Sysace: Move IRQ handler registration to occur after FSM is initialized
[linux-2.6/mini2440.git] / drivers / block / xsysace.c
blob296d5674a3c15b64e9778803f712faf24d28f86b
1 /*
2 * Xilinx SystemACE device driver
4 * Copyright 2007 Secret Lab Technologies Ltd.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 */
12 * The SystemACE chip is designed to configure FPGAs by loading an FPGA
13 * bitstream from a file on a CF card and squirting it into FPGAs connected
14 * to the SystemACE JTAG chain. It also has the advantage of providing an
15 * MPU interface which can be used to control the FPGA configuration process
16 * and to use the attached CF card for general purpose storage.
18 * This driver is a block device driver for the SystemACE.
20 * Initialization:
21 * The driver registers itself as a platform_device driver at module
22 * load time. The platform bus will take care of calling the
23 * ace_probe() method for all SystemACE instances in the system. Any
24 * number of SystemACE instances are supported. ace_probe() calls
25 * ace_setup() which initialized all data structures, reads the CF
26 * id structure and registers the device.
28 * Processing:
29 * Just about all of the heavy lifting in this driver is performed by
30 * a Finite State Machine (FSM). The driver needs to wait on a number
31 * of events; some raised by interrupts, some which need to be polled
32 * for. Describing all of the behaviour in a FSM seems to be the
33 * easiest way to keep the complexity low and make it easy to
34 * understand what the driver is doing. If the block ops or the
35 * request function need to interact with the hardware, then they
36 * simply need to flag the request and kick of FSM processing.
38 * The FSM itself is atomic-safe code which can be run from any
39 * context. The general process flow is:
40 * 1. obtain the ace->lock spinlock.
41 * 2. loop on ace_fsm_dostate() until the ace->fsm_continue flag is
42 * cleared.
43 * 3. release the lock.
45 * Individual states do not sleep in any way. If a condition needs to
46 * be waited for then the state much clear the fsm_continue flag and
47 * either schedule the FSM to be run again at a later time, or expect
48 * an interrupt to call the FSM when the desired condition is met.
50 * In normal operation, the FSM is processed at interrupt context
51 * either when the driver's tasklet is scheduled, or when an irq is
52 * raised by the hardware. The tasklet can be scheduled at any time.
53 * The request method in particular schedules the tasklet when a new
54 * request has been indicated by the block layer. Once started, the
55 * FSM proceeds as far as it can processing the request until it
56 * needs on a hardware event. At this point, it must yield execution.
58 * A state has two options when yielding execution:
59 * 1. ace_fsm_yield()
60 * - Call if need to poll for event.
61 * - clears the fsm_continue flag to exit the processing loop
62 * - reschedules the tasklet to run again as soon as possible
63 * 2. ace_fsm_yieldirq()
64 * - Call if an irq is expected from the HW
65 * - clears the fsm_continue flag to exit the processing loop
66 * - does not reschedule the tasklet so the FSM will not be processed
67 * again until an irq is received.
68 * After calling a yield function, the state must return control back
69 * to the FSM main loop.
71 * Additionally, the driver maintains a kernel timer which can process
72 * the FSM. If the FSM gets stalled, typically due to a missed
73 * interrupt, then the kernel timer will expire and the driver can
74 * continue where it left off.
76 * To Do:
77 * - Add FPGA configuration control interface.
