2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
26 #include "kvm_cache_regs.h"
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
40 #include <asm/uaccess.h>
45 #define MAX_IO_MSRS 256
46 #define CR0_RESERVED_BITS \
47 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
48 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
49 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
50 #define CR4_RESERVED_BITS \
51 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
52 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
53 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
54 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
56 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
58 * - enable syscall per default because its emulated by KVM
59 * - enable LME and LMA per default on 64 bit KVM
62 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffafeULL
;
64 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffffeULL
;
67 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
68 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
70 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
71 struct kvm_cpuid_entry2 __user
*entries
);
73 struct kvm_x86_ops
*kvm_x86_ops
;
74 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
76 struct kvm_stats_debugfs_item debugfs_entries
[] = {
77 { "pf_fixed", VCPU_STAT(pf_fixed
) },
78 { "pf_guest", VCPU_STAT(pf_guest
) },
79 { "tlb_flush", VCPU_STAT(tlb_flush
) },
80 { "invlpg", VCPU_STAT(invlpg
) },
81 { "exits", VCPU_STAT(exits
) },
82 { "io_exits", VCPU_STAT(io_exits
) },
83 { "mmio_exits", VCPU_STAT(mmio_exits
) },
84 { "signal_exits", VCPU_STAT(signal_exits
) },
85 { "irq_window", VCPU_STAT(irq_window_exits
) },
86 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
87 { "halt_exits", VCPU_STAT(halt_exits
) },
88 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
89 { "hypercalls", VCPU_STAT(hypercalls
) },
90 { "request_irq", VCPU_STAT(request_irq_exits
) },
91 { "request_nmi", VCPU_STAT(request_nmi_exits
) },
92 { "irq_exits", VCPU_STAT(irq_exits
) },
93 { "host_state_reload", VCPU_STAT(host_state_reload
) },
94 { "efer_reload", VCPU_STAT(efer_reload
) },
95 { "fpu_reload", VCPU_STAT(fpu_reload
) },
96 { "insn_emulation", VCPU_STAT(insn_emulation
) },
97 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
98 { "irq_injections", VCPU_STAT(irq_injections
) },
99 { "nmi_injections", VCPU_STAT(nmi_injections
) },
100 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
101 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
102 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
103 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
104 { "mmu_flooded", VM_STAT(mmu_flooded
) },
105 { "mmu_recycled", VM_STAT(mmu_recycled
) },
106 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
107 { "mmu_unsync", VM_STAT(mmu_unsync
) },
108 { "mmu_unsync_global", VM_STAT(mmu_unsync_global
) },
109 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
110 { "largepages", VM_STAT(lpages
) },
114 unsigned long segment_base(u16 selector
)
116 struct descriptor_table gdt
;
117 struct desc_struct
*d
;
118 unsigned long table_base
;
124 asm("sgdt %0" : "=m"(gdt
));
125 table_base
= gdt
.base
;
127 if (selector
& 4) { /* from ldt */
130 asm("sldt %0" : "=g"(ldt_selector
));
131 table_base
= segment_base(ldt_selector
);
133 d
= (struct desc_struct
*)(table_base
+ (selector
& ~7));
134 v
= d
->base0
| ((unsigned long)d
->base1
<< 16) |
135 ((unsigned long)d
->base2
<< 24);
137 if (d
->s
== 0 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
138 v
|= ((unsigned long)((struct ldttss_desc64
*)d
)->base3
) << 32;
142 EXPORT_SYMBOL_GPL(segment_base
);
144 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
146 if (irqchip_in_kernel(vcpu
->kvm
))
147 return vcpu
->arch
.apic_base
;
149 return vcpu
->arch
.apic_base
;
151 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
153 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
155 /* TODO: reserve bits check */
156 if (irqchip_in_kernel(vcpu
->kvm
))
157 kvm_lapic_set_base(vcpu
, data
);
159 vcpu
->arch
.apic_base
= data
;
161 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
163 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
165 WARN_ON(vcpu
->arch
.exception
.pending
);
166 vcpu
->arch
.exception
.pending
= true;
167 vcpu
->arch
.exception
.has_error_code
= false;
168 vcpu
->arch
.exception
.nr
= nr
;
170 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
172 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, unsigned long addr
,
175 ++vcpu
->stat
.pf_guest
;
176 if (vcpu
->arch
.exception
.pending
) {
177 if (vcpu
->arch
.exception
.nr
== PF_VECTOR
) {
178 printk(KERN_DEBUG
"kvm: inject_page_fault:"
179 " double fault 0x%lx\n", addr
);
180 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
181 vcpu
->arch
.exception
.error_code
= 0;
182 } else if (vcpu
->arch
.exception
.nr
== DF_VECTOR
) {
183 /* triple fault -> shutdown */
184 set_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
);
188 vcpu
->arch
.cr2
= addr
;
189 kvm_queue_exception_e(vcpu
, PF_VECTOR
, error_code
);
192 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
194 vcpu
->arch
.nmi_pending
= 1;
196 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
198 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
200 WARN_ON(vcpu
->arch
.exception
.pending
);
201 vcpu
->arch
.exception
.pending
= true;
202 vcpu
->arch
.exception
.has_error_code
= true;
203 vcpu
->arch
.exception
.nr
= nr
;
204 vcpu
->arch
.exception
.error_code
= error_code
;
206 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
208 static void __queue_exception(struct kvm_vcpu
*vcpu
)
210 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
211 vcpu
->arch
.exception
.has_error_code
,
212 vcpu
->arch
.exception
.error_code
);
216 * Load the pae pdptrs. Return true is they are all valid.
218 int load_pdptrs(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
220 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
221 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
224 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
226 ret
= kvm_read_guest_page(vcpu
->kvm
, pdpt_gfn
, pdpte
,
227 offset
* sizeof(u64
), sizeof(pdpte
));
232 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
233 if ((pdpte
[i
] & 1) && (pdpte
[i
] & 0xfffffff0000001e6ull
)) {
240 memcpy(vcpu
->arch
.pdptrs
, pdpte
, sizeof(vcpu
->arch
.pdptrs
));
245 EXPORT_SYMBOL_GPL(load_pdptrs
);
247 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
249 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
253 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
256 r
= kvm_read_guest(vcpu
->kvm
, vcpu
->arch
.cr3
& ~31u, pdpte
, sizeof(pdpte
));
259 changed
= memcmp(pdpte
, vcpu
->arch
.pdptrs
, sizeof(pdpte
)) != 0;
265 void kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
267 if (cr0
& CR0_RESERVED_BITS
) {
268 printk(KERN_DEBUG
"set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
269 cr0
, vcpu
->arch
.cr0
);
270 kvm_inject_gp(vcpu
, 0);
274 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
)) {
275 printk(KERN_DEBUG
"set_cr0: #GP, CD == 0 && NW == 1\n");
276 kvm_inject_gp(vcpu
, 0);
280 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
)) {
281 printk(KERN_DEBUG
"set_cr0: #GP, set PG flag "
282 "and a clear PE flag\n");
283 kvm_inject_gp(vcpu
, 0);
287 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
289 if ((vcpu
->arch
.shadow_efer
& EFER_LME
)) {
293 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
294 "in long mode while PAE is disabled\n");
295 kvm_inject_gp(vcpu
, 0);
298 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
300 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
301 "in long mode while CS.L == 1\n");
302 kvm_inject_gp(vcpu
, 0);
308 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
309 printk(KERN_DEBUG
"set_cr0: #GP, pdptrs "
311 kvm_inject_gp(vcpu
, 0);
317 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
318 vcpu
->arch
.cr0
= cr0
;
320 kvm_mmu_sync_global(vcpu
);
321 kvm_mmu_reset_context(vcpu
);
324 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
326 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
328 kvm_set_cr0(vcpu
, (vcpu
->arch
.cr0
& ~0x0ful
) | (msw
& 0x0f));
329 KVMTRACE_1D(LMSW
, vcpu
,
330 (u32
)((vcpu
->arch
.cr0
& ~0x0ful
) | (msw
& 0x0f)),
333 EXPORT_SYMBOL_GPL(kvm_lmsw
);
335 void kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
337 if (cr4
& CR4_RESERVED_BITS
) {
338 printk(KERN_DEBUG
"set_cr4: #GP, reserved bits\n");
339 kvm_inject_gp(vcpu
, 0);
343 if (is_long_mode(vcpu
)) {
344 if (!(cr4
& X86_CR4_PAE
)) {
345 printk(KERN_DEBUG
"set_cr4: #GP, clearing PAE while "
347 kvm_inject_gp(vcpu
, 0);
350 } else if (is_paging(vcpu
) && !is_pae(vcpu
) && (cr4
& X86_CR4_PAE
)
351 && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
352 printk(KERN_DEBUG
"set_cr4: #GP, pdptrs reserved bits\n");
353 kvm_inject_gp(vcpu
, 0);
357 if (cr4
& X86_CR4_VMXE
) {
358 printk(KERN_DEBUG
"set_cr4: #GP, setting VMXE\n");
359 kvm_inject_gp(vcpu
, 0);
362 kvm_x86_ops
->set_cr4(vcpu
, cr4
);
363 vcpu
->arch
.cr4
= cr4
;
364 kvm_mmu_sync_global(vcpu
);
365 kvm_mmu_reset_context(vcpu
);
367 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
369 void kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
371 if (cr3
== vcpu
->arch
.cr3
&& !pdptrs_changed(vcpu
)) {
372 kvm_mmu_sync_roots(vcpu
);
373 kvm_mmu_flush_tlb(vcpu
);
377 if (is_long_mode(vcpu
)) {
378 if (cr3
& CR3_L_MODE_RESERVED_BITS
) {
379 printk(KERN_DEBUG
"set_cr3: #GP, reserved bits\n");
380 kvm_inject_gp(vcpu
, 0);
385 if (cr3
& CR3_PAE_RESERVED_BITS
) {
387 "set_cr3: #GP, reserved bits\n");
388 kvm_inject_gp(vcpu
, 0);
391 if (is_paging(vcpu
) && !load_pdptrs(vcpu
, cr3
)) {
392 printk(KERN_DEBUG
"set_cr3: #GP, pdptrs "
394 kvm_inject_gp(vcpu
, 0);
399 * We don't check reserved bits in nonpae mode, because
400 * this isn't enforced, and VMware depends on this.
405 * Does the new cr3 value map to physical memory? (Note, we
406 * catch an invalid cr3 even in real-mode, because it would
407 * cause trouble later on when we turn on paging anyway.)
409 * A real CPU would silently accept an invalid cr3 and would
410 * attempt to use it - with largely undefined (and often hard
411 * to debug) behavior on the guest side.
413 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
414 kvm_inject_gp(vcpu
, 0);
416 vcpu
->arch
.cr3
= cr3
;
417 vcpu
->arch
.mmu
.new_cr3(vcpu
);
420 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
422 void kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
424 if (cr8
& CR8_RESERVED_BITS
) {
425 printk(KERN_DEBUG
"set_cr8: #GP, reserved bits 0x%lx\n", cr8
);
426 kvm_inject_gp(vcpu
, 0);
429 if (irqchip_in_kernel(vcpu
->kvm
))
430 kvm_lapic_set_tpr(vcpu
, cr8
);
432 vcpu
->arch
.cr8
= cr8
;
434 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
436 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
438 if (irqchip_in_kernel(vcpu
->kvm
))
439 return kvm_lapic_get_cr8(vcpu
);
441 return vcpu
->arch
.cr8
;
443 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
446 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
447 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
449 * This list is modified at module load time to reflect the
450 * capabilities of the host cpu.
452 static u32 msrs_to_save
[] = {
453 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
456 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
458 MSR_IA32_TIME_STAMP_COUNTER
, MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
459 MSR_IA32_PERF_STATUS
, MSR_IA32_CR_PAT
462 static unsigned num_msrs_to_save
;
464 static u32 emulated_msrs
[] = {
465 MSR_IA32_MISC_ENABLE
,
468 static void set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
470 if (efer
& efer_reserved_bits
) {
471 printk(KERN_DEBUG
"set_efer: 0x%llx #GP, reserved bits\n",
473 kvm_inject_gp(vcpu
, 0);
478 && (vcpu
->arch
.shadow_efer
& EFER_LME
) != (efer
& EFER_LME
)) {
479 printk(KERN_DEBUG
"set_efer: #GP, change LME while paging\n");
480 kvm_inject_gp(vcpu
, 0);
484 kvm_x86_ops
->set_efer(vcpu
, efer
);
487 efer
|= vcpu
->arch
.shadow_efer
& EFER_LMA
;
489 vcpu
->arch
.shadow_efer
= efer
;
492 void kvm_enable_efer_bits(u64 mask
)
494 efer_reserved_bits
&= ~mask
;
496 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
500 * Writes msr value into into the appropriate "register".
501 * Returns 0 on success, non-0 otherwise.
502 * Assumes vcpu_load() was already called.
504 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
506 return kvm_x86_ops
->set_msr(vcpu
, msr_index
, data
);
510 * Adapt set_msr() to msr_io()'s calling convention
512 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
514 return kvm_set_msr(vcpu
, index
, *data
);
517 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
520 struct pvclock_wall_clock wc
;
521 struct timespec now
, sys
, boot
;
528 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
531 * The guest calculates current wall clock time by adding
532 * system time (updated by kvm_write_guest_time below) to the
533 * wall clock specified here. guest system time equals host
534 * system time for us, thus we must fill in host boot time here.
