1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/mutex.h>
31 #include <linux/slab.h>
32 #include <linux/swap.h>
33 #include <linux/spinlock.h>
35 #include <linux/seq_file.h>
36 #include <linux/vmalloc.h>
37 #include <linux/mm_inline.h>
38 #include <linux/page_cgroup.h>
41 #include <asm/uaccess.h>
43 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
44 #define MEM_CGROUP_RECLAIM_RETRIES 5
46 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48 int do_swap_account __read_mostly
;
49 static int really_do_swap_account __initdata
= 1; /* for remember boot option*/
51 #define do_swap_account (0)
54 static DEFINE_MUTEX(memcg_tasklist
); /* can be hold under cgroup_mutex */
57 * Statistics for memory cgroup.
59 enum mem_cgroup_stat_index
{
61 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
63 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
64 MEM_CGROUP_STAT_RSS
, /* # of pages charged as rss */
65 MEM_CGROUP_STAT_PGPGIN_COUNT
, /* # of pages paged in */
66 MEM_CGROUP_STAT_PGPGOUT_COUNT
, /* # of pages paged out */
68 MEM_CGROUP_STAT_NSTATS
,
71 struct mem_cgroup_stat_cpu
{
72 s64 count
[MEM_CGROUP_STAT_NSTATS
];
73 } ____cacheline_aligned_in_smp
;
75 struct mem_cgroup_stat
{
76 struct mem_cgroup_stat_cpu cpustat
[0];
80 * For accounting under irq disable, no need for increment preempt count.
82 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu
*stat
,
83 enum mem_cgroup_stat_index idx
, int val
)
85 stat
->count
[idx
] += val
;
88 static s64
mem_cgroup_read_stat(struct mem_cgroup_stat
*stat
,
89 enum mem_cgroup_stat_index idx
)
93 for_each_possible_cpu(cpu
)
94 ret
+= stat
->cpustat
[cpu
].count
[idx
];
99 * per-zone information in memory controller.
101 struct mem_cgroup_per_zone
{
103 * spin_lock to protect the per cgroup LRU
105 struct list_head lists
[NR_LRU_LISTS
];
106 unsigned long count
[NR_LRU_LISTS
];
108 struct zone_reclaim_stat reclaim_stat
;
110 /* Macro for accessing counter */
111 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
113 struct mem_cgroup_per_node
{
114 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
117 struct mem_cgroup_lru_info
{
118 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
122 * The memory controller data structure. The memory controller controls both
123 * page cache and RSS per cgroup. We would eventually like to provide
124 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
125 * to help the administrator determine what knobs to tune.
127 * TODO: Add a water mark for the memory controller. Reclaim will begin when
128 * we hit the water mark. May be even add a low water mark, such that
129 * no reclaim occurs from a cgroup at it's low water mark, this is
130 * a feature that will be implemented much later in the future.
133 struct cgroup_subsys_state css
;
135 * the counter to account for memory usage
137 struct res_counter res
;
139 * the counter to account for mem+swap usage.
141 struct res_counter memsw
;
143 * Per cgroup active and inactive list, similar to the
144 * per zone LRU lists.
146 struct mem_cgroup_lru_info info
;
149 protect against reclaim related member.
151 spinlock_t reclaim_param_lock
;
153 int prev_priority
; /* for recording reclaim priority */
156 * While reclaiming in a hiearchy, we cache the last child we
157 * reclaimed from. Protected by hierarchy_mutex
159 struct mem_cgroup
*last_scanned_child
;
161 * Should the accounting and control be hierarchical, per subtree?
164 unsigned long last_oom_jiffies
;
167 unsigned int swappiness
;
170 * statistics. This must be placed at the end of memcg.
172 struct mem_cgroup_stat stat
;
176 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
177 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
178 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
179 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
180 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
184 /* only for here (for easy reading.) */
185 #define PCGF_CACHE (1UL << PCG_CACHE)
186 #define PCGF_USED (1UL << PCG_USED)
187 #define PCGF_LOCK (1UL << PCG_LOCK)
188 static const unsigned long
189 pcg_default_flags
[NR_CHARGE_TYPE
] = {
190 PCGF_CACHE
| PCGF_USED
| PCGF_LOCK
, /* File Cache */
191 PCGF_USED
| PCGF_LOCK
, /* Anon */
192 PCGF_CACHE
| PCGF_USED
| PCGF_LOCK
, /* Shmem */
196 /* for encoding cft->private value on file */
199 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
200 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
201 #define MEMFILE_ATTR(val) ((val) & 0xffff)
203 static void mem_cgroup_get(struct mem_cgroup
*mem
);
204 static void mem_cgroup_put(struct mem_cgroup
*mem
);
205 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
);
207 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
,
208 struct page_cgroup
*pc
,
211 int val
= (charge
)? 1 : -1;
212 struct mem_cgroup_stat
*stat
= &mem
->stat
;
213 struct mem_cgroup_stat_cpu
*cpustat
;
216 cpustat
= &stat
->cpustat
[cpu
];
217 if (PageCgroupCache(pc
))
218 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_CACHE
, val
);
220 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_RSS
, val
);
223 __mem_cgroup_stat_add_safe(cpustat
,
224 MEM_CGROUP_STAT_PGPGIN_COUNT
, 1);
226 __mem_cgroup_stat_add_safe(cpustat
,
227 MEM_CGROUP_STAT_PGPGOUT_COUNT
, 1);
231 static struct mem_cgroup_per_zone
*
232 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
234 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
237 static struct mem_cgroup_per_zone
*
238 page_cgroup_zoneinfo(struct page_cgroup
*pc
)
240 struct mem_cgroup
*mem
= pc
->mem_cgroup
;
241 int nid
= page_cgroup_nid(pc
);
242 int zid
= page_cgroup_zid(pc
);
247 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
250 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup
*mem
,
254 struct mem_cgroup_per_zone
*mz
;
257 for_each_online_node(nid
)
258 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
259 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
260 total
+= MEM_CGROUP_ZSTAT(mz
, idx
);
265 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
267 return container_of(cgroup_subsys_state(cont
,
268 mem_cgroup_subsys_id
), struct mem_cgroup
,
272 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
275 * mm_update_next_owner() may clear mm->owner to NULL
276 * if it races with swapoff, page migration, etc.
277 * So this can be called with p == NULL.
282 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
283 struct mem_cgroup
, css
);
286 static struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
288 struct mem_cgroup
*mem
= NULL
;
290 * Because we have no locks, mm->owner's may be being moved to other
291 * cgroup. We use css_tryget() here even if this looks
292 * pessimistic (rather than adding locks here).
296 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
299 } while (!css_tryget(&mem
->css
));
304 static bool mem_cgroup_is_obsolete(struct mem_cgroup
*mem
)
308 return css_is_removed(&mem
->css
);
312 * Following LRU functions are allowed to be used without PCG_LOCK.
