1 /* bnx2x_init.h: Broadcom Everest network driver.
3 * Copyright (c) 2007-2008 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
20 #define INIT_EMULATION 0x1
23 #define INIT_HARDWARE 0x7
25 #define STORM_INTMEM_SIZE_E1 (0x5800 / 4)
26 #define STORM_INTMEM_SIZE_E1H (0x10000 / 4)
27 #define TSTORM_INTMEM_ADDR 0x1a0000
28 #define CSTORM_INTMEM_ADDR 0x220000
29 #define XSTORM_INTMEM_ADDR 0x2a0000
30 #define USTORM_INTMEM_ADDR 0x320000
33 /* Init operation types and structures */
34 /* Common for both E1 and E1H */
35 #define OP_RD 0x1 /* read single register */
36 #define OP_WR 0x2 /* write single register */
37 #define OP_IW 0x3 /* write single register using mailbox */
38 #define OP_SW 0x4 /* copy a string to the device */
39 #define OP_SI 0x5 /* copy a string using mailbox */
40 #define OP_ZR 0x6 /* clear memory */
41 #define OP_ZP 0x7 /* unzip then copy with DMAE */
42 #define OP_WR_64 0x8 /* write 64 bit pattern */
43 #define OP_WB 0x9 /* copy a string using DMAE */
45 /* Operation specific for E1 */
46 #define OP_RD_E1 0xa /* read single register */
47 #define OP_WR_E1 0xb /* write single register */
48 #define OP_IW_E1 0xc /* write single register using mailbox */
49 #define OP_SW_E1 0xd /* copy a string to the device */
50 #define OP_SI_E1 0xe /* copy a string using mailbox */
51 #define OP_ZR_E1 0xf /* clear memory */
52 #define OP_ZP_E1 0x10 /* unzip then copy with DMAE */
53 #define OP_WR_64_E1 0x11 /* write 64 bit pattern on E1 */
54 #define OP_WB_E1 0x12 /* copy a string using DMAE */
56 /* Operation specific for E1H */
57 #define OP_RD_E1H 0x13 /* read single register */
58 #define OP_WR_E1H 0x14 /* write single register */
59 #define OP_IW_E1H 0x15 /* write single register using mailbox */
60 #define OP_SW_E1H 0x16 /* copy a string to the device */
61 #define OP_SI_E1H 0x17 /* copy a string using mailbox */
62 #define OP_ZR_E1H 0x18 /* clear memory */
63 #define OP_ZP_E1H 0x19 /* unzip then copy with DMAE */
64 #define OP_WR_64_E1H 0x1a /* write 64 bit pattern on E1H */
65 #define OP_WB_E1H 0x1b /* copy a string using DMAE */
67 /* FPGA and EMUL specific operations */
68 #define OP_WR_EMUL_E1H 0x1c /* write single register on E1H Emul */
69 #define OP_WR_EMUL 0x1d /* write single register on Emulation */
70 #define OP_WR_FPGA 0x1e /* write single register on FPGA */
71 #define OP_WR_ASIC 0x1f /* write single register on ASIC */
92 struct op_string_write
{
95 #ifdef __LITTLE_ENDIAN
98 #else /* __BIG_ENDIAN */
112 struct op_write write
;
113 struct op_string_write str_wr
;
118 #include "bnx2x_init_values.h"
120 static void bnx2x_reg_wr_ind(struct bnx2x
*bp
, u32 addr
, u32 val
);
121 static int bnx2x_gunzip(struct bnx2x
*bp
, u8
*zbuf
, int len
);
123 static void bnx2x_init_str_wr(struct bnx2x
*bp
, u32 addr
, const u32
*data
,
128 for (i
= 0; i
< len
; i
++) {
129 REG_WR(bp
, addr
+ i
*4, data
[i
]);
131 touch_softlockup_watchdog();
137 static void bnx2x_init_ind_wr(struct bnx2x
*bp
, u32 addr
, const u32
*data
,
142 for (i
= 0; i
< len
; i
++) {
143 REG_WR_IND(bp
, addr
+ i
*4, data
[i
]);
145 touch_softlockup_watchdog();
151 static void bnx2x_write_big_buf(struct bnx2x
*bp
, u32 addr
, u32 len
)
155 if (bp
->dmae_ready
) {
156 while (len
> DMAE_LEN32_WR_MAX
) {
157 bnx2x_write_dmae(bp
, bp
->gunzip_mapping
+ offset
,
158 addr
+ offset
, DMAE_LEN32_WR_MAX
);
159 offset
+= DMAE_LEN32_WR_MAX
* 4;
160 len
-= DMAE_LEN32_WR_MAX
;
162 bnx2x_write_dmae(bp
, bp
->gunzip_mapping
+ offset
,
165 bnx2x_init_str_wr(bp
, addr
, bp
->gunzip_buf
, len
);
168 static void bnx2x_init_fill(struct bnx2x
*bp
, u32 addr
, int fill
, u32 len
)
170 if ((len
* 4) > FW_BUF_SIZE
) {
171 BNX2X_ERR("LARGE DMAE OPERATION ! addr 0x%x len 0x%x\n",
175 memset(bp
->gunzip_buf
, fill
, len
* 4);
177 bnx2x_write_big_buf(bp
, addr
, len
);
180 static void bnx2x_init_wr_64(struct bnx2x
*bp
, u32 addr
, const u32
*data
,
183 u32 buf_len32
= FW_BUF_SIZE
/4;
188 /* 64 bit value is in a blob: first low DWORD, then high DWORD */
189 data64
= HILO_U64((*(data
+ 1)), (*data
));
190 len64
= min((u32
)(FW_BUF_SIZE
/8), len64
);
191 for (i
= 0; i
< len64
; i
++) {
192 u64
*pdata
= ((u64
*)(bp
->gunzip_buf
)) + i
;
197 for (i
= 0; i
< len
; i
+= buf_len32
) {
198 u32 cur_len
= min(buf_len32
, len
- i
);
200 bnx2x_write_big_buf(bp
, addr
+ i
* 4, cur_len
);
