x86: pat.c final cleanup of loop body in reserve_memtype
[linux-2.6/mini2440.git] / mm / mmap.c
blob3354fdd83d4bde726d7bb2d2a0951debd4cbc51b
1 /*
2 * mm/mmap.c
4 * Written by obz.
6 * Address space accounting code <alan@redhat.com>
7 */
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
30 #include <asm/uaccess.h>
31 #include <asm/cacheflush.h>
32 #include <asm/tlb.h>
33 #include <asm/mmu_context.h>
35 #ifndef arch_mmap_check
36 #define arch_mmap_check(addr, len, flags) (0)
37 #endif
39 #ifndef arch_rebalance_pgtables
40 #define arch_rebalance_pgtables(addr, len) (addr)
41 #endif
43 static void unmap_region(struct mm_struct *mm,
44 struct vm_area_struct *vma, struct vm_area_struct *prev,
45 unsigned long start, unsigned long end);
48 * WARNING: the debugging will use recursive algorithms so never enable this
49 * unless you know what you are doing.
51 #undef DEBUG_MM_RB
53 /* description of effects of mapping type and prot in current implementation.
54 * this is due to the limited x86 page protection hardware. The expected
55 * behavior is in parens:
57 * map_type prot
58 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
59 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
60 * w: (no) no w: (no) no w: (yes) yes w: (no) no
61 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
63 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
64 * w: (no) no w: (no) no w: (copy) copy w: (no) no
65 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
68 pgprot_t protection_map[16] = {
69 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
70 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
73 pgprot_t vm_get_page_prot(unsigned long vm_flags)
75 return protection_map[vm_flags &
76 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
78 EXPORT_SYMBOL(vm_get_page_prot);
80 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
81 int sysctl_overcommit_ratio = 50; /* default is 50% */
82 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
83 atomic_long_t vm_committed_space = ATOMIC_LONG_INIT(0);
86 * Check that a process has enough memory to allocate a new virtual
87 * mapping. 0 means there is enough memory for the allocation to
88 * succeed and -ENOMEM implies there is not.
90 * We currently support three overcommit policies, which are set via the
91 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
93 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
94 * Additional code 2002 Jul 20 by Robert Love.
96 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
98 * Note this is a helper function intended to be used by LSMs which
99 * wish to use this logic.
101 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
103 unsigned long free, allowed;
105 vm_acct_memory(pages);
108 * Sometimes we want to use more memory than we have
110 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
111 return 0;
113 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
114 unsigned long n;
116 free = global_page_state(NR_FILE_PAGES);
117 free += nr_swap_pages;
120 * Any slabs which are created with the
121 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
122 * which are reclaimable, under pressure. The dentry
123 * cache and most inode caches should fall into this
125 free += global_page_state(NR_SLAB_RECLAIMABLE);
128 * Leave the last 3% for root
130 if (!cap_sys_admin)
131 free -= free / 32;
133 if (free > pages)
134 return 0;
137 * nr_free_pages() is very expensive on large systems,
138 * only call if we're about to fail.
140 n = nr_free_pages();
143 * Leave reserved pages. The pages are not for anonymous pages.
145 if (n <= totalreserve_pages)
146 goto error;
147 else
148 n -= totalreserve_pages;
151 * Leave the last 3% for root
153 if (!cap_sys_admin)
154 n -= n / 32;
155 free += n;
157 if (free > pages)
158 return 0;
160 goto error;
163 allowed = (totalram_pages - hugetlb_total_pages())
164 * sysctl_overcommit_ratio / 100;
166 * Leave the last 3% for root
168 if (!cap_sys_admin)
169 allowed -= allowed / 32;
170 allowed += total_swap_pages;
172 /* Don't let a single process grow too big:
173 leave 3% of the size of this process for other processes */
174 allowed -= mm->total_vm / 32;
177 * cast `allowed' as a signed long because vm_committed_space
178 * sometimes has a negative value
180 if (atomic_long_read(&vm_committed_space) < (long)allowed)
181 return 0;
182 error:
183 vm_unacct_memory(pages);
185 return -ENOMEM;
189 * Requires inode->i_mapping->i_mmap_lock
191 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
192 struct file *file, struct address_space *mapping)
194 if (vma->vm_flags & VM_DENYWRITE)
195 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
196 if (vma->vm_flags & VM_SHARED)
197 mapping->i_mmap_writable--;
199 flush_dcache_mmap_lock(mapping);
200 if (unlikely(vma->vm_flags & VM_NONLINEAR))
201 list_del_init(&vma->shared.vm_set.list);
202 else
203 vma_prio_tree_remove(vma, &mapping->i_mmap);
204 flush_dcache_mmap_unlock(mapping);
208 * Unlink a file-based vm structure from its prio_tree, to hide
209 * vma from rmap and vmtruncate before freeing its page tables.
211 void unlink_file_vma(struct vm_area_struct *vma)
213 struct file *file = vma->vm_file;
215 if (file) {
216 struct address_space *mapping = file->f_mapping;
217 spin_lock(&mapping->i_mmap_lock);
218 __remove_shared_vm_struct(vma, file, mapping);
219 spin_unlock(&mapping->i_mmap_lock);
224 * Close a vm structure and free it, returning the next.
226 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
228 struct vm_area_struct *next = vma->vm_next;
230 might_sleep();
231 if (vma->vm_ops && vma->vm_ops->close)
232 vma->vm_ops->close(vma);
233 if (vma->vm_file) {
234 fput(vma->vm_file);
235 if (vma->vm_flags & VM_EXECUTABLE)
236 removed_exe_file_vma(vma->vm_mm);
238 mpol_put(vma_policy(vma));
239 kmem_cache_free(vm_area_cachep, vma);
240 return next;
243 asmlinkage unsigned long sys_brk(unsigned long brk)
245 unsigned long rlim, retval;
246 unsigned long newbrk, oldbrk;
247 struct mm_struct *mm = current->mm;
248 unsigned long min_brk;
250 down_write(&mm->mmap_sem);
252 #ifdef CONFIG_COMPAT_BRK
253 min_brk = mm->end_code;
254 #else
255 min_brk = mm->start_brk;
256 #endif
257 if (brk < min_brk)
258 goto out;
261 * Check against rlimit here. If this check is done later after the test
262 * of oldbrk with newbrk then it can escape the test and let the data
263 * segment grow beyond its set limit the in case where the limit is
264 * not page aligned -Ram Gupta
266 rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
267 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
268 (mm->end_data - mm->start_data) > rlim)
269 goto out;
271 newbrk = PAGE_ALIGN(brk);
272 oldbrk = PAGE_ALIGN(mm->brk);
273 if (oldbrk == newbrk)
274 goto set_brk;
276 /* Always allow shrinking brk. */
277 if (brk <= mm->brk) {
278 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
279 goto set_brk;
280 goto out;
283 /* Check against existing mmap mappings. */
284 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
285 goto out;
287 /* Ok, looks good - let it rip. */
288 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
289 goto out;
290 set_brk:
291 mm->brk = brk;
292 out:
293 retval = mm->brk;
294 up_write(&mm->mmap_sem);
295 return retval;
298 #ifdef DEBUG_MM_RB
299 static int browse_rb(struct rb_root *root)
301 int i = 0, j;
302 struct rb_node *nd, *pn = NULL;
303 unsigned long prev = 0, pend = 0;
305 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
306 struct vm_area_struct *vma;
307 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
308 if (vma->vm_start < prev)
309 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
310 if (vma->vm_start < pend)
311 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
312 if (vma->vm_start > vma->vm_end)
313 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