313 * Operations are called by routine of global LRU independently from memcg.
314 * What we have to take care of here is validness of pc->mem_cgroup.
316 * Changes to pc->mem_cgroup happens when
319 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
320 * It is added to LRU before charge.
321 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
322 * When moving account, the page is not on LRU. It's isolated.
325 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
327 struct page_cgroup
*pc
;
328 struct mem_cgroup
*mem
;
329 struct mem_cgroup_per_zone
*mz
;
331 if (mem_cgroup_disabled())
333 pc
= lookup_page_cgroup(page
);
334 /* can happen while we handle swapcache. */
335 if (list_empty(&pc
->lru
) || !pc
->mem_cgroup
)
338 * We don't check PCG_USED bit. It's cleared when the "page" is finally
339 * removed from global LRU.
341 mz
= page_cgroup_zoneinfo(pc
);
342 mem
= pc
->mem_cgroup
;
343 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
344 list_del_init(&pc
->lru
);
348 void mem_cgroup_del_lru(struct page
*page
)
350 mem_cgroup_del_lru_list(page
, page_lru(page
));
353 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
355 struct mem_cgroup_per_zone
*mz
;
356 struct page_cgroup
*pc
;
358 if (mem_cgroup_disabled())
361 pc
= lookup_page_cgroup(page
);
363 * Used bit is set without atomic ops but after smp_wmb().
364 * For making pc->mem_cgroup visible, insert smp_rmb() here.
367 /* unused page is not rotated. */
368 if (!PageCgroupUsed(pc
))
370 mz
= page_cgroup_zoneinfo(pc
);
371 list_move(&pc
->lru
, &mz
->lists
[lru
]);
374 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
376 struct page_cgroup
*pc
;
377 struct mem_cgroup_per_zone
*mz
;
379 if (mem_cgroup_disabled())
381 pc
= lookup_page_cgroup(page
);
383 * Used bit is set without atomic ops but after smp_wmb().
384 * For making pc->mem_cgroup visible, insert smp_rmb() here.
387 if (!PageCgroupUsed(pc
))
390 mz
= page_cgroup_zoneinfo(pc
);
391 MEM_CGROUP_ZSTAT(mz
, lru
) += 1;
392 list_add(&pc
->lru
, &mz
->lists
[lru
]);
396 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
397 * lru because the page may.be reused after it's fully uncharged (because of
398 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
399 * it again. This function is only used to charge SwapCache. It's done under
400 * lock_page and expected that zone->lru_lock is never held.
402 static void mem_cgroup_lru_del_before_commit_swapcache(struct page
*page
)
405 struct zone
*zone
= page_zone(page
);
406 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
408 spin_lock_irqsave(&zone
->lru_lock
, flags
);
410 * Forget old LRU when this page_cgroup is *not* used. This Used bit
411 * is guarded by lock_page() because the page is SwapCache.
413 if (!PageCgroupUsed(pc
))
414 mem_cgroup_del_lru_list(page
, page_lru(page
));
415 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
418 static void mem_cgroup_lru_add_after_commit_swapcache(struct page
*page
)
421 struct zone
*zone
= page_zone(page
);
422 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
424 spin_lock_irqsave(&zone
->lru_lock
, flags
);
425 /* link when the page is linked to LRU but page_cgroup isn't */
426 if (PageLRU(page
) && list_empty(&pc
->lru
))
427 mem_cgroup_add_lru_list(page
, page_lru(page
));
428 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
432 void mem_cgroup_move_lists(struct page
*page
,
433 enum lru_list from
, enum lru_list to
)
435 if (mem_cgroup_disabled())
437 mem_cgroup_del_lru_list(page
, from
);
438 mem_cgroup_add_lru_list(page
, to
);
441 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
446 ret
= task
->mm
&& mm_match_cgroup(task
->mm
, mem
);
452 * Calculate mapped_ratio under memory controller. This will be used in
453 * vmscan.c for deteremining we have to reclaim mapped pages.
455 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup
*mem
)
460 * usage is recorded in bytes. But, here, we assume the number of
461 * physical pages can be represented by "long" on any arch.
463 total
= (long) (mem
->res
.usage
>> PAGE_SHIFT
) + 1L;
464 rss
= (long)mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_RSS
);
465 return (int)((rss
* 100L) / total
);
469 * prev_priority control...this will be used in memory reclaim path.
471 int mem_cgroup_get_reclaim_priority(struct mem_cgroup
*mem
)
475 spin_lock(&mem
->reclaim_param_lock
);
476 prev_priority
= mem
->prev_priority
;
477 spin_unlock(&mem
->reclaim_param_lock
);
479 return prev_priority
;
482 void mem_cgroup_note_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
484 spin_lock(&mem
->reclaim_param_lock
);
485 if (priority
< mem
->prev_priority
)
486 mem
->prev_priority
= priority
;
487 spin_unlock(&mem
->reclaim_param_lock
);
490 void mem_cgroup_record_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
492 spin_lock(&mem
->reclaim_param_lock
);
493 mem
->prev_priority
= priority
;
494 spin_unlock(&mem
->reclaim_param_lock
);
497 static int calc_inactive_ratio(struct mem_cgroup
*memcg
, unsigned long *present_pages
)
499 unsigned long active
;
500 unsigned long inactive
;
502 unsigned long inactive_ratio
;
504 inactive
= mem_cgroup_get_all_zonestat(memcg
, LRU_INACTIVE_ANON
);
505 active
= mem_cgroup_get_all_zonestat(memcg
, LRU_ACTIVE_ANON
);
507 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
509 inactive_ratio
= int_sqrt(10 * gb
);
514 present_pages
[0] = inactive
;
515 present_pages
[1] = active
;
518 return inactive_ratio
;
521 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
)
523 unsigned long active
;
524 unsigned long inactive
;
525 unsigned long present_pages
[2];
526 unsigned long inactive_ratio
;
528 inactive_ratio
= calc_inactive_ratio(memcg
, present_pages
);
530 inactive
= present_pages
[0];
531 active
= present_pages
[1];
533 if (inactive
* inactive_ratio
< active
)
539 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup
*memcg
,
543 int nid
= zone
->zone_pgdat
->node_id
;
544 int zid
= zone_idx(zone
);
545 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
547 return MEM_CGROUP_ZSTAT(mz
, lru
);
550 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
553 int nid
= zone
->zone_pgdat
->node_id
;
554 int zid
= zone_idx(zone
);
555 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
557 return &mz
->reclaim_stat
;
560 struct zone_reclaim_stat
*
561 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
563 struct page_cgroup
*pc
;
564 struct mem_cgroup_per_zone
*mz
;
566 if (mem_cgroup_disabled())
569 pc
= lookup_page_cgroup(page
);
571 * Used bit is set without atomic ops but after smp_wmb().
572 * For making pc->mem_cgroup visible, insert smp_rmb() here.
