x86: pat.c final cleanup of loop body in reserve_memtype
[linux-2.6/mini2440.git] / arch / x86 / kernel / irq_32.c
blob147352df28b9c74146a102f6c8b22b17e2b11d6d
1 /*
2 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
4 * This file contains the lowest level x86-specific interrupt
5 * entry, irq-stacks and irq statistics code. All the remaining
6 * irq logic is done by the generic kernel/irq/ code and
7 * by the x86-specific irq controller code. (e.g. i8259.c and
8 * io_apic.c.)
9 */
11 #include <linux/module.h>
12 #include <linux/seq_file.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/notifier.h>
16 #include <linux/cpu.h>
17 #include <linux/delay.h>
19 #include <asm/apic.h>
20 #include <asm/uaccess.h>
22 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
23 EXPORT_PER_CPU_SYMBOL(irq_stat);
25 DEFINE_PER_CPU(struct pt_regs *, irq_regs);
26 EXPORT_PER_CPU_SYMBOL(irq_regs);
29 * 'what should we do if we get a hw irq event on an illegal vector'.
30 * each architecture has to answer this themselves.
32 void ack_bad_irq(unsigned int irq)
34 printk(KERN_ERR "unexpected IRQ trap at vector %02x\n", irq);
36 #ifdef CONFIG_X86_LOCAL_APIC
38 * Currently unexpected vectors happen only on SMP and APIC.
39 * We _must_ ack these because every local APIC has only N
40 * irq slots per priority level, and a 'hanging, unacked' IRQ
41 * holds up an irq slot - in excessive cases (when multiple
42 * unexpected vectors occur) that might lock up the APIC
43 * completely.
44 * But only ack when the APIC is enabled -AK
46 if (cpu_has_apic)
47 ack_APIC_irq();
48 #endif
51 #ifdef CONFIG_4KSTACKS
53 * per-CPU IRQ handling contexts (thread information and stack)
55 union irq_ctx {
56 struct thread_info tinfo;
57 u32 stack[THREAD_SIZE/sizeof(u32)];
60 static union irq_ctx *hardirq_ctx[NR_CPUS] __read_mostly;
61 static union irq_ctx *softirq_ctx[NR_CPUS] __read_mostly;
62 #endif
65 * do_IRQ handles all normal device IRQ's (the special
66 * SMP cross-CPU interrupts have their own specific
67 * handlers).
69 unsigned int do_IRQ(struct pt_regs *regs)
71 struct pt_regs *old_regs;
72 /* high bit used in ret_from_ code */
73 int irq = ~regs->orig_ax;
74 struct irq_desc *desc = irq_desc + irq;
75 #ifdef CONFIG_4KSTACKS
76 union irq_ctx *curctx, *irqctx;
77 u32 *isp;
78 #endif
80 if (unlikely((unsigned)irq >= NR_IRQS)) {
81 printk(KERN_EMERG "%s: cannot handle IRQ %d\n",
82 __func__, irq);
83 BUG();
86 old_regs = set_irq_regs(regs);
87 irq_enter();
88 #ifdef CONFIG_DEBUG_STACKOVERFLOW
89 /* Debugging check for stack overflow: is there less than 1KB free? */
91 long sp;
93 __asm__ __volatile__("andl %%esp,%0" :
94 "=r" (sp) : "0" (THREAD_SIZE - 1));
95 if (unlikely(sp < (sizeof(struct thread_info) + STACK_WARN))) {
96 printk("do_IRQ: stack overflow: %ld\n",
97 sp - sizeof(struct thread_info));
98 dump_stack();
101 #endif
103 #ifdef CONFIG_4KSTACKS
105 curctx = (union irq_ctx *) current_thread_info();
106 irqctx = hardirq_ctx[smp_processor_id()];
109 * this is where we switch to the IRQ stack. However, if we are
110 * already using the IRQ stack (because we interrupted a hardirq
111 * handler) we can't do that and just have to keep using the
112 * current stack (which is the irq stack already after all)
114 if (curctx != irqctx) {
115 int arg1, arg2, bx;
117 /* build the stack frame on the IRQ stack */
118 isp = (u32*) ((char*)irqctx + sizeof(*irqctx));
119 irqctx->tinfo.task = curctx->tinfo.task;
120 irqctx->tinfo.previous_esp = current_stack_pointer;
123 * Copy the softirq bits in preempt_count so that the
124 * softirq checks work in the hardirq context.