78 * - Request major number from lanana
81 #undef DEBUG
83 #include <linux/module.h>
84 #include <linux/ctype.h>
85 #include <linux/init.h>
86 #include <linux/interrupt.h>
87 #include <linux/errno.h>
88 #include <linux/kernel.h>
89 #include <linux/delay.h>
90 #include <linux/slab.h>
91 #include <linux/blkdev.h>
92 #include <linux/hdreg.h>
93 #include <linux/platform_device.h>
95 MODULE_AUTHOR("Grant Likely <grant.likely@secretlab.ca>");
96 MODULE_DESCRIPTION("Xilinx SystemACE device driver");
97 MODULE_LICENSE("GPL");
99 /* SystemACE register definitions */
100 #define ACE_BUSMODE (0x00)
102 #define ACE_STATUS (0x04)
103 #define ACE_STATUS_CFGLOCK (0x00000001)
104 #define ACE_STATUS_MPULOCK (0x00000002)
105 #define ACE_STATUS_CFGERROR (0x00000004) /* config controller error */
106 #define ACE_STATUS_CFCERROR (0x00000008) /* CF controller error */
107 #define ACE_STATUS_CFDETECT (0x00000010)
108 #define ACE_STATUS_DATABUFRDY (0x00000020)
109 #define ACE_STATUS_DATABUFMODE (0x00000040)
110 #define ACE_STATUS_CFGDONE (0x00000080)
111 #define ACE_STATUS_RDYFORCFCMD (0x00000100)
112 #define ACE_STATUS_CFGMODEPIN (0x00000200)
113 #define ACE_STATUS_CFGADDR_MASK (0x0000e000)
114 #define ACE_STATUS_CFBSY (0x00020000)
115 #define ACE_STATUS_CFRDY (0x00040000)
116 #define ACE_STATUS_CFDWF (0x00080000)
117 #define ACE_STATUS_CFDSC (0x00100000)
118 #define ACE_STATUS_CFDRQ (0x00200000)
119 #define ACE_STATUS_CFCORR (0x00400000)
120 #define ACE_STATUS_CFERR (0x00800000)
122 #define ACE_ERROR (0x08)
123 #define ACE_CFGLBA (0x0c)
124 #define ACE_MPULBA (0x10)
126 #define ACE_SECCNTCMD (0x14)
127 #define ACE_SECCNTCMD_RESET (0x0100)
128 #define ACE_SECCNTCMD_IDENTIFY (0x0200)
129 #define ACE_SECCNTCMD_READ_DATA (0x0300)
130 #define ACE_SECCNTCMD_WRITE_DATA (0x0400)
131 #define ACE_SECCNTCMD_ABORT (0x0600)
133 #define ACE_VERSION (0x16)
134 #define ACE_VERSION_REVISION_MASK (0x00FF)
135 #define ACE_VERSION_MINOR_MASK (0x0F00)
136 #define ACE_VERSION_MAJOR_MASK (0xF000)
138 #define ACE_CTRL (0x18)
139 #define ACE_CTRL_FORCELOCKREQ (0x0001)
140 #define ACE_CTRL_LOCKREQ (0x0002)
141 #define ACE_CTRL_FORCECFGADDR (0x0004)
142 #define ACE_CTRL_FORCECFGMODE (0x0008)
143 #define ACE_CTRL_CFGMODE (0x0010)
144 #define ACE_CTRL_CFGSTART (0x0020)
145 #define ACE_CTRL_CFGSEL (0x0040)
146 #define ACE_CTRL_CFGRESET (0x0080)
147 #define ACE_CTRL_DATABUFRDYIRQ (0x0100)
148 #define ACE_CTRL_ERRORIRQ (0x0200)
149 #define ACE_CTRL_CFGDONEIRQ (0x0400)
150 #define ACE_CTRL_RESETIRQ (0x0800)
151 #define ACE_CTRL_CFGPROG (0x1000)
152 #define ACE_CTRL_CFGADDR_MASK (0xe000)
154 #define ACE_FATSTAT (0x1c)
156 #define ACE_NUM_MINORS 16
157 #define ACE_SECTOR_SIZE (512)
158 #define ACE_FIFO_SIZE (32)
159 #define ACE_BUF_PER_SECTOR (ACE_SECTOR_SIZE / ACE_FIFO_SIZE)
161 #define ACE_BUS_WIDTH_8 0
162 #define ACE_BUS_WIDTH_16 1
164 struct ace_reg_ops;
166 struct ace_device {
167 /* driver state data */
168 int id;
169 int media_change;
170 int users;
171 struct list_head list;
173 /* finite state machine data */
174 struct tasklet_struct fsm_tasklet;
175 uint fsm_task; /* Current activity (ACE_TASK_*) */
176 uint fsm_state; /* Current state (ACE_FSM_STATE_*) */
177 uint fsm_continue_flag; /* cleared to exit FSM mainloop */
178 uint fsm_iter_num;
179 struct timer_list stall_timer;