575 if (!PageCgroupUsed(pc
))
578 mz
= page_cgroup_zoneinfo(pc
);
582 return &mz
->reclaim_stat
;
585 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
586 struct list_head
*dst
,
587 unsigned long *scanned
, int order
,
588 int mode
, struct zone
*z
,
589 struct mem_cgroup
*mem_cont
,
590 int active
, int file
)
592 unsigned long nr_taken
= 0;
596 struct list_head
*src
;
597 struct page_cgroup
*pc
, *tmp
;
598 int nid
= z
->zone_pgdat
->node_id
;
599 int zid
= zone_idx(z
);
600 struct mem_cgroup_per_zone
*mz
;
601 int lru
= LRU_FILE
* !!file
+ !!active
;
604 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
605 src
= &mz
->lists
[lru
];
608 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
609 if (scan
>= nr_to_scan
)
613 if (unlikely(!PageCgroupUsed(pc
)))
615 if (unlikely(!PageLRU(page
)))
619 if (__isolate_lru_page(page
, mode
, file
) == 0) {
620 list_move(&page
->lru
, dst
);
629 #define mem_cgroup_from_res_counter(counter, member) \
630 container_of(counter, struct mem_cgroup, member)
633 * This routine finds the DFS walk successor. This routine should be
634 * called with hierarchy_mutex held
636 static struct mem_cgroup
*
637 __mem_cgroup_get_next_node(struct mem_cgroup
*curr
, struct mem_cgroup
*root_mem
)
639 struct cgroup
*cgroup
, *curr_cgroup
, *root_cgroup
;
641 curr_cgroup
= curr
->css
.cgroup
;
642 root_cgroup
= root_mem
->css
.cgroup
;
644 if (!list_empty(&curr_cgroup
->children
)) {
646 * Walk down to children
648 cgroup
= list_entry(curr_cgroup
->children
.next
,
649 struct cgroup
, sibling
);
650 curr
= mem_cgroup_from_cont(cgroup
);
655 if (curr_cgroup
== root_cgroup
) {
656 /* caller handles NULL case */
664 if (curr_cgroup
->sibling
.next
!= &curr_cgroup
->parent
->children
) {
665 cgroup
= list_entry(curr_cgroup
->sibling
.next
, struct cgroup
,
667 curr
= mem_cgroup_from_cont(cgroup
);
672 * Go up to next parent and next parent's sibling if need be
674 curr_cgroup
= curr_cgroup
->parent
;
682 * Visit the first child (need not be the first child as per the ordering
683 * of the cgroup list, since we track last_scanned_child) of @mem and use
684 * that to reclaim free pages from.
686 static struct mem_cgroup
*
687 mem_cgroup_get_next_node(struct mem_cgroup
*root_mem
)
689 struct cgroup
*cgroup
;
690 struct mem_cgroup
*orig
, *next
;
694 * Scan all children under the mem_cgroup mem
696 mutex_lock(&mem_cgroup_subsys
.hierarchy_mutex
);
698 orig
= root_mem
->last_scanned_child
;
699 obsolete
= mem_cgroup_is_obsolete(orig
);
701 if (list_empty(&root_mem
->css
.cgroup
->children
)) {
703 * root_mem might have children before and last_scanned_child
704 * may point to one of them. We put it later.
707 VM_BUG_ON(!obsolete
);
712 if (!orig
|| obsolete
) {
713 cgroup
= list_first_entry(&root_mem
->css
.cgroup
->children
,
714 struct cgroup
, sibling
);
715 next
= mem_cgroup_from_cont(cgroup
);
717 next
= __mem_cgroup_get_next_node(orig
, root_mem
);
721 mem_cgroup_get(next
);
722 root_mem
->last_scanned_child
= next
;
724 mem_cgroup_put(orig
);
725 mutex_unlock(&mem_cgroup_subsys
.hierarchy_mutex
);
726 return (next
) ? next
: root_mem
;
729 static bool mem_cgroup_check_under_limit(struct mem_cgroup
*mem
)
731 if (do_swap_account
) {
732 if (res_counter_check_under_limit(&mem
->res
) &&
733 res_counter_check_under_limit(&mem
->memsw
))
736 if (res_counter_check_under_limit(&mem
->res
))
741 static unsigned int get_swappiness(struct mem_cgroup
*memcg
)
743 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
744 unsigned int swappiness
;
747 if (cgrp
->parent
== NULL
)
748 return vm_swappiness
;
750 spin_lock(&memcg
->reclaim_param_lock
);
751 swappiness
= memcg
->swappiness
;
752 spin_unlock(&memcg
->reclaim_param_lock
);
758 * Dance down the hierarchy if needed to reclaim memory. We remember the
759 * last child we reclaimed from, so that we don't end up penalizing
760 * one child extensively based on its position in the children list.
762 * root_mem is the original ancestor that we've been reclaim from.
764 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_mem
,
765 gfp_t gfp_mask
, bool noswap
)
767 struct mem_cgroup
*next_mem
;
771 * Reclaim unconditionally and don't check for return value.
772 * We need to reclaim in the current group and down the tree.
773 * One might think about checking for children before reclaiming,
774 * but there might be left over accounting, even after children
777 ret
+= try_to_free_mem_cgroup_pages(root_mem
, gfp_mask
, noswap
,
778 get_swappiness(root_mem
));
779 if (mem_cgroup_check_under_limit(root_mem
))
780 return 1; /* indicate reclaim has succeeded */
781 if (!root_mem
->use_hierarchy
)
784 next_mem
= mem_cgroup_get_next_node(root_mem
);
786 while (next_mem
!= root_mem
) {
787 if (mem_cgroup_is_obsolete(next_mem
)) {
788 next_mem
= mem_cgroup_get_next_node(root_mem
);
791 ret
+= try_to_free_mem_cgroup_pages(next_mem
, gfp_mask
, noswap
,
792 get_swappiness(next_mem
));
793 if (mem_cgroup_check_under_limit(root_mem
))
794 return 1; /* indicate reclaim has succeeded */
795 next_mem
= mem_cgroup_get_next_node(root_mem
);
800 bool mem_cgroup_oom_called(struct task_struct
*task
)
803 struct mem_cgroup
*mem
;
804 struct mm_struct
*mm
;
810 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
811 if (mem
&& time_before(jiffies
, mem
->last_oom_jiffies
+ HZ
/10))
817 * Unlike exported interface, "oom" parameter is added. if oom==true,
818 * oom-killer can be invoked.
820 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
821 gfp_t gfp_mask
, struct mem_cgroup
**memcg
,
824 struct mem_cgroup
*mem
, *mem_over_limit
;
825 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
826 struct res_counter
*fail_res
;
828 if (unlikely(test_thread_flag(TIF_MEMDIE
))) {
829 /* Don't account this! */
835 * We always charge the cgroup the mm_struct belongs to.
