmd_complete(void __iomem
*addr
, u64 busy_bit
,
3443 int ret
= FAILURE
, cnt
= 0, delay
= 1;
3446 if ((bit_state
!= S2IO_BIT_RESET
) && (bit_state
!= S2IO_BIT_SET
))
3450 val64
= readq(addr
);
3451 if (bit_state
== S2IO_BIT_RESET
) {
3452 if (!(val64
& busy_bit
)) {
3457 if (!(val64
& busy_bit
)) {
3474 * check_pci_device_id - Checks if the device id is supported
3476 * Description: Function to check if the pci device id is supported by driver.
3477 * Return value: Actual device id if supported else PCI_ANY_ID
3479 static u16
check_pci_device_id(u16 id
)
3482 case PCI_DEVICE_ID_HERC_WIN
:
3483 case PCI_DEVICE_ID_HERC_UNI
:
3484 return XFRAME_II_DEVICE
;
3485 case PCI_DEVICE_ID_S2IO_UNI
:
3486 case PCI_DEVICE_ID_S2IO_WIN
:
3487 return XFRAME_I_DEVICE
;
3494 * s2io_reset - Resets the card.
3495 * @sp : private member of the device structure.
3496 * Description: Function to Reset the card. This function then also
3497 * restores the previously saved PCI configuration space registers as
3498 * the card reset also resets the configuration space.
3503 static void s2io_reset(struct s2io_nic
* sp
)
3505 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3510 unsigned long long up_cnt
, down_cnt
, up_time
, down_time
, reset_cnt
;
3511 unsigned long long mem_alloc_cnt
, mem_free_cnt
, watchdog_cnt
;
3513 DBG_PRINT(INIT_DBG
,"%s - Resetting XFrame card %s\n",
3514 __FUNCTION__
, sp
->dev
->name
);
3516 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3517 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, &(pci_cmd
));
3519 val64
= SW_RESET_ALL
;
3520 writeq(val64
, &bar0
->sw_reset
);
3521 if (strstr(sp
->product_name
, "CX4")) {
3525 for (i
= 0; i
< S2IO_MAX_PCI_CONFIG_SPACE_REINIT
; i
++) {
3527 /* Restore the PCI state saved during initialization. */
3528 pci_restore_state(sp
->pdev
);
3529 pci_read_config_word(sp
->pdev
, 0x2, &val16
);
3530 if (check_pci_device_id(val16
) != (u16
)PCI_ANY_ID
)
3535 if (check_pci_device_id(val16
) == (u16
)PCI_ANY_ID
) {
3536 DBG_PRINT(ERR_DBG
,"%s SW_Reset failed!\n", __FUNCTION__
);
3539 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, pci_cmd
);
3543 /* Set swapper to enable I/O register access */
3544 s2io_set_swapper(sp
);
3546 /* restore mac_addr entries */
3547 do_s2io_restore_unicast_mc(sp
);
3549 /* Restore the MSIX table entries from local variables */
3550 restore_xmsi_data(sp
);
3552 /* Clear certain PCI/PCI-X fields after reset */
3553 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3554 /* Clear "detected parity error" bit */
3555 pci_write_config_word(sp
->pdev
, PCI_STATUS
, 0x8000);
3557 /* Clearing PCIX Ecc status register */
3558 pci_write_config_dword(sp
->pdev
, 0x68, 0x7C);
3560 /* Clearing PCI_STATUS error reflected here */
3561 writeq(s2BIT(62), &bar0
->txpic_int_reg
);
3564 /* Reset device statistics maintained by OS */
3565 memset(&sp
->stats
, 0, sizeof (struct net_device_stats
));
3567 up_cnt
= sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
;
3568 down_cnt
= sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
;
3569 up_time
= sp
->mac_control
.stats_info
->sw_stat
.link_up_time
;
3570 down_time
= sp
->mac_control
.stats_info
->sw_stat
.link_down_time
;
3571 reset_cnt
= sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
;
3572 mem_alloc_cnt
= sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
;
3573 mem_free_cnt
= sp
->mac_control
.stats_info
->sw_stat
.mem_freed
;
3574 watchdog_cnt
= sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
;
3575 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3576 memset(sp
->mac_control
.stats_info
, 0, sizeof(struct stat_block
));
3577 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3578 sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
= up_cnt
;
3579 sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
= down_cnt
;
3580 sp
->mac_control
.stats_info
->sw_stat
.link_up_time
= up_time
;
3581 sp
->mac_control
.stats_info
->sw_stat
.link_down_time
= down_time
;
3582 sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
= reset_cnt
;
3583 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
= mem_alloc_cnt
;
3584 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
= mem_free_cnt
;
3585 sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
= watchdog_cnt
;
3587 /* SXE-002: Configure link and activity LED to turn it off */
3588 subid
= sp
->pdev
->subsystem_device
;
3589 if (((subid
& 0xFF) >= 0x07) &&
3590 (sp
->device_type
== XFRAME_I_DEVICE
)) {
3591 val64
= readq(&bar0
->gpio_control
);
3592 val64
|= 0x0000800000000000ULL
;
3593 writeq(val64
, &bar0
->gpio_control
);
3594 val64
= 0x0411040400000000ULL
;
3595 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
3599 * Clear spurious ECC interrupts that would have occured on
3600 * XFRAME II cards after reset.
3602 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3603 val64
= readq(&bar0
->pcc_err_reg
);
3604 writeq(val64
, &bar0
->pcc_err_reg
);
3607 sp
->device_enabled_once
= FALSE
;
3611 * s2io_set_swapper - to set the swapper controle on the card
3612 * @sp : private member of the device structure,
3613 * pointer to the s2io_nic structure.
3614 * Description: Function to set the swapper control on the card
3615 * correctly depending on the 'endianness' of the system.
3617 * SUCCESS on success and FAILURE on failure.
3620 static int s2io_set_swapper(struct s2io_nic
* sp
)
3622 struct net_device
*dev
= sp
->dev
;
3623 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3624 u64 val64
, valt
, valr
;
3627 * Set proper endian settings and verify the same by reading
3628 * the PIF Feed-back register.
3631 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3632 if (val64
!= 0x0123456789ABCDEFULL
) {
3634 u64 value
[] = { 0xC30000C3C30000C3ULL
, /* FE=1, SE=1 */
3635 0x8100008181000081ULL
, /* FE=1, SE=0 */
3636 0x4200004242000042ULL
, /* FE=0, SE=1 */
3637 0}; /* FE=0, SE=0 */
3640 writeq(value
[i
], &bar0
->swapper_ctrl
);
3641 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3642 if (val64
== 0x0123456789ABCDEFULL
)
3647 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, ",
3649 DBG_PRINT(ERR_DBG
, "feedback read %llx\n",
3650 (unsigned long long) val64
);
3655 valr
= readq(&bar0
->swapper_ctrl
);
3658 valt
= 0x0123456789ABCDEFULL
;
3659 writeq(valt
, &bar0
->xmsi_address
);
3660 val64
= readq(&bar0
->xmsi_address
);
3664 u64 value
[] = { 0x00C3C30000C3C300ULL
, /* FE=1, SE=1 */
3665 0x0081810000818100ULL
, /* FE=1, SE=0 */
3666 0x0042420000424200ULL
, /* FE=0, SE=1 */
3667 0}; /* FE=0, SE=0 */
3670 writeq((value
[i
] | valr
), &bar0
->swapper_ctrl
);
3671 writeq(valt
, &bar0
->xmsi_address
);
3672 val64
= readq(&bar0
->xmsi_address
);
3678 unsigned long long x
= val64
;
3679 DBG_PRINT(ERR_DBG
, "Write failed, Xmsi_addr ");
3680 DBG_PRINT(ERR_DBG
, "reads:0x%llx\n", x
);
3684 val64
= readq(&bar0
->swapper_ctrl
);
3685 val64
&= 0xFFFF000000000000ULL
;
3689 * The device by default set to a big endian format, so a
3690 * big endian driver need not set anything.
3692 val64
|= (SWAPPER_CTRL_TXP_FE
|
3693 SWAPPER_CTRL_TXP_SE
|
3694 SWAPPER_CTRL_TXD_R_FE
|
3695 SWAPPER_CTRL_TXD_W_FE
|
3696 SWAPPER_CTRL_TXF_R_FE
|
3697 SWAPPER_CTRL_RXD_R_FE
|
3698 SWAPPER_CTRL_RXD_W_FE
|
3699 SWAPPER_CTRL_RXF_W_FE
|
3700 SWAPPER_CTRL_XMSI_FE
|
3701 SWAPPER_CTRL_STATS_FE
| SWAPPER_CTRL_STATS_SE
);
3702 if (sp
->config
.intr_type
== INTA
)
3703 val64
|= SWAPPER_CTRL_XMSI_SE
;
3704 writeq(val64
, &bar0
->swapper_ctrl
);
3707 * Initially we enable all bits to make it accessible by the
3708 * driver, then we selectively enable only those bits that
3711 val64
|= (SWAPPER_CTRL_TXP_FE
|
3712 SWAPPER_CTRL_TXP_SE
|
3713 SWAPPER_CTRL_TXD_R_FE
|
3714 SWAPPER_CTRL_TXD_R_SE
|
3715 SWAPPER_CTRL_TXD_W_FE
|
3716 SWAPPER_CTRL_TXD_W_SE
|
3717 SWAPPER_CTRL_TXF_R_FE
|
3718 SWAPPER_CTRL_RXD_R_FE
|
3719 SWAPPER_CTRL_RXD_R_SE
|
3720 SWAPPER_CTRL_RXD_W_FE
|
3721 SWAPPER_CTRL_RXD_W_SE
|
3722 SWAPPER_CTRL_RXF_W_FE
|
3723 SWAPPER_CTRL_XMSI_FE
|
3724 SWAPPER_CTRL_STATS_FE
| SWAPPER_CTRL_STATS_SE
);
3725 if (sp
->config
.intr_type
== INTA
)
3726 val64
|= SWAPPER_CTRL_XMSI_SE
;
3727 writeq(val64
, &bar0
->swapper_ctrl
);
3729 val64
= readq(&bar0
->swapper_ctrl
);
3732 * Verifying if endian settings are accurate by reading a
3733 * feedback register.
3735 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3736 if (val64
!= 0x0123456789ABCDEFULL
) {
3737 /* Endian settings are incorrect, calls for another dekko. */
3738 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, ",
3740 DBG_PRINT(ERR_DBG
, "feedback read %llx\n",
3741 (unsigned long long) val64
);
3748 static int wait_for_msix_trans(struct s2io_nic
*nic
, int i
)
3750 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3752 int ret
= 0, cnt
= 0;
3755 val64
= readq(&bar0
->xmsi_access
);
3756 if (!(val64
& s2BIT(15)))
3762 DBG_PRINT(ERR_DBG
, "XMSI # %d Access failed\n", i
);
3769 static void restore_xmsi_data(struct s2io_nic
*nic
)
3771 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3775 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3776 writeq(nic
->msix_info
[i
].addr
, &bar0
->xmsi_address
);
3777 writeq(nic
->msix_info
[i
].data
, &bar0
->xmsi_data
);
3778 val64
= (s2BIT(7) | s2BIT(15) | vBIT(i
, 26, 6));
3779 writeq(val64
, &bar0
->xmsi_access
);
3780 if (wait_for_msix_trans(nic
, i
)) {
3781 DBG_PRINT(ERR_DBG
, "failed in %s\n", __FUNCTION__
);
3787 static void store_xmsi_data(struct s2io_nic
*nic
)
3789 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3790 u64 val64
, addr
, data
;
3793 /* Store and display */
3794 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3795 val64
= (s2BIT(15) | vBIT(i
, 26, 6));
3796 writeq(val64
, &bar0
->xmsi_access
);
3797 if (wait_for_msix_trans(nic
, i
)) {
3798 DBG_PRINT(ERR_DBG
, "failed in %s\n", __FUNCTION__
);
3801 addr
= readq(&bar0
->xmsi_address
);
3802 data
= readq(&bar0
->xmsi_data
);
3804 nic
->msix_info
[i
].addr
= addr
;
3805 nic
->msix_info
[i
].data
= data
;
3810 static int s2io_enable_msi_x(struct s2io_nic
*nic
)
3812 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3814 u16 msi_control
; /* Temp variable */
3815 int ret
, i
, j
, msix_indx
= 1;
3817 nic
->entries
= kcalloc(MAX_REQUESTED_MSI_X
, sizeof(struct msix_entry
),
3819 if (!nic
->entries
) {
3820 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n", \
3822 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
3825 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
3826 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3829 kcalloc(MAX_REQUESTED_MSI_X
, sizeof(struct s2io_msix_entry
),
3831 if (!nic
->s2io_entries
) {
3832 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3834 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
3835 kfree(nic
->entries
);
3836 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3837 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3840 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
3841 += (MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
));
3843 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3844 nic
->entries
[i
].entry
= i
;
3845 nic
->s2io_entries
[i
].entry
= i
;
3846 nic
->s2io_entries
[i
].arg
= NULL
;
3847 nic
->s2io_entries
[i
].in_use
= 0;
3850 tx_mat
= readq(&bar0
->tx_mat0_n
[0]);
3851 for (i
=0; i
<nic
->config
.tx_fifo_num
; i
++, msix_indx
++) {
3852 tx_mat
|= TX_MAT_SET(i
, msix_indx
);
3853 nic
->s2io_entries
[msix_indx
].arg
= &nic
->mac_control
.fifos
[i
];
3854 nic
->s2io_entries
[msix_indx
].type
= MSIX_FIFO_TYPE
;
3855 nic
->s2io_entries
[msix_indx
].in_use
= MSIX_FLG
;
3857 writeq(tx_mat
, &bar0
->tx_mat0_n
[0]);
3859 rx_mat
= readq(&bar0
->rx_mat
);
3860 for (j
= 0; j
< nic
->config
.rx_ring_num
; j
++, msix_indx
++) {
3861 rx_mat
|= RX_MAT_SET(j
, msix_indx
);
3862 nic
->s2io_entries
[msix_indx
].arg
3863 = &nic
->mac_control
.rings
[j
];
3864 nic
->s2io_entries
[msix_indx
].type
= MSIX_RING_TYPE
;
3865 nic
->s2io_entries
[msix_indx
].in_use
= MSIX_FLG
;
3867 writeq(rx_mat
, &bar0
->rx_mat
);
3869 nic
->avail_msix_vectors
= 0;
3870 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, MAX_REQUESTED_MSI_X
);
3871 /* We fail init if error or we get less vectors than min required */
3872 if (ret
>= (nic
->config
.tx_fifo_num
+ nic
->config
.rx_ring_num
+ 1)) {
3873 nic
->avail_msix_vectors
= ret
;
3874 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, ret
);
3877 DBG_PRINT(ERR_DBG
, "%s: Enabling MSIX failed\n", nic
->dev
->name
);
3878 kfree(nic
->entries
);
3879 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3880 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3881 kfree(nic
->s2io_entries
);
3882 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3883 += (MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
));
3884 nic
->entries
= NULL
;
3885 nic
->s2io_entries
= NULL
;
3886 nic
->avail_msix_vectors
= 0;
3889 if (!nic
->avail_msix_vectors
)
3890 nic
->avail_msix_vectors
= MAX_REQUESTED_MSI_X
;
3893 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3894 * in the herc NIC. (Temp change, needs to be removed later)
3896 pci_read_config_word(nic
->pdev
, 0x42, &msi_control
);
3897 msi_control
|= 0x1; /* Enable MSI */
3898 pci_write_config_word(nic
->pdev
, 0x42, msi_control
);
3903 /* Handle software interrupt used during MSI(X) test */
3904 static irqreturn_t
s2io_test_intr(int irq
, void *dev_id
)
3906 struct s2io_nic
*sp
= dev_id
;
3908 sp
->msi_detected
= 1;
3909 wake_up(&sp
->msi_wait
);
3914 /* Test interrupt path by forcing a a software IRQ */
3915 static int s2io_test_msi(struct s2io_nic
*sp
)
3917 struct pci_dev
*pdev
= sp
->pdev
;
3918 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3922 err
= request_irq(sp
->entries
[1].vector
, s2io_test_intr
, 0,
3925 DBG_PRINT(ERR_DBG
, "%s: PCI %s: cannot assign irq %d\n",
3926 sp
->dev
->name
, pci_name(pdev
), pdev
->irq
);
3930 init_waitqueue_head (&sp
->msi_wait
);
3931 sp
->msi_detected
= 0;
3933 saved64
= val64
= readq(&bar0
->scheduled_int_ctrl
);
3934 val64
|= SCHED_INT_CTRL_ONE_SHOT
;
3935 val64
|= SCHED_INT_CTRL_TIMER_EN
;
3936 val64
|= SCHED_INT_CTRL_INT2MSI(1);
3937 writeq(val64
, &bar0
->scheduled_int_ctrl
);
3939 wait_event_timeout(sp
->msi_wait
, sp
->msi_detected
, HZ
/10);
3941 if (!sp
->msi_detected
) {
3942 /* MSI(X) test failed, go back to INTx mode */
3943 DBG_PRINT(ERR_DBG
, "%s: PCI %s: No interrupt was generated "
3944 "using MSI(X) during test\n", sp
->dev
->name
,
3950 free_irq(sp
->entries
[1].vector
, sp
);
3952 writeq(saved64
, &bar0
->scheduled_int_ctrl
);
3957 static void remove_msix_isr(struct s2io_nic
*sp
)
3962 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3963 if (sp
->s2io_entries
[i
].in_use
==
3964 MSIX_REGISTERED_SUCCESS
) {
3965 int vector
= sp
->entries
[i
].vector
;
3966 void *arg
= sp
->s2io_entries
[i
].arg
;
3967 free_irq(vector
, arg
);
3972 kfree(sp
->s2io_entries
);
3974 sp
->s2io_entries
= NULL
;
3976 pci_read_config_word(sp
->pdev
, 0x42, &msi_control
);
3977 msi_control
&= 0xFFFE; /* Disable MSI */
3978 pci_write_config_word(sp
->pdev
, 0x42, msi_control
);
3980 pci_disable_msix(sp
->pdev
);
3983 static void remove_inta_isr(struct s2io_nic
*sp
)
3985 struct net_device
*dev
= sp
->dev
;
3987 free_irq(sp
->pdev
->irq
, dev
);
3990 /* ********************************************************* *
3991 * Functions defined below concern the OS part of the driver *
3992 * ********************************************************* */
3995 * s2io_open - open entry point of the driver
3996 * @dev : pointer to the device structure.
3998 * This function is the open entry point of the driver. It mainly calls a
3999 * function to allocate Rx buffers and inserts them into the buffer
4000 * descriptors and then enables the Rx part of the NIC.
4002 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4006 static int s2io_open(struct net_device
*dev
)
4008 struct s2io_nic
*sp
= dev
->priv
;
4012 * Make sure you have link off by default every time
4013 * Nic is initialized
4015 netif_carrier_off(dev
);
4016 sp
->last_link_state
= 0;
4018 if (sp
->config
.intr_type
== MSI_X
) {
4019 int ret
= s2io_enable_msi_x(sp
);
4022 ret
= s2io_test_msi(sp
);
4023 /* rollback MSI-X, will re-enable during add_isr() */
4024 remove_msix_isr(sp
);
4029 "%s: MSI-X requested but failed to enable\n",
4031 sp
->config
.intr_type
= INTA
;
4035 /* NAPI doesn't work well with MSI(X) */
4036 if (sp
->config
.intr_type
!= INTA
) {
4038 sp
->config
.napi
= 0;
4041 /* Initialize H/W and enable interrupts */
4042 err
= s2io_card_up(sp
);
4044 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
4046 goto hw_init_failed
;
4049 if (do_s2io_prog_unicast(dev
, dev
->dev_addr
) == FAILURE
) {
4050 DBG_PRINT(ERR_DBG
, "Set Mac Address Failed\n");
4053 goto hw_init_failed
;
4055 s2io_start_all_tx_queue(sp
);
4059 if (sp
->config
.intr_type
== MSI_X
) {
4062 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
4063 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
4065 if (sp
->s2io_entries
) {
4066 kfree(sp
->s2io_entries
);
4067 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
4068 += (MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
));
4075 * s2io_close -close entry point of the driver
4076 * @dev : device pointer.
4078 * This is the stop entry point of the driver. It needs to undo exactly
4079 * whatever was done by the open entry point,thus it's usually referred to
4080 * as the close function.Among other things this function mainly stops the
4081 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4083 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4087 static int s2io_close(struct net_device
*dev
)
4089 struct s2io_nic
*sp
= dev
->priv
;
4090 struct config_param
*config
= &sp
->config
;
4094 /* Return if the device is already closed *
4095 * Can happen when s2io_card_up failed in change_mtu *
4097 if (!is_s2io_card_up(sp
))
4100 s2io_stop_all_tx_queue(sp
);
4101 /* delete all populated mac entries */
4102 for (offset
= 1; offset
< config
->max_mc_addr
; offset
++) {
4103 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
4104 if (tmp64
!= S2IO_DISABLE_MAC_ENTRY
)
4105 do_s2io_delete_unicast_mc(sp
, tmp64
);
4108 /* Reset card, kill tasklet and free Tx and Rx buffers. */
4115 * s2io_xmit - Tx entry point of te driver
4116 * @skb : the socket buffer containing the Tx data.
4117 * @dev : device pointer.
4119 * This function is the Tx entry point of the driver. S2IO NIC supports
4120 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4121 * NOTE: when device cant queue the pkt,just the trans_start variable will
4124 * 0 on success & 1 on failure.