204 /*********************************************************
205 There are different blobs for each PRAM section.
206 In addition, each blob write operation is divided into a few operations
207 in order to decrease the amount of phys. contiguous buffer needed.
208 Thus, when we select a blob the address may be with some offset
209 from the beginning of PRAM section.
210 The same holds for the INT_TABLE sections.
211 **********************************************************/
212 #define IF_IS_INT_TABLE_ADDR(base, addr) \
213 if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
215 #define IF_IS_PRAM_ADDR(base, addr) \
216 if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
218 static const u32
*bnx2x_sel_blob(u32 addr
, const u32
*data
, int is_e1
)
220 IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE
, addr
)
221 data
= is_e1
? tsem_int_table_data_e1
:
222 tsem_int_table_data_e1h
;
224 IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE
, addr
)
225 data
= is_e1
? csem_int_table_data_e1
:
226 csem_int_table_data_e1h
;
228 IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE
, addr
)
229 data
= is_e1
? usem_int_table_data_e1
:
230 usem_int_table_data_e1h
;
232 IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE
, addr
)
233 data
= is_e1
? xsem_int_table_data_e1
:
234 xsem_int_table_data_e1h
;
236 IF_IS_PRAM_ADDR(TSEM_REG_PRAM
, addr
)
237 data
= is_e1
? tsem_pram_data_e1
: tsem_pram_data_e1h
;
239 IF_IS_PRAM_ADDR(CSEM_REG_PRAM
, addr
)
240 data
= is_e1
? csem_pram_data_e1
: csem_pram_data_e1h
;
242 IF_IS_PRAM_ADDR(USEM_REG_PRAM
, addr
)
243 data
= is_e1
? usem_pram_data_e1
: usem_pram_data_e1h
;
245 IF_IS_PRAM_ADDR(XSEM_REG_PRAM
, addr
)
246 data
= is_e1
? xsem_pram_data_e1
: xsem_pram_data_e1h
;
251 static void bnx2x_init_wr_wb(struct bnx2x
*bp
, u32 addr
, const u32
*data
,
252 u32 len
, int gunzip
, int is_e1
, u32 blob_off
)
256 data
= bnx2x_sel_blob(addr
, data
, is_e1
) + blob_off
;
264 temp
= kmalloc(len
, GFP_KERNEL
);
265 size
= (len
/ 4) + ((len
% 4) ? 1 : 0);
266 for (i
= 0; i
< size
; i
++)
267 temp
[i
] = swab32(data
[i
]);
270 rc
= bnx2x_gunzip(bp
, (u8
*)data
, len
);
272 BNX2X_ERR("gunzip failed ! rc %d\n", rc
);
275 len
= bp
->gunzip_outlen
;
278 for (i
= 0; i
< len
; i
++)
279 ((u32
*)bp
->gunzip_buf
)[i
] =
280 swab32(((u32
*)bp
->gunzip_buf
)[i
]);
283 if ((len
* 4) > FW_BUF_SIZE
) {
284 BNX2X_ERR("LARGE DMAE OPERATION ! "
285 "addr 0x%x len 0x%x\n", addr
, len
*4);
288 memcpy(bp
->gunzip_buf
, data
, len
* 4);
291 if (bp
->dmae_ready
) {
292 while (len
> DMAE_LEN32_WR_MAX
) {
293 bnx2x_write_dmae(bp
, bp
->gunzip_mapping
+ offset
,
294 addr
+ offset
, DMAE_LEN32_WR_MAX
);
295 offset
+= DMAE_LEN32_WR_MAX
* 4;
296 len
-= DMAE_LEN32_WR_MAX
;
298 bnx2x_write_dmae(bp
, bp
->gunzip_mapping
+ offset
,
301 bnx2x_init_ind_wr(bp
, addr
, bp
->gunzip_buf
, len
);
304 static void bnx2x_init_block(struct bnx2x
*bp
, u32 op_start
, u32 op_end
)
306 int is_e1
= CHIP_IS_E1(bp
);
307 int is_e1h
= CHIP_IS_E1H(bp
);
308 int is_emul_e1h
= (CHIP_REV_IS_EMUL(bp
) && is_e1h
);
311 u32 op_type
, addr
, len
;
312 const u32
*data
, *data_base
;
314 if (CHIP_REV_IS_FPGA(bp
))
316 else if (CHIP_REV_IS_EMUL(bp