836 * The mm_struct's mem_cgroup changes on task migration if the
837 * thread group leader migrates. It's possible that mm is not
838 * set, if so charge the init_mm (happens for pagecache usage).
842 mem
= try_get_mem_cgroup_from_mm(mm
);
850 VM_BUG_ON(mem_cgroup_is_obsolete(mem
));
856 ret
= res_counter_charge(&mem
->res
, PAGE_SIZE
, &fail_res
);
858 if (!do_swap_account
)
860 ret
= res_counter_charge(&mem
->memsw
, PAGE_SIZE
,
864 /* mem+swap counter fails */
865 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
867 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
,
870 /* mem counter fails */
871 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
,
874 if (!(gfp_mask
& __GFP_WAIT
))
877 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, gfp_mask
,
883 * try_to_free_mem_cgroup_pages() might not give us a full
884 * picture of reclaim. Some pages are reclaimed and might be
885 * moved to swap cache or just unmapped from the cgroup.
886 * Check the limit again to see if the reclaim reduced the
887 * current usage of the cgroup before giving up
890 if (mem_cgroup_check_under_limit(mem_over_limit
))
895 mutex_lock(&memcg_tasklist
);
896 mem_cgroup_out_of_memory(mem_over_limit
, gfp_mask
);
897 mutex_unlock(&memcg_tasklist
);
898 mem_over_limit
->last_oom_jiffies
= jiffies
;
909 static struct mem_cgroup
*try_get_mem_cgroup_from_swapcache(struct page
*page
)
911 struct mem_cgroup
*mem
;
914 if (!PageSwapCache(page
))
917 ent
.val
= page_private(page
);
918 mem
= lookup_swap_cgroup(ent
);
921 if (!css_tryget(&mem
->css
))
927 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
928 * USED state. If already USED, uncharge and return.
931 static void __mem_cgroup_commit_charge(struct mem_cgroup
*mem
,
932 struct page_cgroup
*pc
,
933 enum charge_type ctype
)
935 /* try_charge() can return NULL to *memcg, taking care of it. */
939 lock_page_cgroup(pc
);
940 if (unlikely(PageCgroupUsed(pc
))) {
941 unlock_page_cgroup(pc
);
942 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
944 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
948 pc
->mem_cgroup
= mem
;
950 pc
->flags
= pcg_default_flags
[ctype
];
952 mem_cgroup_charge_statistics(mem
, pc
, true);
954 unlock_page_cgroup(pc
);
958 * mem_cgroup_move_account - move account of the page
959 * @pc: page_cgroup of the page.
960 * @from: mem_cgroup which the page is moved from.
961 * @to: mem_cgroup which the page is moved to. @from != @to.
963 * The caller must confirm following.
964 * - page is not on LRU (isolate_page() is useful.)
966 * returns 0 at success,
967 * returns -EBUSY when lock is busy or "pc" is unstable.
969 * This function does "uncharge" from old cgroup but doesn't do "charge" to
970 * new cgroup. It should be done by a caller.
973 static int mem_cgroup_move_account(struct page_cgroup
*pc
,
974 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
976 struct mem_cgroup_per_zone
*from_mz
, *to_mz
;
980 VM_BUG_ON(from
== to
);
981 VM_BUG_ON(PageLRU(pc
->page
));
983 nid
= page_cgroup_nid(pc
);
984 zid
= page_cgroup_zid(pc
);
985 from_mz
= mem_cgroup_zoneinfo(from
, nid
, zid
);
986 to_mz
= mem_cgroup_zoneinfo(to
, nid
, zid
);
988 if (!trylock_page_cgroup(pc
))
991 if (!PageCgroupUsed(pc
))
994 if (pc
->mem_cgroup
!= from
)
997 res_counter_uncharge(&from
->res
, PAGE_SIZE
);
998 mem_cgroup_charge_statistics(from
, pc
, false);
1000 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
1001 css_put(&from
->css
);
1004 pc
->mem_cgroup
= to
;
1005 mem_cgroup_charge_statistics(to
, pc
, true);
1008 unlock_page_cgroup(pc
);
1013 * move charges to its parent.
1016 static int mem_cgroup_move_parent(struct page_cgroup
*pc
,
1017 struct mem_cgroup
*child
,
1020 struct page
*page
= pc
->page
;
1021 struct cgroup
*cg
= child
->css
.cgroup
;
1022 struct cgroup
*pcg
= cg
->parent
;
1023 struct mem_cgroup
*parent
;
1031 parent
= mem_cgroup_from_cont(pcg
);
1034 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, &parent
, false);
1038 if (!get_page_unless_zero(page
)) {
1043 ret
= isolate_lru_page(page
);
1048 ret
= mem_cgroup_move_account(pc
, child
, parent
);
1050 putback_lru_page(page
);
1053 /* drop extra refcnt by try_charge() */
1054 css_put(&parent
->css
);
1061 /* drop extra refcnt by try_charge() */
1062 css_put(&parent
->css
);
1063 /* uncharge if move fails */
1064 res_counter_uncharge(&parent
->res
, PAGE_SIZE
);
1065 if (do_swap_account
)
1066 res_counter_uncharge(&parent
->memsw
, PAGE_SIZE
);
1071 * Charge the memory controller for page usage.
1073 * 0 if the charge was successful
1074 * < 0 if the cgroup is over its limit
1076 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
1077 gfp_t gfp_mask
, enum charge_type ctype
,
1078 struct mem_cgroup
*memcg
)
1080 struct mem_cgroup
*mem
;
1081 struct page_cgroup
*pc
;
1084 pc
= lookup_page_cgroup(page
);
1085 /* can happen at boot */
1091 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, &mem
, true);
1095 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
1099 int mem_cgroup_newpage_charge(struct page
*page
,
1100 struct mm_struct
*mm
, gfp_t gfp_mask
)
1102 if (mem_cgroup_disabled())
1104 if (PageCompound(page
))
1107 * If already mapped, we don't have to account.
1108 * If page cache, page->mapping has address_space.
1109 * But page->mapping may have out-of-use anon_vma pointer,
1110 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1113 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
1117 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1118 MEM_CGROUP_CHARGE_TYPE_MAPPED
, NULL
);
1121 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
1124 struct mem_cgroup
*mem
= NULL
;
1127 if (mem_cgroup_disabled())
1129 if (PageCompound(page
))
1132 * Corner case handling. This is called from add_to_page_cache()
1133 * in usual. But some FS (shmem) precharges this page before calling it
1134 * and call add_to_page_cache() with GFP_NOWAIT.
1136 * For GFP_NOWAIT case, the page may be pre-charged before calling
1137 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1138 * charge twice. (It works but has to pay a bit larger cost.)
1139 * And when the page is SwapCache, it should take swap information
1140 * into account. This is under lock_page() now.