4127 static int s2io_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
4129 struct s2io_nic
*sp
= dev
->priv
;
4130 u16 frg_cnt
, frg_len
, i
, queue
, queue_len
, put_off
, get_off
;
4133 struct TxFIFO_element __iomem
*tx_fifo
;
4134 unsigned long flags
= 0;
4136 struct fifo_info
*fifo
= NULL
;
4137 struct mac_info
*mac_control
;
4138 struct config_param
*config
;
4139 int do_spin_lock
= 1;
4141 int enable_per_list_interrupt
= 0;
4142 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
4144 mac_control
= &sp
->mac_control
;
4145 config
= &sp
->config
;
4147 DBG_PRINT(TX_DBG
, "%s: In Neterion Tx routine\n", dev
->name
);
4149 if (unlikely(skb
->len
<= 0)) {
4150 DBG_PRINT(TX_DBG
, "%s:Buffer has no data..\n", dev
->name
);
4151 dev_kfree_skb_any(skb
);
4155 if (!is_s2io_card_up(sp
)) {
4156 DBG_PRINT(TX_DBG
, "%s: Card going down for reset\n",
4163 if (sp
->vlgrp
&& vlan_tx_tag_present(skb
))
4164 vlan_tag
= vlan_tx_tag_get(skb
);
4165 if (sp
->config
.tx_steering_type
== TX_DEFAULT_STEERING
) {
4166 if (skb
->protocol
== htons(ETH_P_IP
)) {
4171 if ((ip
->frag_off
& htons(IP_OFFSET
|IP_MF
)) == 0) {
4172 th
= (struct tcphdr
*)(((unsigned char *)ip
) +
4175 if (ip
->protocol
== IPPROTO_TCP
) {
4176 queue_len
= sp
->total_tcp_fifos
;
4177 queue
= (ntohs(th
->source
) +
4179 sp
->fifo_selector
[queue_len
- 1];
4180 if (queue
>= queue_len
)
4181 queue
= queue_len
- 1;
4182 } else if (ip
->protocol
== IPPROTO_UDP
) {
4183 queue_len
= sp
->total_udp_fifos
;
4184 queue
= (ntohs(th
->source
) +
4186 sp
->fifo_selector
[queue_len
- 1];
4187 if (queue
>= queue_len
)
4188 queue
= queue_len
- 1;
4189 queue
+= sp
->udp_fifo_idx
;
4190 if (skb
->len
> 1024)
4191 enable_per_list_interrupt
= 1;
4196 } else if (sp
->config
.tx_steering_type
== TX_PRIORITY_STEERING
)
4197 /* get fifo number based on skb->priority value */
4198 queue
= config
->fifo_mapping
4199 [skb
->priority
& (MAX_TX_FIFOS
- 1)];
4200 fifo
= &mac_control
->fifos
[queue
];
4203 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
4205 if (unlikely(!spin_trylock_irqsave(&fifo
->tx_lock
, flags
)))
4206 return NETDEV_TX_LOCKED
;
4209 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
4210 if (sp
->config
.multiq
) {
4211 if (__netif_subqueue_stopped(dev
, fifo
->fifo_no
)) {
4212 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4213 return NETDEV_TX_BUSY
;
4217 if (unlikely(fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
4218 if (netif_queue_stopped(dev
)) {
4219 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4220 return NETDEV_TX_BUSY
;
4224 put_off
= (u16
) fifo
->tx_curr_put_info
.offset
;
4225 get_off
= (u16
) fifo
->tx_curr_get_info
.offset
;
4226 txdp
= (struct TxD
*) fifo
->list_info
[put_off
].list_virt_addr
;
4228 queue_len
= fifo
->tx_curr_put_info
.fifo_len
+ 1;
4229 /* Avoid "put" pointer going beyond "get" pointer */
4230 if (txdp
->Host_Control
||
4231 ((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4232 DBG_PRINT(TX_DBG
, "Error in xmit, No free TXDs.\n");
4233 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4235 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4239 offload_type
= s2io_offload_type(skb
);
4240 if (offload_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)) {
4241 txdp
->Control_1
|= TXD_TCP_LSO_EN
;
4242 txdp
->Control_1
|= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb
));
4244 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
4246 (TXD_TX_CKO_IPV4_EN
| TXD_TX_CKO_TCP_EN
|
4249 txdp
->Control_1
|= TXD_GATHER_CODE_FIRST
;
4250 txdp
->Control_1
|= TXD_LIST_OWN_XENA
;
4251 txdp
->Control_2
|= TXD_INT_NUMBER(fifo
->fifo_no
);
4252 if (enable_per_list_interrupt
)
4253 if (put_off
& (queue_len
>> 5))
4254 txdp
->Control_2
|= TXD_INT_TYPE_PER_LIST
;
4256 txdp
->Control_2
|= TXD_VLAN_ENABLE
;
4257 txdp
->Control_2
|= TXD_VLAN_TAG(vlan_tag
);
4260 frg_len
= skb
->len
- skb
->data_len
;
4261 if (offload_type
== SKB_GSO_UDP
) {
4264 ufo_size
= s2io_udp_mss(skb
);
4266 txdp
->Control_1
|= TXD_UFO_EN
;
4267 txdp
->Control_1
|= TXD_UFO_MSS(ufo_size
);
4268 txdp
->Control_1
|= TXD_BUFFER0_SIZE(8);
4270 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4271 fifo
->ufo_in_band_v
[put_off
] =
4272 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
;
4274 fifo
->ufo_in_band_v
[put_off
] =
4275 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
<< 32;
4277 txdp
->Host_Control
= (unsigned long)fifo
->ufo_in_band_v
;
4278 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
,
4279 fifo
->ufo_in_band_v
,
4280 sizeof(u64
), PCI_DMA_TODEVICE
);
4281 if((txdp
->Buffer_Pointer
== 0) ||
4282 (txdp
->Buffer_Pointer
== DMA_ERROR_CODE
))
4283 goto pci_map_failed
;
4287 txdp
->Buffer_Pointer
= pci_map_single
4288 (sp
->pdev
, skb
->data
, frg_len
, PCI_DMA_TODEVICE
);
4289 if((txdp
->Buffer_Pointer
== 0) ||
4290 (txdp
->Buffer_Pointer
== DMA_ERROR_CODE
))
4291 goto pci_map_failed
;
4293 txdp
->Host_Control
= (unsigned long) skb
;
4294 txdp
->Control_1
|= TXD_BUFFER0_SIZE(frg_len
);
4295 if (offload_type
== SKB_GSO_UDP
)
4296 txdp
->Control_1
|= TXD_UFO_EN
;
4298 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
4299 /* For fragmented SKB. */
4300 for (i
= 0; i
< frg_cnt
; i
++) {
4301 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4302 /* A '0' length fragment will be ignored */
4306 txdp
->Buffer_Pointer
= (u64
) pci_map_page
4307 (sp
->pdev
, frag
->page
, frag
->page_offset
,
4308 frag
->size
, PCI_DMA_TODEVICE
);
4309 txdp
->Control_1
= TXD_BUFFER0_SIZE(frag
->size
);
4310 if (offload_type
== SKB_GSO_UDP
)
4311 txdp
->Control_1
|= TXD_UFO_EN
;
4313 txdp
->Control_1
|= TXD_GATHER_CODE_LAST
;
4315 if (offload_type
== SKB_GSO_UDP
)
4316 frg_cnt
++; /* as Txd0 was used for inband header */
4318 tx_fifo
= mac_control
->tx_FIFO_start
[queue
];
4319 val64
= fifo
->list_info
[put_off
].list_phy_addr
;
4320 writeq(val64
, &tx_fifo
->TxDL_Pointer
);
4322 val64
= (TX_FIFO_LAST_TXD_NUM(frg_cnt
) | TX_FIFO_FIRST_LIST
|
4325 val64
|= TX_FIFO_SPECIAL_FUNC
;
4327 writeq(val64
, &tx_fifo
->List_Control
);
4332 if (put_off
== fifo
->tx_curr_put_info
.fifo_len
+ 1)
4334 fifo
->tx_curr_put_info
.offset
= put_off
;
4336 /* Avoid "put" pointer going beyond "get" pointer */
4337 if (((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4338 sp
->mac_control
.stats_info
->sw_stat
.fifo_full_cnt
++;
4340 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4342 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4344 mac_control
->stats_info
->sw_stat
.mem_allocated
+= skb
->truesize
;
4345 dev
->trans_start
= jiffies
;
4346 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4350 stats
->pci_map_fail_cnt
++;
4351 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4352 stats
->mem_freed
+= skb
->truesize
;
4354 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4359 s2io_alarm_handle(unsigned long data
)
4361 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
4362 struct net_device
*dev
= sp
->dev
;
4364 s2io_handle_errors(dev
);
4365 mod_timer(&sp
->alarm_timer
, jiffies
+ HZ
/ 2);
4368 static int s2io_chk_rx_buffers(struct s2io_nic
*sp
, int rng_n
)
4370 int rxb_size
, level
;
4373 rxb_size
= atomic_read(&sp
->rx_bufs_left
[rng_n
]);
4374 level
= rx_buffer_level(sp
, rxb_size
, rng_n
);
4376 if ((level
== PANIC
) && (!TASKLET_IN_USE
)) {
4378 DBG_PRINT(INTR_DBG
, "%s: Rx BD hit ", __FUNCTION__
);
4379 DBG_PRINT(INTR_DBG
, "PANIC levels\n");
4380 if ((ret
= fill_rx_buffers(sp
, rng_n
)) == -ENOMEM
) {
4381 DBG_PRINT(INFO_DBG
, "Out of memory in %s",
4383 clear_bit(0, (&sp
->tasklet_status
));
4386 clear_bit(0, (&sp
->tasklet_status
));
4387 } else if (level
== LOW
)
4388 tasklet_schedule(&sp
->task
);
4390 } else if (fill_rx_buffers(sp
, rng_n
) == -ENOMEM
) {
4391 DBG_PRINT(INFO_DBG
, "%s:Out of memory", sp
->dev
->name
);
4392 DBG_PRINT(INFO_DBG
, " in Rx Intr!!\n");
4397 static irqreturn_t
s2io_msix_ring_handle(int irq
, void *dev_id
)
4399 struct ring_info
*ring
= (struct ring_info
*)dev_id
;
4400 struct s2io_nic
*sp
= ring
->nic
;
4402 if (!is_s2io_card_up(sp
))
4405 rx_intr_handler(ring
);
4406 s2io_chk_rx_buffers(sp
, ring
->ring_no
);
4411 static irqreturn_t
s2io_msix_fifo_handle(int irq
, void *dev_id
)
4413 struct fifo_info
*fifo
= (struct fifo_info
*)dev_id
;
4414 struct s2io_nic
*sp
= fifo
->nic
;
4416 if (!is_s2io_card_up(sp
))
4419 tx_intr_handler(fifo
);
4422 static void s2io_txpic_intr_handle(struct s2io_nic
*sp
)
4424 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4427 val64
= readq(&bar0
->pic_int_status
);
4428 if (val64
& PIC_INT_GPIO
) {
4429 val64
= readq(&bar0
->gpio_int_reg
);
4430 if ((val64
& GPIO_INT_REG_LINK_DOWN
) &&
4431 (val64
& GPIO_INT_REG_LINK_UP
)) {
4433 * This is unstable state so clear both up/down
4434 * interrupt and adapter to re-evaluate the link state.
4436 val64
|= GPIO_INT_REG_LINK_DOWN
;
4437 val64
|= GPIO_INT_REG_LINK_UP
;
4438 writeq(val64
, &bar0
->gpio_int_reg
);
4439 val64
= readq(&bar0
->gpio_int_mask
);
4440 val64
&= ~(GPIO_INT_MASK_LINK_UP
|
4441 GPIO_INT_MASK_LINK_DOWN
);
4442 writeq(val64
, &bar0
->gpio_int_mask
);
4444 else if (val64
& GPIO_INT_REG_LINK_UP
) {
4445 val64
= readq(&bar0
->adapter_status
);
4446 /* Enable Adapter */
4447 val64
= readq(&bar0
->adapter_control
);
4448 val64
|= ADAPTER_CNTL_EN
;
4449 writeq(val64
, &bar0
->adapter_control
);
4450 val64
|= ADAPTER_LED_ON
;
4451 writeq(val64
, &bar0
->adapter_control
);
4452 if (!sp
->device_enabled_once
)
4453 sp
->device_enabled_once
= 1;
4455 s2io_link(sp
, LINK_UP
);
4457 * unmask link down interrupt and mask link-up
4460 val64
= readq(&bar0
->gpio_int_mask
);
4461 val64
&= ~GPIO_INT_MASK_LINK_DOWN
;
4462 val64
|= GPIO_INT_MASK_LINK_UP
;
4463 writeq(val64
, &bar0
->gpio_int_mask
);
4465 }else if (val64
& GPIO_INT_REG_LINK_DOWN
) {
4466 val64
= readq(&bar0
->adapter_status
);
4467 s2io_link(sp
, LINK_DOWN
);
4468 /* Link is down so unmaks link up interrupt */
4469 val64
= readq(&bar0
->gpio_int_mask
);
4470 val64
&= ~GPIO_INT_MASK_LINK_UP
;
4471 val64
|= GPIO_INT_MASK_LINK_DOWN
;
4472 writeq(val64
, &bar0
->gpio_int_mask
);
4475 val64
= readq(&bar0
->adapter_control
);
4476 val64
= val64
&(~ADAPTER_LED_ON
);
4477 writeq(val64
, &bar0
->adapter_control
);
4480 val64
= readq(&bar0
->gpio_int_mask
);
4484 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4485 * @value: alarm bits
4486 * @addr: address value
4487 * @cnt: counter variable
4488 * Description: Check for alarm and increment the counter
4490 * 1 - if alarm bit set
4491 * 0 - if alarm bit is not set
4493 static int do_s2io_chk_alarm_bit(u64 value
, void __iomem
* addr
,
4494 unsigned long long *cnt
)
4497 val64
= readq(addr
);
4498 if ( val64
& value
) {
4499 writeq(val64
, addr
);
4508 * s2io_handle_errors - Xframe error indication handler
4509 * @nic: device private variable
4510 * Description: Handle alarms such as loss of link, single or
4511 * double ECC errors, critical and serious errors.
4515 static void s2io_handle_errors(void * dev_id
)
4517 struct net_device
*dev
= (struct net_device
*) dev_id
;
4518 struct s2io_nic
*sp
= dev
->priv
;
4519 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4520 u64 temp64
= 0,val64
=0;
4523 struct swStat
*sw_stat
= &sp
->mac_control
.stats_info
->sw_stat
;
4524 struct xpakStat
*stats
= &sp
->mac_control
.stats_info
->xpak_stat
;
4526 if (!is_s2io_card_up(sp
))
4529 if (pci_channel_offline(sp
->pdev
))
4532 memset(&sw_stat
->ring_full_cnt
, 0,
4533 sizeof(sw_stat
->ring_full_cnt
));
4535 /* Handling the XPAK counters update */
4536 if(stats
->xpak_timer_count
< 72000) {
4537 /* waiting for an hour */
4538 stats
->xpak_timer_count
++;
4540 s2io_updt_xpak_counter(dev
);
4541 /* reset the count to zero */
4542 stats
->xpak_timer_count
= 0;
4545 /* Handling link status change error Intr */
4546 if (s2io_link_fault_indication(sp
) == MAC_RMAC_ERR_TIMER
) {
4547 val64
= readq(&bar0
->mac_rmac_err_reg
);
4548 writeq(val64
, &bar0
->mac_rmac_err_reg
);
4549 if (val64
& RMAC_LINK_STATE_CHANGE_INT
)
4550 schedule_work(&sp
->set_link_task
);
4553 /* In case of a serious error, the device will be Reset. */
4554 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY
, &bar0
->serr_source
,
4555 &sw_stat
->serious_err_cnt
))
4558 /* Check for data parity error */
4559 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT
, &bar0
->gpio_int_reg
,
4560 &sw_stat
->parity_err_cnt
))
4563 /* Check for ring full counter */
4564 if (sp
->device_type
== XFRAME_II_DEVICE
) {
4565 val64
= readq(&bar0
->ring_bump_counter1
);
4566 for (i
=0; i
<4; i
++) {
4567 temp64
= ( val64
& vBIT(0xFFFF,(i
*16),16));
4568 temp64
>>= 64 - ((i
+1)*16);
4569 sw_stat
->ring_full_cnt
[i
] += temp64
;
4572 val64
= readq(&bar0
->ring_bump_counter2
);
4573 for (i
=0; i
<4; i
++) {
4574 temp64
= ( val64
& vBIT(0xFFFF,(i
*16),16));
4575 temp64
>>= 64 - ((i
+1)*16);
4576 sw_stat
->ring_full_cnt
[i
+4] += temp64
;
4580 val64
= readq(&bar0
->txdma_int_status
);
4581 /*check for pfc_err*/
4582 if (val64
& TXDMA_PFC_INT
) {
4583 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
4584 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
4585 PFC_PCIX_ERR
, &bar0
->pfc_err_reg
,
4586 &sw_stat
->pfc_err_cnt
))
4588 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR
, &bar0
->pfc_err_reg
,
4589 &sw_stat
->pfc_err_cnt
);
4592 /*check for tda_err*/
4593 if (val64
& TXDMA_TDA_INT
) {
4594 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
4595 TDA_SM1_ERR_ALARM
, &bar0
->tda_err_reg
,
4596 &sw_stat
->tda_err_cnt
))
4598 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR
| TDA_PCIX_ERR
,
4599 &bar0
->tda_err_reg
, &sw_stat
->tda_err_cnt
);
4601 /*check for pcc_err*/
4602 if (val64
& TXDMA_PCC_INT
) {
4603 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
4604 | PCC_N_SERR
| PCC_6_COF_OV_ERR
4605 | PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
4606 | PCC_7_LSO_OV_ERR
| PCC_FB_ECC_DB_ERR
4607 | PCC_TXB_ECC_DB_ERR
, &bar0
->pcc_err_reg
,
4608 &sw_stat
->pcc_err_cnt
))
4610 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR
| PCC_TXB_ECC_SG_ERR
,
4611 &bar0
->pcc_err_reg
, &sw_stat
->pcc_err_cnt
);
4614 /*check for tti_err*/
4615 if (val64
& TXDMA_TTI_INT
) {
4616 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM
, &bar0
->tti_err_reg
,
4617 &sw_stat
->tti_err_cnt
))
4619 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR
| TTI_ECC_DB_ERR
,
4620 &bar0
->tti_err_reg
, &sw_stat
->tti_err_cnt
);
4623 /*check for lso_err*/
4624 if (val64
& TXDMA_LSO_INT
) {
4625 if (do_s2io_chk_alarm_bit(LSO6_ABORT
| LSO7_ABORT
4626 | LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
,
4627 &bar0
->lso_err_reg
, &sw_stat
->lso_err_cnt
))
4629 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
4630 &bar0
->lso_err_reg
, &sw_stat
->lso_err_cnt
);
4633 /*check for tpa_err*/
4634 if (val64
& TXDMA_TPA_INT
) {
4635 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM
, &bar0
->tpa_err_reg
,
4636 &sw_stat
->tpa_err_cnt
))
4638 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP
, &bar0
->tpa_err_reg
,
4639 &sw_stat
->tpa_err_cnt
);
4642 /*check for sm_err*/
4643 if (val64
& TXDMA_SM_INT
) {
4644 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM
, &bar0
->sm_err_reg
,
4645 &sw_stat
->sm_err_cnt
))
4649 val64
= readq(&bar0
->mac_int_status
);
4650 if (val64
& MAC_INT_STATUS_TMAC_INT
) {
4651 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
,
4652 &bar0
->mac_tmac_err_reg
,
4653 &sw_stat
->mac_tmac_err_cnt
))
4655 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
4656 | TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
4657 &bar0
->mac_tmac_err_reg
,
4658 &sw_stat
->mac_tmac_err_cnt
);
4661 val64
= readq(&bar0
->xgxs_int_status
);
4662 if (val64
& XGXS_INT_STATUS_TXGXS
) {
4663 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
,
4664 &bar0
->xgxs_txgxs_err_reg
,
4665 &sw_stat
->xgxs_txgxs_err_cnt
))
4667 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
4668 &bar0
->xgxs_txgxs_err_reg
,
4669 &sw_stat
->xgxs_txgxs_err_cnt
);
4672 val64
= readq(&bar0
->rxdma_int_status
);
4673 if (val64
& RXDMA_INT_RC_INT_M
) {
4674 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
4675 | RC_PRCn_SM_ERR_ALARM
|RC_FTC_SM_ERR_ALARM
,
4676 &bar0
->rc_err_reg
, &sw_stat
->rc_err_cnt
))
4678 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
4679 | RC_RDA_FAIL_WR_Rn
, &bar0
->rc_err_reg
,
4680 &sw_stat
->rc_err_cnt
);
4681 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
4682 | PRC_PCI_AB_F_WR_Rn
, &bar0
->prc_pcix_err_reg
,
4683 &sw_stat
->prc_pcix_err_cnt
))
4685 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn
| PRC_PCI_DP_WR_Rn
4686 | PRC_PCI_DP_F_WR_Rn
, &bar0
->prc_pcix_err_reg
,
4687 &sw_stat
->prc_pcix_err_cnt
);
4690 if (val64
& RXDMA_INT_RPA_INT_M
) {
4691 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
,
4692 &bar0
->rpa_err_reg
, &sw_stat
->rpa_err_cnt
))
4694 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
,
4695 &bar0
->rpa_err_reg
, &sw_stat
->rpa_err_cnt
);
4698 if (val64
& RXDMA_INT_RDA_INT_M
) {
4699 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4700 | RDA_FRM_ECC_DB_N_AERR
| RDA_SM1_ERR_ALARM
4701 | RDA_SM0_ERR_ALARM
| RDA_RXD_ECC_DB_SERR
,
4702 &bar0
->rda_err_reg
, &sw_stat
->rda_err_cnt
))
4704 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR
| RDA_FRM_ECC_SG_ERR
4705 | RDA_MISC_ERR
| RDA_PCIX_ERR
,
4706 &bar0
->rda_err_reg
, &sw_stat
->rda_err_cnt
);
4709 if (val64
& RXDMA_INT_RTI_INT_M
) {
4710 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM
, &bar0
->rti_err_reg
,
4711 &sw_stat
->rti_err_cnt
))
4713 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
4714 &bar0
->rti_err_reg
, &sw_stat
->rti_err_cnt
);
4717 val64
= readq(&bar0
->mac_int_status
);
4718 if (val64
& MAC_INT_STATUS_RMAC_INT
) {
4719 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
,
4720 &bar0
->mac_rmac_err_reg
,
4721 &sw_stat
->mac_rmac_err_cnt
))
4723 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT
|RMAC_SINGLE_ECC_ERR
|
4724 RMAC_DOUBLE_ECC_ERR
, &bar0
->mac_rmac_err_reg
,
4725 &sw_stat
->mac_rmac_err_cnt
);
4728 val64
= readq(&bar0
->xgxs_int_status
);
4729 if (val64
& XGXS_INT_STATUS_RXGXS
) {
4730 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
,
4731 &bar0
->xgxs_rxgxs_err_reg
,
4732 &sw_stat
->xgxs_rxgxs_err_cnt
))
4736 val64
= readq(&bar0
->mc_int_status
);
4737 if(val64
& MC_INT_STATUS_MC_INT
) {
4738 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR
, &bar0
->mc_err_reg
,
4739 &sw_stat
->mc_err_cnt
))
4742 /* Handling Ecc errors */
4743 if (val64
& (MC_ERR_REG_ECC_ALL_SNG
| MC_ERR_REG_ECC_ALL_DBL
)) {
4744 writeq(val64
, &bar0
->mc_err_reg
);
4745 if (val64
& MC_ERR_REG_ECC_ALL_DBL
) {
4746 sw_stat
->double_ecc_errs
++;
4747 if (sp
->device_type
!= XFRAME_II_DEVICE
) {
4749 * Reset XframeI only if critical error
4752 (MC_ERR_REG_MIRI_ECC_DB_ERR_0
|
4753 MC_ERR_REG_MIRI_ECC_DB_ERR_1
))
4757 sw_stat
->single_ecc_errs
++;
4763 s2io_stop_all_tx_queue(sp
);
4764 schedule_work(&sp
->rst_timer_task
);
4765 sw_stat
->soft_reset_cnt
++;
4770 * s2io_isr - ISR handler of the device .