126 irqctx->tinfo.preempt_count =
127 (irqctx->tinfo.preempt_count & ~SOFTIRQ_MASK) |
128 (curctx->tinfo.preempt_count & SOFTIRQ_MASK);
130 asm volatile(
131 " xchgl %%ebx,%%esp \n"
132 " call *%%edi \n"
133 " movl %%ebx,%%esp \n"
134 : "=a" (arg1), "=d" (arg2), "=b" (bx)
135 : "0" (irq), "1" (desc), "2" (isp),
136 "D" (desc->handle_irq)
137 : "memory", "cc", "ecx"
139 } else
140 #endif
141 desc->handle_irq(irq, desc);
143 irq_exit();
144 set_irq_regs(old_regs);
145 return 1;
148 #ifdef CONFIG_4KSTACKS
150 static char softirq_stack[NR_CPUS * THREAD_SIZE]
151 __attribute__((__section__(".bss.page_aligned")));
153 static char hardirq_stack[NR_CPUS * THREAD_SIZE]
154 __attribute__((__section__(".bss.page_aligned")));
157 * allocate per-cpu stacks for hardirq and for softirq processing
159 void irq_ctx_init(int cpu)
161 union irq_ctx *irqctx;
163 if (hardirq_ctx[cpu])
164 return;
166 irqctx = (union irq_ctx*) &hardirq_stack[cpu*THREAD_SIZE];
167 irqctx->tinfo.task = NULL;
168 irqctx->tinfo.exec_domain = NULL;
169 irqctx->tinfo.cpu = cpu;
170 irqctx->tinfo.preempt_count = HARDIRQ_OFFSET;
171 irqctx->tinfo.addr_limit = MAKE_MM_SEG(0);
173 hardirq_ctx[cpu] = irqctx;
175 irqctx = (union irq_ctx*) &softirq_stack[cpu*THREAD_SIZE];
176 irqctx->tinfo.task = NULL;
177 irqctx->tinfo.exec_domain = NULL;
178 irqctx->tinfo.cpu = cpu;
179 irqctx->tinfo.preempt_count = 0;
180 irqctx->tinfo.addr_limit = MAKE_MM_SEG(0);
182 softirq_ctx[cpu] = irqctx;
184 printk("CPU %u irqstacks, hard=%p soft=%p\n",
185 cpu,hardirq_ctx[cpu],softirq_ctx[cpu]);
188 void irq_ctx_exit(int cpu)
190 hardirq_ctx[cpu] = NULL;
193 asmlinkage void do_softirq(void)
195 unsigned long flags;
196 struct thread_info *curctx;
197 union irq_ctx *irqctx;
198 u32 *isp;
200 if (in_interrupt())
201 return;
203 local_irq_save(flags);
205 if (local_softirq_pending()) {
206 curctx = current_thread_info();
207 irqctx = softirq_ctx[smp_processor_id()];
208 irqctx->tinfo.task = curctx->task;
209 irqctx->tinfo.previous_esp = current_stack_pointer;
211 /* build the stack frame on the softirq stack */
212 isp = (u32*) ((char*)irqctx + sizeof(*irqctx));
214 asm volatile(
215 " xchgl %%ebx,%%esp \n"
216 " call __do_softirq \n"
217 " movl %%ebx,%%esp \n"
218 : "=b"(isp)
219 : "0"(isp)
220 : "memory", "cc", "edx", "ecx", "eax"
223 * Shouldnt happen, we returned above if in_interrupt():
225 WARN_ON_ONCE(softirq_count());
228 local_irq_restore(flags);
230 #endif
233 * Interrupt statistics:
236 atomic_t irq_err_count;
239 * /proc/interrupts printing:
242 int show_interrupts(struct seq_file *p, void *v)
244 int i = *(loff_t *) v, j;
245 struct irqaction * action;
246 unsigned long flags;
248 if (i == 0) {
249 seq_printf(p, " ");
250 for_each_online_cpu(j)
251 seq_printf(p, "CPU%-8d",j);
252 seq_putc(p, '\n');
255 if (i < NR_IRQS) {
256 unsigned any_count = 0;
258 spin_lock_irqsave(&irq_desc[i].lock, flags);
259 #ifndef CONFIG_SMP
260 any_count = kstat_irqs(i);
261 #else
262 for_each_online_cpu(j)
263 any_count |= kstat_cpu(j).irqs[i];
264 #endif
265 action = irq_desc[i].action;
266 if (!action && !any_count)