181 /* Transfer state/result, use for both id and block request */
182 struct request *req; /* request being processed */
183 void *data_ptr; /* pointer to I/O buffer */
184 int data_count; /* number of buffers remaining */
185 int data_result; /* Result of transfer; 0 := success */
187 int id_req_count; /* count of id requests */
188 int id_result;
189 struct completion id_completion; /* used when id req finishes */
190 int in_irq;
192 /* Details of hardware device */
193 unsigned long physaddr;
194 void *baseaddr;
195 int irq;
196 int bus_width; /* 0 := 8 bit; 1 := 16 bit */
197 struct ace_reg_ops *reg_ops;
198 int lock_count;
200 /* Block device data structures */
201 spinlock_t lock;
202 struct device *dev;
203 struct request_queue *queue;
204 struct gendisk *gd;
206 /* Inserted CF card parameters */
207 struct hd_driveid cf_id;
210 static int ace_major;
212 /* ---------------------------------------------------------------------
213 * Low level register access
216 struct ace_reg_ops {
217 u16(*in) (struct ace_device * ace, int reg);
218 void (*out) (struct ace_device * ace, int reg, u16 val);
219 void (*datain) (struct ace_device * ace);
220 void (*dataout) (struct ace_device * ace);
223 /* 8 Bit bus width */
224 static u16 ace_in_8(struct ace_device *ace, int reg)
226 void *r = ace->baseaddr + reg;
227 return in_8(r) | (in_8(r + 1) << 8);
230 static void ace_out_8(struct ace_device *ace, int reg, u16 val)
232 void *r = ace->baseaddr + reg;
233 out_8(r, val);
234 out_8(r + 1, val >> 8);
237 static void ace_datain_8(struct ace_device *ace)
239 void *r = ace->baseaddr + 0x40;
240 u8 *dst = ace->data_ptr;
241 int i = ACE_FIFO_SIZE;
242 while (i--)
243 *dst++ = in_8(r++);
244 ace->data_ptr = dst;
247 static void ace_dataout_8(struct ace_device *ace)
249 void *r = ace->baseaddr + 0x40;
250 u8 *src = ace->data_ptr;
251 int i = ACE_FIFO_SIZE;
252 while (i--)
253 out_8(r++, *src++);
254 ace->data_ptr = src;
257 static struct ace_reg_ops ace_reg_8_ops = {
258 .in = ace_in_8,
259 .out = ace_out_8,
260 .datain = ace_datain_8,
261 .dataout = ace_dataout_8,
264 /* 16 bit big endian bus attachment */
265 static u16 ace_in_be16(struct ace_device *ace, int reg)
267 return in_be16(ace->baseaddr + reg);
270 static void ace_out_be16(struct ace_device *ace, int reg, u16 val)
272 out_be16(ace->baseaddr + reg, val);
275 static void ace_datain_be16(struct ace_device *ace)
277 int i = ACE_FIFO_SIZE / 2;
278 u16 *dst = ace->data_ptr;
279 while (i--)
280 *dst++ = in_le16(ace->baseaddr + 0x40);
281 ace->data_ptr = dst;
284 static void ace_dataout_be16(struct ace_device *ace)
286 int i = ACE_FIFO_SIZE / 2;
287 u16 *src = ace->data_ptr;
288 while (i--)
289 out_le16(ace->baseaddr + 0x40, *src++);
290 ace->data_ptr = src;
293 /* 16 bit little endian bus attachment */
294 static u16 ace_in_le16(struct ace_device *ace, int reg)
296 return in_le16(ace->baseaddr + reg);
299 static void ace_out_le16(struct ace_device *ace, int reg, u16 val)
301 out_le16(ace->baseaddr + reg, val);
304 static void ace_datain_le16(struct ace_device *ace)
306 int i = ACE_FIFO_SIZE / 2;
307 u16 *dst = ace->data_ptr;
308 while (i--)
309 *dst++ = in_be16(ace->baseaddr + 0x40);
310 ace->data_ptr = dst;
313 static void ace_dataout_le16(struct ace_device *ace)
315 int i = ACE_FIFO_SIZE / 2;
316 u16 *src = ace->data_ptr;
317 while (i--)