536 now
= current_kernel_time();
538 boot
= ns_to_timespec(timespec_to_ns(&now
) - timespec_to_ns(&sys
));
540 wc
.sec
= boot
.tv_sec
;
541 wc
.nsec
= boot
.tv_nsec
;
542 wc
.version
= version
;
544 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
547 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
550 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
552 uint32_t quotient
, remainder
;
554 /* Don't try to replace with do_div(), this one calculates
555 * "(dividend << 32) / divisor" */
557 : "=a" (quotient
), "=d" (remainder
)
558 : "0" (0), "1" (dividend
), "r" (divisor
) );
562 static void kvm_set_time_scale(uint32_t tsc_khz
, struct pvclock_vcpu_time_info
*hv_clock
)
564 uint64_t nsecs
= 1000000000LL;
569 tps64
= tsc_khz
* 1000LL;
570 while (tps64
> nsecs
*2) {
575 tps32
= (uint32_t)tps64
;
576 while (tps32
<= (uint32_t)nsecs
) {
581 hv_clock
->tsc_shift
= shift
;
582 hv_clock
->tsc_to_system_mul
= div_frac(nsecs
, tps32
);
584 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
585 __func__
, tsc_khz
, hv_clock
->tsc_shift
,
586 hv_clock
->tsc_to_system_mul
);
589 static void kvm_write_guest_time(struct kvm_vcpu
*v
)
593 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
596 if ((!vcpu
->time_page
))
599 if (unlikely(vcpu
->hv_clock_tsc_khz
!= tsc_khz
)) {
600 kvm_set_time_scale(tsc_khz
, &vcpu
->hv_clock
);
601 vcpu
->hv_clock_tsc_khz
= tsc_khz
;
604 /* Keep irq disabled to prevent changes to the clock */
605 local_irq_save(flags
);
606 kvm_get_msr(v
, MSR_IA32_TIME_STAMP_COUNTER
,
607 &vcpu
->hv_clock
.tsc_timestamp
);
609 local_irq_restore(flags
);
611 /* With all the info we got, fill in the values */
613 vcpu
->hv_clock
.system_time
= ts
.tv_nsec
+
614 (NSEC_PER_SEC
* (u64
)ts
.tv_sec
);
616 * The interface expects us to write an even number signaling that the
617 * update is finished. Since the guest won't see the intermediate
618 * state, we just increase by 2 at the end.
620 vcpu
->hv_clock
.version
+= 2;
622 shared_kaddr
= kmap_atomic(vcpu
->time_page
, KM_USER0
);
624 memcpy(shared_kaddr
+ vcpu
->time_offset
, &vcpu
->hv_clock
,
625 sizeof(vcpu
->hv_clock
));
627 kunmap_atomic(shared_kaddr
, KM_USER0
);
629 mark_page_dirty(v
->kvm
, vcpu
->time
>> PAGE_SHIFT
);
632 static bool msr_mtrr_valid(unsigned msr
)
635 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR
- 1:
636 case MSR_MTRRfix64K_00000
:
637 case MSR_MTRRfix16K_80000
:
638 case MSR_MTRRfix16K_A0000
:
639 case MSR_MTRRfix4K_C0000
:
640 case MSR_MTRRfix4K_C8000
:
641 case MSR_MTRRfix4K_D0000
:
642 case MSR_MTRRfix4K_D8000
:
643 case MSR_MTRRfix4K_E0000
:
644 case MSR_MTRRfix4K_E8000
:
645 case MSR_MTRRfix4K_F0000
:
646 case MSR_MTRRfix4K_F8000
:
647 case MSR_MTRRdefType
:
648 case MSR_IA32_CR_PAT
:
656 static int set_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
658 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
660 if (!msr_mtrr_valid(msr
))
663 if (msr
== MSR_MTRRdefType
) {
664 vcpu
->arch
.mtrr_state
.def_type
= data
;
665 vcpu
->arch
.mtrr_state
.enabled
= (data
& 0xc00) >> 10;
666 } else if (msr
== MSR_MTRRfix64K_00000
)
668 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
669 p
[1 + msr
- MSR_MTRRfix16K_80000
] = data
;
670 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
671 p
[3 + msr
- MSR_MTRRfix4K_C0000
] = data
;
672 else if (msr
== MSR_IA32_CR_PAT
)
673 vcpu
->arch
.pat
= data
;
674 else { /* Variable MTRRs */
675 int idx
, is_mtrr_mask
;
678 idx
= (msr
- 0x200) / 2;
679 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
682 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
685 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
689 kvm_mmu_reset_context(vcpu
);
693 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
697 set_efer(vcpu
, data
);
699 case MSR_IA32_MC0_STATUS
:
700 pr_unimpl(vcpu
, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
703 case MSR_IA32_MCG_STATUS
:
704 pr_unimpl(vcpu
, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
707 case MSR_IA32_MCG_CTL
:
708 pr_unimpl(vcpu
, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
711 case MSR_IA32_DEBUGCTLMSR
:
713 /* We support the non-activated case already */
715 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
716 /* Values other than LBR and BTF are vendor-specific,
717 thus reserved and should throw a #GP */
720 pr_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
723 case MSR_IA32_UCODE_REV
:
724 case MSR_IA32_UCODE_WRITE
:
726 case 0x200 ... 0x2ff:
727 return set_msr_mtrr(vcpu
, msr
, data
);
728 case MSR_IA32_APICBASE
:
729 kvm_set_apic_base(vcpu
, data
);
731 case MSR_IA32_MISC_ENABLE
:
732 vcpu
->arch
.ia32_misc_enable_msr
= data
;
734 case MSR_KVM_WALL_CLOCK
:
735 vcpu
->kvm
->arch
.wall_clock
= data
;
736 kvm_write_wall_clock(vcpu
->kvm
, data
);
738 case MSR_KVM_SYSTEM_TIME
: {
739 if (vcpu
->arch
.time_page
) {
740 kvm_release_page_dirty(vcpu
->arch
.time_page
);
741 vcpu
->arch
.time_page
= NULL
;
744 vcpu
->arch
.time
= data
;
746 /* we verify if the enable bit is set... */
750 /* ...but clean it before doing the actual write */
751 vcpu
->arch
.time_offset
= data
& ~(PAGE_MASK
| 1);
753 vcpu
->arch
.time_page
=
754 gfn_to_page(vcpu
->kvm
, data
>> PAGE_SHIFT
);
756 if (is_error_page(vcpu
->arch
.time_page
)) {
757 kvm_release_page_clean(vcpu
->arch
.time_page
);
758 vcpu
->arch
.time_page
= NULL
;
761 kvm_write_guest_time(vcpu
);
765 pr_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n", msr
, data
);
770 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
774 * Reads an msr value (of 'msr_index') into 'pdata'.
775 * Returns 0 on success, non-0 otherwise.
776 * Assumes vcpu_load() was already called.
778 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
780 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
783 static int get_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
785 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
787 if (!msr_mtrr_valid(msr
))
790 if (msr
== MSR_MTRRdefType
)
791 *pdata
= vcpu
->arch
.mtrr_state
.def_type
+
792 (vcpu
->arch
.mtrr_state
.enabled
<< 10);
793 else if (msr
== MSR_MTRRfix64K_00000
)
795 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
796 *pdata
= p
[1 + msr
- MSR_MTRRfix16K_80000
];
797 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
798 *pdata
= p
[3 + msr
- MSR_MTRRfix4K_C0000
];
799 else if (msr
== MSR_IA32_CR_PAT
)
800 *pdata
= vcpu
->arch
.pat
;
801 else { /* Variable MTRRs */
802 int idx
, is_mtrr_mask
;
805 idx
= (msr
- 0x200) / 2;
806 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
809 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
812 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
819 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
824 case 0xc0010010: /* SYSCFG */
825 case 0xc0010015: /* HWCR */
826 case MSR_IA32_PLATFORM_ID
:
827 case MSR_IA32_P5_MC_ADDR
:
828 case MSR_IA32_P5_MC_TYPE
:
829 case MSR_IA32_MC0_CTL
:
830 case MSR_IA32_MCG_STATUS
:
831 case MSR_IA32_MCG_CAP
:
832 case MSR_IA32_MCG_CTL
:
833 case MSR_IA32_MC0_MISC
:
834 case MSR_IA32_MC0_MISC
+4:
835 case MSR_IA32_MC0_MISC
+8:
836 case MSR_IA32_MC0_MISC
+12:
837 case MSR_IA32_MC0_MISC
+16:
838 case MSR_IA32_MC0_MISC
+20:
839 case MSR_IA32_UCODE_REV
:
840 case MSR_IA32_EBL_CR_POWERON
:
841 case MSR_IA32_DEBUGCTLMSR
:
842 case MSR_IA32_LASTBRANCHFROMIP
:
843 case MSR_IA32_LASTBRANCHTOIP
:
844 case MSR_IA32_LASTINTFROMIP
:
845 case MSR_IA32_LASTINTTOIP
:
849 data
= 0x500 | KVM_NR_VAR_MTRR
;
851 case 0x200 ... 0x2ff:
852 return get_msr_mtrr(vcpu
, msr
, pdata
);
853 case 0xcd: /* fsb frequency */
856 case MSR_IA32_APICBASE
:
857 data
= kvm_get_apic_base(vcpu
);
859 case MSR_IA32_MISC_ENABLE
:
860 data
= vcpu
->arch
.ia32_misc_enable_msr
;
862 case MSR_IA32_PERF_STATUS
:
863 /* TSC increment by tick */
866 data
|= (((uint64_t)4ULL) << 40);
869 data
= vcpu
->arch
.shadow_efer
;
871 case MSR_KVM_WALL_CLOCK
:
872 data
= vcpu
->kvm
->arch
.wall_clock
;
874 case MSR_KVM_SYSTEM_TIME
:
875 data
= vcpu
->arch
.time
;
878 pr_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
884 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
887 * Read or write a bunch of msrs. All parameters are kernel addresses.
889 * @return number of msrs set successfully.
891 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
892 struct kvm_msr_entry
*entries
,
893 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
894 unsigned index
, u64
*data
))
900 down_read(&vcpu
->kvm
->slots_lock
);
901 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
902 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
904 up_read(&vcpu
->kvm
->slots_lock
);
912 * Read or write a bunch of msrs. Parameters are user addresses.
914 * @return number of msrs set successfully.
916 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
917 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
918 unsigned index
, u64
*data
),
921 struct kvm_msrs msrs
;
922 struct kvm_msr_entry
*entries
;
927 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
931 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
935 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
936 entries
= vmalloc(size
);
941 if (copy_from_user(entries
, user_msrs
->entries
, size
))
944 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
949 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
960 int kvm_dev_ioctl_check_extension(long ext
)
965 case KVM_CAP_IRQCHIP
:
967 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
968 case KVM_CAP_SET_TSS_ADDR
:
969 case KVM_CAP_EXT_CPUID
:
971 case KVM_CAP_NOP_IO_DELAY
:
972 case KVM_CAP_MP_STATE
:
973 case KVM_CAP_SYNC_MMU
:
976 case KVM_CAP_COALESCED_MMIO
:
977 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
980 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
982 case KVM_CAP_NR_VCPUS
:
985 case KVM_CAP_NR_MEMSLOTS
:
986 r
= KVM_MEMORY_SLOTS
;
994 case KVM_CAP_CLOCKSOURCE
:
995 r
= boot_cpu_has(X86_FEATURE_CONSTANT_TSC
);
1005 long kvm_arch_dev_ioctl(struct file
*filp
,
1006 unsigned int ioctl
, unsigned long arg
)
1008 void __user
*argp
= (void __user
*)arg
;
1012 case KVM_GET_MSR_INDEX_LIST
: {
1013 struct kvm_msr_list __user
*user_msr_list
= argp
;
1014 struct kvm_msr_list msr_list
;
1018 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
1021 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
1022 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
1025 if (n
< num_msrs_to_save
)
1028 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
1029 num_msrs_to_save
* sizeof(u32
)))
1031 if (copy_to_user(user_msr_list
->indices
1032 + num_msrs_to_save
* sizeof(u32
),
1034 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
1039 case KVM_GET_SUPPORTED_CPUID
: {
1040 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1041 struct kvm_cpuid2 cpuid
;
1044 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1046 r
= kvm_dev_ioctl_get_supported_cpuid(&cpuid
,
1047 cpuid_arg
->entries
);
1052 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
1064 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1066 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
1067 kvm_write_guest_time(vcpu
);
1070 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
1072 kvm_x86_ops
->vcpu_put(vcpu
);
1073 kvm_put_guest_fpu(vcpu
);
1076 static int is_efer_nx(void)
1080 rdmsrl(MSR_EFER
, efer
);
1081 return efer
& EFER_NX
;
1084 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
1087 struct kvm_cpuid_entry2
*e
, *entry
;
1090 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
1091 e
= &vcpu
->arch
.cpuid_entries
[i
];
1092 if (e
->function
== 0x80000001) {
1097 if (entry
&& (entry
->edx
& (1 << 20)) && !is_efer_nx()) {
1098 entry
->edx
&= ~(1 << 20);
1099 printk(KERN_INFO
"kvm: guest NX capability removed\n");
1103 /* when an old userspace process fills a new kernel module */
1104 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
1105 struct kvm_cpuid
*cpuid
,
1106 struct kvm_cpuid_entry __user
*entries
)
1109 struct kvm_cpuid_entry
*cpuid_entries
;
1112 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
1115 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry
) * cpuid
->nent
);
1119 if (copy_from_user(cpuid_entries
, entries
,
1120 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
1122 for (i
= 0; i
< cpuid
->nent
; i
++) {
1123 vcpu
->arch
.cpuid_entries
[i
].function
= cpuid_entries
[i
].function
;
1124 vcpu
->arch
.cpuid_entries
[i
].eax
= cpuid_entries
[i
].eax
;
1125 vcpu
->arch
.cpuid_entries
[i
].ebx
= cpuid_entries
[i
].ebx
;
1126 vcpu