))
322 data_base
= init_data_e1
;
323 else /* CHIP_IS_E1H(bp) */
324 data_base
= init_data_e1h
;
326 for (i
= op_start
; i
< op_end
; i
++) {
328 op
= (union init_op
*)&(init_ops
[i
]);
330 op_type
= op
->str_wr
.op
;
331 addr
= op
->str_wr
.offset
;
332 len
= op
->str_wr
.data_len
;
333 data
= data_base
+ op
->str_wr
.data_off
;
335 /* careful! it must be in order */
336 if (unlikely(op_type
> OP_WB
)) {
339 if (op_type
<= OP_WB_E1
) {
341 op_type
-= (OP_RD_E1
- OP_RD
);
344 } else if (op_type
<= OP_WB_E1H
) {
346 op_type
-= (OP_RD_E1H
- OP_RD
);
349 /* HW/EMUL specific */
350 if (op_type
== hw_wr
)
353 /* EMUL on E1H is special */
354 if ((op_type
== OP_WR_EMUL_E1H
) && is_emul_e1h
)
363 REG_WR(bp
, addr
, op
->write
.val
);
366 bnx2x_init_str_wr(bp
, addr
, data
, len
);
369 bnx2x_init_wr_wb(bp
, addr
, data
, len
, 0, is_e1
, 0);
372 bnx2x_init_ind_wr(bp
, addr
, data
, len
);
375 bnx2x_init_fill(bp
, addr
, 0, op
->zero
.len
);
378 bnx2x_init_wr_wb(bp
, addr
, data
, len
, 1, is_e1
,
379 op
->str_wr
.data_off
);
382 bnx2x_init_wr_64(bp
, addr
, data
, len
);
385 /* happens whenever an op is of a diff HW */
387 DP(NETIF_MSG_HW
, "skipping init operation "
388 "index %d[%d:%d]: type %d addr 0x%x "
390 i
, op_start
, op_end
, op_type
, addr
, len
, len
);
398 /****************************************************************************
400 ****************************************************************************/
402 * This code configures the PCI read/write arbiter
403 * which implements a weighted round robin
404 * between the virtual queues in the chip.
406 * The values were derived for each PCI max payload and max request size.
407 * since max payload and max request size are only known at run time,
408 * this is done as a separate init stage.
416 /* configuration for one arbiter queue */
423 /* derived configuration for each read queue for each max request size */
424 static const struct arb_line read_arb_data
[NUM_RD_Q
][MAX_RD_ORD
+ 1] = {
425 {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25}, {64 , 64 , 41} },
426 {{4 , 8 , 4}, {4 , 8 , 4}, {4 , 8 , 4}, {4 , 8 , 4} },
427 {{4 , 3 , 3}, {4 , 3 , 3}, {4 , 3 , 3}, {4 , 3 , 3} },
428 {{8 , 3 , 6}, {16 , 3 , 11}, {16 , 3 , 11}, {16 , 3 , 11} },
429 {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25}, {64 , 64 , 41} },
430 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
431 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
432 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
433 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
434 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
435 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
436 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
437 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
438 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
439 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
440 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
441 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
442 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
443 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