1142 if (!(gfp_mask
& __GFP_WAIT
)) {
1143 struct page_cgroup
*pc
;
1146 pc
= lookup_page_cgroup(page
);
1149 lock_page_cgroup(pc
);
1150 if (PageCgroupUsed(pc
)) {
1151 unlock_page_cgroup(pc
);
1154 unlock_page_cgroup(pc
);
1157 if (do_swap_account
&& PageSwapCache(page
)) {
1158 mem
= try_get_mem_cgroup_from_swapcache(page
);
1163 /* SwapCache may be still linked to LRU now. */
1164 mem_cgroup_lru_del_before_commit_swapcache(page
);
1167 if (unlikely(!mm
&& !mem
))
1170 if (page_is_file_cache(page
))
1171 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1172 MEM_CGROUP_CHARGE_TYPE_CACHE
, NULL
);
1174 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1175 MEM_CGROUP_CHARGE_TYPE_SHMEM
, mem
);
1178 if (PageSwapCache(page
))
1179 mem_cgroup_lru_add_after_commit_swapcache(page
);
1181 if (do_swap_account
&& !ret
&& PageSwapCache(page
)) {
1182 swp_entry_t ent
= {.val
= page_private(page
)};
1183 /* avoid double counting */
1184 mem
= swap_cgroup_record(ent
, NULL
);
1186 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1187 mem_cgroup_put(mem
);
1194 * While swap-in, try_charge -> commit or cancel, the page is locked.
1195 * And when try_charge() successfully returns, one refcnt to memcg without
1196 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1197 * "commit()" or removed by "cancel()"
1199 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
1201 gfp_t mask
, struct mem_cgroup
**ptr
)
1203 struct mem_cgroup
*mem
;
1206 if (mem_cgroup_disabled())
1209 if (!do_swap_account
)
1212 * A racing thread's fault, or swapoff, may have already updated
1213 * the pte, and even removed page from swap cache: return success
1214 * to go on to do_swap_page()'s pte_same() test, which should fail.
1216 if (!PageSwapCache(page
))
1218 mem
= try_get_mem_cgroup_from_swapcache(page
);
1222 ret
= __mem_cgroup_try_charge(NULL
, mask
, ptr
, true);
1223 /* drop extra refcnt from tryget */
1229 return __mem_cgroup_try_charge(mm
, mask
, ptr
, true);
1232 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
1234 struct page_cgroup
*pc
;
1236 if (mem_cgroup_disabled())
1240 pc
= lookup_page_cgroup(page
);
1241 mem_cgroup_lru_del_before_commit_swapcache(page
);
1242 __mem_cgroup_commit_charge(ptr
, pc
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
1243 mem_cgroup_lru_add_after_commit_swapcache(page
);
1245 * Now swap is on-memory. This means this page may be
1246 * counted both as mem and swap....double count.
1247 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1248 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1249 * may call delete_from_swap_cache() before reach here.
1251 if (do_swap_account
&& PageSwapCache(page
)) {
1252 swp_entry_t ent
= {.val
= page_private(page
)};
1253 struct mem_cgroup
*memcg
;
1254 memcg
= swap_cgroup_record(ent
, NULL
);
1256 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
1257 mem_cgroup_put(memcg
);
1261 /* add this page(page_cgroup) to the LRU we want. */
1265 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*mem
)
1267 if (mem_cgroup_disabled())
1271 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
1272 if (do_swap_account
)
1273 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1279 * uncharge if !page_mapped(page)
1281 static struct mem_cgroup
*
1282 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
1284 struct page_cgroup
*pc
;
1285 struct mem_cgroup
*mem
= NULL
;
1286 struct mem_cgroup_per_zone
*mz
;
1288 if (mem_cgroup_disabled())
1291 if (PageSwapCache(page
))
1295 * Check if our page_cgroup is valid
1297 pc
= lookup_page_cgroup(page
);
1298 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
1301 lock_page_cgroup(pc
);
1303 mem
= pc
->mem_cgroup
;
1305 if (!PageCgroupUsed(pc
))
1309 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
1310 if (page_mapped(page
))
1313 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
1314 if (!PageAnon(page
)) { /* Shared memory */
1315 if (page
->mapping
&& !page_is_file_cache(page
))
1317 } else if (page_mapped(page
)) /* Anon */
1324 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
1325 if (do_swap_account
&& (ctype
!= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
))
1326 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1328 mem_cgroup_charge_statistics(mem
, pc
, false);
1329 ClearPageCgroupUsed(pc
);
1331 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1332 * freed from LRU. This is safe because uncharged page is expected not
1333 * to be reused (freed soon). Exception is SwapCache, it's handled by
1334 * special functions.
1337 mz
= page_cgroup_zoneinfo(pc
);
1338 unlock_page_cgroup(pc
);
1340 /* at swapout, this memcg will be accessed to record to swap */
1341 if (ctype
!= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
1347 unlock_page_cgroup(pc
);
1351 void mem_cgroup_uncharge_page(struct page
*page
)
1354 if (page_mapped(page
))
1356 if (page
->mapping
&& !PageAnon(page
))
1358 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
1361 void mem_cgroup_uncharge_cache_page(struct page
*page
)
1363 VM_BUG_ON(page_mapped(page
));
1364 VM_BUG_ON(page
->mapping
);
1365 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
1369 * called from __delete_from_swap_cache() and drop "page" account.
1370 * memcg information is recorded to swap_cgroup of "ent"
1372 void mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
)
1374 struct mem_cgroup
*memcg
;
1376 memcg
= __mem_cgroup_uncharge_common(page
,
1377 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
);
1378 /* record memcg information */
1379 if (do_swap_account
&& memcg
) {
1380 swap_cgroup_record(ent
, memcg
);
1381 mem_cgroup_get(memcg
);
1384 css_put(&memcg
->css
);
1387 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1389 * called from swap_entry_free(). remove record in swap_cgroup and
1390 * uncharge "memsw" account.
1392 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
1394 struct mem_cgroup
*memcg
;
1396 if (!do_swap_account
)
1399 memcg
= swap_cgroup_record(ent
, NULL
);
1401 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
1402 mem_cgroup_put(memcg
);
1408 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1411 int mem_cgroup_prepare_migration(struct page
*page
, struct mem_cgroup
**ptr
)
1413 struct page_cgroup
*pc
;
1414 struct mem_cgroup
*mem
= NULL
;
1417 if (mem_cgroup_disabled())
1420 pc
= lookup_page_cgroup(page
);
1421 lock_page_cgroup(pc
);
1422 if (PageCgroupUsed(pc
)) {
1423 mem
= pc
->mem_cgroup
;
1426 unlock_page_cgroup(pc
);
1429 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, &mem
, false);
1436 /* remove redundant charge if migration failed*/
1437 void mem_cgroup_end_migration(struct mem_cgroup
*mem
,
1438 struct page
*oldpage
, struct page
*newpage
)
1440 struct page
*target
, *unused
;
1441 struct page_cgroup
*pc
;
1442 enum charge_type ctype
;
1447 /* at migration success, oldpage->mapping is NULL. */
1448 if (oldpage
->mapping
) {
1456 if (PageAnon(target
))
1457 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
1458 else if (page_is_file_cache(target
))
1459 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
1461 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
1463 /* unused page is not on radix-tree now. */
1465 __mem_cgroup_uncharge_common(unused
, ctype
);
1467 pc
= lookup_page_cgroup(target
);
1469 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1470 * So, double-counting is effectively avoided.