4771 * @irq: the irq of the device.
4772 * @dev_id: a void pointer to the dev structure of the NIC.
4773 * Description: This function is the ISR handler of the device. It
4774 * identifies the reason for the interrupt and calls the relevant
4775 * service routines. As a contongency measure, this ISR allocates the
4776 * recv buffers, if their numbers are below the panic value which is
4777 * presently set to 25% of the original number of rcv buffers allocated.
4779 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4780 * IRQ_NONE: will be returned if interrupt is not from our device
4782 static irqreturn_t
s2io_isr(int irq
, void *dev_id
)
4784 struct net_device
*dev
= (struct net_device
*) dev_id
;
4785 struct s2io_nic
*sp
= dev
->priv
;
4786 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4789 struct mac_info
*mac_control
;
4790 struct config_param
*config
;
4792 /* Pretend we handled any irq's from a disconnected card */
4793 if (pci_channel_offline(sp
->pdev
))
4796 if (!is_s2io_card_up(sp
))
4799 mac_control
= &sp
->mac_control
;
4800 config
= &sp
->config
;
4803 * Identify the cause for interrupt and call the appropriate
4804 * interrupt handler. Causes for the interrupt could be;
4809 reason
= readq(&bar0
->general_int_status
);
4811 if (unlikely(reason
== S2IO_MINUS_ONE
) ) {
4812 /* Nothing much can be done. Get out */
4816 if (reason
& (GEN_INTR_RXTRAFFIC
|
4817 GEN_INTR_TXTRAFFIC
| GEN_INTR_TXPIC
))
4819 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4822 if (reason
& GEN_INTR_RXTRAFFIC
) {
4823 if (likely(netif_rx_schedule_prep(dev
,
4825 __netif_rx_schedule(dev
, &sp
->napi
);
4826 writeq(S2IO_MINUS_ONE
,
4827 &bar0
->rx_traffic_mask
);
4829 writeq(S2IO_MINUS_ONE
,
4830 &bar0
->rx_traffic_int
);
4834 * rx_traffic_int reg is an R1 register, writing all 1's
4835 * will ensure that the actual interrupt causing bit
4836 * get's cleared and hence a read can be avoided.
4838 if (reason
& GEN_INTR_RXTRAFFIC
)
4839 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4841 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4842 rx_intr_handler(&mac_control
->rings
[i
]);
4846 * tx_traffic_int reg is an R1 register, writing all 1's
4847 * will ensure that the actual interrupt causing bit get's
4848 * cleared and hence a read can be avoided.
4850 if (reason
& GEN_INTR_TXTRAFFIC
)
4851 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4853 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4854 tx_intr_handler(&mac_control
->fifos
[i
]);
4856 if (reason
& GEN_INTR_TXPIC
)
4857 s2io_txpic_intr_handle(sp
);
4860 * Reallocate the buffers from the interrupt handler itself.
4862 if (!config
->napi
) {
4863 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4864 s2io_chk_rx_buffers(sp
, i
);
4866 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4867 readl(&bar0
->general_int_status
);
4873 /* The interrupt was not raised by us */
4883 static void s2io_updt_stats(struct s2io_nic
*sp
)
4885 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4889 if (is_s2io_card_up(sp
)) {
4890 /* Apprx 30us on a 133 MHz bus */
4891 val64
= SET_UPDT_CLICKS(10) |
4892 STAT_CFG_ONE_SHOT_EN
| STAT_CFG_STAT_EN
;
4893 writeq(val64
, &bar0
->stat_cfg
);
4896 val64
= readq(&bar0
->stat_cfg
);
4897 if (!(val64
& s2BIT(0)))
4901 break; /* Updt failed */
4907 * s2io_get_stats - Updates the device statistics structure.
4908 * @dev : pointer to the device structure.
4910 * This function updates the device statistics structure in the s2io_nic
4911 * structure and returns a pointer to the same.
4913 * pointer to the updated net_device_stats structure.
4916 static struct net_device_stats
*s2io_get_stats(struct net_device
*dev
)
4918 struct s2io_nic
*sp
= dev
->priv
;
4919 struct mac_info
*mac_control
;
4920 struct config_param
*config
;
4923 mac_control
= &sp
->mac_control
;
4924 config
= &sp
->config
;
4926 /* Configure Stats for immediate updt */
4927 s2io_updt_stats(sp
);
4929 sp
->stats
.tx_packets
=
4930 le32_to_cpu(mac_control
->stats_info
->tmac_frms
);
4931 sp
->stats
.tx_errors
=
4932 le32_to_cpu(mac_control
->stats_info
->tmac_any_err_frms
);
4933 sp
->stats
.rx_errors
=
4934 le64_to_cpu(mac_control
->stats_info
->rmac_drop_frms
);
4935 sp
->stats
.multicast
=
4936 le32_to_cpu(mac_control
->stats_info
->rmac_vld_mcst_frms
);
4937 sp
->stats
.rx_length_errors
=
4938 le64_to_cpu(mac_control
->stats_info
->rmac_long_frms
);
4940 return (&sp
->stats
);
4944 * s2io_set_multicast - entry point for multicast address enable/disable.
4945 * @dev : pointer to the device structure
4947 * This function is a driver entry point which gets called by the kernel
4948 * whenever multicast addresses must be enabled/disabled. This also gets
4949 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4950 * determine, if multicast address must be enabled or if promiscuous mode
4951 * is to be disabled etc.
4956 static void s2io_set_multicast(struct net_device
*dev
)
4959 struct dev_mc_list
*mclist
;
4960 struct s2io_nic
*sp
= dev
->priv
;
4961 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4962 u64 val64
= 0, multi_mac
= 0x010203040506ULL
, mask
=
4964 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, mac_addr
= 0;
4966 struct config_param
*config
= &sp
->config
;
4968 if ((dev
->flags
& IFF_ALLMULTI
) && (!sp
->m_cast_flg
)) {
4969 /* Enable all Multicast addresses */
4970 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac
),
4971 &bar0
->rmac_addr_data0_mem
);
4972 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask
),
4973 &bar0
->rmac_addr_data1_mem
);
4974 val64
= RMAC_ADDR_CMD_MEM_WE
|
4975 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4976 RMAC_ADDR_CMD_MEM_OFFSET(config
->max_mc_addr
- 1);
4977 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4978 /* Wait till command completes */
4979 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4980 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4984 sp
->all_multi_pos
= config
->max_mc_addr
- 1;
4985 } else if ((dev
->flags
& IFF_ALLMULTI
) && (sp
->m_cast_flg
)) {
4986 /* Disable all Multicast addresses */
4987 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4988 &bar0
->rmac_addr_data0_mem
);
4989 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4990 &bar0
->rmac_addr_data1_mem
);
4991 val64
= RMAC_ADDR_CMD_MEM_WE
|
4992 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4993 RMAC_ADDR_CMD_MEM_OFFSET(sp
->all_multi_pos
);
4994 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4995 /* Wait till command completes */
4996 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4997 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5001 sp
->all_multi_pos
= 0;
5004 if ((dev
->flags
& IFF_PROMISC
) && (!sp
->promisc_flg
)) {
5005 /* Put the NIC into promiscuous mode */
5006 add
= &bar0
->mac_cfg
;
5007 val64
= readq(&bar0
->mac_cfg
);
5008 val64
|= MAC_CFG_RMAC_PROM_ENABLE
;
5010 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5011 writel((u32
) val64
, add
);
5012 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5013 writel((u32
) (val64
>> 32), (add
+ 4));
5015 if (vlan_tag_strip
!= 1) {
5016 val64
= readq(&bar0
->rx_pa_cfg
);
5017 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
5018 writeq(val64
, &bar0
->rx_pa_cfg
);
5019 vlan_strip_flag
= 0;
5022 val64
= readq(&bar0
->mac_cfg
);
5023 sp
->promisc_flg
= 1;
5024 DBG_PRINT(INFO_DBG
, "%s: entered promiscuous mode\n",
5026 } else if (!(dev
->flags
& IFF_PROMISC
) && (sp
->promisc_flg
)) {
5027 /* Remove the NIC from promiscuous mode */
5028 add
= &bar0
->mac_cfg
;
5029 val64
= readq(&bar0
->mac_cfg
);
5030 val64
&= ~MAC_CFG_RMAC_PROM_ENABLE
;
5032 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5033 writel((u32
) val64
, add
);
5034 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5035 writel((u32
) (val64
>> 32), (add
+ 4));
5037 if (vlan_tag_strip
!= 0) {
5038 val64
= readq(&bar0
->rx_pa_cfg
);
5039 val64
|= RX_PA_CFG_STRIP_VLAN_TAG
;
5040 writeq(val64
, &bar0
->rx_pa_cfg
);
5041 vlan_strip_flag
= 1;
5044 val64
= readq(&bar0
->mac_cfg
);
5045 sp
->promisc_flg
= 0;
5046 DBG_PRINT(INFO_DBG
, "%s: left promiscuous mode\n",
5050 /* Update individual M_CAST address list */
5051 if ((!sp
->m_cast_flg
) && dev
->mc_count
) {
5053 (config
->max_mc_addr
- config
->max_mac_addr
)) {
5054 DBG_PRINT(ERR_DBG
, "%s: No more Rx filters ",
5056 DBG_PRINT(ERR_DBG
, "can be added, please enable ");
5057 DBG_PRINT(ERR_DBG
, "ALL_MULTI instead\n");
5061 prev_cnt
= sp
->mc_addr_count
;
5062 sp
->mc_addr_count
= dev
->mc_count
;
5064 /* Clear out the previous list of Mc in the H/W. */
5065 for (i
= 0; i
< prev_cnt
; i
++) {
5066 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
5067 &bar0
->rmac_addr_data0_mem
);
5068 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5069 &bar0
->rmac_addr_data1_mem
);
5070 val64
= RMAC_ADDR_CMD_MEM_WE
|
5071 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5072 RMAC_ADDR_CMD_MEM_OFFSET
5073 (config
->mc_start_offset
+ i
);
5074 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5076 /* Wait for command completes */
5077 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5078 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5080 DBG_PRINT(ERR_DBG
, "%s: Adding ",
5082 DBG_PRINT(ERR_DBG
, "Multicasts failed\n");
5087 /* Create the new Rx filter list and update the same in H/W. */
5088 for (i
= 0, mclist
= dev
->mc_list
; i
< dev
->mc_count
;
5089 i
++, mclist
= mclist
->next
) {
5090 memcpy(sp
->usr_addrs
[i
].addr
, mclist
->dmi_addr
,
5093 for (j
= 0; j
< ETH_ALEN
; j
++) {
5094 mac_addr
|= mclist
->dmi_addr
[j
];
5098 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
5099 &bar0
->rmac_addr_data0_mem
);
5100 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5101 &bar0
->rmac_addr_data1_mem
);
5102 val64
= RMAC_ADDR_CMD_MEM_WE
|
5103 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5104 RMAC_ADDR_CMD_MEM_OFFSET
5105 (i
+ config
->mc_start_offset
);
5106 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5108 /* Wait for command completes */
5109 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5110 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5112 DBG_PRINT(ERR_DBG
, "%s: Adding ",
5114 DBG_PRINT(ERR_DBG
, "Multicasts failed\n");
5121 /* read from CAM unicast & multicast addresses and store it in
5122 * def_mac_addr structure
5124 void do_s2io_store_unicast_mc(struct s2io_nic
*sp
)
5128 struct config_param
*config
= &sp
->config
;
5130 /* store unicast & multicast mac addresses */
5131 for (offset
= 0; offset
< config
->max_mc_addr
; offset
++) {
5132 mac_addr
= do_s2io_read_unicast_mc(sp
, offset
);
5133 /* if read fails disable the entry */
5134 if (mac_addr
== FAILURE
)
5135 mac_addr
= S2IO_DISABLE_MAC_ENTRY
;
5136 do_s2io_copy_mac_addr(sp
, offset
, mac_addr
);
5140 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5141 static void do_s2io_restore_unicast_mc(struct s2io_nic
*sp
)
5144 struct config_param
*config
= &sp
->config
;
5145 /* restore unicast mac address */
5146 for (offset
= 0; offset
< config
->max_mac_addr
; offset
++)
5147 do_s2io_prog_unicast(sp
->dev
,
5148 sp
->def_mac_addr
[offset
].mac_addr
);
5150 /* restore multicast mac address */
5151 for (offset
= config
->mc_start_offset
;
5152 offset
< config
->max_mc_addr
; offset
++)
5153 do_s2io_add_mc(sp
, sp
->def_mac_addr
[offset
].mac_addr
);
5156 /* add a multicast MAC address to CAM */
5157 static int do_s2io_add_mc(struct s2io_nic
*sp
, u8
*addr
)
5161 struct config_param
*config
= &sp
->config
;
5163 for (i
= 0; i
< ETH_ALEN
; i
++) {
5165 mac_addr
|= addr
[i
];
5167 if ((0ULL == mac_addr
) || (mac_addr
== S2IO_DISABLE_MAC_ENTRY
))
5170 /* check if the multicast mac already preset in CAM */
5171 for (i
= config
->mc_start_offset
; i
< config
->max_mc_addr
; i
++) {
5173 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5174 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5177 if (tmp64
== mac_addr
)
5180 if (i
== config
->max_mc_addr
) {
5182 "CAM full no space left for multicast MAC\n");
5185 /* Update the internal structure with this new mac address */
5186 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5188 return (do_s2io_add_mac(sp
, mac_addr
, i
));
5191 /* add MAC address to CAM */
5192 static int do_s2io_add_mac(struct s2io_nic
*sp
, u64 addr
, int off
)
5195 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5197 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr
),
5198 &bar0
->rmac_addr_data0_mem
);
5201 RMAC_ADDR_CMD_MEM_WE
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5202 RMAC_ADDR_CMD_MEM_OFFSET(off
);
5203 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5205 /* Wait till command completes */
5206 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5207 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5209 DBG_PRINT(INFO_DBG
, "do_s2io_add_mac failed\n");
5214 /* deletes a specified unicast/multicast mac entry from CAM */
5215 static int do_s2io_delete_unicast_mc(struct s2io_nic
*sp
, u64 addr
)
5218 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, tmp64
;
5219 struct config_param
*config
= &sp
->config
;
5222 offset
< config
->max_mc_addr
; offset
++) {
5223 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
5224 if (tmp64
== addr
) {
5225 /* disable the entry by writing 0xffffffffffffULL */
5226 if (do_s2io_add_mac(sp
, dis_addr
, offset
) == FAILURE
)
5228 /* store the new mac list from CAM */
5229 do_s2io_store_unicast_mc(sp
);
5233 DBG_PRINT(ERR_DBG
, "MAC address 0x%llx not found in CAM\n",
5234 (unsigned long long)addr
);
5238 /* read mac entries from CAM */
5239 static u64
do_s2io_read_unicast_mc(struct s2io_nic
*sp
, int offset
)
5241 u64 tmp64
= 0xffffffffffff0000ULL
, val64
;
5242 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5246 RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5247 RMAC_ADDR_CMD_MEM_OFFSET(offset
);
5248 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5250 /* Wait till command completes */
5251 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5252 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5254 DBG_PRINT(INFO_DBG
, "do_s2io_read_unicast_mc failed\n");
5257 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
5258 return (tmp64
>> 16);
5262 * s2io_set_mac_addr driver entry point
5265 static int s2io_set_mac_addr(struct net_device
*dev
, void *p
)
5267 struct sockaddr
*addr
= p
;
5269 if (!is_valid_ether_addr(addr
->sa_data
))
5272 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
5274 /* store the MAC address in CAM */
5275 return (do_s2io_prog_unicast(dev
, dev
->dev_addr
));
5278 * do_s2io_prog_unicast - Programs the Xframe mac address
5279 * @dev : pointer to the device structure.
5280 * @addr: a uchar pointer to the new mac address which is to be set.
5281 * Description : This procedure will program the Xframe to receive
5282 * frames with new Mac Address
5283 * Return value: SUCCESS on success and an appropriate (-)ve integer
5284 * as defined in errno.h file on failure.
5287 static int do_s2io_prog_unicast(struct net_device
*dev
, u8
*addr
)
5289 struct s2io_nic
*sp
= dev
->priv
;
5290 register u64 mac_addr
= 0, perm_addr
= 0;
5293 struct config_param
*config
= &sp
->config
;
5296 * Set the new MAC address as the new unicast filter and reflect this
5297 * change on the device address registered with the OS. It will be
5300 for (i
= 0; i
< ETH_ALEN
; i
++) {
5302 mac_addr
|= addr
[i
];
5304 perm_addr
|= sp
->def_mac_addr
[0].mac_addr
[i
];
5307 /* check if the dev_addr is different than perm_addr */
5308 if (mac_addr
== perm_addr
)
5311 /* check if the mac already preset in CAM */
5312 for (i
= 1; i
< config
->max_mac_addr
; i
++) {
5313 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5314 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5317 if (tmp64
== mac_addr
) {
5319 "MAC addr:0x%llx already present in CAM\n",
5320 (unsigned long long)mac_addr
);
5324 if (i
== config
->max_mac_addr
) {
5325 DBG_PRINT(ERR_DBG
, "CAM full no space left for Unicast MAC\n");
5328 /* Update the internal structure with this new mac address */
5329 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5330 return (do_s2io_add_mac(sp
, mac_addr
, i
));
5334 * s2io_ethtool_sset - Sets different link parameters.
5335 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5336 * @info: pointer to the structure with parameters given by ethtool to set
5339 * The function sets different link parameters provided by the user onto
5345 static int s2io_ethtool_sset(struct net_device
*dev
,
5346 struct ethtool_cmd
*info
)
5348 struct s2io_nic
*sp
= dev
->priv
;
5349 if ((info
->autoneg
== AUTONEG_ENABLE
) ||
5350 (info
->speed
!= SPEED_10000
) || (info
->duplex
!= DUPLEX_FULL
))
5353 s2io_close(sp
->dev
);
5361 * s2io_ethtol_gset - Return link specific information.
5362 * @sp : private member of the device structure, pointer to the
5363 * s2io_nic structure.
5364 * @info : pointer to the structure with parameters given by ethtool
5365 * to return link information.
5367 * Returns link specific information like speed, duplex etc.. to ethtool.
5369 * return 0 on success.
5372 static int s2io_ethtool_gset(struct net_device
*dev
, struct ethtool_cmd
*info
)
5374 struct s2io_nic
*sp
= dev
->priv
;
5375 info
->supported
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5376 info
->advertising
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5377 info
->port
= PORT_FIBRE
;
5379 /* info->transceiver */
5380 info
->transceiver
= XCVR_EXTERNAL
;
5382 if (netif_carrier_ok(sp
->dev
)) {
5383 info
->speed
= 10000;
5384 info
->duplex
= DUPLEX_FULL
;
5390 info
->autoneg
= AUTONEG_DISABLE
;
5395 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5396 * @sp : private member of the device structure, which is a pointer to the
5397 * s2io_nic structure.
5398 * @info : pointer to the structure with parameters given by ethtool to
5399 * return driver information.
5401 * Returns driver specefic information like name, version etc.. to ethtool.
5406 static void s2io_ethtool_gdrvinfo(struct net_device
*dev
,
5407 struct ethtool_drvinfo
*info
)
5409 struct s2io_nic
*sp
= dev
->priv
;
5411 strncpy(info
->driver
, s2io_driver_name
, sizeof(info
->driver
));
5412 strncpy(info
->version
, s2io_driver_version
, sizeof(info
->version
));
5413 strncpy(info
->fw_version
, "", sizeof(info
->fw_version
));
5414 strncpy(info
->bus_info
, pci_name(sp
->pdev
), sizeof(info
->bus_info
));
5415 info
->regdump_len
= XENA_REG_SPACE
;
5416 info
->eedump_len
= XENA_EEPROM_SPACE
;
5420 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5421 * @sp: private member of the device structure, which is a pointer to the
5422 * s2io_nic structure.