444 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
445 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
446 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
447 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
448 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
449 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
450 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
451 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
452 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
453 {{8 , 64 , 25}, {16 , 64 , 41}, {32 , 64 , 81}, {64 , 64 , 120} }
456 /* derived configuration for each write queue for each max request size */
457 static const struct arb_line write_arb_data
[NUM_WR_Q
][MAX_WR_ORD
+ 1] = {
458 {{4 , 6 , 3}, {4 , 6 , 3}, {4 , 6 , 3} },
459 {{4 , 2 , 3}, {4 , 2 , 3}, {4 , 2 , 3} },
460 {{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} },
461 {{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} },
462 {{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} },
463 {{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} },
464 {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25} },
465 {{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} },
466 {{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} },
467 {{8 , 9 , 6}, {16 , 9 , 11}, {32 , 9 , 21} },
468 {{8 , 47 , 19}, {16 , 47 , 19}, {32 , 47 , 21} },
469 {{8 , 9 , 6}, {16 , 9 , 11}, {16 , 9 , 11} },
470 {{8 , 64 , 25}, {16 , 64 , 41}, {32 , 64 , 81} }
473 /* register addresses for read queues */
474 static const struct arb_line read_arb_addr
[NUM_RD_Q
-1] = {
475 {PXP2_REG_RQ_BW_RD_L0
, PXP2_REG_RQ_BW_RD_ADD0
,
476 PXP2_REG_RQ_BW_RD_UBOUND0
},
477 {PXP2_REG_PSWRQ_BW_L1
, PXP2_REG_PSWRQ_BW_ADD1
,
478 PXP2_REG_PSWRQ_BW_UB1
},
479 {PXP2_REG_PSWRQ_BW_L2
, PXP2_REG_PSWRQ_BW_ADD2
,
480 PXP2_REG_PSWRQ_BW_UB2
},
481 {PXP2_REG_PSWRQ_BW_L3
, PXP2_REG_PSWRQ_BW_ADD3
,
482 PXP2_REG_PSWRQ_BW_UB3
},
483 {PXP2_REG_RQ_BW_RD_L4
, PXP2_REG_RQ_BW_RD_ADD4
,
484 PXP2_REG_RQ_BW_RD_UBOUND4
},
485 {PXP2_REG_RQ_BW_RD_L5
, PXP2_REG_RQ_BW_RD_ADD5
,
486 PXP2_REG_RQ_BW_RD_UBOUND5
},
487 {PXP2_REG_PSWRQ_BW_L6
, PXP2_REG_PSWRQ_BW_ADD6
,
488 PXP2_REG_PSWRQ_BW_UB6
},
489 {PXP2_REG_PSWRQ_BW_L7
, PXP2_REG_PSWRQ_BW_ADD7
,
490 PXP2_REG_PSWRQ_BW_UB7
},
491 {PXP2_REG_PSWRQ_BW_L8
, PXP2_REG_PSWRQ_BW_ADD8
,
492 PXP2_REG_PSWRQ_BW_UB8
},
493 {PXP2_REG_PSWRQ_BW_L9
, PXP2_REG_PSWRQ_BW_ADD9
,
494 PXP2_REG_PSWRQ_BW_UB9
},
495 {PXP2_REG_PSWRQ_BW_L10
, PXP2_REG_PSWRQ_BW_ADD10
,
496 PXP2_REG_PSWRQ_BW_UB10
},
497 {PXP2_REG_PSWRQ_BW_L11
, PXP2_REG_PSWRQ_BW_ADD11
,
498 PXP2_REG_PSWRQ_BW_UB11
},
499 {PXP2_REG_RQ_BW_RD_L12
, PXP2_REG_RQ_BW_RD_ADD12
,
500 PXP2_REG_RQ_BW_RD_UBOUND12
},
501 {PXP2_REG_RQ_BW_RD_L13
, PXP2_REG_RQ_BW_RD_ADD13
,
502 PXP2_REG_RQ_BW_RD_UBOUND13
},
503 {PXP2_REG_RQ_BW_RD_L14
, PXP2_REG_RQ_BW_RD_ADD14
,
504 PXP2_REG_RQ_BW_RD_UBOUND14
},
505 {PXP2_REG_RQ_BW_RD_L15
, PXP2_REG_RQ_BW_RD_ADD15
,
506 PXP2_REG_RQ_BW_RD_UBOUND15
},
507 {PXP2_REG_RQ_BW_RD_L16
, PXP2_REG_RQ_BW_RD_ADD16
,
508 PXP2_REG_RQ_BW_RD_UBOUND16
},
509 {PXP2_REG_RQ_BW_RD_L17
, PXP2_REG_RQ_BW_RD_ADD17
,
510 PXP2_REG_RQ_BW_RD_UBOUND17
},
511 {PXP2_REG_RQ_BW_RD_L18
, PXP2_REG_RQ_BW_RD_ADD18
,