314 i++;
315 pn = nd;
316 prev = vma->vm_start;
317 pend = vma->vm_end;
319 j = 0;
320 for (nd = pn; nd; nd = rb_prev(nd)) {
321 j++;
323 if (i != j)
324 printk("backwards %d, forwards %d\n", j, i), i = 0;
325 return i;
328 void validate_mm(struct mm_struct *mm)
330 int bug = 0;
331 int i = 0;
332 struct vm_area_struct *tmp = mm->mmap;
333 while (tmp) {
334 tmp = tmp->vm_next;
335 i++;
337 if (i != mm->map_count)
338 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
339 i = browse_rb(&mm->mm_rb);
340 if (i != mm->map_count)
341 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
342 BUG_ON(bug);
344 #else
345 #define validate_mm(mm) do { } while (0)
346 #endif
348 static struct vm_area_struct *
349 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
350 struct vm_area_struct **pprev, struct rb_node ***rb_link,
351 struct rb_node ** rb_parent)
353 struct vm_area_struct * vma;
354 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
356 __rb_link = &mm->mm_rb.rb_node;
357 rb_prev = __rb_parent = NULL;
358 vma = NULL;
360 while (*__rb_link) {
361 struct vm_area_struct *vma_tmp;
363 __rb_parent = *__rb_link;
364 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
366 if (vma_tmp->vm_end > addr) {
367 vma = vma_tmp;
368 if (vma_tmp->vm_start <= addr)
369 return vma;
370 __rb_link = &__rb_parent->rb_left;
371 } else {
372 rb_prev = __rb_parent;
373 __rb_link = &__rb_parent->rb_right;
377 *pprev = NULL;
378 if (rb_prev)
379 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
380 *rb_link = __rb_link;
381 *rb_parent = __rb_parent;
382 return vma;
385 static inline void
386 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
387 struct vm_area_struct *prev, struct rb_node *rb_parent)
389 if (prev) {
390 vma->vm_next = prev->vm_next;
391 prev->vm_next = vma;
392 } else {
393 mm->mmap = vma;
394 if (rb_parent)
395 vma->vm_next = rb_entry(rb_parent,
396 struct vm_area_struct, vm_rb);
397 else
398 vma->vm_next = NULL;
402 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
403 struct rb_node **rb_link, struct rb_node *rb_parent)
405 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
406 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
409 static inline void __vma_link_file(struct vm_area_struct *vma)
411 struct file * file;
413 file = vma->vm_file;
414 if (file) {
415 struct address_space *mapping = file->f_mapping;
417 if (vma->vm_flags & VM_DENYWRITE)
418 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
419 if (vma->vm_flags & VM_SHARED)
420 mapping->i_mmap_writable++;
422 flush_dcache_mmap_lock(mapping);
423 if (unlikely(vma->vm_flags & VM_NONLINEAR))
424 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
425 else
426 vma_prio_tree_insert(vma, &mapping->i_mmap);
427 flush_dcache_mmap_unlock(mapping);
431 static void
432 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
433 struct vm_area_struct *prev, struct rb_node **rb_link,
434 struct rb_node *rb_parent)
436 __vma_link_list(mm, vma, prev, rb_parent);
437 __vma_link_rb(mm, vma, rb_link, rb_parent);
438 __anon_vma_link(vma);
441 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
442 struct vm_area_struct *prev, struct rb_node **rb_link,
443 struct rb_node *rb_parent)
445 struct address_space *mapping = NULL;
447 if (vma->vm_file)
448 mapping = vma->vm_file->f_mapping;
450 if (mapping) {
451 spin_lock(&mapping->i_mmap_lock);
452 vma->vm_truncate_count = mapping->truncate_count;
454 anon_vma_lock(vma);
456 __vma_link(mm, vma, prev, rb_link, rb_parent);
457 __vma_link_file(vma);
459 anon_vma_unlock(vma);
460 if (mapping)
461 spin_unlock(&mapping->i_mmap_lock);
463 mm->map_count++;
464 validate_mm(mm);
468 * Helper for vma_adjust in the split_vma insert case:
469 * insert vm structure into list and rbtree and anon_vma,
470 * but it has already been inserted into prio_tree earlier.
472 static void
473 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
475 struct vm_area_struct * __vma, * prev;
476 struct rb_node ** rb_link, * rb_parent;
478 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
479 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
480 __vma_link(mm, vma, prev, rb_link, rb_parent);
481 mm->map_count++;
484 static inline void
485 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
486 struct vm_area_struct *prev)
488 prev->vm_next = vma->vm_next;
489 rb_erase(&vma->vm_rb, &mm->mm_rb);
490 if (mm->mmap_cache == vma)
491 mm->mmap_cache = prev;
495 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
496 * is already present in an i_mmap tree without adjusting the tree.
497 * The following helper function should be used when such adjustments
498 * are necessary. The "insert" vma (if any) is to be inserted
499 * before we drop the necessary locks.
501 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
502 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
504 struct mm_struct *mm = vma->vm_mm;
505 struct vm_area_struct *next = vma->vm_next;
506 struct vm_area_struct *importer = NULL;
507 struct address_space *mapping = NULL;
508 struct prio_tree_root *root = NULL;
509 struct file *file = vma->vm_file;
510 struct anon_vma *anon_vma = NULL;
511 long adjust_next = 0;
512 int remove_next = 0;
514 if (next && !insert) {
515 if (end >= next->vm_end) {
517 * vma expands, overlapping all the next, and
518 * perhaps the one after too (mprotect case 6).
520 again: remove_next = 1 + (end > next->vm_end);
521 end = next->vm_end;
522 anon_vma = next->anon_vma;
523 importer = vma;
524 } else if (end > next->vm_start) {
526 * vma expands, overlapping part of the next:
527 * mprotect case 5 shifting the boundary up.
529 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
530 anon_vma = next->anon_vma;
531 importer = vma;
532 } else if (end < vma->vm_end) {
534 * vma shrinks, and !insert tells it's not
535 * split_vma inserting another: so it must be
536 * mprotect case 4 shifting the boundary down.
538 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
539 anon_vma = next->anon_vma;
540 importer = next;
544 if (file) {
545 mapping = file->f_mapping;
546 if (!(vma->vm_flags & VM_NONLINEAR))
547 root = &mapping->i_mmap;
548 spin_lock(&mapping->i_mmap_lock);
549 if (importer &&
550 vma->vm_truncate_count != next->vm_truncate_count) {
552 * unmap_mapping_range might be in progress:
553 * ensure that the expanding vma is rescanned.
555 importer->vm_truncate_count = 0;
557 if (insert) {
558 insert->vm_truncate_count = vma->vm_truncate_count;
560 * Put into prio_tree now, so instantiated pages
561 * are visible to arm/parisc __flush_dcache_page
562 * throughout; but we cannot insert into address
563 * space until vma start or end is updated.
565 __vma_link_file(insert);
570 * When changing only vma->vm_end, we don't really need
571 * anon_vma lock: but is that case worth optimizing out?
573 if (vma->anon_vma)
574 anon_vma = vma->anon_vma;
575 if (anon_vma) {
576 spin_lock(&anon_vma->lock);
578 * Easily overlooked: when mprotect shifts the boundary,
579 * make sure the expanding vma has anon_vma set if the
580 * shrinking vma had, to cover any anon pages imported.
582 if (importer && !importer->anon_vma) {
583 importer->anon_vma = anon_vma;
584 __anon_vma_link(importer);
588 if (root) {
589 flush_dcache_mmap_lock(mapping);
590 vma_prio_tree_remove(vma, root);
591 if (adjust_next)
592 vma_prio_tree_remove(next, root);
595 vma->vm_start = start;
596 vma->vm_end = end;
597 vma->vm_pgoff = pgoff;
598 if (adjust_next) {
599 next->vm_start += adjust_next << PAGE_SHIFT;
600 next->vm_pgoff += adjust_next;
603 if (root) {
604 if (adjust_next)
605 vma_prio_tree_insert(next, root);
606 vma_prio_tree_insert(vma, root);
607 flush_dcache_mmap_unlock(mapping);
610 if (remove_next) {
612 * vma_merge has merged next into vma, and needs
613 * us to remove next before dropping the locks.