->arch
.cpuid_entries
[i
].ecx
= cpuid_entries
[i
].ecx
;
1127 vcpu
->arch
.cpuid_entries
[i
].edx
= cpuid_entries
[i
].edx
;
1128 vcpu
->arch
.cpuid_entries
[i
].index
= 0;
1129 vcpu
->arch
.cpuid_entries
[i
].flags
= 0;
1130 vcpu
->arch
.cpuid_entries
[i
].padding
[0] = 0;
1131 vcpu
->arch
.cpuid_entries
[i
].padding
[1] = 0;
1132 vcpu
->arch
.cpuid_entries
[i
].padding
[2] = 0;
1134 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
1135 cpuid_fix_nx_cap(vcpu
);
1139 vfree(cpuid_entries
);
1144 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu
*vcpu
,
1145 struct kvm_cpuid2
*cpuid
,
1146 struct kvm_cpuid_entry2 __user
*entries
)
1151 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
1154 if (copy_from_user(&vcpu
->arch
.cpuid_entries
, entries
,
1155 cpuid
->nent
* sizeof(struct kvm_cpuid_entry2
)))
1157 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
1164 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu
*vcpu
,
1165 struct kvm_cpuid2
*cpuid
,
1166 struct kvm_cpuid_entry2 __user
*entries
)
1171 if (cpuid
->nent
< vcpu
->arch
.cpuid_nent
)
1174 if (copy_to_user(entries
, &vcpu
->arch
.cpuid_entries
,
1175 vcpu
->arch
.cpuid_nent
* sizeof(struct kvm_cpuid_entry2
)))
1180 cpuid
->nent
= vcpu
->arch
.cpuid_nent
;
1184 static inline u32
bit(int bitno
)
1186 return 1 << (bitno
& 31);
1189 static void do_cpuid_1_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
1192 entry
->function
= function
;
1193 entry
->index
= index
;
1194 cpuid_count(entry
->function
, entry
->index
,
1195 &entry
->eax
, &entry
->ebx
, &entry
->ecx
, &entry
->edx
);
1199 static void do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
1200 u32 index
, int *nent
, int maxnent
)
1202 const u32 kvm_supported_word0_x86_features
= bit(X86_FEATURE_FPU
) |
1203 bit(X86_FEATURE_VME
) | bit(X86_FEATURE_DE
) |
1204 bit(X86_FEATURE_PSE
) | bit(X86_FEATURE_TSC
) |
1205 bit(X86_FEATURE_MSR
) | bit(X86_FEATURE_PAE
) |
1206 bit(X86_FEATURE_CX8
) | bit(X86_FEATURE_APIC
) |
1207 bit(X86_FEATURE_SEP
) | bit(X86_FEATURE_PGE
) |
1208 bit(X86_FEATURE_CMOV
) | bit(X86_FEATURE_PSE36
) |
1209 bit(X86_FEATURE_CLFLSH
) | bit(X86_FEATURE_MMX
) |
1210 bit(X86_FEATURE_FXSR
) | bit(X86_FEATURE_XMM
) |
1211 bit(X86_FEATURE_XMM2
) | bit(X86_FEATURE_SELFSNOOP
);
1212 const u32 kvm_supported_word1_x86_features
= bit(X86_FEATURE_FPU
) |
1213 bit(X86_FEATURE_VME
) | bit(X86_FEATURE_DE
) |
1214 bit(X86_FEATURE_PSE
) | bit(X86_FEATURE_TSC
) |
1215 bit(X86_FEATURE_MSR
) | bit(X86_FEATURE_PAE
) |
1216 bit(X86_FEATURE_CX8
) | bit(X86_FEATURE_APIC
) |
1217 bit(X86_FEATURE_PGE
) |
1218 bit(X86_FEATURE_CMOV
) | bit(X86_FEATURE_PSE36
) |
1219 bit(X86_FEATURE_MMX
) | bit(X86_FEATURE_FXSR
) |
1220 bit(X86_FEATURE_SYSCALL
) |
1221 (bit(X86_FEATURE_NX
) && is_efer_nx()) |
1222 #ifdef CONFIG_X86_64
1223 bit(X86_FEATURE_LM
) |
1225 bit(X86_FEATURE_MMXEXT
) |
1226 bit(X86_FEATURE_3DNOWEXT
) |
1227 bit(X86_FEATURE_3DNOW
);
1228 const u32 kvm_supported_word3_x86_features
=
1229 bit(X86_FEATURE_XMM3
) | bit(X86_FEATURE_CX16
);
1230 const u32 kvm_supported_word6_x86_features
=
1231 bit(X86_FEATURE_LAHF_LM
) | bit(X86_FEATURE_CMP_LEGACY
);
1233 /* all func 2 cpuid_count() should be called on the same cpu */
1235 do_cpuid_1_ent(entry
, function
, index
);
1240 entry
->eax
= min(entry
->eax
, (u32
)0xb);
1243 entry
->edx
&= kvm_supported_word0_x86_features
;
1244 entry
->ecx
&= kvm_supported_word3_x86_features
;
1246 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1247 * may return different values. This forces us to get_cpu() before
1248 * issuing the first command, and also to emulate this annoying behavior
1249 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1251 int t
, times
= entry
->eax
& 0xff;
1253 entry
->flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1254 entry
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
1255 for (t
= 1; t
< times
&& *nent
< maxnent
; ++t
) {
1256 do_cpuid_1_ent(&entry
[t
], function
, 0);
1257 entry
[t
].flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1262 /* function 4 and 0xb have additional index. */
1266 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1267 /* read more entries until cache_type is zero */
1268 for (i
= 1; *nent
< maxnent
; ++i
) {
1269 cache_type
= entry
[i
- 1].eax
& 0x1f;
1272 do_cpuid_1_ent(&entry
[i
], function
, i
);
1274 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1282 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1283 /* read more entries until level_type is zero */
1284 for (i
= 1; *nent
< maxnent
; ++i
) {
1285 level_type
= entry
[i
- 1].ecx
& 0xff00;
1288 do_cpuid_1_ent(&entry
[i
], function
, i
);
1290 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1296 entry
->eax
= min(entry
->eax
, 0x8000001a);
1299 entry
->edx
&= kvm_supported_word1_x86_features
;
1300 entry
->ecx
&= kvm_supported_word6_x86_features
;
1306 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
1307 struct kvm_cpuid_entry2 __user
*entries
)
1309 struct kvm_cpuid_entry2
*cpuid_entries
;
1310 int limit
, nent
= 0, r
= -E2BIG
;
1313 if (cpuid
->nent
< 1)
1316 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry2
) * cpuid
->nent
);
1320 do_cpuid_ent(&cpuid_entries
[0], 0, 0, &nent
, cpuid
->nent
);
1321 limit
= cpuid_entries
[0].eax
;
1322 for (func
= 1; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1323 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1324 &nent
, cpuid
->nent
);
1326 if (nent
>= cpuid
->nent
)
1329 do_cpuid_ent(&cpuid_entries
[nent
], 0x80000000, 0, &nent
, cpuid
->nent
);
1330 limit
= cpuid_entries
[nent
- 1].eax
;
1331 for (func
= 0x80000001; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1332 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1333 &nent
, cpuid
->nent
);
1335 if (copy_to_user(entries
, cpuid_entries
,
1336 nent
* sizeof(struct kvm_cpuid_entry2
)))
1342 vfree(cpuid_entries
);
1347 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
1348 struct kvm_lapic_state
*s
)
1351 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
1357 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
1358 struct kvm_lapic_state
*s
)
1361 memcpy(vcpu
->arch
.apic
->regs
, s
->regs
, sizeof *s
);
1362 kvm_apic_post_state_restore(vcpu
);
1368 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
1369 struct kvm_interrupt
*irq
)
1371 if (irq
->irq
< 0 || irq
->irq
>= 256)
1373 if (irqchip_in_kernel(vcpu
->kvm
))
1377 set_bit(irq
->irq
, vcpu
->arch
.irq_pending
);
1378 set_bit(irq
->irq
/ BITS_PER_LONG
, &vcpu
->arch
.irq_summary
);
1385 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
1388 kvm_inject_nmi(vcpu
);
1394 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
1395 struct kvm_tpr_access_ctl
*tac
)
1399 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
1403 long kvm_arch_vcpu_ioctl(struct file
*filp
,
1404 unsigned int ioctl
, unsigned long arg
)
1406 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1407 void __user
*argp
= (void __user
*)arg
;
1409 struct kvm_lapic_state
*lapic
= NULL
;
1412 case KVM_GET_LAPIC
: {
1413 lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
1418 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, lapic
);
1422 if (copy_to_user(argp
, lapic
, sizeof(struct kvm_lapic_state
)))
1427 case KVM_SET_LAPIC
: {
1428 lapic
= kmalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
1433 if (copy_from_user(lapic
, argp
, sizeof(struct kvm_lapic_state
)))
1435 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, lapic
);
1441 case KVM_INTERRUPT
: {
1442 struct kvm_interrupt irq
;
1445 if (copy_from_user(&irq
, argp
, sizeof irq
))
1447 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
1454 r
= kvm_vcpu_ioctl_nmi(vcpu
);
1460 case KVM_SET_CPUID
: {
1461 struct kvm_cpuid __user
*cpuid_arg
= argp
;
1462 struct kvm_cpuid cpuid
;
1465 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1467 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
1472 case KVM_SET_CPUID2
: {
1473 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1474 struct kvm_cpuid2 cpuid
;
1477 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1479 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
1480 cpuid_arg
->entries
);
1485 case KVM_GET_CPUID2
: {
1486 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1487 struct kvm_cpuid2 cpuid
;
1490 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1492 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
1493 cpuid_arg
->entries
);
1497 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
1503 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
1506 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
1508 case KVM_TPR_ACCESS_REPORTING
: {
1509 struct kvm_tpr_access_ctl tac
;
1512 if (copy_from_user(&tac
, argp
, sizeof tac
))
1514 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
1518 if (copy_to_user(argp
, &tac
, sizeof tac
))
1523 case KVM_SET_VAPIC_ADDR
: {
1524 struct kvm_vapic_addr va
;
1527 if (!irqchip_in_kernel(vcpu
->kvm
))
1530 if (copy_from_user(&va
, argp
, sizeof va
))
1533 kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
1545 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
1549 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
1551 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
1555 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
1556 u32 kvm_nr_mmu_pages
)
1558 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
1561 down_write(&kvm
->slots_lock
);
1563 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
1564 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
1566 up_write(&kvm
->slots_lock
);
1570 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
1572 return kvm
->arch
.n_alloc_mmu_pages
;
1575 gfn_t
unalias_gfn(struct kvm
*kvm
, gfn_t gfn
)
1578 struct kvm_mem_alias
*alias
;
1580 for (i
= 0; i
< kvm
->arch
.naliases
; ++i
) {
1581 alias
= &kvm
->arch
.aliases
[i
];
1582 if (gfn
>= alias
->base_gfn
1583 && gfn
< alias
->base_gfn
+ alias
->npages
)
1584 return alias
->target_gfn
+ gfn
- alias
->base_gfn
;
1590 * Set a new alias region. Aliases map a portion of physical memory into
1591 * another portion. This is useful for memory windows, for example the PC
1594 static int kvm_vm_ioctl_set_memory_alias(struct kvm
*kvm
,
1595 struct kvm_memory_alias
*alias
)
1598 struct kvm_mem_alias
*p
;
1601 /* General sanity checks */
1602 if (alias
->memory_size
& (PAGE_SIZE
- 1))
1604 if (alias
->guest_phys_addr
& (PAGE_SIZE
- 1))
1606 if (alias
->slot
>= KVM_ALIAS_SLOTS
)
1608 if (alias
->guest_phys_addr
+ alias
->memory_size
1609 < alias
->guest_phys_addr
)
1611 if (alias
->target_phys_addr
+ alias
->memory_size
1612 < alias
->target_phys_addr
)
1615 down_write(&kvm
->slots_lock
);
1616 spin_lock(&kvm
->mmu_lock
);
1618 p
= &kvm
->arch
.aliases
[alias
->slot
];
1619 p
->base_gfn
= alias
->guest_phys_addr
>> PAGE_SHIFT
;
1620 p
->npages
= alias
->memory_size
>> PAGE_SHIFT
;
1621 p
->target_gfn
= alias
->target_phys_addr
>> PAGE_SHIFT
;
1623 for (n
= KVM_ALIAS_SLOTS
; n
> 0; --n
)
1624 if (kvm
->arch
.aliases
[n
- 1].npages
)
1626 kvm
->arch
.naliases
= n
;
1628 spin_unlock(&kvm
->mmu_lock
);
1629 kvm_mmu_zap_all(kvm
);
1631 up_write(&kvm
->slots_lock
);
1639 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
1644 switch (chip
->chip_id
) {
1645 case KVM_IRQCHIP_PIC_MASTER
:
1646 memcpy(&chip
->chip
.pic
,
1647 &pic_irqchip(kvm
)->pics
[0],
1648 sizeof(struct kvm_pic_state
));
1650 case KVM_IRQCHIP_PIC_SLAVE
:
1651 memcpy(&chip
->chip
.pic
,
1652 &pic_irqchip(kvm
)->pics
[1],
1653 sizeof(struct kvm_pic_state
));
1655 case KVM_IRQCHIP_IOAPIC
:
1656 memcpy(&chip
->chip
.ioapic
,
1657 ioapic_irqchip(kvm
),
1658 sizeof(struct kvm_ioapic_state
));
1667 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
1672 switch (chip
->chip_id
) {
1673 case KVM_IRQCHIP_PIC_MASTER
:
1674 memcpy(&pic_irqchip(kvm
)->pics
[0],
1676 sizeof(struct kvm_pic_state
));
1678 case KVM_IRQCHIP_PIC_SLAVE
:
1679 memcpy(&pic_irqchip(kvm
)->pics
[1],
1681 sizeof(struct kvm_pic_state
));
1683 case KVM_IRQCHIP_IOAPIC
:
1684 memcpy(ioapic_irqchip(kvm
),
1686 sizeof(struct kvm_ioapic_state
));
1692 kvm_pic_update_irq(pic_irqchip(kvm
));
1696 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
1700 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
1704 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
1708 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
1709 kvm_pit_load_count(kvm
, 0, ps
->channels
[0].count
);
1714 * Get (and clear) the dirty memory log for a memory slot.