267 goto skip;
268 seq_printf(p, "%3d: ",i);
269 #ifndef CONFIG_SMP
270 seq_printf(p, "%10u ", kstat_irqs(i));
271 #else
272 for_each_online_cpu(j)
273 seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
274 #endif
275 seq_printf(p, " %8s", irq_desc[i].chip->name);
276 seq_printf(p, "-%-8s", irq_desc[i].name);
278 if (action) {
279 seq_printf(p, " %s", action->name);
280 while ((action = action->next) != NULL)
281 seq_printf(p, ", %s", action->name);
284 seq_putc(p, '\n');
285 skip:
286 spin_unlock_irqrestore(&irq_desc[i].lock, flags);
287 } else if (i == NR_IRQS) {
288 seq_printf(p, "NMI: ");
289 for_each_online_cpu(j)
290 seq_printf(p, "%10u ", nmi_count(j));
291 seq_printf(p, " Non-maskable interrupts\n");
292 #ifdef CONFIG_X86_LOCAL_APIC
293 seq_printf(p, "LOC: ");
294 for_each_online_cpu(j)
295 seq_printf(p, "%10u ",
296 per_cpu(irq_stat,j).apic_timer_irqs);
297 seq_printf(p, " Local timer interrupts\n");
298 #endif
299 #ifdef CONFIG_SMP
300 seq_printf(p, "RES: ");
301 for_each_online_cpu(j)
302 seq_printf(p, "%10u ",
303 per_cpu(irq_stat,j).irq_resched_count);
304 seq_printf(p, " Rescheduling interrupts\n");
305 seq_printf(p, "CAL: ");
306 for_each_online_cpu(j)
307 seq_printf(p, "%10u ",
308 per_cpu(irq_stat,j).irq_call_count);
309 seq_printf(p, " function call interrupts\n");
310 seq_printf(p, "TLB: ");
311 for_each_online_cpu(j)
312 seq_printf(p, "%10u ",
313 per_cpu(irq_stat,j).irq_tlb_count);
314 seq_printf(p, " TLB shootdowns\n");
315 #endif
316 seq_printf(p, "TRM: ");
317 for_each_online_cpu(j)
318 seq_printf(p, "%10u ",
319 per_cpu(irq_stat,j).irq_thermal_count);
320 seq_printf(p, " Thermal event interrupts\n");
321 seq_printf(p, "SPU: ");
322 for_each_online_cpu(j)
323 seq_printf(p, "%10u ",
324 per_cpu(irq_stat,j).irq_spurious_count);
325 seq_printf(p, " Spurious interrupts\n");
326 seq_printf(p, "ERR: %10u\n", atomic_read(&irq_err_count));
327 #if defined(CONFIG_X86_IO_APIC)
328 seq_printf(p, "MIS: %10u\n", atomic_read(&irq_mis_count));
329 #endif
331 return 0;
334 #ifdef CONFIG_HOTPLUG_CPU
335 #include <mach_apic.h>
337 void fixup_irqs(cpumask_t map)
339 unsigned int irq;
340 static int warned;
342 for (irq = 0; irq < NR_IRQS; irq++) {
343 cpumask_t mask;
344 if (irq == 2)
345 continue;
347 cpus_and(mask, irq_desc[irq].affinity, map);
348 if (any_online_cpu(mask) == NR_CPUS) {
349 printk("Breaking affinity for irq %i\n", irq);
350 mask = map;
352 if (irq_desc[irq].chip->set_affinity)
353 irq_desc[irq].chip->set_affinity(irq, mask);
354 else if (irq_desc[irq].action && !(warned++))
355 printk("Cannot set affinity for irq %i\n", irq);
358 #if 0
359 barrier();
360 /* Ingo Molnar says: "after the IO-APIC masks have been redirected
361 [note the nop - the interrupt-enable boundary on x86 is two
362 instructions from sti] - to flush out pending hardirqs and
363 IPIs. After this point nothing is supposed to reach this CPU." */
364 __asm__ __volatile__("sti; nop; cli");
365 barrier();
366 #else
367 /* That doesn't seem sufficient. Give it 1ms. */
368 local_irq_enable();
369 mdelay(1);
370 local_irq_disable();
371 #endif
373 #endif