615 __vma_unlink(mm, next, vma);
616 if (file)
617 __remove_shared_vm_struct(next, file, mapping);
618 if (next->anon_vma)
619 __anon_vma_merge(vma, next);
620 } else if (insert) {
622 * split_vma has split insert from vma, and needs
623 * us to insert it before dropping the locks
624 * (it may either follow vma or precede it).
626 __insert_vm_struct(mm, insert);
629 if (anon_vma)
630 spin_unlock(&anon_vma->lock);
631 if (mapping)
632 spin_unlock(&mapping->i_mmap_lock);
634 if (remove_next) {
635 if (file) {
636 fput(file);
637 if (next->vm_flags & VM_EXECUTABLE)
638 removed_exe_file_vma(mm);
640 mm->map_count--;
641 mpol_put(vma_policy(next));
642 kmem_cache_free(vm_area_cachep, next);
644 * In mprotect's case 6 (see comments on vma_merge),
645 * we must remove another next too. It would clutter
646 * up the code too much to do both in one go.
648 if (remove_next == 2) {
649 next = vma->vm_next;
650 goto again;
654 validate_mm(mm);
658 * If the vma has a ->close operation then the driver probably needs to release
659 * per-vma resources, so we don't attempt to merge those.
661 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
663 static inline int is_mergeable_vma(struct vm_area_struct *vma,
664 struct file *file, unsigned long vm_flags)
666 if (vma->vm_flags != vm_flags)
667 return 0;
668 if (vma->vm_file != file)
669 return 0;
670 if (vma->vm_ops && vma->vm_ops->close)
671 return 0;
672 return 1;
675 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
676 struct anon_vma *anon_vma2)
678 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
682 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
683 * in front of (at a lower virtual address and file offset than) the vma.
685 * We cannot merge two vmas if they have differently assigned (non-NULL)
686 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
688 * We don't check here for the merged mmap wrapping around the end of pagecache
689 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
690 * wrap, nor mmaps which cover the final page at index -1UL.
692 static int
693 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
694 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
696 if (is_mergeable_vma(vma, file, vm_flags) &&
697 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
698 if (vma->vm_pgoff == vm_pgoff)
699 return 1;
701 return 0;
705 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
706 * beyond (at a higher virtual address and file offset than) the vma.
708 * We cannot merge two vmas if they have differently assigned (non-NULL)
709 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
711 static int
712 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
713 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
715 if (is_mergeable_vma(vma, file, vm_flags) &&
716 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
717 pgoff_t vm_pglen;
718 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
719 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
720 return 1;
722 return 0;
726 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
727 * whether that can be merged with its predecessor or its successor.
728 * Or both (it neatly fills a hole).
730 * In most cases - when called for mmap, brk or mremap - [addr,end) is
731 * certain not to be mapped by the time vma_merge is called; but when
732 * called for mprotect, it is certain to be already mapped (either at
733 * an offset within prev, or at the start of next), and the flags of
734 * this area are about to be changed to vm_flags - and the no-change
735 * case has already been eliminated.
737 * The following mprotect cases have to be considered, where AAAA is
738 * the area passed down from mprotect_fixup, never extending beyond one
739 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
741 * AAAA AAAA AAAA AAAA
742 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
743 * cannot merge might become might become might become
744 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
745 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
746 * mremap move: PPPPNNNNNNNN 8
747 * AAAA
748 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
749 * might become case 1 below case 2 below case 3 below
751 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
752 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
754 struct vm_area_struct *vma_merge(struct mm_struct *mm,
755 struct vm_area_struct *prev, unsigned long addr,
756 unsigned long end, unsigned long vm_flags,
757 struct anon_vma *anon_vma, struct file *file,
758 pgoff_t pgoff, struct mempolicy *policy)
760 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
761 struct vm_area_struct *area, *next;
764 * We later require that vma->vm_flags == vm_flags,
765 * so this tests vma->vm_flags & VM_SPECIAL, too.
767 if (vm_flags & VM_SPECIAL)
768 return NULL;
770 if (prev)
771 next = prev->vm_next;
772 else
773 next = mm->mmap;
774 area = next;
775 if (next && next->vm_end == end) /* cases 6, 7, 8 */
776 next = next->vm_next;
779 * Can it merge with the predecessor?
781 if (prev && prev->vm_end == addr &&
782 mpol_equal(vma_policy(prev), policy) &&
783 can_vma_merge_after(prev, vm_flags,
784 anon_vma, file, pgoff)) {
786 * OK, it can. Can we now merge in the successor as well?
788 if (next && end == next->vm_start &&
789 mpol_equal(policy, vma_policy(next)) &&
790 can_vma_merge_before(next, vm_flags,
791 anon_vma, file, pgoff+pglen) &&
792 is_mergeable_anon_vma(prev->anon_vma,
793 next->anon_vma)) {
794 /* cases 1, 6 */
795 vma_adjust(prev, prev->vm_start,
796 next->vm_end, prev->vm_pgoff, NULL);
797 } else /* cases 2, 5, 7 */
798 vma_adjust(prev, prev->vm_start,
799 end, prev->vm_pgoff, NULL);
800 return prev;
804 * Can this new request be merged in front of next?
806 if (next && end == next->vm_start &&
807 mpol_equal(policy, vma_policy(next)) &&
808 can_vma_merge_before(next, vm_flags,
809 anon_vma, file, pgoff+pglen)) {
810 if (prev && addr < prev->vm_end) /* case 4 */
811 vma_adjust(prev, prev->vm_start,
812 addr, prev->vm_pgoff, NULL);
813 else /* cases 3, 8 */
814 vma_adjust(area, addr, next->vm_end,
815 next->vm_pgoff - pglen, NULL);
816 return area;
819 return NULL;
823 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
824 * neighbouring vmas for a suitable anon_vma, before it goes off
825 * to allocate a new anon_vma. It checks because a repetitive
826 * sequence of mprotects and faults may otherwise lead to distinct
827 * anon_vmas being allocated, preventing vma merge in subsequent
828 * mprotect.
830 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
832 struct vm_area_struct *near;
833 unsigned long vm_flags;
835 near = vma->vm_next;
836 if (!near)
837 goto try_prev;
840 * Since only mprotect tries to remerge vmas, match flags
841 * which might be mprotected into each other later on.
842 * Neither mlock nor madvise tries to remerge at present,
843 * so leave their flags as obstructing a merge.
845 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
846 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
848 if (near->anon_vma && vma->vm_end == near->vm_start &&
849 mpol_equal(vma_policy(vma), vma_policy(near)) &&
850 can_vma_merge_before(near, vm_flags,
851 NULL, vma->vm_file, vma->vm_pgoff +
852 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
853 return near->anon_vma;
854 try_prev:
856 * It is potentially slow to have to call find_vma_prev here.
857 * But it's only on the first write fault on the vma, not
858 * every time, and we could devise a way to avoid it later
859 * (e.g. stash info in next's anon_vma_node when assigning
860 * an anon_vma, or when trying vma_merge). Another time.
862 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
863 if (!near)
864 goto none;
866 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
867 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
869 if (near->anon_vma && near->vm_end == vma->vm_start &&
870 mpol_equal(vma_policy(near), vma_policy(vma)) &&
871 can_vma_merge_after(near, vm_flags,
872 NULL, vma->vm_file, vma->vm_pgoff))
873 return near->anon_vma;
874 none:
876 * There's no absolute need to look only at touching neighbours:
877 * we could search further afield for "compatible" anon_vmas.