5423 * @regs : pointer to the structure with parameters given by ethtool for
5424 * dumping the registers.
5425 * @reg_space: The input argumnet into which all the registers are dumped.
5427 * Dumps the entire register space of xFrame NIC into the user given
5433 static void s2io_ethtool_gregs(struct net_device
*dev
,
5434 struct ethtool_regs
*regs
, void *space
)
5438 u8
*reg_space
= (u8
*) space
;
5439 struct s2io_nic
*sp
= dev
->priv
;
5441 regs
->len
= XENA_REG_SPACE
;
5442 regs
->version
= sp
->pdev
->subsystem_device
;
5444 for (i
= 0; i
< regs
->len
; i
+= 8) {
5445 reg
= readq(sp
->bar0
+ i
);
5446 memcpy((reg_space
+ i
), ®
, 8);
5451 * s2io_phy_id - timer function that alternates adapter LED.
5452 * @data : address of the private member of the device structure, which
5453 * is a pointer to the s2io_nic structure, provided as an u32.
5454 * Description: This is actually the timer function that alternates the
5455 * adapter LED bit of the adapter control bit to set/reset every time on
5456 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5457 * once every second.
5459 static void s2io_phy_id(unsigned long data
)
5461 struct s2io_nic
*sp
= (struct s2io_nic
*) data
;
5462 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5466 subid
= sp
->pdev
->subsystem_device
;
5467 if ((sp
->device_type
== XFRAME_II_DEVICE
) ||
5468 ((subid
& 0xFF) >= 0x07)) {
5469 val64
= readq(&bar0
->gpio_control
);
5470 val64
^= GPIO_CTRL_GPIO_0
;
5471 writeq(val64
, &bar0
->gpio_control
);
5473 val64
= readq(&bar0
->adapter_control
);
5474 val64
^= ADAPTER_LED_ON
;
5475 writeq(val64
, &bar0
->adapter_control
);
5478 mod_timer(&sp
->id_timer
, jiffies
+ HZ
/ 2);
5482 * s2io_ethtool_idnic - To physically identify the nic on the system.
5483 * @sp : private member of the device structure, which is a pointer to the
5484 * s2io_nic structure.
5485 * @id : pointer to the structure with identification parameters given by
5487 * Description: Used to physically identify the NIC on the system.
5488 * The Link LED will blink for a time specified by the user for
5490 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5491 * identification is possible only if it's link is up.
5493 * int , returns 0 on success
5496 static int s2io_ethtool_idnic(struct net_device
*dev
, u32 data
)
5498 u64 val64
= 0, last_gpio_ctrl_val
;
5499 struct s2io_nic
*sp
= dev
->priv
;
5500 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5503 subid
= sp
->pdev
->subsystem_device
;
5504 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5505 if ((sp
->device_type
== XFRAME_I_DEVICE
) &&
5506 ((subid
& 0xFF) < 0x07)) {
5507 val64
= readq(&bar0
->adapter_control
);
5508 if (!(val64
& ADAPTER_CNTL_EN
)) {
5510 "Adapter Link down, cannot blink LED\n");
5514 if (sp
->id_timer
.function
== NULL
) {
5515 init_timer(&sp
->id_timer
);
5516 sp
->id_timer
.function
= s2io_phy_id
;
5517 sp
->id_timer
.data
= (unsigned long) sp
;
5519 mod_timer(&sp
->id_timer
, jiffies
);
5521 msleep_interruptible(data
* HZ
);
5523 msleep_interruptible(MAX_FLICKER_TIME
);
5524 del_timer_sync(&sp
->id_timer
);
5526 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp
->device_type
, subid
)) {
5527 writeq(last_gpio_ctrl_val
, &bar0
->gpio_control
);
5528 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5534 static void s2io_ethtool_gringparam(struct net_device
*dev
,
5535 struct ethtool_ringparam
*ering
)
5537 struct s2io_nic
*sp
= dev
->priv
;
5538 int i
,tx_desc_count
=0,rx_desc_count
=0;
5540 if (sp
->rxd_mode
== RXD_MODE_1
)
5541 ering
->rx_max_pending
= MAX_RX_DESC_1
;
5542 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5543 ering
->rx_max_pending
= MAX_RX_DESC_2
;
5545 ering
->tx_max_pending
= MAX_TX_DESC
;
5546 for (i
= 0 ; i
< sp
->config
.tx_fifo_num
; i
++)
5547 tx_desc_count
+= sp
->config
.tx_cfg
[i
].fifo_len
;
5549 DBG_PRINT(INFO_DBG
,"\nmax txds : %d\n",sp
->config
.max_txds
);
5550 ering
->tx_pending
= tx_desc_count
;
5552 for (i
= 0 ; i
< sp
->config
.rx_ring_num
; i
++)
5553 rx_desc_count
+= sp
->config
.rx_cfg
[i
].num_rxd
;
5555 ering
->rx_pending
= rx_desc_count
;
5557 ering
->rx_mini_max_pending
= 0;
5558 ering
->rx_mini_pending
= 0;
5559 if(sp
->rxd_mode
== RXD_MODE_1
)
5560 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_1
;
5561 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5562 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_2
;
5563 ering
->rx_jumbo_pending
= rx_desc_count
;
5567 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5568 * @sp : private member of the device structure, which is a pointer to the
5569 * s2io_nic structure.
5570 * @ep : pointer to the structure with pause parameters given by ethtool.
5572 * Returns the Pause frame generation and reception capability of the NIC.
5576 static void s2io_ethtool_getpause_data(struct net_device
*dev
,
5577 struct ethtool_pauseparam
*ep
)
5580 struct s2io_nic
*sp
= dev
->priv
;
5581 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5583 val64
= readq(&bar0
->rmac_pause_cfg
);
5584 if (val64
& RMAC_PAUSE_GEN_ENABLE
)
5585 ep
->tx_pause
= TRUE
;
5586 if (val64
& RMAC_PAUSE_RX_ENABLE
)
5587 ep
->rx_pause
= TRUE
;
5588 ep
->autoneg
= FALSE
;
5592 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5593 * @sp : private member of the device structure, which is a pointer to the
5594 * s2io_nic structure.
5595 * @ep : pointer to the structure with pause parameters given by ethtool.
5597 * It can be used to set or reset Pause frame generation or reception
5598 * support of the NIC.
5600 * int, returns 0 on Success
5603 static int s2io_ethtool_setpause_data(struct net_device
*dev
,
5604 struct ethtool_pauseparam
*ep
)
5607 struct s2io_nic
*sp
= dev
->priv
;
5608 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5610 val64
= readq(&bar0
->rmac_pause_cfg
);
5612 val64
|= RMAC_PAUSE_GEN_ENABLE
;
5614 val64
&= ~RMAC_PAUSE_GEN_ENABLE
;
5616 val64
|= RMAC_PAUSE_RX_ENABLE
;
5618 val64
&= ~RMAC_PAUSE_RX_ENABLE
;
5619 writeq(val64
, &bar0
->rmac_pause_cfg
);
5624 * read_eeprom - reads 4 bytes of data from user given offset.
5625 * @sp : private member of the device structure, which is a pointer to the
5626 * s2io_nic structure.
5627 * @off : offset at which the data must be written
5628 * @data : Its an output parameter where the data read at the given
5631 * Will read 4 bytes of data from the user given offset and return the
5633 * NOTE: Will allow to read only part of the EEPROM visible through the
5636 * -1 on failure and 0 on success.
5639 #define S2IO_DEV_ID 5
5640 static int read_eeprom(struct s2io_nic
* sp
, int off
, u64
* data
)
5645 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5647 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5648 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) | I2C_CONTROL_ADDR(off
) |
5649 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ
|
5650 I2C_CONTROL_CNTL_START
;
5651 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5653 while (exit_cnt
< 5) {
5654 val64
= readq(&bar0
->i2c_control
);
5655 if (I2C_CONTROL_CNTL_END(val64
)) {
5656 *data
= I2C_CONTROL_GET_DATA(val64
);
5665 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5666 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5667 SPI_CONTROL_BYTECNT(0x3) |
5668 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off
);
5669 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5670 val64
|= SPI_CONTROL_REQ
;
5671 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5672 while (exit_cnt
< 5) {
5673 val64
= readq(&bar0
->spi_control
);
5674 if (val64
& SPI_CONTROL_NACK
) {
5677 } else if (val64
& SPI_CONTROL_DONE
) {
5678 *data
= readq(&bar0
->spi_data
);
5691 * write_eeprom - actually writes the relevant part of the data value.
5692 * @sp : private member of the device structure, which is a pointer to the
5693 * s2io_nic structure.
5694 * @off : offset at which the data must be written
5695 * @data : The data that is to be written
5696 * @cnt : Number of bytes of the data that are actually to be written into
5697 * the Eeprom. (max of 3)
5699 * Actually writes the relevant part of the data value into the Eeprom
5700 * through the I2C bus.
5702 * 0 on success, -1 on failure.
5705 static int write_eeprom(struct s2io_nic
* sp
, int off
, u64 data
, int cnt
)
5707 int exit_cnt
= 0, ret
= -1;
5709 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5711 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5712 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) | I2C_CONTROL_ADDR(off
) |
5713 I2C_CONTROL_BYTE_CNT(cnt
) | I2C_CONTROL_SET_DATA((u32
)data
) |
5714 I2C_CONTROL_CNTL_START
;
5715 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5717 while (exit_cnt
< 5) {
5718 val64
= readq(&bar0
->i2c_control
);
5719 if (I2C_CONTROL_CNTL_END(val64
)) {
5720 if (!(val64
& I2C_CONTROL_NACK
))
5729 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5730 int write_cnt
= (cnt
== 8) ? 0 : cnt
;
5731 writeq(SPI_DATA_WRITE(data
,(cnt
<<3)), &bar0
->spi_data
);
5733 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5734 SPI_CONTROL_BYTECNT(write_cnt
) |
5735 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off
);
5736 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5737 val64
|= SPI_CONTROL_REQ
;
5738 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5739 while (exit_cnt
< 5) {
5740 val64
= readq(&bar0
->spi_control
);
5741 if (val64
& SPI_CONTROL_NACK
) {
5744 } else if (val64
& SPI_CONTROL_DONE
) {
5754 static void s2io_vpd_read(struct s2io_nic
*nic
)
5758 int i
=0, cnt
, fail
= 0;
5759 int vpd_addr
= 0x80;
5761 if (nic
->device_type
== XFRAME_II_DEVICE
) {
5762 strcpy(nic
->product_name
, "Xframe II 10GbE network adapter");
5766 strcpy(nic
->product_name
, "Xframe I 10GbE network adapter");
5769 strcpy(nic
->serial_num
, "NOT AVAILABLE");
5771 vpd_data
= kmalloc(256, GFP_KERNEL
);
5773 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
5776 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
+= 256;
5778 for (i
= 0; i
< 256; i
+=4 ) {
5779 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 2), i
);
5780 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 2), &data
);
5781 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 3), 0);
5782 for (cnt
= 0; cnt
<5; cnt
++) {
5784 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 3), &data
);
5789 DBG_PRINT(ERR_DBG
, "Read of VPD data failed\n");
5793 pci_read_config_dword(nic
->pdev
, (vpd_addr
+ 4),
5794 (u32
*)&vpd_data
[i
]);
5798 /* read serial number of adapter */
5799 for (cnt
= 0; cnt
< 256; cnt
++) {
5800 if ((vpd_data
[cnt
] == 'S') &&
5801 (vpd_data
[cnt
+1] == 'N') &&
5802 (vpd_data
[cnt
+2] < VPD_STRING_LEN
)) {
5803 memset(nic
->serial_num
, 0, VPD_STRING_LEN
);
5804 memcpy(nic
->serial_num
, &vpd_data
[cnt
+ 3],
5811 if ((!fail
) && (vpd_data
[1] < VPD_STRING_LEN
)) {
5812 memset(nic
->product_name
, 0, vpd_data
[1]);
5813 memcpy(nic
->product_name
, &vpd_data
[3], vpd_data
[1]);
5816 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= 256;
5820 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5821 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5822 * @eeprom : pointer to the user level structure provided by ethtool,
5823 * containing all relevant information.
5824 * @data_buf : user defined value to be written into Eeprom.
5825 * Description: Reads the values stored in the Eeprom at given offset
5826 * for a given length. Stores these values int the input argument data
5827 * buffer 'data_buf' and returns these to the caller (ethtool.)
5832 static int s2io_ethtool_geeprom(struct net_device
*dev
,
5833 struct ethtool_eeprom
*eeprom
, u8
* data_buf
)
5837 struct s2io_nic
*sp
= dev
->priv
;
5839 eeprom
->magic
= sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16);
5841 if ((eeprom
->offset
+ eeprom
->len
) > (XENA_EEPROM_SPACE
))
5842 eeprom
->len
= XENA_EEPROM_SPACE
- eeprom
->offset
;
5844 for (i
= 0; i
< eeprom
->len
; i
+= 4) {
5845 if (read_eeprom(sp
, (eeprom
->offset
+ i
), &data
)) {
5846 DBG_PRINT(ERR_DBG
, "Read of EEPROM failed\n");
5850 memcpy((data_buf
+ i
), &valid
, 4);
5856 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5857 * @sp : private member of the device structure, which is a pointer to the
5858 * s2io_nic structure.
5859 * @eeprom : pointer to the user level structure provided by ethtool,
5860 * containing all relevant information.
5861 * @data_buf ; user defined value to be written into Eeprom.
5863 * Tries to write the user provided value in the Eeprom, at the offset
5864 * given by the user.
5866 * 0 on success, -EFAULT on failure.
5869 static int s2io_ethtool_seeprom(struct net_device
*dev
,
5870 struct ethtool_eeprom
*eeprom
,
5873 int len
= eeprom
->len
, cnt
= 0;
5874 u64 valid
= 0, data
;
5875 struct s2io_nic
*sp
= dev
->priv
;
5877 if (eeprom
->magic
!= (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16))) {
5879 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5880 DBG_PRINT(ERR_DBG
, "is wrong, Its not 0x%x\n",
5886 data
= (u32
) data_buf
[cnt
] & 0x000000FF;
5888 valid
= (u32
) (data
<< 24);
5892 if (write_eeprom(sp
, (eeprom
->offset
+ cnt
), valid
, 0)) {
5894 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5896 "write into the specified offset\n");
5907 * s2io_register_test - reads and writes into all clock domains.
5908 * @sp : private member of the device structure, which is a pointer to the
5909 * s2io_nic structure.
5910 * @data : variable that returns the result of each of the test conducted b
5913 * Read and write into all clock domains. The NIC has 3 clock domains,
5914 * see that registers in all the three regions are accessible.
5919 static int s2io_register_test(struct s2io_nic
* sp
, uint64_t * data
)
5921 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5922 u64 val64
= 0, exp_val
;
5925 val64
= readq(&bar0
->pif_rd_swapper_fb
);
5926 if (val64
!= 0x123456789abcdefULL
) {
5928 DBG_PRINT(INFO_DBG
, "Read Test level 1 fails\n");
5931 val64
= readq(&bar0
->rmac_pause_cfg
);
5932 if (val64
!= 0xc000ffff00000000ULL
) {
5934 DBG_PRINT(INFO_DBG
, "Read Test level 2 fails\n");
5937 val64
= readq(&bar0
->rx_queue_cfg
);
5938 if (sp
->device_type
== XFRAME_II_DEVICE
)
5939 exp_val
= 0x0404040404040404ULL
;
5941 exp_val
= 0x0808080808080808ULL
;
5942 if (val64
!= exp_val
) {
5944 DBG_PRINT(INFO_DBG
, "Read Test level 3 fails\n");
5947 val64
= readq(&bar0
->xgxs_efifo_cfg
);
5948 if (val64
!= 0x000000001923141EULL
) {
5950 DBG_PRINT(INFO_DBG
, "Read Test level 4 fails\n");
5953 val64
= 0x5A5A5A5A5A5A5A5AULL
;
5954 writeq(val64
, &bar0
->xmsi_data
);
5955 val64
= readq(&bar0
->xmsi_data
);
5956 if (val64
!= 0x5A5A5A5A5A5A5A5AULL
) {
5958 DBG_PRINT(ERR_DBG
, "Write Test level 1 fails\n");
5961 val64
= 0xA5A5A5A5A5A5A5A5ULL
;
5962 writeq(val64
, &bar0
->xmsi_data
);
5963 val64
= readq(&bar0
->xmsi_data
);
5964 if (val64
!= 0xA5A5A5A5A5A5A5A5ULL
) {
5966 DBG_PRINT(ERR_DBG
, "Write Test level 2 fails\n");
5974 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5975 * @sp : private member of the device structure, which is a pointer to the
5976 * s2io_nic structure.
5977 * @data:variable that returns the result of each of the test conducted by
5980 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5986 static int s2io_eeprom_test(struct s2io_nic
* sp
, uint64_t * data
)
5989 u64 ret_data
, org_4F0
, org_7F0
;
5990 u8 saved_4F0
= 0, saved_7F0
= 0;
5991 struct net_device
*dev
= sp
->dev
;
5993 /* Test Write Error at offset 0 */
5994 /* Note that SPI interface allows write access to all areas
5995 * of EEPROM. Hence doing all negative testing only for Xframe I.
5997 if (sp
->device_type
== XFRAME_I_DEVICE
)
5998 if (!write_eeprom(sp
, 0, 0, 3))
6001 /* Save current values at offsets 0x4F0 and 0x7F0 */
6002 if (!read_eeprom(sp
, 0x4F0, &org_4F0
))
6004 if (!read_eeprom(sp
, 0x7F0, &org_7F0
))
6007 /* Test Write at offset 4f0 */
6008 if (write_eeprom(sp
, 0x4F0, 0x012345, 3))
6010 if (read_eeprom(sp
, 0x4F0, &ret_data
))
6013 if (ret_data
!= 0x012345) {
6014 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x4F0. "
6015 "Data written %llx Data read %llx\n",
6016 dev
->name
, (unsigned long long)0x12345,
6017 (unsigned long long)ret_data
);
6021 /* Reset the EEPROM data go FFFF */
6022 write_eeprom(sp
, 0x4F0, 0xFFFFFF, 3);
6024 /* Test Write Request Error at offset 0x7c */
6025 if (sp
->device_type
== XFRAME_I_DEVICE
)
6026 if (!write_eeprom(sp
, 0x07C, 0, 3))
6029 /* Test Write Request at offset 0x7f0 */
6030 if (write_eeprom(sp
, 0x7F0, 0x012345, 3))
6032 if (read_eeprom(sp
, 0x7F0, &ret_data
))
6035 if (ret_data
!= 0x012345) {
6036 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x7F0. "
6037 "Data written %llx Data read %llx\n",
6038 dev
->name
, (unsigned long long)0x12345,
6039 (unsigned long long)ret_data
);
6043 /* Reset the EEPROM data go FFFF */
6044 write_eeprom(sp
, 0x7F0, 0xFFFFFF, 3);
6046 if (sp
->device_type
== XFRAME_I_DEVICE
) {
6047 /* Test Write Error at offset 0x80 */
6048 if (!write_eeprom(sp
, 0x080, 0, 3))
6051 /* Test Write Error at offset 0xfc */
6052 if (!write_eeprom(sp
, 0x0FC, 0, 3))
6055 /* Test Write Error at offset 0x100 */
6056 if (!write_eeprom(sp
, 0x100, 0, 3))
6059 /* Test Write Error at offset 4ec */
6060 if (!write_eeprom(sp
, 0x4EC, 0, 3))
6064 /* Restore values at offsets 0x4F0 and 0x7F0 */
6066 write_eeprom(sp
, 0x4F0, org_4F0
, 3);
6068 write_eeprom(sp
, 0x7F0, org_7F0
, 3);
6075 * s2io_bist_test - invokes the MemBist test of the card .
6076 * @sp : private member of the device structure, which is a pointer to the
6077 * s2io_nic structure.
6078 * @data:variable that returns the result of each of the test conducted by
6081 * This invokes the MemBist test of the card. We give around
6082 * 2 secs time for the Test to complete. If it's still not complete
6083 * within this peiod, we consider that the test failed.
6085 * 0 on success and -1 on failure.
6088 static int s2io_bist_test(struct s2io_nic
* sp
, uint64_t * data
)
6091 int cnt
= 0, ret
= -1;
6093 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6094 bist
|= PCI_BIST_START
;
6095 pci_write_config_word(sp
->pdev
, PCI_BIST
, bist
);
6098 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6099 if (!(bist
& PCI_BIST_START
)) {
6100 *data
= (bist
& PCI_BIST_CODE_MASK
);
6112 * s2io-link_test - verifies the link state of the nic
6113 * @sp ; private member of the device structure, which is a pointer to the
6114 * s2io_nic structure.
6115 * @data: variable that returns the result of each of the test conducted by
6118 * The function verifies the link state of the NIC and updates the input
6119 * argument 'data' appropriately.
6124 static int s2io_link_test(struct s2io_nic
* sp
, uint64_t * data
)
6126 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6129 val64
= readq(&bar0
->adapter_status
);
6130 if(!(LINK_IS_UP(val64
)))
6139 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6140 * @sp - private member of the device structure, which is a pointer to the
6141 * s2io_nic structure.
6142 * @data - variable that returns the result of each of the test
6143 * conducted by the driver.
6145 * This is one of the offline test that tests the read and write
6146 * access to the RldRam chip on the NIC.