1472 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
1475 * Both of oldpage and newpage are still under lock_page().
1476 * Then, we don't have to care about race in radix-tree.
1477 * But we have to be careful that this page is unmapped or not.
1479 * There is a case for !page_mapped(). At the start of
1480 * migration, oldpage was mapped. But now, it's zapped.
1481 * But we know *target* page is not freed/reused under us.
1482 * mem_cgroup_uncharge_page() does all necessary checks.
1484 if (ctype
== MEM_CGROUP_CHARGE_TYPE_MAPPED
)
1485 mem_cgroup_uncharge_page(target
);
1489 * A call to try to shrink memory usage under specified resource controller.
1490 * This is typically used for page reclaiming for shmem for reducing side
1491 * effect of page allocation from shmem, which is used by some mem_cgroup.
1493 int mem_cgroup_shrink_usage(struct page
*page
,
1494 struct mm_struct
*mm
,
1497 struct mem_cgroup
*mem
= NULL
;
1499 int retry
= MEM_CGROUP_RECLAIM_RETRIES
;
1501 if (mem_cgroup_disabled())
1504 mem
= try_get_mem_cgroup_from_swapcache(page
);
1506 mem
= try_get_mem_cgroup_from_mm(mm
);
1511 progress
= mem_cgroup_hierarchical_reclaim(mem
, gfp_mask
, true);
1512 progress
+= mem_cgroup_check_under_limit(mem
);
1513 } while (!progress
&& --retry
);
1521 static DEFINE_MUTEX(set_limit_mutex
);
1523 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
1524 unsigned long long val
)
1527 int retry_count
= MEM_CGROUP_RECLAIM_RETRIES
;
1532 while (retry_count
) {
1533 if (signal_pending(current
)) {
1538 * Rather than hide all in some function, I do this in
1539 * open coded manner. You see what this really does.
1540 * We have to guarantee mem->res.limit < mem->memsw.limit.
1542 mutex_lock(&set_limit_mutex
);
1543 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1544 if (memswlimit
< val
) {
1546 mutex_unlock(&set_limit_mutex
);
1549 ret
= res_counter_set_limit(&memcg
->res
, val
);
1550 mutex_unlock(&set_limit_mutex
);
1555 progress
= mem_cgroup_hierarchical_reclaim(memcg
, GFP_KERNEL
,
1557 if (!progress
) retry_count
--;
1563 int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
1564 unsigned long long val
)
1566 int retry_count
= MEM_CGROUP_RECLAIM_RETRIES
;
1567 u64 memlimit
, oldusage
, curusage
;
1570 if (!do_swap_account
)
1573 while (retry_count
) {
1574 if (signal_pending(current
)) {
1579 * Rather than hide all in some function, I do this in
1580 * open coded manner. You see what this really does.
1581 * We have to guarantee mem->res.limit < mem->memsw.limit.
1583 mutex_lock(&set_limit_mutex
);
1584 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1585 if (memlimit
> val
) {
1587 mutex_unlock(&set_limit_mutex
);
1590 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
1591 mutex_unlock(&set_limit_mutex
);
1596 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
1597 mem_cgroup_hierarchical_reclaim(memcg
, GFP_KERNEL
, true);
1598 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
1599 if (curusage
>= oldusage
)
1606 * This routine traverse page_cgroup in given list and drop them all.
1607 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1609 static int mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
1610 int node
, int zid
, enum lru_list lru
)
1613 struct mem_cgroup_per_zone
*mz
;
1614 struct page_cgroup
*pc
, *busy
;
1615 unsigned long flags
, loop
;
1616 struct list_head
*list
;
1619 zone
= &NODE_DATA(node
)->node_zones
[zid
];
1620 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
1621 list
= &mz
->lists
[lru
];
1623 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
1624 /* give some margin against EBUSY etc...*/
1629 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1630 if (list_empty(list
)) {
1631 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1634 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
1636 list_move(&pc
->lru
, list
);
1638 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1641 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1643 ret
= mem_cgroup_move_parent(pc
, mem
, GFP_KERNEL
);
1647 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
1648 /* found lock contention or "pc" is obsolete. */
1655 if (!ret
&& !list_empty(list
))
1661 * make mem_cgroup's charge to be 0 if there is no task.
1662 * This enables deleting this mem_cgroup.
1664 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
, bool free_all
)
1667 int node
, zid
, shrink
;
1668 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1669 struct cgroup
*cgrp
= mem
->css
.cgroup
;
1674 /* should free all ? */
1678 while (mem
->res
.usage
> 0) {
1680 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
1683 if (signal_pending(current
))
1685 /* This is for making all *used* pages to be on LRU. */
1686 lru_add_drain_all();
1688 for_each_node_state(node
, N_HIGH_MEMORY
) {
1689 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
1692 ret
= mem_cgroup_force_empty_list(mem
,
1701 /* it seems parent cgroup doesn't have enough mem */
1712 /* returns EBUSY if there is a task or if we come here twice. */
1713 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
1717 /* we call try-to-free pages for make this cgroup empty */
1718 lru_add_drain_all();
1719 /* try to free all pages in this cgroup */
1721 while (nr_retries
&& mem
->res
.usage
> 0) {
1724 if (signal_pending(current
)) {
1728 progress
= try_to_free_mem_cgroup_pages(mem
, GFP_KERNEL
,
1729 false, get_swappiness(mem
));
1732 /* maybe some writeback is necessary */
1733 congestion_wait(WRITE
, HZ
/10);
1738 /* try move_account...there may be some *locked* pages. */
1745 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
1747 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
1751 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
1753 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
1756 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
1760 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
1761 struct cgroup
*parent
= cont
->parent
;
1762 struct mem_cgroup
*parent_mem
= NULL
;
1765 parent_mem
= mem_cgroup_from_cont(parent
);
1769 * If parent's use_hiearchy is set, we can't make any modifications
1770 * in the child subtrees. If it is unset, then the change can
1771 * occur, provided the current cgroup has no children.
1773 * For the root cgroup, parent_mem is NULL, we allow value to be
1774 * set if there are no children.
1776 if ((!parent_mem
|| !parent_mem
->use_hierarchy
) &&
1777 (val
== 1 || val
== 0)) {
1778 if (list_empty(&cont
->children
))
1779 mem
->use_hierarchy
= val
;
1789 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
1791 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
1795 type
= MEMFILE_TYPE(cft
->private);
1796 name
= MEMFILE_ATTR(cft
->private);
1799 val
= res_counter_read_u64(&mem
->res
, name
);
1802 if (do_swap_account
)
1803 val
= res_counter_read_u64(&mem
->memsw
, name
);
1812 * The user of this function is...