1716 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
,
1717 struct kvm_dirty_log
*log
)
1721 struct kvm_memory_slot
*memslot
;
1724 down_write(&kvm
->slots_lock
);
1726 r
= kvm_get_dirty_log(kvm
, log
, &is_dirty
);
1730 /* If nothing is dirty, don't bother messing with page tables. */
1732 kvm_mmu_slot_remove_write_access(kvm
, log
->slot
);
1733 kvm_flush_remote_tlbs(kvm
);
1734 memslot
= &kvm
->memslots
[log
->slot
];
1735 n
= ALIGN(memslot
->npages
, BITS_PER_LONG
) / 8;
1736 memset(memslot
->dirty_bitmap
, 0, n
);
1740 up_write(&kvm
->slots_lock
);
1744 long kvm_arch_vm_ioctl(struct file
*filp
,
1745 unsigned int ioctl
, unsigned long arg
)
1747 struct kvm
*kvm
= filp
->private_data
;
1748 void __user
*argp
= (void __user
*)arg
;
1751 * This union makes it completely explicit to gcc-3.x
1752 * that these two variables' stack usage should be
1753 * combined, not added together.
1756 struct kvm_pit_state ps
;
1757 struct kvm_memory_alias alias
;
1761 case KVM_SET_TSS_ADDR
:
1762 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
1766 case KVM_SET_MEMORY_REGION
: {
1767 struct kvm_memory_region kvm_mem
;
1768 struct kvm_userspace_memory_region kvm_userspace_mem
;
1771 if (copy_from_user(&kvm_mem
, argp
, sizeof kvm_mem
))
1773 kvm_userspace_mem
.slot
= kvm_mem
.slot
;
1774 kvm_userspace_mem
.flags
= kvm_mem
.flags
;
1775 kvm_userspace_mem
.guest_phys_addr
= kvm_mem
.guest_phys_addr
;
1776 kvm_userspace_mem
.memory_size
= kvm_mem
.memory_size
;
1777 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
1782 case KVM_SET_NR_MMU_PAGES
:
1783 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
1787 case KVM_GET_NR_MMU_PAGES
:
1788 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
1790 case KVM_SET_MEMORY_ALIAS
:
1792 if (copy_from_user(&u
.alias
, argp
, sizeof(struct kvm_memory_alias
)))
1794 r
= kvm_vm_ioctl_set_memory_alias(kvm
, &u
.alias
);
1798 case KVM_CREATE_IRQCHIP
:
1800 kvm
->arch
.vpic
= kvm_create_pic(kvm
);
1801 if (kvm
->arch
.vpic
) {
1802 r
= kvm_ioapic_init(kvm
);
1804 kfree(kvm
->arch
.vpic
);
1805 kvm
->arch
.vpic
= NULL
;
1811 case KVM_CREATE_PIT
:
1813 kvm
->arch
.vpit
= kvm_create_pit(kvm
);
1817 case KVM_IRQ_LINE
: {
1818 struct kvm_irq_level irq_event
;
1821 if (copy_from_user(&irq_event
, argp
, sizeof irq_event
))
1823 if (irqchip_in_kernel(kvm
)) {
1824 mutex_lock(&kvm
->lock
);
1825 kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
1826 irq_event
.irq
, irq_event
.level
);
1827 mutex_unlock(&kvm
->lock
);
1832 case KVM_GET_IRQCHIP
: {
1833 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1834 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
1840 if (copy_from_user(chip
, argp
, sizeof *chip
))
1841 goto get_irqchip_out
;
1843 if (!irqchip_in_kernel(kvm
))
1844 goto get_irqchip_out
;
1845 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
1847 goto get_irqchip_out
;
1849 if (copy_to_user(argp
, chip
, sizeof *chip
))
1850 goto get_irqchip_out
;
1858 case KVM_SET_IRQCHIP
: {
1859 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1860 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
1866 if (copy_from_user(chip
, argp
, sizeof *chip
))
1867 goto set_irqchip_out
;
1869 if (!irqchip_in_kernel(kvm
))
1870 goto set_irqchip_out
;
1871 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
1873 goto set_irqchip_out
;
1883 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
1886 if (!kvm
->arch
.vpit
)
1888 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
1892 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
1899 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
1902 if (!kvm
->arch
.vpit
)
1904 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
1917 static void kvm_init_msr_list(void)
1922 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
1923 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
1926 msrs_to_save
[j
] = msrs_to_save
[i
];
1929 num_msrs_to_save
= j
;
1933 * Only apic need an MMIO device hook, so shortcut now..
1935 static struct kvm_io_device
*vcpu_find_pervcpu_dev(struct kvm_vcpu
*vcpu
,
1936 gpa_t addr
, int len
,
1939 struct kvm_io_device
*dev
;
1941 if (vcpu
->arch
.apic
) {
1942 dev
= &vcpu
->arch
.apic
->dev
;
1943 if (dev
->in_range(dev
, addr
, len
, is_write
))
1950 static struct kvm_io_device
*vcpu_find_mmio_dev(struct kvm_vcpu
*vcpu
,
1951 gpa_t addr
, int len
,
1954 struct kvm_io_device
*dev
;
1956 dev
= vcpu_find_pervcpu_dev(vcpu
, addr
, len
, is_write
);
1958 dev
= kvm_io_bus_find_dev(&vcpu
->kvm
->mmio_bus
, addr
, len
,
1963 int emulator_read_std(unsigned long addr
,
1966 struct kvm_vcpu
*vcpu
)
1969 int r
= X86EMUL_CONTINUE
;
1972 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
1973 unsigned offset
= addr
& (PAGE_SIZE
-1);
1974 unsigned tocopy
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
1977 if (gpa
== UNMAPPED_GVA
) {
1978 r
= X86EMUL_PROPAGATE_FAULT
;
1981 ret
= kvm_read_guest(vcpu
->kvm
, gpa
, data
, tocopy
);
1983 r
= X86EMUL_UNHANDLEABLE
;
1994 EXPORT_SYMBOL_GPL(emulator_read_std
);
1996 static int emulator_read_emulated(unsigned long addr
,
1999 struct kvm_vcpu
*vcpu
)
2001 struct kvm_io_device
*mmio_dev
;
2004 if (vcpu
->mmio_read_completed
) {
2005 memcpy(val
, vcpu
->mmio_data
, bytes
);
2006 vcpu
->mmio_read_completed
= 0;
2007 return X86EMUL_CONTINUE
;
2010 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2012 /* For APIC access vmexit */
2013 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2016 if (emulator_read_std(addr
, val
, bytes
, vcpu
)
2017 == X86EMUL_CONTINUE
)
2018 return X86EMUL_CONTINUE
;
2019 if (gpa
== UNMAPPED_GVA
)
2020 return X86EMUL_PROPAGATE_FAULT
;
2024 * Is this MMIO handled locally?
2026 mutex_lock(&vcpu
->kvm
->lock
);
2027 mmio_dev
= vcpu_find_mmio_dev(vcpu
, gpa
, bytes
, 0);
2029 kvm_iodevice_read(mmio_dev
, gpa
, bytes
, val
);
2030 mutex_unlock(&vcpu
->kvm
->lock
);
2031 return X86EMUL_CONTINUE
;
2033 mutex_unlock(&vcpu
->kvm
->lock
);
2035 vcpu
->mmio_needed
= 1;
2036 vcpu
->mmio_phys_addr
= gpa
;
2037 vcpu
->mmio_size
= bytes
;
2038 vcpu
->mmio_is_write
= 0;
2040 return X86EMUL_UNHANDLEABLE
;
2043 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
2044 const void *val
, int bytes
)
2048 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
2051 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
, 1);
2055 static int emulator_write_emulated_onepage(unsigned long addr
,
2058 struct kvm_vcpu
*vcpu
)
2060 struct kvm_io_device
*mmio_dev
;
2063 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2065 if (gpa
== UNMAPPED_GVA
) {
2066 kvm_inject_page_fault(vcpu
, addr
, 2);
2067 return X86EMUL_PROPAGATE_FAULT
;
2070 /* For APIC access vmexit */
2071 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2074 if (emulator_write_phys(vcpu
, gpa
, val
, bytes
))
2075 return X86EMUL_CONTINUE
;
2079 * Is this MMIO handled locally?
2081 mutex_lock(&vcpu
->kvm
->lock
);
2082 mmio_dev
= vcpu_find_mmio_dev(vcpu
, gpa
, bytes
, 1);
2084 kvm_iodevice_write(mmio_dev
, gpa
, bytes
, val
);
2085 mutex_unlock(&vcpu
->kvm
->lock
);
2086 return X86EMUL_CONTINUE
;
2088 mutex_unlock(&vcpu
->kvm
->lock
);
2090 vcpu
->mmio_needed
= 1;
2091 vcpu
->mmio_phys_addr
= gpa
;
2092 vcpu
->mmio_size
= bytes
;
2093 vcpu
->mmio_is_write
= 1;
2094 memcpy(vcpu
->mmio_data
, val
, bytes
);
2096 return X86EMUL_CONTINUE
;
2099 int emulator_write_emulated(unsigned long addr
,
2102 struct kvm_vcpu
*vcpu
)
2104 /* Crossing a page boundary? */
2105 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
2108 now
= -addr
& ~PAGE_MASK
;
2109 rc
= emulator_write_emulated_onepage(addr
, val
, now
, vcpu
);
2110 if (rc
!= X86EMUL_CONTINUE
)
2116 return emulator_write_emulated_onepage(addr
, val
, bytes
, vcpu
);
2118 EXPORT_SYMBOL_GPL(emulator_write_emulated
);
2120 static int emulator_cmpxchg_emulated(unsigned long addr
,
2124 struct kvm_vcpu
*vcpu
)
2126 static int reported
;
2130 printk(KERN_WARNING
"kvm: emulating exchange as write\n");
2132 #ifndef CONFIG_X86_64
2133 /* guests cmpxchg8b have to be emulated atomically */
2140 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2142 if (gpa
== UNMAPPED_GVA
||
2143 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2146 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
2151 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
2153 kaddr
= kmap_atomic(page
, KM_USER0
);
2154 set_64bit((u64
*)(kaddr
+ offset_in_page(gpa
)), val
);
2155 kunmap_atomic(kaddr
, KM_USER0
);
2156 kvm_release_page_dirty(page
);
2161 return emulator_write_emulated(addr
, new, bytes
, vcpu
);
2164 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
2166 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
2169 int emulate_invlpg(struct kvm_vcpu
*vcpu
, gva_t address
)
2171 kvm_mmu_invlpg(vcpu
, address
);
2172 return X86EMUL_CONTINUE
;
2175 int emulate_clts(struct kvm_vcpu
*vcpu
)
2177 KVMTRACE_0D(CLTS
, vcpu
, handler
);
2178 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->arch
.cr0
& ~X86_CR0_TS
);
2179 return X86EMUL_CONTINUE
;
2182 int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long *dest
)
2184 struct kvm_vcpu
*vcpu
= ctxt
->vcpu
;
2188 *dest
= kvm_x86_ops
->get_dr(vcpu
, dr
);
2189 return X86EMUL_CONTINUE
;
2191 pr_unimpl(vcpu
, "%s: unexpected dr %u\n", __func__
, dr
);
2192 return X86EMUL_UNHANDLEABLE
;
2196 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
2198 unsigned long mask
= (ctxt
->mode
== X86EMUL_MODE_PROT64
) ? ~0ULL : ~0U;
2201 kvm_x86_ops
->set_dr(ctxt
->vcpu
, dr
, value
& mask
, &exception
);
2203 /* FIXME: better handling */
2204 return X86EMUL_UNHANDLEABLE
;
2206 return X86EMUL_CONTINUE
;
2209 void kvm_report_emulation_failure(struct kvm_vcpu
*vcpu
, const char *context
)
2212 unsigned long rip
= kvm_rip_read(vcpu
);
2213 unsigned long rip_linear
;
2215 if (!printk_ratelimit())
2218 rip_linear
= rip
+ get_segment_base(vcpu
, VCPU_SREG_CS
);
2220 emulator_read_std(rip_linear
, (void *)opcodes
, 4, vcpu
);
2222 printk(KERN_ERR
"emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2223 context
, rip
, opcodes
[0], opcodes
[1], opcodes
[2], opcodes
[3]);
2225 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure
);
2227 static struct x86_emulate_ops emulate_ops
= {
2228 .read_std
= emulator_read_std
,
2229 .read_emulated
= emulator_read_emulated
,
2230 .write_emulated
= emulator_write_emulated
,
2231 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
2234 static void cache_all_regs(struct kvm_vcpu
*vcpu
)
2236 kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2237 kvm_register_read(vcpu
, VCPU_REGS_RSP
);
2238 kvm_register_read(vcpu
, VCPU_REGS_RIP
);
2239 vcpu
->arch
.regs_dirty
= ~0;
2242 int emulate_instruction(struct kvm_vcpu
*vcpu
,
2243 struct kvm_run
*run
,
2249 struct decode_cache
*c
;
2251 kvm_clear_exception_queue(vcpu
);
2252 vcpu
->arch
.mmio_fault_cr2
= cr2
;
2254 * TODO: fix x86_emulate.c to use guest_read/write_register
2255 * instead of direct ->regs accesses, can save hundred cycles
2256 * on Intel for instructions that don't read/change RSP, for
2259 cache_all_regs(vcpu
);
2261 vcpu
->mmio_is_write
= 0;
2262 vcpu
->arch
.pio
.string
= 0;
2264 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
2266 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
2268 vcpu
->arch
.emulate_ctxt
.vcpu
= vcpu
;
2269 vcpu
->arch
.emulate_ctxt
.eflags
= kvm_x86_ops
->get_rflags(vcpu
);
2270 vcpu
->arch
.emulate_ctxt
.mode
=
2271 (vcpu
->arch
.emulate_ctxt
.eflags
& X86_EFLAGS_VM
)
2272 ? X86EMUL_MODE_REAL
: cs_l
2273 ? X86EMUL_MODE_PROT64
: cs_db
2274 ? X86EMUL_MODE_PROT32
: X86EMUL_MODE_PROT16
;
2276 r
= x86_decode_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
2278 /* Reject the instructions other than VMCALL/VMMCALL when
2279 * try to emulate invalid opcode */
2280 c
= &vcpu
->arch
.emulate_ctxt
.decode
;
2281 if ((emulation_type
& EMULTYPE_TRAP_UD
) &&
2282 (!(c
->twobyte
&& c
->b
== 0x01 &&
2283 (c
->modrm_reg
== 0 || c
->modrm_reg
== 3) &&
2284 c
->modrm_mod
== 3 && c
->modrm_rm
== 1)))
2285 return EMULATE_FAIL
;
2287 ++vcpu
->stat
.insn_emulation
;
2289 ++vcpu
->stat
.insn_emulation_fail
;
2290 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
2291 return EMULATE_DONE
;
2292 return EMULATE_FAIL
;
2296 r
= x86_emulate_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
2298 if (vcpu
->arch
.pio
.string
)
2299 return EMULATE_DO_MMIO
;
2301 if ((r
|| vcpu
->mmio_is_write
) && run
) {
2302 run
->exit_reason
= KVM_EXIT_MMIO
;
2303 run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
;
2304 memcpy(run
->mmio
.data
, vcpu
->mmio_data
, 8);
2305 run
->mmio
.len
= vcpu
->mmio_size
;
2306 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
2310 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
2311 return EMULATE_DONE
;
2312 if (!vcpu
->mmio_needed
) {
2313 kvm_report_emulation_failure(vcpu
, "mmio");
2314 return EMULATE_FAIL
;
2316 return EMULATE_DO_MMIO
;
2319 kvm_x86_ops
->set_rflags(vcpu
, vcpu
->arch
.emulate_ctxt
.eflags
);
2321 if (vcpu
->mmio_is_write
) {
2322 vcpu
->mmio_needed
= 0;
2323 return EMULATE_DO_MMIO
;
2326 return EMULATE_DONE
;
2328 EXPORT_SYMBOL_GPL(emulate_instruction
);
2330 static void free_pio_guest_pages(struct kvm_vcpu
*vcpu
)
2334 for (i
= 0; i
< ARRAY_SIZE(vcpu
->arch
.pio
.guest_pages
); ++i
)
2335 if (vcpu
->arch
.pio
.guest_pages
[i
]) {
2336 kvm_release_page_dirty(vcpu
->arch
.pio
.guest_pages
[i
]);
2337 vcpu
->arch
.pio
.guest_pages
[i
] = NULL
;
2341 static int pio_copy_data(struct kvm_vcpu
*vcpu
)
2343 void *p
= vcpu
->arch
.pio_data
;
2346 int nr_pages
= vcpu
->arch
.pio
.guest_pages
[1] ? 2 : 1;
2348 q
= vmap(vcpu
->arch
.pio
.guest_pages
, nr_pages
, VM_READ
|VM_WRITE
,
2351 free_pio_guest_pages(vcpu
);
2354 q
+= vcpu
->arch
.pio
.guest_page_offset
;
2355 bytes
= vcpu
->arch
.pio
.size
* vcpu
->arch
.pio
.cur_count
;
2356 if (vcpu
->arch
.pio
.in
)
2357 memcpy(q
, p
, bytes
);
2359 memcpy(p
, q
, bytes
);
2360 q
-= vcpu
->arch
.pio
.guest_page_offset
;
2362 free_pio_guest_pages(vcpu
);
2366 int complete_pio(struct kvm_vcpu
*vcpu
)
2368 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
2375 val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2376 memcpy(&val
, vcpu
->arch
.pio_data
, io
->size
);
2377 kvm_register_write(vcpu
, VCPU_REGS_RAX
, val
);
2381 r
= pio_copy_data(vcpu
);
2388 delta
*= io
->cur_count
;
2390 * The size of the register should really depend on
2391 * current address size.