6151 static int s2io_rldram_test(struct s2io_nic
* sp
, uint64_t * data
)
6153 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6155 int cnt
, iteration
= 0, test_fail
= 0;
6157 val64
= readq(&bar0
->adapter_control
);
6158 val64
&= ~ADAPTER_ECC_EN
;
6159 writeq(val64
, &bar0
->adapter_control
);
6161 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6162 val64
|= MC_RLDRAM_TEST_MODE
;
6163 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6165 val64
= readq(&bar0
->mc_rldram_mrs
);
6166 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
;
6167 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6169 val64
|= MC_RLDRAM_MRS_ENABLE
;
6170 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6172 while (iteration
< 2) {
6173 val64
= 0x55555555aaaa0000ULL
;
6174 if (iteration
== 1) {
6175 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6177 writeq(val64
, &bar0
->mc_rldram_test_d0
);
6179 val64
= 0xaaaa5a5555550000ULL
;
6180 if (iteration
== 1) {
6181 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6183 writeq(val64
, &bar0
->mc_rldram_test_d1
);
6185 val64
= 0x55aaaaaaaa5a0000ULL
;
6186 if (iteration
== 1) {
6187 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6189 writeq(val64
, &bar0
->mc_rldram_test_d2
);
6191 val64
= (u64
) (0x0000003ffffe0100ULL
);
6192 writeq(val64
, &bar0
->mc_rldram_test_add
);
6194 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_WRITE
|
6196 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6198 for (cnt
= 0; cnt
< 5; cnt
++) {
6199 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6200 if (val64
& MC_RLDRAM_TEST_DONE
)
6208 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_GO
;
6209 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6211 for (cnt
= 0; cnt
< 5; cnt
++) {
6212 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6213 if (val64
& MC_RLDRAM_TEST_DONE
)
6221 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6222 if (!(val64
& MC_RLDRAM_TEST_PASS
))
6230 /* Bring the adapter out of test mode */
6231 SPECIAL_REG_WRITE(0, &bar0
->mc_rldram_test_ctrl
, LF
);
6237 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6238 * @sp : private member of the device structure, which is a pointer to the
6239 * s2io_nic structure.
6240 * @ethtest : pointer to a ethtool command specific structure that will be
6241 * returned to the user.
6242 * @data : variable that returns the result of each of the test
6243 * conducted by the driver.
6245 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6246 * the health of the card.
6251 static void s2io_ethtool_test(struct net_device
*dev
,
6252 struct ethtool_test
*ethtest
,
6255 struct s2io_nic
*sp
= dev
->priv
;
6256 int orig_state
= netif_running(sp
->dev
);
6258 if (ethtest
->flags
== ETH_TEST_FL_OFFLINE
) {
6259 /* Offline Tests. */
6261 s2io_close(sp
->dev
);
6263 if (s2io_register_test(sp
, &data
[0]))
6264 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6268 if (s2io_rldram_test(sp
, &data
[3]))
6269 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6273 if (s2io_eeprom_test(sp
, &data
[1]))
6274 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6276 if (s2io_bist_test(sp
, &data
[4]))
6277 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6287 "%s: is not up, cannot run test\n",
6296 if (s2io_link_test(sp
, &data
[2]))
6297 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6306 static void s2io_get_ethtool_stats(struct net_device
*dev
,
6307 struct ethtool_stats
*estats
,
6311 struct s2io_nic
*sp
= dev
->priv
;
6312 struct stat_block
*stat_info
= sp
->mac_control
.stats_info
;
6314 s2io_updt_stats(sp
);
6316 (u64
)le32_to_cpu(stat_info
->tmac_frms_oflow
) << 32 |
6317 le32_to_cpu(stat_info
->tmac_frms
);
6319 (u64
)le32_to_cpu(stat_info
->tmac_data_octets_oflow
) << 32 |
6320 le32_to_cpu(stat_info
->tmac_data_octets
);
6321 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_drop_frms
);
6323 (u64
)le32_to_cpu(stat_info
->tmac_mcst_frms_oflow
) << 32 |
6324 le32_to_cpu(stat_info
->tmac_mcst_frms
);
6326 (u64
)le32_to_cpu(stat_info
->tmac_bcst_frms_oflow
) << 32 |
6327 le32_to_cpu(stat_info
->tmac_bcst_frms
);
6328 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_pause_ctrl_frms
);
6330 (u64
)le32_to_cpu(stat_info
->tmac_ttl_octets_oflow
) << 32 |
6331 le32_to_cpu(stat_info
->tmac_ttl_octets
);
6333 (u64
)le32_to_cpu(stat_info
->tmac_ucst_frms_oflow
) << 32 |
6334 le32_to_cpu(stat_info
->tmac_ucst_frms
);
6336 (u64
)le32_to_cpu(stat_info
->tmac_nucst_frms_oflow
) << 32 |
6337 le32_to_cpu(stat_info
->tmac_nucst_frms
);
6339 (u64
)le32_to_cpu(stat_info
->tmac_any_err_frms_oflow
) << 32 |
6340 le32_to_cpu(stat_info
->tmac_any_err_frms
);
6341 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_ttl_less_fb_octets
);
6342 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_vld_ip_octets
);
6344 (u64
)le32_to_cpu(stat_info
->tmac_vld_ip_oflow
) << 32 |
6345 le32_to_cpu(stat_info
->tmac_vld_ip
);
6347 (u64
)le32_to_cpu(stat_info
->tmac_drop_ip_oflow
) << 32 |
6348 le32_to_cpu(stat_info
->tmac_drop_ip
);
6350 (u64
)le32_to_cpu(stat_info
->tmac_icmp_oflow
) << 32 |
6351 le32_to_cpu(stat_info
->tmac_icmp
);
6353 (u64
)le32_to_cpu(stat_info
->tmac_rst_tcp_oflow
) << 32 |
6354 le32_to_cpu(stat_info
->tmac_rst_tcp
);
6355 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_tcp
);
6356 tmp_stats
[i
++] = (u64
)le32_to_cpu(stat_info
->tmac_udp_oflow
) << 32 |
6357 le32_to_cpu(stat_info
->tmac_udp
);
6359 (u64
)le32_to_cpu(stat_info
->rmac_vld_frms_oflow
) << 32 |
6360 le32_to_cpu(stat_info
->rmac_vld_frms
);
6362 (u64
)le32_to_cpu(stat_info
->rmac_data_octets_oflow
) << 32 |
6363 le32_to_cpu(stat_info
->rmac_data_octets
);
6364 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_fcs_err_frms
);
6365 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_drop_frms
);
6367 (u64
)le32_to_cpu(stat_info
->rmac_vld_mcst_frms_oflow
) << 32 |
6368 le32_to_cpu(stat_info
->rmac_vld_mcst_frms
);
6370 (u64
)le32_to_cpu(stat_info
->rmac_vld_bcst_frms_oflow
) << 32 |
6371 le32_to_cpu(stat_info
->rmac_vld_bcst_frms
);
6372 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_in_rng_len_err_frms
);
6373 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_out_rng_len_err_frms
);
6374 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_long_frms
);
6375 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_pause_ctrl_frms
);
6376 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_unsup_ctrl_frms
);
6378 (u64
)le32_to_cpu(stat_info
->rmac_ttl_octets_oflow
) << 32 |
6379 le32_to_cpu(stat_info
->rmac_ttl_octets
);
6381 (u64
)le32_to_cpu(stat_info
->rmac_accepted_ucst_frms_oflow
)
6382 << 32 | le32_to_cpu(stat_info
->rmac_accepted_ucst_frms
);
6384 (u64
)le32_to_cpu(stat_info
->rmac_accepted_nucst_frms_oflow
)
6385 << 32 | le32_to_cpu(stat_info
->rmac_accepted_nucst_frms
);
6387 (u64
)le32_to_cpu(stat_info
->rmac_discarded_frms_oflow
) << 32 |
6388 le32_to_cpu(stat_info
->rmac_discarded_frms
);
6390 (u64
)le32_to_cpu(stat_info
->rmac_drop_events_oflow
)
6391 << 32 | le32_to_cpu(stat_info
->rmac_drop_events
);
6392 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_less_fb_octets
);
6393 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_frms
);
6395 (u64
)le32_to_cpu(stat_info
->rmac_usized_frms_oflow
) << 32 |
6396 le32_to_cpu(stat_info
->rmac_usized_frms
);
6398 (u64
)le32_to_cpu(stat_info
->rmac_osized_frms_oflow
) << 32 |
6399 le32_to_cpu(stat_info
->rmac_osized_frms
);
6401 (u64
)le32_to_cpu(stat_info
->rmac_frag_frms_oflow
) << 32 |
6402 le32_to_cpu(stat_info
->rmac_frag_frms
);
6404 (u64
)le32_to_cpu(stat_info
->rmac_jabber_frms_oflow
) << 32 |
6405 le32_to_cpu(stat_info
->rmac_jabber_frms
);
6406 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_64_frms
);
6407 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_65_127_frms
);
6408 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_128_255_frms
);
6409 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_256_511_frms
);
6410 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_512_1023_frms
);
6411 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_1024_1518_frms
);
6413 (u64
)le32_to_cpu(stat_info
->rmac_ip_oflow
) << 32 |
6414 le32_to_cpu(stat_info
->rmac_ip
);
6415 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ip_octets
);
6416 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_hdr_err_ip
);
6418 (u64
)le32_to_cpu(stat_info
->rmac_drop_ip_oflow
) << 32 |
6419 le32_to_cpu(stat_info
->rmac_drop_ip
);
6421 (u64
)le32_to_cpu(stat_info
->rmac_icmp_oflow
) << 32 |
6422 le32_to_cpu(stat_info
->rmac_icmp
);
6423 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_tcp
);
6425 (u64
)le32_to_cpu(stat_info
->rmac_udp_oflow
) << 32 |
6426 le32_to_cpu(stat_info
->rmac_udp
);
6428 (u64
)le32_to_cpu(stat_info
->rmac_err_drp_udp_oflow
) << 32 |
6429 le32_to_cpu(stat_info
->rmac_err_drp_udp
);
6430 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_err_sym
);
6431 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q0
);
6432 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q1
);
6433 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q2
);
6434 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q3
);
6435 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q4
);
6436 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q5
);
6437 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q6
);
6438 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q7
);
6439 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q0
);
6440 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q1
);
6441 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q2
);
6442 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q3
);
6443 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q4
);
6444 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q5
);
6445 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q6
);
6446 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q7
);
6448 (u64
)le32_to_cpu(stat_info
->rmac_pause_cnt_oflow
) << 32 |
6449 le32_to_cpu(stat_info
->rmac_pause_cnt
);
6450 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_data_err_cnt
);
6451 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_ctrl_err_cnt
);
6453 (u64
)le32_to_cpu(stat_info
->rmac_accepted_ip_oflow
) << 32 |
6454 le32_to_cpu(stat_info
->rmac_accepted_ip
);
6455 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_err_tcp
);
6456 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_req_cnt
);
6457 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_rd_req_cnt
);
6458 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_rd_req_rtry_cnt
);
6459 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_rtry_cnt
);
6460 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_rtry_rd_ack_cnt
);
6461 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_req_cnt
);
6462 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_wr_req_cnt
);
6463 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_wr_req_rtry_cnt
);
6464 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_rtry_cnt
);
6465 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_disc_cnt
);
6466 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_rtry_wr_ack_cnt
);
6467 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txp_wr_cnt
);
6468 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txd_rd_cnt
);
6469 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txd_wr_cnt
);
6470 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxd_rd_cnt
);
6471 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxd_wr_cnt
);
6472 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txf_rd_cnt
);
6473 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxf_wr_cnt
);
6475 /* Enhanced statistics exist only for Hercules */
6476 if(sp
->device_type
== XFRAME_II_DEVICE
) {
6478 le64_to_cpu(stat_info
->rmac_ttl_1519_4095_frms
);
6480 le64_to_cpu(stat_info
->rmac_ttl_4096_8191_frms
);
6482 le64_to_cpu(stat_info
->rmac_ttl_8192_max_frms
);
6483 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_gt_max_frms
);
6484 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_osized_alt_frms
);
6485 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_jabber_alt_frms
);
6486 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_gt_max_alt_frms
);
6487 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_vlan_frms
);
6488 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_len_discard
);
6489 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_fcs_discard
);
6490 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_pf_discard
);
6491 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_da_discard
);
6492 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_red_discard
);
6493 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_rts_discard
);
6494 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_ingm_full_discard
);
6495 tmp_stats
[i
++] = le32_to_cpu(stat_info
->link_fault_cnt
);
6499 tmp_stats
[i
++] = stat_info
->sw_stat
.single_ecc_errs
;
6500 tmp_stats
[i
++] = stat_info
->sw_stat
.double_ecc_errs
;
6501 tmp_stats
[i
++] = stat_info
->sw_stat
.parity_err_cnt
;
6502 tmp_stats
[i
++] = stat_info
->sw_stat
.serious_err_cnt
;
6503 tmp_stats
[i
++] = stat_info
->sw_stat
.soft_reset_cnt
;
6504 tmp_stats
[i
++] = stat_info
->sw_stat
.fifo_full_cnt
;
6505 for (k
= 0; k
< MAX_RX_RINGS
; k
++)
6506 tmp_stats
[i
++] = stat_info
->sw_stat
.ring_full_cnt
[k
];
6507 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_transceiver_temp_high
;
6508 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_transceiver_temp_low
;
6509 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_bias_current_high
;
6510 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_bias_current_low
;
6511 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_output_power_high
;
6512 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_output_power_low
;
6513 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_transceiver_temp_high
;
6514 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_transceiver_temp_low
;
6515 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_bias_current_high
;
6516 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_bias_current_low
;
6517 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_output_power_high
;
6518 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_output_power_low
;
6519 tmp_stats
[i
++] = stat_info
->sw_stat
.clubbed_frms_cnt
;
6520 tmp_stats
[i
++] = stat_info
->sw_stat
.sending_both
;
6521 tmp_stats
[i
++] = stat_info
->sw_stat
.outof_sequence_pkts
;
6522 tmp_stats
[i
++] = stat_info
->sw_stat
.flush_max_pkts
;
6523 if (stat_info
->sw_stat
.num_aggregations
) {
6524 u64 tmp
= stat_info
->sw_stat
.sum_avg_pkts_aggregated
;
6527 * Since 64-bit divide does not work on all platforms,
6528 * do repeated subtraction.
6530 while (tmp
>= stat_info
->sw_stat
.num_aggregations
) {
6531 tmp
-= stat_info
->sw_stat
.num_aggregations
;
6534 tmp_stats
[i
++] = count
;
6538 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_alloc_fail_cnt
;
6539 tmp_stats
[i
++] = stat_info
->sw_stat
.pci_map_fail_cnt
;
6540 tmp_stats
[i
++] = stat_info
->sw_stat
.watchdog_timer_cnt
;
6541 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_allocated
;
6542 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_freed
;
6543 tmp_stats
[i
++] = stat_info
->sw_stat
.link_up_cnt
;
6544 tmp_stats
[i
++] = stat_info
->sw_stat
.link_down_cnt
;
6545 tmp_stats
[i
++] = stat_info
->sw_stat
.link_up_time
;
6546 tmp_stats
[i
++] = stat_info
->sw_stat
.link_down_time
;
6548 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_buf_abort_cnt
;
6549 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_desc_abort_cnt
;
6550 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_parity_err_cnt
;
6551 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_link_loss_cnt
;
6552 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_list_proc_err_cnt
;
6554 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_parity_err_cnt
;
6555 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_abort_cnt
;
6556 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_parity_abort_cnt
;
6557 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_rda_fail_cnt
;
6558 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_unkn_prot_cnt
;
6559 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_fcs_err_cnt
;
6560 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_buf_size_err_cnt
;
6561 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_rxd_corrupt_cnt
;
6562 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_unkn_err_cnt
;
6563 tmp_stats
[i
++] = stat_info
->sw_stat
.tda_err_cnt
;
6564 tmp_stats
[i
++] = stat_info
->sw_stat
.pfc_err_cnt
;
6565 tmp_stats
[i
++] = stat_info
->sw_stat
.pcc_err_cnt
;
6566 tmp_stats
[i
++] = stat_info
->sw_stat
.tti_err_cnt
;
6567 tmp_stats
[i
++] = stat_info
->sw_stat
.tpa_err_cnt
;
6568 tmp_stats
[i
++] = stat_info
->sw_stat
.sm_err_cnt
;
6569 tmp_stats
[i
++] = stat_info
->sw_stat
.lso_err_cnt
;
6570 tmp_stats
[i
++] = stat_info
->sw_stat
.mac_tmac_err_cnt
;
6571 tmp_stats
[i
++] = stat_info
->sw_stat
.mac_rmac_err_cnt
;
6572 tmp_stats
[i
++] = stat_info
->sw_stat
.xgxs_txgxs_err_cnt
;
6573 tmp_stats
[i
++] = stat_info
->sw_stat
.xgxs_rxgxs_err_cnt
;
6574 tmp_stats
[i
++] = stat_info
->sw_stat
.rc_err_cnt
;
6575 tmp_stats
[i
++] = stat_info
->sw_stat
.prc_pcix_err_cnt
;
6576 tmp_stats
[i
++] = stat_info
->sw_stat
.rpa_err_cnt
;
6577 tmp_stats
[i
++] = stat_info
->sw_stat
.rda_err_cnt
;
6578 tmp_stats
[i
++] = stat_info
->sw_stat
.rti_err_cnt
;
6579 tmp_stats
[i
++] = stat_info
->sw_stat
.mc_err_cnt
;
6582 static int s2io_ethtool_get_regs_len(struct net_device
*dev
)
6584 return (XENA_REG_SPACE
);
6588 static u32
s2io_ethtool_get_rx_csum(struct net_device
* dev
)
6590 struct s2io_nic
*sp
= dev
->priv
;
6592 return (sp
->rx_csum
);
6595 static int s2io_ethtool_set_rx_csum(struct net_device
*dev
, u32 data
)
6597 struct s2io_nic
*sp
= dev
->priv
;
6607 static int s2io_get_eeprom_len(struct net_device
*dev
)
6609 return (XENA_EEPROM_SPACE
);
6612 static int s2io_get_sset_count(struct net_device
*dev
, int sset
)
6614 struct s2io_nic
*sp
= dev
->priv
;
6618 return S2IO_TEST_LEN
;
6620 switch(sp
->device_type
) {
6621 case XFRAME_I_DEVICE
:
6622 return XFRAME_I_STAT_LEN
;
6623 case XFRAME_II_DEVICE
:
6624 return XFRAME_II_STAT_LEN
;
6633 static void s2io_ethtool_get_strings(struct net_device
*dev
,
6634 u32 stringset
, u8
* data
)
6637 struct s2io_nic
*sp
= dev
->priv
;
6639 switch (stringset
) {
6641 memcpy(data
, s2io_gstrings
, S2IO_STRINGS_LEN
);
6644 stat_size
= sizeof(ethtool_xena_stats_keys
);
6645 memcpy(data
, ðtool_xena_stats_keys
,stat_size
);
6646 if(sp
->device_type
== XFRAME_II_DEVICE
) {
6647 memcpy(data
+ stat_size
,
6648 ðtool_enhanced_stats_keys
,
6649 sizeof(ethtool_enhanced_stats_keys
));
6650 stat_size
+= sizeof(ethtool_enhanced_stats_keys
);
6653 memcpy(data
+ stat_size
, ðtool_driver_stats_keys
,
6654 sizeof(ethtool_driver_stats_keys
));
6658 static int s2io_ethtool_op_set_tx_csum(struct net_device
*dev
, u32 data
)
6661 dev
->features
|= NETIF_F_IP_CSUM
;
6663 dev
->features
&= ~NETIF_F_IP_CSUM
;
6668 static u32
s2io_ethtool_op_get_tso(struct net_device
*dev
)
6670 return (dev
->features
& NETIF_F_TSO
) != 0;
6672 static int s2io_ethtool_op_set_tso(struct net_device
*dev
, u32 data
)
6675 dev
->features
|= (NETIF_F_TSO
| NETIF_F_TSO6
);
6677 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
);
6682 static const struct ethtool_ops netdev_ethtool_ops
= {
6683 .get_settings
= s2io_ethtool_gset
,
6684 .set_settings
= s2io_ethtool_sset
,
6685 .get_drvinfo
= s2io_ethtool_gdrvinfo
,
6686 .get_regs_len
= s2io_ethtool_get_regs_len
,
6687 .get_regs
= s2io_ethtool_gregs
,
6688 .get_link
= ethtool_op_get_link
,
6689 .get_eeprom_len
= s2io_get_eeprom_len
,
6690 .get_eeprom
= s2io_ethtool_geeprom
,
6691 .set_eeprom
= s2io_ethtool_seeprom
,
6692 .get_ringparam
= s2io_ethtool_gringparam
,
6693 .get_pauseparam
= s2io_ethtool_getpause_data
,
6694 .set_pauseparam
= s2io_ethtool_setpause_data
,
6695 .get_rx_csum
= s2io_ethtool_get_rx_csum
,
6696 .set_rx_csum
= s2io_ethtool_set_rx_csum
,
6697 .set_tx_csum
= s2io_ethtool_op_set_tx_csum
,
6698 .set_sg
= ethtool_op_set_sg
,
6699 .get_tso
= s2io_ethtool_op_get_tso
,
6700 .set_tso
= s2io_ethtool_op_set_tso
,
6701 .set_ufo
= ethtool_op_set_ufo
,
6702 .self_test
= s2io_ethtool_test
,
6703 .get_strings
= s2io_ethtool_get_strings
,
6704 .phys_id
= s2io_ethtool_idnic
,
6705 .get_ethtool_stats
= s2io_get_ethtool_stats
,
6706 .get_sset_count
= s2io_get_sset_count
,
6710 * s2io_ioctl - Entry point for the Ioctl
6711 * @dev : Device pointer.
6712 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6713 * a proprietary structure used to pass information to the driver.
6714 * @cmd : This is used to distinguish between the different commands that
6715 * can be passed to the IOCTL functions.