512 PXP2_REG_RQ_BW_RD_UBOUND18
},
513 {PXP2_REG_RQ_BW_RD_L19
, PXP2_REG_RQ_BW_RD_ADD19
,
514 PXP2_REG_RQ_BW_RD_UBOUND19
},
515 {PXP2_REG_RQ_BW_RD_L20
, PXP2_REG_RQ_BW_RD_ADD20
,
516 PXP2_REG_RQ_BW_RD_UBOUND20
},
517 {PXP2_REG_RQ_BW_RD_L22
, PXP2_REG_RQ_BW_RD_ADD22
,
518 PXP2_REG_RQ_BW_RD_UBOUND22
},
519 {PXP2_REG_RQ_BW_RD_L23
, PXP2_REG_RQ_BW_RD_ADD23
,
520 PXP2_REG_RQ_BW_RD_UBOUND23
},
521 {PXP2_REG_RQ_BW_RD_L24
, PXP2_REG_RQ_BW_RD_ADD24
,
522 PXP2_REG_RQ_BW_RD_UBOUND24
},
523 {PXP2_REG_RQ_BW_RD_L25
, PXP2_REG_RQ_BW_RD_ADD25
,
524 PXP2_REG_RQ_BW_RD_UBOUND25
},
525 {PXP2_REG_RQ_BW_RD_L26
, PXP2_REG_RQ_BW_RD_ADD26
,
526 PXP2_REG_RQ_BW_RD_UBOUND26
},
527 {PXP2_REG_RQ_BW_RD_L27
, PXP2_REG_RQ_BW_RD_ADD27
,
528 PXP2_REG_RQ_BW_RD_UBOUND27
},
529 {PXP2_REG_PSWRQ_BW_L28
, PXP2_REG_PSWRQ_BW_ADD28
,
530 PXP2_REG_PSWRQ_BW_UB28
}
533 /* register addresses for write queues */
534 static const struct arb_line write_arb_addr
[NUM_WR_Q
-1] = {
535 {PXP2_REG_PSWRQ_BW_L1
, PXP2_REG_PSWRQ_BW_ADD1
,
536 PXP2_REG_PSWRQ_BW_UB1
},
537 {PXP2_REG_PSWRQ_BW_L2
, PXP2_REG_PSWRQ_BW_ADD2
,
538 PXP2_REG_PSWRQ_BW_UB2
},
539 {PXP2_REG_PSWRQ_BW_L3
, PXP2_REG_PSWRQ_BW_ADD3
,
540 PXP2_REG_PSWRQ_BW_UB3
},
541 {PXP2_REG_PSWRQ_BW_L6
, PXP2_REG_PSWRQ_BW_ADD6
,
542 PXP2_REG_PSWRQ_BW_UB6
},
543 {PXP2_REG_PSWRQ_BW_L7
, PXP2_REG_PSWRQ_BW_ADD7
,
544 PXP2_REG_PSWRQ_BW_UB7
},
545 {PXP2_REG_PSWRQ_BW_L8
, PXP2_REG_PSWRQ_BW_ADD8
,
546 PXP2_REG_PSWRQ_BW_UB8
},
547 {PXP2_REG_PSWRQ_BW_L9
, PXP2_REG_PSWRQ_BW_ADD9
,
548 PXP2_REG_PSWRQ_BW_UB9
},
549 {PXP2_REG_PSWRQ_BW_L10
, PXP2_REG_PSWRQ_BW_ADD10
,
550 PXP2_REG_PSWRQ_BW_UB10
},
551 {PXP2_REG_PSWRQ_BW_L11
, PXP2_REG_PSWRQ_BW_ADD11
,
552 PXP2_REG_PSWRQ_BW_UB11
},
553 {PXP2_REG_PSWRQ_BW_L28
, PXP2_REG_PSWRQ_BW_ADD28
,
554 PXP2_REG_PSWRQ_BW_UB28
},
555 {PXP2_REG_RQ_BW_WR_L29
, PXP2_REG_RQ_BW_WR_ADD29
,
556 PXP2_REG_RQ_BW_WR_UBOUND29
},
557 {PXP2_REG_RQ_BW_WR_L30
, PXP2_REG_RQ_BW_WR_ADD30
,
558 PXP2_REG_RQ_BW_WR_UBOUND30
}
561 static void bnx2x_init_pxp(struct bnx2x
*bp
)
564 int r_order
, w_order
;
567 pci_read_config_word(bp
->pdev
,
568 bp
->pcie_cap
+ PCI_EXP_DEVCTL
, &devctl
);
569 DP(NETIF_MSG_HW
, "read 0x%x from devctl\n", devctl
);
570 w_order
= ((devctl
& PCI_EXP_DEVCTL_PAYLOAD
) >> 5);
571 r_order
= ((devctl
& PCI_EXP_DEVCTL_READRQ
) >> 12);
573 if (r_order
> MAX_RD_ORD
) {
574 DP(NETIF_MSG_HW
, "read order of %d order adjusted to %d\n",
575 r_order
, MAX_RD_ORD
);
576 r_order
= MAX_RD_ORD
;
578 if (w_order
> MAX_WR_ORD
) {
579 DP(NETIF_MSG_HW
, "write order of %d order adjusted to %d\n",
580 w_order
, MAX_WR_ORD
);
581 w_order
= MAX_WR_ORD
;
583 if (CHIP_REV_IS_FPGA(bp
)) {
584 DP(NETIF_MSG_HW
, "write order adjusted to 1 for FPGA\n");
587 DP(NETIF_MSG_HW
, "read order %d write order %d\n", r_order
, w_order
);
589 for (i
= 0; i
< NUM_RD_Q
-1; i
++) {
590 REG_WR(bp
, read_arb_addr
[i
].l
, read_arb_data
[i
][r_order
].l
);
591 REG_WR(bp
, read_arb_addr
[i
].add
,
592 read_arb_data
[i
][r_order
].add
);
593 REG_WR(bp
, read_arb_addr
[i
].ubound
,
594 read_arb_data
[i
][r_order
].ubound
);
597 for (i
= 0; i
< NUM_WR_Q
-1; i
++) {
598 if ((write_arb_addr
[i
].l
== PXP2_REG_RQ_BW_WR_L29
) ||
599 (write_arb_addr
[i
].l