2393 val
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
2395 kvm_register_write(vcpu
, VCPU_REGS_RCX
, val
);
2401 val
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
2403 kvm_register_write(vcpu
, VCPU_REGS_RDI
, val
);
2405 val
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
2407 kvm_register_write(vcpu
, VCPU_REGS_RSI
, val
);
2411 io
->count
-= io
->cur_count
;
2417 static void kernel_pio(struct kvm_io_device
*pio_dev
,
2418 struct kvm_vcpu
*vcpu
,
2421 /* TODO: String I/O for in kernel device */
2423 mutex_lock(&vcpu
->kvm
->lock
);
2424 if (vcpu
->arch
.pio
.in
)
2425 kvm_iodevice_read(pio_dev
, vcpu
->arch
.pio
.port
,
2426 vcpu
->arch
.pio
.size
,
2429 kvm_iodevice_write(pio_dev
, vcpu
->arch
.pio
.port
,
2430 vcpu
->arch
.pio
.size
,
2432 mutex_unlock(&vcpu
->kvm
->lock
);
2435 static void pio_string_write(struct kvm_io_device
*pio_dev
,
2436 struct kvm_vcpu
*vcpu
)
2438 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
2439 void *pd
= vcpu
->arch
.pio_data
;
2442 mutex_lock(&vcpu
->kvm
->lock
);
2443 for (i
= 0; i
< io
->cur_count
; i
++) {
2444 kvm_iodevice_write(pio_dev
, io
->port
,
2449 mutex_unlock(&vcpu
->kvm
->lock
);
2452 static struct kvm_io_device
*vcpu_find_pio_dev(struct kvm_vcpu
*vcpu
,
2453 gpa_t addr
, int len
,
2456 return kvm_io_bus_find_dev(&vcpu
->kvm
->pio_bus
, addr
, len
, is_write
);
2459 int kvm_emulate_pio(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
2460 int size
, unsigned port
)
2462 struct kvm_io_device
*pio_dev
;
2465 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
2466 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
2467 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
2468 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
2469 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= 1;
2470 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
2471 vcpu
->arch
.pio
.in
= in
;
2472 vcpu
->arch
.pio
.string
= 0;
2473 vcpu
->arch
.pio
.down
= 0;
2474 vcpu
->arch
.pio
.guest_page_offset
= 0;
2475 vcpu
->arch
.pio
.rep
= 0;
2477 if (vcpu
->run
->io
.direction
== KVM_EXIT_IO_IN
)
2478 KVMTRACE_2D(IO_READ
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2481 KVMTRACE_2D(IO_WRITE
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2484 val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2485 memcpy(vcpu
->arch
.pio_data
, &val
, 4);
2487 pio_dev
= vcpu_find_pio_dev(vcpu
, port
, size
, !in
);
2489 kernel_pio(pio_dev
, vcpu
, vcpu
->arch
.pio_data
);
2495 EXPORT_SYMBOL_GPL(kvm_emulate_pio
);
2497 int kvm_emulate_pio_string(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
2498 int size
, unsigned long count
, int down
,
2499 gva_t address
, int rep
, unsigned port
)
2501 unsigned now
, in_page
;
2505 struct kvm_io_device
*pio_dev
;
2507 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
2508 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
2509 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
2510 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
2511 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= count
;
2512 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
2513 vcpu
->arch
.pio
.in
= in
;
2514 vcpu
->arch
.pio
.string
= 1;
2515 vcpu
->arch
.pio
.down
= down
;
2516 vcpu
->arch
.pio
.guest_page_offset
= offset_in_page(address
);
2517 vcpu
->arch
.pio
.rep
= rep
;
2519 if (vcpu
->run
->io
.direction
== KVM_EXIT_IO_IN
)
2520 KVMTRACE_2D(IO_READ
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2523 KVMTRACE_2D(IO_WRITE
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2527 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2532 in_page
= PAGE_SIZE
- offset_in_page(address
);
2534 in_page
= offset_in_page(address
) + size
;
2535 now
= min(count
, (unsigned long)in_page
/ size
);
2538 * String I/O straddles page boundary. Pin two guest pages
2539 * so that we satisfy atomicity constraints. Do just one
2540 * transaction to avoid complexity.
2547 * String I/O in reverse. Yuck. Kill the guest, fix later.
2549 pr_unimpl(vcpu
, "guest string pio down\n");
2550 kvm_inject_gp(vcpu
, 0);
2553 vcpu
->run
->io
.count
= now
;
2554 vcpu
->arch
.pio
.cur_count
= now
;
2556 if (vcpu
->arch
.pio
.cur_count
== vcpu
->arch
.pio
.count
)
2557 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2559 for (i
= 0; i
< nr_pages
; ++i
) {
2560 page
= gva_to_page(vcpu
, address
+ i
* PAGE_SIZE
);
2561 vcpu
->arch
.pio
.guest_pages
[i
] = page
;
2563 kvm_inject_gp(vcpu
, 0);
2564 free_pio_guest_pages(vcpu
);
2569 pio_dev
= vcpu_find_pio_dev(vcpu
, port
,
2570 vcpu
->arch
.pio
.cur_count
,
2571 !vcpu
->arch
.pio
.in
);
2572 if (!vcpu
->arch
.pio
.in
) {
2573 /* string PIO write */
2574 ret
= pio_copy_data(vcpu
);
2575 if (ret
>= 0 && pio_dev
) {
2576 pio_string_write(pio_dev
, vcpu
);
2578 if (vcpu
->arch
.pio
.count
== 0)
2582 pr_unimpl(vcpu
, "no string pio read support yet, "
2583 "port %x size %d count %ld\n",
2588 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string
);
2590 int kvm_arch_init(void *opaque
)
2593 struct kvm_x86_ops
*ops
= (struct kvm_x86_ops
*)opaque
;
2596 printk(KERN_ERR
"kvm: already loaded the other module\n");
2601 if (!ops
->cpu_has_kvm_support()) {
2602 printk(KERN_ERR
"kvm: no hardware support\n");
2606 if (ops
->disabled_by_bios()) {
2607 printk(KERN_ERR
"kvm: disabled by bios\n");
2612 r
= kvm_mmu_module_init();
2616 kvm_init_msr_list();
2619 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2620 kvm_mmu_set_base_ptes(PT_PRESENT_MASK
);
2621 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
2622 PT_DIRTY_MASK
, PT64_NX_MASK
, 0, 0);
2629 void kvm_arch_exit(void)
2632 kvm_mmu_module_exit();
2635 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
2637 ++vcpu
->stat
.halt_exits
;
2638 KVMTRACE_0D(HLT
, vcpu
, handler
);
2639 if (irqchip_in_kernel(vcpu
->kvm
)) {
2640 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
2643 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
2647 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
2649 static inline gpa_t
hc_gpa(struct kvm_vcpu
*vcpu
, unsigned long a0
,
2652 if (is_long_mode(vcpu
))
2655 return a0
| ((gpa_t
)a1
<< 32);
2658 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
2660 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
2663 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2664 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
2665 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
2666 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
2667 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
2669 KVMTRACE_1D(VMMCALL
, vcpu
, (u32
)nr
, handler
);
2671 if (!is_long_mode(vcpu
)) {
2680 case KVM_HC_VAPIC_POLL_IRQ
:
2684 r
= kvm_pv_mmu_op(vcpu
, a0
, hc_gpa(vcpu
, a1
, a2
), &ret
);
2690 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
2691 ++vcpu
->stat
.hypercalls
;
2694 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
2696 int kvm_fix_hypercall(struct kvm_vcpu
*vcpu
)
2698 char instruction
[3];
2700 unsigned long rip
= kvm_rip_read(vcpu
);
2704 * Blow out the MMU to ensure that no other VCPU has an active mapping
2705 * to ensure that the updated hypercall appears atomically across all
2708 kvm_mmu_zap_all(vcpu
->kvm
);
2710 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
2711 if (emulator_write_emulated(rip
, instruction
, 3, vcpu
)
2712 != X86EMUL_CONTINUE
)
2718 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
2720 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
2723 void realmode_lgdt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
2725 struct descriptor_table dt
= { limit
, base
};
2727 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
2730 void realmode_lidt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
2732 struct descriptor_table dt
= { limit
, base
};
2734 kvm_x86_ops
->set_idt(vcpu
, &dt
);
2737 void realmode_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
,
2738 unsigned long *rflags
)
2740 kvm_lmsw(vcpu
, msw
);
2741 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
2744 unsigned long realmode_get_cr(struct kvm_vcpu
*vcpu
, int cr
)
2746 unsigned long value
;
2748 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
2751 value
= vcpu
->arch
.cr0
;
2754 value
= vcpu
->arch
.cr2
;
2757 value
= vcpu
->arch
.cr3
;
2760 value
= vcpu
->arch
.cr4
;
2763 value
= kvm_get_cr8(vcpu
);
2766 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
2769 KVMTRACE_3D(CR_READ
, vcpu
, (u32
)cr
, (u32
)value
,
2770 (u32
)((u64
)value
>> 32), handler
);
2775 void realmode_set_cr(struct kvm_vcpu
*vcpu
, int cr
, unsigned long val
,
2776 unsigned long *rflags
)
2778 KVMTRACE_3D(CR_WRITE
, vcpu
, (u32
)cr
, (u32
)val
,
2779 (u32
)((u64
)val
>> 32), handler
);
2783 kvm_set_cr0(vcpu
, mk_cr_64(vcpu
->arch
.cr0
, val
));
2784 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
2787 vcpu
->arch
.cr2
= val
;
2790 kvm_set_cr3(vcpu
, val
);
2793 kvm_set_cr4(vcpu
, mk_cr_64(vcpu
->arch
.cr4
, val
));
2796 kvm_set_cr8(vcpu
, val
& 0xfUL
);
2799 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
2803 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu
*vcpu
, int i
)
2805 struct kvm_cpuid_entry2
*e
= &vcpu
->arch
.cpuid_entries
[i
];
2806 int j
, nent
= vcpu
->arch
.cpuid_nent
;
2808 e
->flags
&= ~KVM_CPUID_FLAG_STATE_READ_NEXT
;
2809 /* when no next entry is found, the current entry[i] is reselected */
2810 for (j
= i
+ 1; ; j
= (j
+ 1) % nent
) {
2811 struct kvm_cpuid_entry2
*ej
= &vcpu
->arch
.cpuid_entries
[j
];
2812 if (ej
->function
== e
->function
) {
2813 ej
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
2817 return 0; /* silence gcc, even though control never reaches here */
2820 /* find an entry with matching function, matching index (if needed), and that
2821 * should be read next (if it's stateful) */
2822 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2
*e
,
2823 u32 function
, u32 index
)
2825 if (e
->function
!= function
)
2827 if ((e
->flags
& KVM_CPUID_FLAG_SIGNIFCANT_INDEX
) && e
->index
!= index
)
2829 if ((e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
) &&
2830 !(e
->flags
& KVM_CPUID_FLAG_STATE_READ_NEXT
))
2835 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
2838 u32 function
, index
;
2839 struct kvm_cpuid_entry2
*e
, *best
;
2841 function
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2842 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
2843 kvm_register_write(vcpu
, VCPU_REGS_RAX
, 0);
2844 kvm_register_write(vcpu
, VCPU_REGS_RBX
, 0);
2845 kvm_register_write(vcpu
, VCPU_REGS_RCX
, 0);
2846 kvm_register_write(vcpu
, VCPU_REGS_RDX
, 0);
2848 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
2849 e
= &vcpu
->arch
.cpuid_entries
[i
];
2850 if (is_matching_cpuid_entry(e
, function
, index
)) {
2851 if (e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
)
2852 move_to_next_stateful_cpuid_entry(vcpu
, i
);
2857 * Both basic or both extended?