6717 * Currently there are no special functionality supported in IOCTL, hence
6718 * function always return EOPNOTSUPPORTED
6721 static int s2io_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
6727 * s2io_change_mtu - entry point to change MTU size for the device.
6728 * @dev : device pointer.
6729 * @new_mtu : the new MTU size for the device.
6730 * Description: A driver entry point to change MTU size for the device.
6731 * Before changing the MTU the device must be stopped.
6733 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6737 static int s2io_change_mtu(struct net_device
*dev
, int new_mtu
)
6739 struct s2io_nic
*sp
= dev
->priv
;
6742 if ((new_mtu
< MIN_MTU
) || (new_mtu
> S2IO_JUMBO_SIZE
)) {
6743 DBG_PRINT(ERR_DBG
, "%s: MTU size is invalid.\n",
6749 if (netif_running(dev
)) {
6750 s2io_stop_all_tx_queue(sp
);
6752 ret
= s2io_card_up(sp
);
6754 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6758 s2io_wake_all_tx_queue(sp
);
6759 } else { /* Device is down */
6760 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6761 u64 val64
= new_mtu
;
6763 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
6770 * s2io_tasklet - Bottom half of the ISR.
6771 * @dev_adr : address of the device structure in dma_addr_t format.
6773 * This is the tasklet or the bottom half of the ISR. This is
6774 * an extension of the ISR which is scheduled by the scheduler to be run
6775 * when the load on the CPU is low. All low priority tasks of the ISR can
6776 * be pushed into the tasklet. For now the tasklet is used only to
6777 * replenish the Rx buffers in the Rx buffer descriptors.
6782 static void s2io_tasklet(unsigned long dev_addr
)
6784 struct net_device
*dev
= (struct net_device
*) dev_addr
;
6785 struct s2io_nic
*sp
= dev
->priv
;
6787 struct mac_info
*mac_control
;
6788 struct config_param
*config
;
6790 mac_control
= &sp
->mac_control
;
6791 config
= &sp
->config
;
6793 if (!TASKLET_IN_USE
) {
6794 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6795 ret
= fill_rx_buffers(sp
, i
);
6796 if (ret
== -ENOMEM
) {
6797 DBG_PRINT(INFO_DBG
, "%s: Out of ",
6799 DBG_PRINT(INFO_DBG
, "memory in tasklet\n");
6801 } else if (ret
== -EFILL
) {
6803 "%s: Rx Ring %d is full\n",
6808 clear_bit(0, (&sp
->tasklet_status
));
6813 * s2io_set_link - Set the LInk status
6814 * @data: long pointer to device private structue
6815 * Description: Sets the link status for the adapter
6818 static void s2io_set_link(struct work_struct
*work
)
6820 struct s2io_nic
*nic
= container_of(work
, struct s2io_nic
, set_link_task
);
6821 struct net_device
*dev
= nic
->dev
;
6822 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
6828 if (!netif_running(dev
))
6831 if (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
))) {
6832 /* The card is being reset, no point doing anything */
6836 subid
= nic
->pdev
->subsystem_device
;
6837 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
6839 * Allow a small delay for the NICs self initiated
6840 * cleanup to complete.
6845 val64
= readq(&bar0
->adapter_status
);
6846 if (LINK_IS_UP(val64
)) {
6847 if (!(readq(&bar0
->adapter_control
) & ADAPTER_CNTL_EN
)) {
6848 if (verify_xena_quiescence(nic
)) {
6849 val64
= readq(&bar0
->adapter_control
);
6850 val64
|= ADAPTER_CNTL_EN
;
6851 writeq(val64
, &bar0
->adapter_control
);
6852 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6853 nic
->device_type
, subid
)) {
6854 val64
= readq(&bar0
->gpio_control
);
6855 val64
|= GPIO_CTRL_GPIO_0
;
6856 writeq(val64
, &bar0
->gpio_control
);
6857 val64
= readq(&bar0
->gpio_control
);
6859 val64
|= ADAPTER_LED_ON
;
6860 writeq(val64
, &bar0
->adapter_control
);
6862 nic
->device_enabled_once
= TRUE
;
6864 DBG_PRINT(ERR_DBG
, "%s: Error: ", dev
->name
);
6865 DBG_PRINT(ERR_DBG
, "device is not Quiescent\n");
6866 s2io_stop_all_tx_queue(nic
);
6869 val64
= readq(&bar0
->adapter_control
);
6870 val64
|= ADAPTER_LED_ON
;
6871 writeq(val64
, &bar0
->adapter_control
);
6872 s2io_link(nic
, LINK_UP
);
6874 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic
->device_type
,
6876 val64
= readq(&bar0
->gpio_control
);
6877 val64
&= ~GPIO_CTRL_GPIO_0
;
6878 writeq(val64
, &bar0
->gpio_control
);
6879 val64
= readq(&bar0
->gpio_control
);
6882 val64
= readq(&bar0
->adapter_control
);
6883 val64
= val64
&(~ADAPTER_LED_ON
);
6884 writeq(val64
, &bar0
->adapter_control
);
6885 s2io_link(nic
, LINK_DOWN
);
6887 clear_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
));
6893 static int set_rxd_buffer_pointer(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6895 struct sk_buff
**skb
, u64
*temp0
, u64
*temp1
,
6896 u64
*temp2
, int size
)
6898 struct net_device
*dev
= sp
->dev
;
6899 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
6901 if ((sp
->rxd_mode
== RXD_MODE_1
) && (rxdp
->Host_Control
== 0)) {
6902 struct RxD1
*rxdp1
= (struct RxD1
*)rxdp
;
6905 DBG_PRINT(INFO_DBG
, "SKB is not NULL\n");
6907 * As Rx frame are not going to be processed,
6908 * using same mapped address for the Rxd
6911 rxdp1
->Buffer0_ptr
= *temp0
;
6913 *skb
= dev_alloc_skb(size
);
6915 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
6916 DBG_PRINT(INFO_DBG
, "memory to allocate ");
6917 DBG_PRINT(INFO_DBG
, "1 buf mode SKBs\n");
6918 sp
->mac_control
.stats_info
->sw_stat
. \
6919 mem_alloc_fail_cnt
++;
6922 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
6923 += (*skb
)->truesize
;
6924 /* storing the mapped addr in a temp variable
6925 * such it will be used for next rxd whose
6926 * Host Control is NULL
6928 rxdp1
->Buffer0_ptr
= *temp0
=
6929 pci_map_single( sp
->pdev
, (*skb
)->data
,
6930 size
- NET_IP_ALIGN
,
6931 PCI_DMA_FROMDEVICE
);
6932 if( (rxdp1
->Buffer0_ptr
== 0) ||
6933 (rxdp1
->Buffer0_ptr
== DMA_ERROR_CODE
)) {
6934 goto memalloc_failed
;
6936 rxdp
->Host_Control
= (unsigned long) (*skb
);
6938 } else if ((sp
->rxd_mode
== RXD_MODE_3B
) && (rxdp
->Host_Control
== 0)) {
6939 struct RxD3
*rxdp3
= (struct RxD3
*)rxdp
;
6940 /* Two buffer Mode */
6942 rxdp3
->Buffer2_ptr
= *temp2
;
6943 rxdp3
->Buffer0_ptr
= *temp0
;
6944 rxdp3
->Buffer1_ptr
= *temp1
;
6946 *skb
= dev_alloc_skb(size
);
6948 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
6949 DBG_PRINT(INFO_DBG
, "memory to allocate ");
6950 DBG_PRINT(INFO_DBG
, "2 buf mode SKBs\n");
6951 sp
->mac_control
.stats_info
->sw_stat
. \
6952 mem_alloc_fail_cnt
++;
6955 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
6956 += (*skb
)->truesize
;
6957 rxdp3
->Buffer2_ptr
= *temp2
=
6958 pci_map_single(sp
->pdev
, (*skb
)->data
,
6960 PCI_DMA_FROMDEVICE
);
6961 if( (rxdp3
->Buffer2_ptr
== 0) ||
6962 (rxdp3
->Buffer2_ptr
== DMA_ERROR_CODE
)) {
6963 goto memalloc_failed
;
6965 rxdp3
->Buffer0_ptr
= *temp0
=
6966 pci_map_single( sp
->pdev
, ba
->ba_0
, BUF0_LEN
,
6967 PCI_DMA_FROMDEVICE
);
6968 if( (rxdp3
->Buffer0_ptr
== 0) ||
6969 (rxdp3
->Buffer0_ptr
== DMA_ERROR_CODE
)) {
6970 pci_unmap_single (sp
->pdev
,
6971 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6972 dev
->mtu
+ 4, PCI_DMA_FROMDEVICE
);
6973 goto memalloc_failed
;
6975 rxdp
->Host_Control
= (unsigned long) (*skb
);
6977 /* Buffer-1 will be dummy buffer not used */
6978 rxdp3
->Buffer1_ptr
= *temp1
=
6979 pci_map_single(sp
->pdev
, ba
->ba_1
, BUF1_LEN
,
6980 PCI_DMA_FROMDEVICE
);
6981 if( (rxdp3
->Buffer1_ptr
== 0) ||
6982 (rxdp3
->Buffer1_ptr
== DMA_ERROR_CODE
)) {
6983 pci_unmap_single (sp
->pdev
,
6984 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
6985 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
6986 pci_unmap_single (sp
->pdev
,
6987 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6988 dev
->mtu
+ 4, PCI_DMA_FROMDEVICE
);
6989 goto memalloc_failed
;
6995 stats
->pci_map_fail_cnt
++;
6996 stats
->mem_freed
+= (*skb
)->truesize
;
6997 dev_kfree_skb(*skb
);
7001 static void set_rxd_buffer_size(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
7004 struct net_device
*dev
= sp
->dev
;
7005 if (sp
->rxd_mode
== RXD_MODE_1
) {
7006 rxdp
->Control_2
= SET_BUFFER0_SIZE_1( size
- NET_IP_ALIGN
);
7007 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
7008 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
7009 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
7010 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3( dev
->mtu
+ 4);
7014 static int rxd_owner_bit_reset(struct s2io_nic
*sp
)
7016 int i
, j
, k
, blk_cnt
= 0, size
;
7017 struct mac_info
* mac_control
= &sp
->mac_control
;
7018 struct config_param
*config
= &sp
->config
;
7019 struct net_device
*dev
= sp
->dev
;
7020 struct RxD_t
*rxdp
= NULL
;
7021 struct sk_buff
*skb
= NULL
;
7022 struct buffAdd
*ba
= NULL
;
7023 u64 temp0_64
= 0, temp1_64
= 0, temp2_64
= 0;
7025 /* Calculate the size based on ring mode */
7026 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
7027 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
7028 if (sp
->rxd_mode
== RXD_MODE_1
)
7029 size
+= NET_IP_ALIGN
;
7030 else if (sp
->rxd_mode
== RXD_MODE_3B
)
7031 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
7033 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7034 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
7035 (rxd_count
[sp
->rxd_mode
] +1);
7037 for (j
= 0; j
< blk_cnt
; j
++) {
7038 for (k
= 0; k
< rxd_count
[sp
->rxd_mode
]; k
++) {
7039 rxdp
= mac_control
->rings
[i
].
7040 rx_blocks
[j
].rxds
[k
].virt_addr
;
7041 if(sp
->rxd_mode
== RXD_MODE_3B
)
7042 ba
= &mac_control
->rings
[i
].ba
[j
][k
];
7043 if (set_rxd_buffer_pointer(sp
, rxdp
, ba
,
7044 &skb
,(u64
*)&temp0_64
,
7051 set_rxd_buffer_size(sp
, rxdp
, size
);
7053 /* flip the Ownership bit to Hardware */
7054 rxdp
->Control_1
|= RXD_OWN_XENA
;
7062 static int s2io_add_isr(struct s2io_nic
* sp
)
7065 struct net_device
*dev
= sp
->dev
;
7068 if (sp
->config
.intr_type
== MSI_X
)
7069 ret
= s2io_enable_msi_x(sp
);
7071 DBG_PRINT(ERR_DBG
, "%s: Defaulting to INTA\n", dev
->name
);
7072 sp
->config
.intr_type
= INTA
;
7075 /* Store the values of the MSIX table in the struct s2io_nic structure */
7076 store_xmsi_data(sp
);
7078 /* After proper initialization of H/W, register ISR */
7079 if (sp
->config
.intr_type
== MSI_X
) {
7080 int i
, msix_tx_cnt
=0,msix_rx_cnt
=0;
7082 for (i
=1; (sp
->s2io_entries
[i
].in_use
== MSIX_FLG
); i
++) {
7083 if (sp
->s2io_entries
[i
].type
== MSIX_FIFO_TYPE
) {
7084 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-TX",
7086 err
= request_irq(sp
->entries
[i
].vector
,
7087 s2io_msix_fifo_handle
, 0, sp
->desc
[i
],
7088 sp
->s2io_entries
[i
].arg
);
7089 /* If either data or addr is zero print it */
7090 if(!(sp
->msix_info
[i
].addr
&&
7091 sp
->msix_info
[i
].data
)) {
7092 DBG_PRINT(ERR_DBG
, "%s @ Addr:0x%llx "
7093 "Data:0x%llx\n",sp
->desc
[i
],
7094 (unsigned long long)
7095 sp
->msix_info
[i
].addr
,
7096 (unsigned long long)
7097 sp
->msix_info
[i
].data
);
7102 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-RX",
7104 err
= request_irq(sp
->entries
[i
].vector
,
7105 s2io_msix_ring_handle
, 0, sp
->desc
[i
],
7106 sp
->s2io_entries
[i
].arg
);
7107 /* If either data or addr is zero print it */
7108 if(!(sp
->msix_info
[i
].addr
&&
7109 sp
->msix_info
[i
].data
)) {
7110 DBG_PRINT(ERR_DBG
, "%s @ Addr:0x%llx "
7111 "Data:0x%llx\n",sp
->desc
[i
],
7112 (unsigned long long)
7113 sp
->msix_info
[i
].addr
,
7114 (unsigned long long)
7115 sp
->msix_info
[i
].data
);
7121 remove_msix_isr(sp
);
7122 DBG_PRINT(ERR_DBG
,"%s:MSI-X-%d registration "
7123 "failed\n", dev
->name
, i
);
7124 DBG_PRINT(ERR_DBG
, "%s: defaulting to INTA\n",
7126 sp
->config
.intr_type
= INTA
;
7129 sp
->s2io_entries
[i
].in_use
= MSIX_REGISTERED_SUCCESS
;
7132 printk(KERN_INFO
"MSI-X-TX %d entries enabled\n",
7134 printk(KERN_INFO
"MSI-X-RX %d entries enabled\n",
7138 if (sp
->config
.intr_type
== INTA
) {
7139 err
= request_irq((int) sp
->pdev
->irq
, s2io_isr
, IRQF_SHARED
,
7142 DBG_PRINT(ERR_DBG
, "%s: ISR registration failed\n",
7149 static void s2io_rem_isr(struct s2io_nic
* sp
)
7151 if (sp
->config
.intr_type
== MSI_X
)
7152 remove_msix_isr(sp
);
7154 remove_inta_isr(sp
);
7157 static void do_s2io_card_down(struct s2io_nic
* sp
, int do_io
)
7160 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
7161 unsigned long flags
;
7162 register u64 val64
= 0;
7163 struct config_param
*config
;
7164 config
= &sp
->config
;
7166 if (!is_s2io_card_up(sp
))
7169 del_timer_sync(&sp
->alarm_timer
);
7170 /* If s2io_set_link task is executing, wait till it completes. */
7171 while (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
))) {
7174 clear_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7178 napi_disable(&sp
->napi
);
7180 /* disable Tx and Rx traffic on the NIC */
7187 tasklet_kill(&sp
->task
);
7189 /* Check if the device is Quiescent and then Reset the NIC */
7191 /* As per the HW requirement we need to replenish the
7192 * receive buffer to avoid the ring bump. Since there is
7193 * no intention of processing the Rx frame at this pointwe are
7194 * just settting the ownership bit of rxd in Each Rx
7195 * ring to HW and set the appropriate buffer size
7196 * based on the ring mode
7198 rxd_owner_bit_reset(sp
);
7200 val64
= readq(&bar0
->adapter_status
);
7201 if (verify_xena_quiescence(sp
)) {
7202 if(verify_pcc_quiescent(sp
, sp
->device_enabled_once
))
7210 "s2io_close:Device not Quiescent ");
7211 DBG_PRINT(ERR_DBG
, "adaper status reads 0x%llx\n",
7212 (unsigned long long) val64
);
7219 /* Free all Tx buffers */
7220 free_tx_buffers(sp
);
7222 /* Free all Rx buffers */
7223 spin_lock_irqsave(&sp
->rx_lock
, flags
);
7224 free_rx_buffers(sp
);
7225 spin_unlock_irqrestore(&sp
->rx_lock
, flags
);
7227 clear_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
));
7230 static void s2io_card_down(struct s2io_nic
* sp
)
7232 do_s2io_card_down(sp
, 1);
7235 static int s2io_card_up(struct s2io_nic
* sp
)
7238 struct mac_info
*mac_control
;
7239 struct config_param
*config
;
7240 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
7243 /* Initialize the H/W I/O registers */
7246 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
7254 * Initializing the Rx buffers. For now we are considering only 1
7255 * Rx ring and initializing buffers into 30 Rx blocks
7257 mac_control
= &sp
->mac_control
;
7258 config
= &sp
->config
;
7260 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7261 if ((ret
= fill_rx_buffers(sp
, i
))) {
7262 DBG_PRINT(ERR_DBG
, "%s: Out of memory in Open\n",
7265 free_rx_buffers(sp
);
7268 DBG_PRINT(INFO_DBG
, "Buf in ring:%d is %d:\n", i
,
7269 atomic_read(&sp
->rx_bufs_left
[i
]));
7272 /* Initialise napi */
7274 napi_enable(&sp
->napi
);
7276 /* Maintain the state prior to the open */
7277 if (sp
->promisc_flg
)
7278 sp
->promisc_flg
= 0;
7279 if (sp
->m_cast_flg
) {
7281 sp
->all_multi_pos
= 0;
7284 /* Setting its receive mode */
7285 s2io_set_multicast(dev
);
7288 /* Initialize max aggregatable pkts per session based on MTU */
7289 sp
->lro_max_aggr_per_sess
= ((1<<16) - 1) / dev
->mtu
;
7290 /* Check if we can use(if specified) user provided value */
7291 if (lro_max_pkts
< sp
->lro_max_aggr_per_sess
)
7292 sp
->lro_max_aggr_per_sess
= lro_max_pkts
;
7295 /* Enable Rx Traffic and interrupts on the NIC */
7296 if (start_nic(sp
)) {
7297 DBG_PRINT(ERR_DBG
, "%s: Starting NIC failed\n", dev
->name
);
7299 free_rx_buffers(sp
);
7303 /* Add interrupt service routine */
7304 if (s2io_add_isr(sp
) != 0) {
7305 if (sp
->config
.intr_type
== MSI_X
)
7308 free_rx_buffers(sp
);
7312 S2IO_TIMER_CONF(sp
->alarm_timer
, s2io_alarm_handle
, sp
, (HZ
/2));
7314 /* Enable tasklet for the device */
7315 tasklet_init(&sp
->task
, s2io_tasklet
, (unsigned long) dev
);
7317 /* Enable select interrupts */
7318 en_dis_err_alarms(sp
, ENA_ALL_INTRS
, ENABLE_INTRS
);
7319 if (sp
->config
.intr_type
!= INTA
)
7320 en_dis_able_nic_intrs(sp
, ENA_ALL_INTRS
, DISABLE_INTRS
);
7322 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
7323 interruptible
|= TX_PIC_INTR
;
7324 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7327 set_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7332 * s2io_restart_nic - Resets the NIC.
7333 * @data : long pointer to the device private structure
7335 * This function is scheduled to be run by the s2io_tx_watchdog
7336 * function after 0.5 secs to reset the NIC. The idea is to reduce
7337 * the run time of the watch dog routine which is run holding a
7341 static void s2io_restart_nic(struct work_struct
*work
)
7343 struct s2io_nic
*sp
= container_of(work
, struct s2io_nic
, rst_timer_task
);
7344 struct net_device
*dev
= sp
->dev
;
7348 if (!netif_running(dev
))
7352 if (s2io_card_up(sp
)) {
7353 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
7356 s2io_wake_all_tx_queue(sp
);
7357 DBG_PRINT(ERR_DBG
, "%s: was reset by Tx watchdog timer\n",
7364 * s2io_tx_watchdog - Watchdog for transmit side.
7365 * @dev : Pointer to net device structure
7367 * This function is triggered if the Tx Queue is stopped
7368 * for a pre-defined amount of time when the Interface is still up.
7369 * If the Interface is jammed in such a situation, the hardware is
7370 * reset (by s2io_close) and restarted again (by s2io_open) to
7371 * overcome any problem that might have been caused in the hardware.
7376 static void s2io_tx_watchdog(struct net_device
*dev
)
7378 struct s2io_nic
*sp
= dev
->priv
;
7380 if (netif_carrier_ok(dev
)) {
7381 sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
++;
7382 schedule_work(&sp
->rst_timer_task
);
7383 sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
++;
7388 * rx_osm_handler - To perform some OS related operations on SKB.
7389 * @sp: private member of the device structure,pointer to s2io_nic structure.
7390 * @skb : the socket buffer pointer.
7391 * @len : length of the packet
7392 * @cksum : FCS checksum of the frame.
7393 * @ring_no : the ring from which this RxD was extracted.
7395 * This function is called by the Rx interrupt serivce routine to perform
7396 * some OS related operations on the SKB before passing it to the upper
7397 * layers. It mainly checks if the checksum is OK, if so adds it to the
7398 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7399 * to the upper layer. If the checksum is wrong, it increments the Rx
7400 * packet error count, frees the SKB and returns error.
7402 * SUCCESS on success and -1 on failure.