== PXP2_REG_RQ_BW_WR_L30
)) {
601 REG_WR(bp
, write_arb_addr
[i
].l
,
602 write_arb_data
[i
][w_order
].l
);
604 REG_WR(bp
, write_arb_addr
[i
].add
,
605 write_arb_data
[i
][w_order
].add
);
607 REG_WR(bp
, write_arb_addr
[i
].ubound
,
608 write_arb_data
[i
][w_order
].ubound
);
611 val
= REG_RD(bp
, write_arb_addr
[i
].l
);
612 REG_WR(bp
, write_arb_addr
[i
].l
,
613 val
| (write_arb_data
[i
][w_order
].l
<< 10));
615 val
= REG_RD(bp
, write_arb_addr
[i
].add
);
616 REG_WR(bp
, write_arb_addr
[i
].add
,
617 val
| (write_arb_data
[i
][w_order
].add
<< 10));
619 val
= REG_RD(bp
, write_arb_addr
[i
].ubound
);
620 REG_WR(bp
, write_arb_addr
[i
].ubound
,
621 val
| (write_arb_data
[i
][w_order
].ubound
<< 7));
625 val
= write_arb_data
[NUM_WR_Q
-1][w_order
].add
;
626 val
+= write_arb_data
[NUM_WR_Q
-1][w_order
].ubound
<< 10;
627 val
+= write_arb_data
[NUM_WR_Q
-1][w_order
].l
<< 17;
628 REG_WR(bp
, PXP2_REG_PSWRQ_BW_RD
, val
);
630 val
= read_arb_data
[NUM_RD_Q
-1][r_order
].add
;
631 val
+= read_arb_data
[NUM_RD_Q
-1][r_order
].ubound
<< 10;
632 val
+= read_arb_data
[NUM_RD_Q
-1][r_order
].l
<< 17;
633 REG_WR(bp
, PXP2_REG_PSWRQ_BW_WR
, val
);
635 REG_WR(bp
, PXP2_REG_RQ_WR_MBS0
, w_order
);
636 REG_WR(bp
, PXP2_REG_RQ_WR_MBS1
, w_order
);
637 REG_WR(bp
, PXP2_REG_RQ_RD_MBS0
, r_order
);
638 REG_WR(bp
, PXP2_REG_RQ_RD_MBS1
, r_order
);
640 if (r_order
== MAX_RD_ORD
)
641 REG_WR(bp
, PXP2_REG_RQ_PDR_LIMIT
, 0xe00);
643 REG_WR(bp
, PXP2_REG_WR_USDMDP_TH
, (0x18 << w_order
));
645 if (CHIP_IS_E1H(bp
)) {
646 REG_WR(bp
, PXP2_REG_WR_HC_MPS
, w_order
+1);
647 REG_WR(bp
, PXP2_REG_WR_USDM_MPS
, w_order
+1);
648 REG_WR(bp
, PXP2_REG_WR_CSDM_MPS
, w_order
+1);
649 REG_WR(bp
, PXP2_REG_WR_TSDM_MPS
, w_order
+1);
650 REG_WR(bp
, PXP2_REG_WR_XSDM_MPS
, w_order
+1);
651 REG_WR(bp
, PXP2_REG_WR_QM_MPS
, w_order
+1);
652 REG_WR(bp
, PXP2_REG_WR_TM_MPS
, w_order
+1);
653 REG_WR(bp
, PXP2_REG_WR_SRC_MPS
, w_order
+1);
654 REG_WR(bp
, PXP2_REG_WR_DBG_MPS
, w_order
+1);
655 REG_WR(bp
, PXP2_REG_WR_DMAE_MPS
, 2); /* DMAE is special */
656 REG_WR(bp
, PXP2_REG_WR_CDU_MPS
, w_order
+1);
661 /****************************************************************************
663 ****************************************************************************/
665 #define CDU_REGION_NUMBER_XCM_AG 2
666 #define CDU_REGION_NUMBER_UCM_AG 4
669 * String-to-compress [31:8] = CID (all 24 bits)
670 * String-to-compress [7:4] = Region
671 * String-to-compress [3:0] = Type
673 #define CDU_VALID_DATA(_cid, _region, _type) \
674 (((_cid) << 8) | (((_region) & 0xf) << 4) | (((_type) & 0xf)))
675 #define CDU_CRC8(_cid, _region, _type) \
676 calc_crc8(CDU_VALID_DATA(_cid, _region, _type), 0xff)
677 #define CDU_RSRVD_VALUE_TYPE_A(_cid, _region, _type) \
678 (0x80 | (CDU_CRC8(_cid, _region, _type) & 0x7f))
679 #define CDU_RSRVD_VALUE_TYPE_B(_crc, _type) \
680 (0x80 | ((_type) & 0xf << 3) | (CDU_CRC8(_cid, _region, _type) & 0x7))
681 #define CDU_RSRVD_INVALIDATE_CONTEXT_VALUE(_val) ((_val) & ~0x80)
683 /*****************************************************************************
685 * Calculates crc 8 on a word value: polynomial 0-1-2-8
686 * Code was translated from Verilog.