2859 if (((e
->function
^ function
) & 0x80000000) == 0)
2860 if (!best
|| e
->function
> best
->function
)
2864 kvm_register_write(vcpu
, VCPU_REGS_RAX
, best
->eax
);
2865 kvm_register_write(vcpu
, VCPU_REGS_RBX
, best
->ebx
);
2866 kvm_register_write(vcpu
, VCPU_REGS_RCX
, best
->ecx
);
2867 kvm_register_write(vcpu
, VCPU_REGS_RDX
, best
->edx
);
2869 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2870 KVMTRACE_5D(CPUID
, vcpu
, function
,
2871 (u32
)kvm_register_read(vcpu
, VCPU_REGS_RAX
),
2872 (u32
)kvm_register_read(vcpu
, VCPU_REGS_RBX
),
2873 (u32
)kvm_register_read(vcpu
, VCPU_REGS_RCX
),
2874 (u32
)kvm_register_read(vcpu
, VCPU_REGS_RDX
), handler
);
2876 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);
2879 * Check if userspace requested an interrupt window, and that the
2880 * interrupt window is open.
2882 * No need to exit to userspace if we already have an interrupt queued.
2884 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
,
2885 struct kvm_run
*kvm_run
)
2887 return (!vcpu
->arch
.irq_summary
&&
2888 kvm_run
->request_interrupt_window
&&
2889 vcpu
->arch
.interrupt_window_open
&&
2890 (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_IF
));
2893 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
,
2894 struct kvm_run
*kvm_run
)
2896 kvm_run
->if_flag
= (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
2897 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
2898 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
2899 if (irqchip_in_kernel(vcpu
->kvm
))
2900 kvm_run
->ready_for_interrupt_injection
= 1;
2902 kvm_run
->ready_for_interrupt_injection
=
2903 (vcpu
->arch
.interrupt_window_open
&&
2904 vcpu
->arch
.irq_summary
== 0);
2907 static void vapic_enter(struct kvm_vcpu
*vcpu
)
2909 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
2912 if (!apic
|| !apic
->vapic_addr
)
2915 page
= gfn_to_page(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
2917 vcpu
->arch
.apic
->vapic_page
= page
;
2920 static void vapic_exit(struct kvm_vcpu
*vcpu
)
2922 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
2924 if (!apic
|| !apic
->vapic_addr
)
2927 down_read(&vcpu
->kvm
->slots_lock
);
2928 kvm_release_page_dirty(apic
->vapic_page
);
2929 mark_page_dirty(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
2930 up_read(&vcpu
->kvm
->slots_lock
);
2933 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2938 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD
, &vcpu
->requests
))
2939 kvm_mmu_unload(vcpu
);
2941 r
= kvm_mmu_reload(vcpu
);
2945 if (vcpu
->requests
) {
2946 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER
, &vcpu
->requests
))
2947 __kvm_migrate_timers(vcpu
);
2948 if (test_and_clear_bit(KVM_REQ_MMU_SYNC
, &vcpu
->requests
))
2949 kvm_mmu_sync_roots(vcpu
);
2950 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH
, &vcpu
->requests
))
2951 kvm_x86_ops
->tlb_flush(vcpu
);
2952 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS
,
2954 kvm_run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
2958 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
)) {
2959 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
2965 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
2966 kvm_inject_pending_timer_irqs(vcpu
);
2970 kvm_x86_ops
->prepare_guest_switch(vcpu
);
2971 kvm_load_guest_fpu(vcpu
);
2973 local_irq_disable();
2975 if (vcpu
->requests
|| need_resched() || signal_pending(current
)) {
2982 if (vcpu
->guest_debug
.enabled
)
2983 kvm_x86_ops
->guest_debug_pre(vcpu
);
2985 vcpu
->guest_mode
= 1;
2987 * Make sure that guest_mode assignment won't happen after
2988 * testing the pending IRQ vector bitmap.
2992 if (vcpu
->arch
.exception
.pending
)
2993 __queue_exception(vcpu
);
2994 else if (irqchip_in_kernel(vcpu
->kvm
))
2995 kvm_x86_ops
->inject_pending_irq(vcpu
);
2997 kvm_x86_ops
->inject_pending_vectors(vcpu
, kvm_run
);
2999 kvm_lapic_sync_to_vapic(vcpu
);
3001 up_read(&vcpu
->kvm
->slots_lock
);
3006 KVMTRACE_0D(VMENTRY
, vcpu
, entryexit
);
3007 kvm_x86_ops
->run(vcpu
, kvm_run
);
3009 vcpu
->guest_mode
= 0;
3015 * We must have an instruction between local_irq_enable() and
3016 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3017 * the interrupt shadow. The stat.exits increment will do nicely.
3018 * But we need to prevent reordering, hence this barrier():
3026 down_read(&vcpu
->kvm
->slots_lock
);
3029 * Profile KVM exit RIPs:
3031 if (unlikely(prof_on
== KVM_PROFILING
)) {
3032 unsigned long rip
= kvm_rip_read(vcpu
);
3033 profile_hit(KVM_PROFILING
, (void *)rip
);
3036 if (vcpu
->arch
.exception
.pending
&& kvm_x86_ops
->exception_injected(vcpu
))
3037 vcpu
->arch
.exception
.pending
= false;
3039 kvm_lapic_sync_from_vapic(vcpu
);
3041 r
= kvm_x86_ops
->handle_exit(kvm_run
, vcpu
);
3046 static int __vcpu_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3050 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
)) {
3051 pr_debug("vcpu %d received sipi with vector # %x\n",
3052 vcpu
->vcpu_id
, vcpu
->arch
.sipi_vector
);
3053 kvm_lapic_reset(vcpu
);
3054 r
= kvm_arch_vcpu_reset(vcpu
);
3057 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
3060 down_read(&vcpu
->kvm
->slots_lock
);
3065 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
)
3066 r
= vcpu_enter_guest(vcpu
, kvm_run
);
3068 up_read(&vcpu
->kvm
->slots_lock
);
3069 kvm_vcpu_block(vcpu
);
3070 down_read(&vcpu
->kvm
->slots_lock
);
3071 if (test_and_clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
))
3072 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
)
3073 vcpu
->arch
.mp_state
=
3074 KVM_MP_STATE_RUNNABLE
;
3075 if (vcpu
->arch
.mp_state
!= KVM_MP_STATE_RUNNABLE
)
3080 if (dm_request_for_irq_injection(vcpu
, kvm_run
)) {
3082 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
3083 ++vcpu
->stat
.request_irq_exits
;
3085 if (signal_pending(current
)) {
3087 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
3088 ++vcpu
->stat
.signal_exits
;
3090 if (need_resched()) {
3091 up_read(&vcpu
->kvm
->slots_lock
);
3093 down_read(&vcpu
->kvm
->slots_lock
);
3098 up_read(&vcpu
->kvm
->slots_lock
);
3099 post_kvm_run_save(vcpu
, kvm_run
);
3106 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3113 if (vcpu
->sigset_active
)
3114 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
3116 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
3117 kvm_vcpu_block(vcpu
);
3118 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
3123 /* re-sync apic's tpr */
3124 if (!irqchip_in_kernel(vcpu
->kvm
))
3125 kvm_set_cr8(vcpu
, kvm_run
->cr8
);
3127 if (vcpu
->arch
.pio
.cur_count
) {
3128 r
= complete_pio(vcpu
);
3132 #if CONFIG_HAS_IOMEM
3133 if (vcpu
->mmio_needed
) {
3134 memcpy(vcpu
->mmio_data
, kvm_run
->mmio
.data
, 8);
3135 vcpu
->mmio_read_completed
= 1;
3136 vcpu
->mmio_needed
= 0;
3138 down_read(&vcpu
->kvm
->slots_lock
);
3139 r
= emulate_instruction(vcpu
, kvm_run
,
3140 vcpu
->arch
.mmio_fault_cr2
, 0,
3141 EMULTYPE_NO_DECODE
);
3142 up_read(&vcpu
->kvm
->slots_lock
);
3143 if (r
== EMULATE_DO_MMIO
) {
3145 * Read-modify-write. Back to userspace.
3152 if (kvm_run
->exit_reason
== KVM_EXIT_HYPERCALL
)
3153 kvm_register_write(vcpu
, VCPU_REGS_RAX
,
3154 kvm_run
->hypercall
.ret
);
3156 r
= __vcpu_run(vcpu
, kvm_run
);
3159 if (vcpu
->sigset_active
)
3160 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
3166 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
3170 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3171 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
3172 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3173 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
3174 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
3175 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
3176 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
3177 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
3178 #ifdef CONFIG_X86_64
3179 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
3180 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
3181 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
3182 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
3183 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
3184 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
3185 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
3186 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
3189 regs
->rip
= kvm_rip_read(vcpu
);
3190 regs
->rflags
= kvm_x86_ops
->get_rflags(vcpu
);
3193 * Don't leak debug flags in case they were set for guest debugging
3195 if (vcpu
->guest_debug
.enabled
&& vcpu
->guest_debug
.singlestep
)
3196 regs
->rflags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
3203 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
3207 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
3208 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
3209 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
3210 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
3211 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
3212 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
3213 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
3214 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
3215 #ifdef CONFIG_X86_64
3216 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
3217 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
3218 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
3219 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
3220 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
3221 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
3222 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
3223 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
3227 kvm_rip_write(vcpu
, regs
->rip
);
3228 kvm_x86_ops
->set_rflags(vcpu
, regs
->rflags
);
3231 vcpu
->arch
.exception
.pending
= false;
3238 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
3239 struct kvm_segment
*var
, int seg
)
3241 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
3244 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
3246 struct kvm_segment cs
;
3248 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
3252 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
3254 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
3255 struct kvm_sregs
*sregs
)
3257 struct descriptor_table dt
;
3262 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
3263 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
3264 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
3265 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
3266 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
3267 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
3269 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
3270 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
3272 kvm_x86_ops
->get_idt(vcpu
, &dt
);
3273 sregs
->idt
.limit
= dt
.limit
;
3274 sregs
->idt
.base
= dt
.base
;
3275 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
3276 sregs
->gdt
.limit
= dt
.limit
;
3277 sregs
->gdt
.base
= dt
.base
;
3279 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
3280 sregs
->cr0
= vcpu
->arch
.cr0
;
3281 sregs
->cr2
= vcpu
->arch
.cr2
;
3282 sregs