878 * But it would probably just be a waste of time searching,
879 * or lead to too many vmas hanging off the same anon_vma.
880 * We're trying to allow mprotect remerging later on,
881 * not trying to minimize memory used for anon_vmas.
883 return NULL;
886 #ifdef CONFIG_PROC_FS
887 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
888 struct file *file, long pages)
890 const unsigned long stack_flags
891 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
893 if (file) {
894 mm->shared_vm += pages;
895 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
896 mm->exec_vm += pages;
897 } else if (flags & stack_flags)
898 mm->stack_vm += pages;
899 if (flags & (VM_RESERVED|VM_IO))
900 mm->reserved_vm += pages;
902 #endif /* CONFIG_PROC_FS */
905 * The caller must hold down_write(current->mm->mmap_sem).
908 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
909 unsigned long len, unsigned long prot,
910 unsigned long flags, unsigned long pgoff)
912 struct mm_struct * mm = current->mm;
913 struct inode *inode;
914 unsigned int vm_flags;
915 int error;
916 int accountable = 1;
917 unsigned long reqprot = prot;
920 * Does the application expect PROT_READ to imply PROT_EXEC?
922 * (the exception is when the underlying filesystem is noexec
923 * mounted, in which case we dont add PROT_EXEC.)
925 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
926 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
927 prot |= PROT_EXEC;
929 if (!len)
930 return -EINVAL;
932 if (!(flags & MAP_FIXED))
933 addr = round_hint_to_min(addr);
935 error = arch_mmap_check(addr, len, flags);
936 if (error)
937 return error;
939 /* Careful about overflows.. */
940 len = PAGE_ALIGN(len);
941 if (!len || len > TASK_SIZE)
942 return -ENOMEM;
944 /* offset overflow? */
945 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
946 return -EOVERFLOW;
948 /* Too many mappings? */
949 if (mm->map_count > sysctl_max_map_count)
950 return -ENOMEM;
952 /* Obtain the address to map to. we verify (or select) it and ensure
953 * that it represents a valid section of the address space.
955 addr = get_unmapped_area(file, addr, len, pgoff, flags);
956 if (addr & ~PAGE_MASK)
957 return addr;
959 /* Do simple checking here so the lower-level routines won't have
960 * to. we assume access permissions have been handled by the open
961 * of the memory object, so we don't do any here.
963 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
964 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
966 if (flags & MAP_LOCKED) {
967 if (!can_do_mlock())
968 return -EPERM;
969 vm_flags |= VM_LOCKED;
971 /* mlock MCL_FUTURE? */
972 if (vm_flags & VM_LOCKED) {
973 unsigned long locked, lock_limit;
974 locked = len >> PAGE_SHIFT;
975 locked += mm->locked_vm;
976 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
977 lock_limit >>= PAGE_SHIFT;
978 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
979 return -EAGAIN;
982 inode = file ? file->f_path.dentry->d_inode : NULL;
984 if (file) {
985 switch (flags & MAP_TYPE) {
986 case MAP_SHARED:
987 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
988 return -EACCES;
991 * Make sure we don't allow writing to an append-only
992 * file..
994 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
995 return -EACCES;
998 * Make sure there are no mandatory locks on the file.
1000 if (locks_verify_locked(inode))
1001 return -EAGAIN;
1003 vm_flags |= VM_SHARED | VM_MAYSHARE;
1004 if (!(file->f_mode & FMODE_WRITE))
1005 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1007 /* fall through */
1008 case MAP_PRIVATE:
1009 if (!(file->f_mode & FMODE_READ))
1010 return -EACCES;
1011 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1012 if (vm_flags & VM_EXEC)
1013 return -EPERM;
1014 vm_flags &= ~VM_MAYEXEC;
1016 if (is_file_hugepages(file))
1017 accountable = 0;
1019 if (!file->f_op || !file->f_op->mmap)
1020 return -ENODEV;
1021 break;
1023 default:
1024 return -EINVAL;
1026 } else {
1027 switch (flags & MAP_TYPE) {
1028 case MAP_SHARED:
1029 vm_flags |= VM_SHARED | VM_MAYSHARE;
1030 break;
1031 case MAP_PRIVATE:
1033 * Set pgoff according to addr for anon_vma.
1035 pgoff = addr >> PAGE_SHIFT;
1036 break;
1037 default:
1038 return -EINVAL;
1042 error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1043 if (error)
1044 return error;
1046 return mmap_region(file, addr, len, flags, vm_flags, pgoff,
1047 accountable);
1049 EXPORT_SYMBOL(do_mmap_pgoff);
1052 * Some shared mappigns will want the pages marked read-only
1053 * to track write events. If so, we'll downgrade vm_page_prot
1054 * to the private version (using protection_map[] without the
1055 * VM_SHARED bit).
1057 int vma_wants_writenotify(struct vm_area_struct *vma)
1059 unsigned int vm_flags = vma->vm_flags;
1061 /* If it was private or non-writable, the write bit is already clear */
1062 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1063 return 0;
1065 /* The backer wishes to know when pages are first written to? */
1066 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1067 return 1;
1069 /* The open routine did something to the protections already? */
1070 if (pgprot_val(vma->vm_page_prot) !=
1071 pgprot_val(vm_get_page_prot(vm_flags)))
1072 return 0;
1074 /* Specialty mapping? */
1075 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1076 return 0;
1078 /* Can the mapping track the dirty pages? */
1079 return vma->vm_file && vma->vm_file->f_mapping &&
1080 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1083 unsigned long mmap_region(struct file *file, unsigned long addr,
1084 unsigned long len, unsigned long flags,
1085 unsigned int vm_flags, unsigned long pgoff,
1086 int accountable)
1088 struct mm_struct *mm = current->mm;
1089 struct vm_area_struct *vma, *prev;
1090 int correct_wcount = 0;
1091 int error;
1092 struct rb_node **rb_link, *rb_parent;
1093 unsigned long charged = 0;
1094 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1096 /* Clear old maps */
1097 error = -ENOMEM;
1098 munmap_back:
1099 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1100 if (vma && vma->vm_start < addr + len) {
1101 if (do_munmap(mm, addr, len))
1102 return -ENOMEM;
1103 goto munmap_back;
1106 /* Check against address space limit. */
1107 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1108 return -ENOMEM;
1110 if (accountable && (!(flags & MAP_NORESERVE) ||
1111 sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
1112 if (vm_flags & VM_SHARED) {
1113 /* Check memory availability in shmem_file_setup? */
1114 vm_flags |= VM_ACCOUNT;
1115 } else if (vm_flags & VM_WRITE) {
1117 * Private writable mapping: check memory availability
1119 charged = len >> PAGE_SHIFT;
1120 if (security_vm_enough_memory(charged))
1121 return -ENOMEM;
1122 vm_flags |= VM_ACCOUNT;
1127 * Can we just expand an old private anonymous mapping?
1128 * The VM_SHARED test is necessary because shmem_zero_setup
1129 * will create the file object for a shared anonymous map below.
1131 if (!file && !(vm_flags & VM_SHARED) &&
1132 vma_merge(mm, prev, addr, addr + len, vm_flags,
1133 NULL, NULL, pgoff, NULL))
1134 goto out;
1137 * Determine the object being mapped and call the appropriate
1138 * specific mapper. the address has already been validated, but
1139 * not unmapped, but the maps are removed from the list.