687 ****************************************************************************/
688 static u8
calc_crc8(u32 data
, u8 crc
)
696 /* split the data into 31 bits */
697 for (i
= 0; i
< 32; i
++) {
702 /* split the crc into 8 bits */
703 for (i
= 0; i
< 8; i
++) {
708 NewCRC
[0] = D
[31] ^ D
[30] ^ D
[28] ^ D
[23] ^ D
[21] ^ D
[19] ^ D
[18] ^
709 D
[16] ^ D
[14] ^ D
[12] ^ D
[8] ^ D
[7] ^ D
[6] ^ D
[0] ^ C
[4] ^
711 NewCRC
[1] = D
[30] ^ D
[29] ^ D
[28] ^ D
[24] ^ D
[23] ^ D
[22] ^ D
[21] ^
712 D
[20] ^ D
[18] ^ D
[17] ^ D
[16] ^ D
[15] ^ D
[14] ^ D
[13] ^
713 D
[12] ^ D
[9] ^ D
[6] ^ D
[1] ^ D
[0] ^ C
[0] ^ C
[4] ^ C
[5] ^ C
[6];
714 NewCRC
[2] = D
[29] ^ D
[28] ^ D
[25] ^ D
[24] ^ D
[22] ^ D
[17] ^ D
[15] ^
715 D
[13] ^ D
[12] ^ D
[10] ^ D
[8] ^ D
[6] ^ D
[2] ^ D
[1] ^ D
[0] ^
716 C
[0] ^ C
[1] ^ C
[4] ^ C
[5];
717 NewCRC
[3] = D
[30] ^ D
[29] ^ D
[26] ^ D
[25] ^ D
[23] ^ D
[18] ^ D
[16] ^
718 D
[14] ^ D
[13] ^ D
[11] ^ D
[9] ^ D
[7] ^ D
[3] ^ D
[2] ^ D
[1] ^
719 C
[1] ^ C
[2] ^ C
[5] ^ C
[6];
720 NewCRC
[4] = D
[31] ^ D
[30] ^ D
[27] ^ D
[26] ^ D
[24] ^ D
[19] ^ D
[17] ^
721 D
[15] ^ D
[14] ^ D
[12] ^ D
[10] ^ D
[8] ^ D
[4] ^ D
[3] ^ D
[2] ^
722 C
[0] ^ C
[2] ^ C
[3] ^ C
[6] ^ C
[7];
723 NewCRC
[5] = D
[31] ^ D
[28] ^ D
[27] ^ D
[25] ^ D
[20] ^ D
[18] ^ D
[16] ^
724 D
[15] ^ D
[13] ^ D
[11] ^ D
[9] ^ D
[5] ^ D
[4] ^ D
[3] ^ C
[1] ^
726 NewCRC
[6] = D
[29] ^ D
[28] ^ D
[26] ^ D
[21] ^ D
[19] ^ D
[17] ^ D
[16] ^
727 D
[14] ^ D
[12] ^ D
[10] ^ D
[6] ^ D
[5] ^ D
[4] ^ C
[2] ^ C
[4] ^
729 NewCRC
[7] = D
[30] ^ D
[29] ^ D
[27] ^ D
[22] ^ D
[20] ^ D
[18] ^ D
[17] ^
730 D
[15] ^ D
[13] ^ D
[11] ^ D
[7] ^ D
[6] ^ D
[5] ^ C
[3] ^ C
[5] ^
734 for (i
= 0; i
< 8; i
++)
735 crc_res
|= (NewCRC
[i
] << i
);
740 /* registers addresses are not in order
741 so these arrays help simplify the code */
742 static const int cm_start
[E1H_FUNC_MAX
][9] = {
743 {MISC_FUNC0_START
, TCM_FUNC0_START
, UCM_FUNC0_START
, CCM_FUNC0_START
,
744 XCM_FUNC0_START
, TSEM_FUNC0_START
, USEM_FUNC0_START
, CSEM_FUNC0_START
,
746 {MISC_FUNC1_START
, TCM_FUNC1_START
, UCM_FUNC1_START
, CCM_FUNC1_START
,
747 XCM_FUNC1_START
, TSEM_FUNC1_START
, USEM_FUNC1_START
, CSEM_FUNC1_START
,
749 {MISC_FUNC2_START
, TCM_FUNC2_START
, UCM_FUNC2_START
, CCM_FUNC2_START
,
750 XCM_FUNC2_START
, TSEM_FUNC2_START
, USEM_FUNC2_START
, CSEM_FUNC2_START
,