->cr3
= vcpu
->arch
.cr3
;
3283 sregs
->cr4
= vcpu
->arch
.cr4
;
3284 sregs
->cr8
= kvm_get_cr8(vcpu
);
3285 sregs
->efer
= vcpu
->arch
.shadow_efer
;
3286 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
3288 if (irqchip_in_kernel(vcpu
->kvm
)) {
3289 memset(sregs
->interrupt_bitmap
, 0,
3290 sizeof sregs
->interrupt_bitmap
);
3291 pending_vec
= kvm_x86_ops
->get_irq(vcpu
);
3292 if (pending_vec
>= 0)
3293 set_bit(pending_vec
,
3294 (unsigned long *)sregs
->interrupt_bitmap
);
3296 memcpy(sregs
->interrupt_bitmap
, vcpu
->arch
.irq_pending
,
3297 sizeof sregs
->interrupt_bitmap
);
3304 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
3305 struct kvm_mp_state
*mp_state
)
3308 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
3313 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
3314 struct kvm_mp_state
*mp_state
)
3317 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
3322 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
3323 struct kvm_segment
*var
, int seg
)
3325 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
3328 static void seg_desct_to_kvm_desct(struct desc_struct
*seg_desc
, u16 selector
,
3329 struct kvm_segment
*kvm_desct
)
3331 kvm_desct
->base
= seg_desc
->base0
;
3332 kvm_desct
->base
|= seg_desc
->base1
<< 16;
3333 kvm_desct
->base
|= seg_desc
->base2
<< 24;
3334 kvm_desct
->limit
= seg_desc
->limit0
;
3335 kvm_desct
->limit
|= seg_desc
->limit
<< 16;
3337 kvm_desct
->limit
<<= 12;
3338 kvm_desct
->limit
|= 0xfff;
3340 kvm_desct
->selector
= selector
;
3341 kvm_desct
->type
= seg_desc
->type
;
3342 kvm_desct
->present
= seg_desc
->p
;
3343 kvm_desct
->dpl
= seg_desc
->dpl
;
3344 kvm_desct
->db
= seg_desc
->d
;
3345 kvm_desct
->s
= seg_desc
->s
;
3346 kvm_desct
->l
= seg_desc
->l
;
3347 kvm_desct
->g
= seg_desc
->g
;
3348 kvm_desct
->avl
= seg_desc
->avl
;
3350 kvm_desct
->unusable
= 1;
3352 kvm_desct
->unusable
= 0;
3353 kvm_desct
->padding
= 0;
3356 static void get_segment_descriptor_dtable(struct kvm_vcpu
*vcpu
,
3358 struct descriptor_table
*dtable
)
3360 if (selector
& 1 << 2) {
3361 struct kvm_segment kvm_seg
;
3363 kvm_get_segment(vcpu
, &kvm_seg
, VCPU_SREG_LDTR
);
3365 if (kvm_seg
.unusable
)
3368 dtable
->limit
= kvm_seg
.limit
;
3369 dtable
->base
= kvm_seg
.base
;
3372 kvm_x86_ops
->get_gdt(vcpu
, dtable
);
3375 /* allowed just for 8 bytes segments */
3376 static int load_guest_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
3377 struct desc_struct
*seg_desc
)
3380 struct descriptor_table dtable
;
3381 u16 index
= selector
>> 3;
3383 get_segment_descriptor_dtable(vcpu
, selector
, &dtable
);
3385 if (dtable
.limit
< index
* 8 + 7) {
3386 kvm_queue_exception_e(vcpu
, GP_VECTOR
, selector
& 0xfffc);
3389 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, dtable
.base
);
3391 return kvm_read_guest(vcpu
->kvm
, gpa
, seg_desc
, 8);
3394 /* allowed just for 8 bytes segments */
3395 static int save_guest_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
3396 struct desc_struct
*seg_desc
)
3399 struct descriptor_table dtable
;
3400 u16 index
= selector
>> 3;
3402 get_segment_descriptor_dtable(vcpu
, selector
, &dtable
);
3404 if (dtable
.limit
< index
* 8 + 7)
3406 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, dtable
.base
);
3408 return kvm_write_guest(vcpu
->kvm
, gpa
, seg_desc
, 8);
3411 static u32
get_tss_base_addr(struct kvm_vcpu
*vcpu
,
3412 struct desc_struct
*seg_desc
)
3416 base_addr
= seg_desc
->base0
;
3417 base_addr
|= (seg_desc
->base1
<< 16);
3418 base_addr
|= (seg_desc
->base2
<< 24);
3420 return vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, base_addr
);
3423 static u16
get_segment_selector(struct kvm_vcpu
*vcpu
, int seg
)
3425 struct kvm_segment kvm_seg
;
3427 kvm_get_segment(vcpu
, &kvm_seg
, seg
);
3428 return kvm_seg
.selector
;
3431 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu
*vcpu
,
3433 struct kvm_segment
*kvm_seg
)
3435 struct desc_struct seg_desc
;
3437 if (load_guest_segment_descriptor(vcpu
, selector
, &seg_desc
))
3439 seg_desct_to_kvm_desct(&seg_desc
, selector
, kvm_seg
);
3443 static int kvm_load_realmode_segment(struct kvm_vcpu
*vcpu
, u16 selector
, int seg
)
3445 struct kvm_segment segvar
= {
3446 .base
= selector
<< 4,
3448 .selector
= selector
,
3459 kvm_x86_ops
->set_segment(vcpu
, &segvar
, seg
);
3463 int kvm_load_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
3464 int type_bits
, int seg
)
3466 struct kvm_segment kvm_seg
;
3468 if (!(vcpu
->arch
.cr0
& X86_CR0_PE
))
3469 return kvm_load_realmode_segment(vcpu
, selector
, seg
);
3470 if (load_segment_descriptor_to_kvm_desct(vcpu
, selector
, &kvm_seg
))
3472 kvm_seg
.type
|= type_bits
;
3474 if (seg
!= VCPU_SREG_SS
&& seg
!= VCPU_SREG_CS
&&
3475 seg
!= VCPU_SREG_LDTR
)
3477 kvm_seg
.unusable
= 1;
3479 kvm_set_segment(vcpu
, &kvm_seg
, seg
);
3483 static void save_state_to_tss32(struct kvm_vcpu
*vcpu
,
3484 struct tss_segment_32
*tss
)
3486 tss
->cr3
= vcpu
->arch
.cr3
;
3487 tss
->eip
= kvm_rip_read(vcpu
);
3488 tss
->eflags
= kvm_x86_ops
->get_rflags(vcpu
);
3489 tss
->eax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3490 tss
->ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3491 tss
->edx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
3492 tss
->ebx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
3493 tss
->esp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
3494 tss
->ebp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
3495 tss
->esi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
3496 tss
->edi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
3497 tss
->es
= get_segment_selector(vcpu
, VCPU_SREG_ES
);
3498 tss
->cs
= get_segment_selector(vcpu
, VCPU_SREG_CS
);
3499 tss
->ss
= get_segment_selector(vcpu
, VCPU_SREG_SS
);
3500 tss
->ds
= get_segment_selector(vcpu
, VCPU_SREG_DS
);
3501 tss
->fs
= get_segment_selector(vcpu
, VCPU_SREG_FS
);
3502 tss
->gs
= get_segment_selector(vcpu
, VCPU_SREG_GS
);
3503 tss
->ldt_selector
= get_segment_selector(vcpu
, VCPU_SREG_LDTR
);
3504 tss
->prev_task_link
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
3507 static int load_state_from_tss32(struct kvm_vcpu
*vcpu
,
3508 struct tss_segment_32
*tss
)
3510 kvm_set_cr3(vcpu
, tss
->cr3
);
3512 kvm_rip_write(vcpu
, tss
->eip
);
3513 kvm_x86_ops
->set_rflags(vcpu
, tss
->eflags
| 2);
3515 kvm_register_write(vcpu
, VCPU_REGS_RAX
, tss
->eax
);
3516 kvm_register_write(vcpu
, VCPU_REGS_RCX
, tss
->ecx
);
3517 kvm_register_write(vcpu
, VCPU_REGS_RDX
, tss
->edx
);
3518 kvm_register_write(vcpu
, VCPU_REGS_RBX
, tss
->ebx
);
3519 kvm_register_write(vcpu
, VCPU_REGS_RSP
, tss
->esp
);
3520 kvm_register_write(vcpu
, VCPU_REGS_RBP
, tss
->ebp
);
3521 kvm_register_write(vcpu
, VCPU_REGS_RSI
, tss
->esi
);
3522 kvm_register_write(vcpu
, VCPU_REGS_RDI
, tss
->edi
);
3524 if (kvm_load_segment_descriptor(vcpu
, tss
->ldt_selector
, 0, VCPU_SREG_LDTR
))
3527 if (kvm_load_segment_descriptor(vcpu
, tss
->es
, 1, VCPU_SREG_ES
))
3530 if (kvm_load_segment_descriptor(vcpu
, tss
->cs
, 9, VCPU_SREG_CS
))
3533 if (kvm_load_segment_descriptor(vcpu
, tss
->ss
, 1, VCPU_SREG_SS
))
3536 if (kvm_load_segment_descriptor(vcpu
, tss
->ds
, 1, VCPU_SREG_DS
))
3539 if (kvm_load_segment_descriptor(vcpu
, tss
->fs
, 1, VCPU_SREG_FS
))
3542 if (kvm_load_segment_descriptor(vcpu
, tss
->gs
, 1, VCPU_SREG_GS
))
3547 static void save_state_to_tss16(struct kvm_vcpu
*vcpu
,
3548 struct tss_segment_16
*tss
)
3550 tss
->ip
= kvm_rip_read(vcpu
);
3551 tss
->flag
= kvm_x86_ops
->get_rflags(vcpu
);
3552 tss
->ax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3553 tss
->cx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3554 tss
->dx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
3555 tss
->bx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
3556 tss
->sp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
3557 tss
->bp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
3558 tss
->si
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
3559 tss
->di
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
3561 tss
->es
= get_segment_selector(vcpu
, VCPU_SREG_ES
);
3562 tss
->cs
= get_segment_selector(vcpu
, VCPU_SREG_CS
);
3563 tss
->ss
= get_segment_selector(vcpu
, VCPU_SREG_SS
);
3564 tss
->ds
= get_segment_selector(vcpu
, VCPU_SREG_DS
);
3565 tss
->ldt
= get_segment_selector(vcpu
, VCPU_SREG_LDTR
);
3566 tss
->prev_task_link
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
3569 static int load_state_from_tss16(struct kvm_vcpu
*vcpu
,
3570 struct tss_segment_16
*tss
)
3572 kvm_rip_write(vcpu
, tss
->ip
);
3573 kvm_x86_ops
->set_rflags(vcpu
, tss
->flag
| 2);
3574 kvm_register_write(vcpu
, VCPU_REGS_RAX
, tss
->ax
);
3575 kvm_register_write(vcpu
, VCPU_REGS_RCX
, tss
->cx
);
3576 kvm_register_write(vcpu
, VCPU_REGS_RDX
, tss
->dx
);
3577 kvm_register_write(vcpu
, VCPU_REGS_RBX
, tss
->bx
);
3578 kvm_register_write(vcpu
, VCPU_REGS_RSP
, tss
->sp
);
3579 kvm_register_write(vcpu
, VCPU_REGS_RBP
, tss
->bp
);
3580 kvm_register_write(vcpu
, VCPU_REGS_RSI
, tss
->si
);
3581 kvm_register_write(vcpu
, VCPU_REGS_RDI
, tss
->di
);
3583 if (kvm_load_segment_descriptor(vcpu
, tss
->ldt
, 0, VCPU_SREG_LDTR
))
3586 if (kvm_load_segment_descriptor(vcpu
, tss
->es
, 1, VCPU_SREG_ES
))
3589 if (kvm_load_segment_descriptor(vcpu
, tss
->cs
, 9, VCPU_SREG_CS
))
3592 if (kvm_load_segment_descriptor(vcpu
, tss
->ss
, 1, VCPU_SREG_SS
))
3595 if (kvm_load_segment_descriptor(vcpu
, tss
->ds
, 1, VCPU_SREG_DS
))
3600 static int kvm_task_switch_16(struct kvm_vcpu
*vcpu
, u16 tss_selector
,
3602 struct desc_struct
*nseg_desc
)
3604 struct tss_segment_16 tss_segment_16
;
3607 if (kvm_read_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_16
,
3608 sizeof tss_segment_16
))
3611 save_state_to_tss16(vcpu
, &tss_segment_16
);
3613 if (kvm_write_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_16
,
3614 sizeof tss_segment_16
))
3617 if (kvm_read_guest(vcpu
->kvm
, get_tss_base_addr(vcpu
, nseg_desc
),
3618 &tss_segment_16
, sizeof tss_segment_16
))
3621 if (load_state_from_tss16(vcpu
, &tss_segment_16
))
3629 static int kvm_task_switch_32(struct kvm_vcpu
*vcpu
, u16 tss_selector
,
3631 struct desc_struct
*nseg_desc
)
3633 struct tss_segment_32 tss_segment_32
;
3636 if (kvm_read_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_32
,
3637 sizeof tss_segment_32
))
3640 save_state_to_tss32(vcpu
, &tss_segment_32
);
3642 if (kvm_write_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_32
,
3643 sizeof tss_segment_32
))
3646 if (kvm_read_guest(vcpu
->kvm
, get_tss_base_addr(vcpu
, nseg_desc
),
3647 &tss_segment_32
, sizeof tss_segment_32
))
3650 if (load_state_from_tss32(vcpu
, &tss_segment_32
))
3658 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int reason
)
3660 struct kvm_segment tr_seg
;
3661 struct desc_struct cseg_desc
;
3662 struct desc_struct nseg_desc
;
3664 u32 old_tss_base
= get_segment_base(vcpu
, VCPU_SREG_TR
);
3665 u16 old_tss_sel
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
3667 old_tss_base
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, old_tss_base
);
3669 /* FIXME: Handle errors. Failure to read either TSS or their
3670 * descriptors should generate a pagefault.