1141 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1142 if (!vma) {
1143 error = -ENOMEM;
1144 goto unacct_error;
1147 vma->vm_mm = mm;
1148 vma->vm_start = addr;
1149 vma->vm_end = addr + len;
1150 vma->vm_flags = vm_flags;
1151 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1152 vma->vm_pgoff = pgoff;
1154 if (file) {
1155 error = -EINVAL;
1156 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1157 goto free_vma;
1158 if (vm_flags & VM_DENYWRITE) {
1159 error = deny_write_access(file);
1160 if (error)
1161 goto free_vma;
1162 correct_wcount = 1;
1164 vma->vm_file = file;
1165 get_file(file);
1166 error = file->f_op->mmap(file, vma);
1167 if (error)
1168 goto unmap_and_free_vma;
1169 if (vm_flags & VM_EXECUTABLE)
1170 added_exe_file_vma(mm);
1171 } else if (vm_flags & VM_SHARED) {
1172 error = shmem_zero_setup(vma);
1173 if (error)
1174 goto free_vma;
1177 /* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1178 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1179 * that memory reservation must be checked; but that reservation
1180 * belongs to shared memory object, not to vma: so now clear it.
1182 if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
1183 vma->vm_flags &= ~VM_ACCOUNT;
1185 /* Can addr have changed??
1187 * Answer: Yes, several device drivers can do it in their
1188 * f_op->mmap method. -DaveM
1190 addr = vma->vm_start;
1191 pgoff = vma->vm_pgoff;
1192 vm_flags = vma->vm_flags;
1194 if (vma_wants_writenotify(vma))
1195 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1197 if (file && vma_merge(mm, prev, addr, vma->vm_end,
1198 vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) {
1199 mpol_put(vma_policy(vma));
1200 kmem_cache_free(vm_area_cachep, vma);
1201 fput(file);
1202 if (vm_flags & VM_EXECUTABLE)
1203 removed_exe_file_vma(mm);
1204 } else {
1205 vma_link(mm, vma, prev, rb_link, rb_parent);
1206 file = vma->vm_file;
1209 /* Once vma denies write, undo our temporary denial count */
1210 if (correct_wcount)
1211 atomic_inc(&inode->i_writecount);
1212 out:
1213 mm->total_vm += len >> PAGE_SHIFT;
1214 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1215 if (vm_flags & VM_LOCKED) {
1216 mm->locked_vm += len >> PAGE_SHIFT;
1217 make_pages_present(addr, addr + len);
1219 if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1220 make_pages_present(addr, addr + len);
1221 return addr;
1223 unmap_and_free_vma:
1224 if (correct_wcount)
1225 atomic_inc(&inode->i_writecount);
1226 vma->vm_file = NULL;
1227 fput(file);
1229 /* Undo any partial mapping done by a device driver. */
1230 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1231 charged = 0;
1232 free_vma:
1233 kmem_cache_free(vm_area_cachep, vma);
1234 unacct_error:
1235 if (charged)
1236 vm_unacct_memory(charged);
1237 return error;
1240 /* Get an address range which is currently unmapped.
1241 * For shmat() with addr=0.
1243 * Ugly calling convention alert:
1244 * Return value with the low bits set means error value,
1245 * ie
1246 * if (ret & ~PAGE_MASK)
1247 * error = ret;
1249 * This function "knows" that -ENOMEM has the bits set.
1251 #ifndef HAVE_ARCH_UNMAPPED_AREA
1252 unsigned long
1253 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1254 unsigned long len, unsigned long pgoff, unsigned long flags)
1256 struct mm_struct *mm = current->mm;
1257 struct vm_area_struct *vma;
1258 unsigned long start_addr;
1260 if (len > TASK_SIZE)
1261 return -ENOMEM;
1263 if (flags & MAP_FIXED)
1264 return addr;
1266 if (addr) {
1267 addr = PAGE_ALIGN(addr);
1268 vma = find_vma(mm, addr);
1269 if (TASK_SIZE - len >= addr &&
1270 (!vma || addr + len <= vma->vm_start))
1271 return addr;
1273 if (len > mm->cached_hole_size) {
1274 start_addr = addr = mm->free_area_cache;
1275 } else {
1276 start_addr = addr = TASK_UNMAPPED_BASE;
1277 mm->cached_hole_size = 0;
1280 full_search:
1281 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1282 /* At this point: (!vma || addr < vma->vm_end). */
1283 if (TASK_SIZE - len < addr) {
1285 * Start a new search - just in case we missed
1286 * some holes.
1288 if (start_addr != TASK_UNMAPPED_BASE) {
1289 addr = TASK_UNMAPPED_BASE;
1290 start_addr = addr;
1291 mm->cached_hole_size = 0;
1292 goto full_search;
1294 return -ENOMEM;
1296 if (!vma || addr + len <= vma->vm_start) {
1298 * Remember the place where we stopped the search:
1300 mm->free_area_cache = addr + len;
1301 return addr;
1303 if (addr + mm->cached_hole_size < vma->vm_start)
1304 mm->cached_hole_size = vma->vm_start - addr;
1305 addr = vma->vm_end;
1308 #endif
1310 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1313 * Is this a new hole at the lowest possible address?
1315 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1316 mm->free_area_cache = addr;
1317 mm->cached_hole_size = ~0UL;
1322 * This mmap-allocator allocates new areas top-down from below the
1323 * stack's low limit (the base):
1325 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1326 unsigned long
1327 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1328 const unsigned long len, const unsigned long pgoff,
1329 const unsigned long flags)
1331 struct vm_area_struct *vma;
1332 struct mm_struct *mm = current->mm;
1333 unsigned long addr = addr0;
1335 /* requested length too big for entire address space */
1336 if (len > TASK_SIZE)
1337 return -ENOMEM;
1339 if (flags & MAP_FIXED)
1340 return addr;
1342 /* requesting a specific address */
1343 if (addr) {
1344 addr = PAGE_ALIGN(addr);
1345 vma = find_vma(mm, addr);
1346 if (TASK_SIZE - len >= addr &&
1347 (!vma || addr + len <= vma->vm_start))
1348 return addr;
1351 /* check if free_area_cache is useful for us */
1352 if (len <= mm->cached_hole_size) {
1353 mm->cached_hole_size = 0;
1354 mm->free_area_cache = mm->mmap_base;
1357 /* either no address requested or can't fit in requested address hole */
1358 addr = mm->free_area_cache;
1360 /* make sure it can fit in the remaining address space */
1361 if (addr > len) {
1362 vma = find_vma(mm, addr-len);
1363 if (!vma || addr <= vma->vm_start)
1364 /* remember the address as a hint for next time */
1365 return (mm->free_area_cache = addr-len);
1368 if (mm->mmap_base < len)
1369 goto bottomup;
1371 addr = mm->mmap_base-len;
1373 do {
1375 * Lookup failure means no vma is above this address,
1376 * else if new region fits below vma->vm_start,
1377 * return with success:
1379 vma = find_vma(mm, addr);
1380 if (!vma || addr+len <= vma->vm_start)
1381 /* remember the address as a hint for next time */
1382 return (mm->free_area_cache = addr);
1384 /* remember the largest hole we saw so far */
1385 if (addr + mm->cached_hole_size < vma->vm_start)
1386 mm->cached_hole_size = vma->vm_start - addr;
1388 /* try just below the current vma->vm_start */
1389 addr = vma->vm_start-len;
1390 } while (len < vma->vm_start);
1392 bottomup:
1394 * A failed mmap() very likely causes application failure,
1395 * so fall back to the bottom-up function here. This scenario
1396 * can happen with large stack limits and large mmap()
1397 * allocations.
1399 mm->cached_hole_size = ~0UL;
1400 mm->free_area_cache = TASK_UNMAPPED_BASE;
1401 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1403 * Restore the topdown base:
1405 mm->free_area_cache = mm->mmap_base;
1406 mm->cached_hole_size = ~0UL;
1408 return addr;
1410 #endif
1412 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1415 * Is this a new hole at the highest possible address?