7404 static int rx_osm_handler(struct ring_info
*ring_data
, struct RxD_t
* rxdp
)
7406 struct s2io_nic
*sp
= ring_data
->nic
;
7407 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
7408 struct sk_buff
*skb
= (struct sk_buff
*)
7409 ((unsigned long) rxdp
->Host_Control
);
7410 int ring_no
= ring_data
->ring_no
;
7411 u16 l3_csum
, l4_csum
;
7412 unsigned long long err
= rxdp
->Control_1
& RXD_T_CODE
;
7419 /* Check for parity error */
7421 sp
->mac_control
.stats_info
->sw_stat
.parity_err_cnt
++;
7423 err_mask
= err
>> 48;
7426 sp
->mac_control
.stats_info
->sw_stat
.
7427 rx_parity_err_cnt
++;
7431 sp
->mac_control
.stats_info
->sw_stat
.
7436 sp
->mac_control
.stats_info
->sw_stat
.
7437 rx_parity_abort_cnt
++;
7441 sp
->mac_control
.stats_info
->sw_stat
.
7446 sp
->mac_control
.stats_info
->sw_stat
.
7451 sp
->mac_control
.stats_info
->sw_stat
.
7456 sp
->mac_control
.stats_info
->sw_stat
.
7457 rx_buf_size_err_cnt
++;
7461 sp
->mac_control
.stats_info
->sw_stat
.
7462 rx_rxd_corrupt_cnt
++;
7466 sp
->mac_control
.stats_info
->sw_stat
.
7471 * Drop the packet if bad transfer code. Exception being
7472 * 0x5, which could be due to unsupported IPv6 extension header.
7473 * In this case, we let stack handle the packet.
7474 * Note that in this case, since checksum will be incorrect,
7475 * stack will validate the same.
7477 if (err_mask
!= 0x5) {
7478 DBG_PRINT(ERR_DBG
, "%s: Rx error Value: 0x%x\n",
7479 dev
->name
, err_mask
);
7480 sp
->stats
.rx_crc_errors
++;
7481 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
7484 atomic_dec(&sp
->rx_bufs_left
[ring_no
]);
7485 rxdp
->Host_Control
= 0;
7490 /* Updating statistics */
7491 sp
->stats
.rx_packets
++;
7492 rxdp
->Host_Control
= 0;
7493 if (sp
->rxd_mode
== RXD_MODE_1
) {
7494 int len
= RXD_GET_BUFFER0_SIZE_1(rxdp
->Control_2
);
7496 sp
->stats
.rx_bytes
+= len
;
7499 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
7500 int get_block
= ring_data
->rx_curr_get_info
.block_index
;
7501 int get_off
= ring_data
->rx_curr_get_info
.offset
;
7502 int buf0_len
= RXD_GET_BUFFER0_SIZE_3(rxdp
->Control_2
);
7503 int buf2_len
= RXD_GET_BUFFER2_SIZE_3(rxdp
->Control_2
);
7504 unsigned char *buff
= skb_push(skb
, buf0_len
);
7506 struct buffAdd
*ba
= &ring_data
->ba
[get_block
][get_off
];
7507 sp
->stats
.rx_bytes
+= buf0_len
+ buf2_len
;
7508 memcpy(buff
, ba
->ba_0
, buf0_len
);
7509 skb_put(skb
, buf2_len
);
7512 if ((rxdp
->Control_1
& TCP_OR_UDP_FRAME
) && ((!sp
->lro
) ||
7513 (sp
->lro
&& (!(rxdp
->Control_1
& RXD_FRAME_IP_FRAG
)))) &&
7515 l3_csum
= RXD_GET_L3_CKSUM(rxdp
->Control_1
);
7516 l4_csum
= RXD_GET_L4_CKSUM(rxdp
->Control_1
);
7517 if ((l3_csum
== L3_CKSUM_OK
) && (l4_csum
== L4_CKSUM_OK
)) {
7519 * NIC verifies if the Checksum of the received
7520 * frame is Ok or not and accordingly returns
7521 * a flag in the RxD.
7523 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
7529 ret
= s2io_club_tcp_session(skb
->data
, &tcp
,
7533 case 3: /* Begin anew */
7536 case 1: /* Aggregate */
7538 lro_append_pkt(sp
, lro
,
7542 case 4: /* Flush session */
7544 lro_append_pkt(sp
, lro
,
7546 queue_rx_frame(lro
->parent
,
7548 clear_lro_session(lro
);
7549 sp
->mac_control
.stats_info
->
7550 sw_stat
.flush_max_pkts
++;
7553 case 2: /* Flush both */
7554 lro
->parent
->data_len
=
7556 sp
->mac_control
.stats_info
->
7557 sw_stat
.sending_both
++;
7558 queue_rx_frame(lro
->parent
,
7560 clear_lro_session(lro
);
7562 case 0: /* sessions exceeded */
7563 case -1: /* non-TCP or not
7567 * First pkt in session not
7568 * L3/L4 aggregatable
7573 "%s: Samadhana!!\n",
7580 * Packet with erroneous checksum, let the
7581 * upper layers deal with it.
7583 skb
->ip_summed
= CHECKSUM_NONE
;
7586 skb
->ip_summed
= CHECKSUM_NONE
;
7588 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
7590 queue_rx_frame(skb
, RXD_GET_VLAN_TAG(rxdp
->Control_2
));
7591 dev
->last_rx
= jiffies
;
7593 atomic_dec(&sp
->rx_bufs_left
[ring_no
]);
7598 * s2io_link - stops/starts the Tx queue.
7599 * @sp : private member of the device structure, which is a pointer to the
7600 * s2io_nic structure.
7601 * @link : inidicates whether link is UP/DOWN.
7603 * This function stops/starts the Tx queue depending on whether the link
7604 * status of the NIC is is down or up. This is called by the Alarm
7605 * interrupt handler whenever a link change interrupt comes up.
7610 static void s2io_link(struct s2io_nic
* sp
, int link
)
7612 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
7614 if (link
!= sp
->last_link_state
) {
7616 if (link
== LINK_DOWN
) {
7617 DBG_PRINT(ERR_DBG
, "%s: Link down\n", dev
->name
);
7618 s2io_stop_all_tx_queue(sp
);
7619 netif_carrier_off(dev
);
7620 if(sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
)
7621 sp
->mac_control
.stats_info
->sw_stat
.link_up_time
=
7622 jiffies
- sp
->start_time
;
7623 sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
++;
7625 DBG_PRINT(ERR_DBG
, "%s: Link Up\n", dev
->name
);
7626 if (sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
)
7627 sp
->mac_control
.stats_info
->sw_stat
.link_down_time
=
7628 jiffies
- sp
->start_time
;
7629 sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
++;
7630 netif_carrier_on(dev
);
7631 s2io_wake_all_tx_queue(sp
);
7634 sp
->last_link_state
= link
;
7635 sp
->start_time
= jiffies
;
7639 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7640 * @sp : private member of the device structure, which is a pointer to the
7641 * s2io_nic structure.
7643 * This function initializes a few of the PCI and PCI-X configuration registers
7644 * with recommended values.
7649 static void s2io_init_pci(struct s2io_nic
* sp
)
7651 u16 pci_cmd
= 0, pcix_cmd
= 0;
7653 /* Enable Data Parity Error Recovery in PCI-X command register. */
7654 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7656 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7658 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7661 /* Set the PErr Response bit in PCI command register. */
7662 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7663 pci_write_config_word(sp
->pdev
, PCI_COMMAND
,
7664 (pci_cmd
| PCI_COMMAND_PARITY
));
7665 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7668 static int s2io_verify_parm(struct pci_dev
*pdev
, u8
*dev_intr_type
,
7671 if ((tx_fifo_num
> MAX_TX_FIFOS
) ||
7672 (tx_fifo_num
< 1)) {
7673 DBG_PRINT(ERR_DBG
, "s2io: Requested number of tx fifos "
7674 "(%d) not supported\n", tx_fifo_num
);
7676 if (tx_fifo_num
< 1)
7679 tx_fifo_num
= MAX_TX_FIFOS
;
7681 DBG_PRINT(ERR_DBG
, "s2io: Default to %d ", tx_fifo_num
);
7682 DBG_PRINT(ERR_DBG
, "tx fifos\n");
7685 #ifndef CONFIG_NETDEVICES_MULTIQUEUE
7687 DBG_PRINT(ERR_DBG
, "s2io: Multiqueue support not enabled\n");
7692 *dev_multiq
= multiq
;
7694 if (tx_steering_type
&& (1 == tx_fifo_num
)) {
7695 if (tx_steering_type
!= TX_DEFAULT_STEERING
)
7697 "s2io: Tx steering is not supported with "
7698 "one fifo. Disabling Tx steering.\n");
7699 tx_steering_type
= NO_STEERING
;
7702 if ((tx_steering_type
< NO_STEERING
) ||
7703 (tx_steering_type
> TX_DEFAULT_STEERING
)) {
7704 DBG_PRINT(ERR_DBG
, "s2io: Requested transmit steering not "
7706 DBG_PRINT(ERR_DBG
, "s2io: Disabling transmit steering\n");
7707 tx_steering_type
= NO_STEERING
;
7710 if ( rx_ring_num
> 8) {
7711 DBG_PRINT(ERR_DBG
, "s2io: Requested number of Rx rings not "
7713 DBG_PRINT(ERR_DBG
, "s2io: Default to 8 Rx rings\n");
7716 if (*dev_intr_type
!= INTA
)
7719 if ((*dev_intr_type
!= INTA
) && (*dev_intr_type
!= MSI_X
)) {
7720 DBG_PRINT(ERR_DBG
, "s2io: Wrong intr_type requested. "
7721 "Defaulting to INTA\n");
7722 *dev_intr_type
= INTA
;
7725 if ((*dev_intr_type
== MSI_X
) &&
7726 ((pdev
->device
!= PCI_DEVICE_ID_HERC_WIN
) &&
7727 (pdev
->device
!= PCI_DEVICE_ID_HERC_UNI
))) {
7728 DBG_PRINT(ERR_DBG
, "s2io: Xframe I does not support MSI_X. "
7729 "Defaulting to INTA\n");
7730 *dev_intr_type
= INTA
;
7733 if ((rx_ring_mode
!= 1) && (rx_ring_mode
!= 2)) {
7734 DBG_PRINT(ERR_DBG
, "s2io: Requested ring mode not supported\n");
7735 DBG_PRINT(ERR_DBG
, "s2io: Defaulting to 1-buffer mode\n");
7742 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7743 * or Traffic class respectively.
7744 * @nic: device private variable
7745 * Description: The function configures the receive steering to
7746 * desired receive ring.
7747 * Return Value: SUCCESS on success and
7748 * '-1' on failure (endian settings incorrect).
7750 static int rts_ds_steer(struct s2io_nic
*nic
, u8 ds_codepoint
, u8 ring
)
7752 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
7753 register u64 val64
= 0;
7755 if (ds_codepoint
> 63)
7758 val64
= RTS_DS_MEM_DATA(ring
);
7759 writeq(val64
, &bar0
->rts_ds_mem_data
);
7761 val64
= RTS_DS_MEM_CTRL_WE
|
7762 RTS_DS_MEM_CTRL_STROBE_NEW_CMD
|
7763 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint
);
7765 writeq(val64
, &bar0
->rts_ds_mem_ctrl
);
7767 return wait_for_cmd_complete(&bar0
->rts_ds_mem_ctrl
,
7768 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED
,
7773 * s2io_init_nic - Initialization of the adapter .
7774 * @pdev : structure containing the PCI related information of the device.
7775 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7777 * The function initializes an adapter identified by the pci_dec structure.
7778 * All OS related initialization including memory and device structure and
7779 * initlaization of the device private variable is done. Also the swapper
7780 * control register is initialized to enable read and write into the I/O
7781 * registers of the device.
7783 * returns 0 on success and negative on failure.
7786 static int __devinit
7787 s2io_init_nic(struct pci_dev
*pdev
, const struct pci_device_id
*pre
)
7789 struct s2io_nic
*sp
;
7790 struct net_device
*dev
;
7792 int dma_flag
= FALSE
;
7793 u32 mac_up
, mac_down
;
7794 u64 val64
= 0, tmp64
= 0;
7795 struct XENA_dev_config __iomem
*bar0
= NULL
;
7797 struct mac_info
*mac_control
;
7798 struct config_param
*config
;
7800 u8 dev_intr_type
= intr_type
;
7802 DECLARE_MAC_BUF(mac
);
7804 ret
= s2io_verify_parm(pdev
, &dev_intr_type
, &dev_multiq
);
7808 if ((ret
= pci_enable_device(pdev
))) {
7810 "s2io_init_nic: pci_enable_device failed\n");
7814 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
7815 DBG_PRINT(INIT_DBG
, "s2io_init_nic: Using 64bit DMA\n");
7817 if (pci_set_consistent_dma_mask
7818 (pdev
, DMA_64BIT_MASK
)) {
7820 "Unable to obtain 64bit DMA for \
7821 consistent allocations\n");
7822 pci_disable_device(pdev
);
7825 } else if (!pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) {
7826 DBG_PRINT(INIT_DBG
, "s2io_init_nic: Using 32bit DMA\n");
7828 pci_disable_device(pdev
);
7831 if ((ret
= pci_request_regions(pdev
, s2io_driver_name
))) {
7832 DBG_PRINT(ERR_DBG
, "%s: Request Regions failed - %x \n", __FUNCTION__
, ret
);
7833 pci_disable_device(pdev
);
7836 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
7838 dev
= alloc_etherdev_mq(sizeof(struct s2io_nic
), tx_fifo_num
);
7841 dev
= alloc_etherdev(sizeof(struct s2io_nic
));
7843 DBG_PRINT(ERR_DBG
, "Device allocation failed\n");
7844 pci_disable_device(pdev
);
7845 pci_release_regions(pdev
);
7849 pci_set_master(pdev
);
7850 pci_set_drvdata(pdev
, dev
);
7851 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7853 /* Private member variable initialized to s2io NIC structure */
7855 memset(sp
, 0, sizeof(struct s2io_nic
));
7858 sp
->high_dma_flag
= dma_flag
;
7859 sp
->device_enabled_once
= FALSE
;
7860 if (rx_ring_mode
== 1)
7861 sp
->rxd_mode
= RXD_MODE_1
;
7862 if (rx_ring_mode
== 2)
7863 sp
->rxd_mode
= RXD_MODE_3B
;
7865 sp
->config
.intr_type
= dev_intr_type
;
7867 if ((pdev
->device
== PCI_DEVICE_ID_HERC_WIN
) ||
7868 (pdev
->device
== PCI_DEVICE_ID_HERC_UNI
))
7869 sp
->device_type
= XFRAME_II_DEVICE
;
7871 sp
->device_type
= XFRAME_I_DEVICE
;
7873 sp
->lro
= lro_enable
;
7875 /* Initialize some PCI/PCI-X fields of the NIC. */
7879 * Setting the device configuration parameters.
7880 * Most of these parameters can be specified by the user during
7881 * module insertion as they are module loadable parameters. If
7882 * these parameters are not not specified during load time, they
7883 * are initialized with default values.
7885 mac_control
= &sp
->mac_control
;
7886 config
= &sp
->config
;
7888 config
->napi
= napi
;
7889 config
->tx_steering_type
= tx_steering_type
;
7891 /* Tx side parameters. */
7892 if (config
->tx_steering_type
== TX_PRIORITY_STEERING
)
7893 config
->tx_fifo_num
= MAX_TX_FIFOS
;
7895 config
->tx_fifo_num
= tx_fifo_num
;
7897 /* Initialize the fifos used for tx steering */
7898 if (config
->tx_fifo_num
< 5) {
7899 if (config
->tx_fifo_num
== 1)
7900 sp
->total_tcp_fifos
= 1;
7902 sp
->total_tcp_fifos
= config
->tx_fifo_num
- 1;
7903 sp
->udp_fifo_idx
= config
->tx_fifo_num
- 1;
7904 sp
->total_udp_fifos
= 1;
7905 sp
->other_fifo_idx
= sp
->total_tcp_fifos
- 1;
7907 sp
->total_tcp_fifos
= (tx_fifo_num
- FIFO_UDP_MAX_NUM
-
7908 FIFO_OTHER_MAX_NUM
);
7909 sp
->udp_fifo_idx
= sp
->total_tcp_fifos
;
7910 sp
->total_udp_fifos
= FIFO_UDP_MAX_NUM
;
7911 sp
->other_fifo_idx
= sp
->udp_fifo_idx
+ FIFO_UDP_MAX_NUM
;
7914 config
->multiq
= dev_multiq
;
7915 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7916 config
->tx_cfg
[i
].fifo_len
= tx_fifo_len
[i
];
7917 config
->tx_cfg
[i
].fifo_priority
= i
;
7920 /* mapping the QoS priority to the configured fifos */
7921 for (i
= 0; i
< MAX_TX_FIFOS
; i
++)
7922 config
->fifo_mapping
[i
] = fifo_map
[config
->tx_fifo_num
- 1][i
];
7924 /* map the hashing selector table to the configured fifos */
7925 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
7926 sp
->fifo_selector
[i
] = fifo_selector
[i
];
7929 config
->tx_intr_type
= TXD_INT_TYPE_UTILZ
;
7930 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7931 config
->tx_cfg
[i
].f_no_snoop
=
7932 (NO_SNOOP_TXD
| NO_SNOOP_TXD_BUFFER
);
7933 if (config
->tx_cfg
[i
].fifo_len
< 65) {
7934 config
->tx_intr_type
= TXD_INT_TYPE_PER_LIST
;
7938 /* + 2 because one Txd for skb->data and one Txd for UFO */
7939 config
->max_txds
= MAX_SKB_FRAGS
+ 2;
7941 /* Rx side parameters. */
7942 config
->rx_ring_num
= rx_ring_num
;
7943 for (i
= 0; i
< MAX_RX_RINGS
; i
++) {
7944 config
->rx_cfg
[i
].num_rxd
= rx_ring_sz
[i
] *
7945 (rxd_count
[sp
->rxd_mode
] + 1);
7946 config
->rx_cfg
[i
].ring_priority
= i
;
7949 for (i
= 0; i
< rx_ring_num
; i
++) {
7950 config
->rx_cfg
[i
].ring_org
= RING_ORG_BUFF1
;
7951 config
->rx_cfg
[i
].f_no_snoop
=
7952 (NO_SNOOP_RXD
| NO_SNOOP_RXD_BUFFER
);
7955 /* Setting Mac Control parameters */
7956 mac_control
->rmac_pause_time
= rmac_pause_time
;
7957 mac_control
->mc_pause_threshold_q0q3
= mc_pause_threshold_q0q3
;
7958 mac_control
->mc_pause_threshold_q4q7
= mc_pause_threshold_q4q7
;
7961 /* Initialize Ring buffer parameters. */
7962 for (i
= 0; i
< config
->rx_ring_num
; i
++)
7963 atomic_set(&sp
->rx_bufs_left
[i
], 0);
7965 /* initialize the shared memory used by the NIC and the host */
7966 if (init_shared_mem(sp
)) {
7967 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n",
7970 goto mem_alloc_failed
;
7973 sp
->bar0
= ioremap(pci_resource_start(pdev
, 0),
7974 pci_resource_len(pdev
, 0));
7976 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem1\n",
7979 goto bar0_remap_failed
;
7982 sp
->bar1
= ioremap(pci_resource_start(pdev
, 2),
7983 pci_resource_len(pdev
, 2));
7985 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem2\n",
7988 goto bar1_remap_failed
;
7991 dev
->irq
= pdev
->irq
;
7992 dev
->base_addr
= (unsigned long) sp
->bar0
;
7994 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7995 for (j
= 0; j
< MAX_TX_FIFOS
; j
++) {
7996 mac_control
->tx_FIFO_start
[j
] = (struct TxFIFO_element __iomem
*)
7997 (sp
->bar1
+ (j
* 0x00020000));
8000 /* Driver entry points */
8001 dev
->open
= &s2io_open
;
8002 dev
->stop
= &s2io_close
;
8003 dev
->hard_start_xmit
= &s2io_xmit
;
8004 dev
->get_stats
= &s2io_get_stats
;
8005 dev
->set_multicast_list
= &s2io_set_multicast
;
8006 dev
->do_ioctl
= &s2io_ioctl
;
8007 dev
->set_mac_address
= &s2io_set_mac_addr
;
8008 dev
->change_mtu
= &s2io_change_mtu
;
8009 SET_ETHTOOL_OPS(dev
, &netdev_ethtool_ops
);
8010 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
8011 dev
->vlan_rx_register
= s2io_vlan_rx_register
;
8012 dev
->vlan_rx_kill_vid
= (void *)s2io_vlan_rx_kill_vid
;
8015 * will use eth_mac_addr() for dev->set_mac_address
8016 * mac address will be set every time dev->open() is called
8018 netif_napi_add(dev
, &sp
->napi
, s2io_poll
, 32);
8020 #ifdef CONFIG_NET_POLL_CONTROLLER
8021 dev
->poll_controller
= s2io_netpoll
;
8024 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
8025 if (sp
->high_dma_flag
== TRUE
)
8026 dev
->features
|= NETIF_F_HIGHDMA
;
8027 dev
->features
|= NETIF_F_TSO
;
8028 dev
->features
|= NETIF_F_TSO6
;
8029 if ((sp
->device_type
& XFRAME_II_DEVICE
) && (ufo
)) {
8030 dev
->features
|= NETIF_F_UFO
;
8031 dev
->features
|= NETIF_F_HW_CSUM
;
8033 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
8035 dev
->features
|= NETIF_F_MULTI_QUEUE
;
8037 dev
->tx_timeout
= &s2io_tx_watchdog
;
8038 dev
->watchdog_timeo
= WATCH_DOG_TIMEOUT
;
8039 INIT_WORK(&sp
->rst_timer_task
, s2io_restart_nic
);
8040 INIT_WORK(&sp
->set_link_task
, s2io_set_link
);
8042 pci_save_state(sp
->pdev
);
8044 /* Setting swapper control on the NIC, for proper reset operation */
8045 if (s2io_set_swapper(sp
)) {
8046 DBG_PRINT(ERR_DBG
, "%s:swapper settings are wrong\n",
8049 goto set_swap_failed
;
8052 /* Verify if the Herc works on the slot its placed into */
8053 if (sp
->device_type
& XFRAME_II_DEVICE
) {
8054 mode
= s2io_verify_pci_mode(sp
);
8056 DBG_PRINT(ERR_DBG
, "%s: ", __FUNCTION__
);
8057 DBG_PRINT(ERR_DBG
, " Unsupported PCI bus mode\n");
8059 goto set_swap_failed
;
8063 /* Not needed for Herc */
8064 if (sp
->device_type
& XFRAME_I_DEVICE
) {
8066 * Fix for all "FFs" MAC address problems observed on
8069 fix_mac_address(sp
);
8074 * MAC address initialization.