3672 if (load_guest_segment_descriptor(vcpu
, tss_selector
, &nseg_desc
))
3675 if (load_guest_segment_descriptor(vcpu
, old_tss_sel
, &cseg_desc
))
3678 if (reason
!= TASK_SWITCH_IRET
) {
3681 cpl
= kvm_x86_ops
->get_cpl(vcpu
);
3682 if ((tss_selector
& 3) > nseg_desc
.dpl
|| cpl
> nseg_desc
.dpl
) {
3683 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
3688 if (!nseg_desc
.p
|| (nseg_desc
.limit0
| nseg_desc
.limit
<< 16) < 0x67) {
3689 kvm_queue_exception_e(vcpu
, TS_VECTOR
, tss_selector
& 0xfffc);
3693 if (reason
== TASK_SWITCH_IRET
|| reason
== TASK_SWITCH_JMP
) {
3694 cseg_desc
.type
&= ~(1 << 1); //clear the B flag
3695 save_guest_segment_descriptor(vcpu
, old_tss_sel
, &cseg_desc
);
3698 if (reason
== TASK_SWITCH_IRET
) {
3699 u32 eflags
= kvm_x86_ops
->get_rflags(vcpu
);
3700 kvm_x86_ops
->set_rflags(vcpu
, eflags
& ~X86_EFLAGS_NT
);
3703 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
3705 if (nseg_desc
.type
& 8)
3706 ret
= kvm_task_switch_32(vcpu
, tss_selector
, old_tss_base
,
3709 ret
= kvm_task_switch_16(vcpu
, tss_selector
, old_tss_base
,
3712 if (reason
== TASK_SWITCH_CALL
|| reason
== TASK_SWITCH_GATE
) {
3713 u32 eflags
= kvm_x86_ops
->get_rflags(vcpu
);
3714 kvm_x86_ops
->set_rflags(vcpu
, eflags
| X86_EFLAGS_NT
);
3717 if (reason
!= TASK_SWITCH_IRET
) {
3718 nseg_desc
.type
|= (1 << 1);
3719 save_guest_segment_descriptor(vcpu
, tss_selector
,
3723 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->arch
.cr0
| X86_CR0_TS
);
3724 seg_desct_to_kvm_desct(&nseg_desc
, tss_selector
, &tr_seg
);
3726 kvm_set_segment(vcpu
, &tr_seg
, VCPU_SREG_TR
);
3730 EXPORT_SYMBOL_GPL(kvm_task_switch
);
3732 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
3733 struct kvm_sregs
*sregs
)
3735 int mmu_reset_needed
= 0;
3736 int i
, pending_vec
, max_bits
;
3737 struct descriptor_table dt
;
3741 dt
.limit
= sregs
->idt
.limit
;
3742 dt
.base
= sregs
->idt
.base
;
3743 kvm_x86_ops
->set_idt(vcpu
, &dt
);
3744 dt
.limit
= sregs
->gdt
.limit
;
3745 dt
.base
= sregs
->gdt
.base
;
3746 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
3748 vcpu
->arch
.cr2
= sregs
->cr2
;
3749 mmu_reset_needed
|= vcpu
->arch
.cr3
!= sregs
->cr3
;
3750 vcpu
->arch
.cr3
= sregs
->cr3
;
3752 kvm_set_cr8(vcpu
, sregs
->cr8
);
3754 mmu_reset_needed
|= vcpu
->arch
.shadow_efer
!= sregs
->efer
;
3755 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
3756 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
3758 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
3760 mmu_reset_needed
|= vcpu
->arch
.cr0
!= sregs
->cr0
;
3761 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
3762 vcpu
->arch
.cr0
= sregs
->cr0
;
3764 mmu_reset_needed
|= vcpu
->arch
.cr4
!= sregs
->cr4
;
3765 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
3766 if (!is_long_mode(vcpu
) && is_pae(vcpu
))
3767 load_pdptrs(vcpu
, vcpu
->arch
.cr3
);
3769 if (mmu_reset_needed
)
3770 kvm_mmu_reset_context(vcpu
);
3772 if (!irqchip_in_kernel(vcpu
->kvm
)) {
3773 memcpy(vcpu
->arch
.irq_pending
, sregs
->interrupt_bitmap
,
3774 sizeof vcpu
->arch
.irq_pending
);
3775 vcpu
->arch
.irq_summary
= 0;
3776 for (i
= 0; i
< ARRAY_SIZE(vcpu
->arch
.irq_pending
); ++i
)
3777 if (vcpu
->arch
.irq_pending
[i
])
3778 __set_bit(i
, &vcpu
->arch
.irq_summary
);
3780 max_bits
= (sizeof sregs
->interrupt_bitmap
) << 3;
3781 pending_vec
= find_first_bit(
3782 (const unsigned long *)sregs
->interrupt_bitmap
,
3784 /* Only pending external irq is handled here */
3785 if (pending_vec
< max_bits
) {
3786 kvm_x86_ops
->set_irq(vcpu
, pending_vec
);
3787 pr_debug("Set back pending irq %d\n",
3790 kvm_pic_clear_isr_ack(vcpu
->kvm
);
3793 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
3794 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
3795 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
3796 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
3797 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
3798 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
3800 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
3801 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
3803 /* Older userspace won't unhalt the vcpu on reset. */
3804 if (vcpu
->vcpu_id
== 0 && kvm_rip_read(vcpu
) == 0xfff0 &&
3805 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
3806 !(vcpu
->arch
.cr0
& X86_CR0_PE
))
3807 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
3814 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu
*vcpu
,
3815 struct kvm_debug_guest
*dbg
)
3821 r
= kvm_x86_ops
->set_guest_debug(vcpu
, dbg
);
3829 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
3830 * we have asm/x86/processor.h
3841 u32 st_space
[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
3842 #ifdef CONFIG_X86_64
3843 u32 xmm_space
[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
3845 u32 xmm_space
[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
3850 * Translate a guest virtual address to a guest physical address.
3852 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
3853 struct kvm_translation
*tr
)
3855 unsigned long vaddr
= tr
->linear_address
;
3859 down_read(&vcpu
->kvm
->slots_lock
);
3860 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, vaddr
);
3861 up_read(&vcpu
->kvm
->slots_lock
);
3862 tr
->physical_address
= gpa
;
3863 tr
->valid
= gpa
!= UNMAPPED_GVA
;
3871 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
3873 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
3877 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
3878 fpu
->fcw
= fxsave
->cwd
;
3879 fpu
->fsw
= fxsave
->swd
;
3880 fpu
->ftwx
= fxsave
->twd
;
3881 fpu
->last_opcode
= fxsave
->fop
;
3882 fpu
->last_ip
= fxsave
->rip
;
3883 fpu
->last_dp
= fxsave
->rdp
;
3884 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
3891 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
3893 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
3897 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
3898 fxsave
->cwd
= fpu
->fcw
;
3899 fxsave
->swd
= fpu
->fsw
;
3900 fxsave
->twd
= fpu
->ftwx
;
3901 fxsave
->fop
= fpu
->last_opcode
;
3902 fxsave
->rip
= fpu
->last_ip
;
3903 fxsave
->rdp
= fpu
->last_dp
;
3904 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
3911 void fx_init(struct kvm_vcpu
*vcpu
)
3913 unsigned after_mxcsr_mask
;
3916 * Touch the fpu the first time in non atomic context as if
3917 * this is the first fpu instruction the exception handler
3918 * will fire before the instruction returns and it'll have to
3919 * allocate ram with GFP_KERNEL.
3922 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
3924 /* Initialize guest FPU by resetting ours and saving into guest's */
3926 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
3928 kvm_fx_save(&vcpu
->arch
.guest_fx_image
);
3929 kvm_fx_restore(&vcpu
->arch
.host_fx_image
);
3932 vcpu
->arch
.cr0
|= X86_CR0_ET
;
3933 after_mxcsr_mask
= offsetof(struct i387_fxsave_struct
, st_space
);
3934 vcpu
->arch
.guest_fx_image
.mxcsr
= 0x1f80;
3935 memset((void *)&vcpu
->arch
.guest_fx_image
+ after_mxcsr_mask
,
3936 0, sizeof(struct i387_fxsave_struct
) - after_mxcsr_mask
);
3938 EXPORT_SYMBOL_GPL(fx_init
);
3940 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
3942 if (!vcpu
->fpu_active
|| vcpu
->guest_fpu_loaded
)
3945 vcpu
->guest_fpu_loaded
= 1;
3946 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
3947 kvm_fx_restore(&vcpu
->arch
.guest_fx_image
);
3949 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu
);
3951 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
3953 if (!vcpu
->guest_fpu_loaded
)
3956 vcpu
->guest_fpu_loaded
= 0;
3957 kvm_fx_save(&vcpu
->arch
.guest_fx_image
);
3958 kvm_fx_restore(&vcpu
->arch
.host_fx_image
);
3959 ++vcpu
->stat
.fpu_reload
;
3961 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu
);
3963 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
3965 kvm_x86_ops
->vcpu_free(vcpu
);
3968 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
3971 return kvm_x86_ops
->vcpu_create(kvm
, id
);
3974 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
3978 /* We do fxsave: this must be aligned. */
3979 BUG_ON((unsigned long)&vcpu
->arch
.host_fx_image
& 0xF);
3981 vcpu
->arch
.mtrr_state
.have_fixed
= 1;
3983 r
= kvm_arch_vcpu_reset(vcpu
);
3985 r
= kvm_mmu_setup(vcpu
);
3992 kvm_x86_ops
->vcpu_free(vcpu
);
3996 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
3999 kvm_mmu_unload(vcpu
);
4002 kvm_x86_ops
->vcpu_free(vcpu
);
4005 int kvm_arch_vcpu_reset(struct kvm_vcpu
*vcpu
)
4007 vcpu
->arch
.nmi_pending
= false;
4008 vcpu
->arch
.nmi_injected
= false;
4010 return kvm_x86_ops
->vcpu_reset(vcpu
);
4013 void kvm_arch_hardware_enable(void *garbage
)
4015 kvm_x86_ops
->hardware_enable(garbage
);
4018 void kvm_arch_hardware_disable(void *garbage
)
4020 kvm_x86_ops
->hardware_disable(garbage
);
4023 int kvm_arch_hardware_setup(void)
4025 return kvm_x86_ops
->hardware_setup();
4028 void kvm_arch_hardware_unsetup(void)
4030 kvm_x86_ops
->hardware_unsetup();
4033 void kvm_arch_check_processor_compat(void *rtn
)
4035 kvm_x86_ops
->check_processor_compatibility(rtn
);
4038 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
4044 BUG_ON(vcpu
->kvm
== NULL
);
4047 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
4048 if (!irqchip_in_kernel(kvm
) || vcpu
->vcpu_id
== 0)
4049 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
4051 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
4053 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
4058 vcpu
->arch
.pio_data
= page_address(page
);
4060 r
= kvm_mmu_create(vcpu
);
4062 goto fail_free_pio_data
;
4064 if (irqchip_in_kernel(kvm
)) {
4065 r
= kvm_create_lapic(vcpu
);
4067 goto fail_mmu_destroy
;
4073 kvm_mmu_destroy(vcpu
);
4075 free_page((unsigned long)vcpu
->arch
.pio_data
);
4080 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
4082 kvm_free_lapic(vcpu
);
4083 down_read(&vcpu
->kvm
->slots_lock
);
4084 kvm_mmu_destroy(vcpu
);
4085 up_read(&vcpu
->kvm
->slots_lock
);
4086 free_page((unsigned long)vcpu
->arch
.pio_data
);
4089 struct kvm
*kvm_arch_create_vm(void)
4091 struct kvm
*kvm
= kzalloc(sizeof(struct kvm
), GFP_KERNEL
);
4094 return ERR_PTR(-ENOMEM
);
4096 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
4097 INIT_LIST_HEAD(&kvm
->arch
.oos_global_pages
);
4098 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
4100 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4101 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
4106 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
4109 kvm_mmu_unload(vcpu
);
4113 static void kvm_free_vcpus(struct kvm
*kvm
)
4118 * Unpin any mmu pages first.
4120 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
)
4122 kvm_unload_vcpu_mmu(kvm
->vcpus
[i
]);
4123 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
4124 if (kvm
->vcpus
[i
]) {
4125 kvm_arch_vcpu_free(kvm
->vcpus
[i
]);
4126 kvm
->vcpus
[i
] = NULL
;
4132 void kvm_arch_sync_events(struct kvm
*kvm
)
4134 kvm_free_all_assigned_devices(kvm
);
4137 void kvm_arch_destroy_vm(struct kvm
*kvm
)
4139 kvm_iommu_unmap_guest(kvm
);
4141 kfree(kvm
->arch
.vpic
);
4142 kfree(kvm
->arch
.vioapic
);
4143 kvm_free_vcpus(kvm
);
4144 kvm_free_physmem(kvm
);
4145 if (kvm
->arch
.apic_access_page
)
4146 put_page(kvm
->arch
.apic_access_page
);
4147 if (kvm
->arch
.ept_identity_pagetable
)
4148 put_page(kvm
->arch
.ept_identity_pagetable
);
4152 int kvm_arch_set_memory_region(struct kvm
*kvm
,
4153 struct kvm_userspace_memory_region
*mem
,
4154 struct kvm_memory_slot old
,
4157 int npages
= mem
->memory_size
>> PAGE_SHIFT
;
4158 struct kvm_memory_slot
*memslot
= &kvm
->memslots
[mem
->slot
];
4160 /*To keep backward compatibility with older userspace,
4161 *x86 needs to hanlde !user_alloc case.
4164 if (npages
&& !old
.rmap
) {
4165 unsigned long userspace_addr
;
4167 down_write(¤t
->mm
->mmap_sem
);
4168 userspace_addr
= do_mmap(NULL
, 0,
4170 PROT_READ
| PROT_WRITE
,
4171 MAP_PRIVATE
| MAP_ANONYMOUS
,
4173 up_write(¤t
->mm
->mmap_sem
);
4175 if (IS_ERR((void *)userspace_addr
))
4176 return PTR_ERR((void *)userspace_addr
);
4178 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4179 spin_lock(&kvm
->mmu_lock
);
4180 memslot
->userspace_addr
= userspace_addr
;
4181 spin_unlock(&kvm
->mmu_lock
);
4183 if (!old
.user_alloc
&& old
.rmap
) {
4186 down_write(¤t
->mm
->mmap_sem
);
4187 ret
= do_munmap(current
->mm
, old
.userspace_addr
,
4188 old
.npages
* PAGE_SIZE
);
4189 up_write(¤t
->mm
->mmap_sem
);
4192 "kvm_vm_ioctl_set_memory_region: "
4193 "failed to munmap memory\n");
4198 if (!kvm
->arch
.n_requested_mmu_pages
) {
4199 unsigned int nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
4200 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
4203 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
4204 kvm_flush_remote_tlbs(kvm
);
4209 void kvm_arch_flush_shadow(struct kvm
*kvm
)
4211 kvm_mmu_zap_all(kvm
);
4214 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
4216 return vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
4217 || vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
4218 || vcpu
->arch
.nmi_pending
;
4221 static void vcpu_kick_intr(void *info
)
4224 struct kvm_vcpu
*vcpu
= (struct kvm_vcpu
*)info
;
4225 printk(KERN_DEBUG
"vcpu_kick_intr %p \n", vcpu
);
4229 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
4231 int ipi_pcpu
= vcpu
->cpu
;
4232 int cpu
= get_cpu();
4234 if (waitqueue_active(&vcpu
->wq
)) {
4235 wake_up_interruptible(&vcpu
->wq
);
4236 ++vcpu
->stat
.halt_wakeup
;
4239 * We may be called synchronously with irqs disabled in guest mode,
4240 * So need not to call smp_call_function_single() in that case.
4242 if (vcpu
->guest_mode
&& vcpu
->cpu
!= cpu
)
4243 smp_call_function_single(ipi_pcpu
, vcpu_kick_intr
, vcpu
, 0);