1417 if (addr > mm->free_area_cache)
1418 mm->free_area_cache = addr;
1420 /* dont allow allocations above current base */
1421 if (mm->free_area_cache > mm->mmap_base)
1422 mm->free_area_cache = mm->mmap_base;
1425 unsigned long
1426 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1427 unsigned long pgoff, unsigned long flags)
1429 unsigned long (*get_area)(struct file *, unsigned long,
1430 unsigned long, unsigned long, unsigned long);
1432 get_area = current->mm->get_unmapped_area;
1433 if (file && file->f_op && file->f_op->get_unmapped_area)
1434 get_area = file->f_op->get_unmapped_area;
1435 addr = get_area(file, addr, len, pgoff, flags);
1436 if (IS_ERR_VALUE(addr))
1437 return addr;
1439 if (addr > TASK_SIZE - len)
1440 return -ENOMEM;
1441 if (addr & ~PAGE_MASK)
1442 return -EINVAL;
1444 return arch_rebalance_pgtables(addr, len);
1447 EXPORT_SYMBOL(get_unmapped_area);
1449 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1450 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
1452 struct vm_area_struct *vma = NULL;
1454 if (mm) {
1455 /* Check the cache first. */
1456 /* (Cache hit rate is typically around 35%.) */
1457 vma = mm->mmap_cache;
1458 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1459 struct rb_node * rb_node;
1461 rb_node = mm->mm_rb.rb_node;
1462 vma = NULL;
1464 while (rb_node) {
1465 struct vm_area_struct * vma_tmp;
1467 vma_tmp = rb_entry(rb_node,
1468 struct vm_area_struct, vm_rb);
1470 if (vma_tmp->vm_end > addr) {
1471 vma = vma_tmp;
1472 if (vma_tmp->vm_start <= addr)
1473 break;
1474 rb_node = rb_node->rb_left;
1475 } else
1476 rb_node = rb_node->rb_right;
1478 if (vma)
1479 mm->mmap_cache = vma;
1482 return vma;
1485 EXPORT_SYMBOL(find_vma);
1487 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1488 struct vm_area_struct *
1489 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1490 struct vm_area_struct **pprev)
1492 struct vm_area_struct *vma = NULL, *prev = NULL;
1493 struct rb_node * rb_node;
1494 if (!mm)
1495 goto out;
1497 /* Guard against addr being lower than the first VMA */
1498 vma = mm->mmap;
1500 /* Go through the RB tree quickly. */
1501 rb_node = mm->mm_rb.rb_node;
1503 while (rb_node) {
1504 struct vm_area_struct *vma_tmp;
1505 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1507 if (addr < vma_tmp->vm_end) {
1508 rb_node = rb_node->rb_left;
1509 } else {
1510 prev = vma_tmp;
1511 if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1512 break;
1513 rb_node = rb_node->rb_right;
1517 out:
1518 *pprev = prev;
1519 return prev ? prev->vm_next : vma;
1523 * Verify that the stack growth is acceptable and
1524 * update accounting. This is shared with both the
1525 * grow-up and grow-down cases.
1527 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow)
1529 struct mm_struct *mm = vma->vm_mm;
1530 struct rlimit *rlim = current->signal->rlim;
1531 unsigned long new_start;
1533 /* address space limit tests */
1534 if (!may_expand_vm(mm, grow))
1535 return -ENOMEM;
1537 /* Stack limit test */
1538 if (size > rlim[RLIMIT_STACK].rlim_cur)
1539 return -ENOMEM;
1541 /* mlock limit tests */
1542 if (vma->vm_flags & VM_LOCKED) {
1543 unsigned long locked;
1544 unsigned long limit;
1545 locked = mm->locked_vm + grow;
1546 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1547 if (locked > limit && !capable(CAP_IPC_LOCK))
1548 return -ENOMEM;
1551 /* Check to ensure the stack will not grow into a hugetlb-only region */
1552 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1553 vma->vm_end - size;
1554 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1555 return -EFAULT;
1558 * Overcommit.. This must be the final test, as it will
1559 * update security statistics.
1561 if (security_vm_enough_memory(grow))
1562 return -ENOMEM;
1564 /* Ok, everything looks good - let it rip */
1565 mm->total_vm += grow;
1566 if (vma->vm_flags & VM_LOCKED)
1567 mm->locked_vm += grow;
1568 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1569 return 0;
1572 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1574 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1575 * vma is the last one with address > vma->vm_end. Have to extend vma.
1577 #ifndef CONFIG_IA64
1578 static inline
1579 #endif
1580 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1582 int error;
1584 if (!(vma->vm_flags & VM_GROWSUP))
1585 return -EFAULT;
1588 * We must make sure the anon_vma is allocated
1589 * so that the anon_vma locking is not a noop.
1591 if (unlikely(anon_vma_prepare(vma)))
1592 return -ENOMEM;
1593 anon_vma_lock(vma);
1596 * vma->vm_start/vm_end cannot change under us because the caller
1597 * is required to hold the mmap_sem in read mode. We need the
1598 * anon_vma lock to serialize against concurrent expand_stacks.
1599 * Also guard against wrapping around to address 0.
1601 if (address < PAGE_ALIGN(address+4))
1602 address = PAGE_ALIGN(address+4);
1603 else {
1604 anon_vma_unlock(vma);
1605 return -ENOMEM;
1607 error = 0;
1609 /* Somebody else might have raced and expanded it already */
1610 if (address > vma->vm_end) {
1611 unsigned long size, grow;
1613 size = address - vma->vm_start;
1614 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1616 error = acct_stack_growth(vma, size, grow);
1617 if (!error)
1618 vma->vm_end = address;
1620 anon_vma_unlock(vma);
1621 return error;
1623 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1626 * vma is the first one with address < vma->vm_start. Have to extend vma.
1628 static inline int expand_downwards(struct vm_area_struct *vma,
1629 unsigned long address)
1631 int error;
1634 * We must make sure the anon_vma is allocated
1635 * so that the anon_vma locking is not a noop.
1637 if (unlikely(anon_vma_prepare(vma)))
1638 return -ENOMEM;
1640 address &= PAGE_MASK;
1641 error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1642 if (error)
1643 return error;
1645 anon_vma_lock(vma);
1648 * vma->vm_start/vm_end cannot change under us because the caller
1649 * is required to hold the mmap_sem in read mode. We need the
1650 * anon_vma lock to serialize against concurrent expand_stacks.
1653 /* Somebody else might have raced and expanded it already */
1654 if (address < vma->vm_start) {
1655 unsigned long size, grow;
1657 size = vma->vm_end - address;
1658 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1660 error = acct_stack_growth(vma, size, grow);
1661 if (!error) {
1662 vma->vm_start = address;
1663 vma->vm_pgoff -= grow;
1666 anon_vma_unlock(vma);
1667 return error;
1670 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1672 return expand_downwards(vma, address);
1675 #ifdef CONFIG_STACK_GROWSUP
1676 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1678 return expand_upwards(vma, address);
1681 struct vm_area_struct *
1682 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1684 struct vm_area_struct *vma, *prev;
1686 addr &= PAGE_MASK;
1687 vma = find_vma_prev(mm, addr, &prev);
1688 if (vma && (vma->vm_start <= addr))
1689 return vma;
1690 if (!prev || expand_stack(prev, addr))
1691 return NULL;
1692 if (prev->vm_flags & VM_LOCKED)
1693 make_pages_present(addr, prev->vm_end);
1694 return prev;
1696 #else
1697 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1699 return expand_downwards(vma, address);
1702 struct vm_area_struct *
1703 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1705 struct vm_area_struct * vma;
1706 unsigned long start;
1708 addr &= PAGE_MASK;
1709 vma = find_vma(mm,addr);
1710 if (!vma)
1711 return NULL;
1712 if (vma->vm_start <= addr)
1713 return vma;
1714 if (!(vma->vm_flags & VM_GROWSDOWN))
1715 return NULL;
1716 start = vma->vm_start;
1717 if (expand_stack(vma, addr))
1718 return NULL;
1719 if (vma->vm_flags & VM_LOCKED)
1720 make_pages_present(addr, start);
1721 return vma;
1723 #endif
1726 * Ok - we have the memory areas we should free on the vma list,
1727 * so release them, and do the vma updates.