752 {MISC_FUNC3_START
, TCM_FUNC3_START
, UCM_FUNC3_START
, CCM_FUNC3_START
,
753 XCM_FUNC3_START
, TSEM_FUNC3_START
, USEM_FUNC3_START
, CSEM_FUNC3_START
,
755 {MISC_FUNC4_START
, TCM_FUNC4_START
, UCM_FUNC4_START
, CCM_FUNC4_START
,
756 XCM_FUNC4_START
, TSEM_FUNC4_START
, USEM_FUNC4_START
, CSEM_FUNC4_START
,
758 {MISC_FUNC5_START
, TCM_FUNC5_START
, UCM_FUNC5_START
, CCM_FUNC5_START
,
759 XCM_FUNC5_START
, TSEM_FUNC5_START
, USEM_FUNC5_START
, CSEM_FUNC5_START
,
761 {MISC_FUNC6_START
, TCM_FUNC6_START
, UCM_FUNC6_START
, CCM_FUNC6_START
,
762 XCM_FUNC6_START
, TSEM_FUNC6_START
, USEM_FUNC6_START
, CSEM_FUNC6_START
,
764 {MISC_FUNC7_START
, TCM_FUNC7_START
, UCM_FUNC7_START
, CCM_FUNC7_START
,
765 XCM_FUNC7_START
, TSEM_FUNC7_START
, USEM_FUNC7_START
, CSEM_FUNC7_START
,
769 static const int cm_end
[E1H_FUNC_MAX
][9] = {
770 {MISC_FUNC0_END
, TCM_FUNC0_END
, UCM_FUNC0_END
, CCM_FUNC0_END
,
771 XCM_FUNC0_END
, TSEM_FUNC0_END
, USEM_FUNC0_END
, CSEM_FUNC0_END
,
773 {MISC_FUNC1_END
, TCM_FUNC1_END
, UCM_FUNC1_END
, CCM_FUNC1_END
,
774 XCM_FUNC1_END
, TSEM_FUNC1_END
, USEM_FUNC1_END
, CSEM_FUNC1_END
,
776 {MISC_FUNC2_END
, TCM_FUNC2_END
, UCM_FUNC2_END
, CCM_FUNC2_END
,
777 XCM_FUNC2_END
, TSEM_FUNC2_END
, USEM_FUNC2_END
, CSEM_FUNC2_END
,
779 {MISC_FUNC3_END
, TCM_FUNC3_END
, UCM_FUNC3_END
, CCM_FUNC3_END
,
780 XCM_FUNC3_END
, TSEM_FUNC3_END
, USEM_FUNC3_END
, CSEM_FUNC3_END
,
782 {MISC_FUNC4_END
, TCM_FUNC4_END
, UCM_FUNC4_END
, CCM_FUNC4_END
,
783 XCM_FUNC4_END
, TSEM_FUNC4_END
, USEM_FUNC4_END
, CSEM_FUNC4_END
,
785 {MISC_FUNC5_END
, TCM_FUNC5_END
, UCM_FUNC5_END
, CCM_FUNC5_END
,
786 XCM_FUNC5_END
, TSEM_FUNC5_END
, USEM_FUNC5_END
, CSEM_FUNC5_END
,
788 {MISC_FUNC6_END
, TCM_FUNC6_END
, UCM_FUNC6_END
, CCM_FUNC6_END
,
789 XCM_FUNC6_END
, TSEM_FUNC6_END
, USEM_FUNC6_END
, CSEM_FUNC6_END
,
791 {MISC_FUNC7_END
, TCM_FUNC7_END
, UCM_FUNC7_END
, CCM_FUNC7_END
,
792 XCM_FUNC7_END
, TSEM_FUNC7_END
, USEM_FUNC7_END
, CSEM_FUNC7_END
,
796 static const int hc_limits
[E1H_FUNC_MAX
][2] = {
797 {HC_FUNC0_START
, HC_FUNC0_END
},
798 {HC_FUNC1_START
, HC_FUNC1_END
},
799 {HC_FUNC2_START
, HC_FUNC2_END
},
800 {HC_FUNC3_START
, HC_FUNC3_END
},
801 {HC_FUNC4_START
, HC_FUNC4_END
},
802 {HC_FUNC5_START
, HC_FUNC5_END
},
803 {HC_FUNC6_START
, HC_FUNC6_END
},
804 {HC_FUNC7_START
, HC_FUNC7_END
}
807 #endif /* BNX2X_INIT_H */