8075 * For now only one mac address will be read and used.
8078 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
8079 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET
);
8080 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
8081 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
8082 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
, S2IO_BIT_RESET
);
8083 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
8084 mac_down
= (u32
) tmp64
;
8085 mac_up
= (u32
) (tmp64
>> 32);
8087 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_up
);
8088 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_up
>> 8);
8089 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_up
>> 16);
8090 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_up
>> 24);
8091 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_down
>> 16);
8092 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_down
>> 24);
8094 /* Set the factory defined MAC address initially */
8095 dev
->addr_len
= ETH_ALEN
;
8096 memcpy(dev
->dev_addr
, sp
->def_mac_addr
, ETH_ALEN
);
8097 memcpy(dev
->perm_addr
, dev
->dev_addr
, ETH_ALEN
);
8099 /* initialize number of multicast & unicast MAC entries variables */
8100 if (sp
->device_type
== XFRAME_I_DEVICE
) {
8101 config
->max_mc_addr
= S2IO_XENA_MAX_MC_ADDRESSES
;
8102 config
->max_mac_addr
= S2IO_XENA_MAX_MAC_ADDRESSES
;
8103 config
->mc_start_offset
= S2IO_XENA_MC_ADDR_START_OFFSET
;
8104 } else if (sp
->device_type
== XFRAME_II_DEVICE
) {
8105 config
->max_mc_addr
= S2IO_HERC_MAX_MC_ADDRESSES
;
8106 config
->max_mac_addr
= S2IO_HERC_MAX_MAC_ADDRESSES
;
8107 config
->mc_start_offset
= S2IO_HERC_MC_ADDR_START_OFFSET
;
8110 /* store mac addresses from CAM to s2io_nic structure */
8111 do_s2io_store_unicast_mc(sp
);
8113 /* Store the values of the MSIX table in the s2io_nic structure */
8114 store_xmsi_data(sp
);
8115 /* reset Nic and bring it to known state */
8119 * Initialize the tasklet status and link state flags
8120 * and the card state parameter
8122 sp
->tasklet_status
= 0;
8125 /* Initialize spinlocks */
8126 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
8127 spin_lock_init(&mac_control
->fifos
[i
].tx_lock
);
8130 spin_lock_init(&sp
->put_lock
);
8131 spin_lock_init(&sp
->rx_lock
);
8134 * SXE-002: Configure link and activity LED to init state
8137 subid
= sp
->pdev
->subsystem_device
;
8138 if ((subid
& 0xFF) >= 0x07) {
8139 val64
= readq(&bar0
->gpio_control
);
8140 val64
|= 0x0000800000000000ULL
;
8141 writeq(val64
, &bar0
->gpio_control
);
8142 val64
= 0x0411040400000000ULL
;
8143 writeq(val64
, (void __iomem
*) bar0
+ 0x2700);
8144 val64
= readq(&bar0
->gpio_control
);
8147 sp
->rx_csum
= 1; /* Rx chksum verify enabled by default */
8149 if (register_netdev(dev
)) {
8150 DBG_PRINT(ERR_DBG
, "Device registration failed\n");
8152 goto register_failed
;
8155 DBG_PRINT(ERR_DBG
, "Copyright(c) 2002-2007 Neterion Inc.\n");
8156 DBG_PRINT(ERR_DBG
, "%s: Neterion %s (rev %d)\n",dev
->name
,
8157 sp
->product_name
, pdev
->revision
);
8158 DBG_PRINT(ERR_DBG
, "%s: Driver version %s\n", dev
->name
,
8159 s2io_driver_version
);
8160 DBG_PRINT(ERR_DBG
, "%s: MAC ADDR: %s\n",
8161 dev
->name
, print_mac(mac
, dev
->dev_addr
));
8162 DBG_PRINT(ERR_DBG
, "SERIAL NUMBER: %s\n", sp
->serial_num
);
8163 if (sp
->device_type
& XFRAME_II_DEVICE
) {
8164 mode
= s2io_print_pci_mode(sp
);
8166 DBG_PRINT(ERR_DBG
, " Unsupported PCI bus mode\n");
8168 unregister_netdev(dev
);
8169 goto set_swap_failed
;
8172 switch(sp
->rxd_mode
) {
8174 DBG_PRINT(ERR_DBG
, "%s: 1-Buffer receive mode enabled\n",
8178 DBG_PRINT(ERR_DBG
, "%s: 2-Buffer receive mode enabled\n",
8184 DBG_PRINT(ERR_DBG
, "%s: NAPI enabled\n", dev
->name
);
8186 DBG_PRINT(ERR_DBG
, "%s: Using %d Tx fifo(s)\n", dev
->name
,
8187 sp
->config
.tx_fifo_num
);
8189 switch(sp
->config
.intr_type
) {
8191 DBG_PRINT(ERR_DBG
, "%s: Interrupt type INTA\n", dev
->name
);
8194 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI-X\n", dev
->name
);
8197 if (sp
->config
.multiq
) {
8198 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
8199 mac_control
->fifos
[i
].multiq
= config
->multiq
;
8200 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support enabled\n",
8203 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support disabled\n",
8206 switch (sp
->config
.tx_steering_type
) {
8208 DBG_PRINT(ERR_DBG
, "%s: No steering enabled for"
8209 " transmit\n", dev
->name
);
8211 case TX_PRIORITY_STEERING
:
8212 DBG_PRINT(ERR_DBG
, "%s: Priority steering enabled for"
8213 " transmit\n", dev
->name
);
8215 case TX_DEFAULT_STEERING
:
8216 DBG_PRINT(ERR_DBG
, "%s: Default steering enabled for"
8217 " transmit\n", dev
->name
);
8221 DBG_PRINT(ERR_DBG
, "%s: Large receive offload enabled\n",
8224 DBG_PRINT(ERR_DBG
, "%s: UDP Fragmentation Offload(UFO)"
8225 " enabled\n", dev
->name
);
8226 /* Initialize device name */
8227 sprintf(sp
->name
, "%s Neterion %s", dev
->name
, sp
->product_name
);
8230 * Make Link state as off at this point, when the Link change
8231 * interrupt comes the state will be automatically changed to
8234 netif_carrier_off(dev
);
8245 free_shared_mem(sp
);
8246 pci_disable_device(pdev
);
8247 pci_release_regions(pdev
);
8248 pci_set_drvdata(pdev
, NULL
);
8255 * s2io_rem_nic - Free the PCI device
8256 * @pdev: structure containing the PCI related information of the device.
8257 * Description: This function is called by the Pci subsystem to release a
8258 * PCI device and free up all resource held up by the device. This could
8259 * be in response to a Hot plug event or when the driver is to be removed
8263 static void __devexit
s2io_rem_nic(struct pci_dev
*pdev
)
8265 struct net_device
*dev
=
8266 (struct net_device
*) pci_get_drvdata(pdev
);
8267 struct s2io_nic
*sp
;
8270 DBG_PRINT(ERR_DBG
, "Driver Data is NULL!!\n");
8274 flush_scheduled_work();
8277 unregister_netdev(dev
);
8279 free_shared_mem(sp
);
8282 pci_release_regions(pdev
);
8283 pci_set_drvdata(pdev
, NULL
);
8285 pci_disable_device(pdev
);
8289 * s2io_starter - Entry point for the driver
8290 * Description: This function is the entry point for the driver. It verifies
8291 * the module loadable parameters and initializes PCI configuration space.
8294 static int __init
s2io_starter(void)
8296 return pci_register_driver(&s2io_driver
);
8300 * s2io_closer - Cleanup routine for the driver
8301 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8304 static __exit
void s2io_closer(void)
8306 pci_unregister_driver(&s2io_driver
);
8307 DBG_PRINT(INIT_DBG
, "cleanup done\n");
8310 module_init(s2io_starter
);
8311 module_exit(s2io_closer
);
8313 static int check_L2_lro_capable(u8
*buffer
, struct iphdr
**ip
,
8314 struct tcphdr
**tcp
, struct RxD_t
*rxdp
,
8315 struct s2io_nic
*sp
)
8318 u8 l2_type
= (u8
)((rxdp
->Control_1
>> 37) & 0x7), ip_len
;
8320 if (!(rxdp
->Control_1
& RXD_FRAME_PROTO_TCP
)) {
8321 DBG_PRINT(INIT_DBG
,"%s: Non-TCP frames not supported for LRO\n",
8326 /* Checking for DIX type or DIX type with VLAN */
8328 || (l2_type
== 4)) {
8329 ip_off
= HEADER_ETHERNET_II_802_3_SIZE
;
8331 * If vlan stripping is disabled and the frame is VLAN tagged,
8332 * shift the offset by the VLAN header size bytes.
8334 if ((!vlan_strip_flag
) &&
8335 (rxdp
->Control_1
& RXD_FRAME_VLAN_TAG
))
8336 ip_off
+= HEADER_VLAN_SIZE
;
8338 /* LLC, SNAP etc are considered non-mergeable */
8342 *ip
= (struct iphdr
*)((u8
*)buffer
+ ip_off
);
8343 ip_len
= (u8
)((*ip
)->ihl
);
8345 *tcp
= (struct tcphdr
*)((unsigned long)*ip
+ ip_len
);
8350 static int check_for_socket_match(struct lro
*lro
, struct iphdr
*ip
,
8353 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8354 if ((lro
->iph
->saddr
!= ip
->saddr
) || (lro
->iph
->daddr
!= ip
->daddr
) ||
8355 (lro
->tcph
->source
!= tcp
->source
) || (lro
->tcph
->dest
!= tcp
->dest
))
8360 static inline int get_l4_pyld_length(struct iphdr
*ip
, struct tcphdr
*tcp
)
8362 return(ntohs(ip
->tot_len
) - (ip
->ihl
<< 2) - (tcp
->doff
<< 2));
8365 static void initiate_new_session(struct lro
*lro
, u8
*l2h
,
8366 struct iphdr
*ip
, struct tcphdr
*tcp
, u32 tcp_pyld_len
, u16 vlan_tag
)
8368 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8372 lro
->tcp_next_seq
= tcp_pyld_len
+ ntohl(tcp
->seq
);
8373 lro
->tcp_ack
= tcp
->ack_seq
;
8375 lro
->total_len
= ntohs(ip
->tot_len
);
8377 lro
->vlan_tag
= vlan_tag
;
8379 * check if we saw TCP timestamp. Other consistency checks have
8380 * already been done.
8382 if (tcp
->doff
== 8) {
8384 ptr
= (__be32
*)(tcp
+1);
8386 lro
->cur_tsval
= ntohl(*(ptr
+1));
8387 lro
->cur_tsecr
= *(ptr
+2);
8392 static void update_L3L4_header(struct s2io_nic
*sp
, struct lro
*lro
)
8394 struct iphdr
*ip
= lro
->iph
;
8395 struct tcphdr
*tcp
= lro
->tcph
;
8397 struct stat_block
*statinfo
= sp
->mac_control
.stats_info
;
8398 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8400 /* Update L3 header */
8401 ip
->tot_len
= htons(lro
->total_len
);
8403 nchk
= ip_fast_csum((u8
*)lro
->iph
, ip
->ihl
);
8406 /* Update L4 header */
8407 tcp
->ack_seq
= lro
->tcp_ack
;
8408 tcp
->window
= lro
->window
;
8410 /* Update tsecr field if this session has timestamps enabled */
8412 __be32
*ptr
= (__be32
*)(tcp
+ 1);
8413 *(ptr
+2) = lro
->cur_tsecr
;
8416 /* Update counters required for calculation of
8417 * average no. of packets aggregated.
8419 statinfo
->sw_stat
.sum_avg_pkts_aggregated
+= lro
->sg_num
;
8420 statinfo
->sw_stat
.num_aggregations
++;
8423 static void aggregate_new_rx(struct lro
*lro
, struct iphdr
*ip
,
8424 struct tcphdr
*tcp
, u32 l4_pyld
)
8426 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8427 lro
->total_len
+= l4_pyld
;
8428 lro
->frags_len
+= l4_pyld
;
8429 lro
->tcp_next_seq
+= l4_pyld
;
8432 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8433 lro
->tcp_ack
= tcp
->ack_seq
;
8434 lro
->window
= tcp
->window
;
8438 /* Update tsecr and tsval from this packet */
8439 ptr
= (__be32
*)(tcp
+1);
8440 lro
->cur_tsval
= ntohl(*(ptr
+1));
8441 lro
->cur_tsecr
= *(ptr
+ 2);
8445 static int verify_l3_l4_lro_capable(struct lro
*l_lro
, struct iphdr
*ip
,
8446 struct tcphdr
*tcp
, u32 tcp_pyld_len
)
8450 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8452 if (!tcp_pyld_len
) {
8453 /* Runt frame or a pure ack */
8457 if (ip
->ihl
!= 5) /* IP has options */
8460 /* If we see CE codepoint in IP header, packet is not mergeable */
8461 if (INET_ECN_is_ce(ipv4_get_dsfield(ip
)))
8464 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8465 if (tcp
->urg
|| tcp
->psh
|| tcp
->rst
|| tcp
->syn
|| tcp
->fin
||
8466 tcp
->ece
|| tcp
->cwr
|| !tcp
->ack
) {
8468 * Currently recognize only the ack control word and
8469 * any other control field being set would result in
8470 * flushing the LRO session
8476 * Allow only one TCP timestamp option. Don't aggregate if
8477 * any other options are detected.
8479 if (tcp
->doff
!= 5 && tcp
->doff
!= 8)
8482 if (tcp
->doff
== 8) {
8483 ptr
= (u8
*)(tcp
+ 1);
8484 while (*ptr
== TCPOPT_NOP
)
8486 if (*ptr
!= TCPOPT_TIMESTAMP
|| *(ptr
+1) != TCPOLEN_TIMESTAMP
)
8489 /* Ensure timestamp value increases monotonically */
8491 if (l_lro
->cur_tsval
> ntohl(*((__be32
*)(ptr
+2))))
8494 /* timestamp echo reply should be non-zero */
8495 if (*((__be32
*)(ptr
+6)) == 0)
8503 s2io_club_tcp_session(u8
*buffer
, u8
**tcp
, u32
*tcp_len
, struct lro
**lro
,
8504 struct RxD_t
*rxdp
, struct s2io_nic
*sp
)
8507 struct tcphdr
*tcph
;
8511 if (!(ret
= check_L2_lro_capable(buffer
, &ip
, (struct tcphdr
**)tcp
,
8513 DBG_PRINT(INFO_DBG
,"IP Saddr: %x Daddr: %x\n",
8514 ip
->saddr
, ip
->daddr
);
8518 vlan_tag
= RXD_GET_VLAN_TAG(rxdp
->Control_2
);
8519 tcph
= (struct tcphdr
*)*tcp
;
8520 *tcp_len
= get_l4_pyld_length(ip
, tcph
);
8521 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
8522 struct lro
*l_lro
= &sp
->lro0_n
[i
];
8523 if (l_lro
->in_use
) {
8524 if (check_for_socket_match(l_lro
, ip
, tcph
))
8526 /* Sock pair matched */
8529 if ((*lro
)->tcp_next_seq
!= ntohl(tcph
->seq
)) {
8530 DBG_PRINT(INFO_DBG
, "%s:Out of order. expected "
8531 "0x%x, actual 0x%x\n", __FUNCTION__
,
8532 (*lro
)->tcp_next_seq
,
8535 sp
->mac_control
.stats_info
->
8536 sw_stat
.outof_sequence_pkts
++;
8541 if (!verify_l3_l4_lro_capable(l_lro
, ip
, tcph
,*tcp_len
))
8542 ret
= 1; /* Aggregate */
8544 ret
= 2; /* Flush both */
8550 /* Before searching for available LRO objects,
8551 * check if the pkt is L3/L4 aggregatable. If not
8552 * don't create new LRO session. Just send this
8555 if (verify_l3_l4_lro_capable(NULL
, ip
, tcph
, *tcp_len
)) {
8559 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
8560 struct lro
*l_lro
= &sp
->lro0_n
[i
];
8561 if (!(l_lro
->in_use
)) {
8563 ret
= 3; /* Begin anew */
8569 if (ret
== 0) { /* sessions exceeded */
8570 DBG_PRINT(INFO_DBG
,"%s:All LRO sessions already in use\n",
8578 initiate_new_session(*lro
, buffer
, ip
, tcph
, *tcp_len
,
8582 update_L3L4_header(sp
, *lro
);
8585 aggregate_new_rx(*lro
, ip
, tcph
, *tcp_len
);
8586 if ((*lro
)->sg_num
== sp
->lro_max_aggr_per_sess
) {
8587 update_L3L4_header(sp
, *lro
);
8588 ret
= 4; /* Flush the LRO */
8592 DBG_PRINT(ERR_DBG
,"%s:Dont know, can't say!!\n",
8600 static void clear_lro_session(struct lro
*lro
)
8602 static u16 lro_struct_size
= sizeof(struct lro
);
8604 memset(lro
, 0, lro_struct_size
);
8607 static void queue_rx_frame(struct sk_buff
*skb
, u16 vlan_tag
)
8609 struct net_device
*dev
= skb
->dev
;
8610 struct s2io_nic
*sp
= dev
->priv
;
8612 skb
->protocol
= eth_type_trans(skb
, dev
);
8613 if (sp
->vlgrp
&& vlan_tag
8614 && (vlan_strip_flag
)) {
8615 /* Queueing the vlan frame to the upper layer */
8616 if (sp
->config
.napi
)
8617 vlan_hwaccel_receive_skb(skb
, sp
->vlgrp
, vlan_tag
);
8619 vlan_hwaccel_rx(skb
, sp
->vlgrp
, vlan_tag
);
8621 if (sp
->config
.napi
)
8622 netif_receive_skb(skb
);
8628 static void lro_append_pkt(struct s2io_nic
*sp
, struct lro
*lro
,
8629 struct sk_buff
*skb
,
8632 struct sk_buff
*first
= lro
->parent
;
8634 first
->len
+= tcp_len
;
8635 first
->data_len
= lro
->frags_len
;
8636 skb_pull(skb
, (skb
->len
- tcp_len
));
8637 if (skb_shinfo(first
)->frag_list
)
8638 lro
->last_frag
->next
= skb
;
8640 skb_shinfo(first
)->frag_list
= skb
;
8641 first
->truesize
+= skb
->truesize
;
8642 lro
->last_frag
= skb
;
8643 sp
->mac_control
.stats_info
->sw_stat
.clubbed_frms_cnt
++;
8648 * s2io_io_error_detected - called when PCI error is detected
8649 * @pdev: Pointer to PCI device
8650 * @state: The current pci connection state
8652 * This function is called after a PCI bus error affecting
8653 * this device has been detected.
8655 static pci_ers_result_t
s2io_io_error_detected(struct pci_dev
*pdev
,
8656 pci_channel_state_t state
)
8658 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8659 struct s2io_nic
*sp
= netdev
->priv
;
8661 netif_device_detach(netdev
);
8663 if (netif_running(netdev
)) {
8664 /* Bring down the card, while avoiding PCI I/O */
8665 do_s2io_card_down(sp
, 0);
8667 pci_disable_device(pdev
);
8669 return PCI_ERS_RESULT_NEED_RESET
;
8673 * s2io_io_slot_reset - called after the pci bus has been reset.
8674 * @pdev: Pointer to PCI device
8676 * Restart the card from scratch, as if from a cold-boot.
8677 * At this point, the card has exprienced a hard reset,
8678 * followed by fixups by BIOS, and has its config space
8679 * set up identically to what it was at cold boot.
8681 static pci_ers_result_t
s2io_io_slot_reset(struct pci_dev
*pdev
)
8683 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8684 struct s2io_nic
*sp
= netdev
->priv
;
8686 if (pci_enable_device(pdev
)) {
8687 printk(KERN_ERR
"s2io: "
8688 "Cannot re-enable PCI device after reset.\n");
8689 return PCI_ERS_RESULT_DISCONNECT
;
8692 pci_set_master(pdev
);
8695 return PCI_ERS_RESULT_RECOVERED
;
8699 * s2io_io_resume - called when traffic can start flowing again.
8700 * @pdev: Pointer to PCI device
8702 * This callback is called when the error recovery driver tells
8703 * us that its OK to resume normal operation.
8705 static void s2io_io_resume(struct pci_dev
*pdev
)
8707 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8708 struct s2io_nic
*sp
= netdev
->priv
;
8710 if (netif_running(netdev
)) {
8711 if (s2io_card_up(sp
)) {
8712 printk(KERN_ERR
"s2io: "
8713 "Can't bring device back up after reset.\n");
8717 if (s2io_set_mac_addr(netdev
, netdev
->dev_addr
) == FAILURE
) {
8719 printk(KERN_ERR
"s2io: "
8720 "Can't resetore mac addr after reset.\n");
8725 netif_device_attach(netdev
);
8726 netif_wake_queue(netdev
);