1729 * Called with the mm semaphore held.
1731 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1733 /* Update high watermark before we lower total_vm */
1734 update_hiwater_vm(mm);
1735 do {
1736 long nrpages = vma_pages(vma);
1738 mm->total_vm -= nrpages;
1739 if (vma->vm_flags & VM_LOCKED)
1740 mm->locked_vm -= nrpages;
1741 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1742 vma = remove_vma(vma);
1743 } while (vma);
1744 validate_mm(mm);
1748 * Get rid of page table information in the indicated region.
1750 * Called with the mm semaphore held.
1752 static void unmap_region(struct mm_struct *mm,
1753 struct vm_area_struct *vma, struct vm_area_struct *prev,
1754 unsigned long start, unsigned long end)
1756 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1757 struct mmu_gather *tlb;
1758 unsigned long nr_accounted = 0;
1760 lru_add_drain();
1761 tlb = tlb_gather_mmu(mm, 0);
1762 update_hiwater_rss(mm);
1763 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1764 vm_unacct_memory(nr_accounted);
1765 free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1766 next? next->vm_start: 0);
1767 tlb_finish_mmu(tlb, start, end);
1771 * Create a list of vma's touched by the unmap, removing them from the mm's
1772 * vma list as we go..
1774 static void
1775 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1776 struct vm_area_struct *prev, unsigned long end)
1778 struct vm_area_struct **insertion_point;
1779 struct vm_area_struct *tail_vma = NULL;
1780 unsigned long addr;
1782 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1783 do {
1784 rb_erase(&vma->vm_rb, &mm->mm_rb);
1785 mm->map_count--;
1786 tail_vma = vma;
1787 vma = vma->vm_next;
1788 } while (vma && vma->vm_start < end);
1789 *insertion_point = vma;
1790 tail_vma->vm_next = NULL;
1791 if (mm->unmap_area == arch_unmap_area)
1792 addr = prev ? prev->vm_end : mm->mmap_base;
1793 else
1794 addr = vma ? vma->vm_start : mm->mmap_base;
1795 mm->unmap_area(mm, addr);
1796 mm->mmap_cache = NULL; /* Kill the cache. */
1800 * Split a vma into two pieces at address 'addr', a new vma is allocated
1801 * either for the first part or the tail.
1803 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1804 unsigned long addr, int new_below)
1806 struct mempolicy *pol;
1807 struct vm_area_struct *new;
1809 if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK))
1810 return -EINVAL;
1812 if (mm->map_count >= sysctl_max_map_count)
1813 return -ENOMEM;
1815 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1816 if (!new)
1817 return -ENOMEM;
1819 /* most fields are the same, copy all, and then fixup */
1820 *new = *vma;
1822 if (new_below)
1823 new->vm_end = addr;
1824 else {
1825 new->vm_start = addr;
1826 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1829 pol = mpol_dup(vma_policy(vma));
1830 if (IS_ERR(pol)) {
1831 kmem_cache_free(vm_area_cachep, new);
1832 return PTR_ERR(pol);
1834 vma_set_policy(new, pol);
1836 if (new->vm_file) {
1837 get_file(new->vm_file);
1838 if (vma->vm_flags & VM_EXECUTABLE)
1839 added_exe_file_vma(mm);
1842 if (new->vm_ops && new->vm_ops->open)
1843 new->vm_ops->open(new);
1845 if (new_below)
1846 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1847 ((addr - new->vm_start) >> PAGE_SHIFT), new);
1848 else
1849 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1851 return 0;
1854 /* Munmap is split into 2 main parts -- this part which finds
1855 * what needs doing, and the areas themselves, which do the
1856 * work. This now handles partial unmappings.
1857 * Jeremy Fitzhardinge <jeremy@goop.org>
1859 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1861 unsigned long end;
1862 struct vm_area_struct *vma, *prev, *last;
1864 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1865 return -EINVAL;
1867 if ((len = PAGE_ALIGN(len)) == 0)
1868 return -EINVAL;
1870 /* Find the first overlapping VMA */
1871 vma = find_vma_prev(mm, start, &prev);
1872 if (!vma)
1873 return 0;
1874 /* we have start < vma->vm_end */
1876 /* if it doesn't overlap, we have nothing.. */
1877 end = start + len;
1878 if (vma->vm_start >= end)
1879 return 0;
1882 * If we need to split any vma, do it now to save pain later.
1884 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1885 * unmapped vm_area_struct will remain in use: so lower split_vma
1886 * places tmp vma above, and higher split_vma places tmp vma below.
1888 if (start > vma->vm_start) {
1889 int error = split_vma(mm, vma, start, 0);
1890 if (error)
1891 return error;
1892 prev = vma;
1895 /* Does it split the last one? */
1896 last = find_vma(mm, end);
1897 if (last && end > last->vm_start) {
1898 int error = split_vma(mm, last, end, 1);
1899 if (error)
1900 return error;
1902 vma = prev? prev->vm_next: mm->mmap;
1905 * Remove the vma's, and unmap the actual pages
1907 detach_vmas_to_be_unmapped(mm, vma, prev, end);
1908 unmap_region(mm, vma, prev, start, end);
1910 /* Fix up all other VM information */
1911 remove_vma_list(mm, vma);
1913 return 0;
1916 EXPORT_SYMBOL(do_munmap);
1918 asmlinkage long sys_munmap(unsigned long addr, size_t len)
1920 int ret;
1921 struct mm_struct *mm = current->mm;
1923 profile_munmap(addr);
1925 down_write(&mm->mmap_sem);
1926 ret = do_munmap(mm, addr, len);
1927 up_write(&mm->mmap_sem);
1928 return ret;
1931 static inline void verify_mm_writelocked(struct mm_struct *mm)
1933 #ifdef CONFIG_DEBUG_VM
1934 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1935 WARN_ON(1);
1936 up_read(&mm->mmap_sem);
1938 #endif
1942 * this is really a simplified "do_mmap". it only handles
1943 * anonymous maps. eventually we may be able to do some
1944 * brk-specific accounting here.
1946 unsigned long do_brk(unsigned long addr, unsigned long len)
1948 struct mm_struct * mm = current->mm;
1949 struct vm_area_struct * vma, * prev;
1950 unsigned long flags;
1951 struct rb_node ** rb_link, * rb_parent;
1952 pgoff_t pgoff = addr >> PAGE_SHIFT;
1953 int error;
1955 len = PAGE_ALIGN(len);
1956 if (!len)
1957 return addr;
1959 if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1960 return -EINVAL;
1962 if (is_hugepage_only_range(mm, addr, len))
1963 return -EINVAL;
1965 error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
1966 if (error)
1967 return error;
1969 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1971 error = arch_mmap_check(addr, len, flags);
1972 if (error)
1973 return error;
1976 * mlock MCL_FUTURE?
1978 if (mm->def_flags & VM_LOCKED) {
1979 unsigned long locked, lock_limit;
1980 locked = len >> PAGE_SHIFT;
1981 locked += mm->locked_vm;
1982 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1983 lock_limit >>= PAGE_SHIFT;
1984 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1985 return -EAGAIN;
1989 * mm->mmap_sem is required to protect against another thread
1990 * changing the mappings in case we sleep.