1815 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
1818 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
1820 unsigned long long val
;
1823 type
= MEMFILE_TYPE(cft
->private);
1824 name
= MEMFILE_ATTR(cft
->private);
1827 /* This function does all necessary parse...reuse it */
1828 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
1832 ret
= mem_cgroup_resize_limit(memcg
, val
);
1834 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
1837 ret
= -EINVAL
; /* should be BUG() ? */
1843 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
1844 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
1846 struct cgroup
*cgroup
;
1847 unsigned long long min_limit
, min_memsw_limit
, tmp
;
1849 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1850 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1851 cgroup
= memcg
->css
.cgroup
;
1852 if (!memcg
->use_hierarchy
)
1855 while (cgroup
->parent
) {
1856 cgroup
= cgroup
->parent
;
1857 memcg
= mem_cgroup_from_cont(cgroup
);
1858 if (!memcg
->use_hierarchy
)
1860 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1861 min_limit
= min(min_limit
, tmp
);
1862 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1863 min_memsw_limit
= min(min_memsw_limit
, tmp
);
1866 *mem_limit
= min_limit
;
1867 *memsw_limit
= min_memsw_limit
;
1871 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
1873 struct mem_cgroup
*mem
;
1876 mem
= mem_cgroup_from_cont(cont
);
1877 type
= MEMFILE_TYPE(event
);
1878 name
= MEMFILE_ATTR(event
);
1882 res_counter_reset_max(&mem
->res
);
1884 res_counter_reset_max(&mem
->memsw
);
1888 res_counter_reset_failcnt(&mem
->res
);
1890 res_counter_reset_failcnt(&mem
->memsw
);
1896 static const struct mem_cgroup_stat_desc
{
1899 } mem_cgroup_stat_desc
[] = {
1900 [MEM_CGROUP_STAT_CACHE
] = { "cache", PAGE_SIZE
, },
1901 [MEM_CGROUP_STAT_RSS
] = { "rss", PAGE_SIZE
, },
1902 [MEM_CGROUP_STAT_PGPGIN_COUNT
] = {"pgpgin", 1, },
1903 [MEM_CGROUP_STAT_PGPGOUT_COUNT
] = {"pgpgout", 1, },
1906 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
1907 struct cgroup_map_cb
*cb
)
1909 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
1910 struct mem_cgroup_stat
*stat
= &mem_cont
->stat
;
1913 for (i
= 0; i
< ARRAY_SIZE(stat
->cpustat
[0].count
); i
++) {
1916 val
= mem_cgroup_read_stat(stat
, i
);
1917 val
*= mem_cgroup_stat_desc
[i
].unit
;
1918 cb
->fill(cb
, mem_cgroup_stat_desc
[i
].msg
, val
);
1920 /* showing # of active pages */
1922 unsigned long active_anon
, inactive_anon
;
1923 unsigned long active_file
, inactive_file
;
1924 unsigned long unevictable
;
1926 inactive_anon
= mem_cgroup_get_all_zonestat(mem_cont
,
1928 active_anon
= mem_cgroup_get_all_zonestat(mem_cont
,
1930 inactive_file
= mem_cgroup_get_all_zonestat(mem_cont
,
1932 active_file
= mem_cgroup_get_all_zonestat(mem_cont
,
1934 unevictable
= mem_cgroup_get_all_zonestat(mem_cont
,
1937 cb
->fill(cb
, "active_anon", (active_anon
) * PAGE_SIZE
);
1938 cb
->fill(cb
, "inactive_anon", (inactive_anon
) * PAGE_SIZE
);
1939 cb
->fill(cb
, "active_file", (active_file
) * PAGE_SIZE
);
1940 cb
->fill(cb
, "inactive_file", (inactive_file
) * PAGE_SIZE
);
1941 cb
->fill(cb
, "unevictable", unevictable
* PAGE_SIZE
);
1945 unsigned long long limit
, memsw_limit
;
1946 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
1947 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
1948 if (do_swap_account
)
1949 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
1952 #ifdef CONFIG_DEBUG_VM
1953 cb
->fill(cb
, "inactive_ratio", calc_inactive_ratio(mem_cont
, NULL
));
1957 struct mem_cgroup_per_zone
*mz
;
1958 unsigned long recent_rotated
[2] = {0, 0};
1959 unsigned long recent_scanned
[2] = {0, 0};
1961 for_each_online_node(nid
)
1962 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1963 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
1965 recent_rotated
[0] +=
1966 mz
->reclaim_stat
.recent_rotated
[0];
1967 recent_rotated
[1] +=
1968 mz
->reclaim_stat
.recent_rotated
[1];
1969 recent_scanned
[0] +=
1970 mz
->reclaim_stat
.recent_scanned
[0];
1971 recent_scanned
[1] +=
1972 mz
->reclaim_stat
.recent_scanned
[1];
1974 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
1975 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
1976 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
1977 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
1984 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
1986 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
1988 return get_swappiness(memcg
);
1991 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
1994 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
1995 struct mem_cgroup
*parent
;
2000 if (cgrp
->parent
== NULL
)
2003 parent
= mem_cgroup_from_cont(cgrp
->parent
);
2007 /* If under hierarchy, only empty-root can set this value */
2008 if ((parent
->use_hierarchy
) ||
2009 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
2014 spin_lock(&memcg
->reclaim_param_lock
);
2015 memcg
->swappiness
= val
;
2016 spin_unlock(&memcg
->reclaim_param_lock
);
2024 static struct cftype mem_cgroup_files
[] = {
2026 .name
= "usage_in_bytes",
2027 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
2028 .read_u64
= mem_cgroup_read
,
2031 .name
= "max_usage_in_bytes",
2032 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
2033 .trigger
= mem_cgroup_reset
,
2034 .read_u64
= mem_cgroup_read
,
2037 .name
= "limit_in_bytes",
2038 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
2039 .write_string
= mem_cgroup_write
,
2040 .read_u64
= mem_cgroup_read
,
2044 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
2045 .trigger
= mem_cgroup_reset
,
2046 .read_u64
= mem_cgroup_read
,
2050 .read_map
= mem_control_stat_show
,
2053 .name
= "force_empty",
2054 .trigger
= mem_cgroup_force_empty_write
,
2057 .name
= "use_hierarchy",
2058 .write_u64
= mem_cgroup_hierarchy_write
,
2059 .read_u64
= mem_cgroup_hierarchy_read
,
2062 .name
= "swappiness",
2063 .read_u64
= mem_cgroup_swappiness_read
,
2064 .write_u64
= mem_cgroup_swappiness_write
,
2068 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2069 static struct cftype memsw_cgroup_files
[] = {
2071 .name
= "memsw.usage_in_bytes",
2072 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
2073 .read_u64
= mem_cgroup_read
,
2076 .name
= "memsw.max_usage_in_bytes",
2077 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
2078 .trigger
= mem_cgroup_reset
,
2079 .read_u64
= mem_cgroup_read
,
2082 .name
= "memsw.limit_in_bytes",
2083 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
2084 .write_string
= mem_cgroup_write
,
2085 .read_u64
= mem_cgroup_read
,
2088 .name
= "memsw.failcnt",
2089 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
2090 .trigger
= mem_cgroup_reset
,
2091 .read_u64
= mem_cgroup_read
,
2095 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
2097 if (!do_swap_account
)
2099 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
2100 ARRAY_SIZE(memsw_cgroup_files
));
2103 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
2109 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
2111 struct mem_cgroup_per_node
*pn
;
2112 struct mem_cgroup_per_zone
*mz
;
2114 int zone
, tmp
= node
;
2116 * This routine is called against possible nodes.