1992 verify_mm_writelocked(mm);
1995 * Clear old maps. this also does some error checking for us
1997 munmap_back:
1998 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1999 if (vma && vma->vm_start < addr + len) {
2000 if (do_munmap(mm, addr, len))
2001 return -ENOMEM;
2002 goto munmap_back;
2005 /* Check against address space limits *after* clearing old maps... */
2006 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2007 return -ENOMEM;
2009 if (mm->map_count > sysctl_max_map_count)
2010 return -ENOMEM;
2012 if (security_vm_enough_memory(len >> PAGE_SHIFT))
2013 return -ENOMEM;
2015 /* Can we just expand an old private anonymous mapping? */
2016 if (vma_merge(mm, prev, addr, addr + len, flags,
2017 NULL, NULL, pgoff, NULL))
2018 goto out;
2021 * create a vma struct for an anonymous mapping
2023 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2024 if (!vma) {
2025 vm_unacct_memory(len >> PAGE_SHIFT);
2026 return -ENOMEM;
2029 vma->vm_mm = mm;
2030 vma->vm_start = addr;
2031 vma->vm_end = addr + len;
2032 vma->vm_pgoff = pgoff;
2033 vma->vm_flags = flags;
2034 vma->vm_page_prot = vm_get_page_prot(flags);
2035 vma_link(mm, vma, prev, rb_link, rb_parent);
2036 out:
2037 mm->total_vm += len >> PAGE_SHIFT;
2038 if (flags & VM_LOCKED) {
2039 mm->locked_vm += len >> PAGE_SHIFT;
2040 make_pages_present(addr, addr + len);
2042 return addr;
2045 EXPORT_SYMBOL(do_brk);
2047 /* Release all mmaps. */
2048 void exit_mmap(struct mm_struct *mm)
2050 struct mmu_gather *tlb;
2051 struct vm_area_struct *vma = mm->mmap;
2052 unsigned long nr_accounted = 0;
2053 unsigned long end;
2055 /* mm's last user has gone, and its about to be pulled down */
2056 arch_exit_mmap(mm);
2058 lru_add_drain();
2059 flush_cache_mm(mm);
2060 tlb = tlb_gather_mmu(mm, 1);
2061 /* Don't update_hiwater_rss(mm) here, do_exit already did */
2062 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2063 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2064 vm_unacct_memory(nr_accounted);
2065 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2066 tlb_finish_mmu(tlb, 0, end);
2069 * Walk the list again, actually closing and freeing it,
2070 * with preemption enabled, without holding any MM locks.
2072 while (vma)
2073 vma = remove_vma(vma);
2075 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2078 /* Insert vm structure into process list sorted by address
2079 * and into the inode's i_mmap tree. If vm_file is non-NULL
2080 * then i_mmap_lock is taken here.
2082 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2084 struct vm_area_struct * __vma, * prev;
2085 struct rb_node ** rb_link, * rb_parent;
2088 * The vm_pgoff of a purely anonymous vma should be irrelevant
2089 * until its first write fault, when page's anon_vma and index
2090 * are set. But now set the vm_pgoff it will almost certainly
2091 * end up with (unless mremap moves it elsewhere before that
2092 * first wfault), so /proc/pid/maps tells a consistent story.
2094 * By setting it to reflect the virtual start address of the
2095 * vma, merges and splits can happen in a seamless way, just
2096 * using the existing file pgoff checks and manipulations.
2097 * Similarly in do_mmap_pgoff and in do_brk.
2099 if (!vma->vm_file) {
2100 BUG_ON(vma->anon_vma);
2101 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2103 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2104 if (__vma && __vma->vm_start < vma->vm_end)
2105 return -ENOMEM;
2106 if ((vma->vm_flags & VM_ACCOUNT) &&
2107 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2108 return -ENOMEM;
2109 vma_link(mm, vma, prev, rb_link, rb_parent);
2110 return 0;
2114 * Copy the vma structure to a new location in the same mm,
2115 * prior to moving page table entries, to effect an mremap move.
2117 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2118 unsigned long addr, unsigned long len, pgoff_t pgoff)
2120 struct vm_area_struct *vma = *vmap;
2121 unsigned long vma_start = vma->vm_start;
2122 struct mm_struct *mm = vma->vm_mm;
2123 struct vm_area_struct *new_vma, *prev;
2124 struct rb_node **rb_link, *rb_parent;
2125 struct mempolicy *pol;
2128 * If anonymous vma has not yet been faulted, update new pgoff
2129 * to match new location, to increase its chance of merging.
2131 if (!vma->vm_file && !vma->anon_vma)
2132 pgoff = addr >> PAGE_SHIFT;
2134 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2135 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2136 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2137 if (new_vma) {
2139 * Source vma may have been merged into new_vma
2141 if (vma_start >= new_vma->vm_start &&
2142 vma_start < new_vma->vm_end)
2143 *vmap = new_vma;
2144 } else {
2145 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2146 if (new_vma) {
2147 *new_vma = *vma;
2148 pol = mpol_dup(vma_policy(vma));
2149 if (IS_ERR(pol)) {
2150 kmem_cache_free(vm_area_cachep, new_vma);
2151 return NULL;
2153 vma_set_policy(new_vma, pol);
2154 new_vma->vm_start = addr;
2155 new_vma->vm_end = addr + len;
2156 new_vma->vm_pgoff = pgoff;
2157 if (new_vma->vm_file) {
2158 get_file(new_vma->vm_file);
2159 if (vma->vm_flags & VM_EXECUTABLE)
2160 added_exe_file_vma(mm);
2162 if (new_vma->vm_ops && new_vma->vm_ops->open)
2163 new_vma->vm_ops->open(new_vma);
2164 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2167 return new_vma;
2171 * Return true if the calling process may expand its vm space by the passed
2172 * number of pages
2174 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2176 unsigned long cur = mm->total_vm; /* pages */
2177 unsigned long lim;
2179 lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2181 if (cur + npages > lim)
2182 return 0;
2183 return 1;
2187 static int special_mapping_fault(struct vm_area_struct *vma,
2188 struct vm_fault *vmf)
2190 pgoff_t pgoff;
2191 struct page **pages;
2194 * special mappings have no vm_file, and in that case, the mm
2195 * uses vm_pgoff internally. So we have to subtract it from here.
2196 * We are allowed to do this because we are the mm; do not copy
2197 * this code into drivers!
2199 pgoff = vmf->pgoff - vma->vm_pgoff;
2201 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2202 pgoff--;
2204 if (*pages) {
2205 struct page *page = *pages;
2206 get_page(page);
2207 vmf->page = page;
2208 return 0;
2211 return VM_FAULT_SIGBUS;
2215 * Having a close hook prevents vma merging regardless of flags.
2217 static void special_mapping_close(struct vm_area_struct *vma)
2221 static struct vm_operations_struct special_mapping_vmops = {
2222 .close = special_mapping_close,
2223 .fault = special_mapping_fault,
2227 * Called with mm->mmap_sem held for writing.
2228 * Insert a new vma covering the given region, with the given flags.
2229 * Its pages are supplied by the given array of struct page *.
2230 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2231 * The region past the last page supplied will always produce SIGBUS.
2232 * The array pointer and the pages it points to are assumed to stay alive
2233 * for as long as this mapping might exist.
2235 int install_special_mapping(struct mm_struct *mm,
2236 unsigned long addr, unsigned long len,
2237 unsigned long vm_flags, struct page **pages)
2239 struct vm_area_struct *vma;
2241 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2242 if (unlikely(vma == NULL))
2243 return -ENOMEM;
2245 vma->vm_mm = mm;
2246 vma->vm_start = addr;
2247 vma->vm_end = addr + len;
2249 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2250 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2252 vma->vm_ops = &special_mapping_vmops;
2253 vma->vm_private_data = pages;
2255 if (unlikely(insert_vm_struct(mm, vma))) {
2256 kmem_cache_free(vm_area_cachep, vma);
2257 return -ENOMEM;
2260 mm->total_vm += len >> PAGE_SHIFT;
2262 return 0;