2117 * But it's BUG to call kmalloc() against offline node.
2119 * TODO: this routine can waste much memory for nodes which will
2120 * never be onlined. It's better to use memory hotplug callback
2123 if (!node_state(node
, N_NORMAL_MEMORY
))
2125 pn
= kmalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
2129 mem
->info
.nodeinfo
[node
] = pn
;
2130 memset(pn
, 0, sizeof(*pn
));
2132 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
2133 mz
= &pn
->zoneinfo
[zone
];
2135 INIT_LIST_HEAD(&mz
->lists
[l
]);
2140 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
2142 kfree(mem
->info
.nodeinfo
[node
]);
2145 static int mem_cgroup_size(void)
2147 int cpustat_size
= nr_cpu_ids
* sizeof(struct mem_cgroup_stat_cpu
);
2148 return sizeof(struct mem_cgroup
) + cpustat_size
;
2151 static struct mem_cgroup
*mem_cgroup_alloc(void)
2153 struct mem_cgroup
*mem
;
2154 int size
= mem_cgroup_size();
2156 if (size
< PAGE_SIZE
)
2157 mem
= kmalloc(size
, GFP_KERNEL
);
2159 mem
= vmalloc(size
);
2162 memset(mem
, 0, size
);
2167 * At destroying mem_cgroup, references from swap_cgroup can remain.
2168 * (scanning all at force_empty is too costly...)
2170 * Instead of clearing all references at force_empty, we remember
2171 * the number of reference from swap_cgroup and free mem_cgroup when
2172 * it goes down to 0.
2174 * Removal of cgroup itself succeeds regardless of refs from swap.
2177 static void __mem_cgroup_free(struct mem_cgroup
*mem
)
2181 for_each_node_state(node
, N_POSSIBLE
)
2182 free_mem_cgroup_per_zone_info(mem
, node
);
2184 if (mem_cgroup_size() < PAGE_SIZE
)
2190 static void mem_cgroup_get(struct mem_cgroup
*mem
)
2192 atomic_inc(&mem
->refcnt
);
2195 static void mem_cgroup_put(struct mem_cgroup
*mem
)
2197 if (atomic_dec_and_test(&mem
->refcnt
)) {
2198 struct mem_cgroup
*parent
= parent_mem_cgroup(mem
);
2199 __mem_cgroup_free(mem
);
2201 mem_cgroup_put(parent
);
2206 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
2208 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
)
2210 if (!mem
->res
.parent
)
2212 return mem_cgroup_from_res_counter(mem
->res
.parent
, res
);
2215 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2216 static void __init
enable_swap_cgroup(void)
2218 if (!mem_cgroup_disabled() && really_do_swap_account
)
2219 do_swap_account
= 1;
2222 static void __init
enable_swap_cgroup(void)
2227 static struct cgroup_subsys_state
* __ref
2228 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
2230 struct mem_cgroup
*mem
, *parent
;
2233 mem
= mem_cgroup_alloc();
2235 return ERR_PTR(-ENOMEM
);
2237 for_each_node_state(node
, N_POSSIBLE
)
2238 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
2241 if (cont
->parent
== NULL
) {
2242 enable_swap_cgroup();
2245 parent
= mem_cgroup_from_cont(cont
->parent
);
2246 mem
->use_hierarchy
= parent
->use_hierarchy
;
2249 if (parent
&& parent
->use_hierarchy
) {
2250 res_counter_init(&mem
->res
, &parent
->res
);
2251 res_counter_init(&mem
->memsw
, &parent
->memsw
);
2253 * We increment refcnt of the parent to ensure that we can
2254 * safely access it on res_counter_charge/uncharge.
2255 * This refcnt will be decremented when freeing this
2256 * mem_cgroup(see mem_cgroup_put).
2258 mem_cgroup_get(parent
);
2260 res_counter_init(&mem
->res
, NULL
);
2261 res_counter_init(&mem
->memsw
, NULL
);
2263 mem
->last_scanned_child
= NULL
;
2264 spin_lock_init(&mem
->reclaim_param_lock
);
2267 mem
->swappiness
= get_swappiness(parent
);
2268 atomic_set(&mem
->refcnt
, 1);
2271 __mem_cgroup_free(mem
);
2272 return ERR_PTR(-ENOMEM
);
2275 static void mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
2276 struct cgroup
*cont
)
2278 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
2279 mem_cgroup_force_empty(mem
, false);
2282 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
2283 struct cgroup
*cont
)
2285 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
2286 struct mem_cgroup
*last_scanned_child
= mem
->last_scanned_child
;
2288 if (last_scanned_child
) {
2289 VM_BUG_ON(!mem_cgroup_is_obsolete(last_scanned_child
));
2290 mem_cgroup_put(last_scanned_child
);
2292 mem_cgroup_put(mem
);
2295 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
2296 struct cgroup
*cont
)
2300 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
2301 ARRAY_SIZE(mem_cgroup_files
));
2304 ret
= register_memsw_files(cont
, ss
);
2308 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
2309 struct cgroup
*cont
,
2310 struct cgroup
*old_cont
,
2311 struct task_struct
*p
)
2313 mutex_lock(&memcg_tasklist
);
2315 * FIXME: It's better to move charges of this process from old
2316 * memcg to new memcg. But it's just on TODO-List now.
2318 mutex_unlock(&memcg_tasklist
);
2321 struct cgroup_subsys mem_cgroup_subsys
= {
2323 .subsys_id
= mem_cgroup_subsys_id
,
2324 .create
= mem_cgroup_create
,
2325 .pre_destroy
= mem_cgroup_pre_destroy
,
2326 .destroy
= mem_cgroup_destroy
,
2327 .populate
= mem_cgroup_populate
,
2328 .attach
= mem_cgroup_move_task
,
2332 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2334 static int __init
disable_swap_account(char *s
)
2336 really_do_swap_account
= 0;
2339 __setup("noswapaccount", disable_swap_account
);