318 out_be16(ace->baseaddr + 0x40, *src++);
319 ace->data_ptr = src;
322 static struct ace_reg_ops ace_reg_be16_ops = {
323 .in = ace_in_be16,
324 .out = ace_out_be16,
325 .datain = ace_datain_be16,
326 .dataout = ace_dataout_be16,
329 static struct ace_reg_ops ace_reg_le16_ops = {
330 .in = ace_in_le16,
331 .out = ace_out_le16,
332 .datain = ace_datain_le16,
333 .dataout = ace_dataout_le16,
336 static inline u16 ace_in(struct ace_device *ace, int reg)
338 return ace->reg_ops->in(ace, reg);
341 static inline u32 ace_in32(struct ace_device *ace, int reg)
343 return ace_in(ace, reg) | (ace_in(ace, reg + 2) << 16);
346 static inline void ace_out(struct ace_device *ace, int reg, u16 val)
348 ace->reg_ops->out(ace, reg, val);
351 static inline void ace_out32(struct ace_device *ace, int reg, u32 val)
353 ace_out(ace, reg, val);
354 ace_out(ace, reg + 2, val >> 16);
357 /* ---------------------------------------------------------------------
358 * Debug support functions
361 #if defined(DEBUG)
362 static void ace_dump_mem(void *base, int len)
364 const char *ptr = base;
365 int i, j;
367 for (i = 0; i < len; i += 16) {
368 printk(KERN_INFO "%.8x:", i);
369 for (j = 0; j < 16; j++) {
370 if (!(j % 4))
371 printk(" ");
372 printk("%.2x", ptr[i + j]);
374 printk(" ");
375 for (j = 0; j < 16; j++)
376 printk("%c", isprint(ptr[i + j]) ? ptr[i + j] : '.');
377 printk("\n");
380 #else
381 static inline void ace_dump_mem(void *base, int len)
384 #endif
386 static void ace_dump_regs(struct ace_device *ace)
388 dev_info(ace->dev, " ctrl: %.8x seccnt/cmd: %.4x ver:%.4x\n"
389 " status:%.8x mpu_lba:%.8x busmode:%4x\n"
390 " error: %.8x cfg_lba:%.8x fatstat:%.4x\n",
391 ace_in32(ace, ACE_CTRL),
392 ace_in(ace, ACE_SECCNTCMD),
393 ace_in(ace, ACE_VERSION),
394 ace_in32(ace, ACE_STATUS),
395 ace_in32(ace, ACE_MPULBA),
396 ace_in(ace, ACE_BUSMODE),
397 ace_in32(ace, ACE_ERROR),
398 ace_in32(ace, ACE_CFGLBA), ace_in(ace, ACE_FATSTAT));
401 void ace_fix_driveid(struct hd_driveid *id)
403 #if defined(__BIG_ENDIAN)
404 u16 *buf = (void *)id;
405 int i;
407 /* All half words have wrong byte order; swap the bytes */
408 for (i = 0; i < sizeof(struct hd_driveid); i += 2, buf++)
409 *buf = le16_to_cpu(*buf);
411 /* Some of the data values are 32bit; swap the half words */
412 id->lba_capacity = ((id->lba_capacity >> 16) & 0x0000FFFF) |
413 ((id->lba_capacity << 16) & 0xFFFF0000);
414 id->spg = ((id->spg >> 16) & 0x0000FFFF) |
415 ((id->spg << 16) & 0xFFFF0000);
416 #endif
419 /* ---------------------------------------------------------------------
420 * Finite State Machine (FSM) implementation
423 /* FSM tasks; used to direct state transitions */
424 #define ACE_TASK_IDLE 0
425 #define ACE_TASK_IDENTIFY 1
426 #define ACE_TASK_READ 2
427 #define ACE_TASK_WRITE 3
428 #define ACE_FSM_NUM_TASKS 4
430 /* FSM state definitions */
431 #define ACE_FSM_STATE_IDLE 0
432 #define ACE_FSM_STATE_REQ_LOCK 1
433 #define ACE_FSM_STATE_WAIT_LOCK 2
434 #define ACE_FSM_STATE_WAIT_CFREADY 3
435 #define ACE_FSM_STATE_IDENTIFY_PREPARE 4
436 #define ACE_FSM_STATE_IDENTIFY_TRANSFER 5
437 #define ACE_FSM_STATE_IDENTIFY_COMPLETE 6
438 #define ACE_FSM_STATE_REQ_PREPARE 7
439 #define ACE_FSM_STATE_REQ_TRANSFER 8
440 #define ACE_FSM_STATE_REQ_COMPLETE 9
441 #define ACE_FSM_STATE_ERROR 10
442 #define ACE_FSM_NUM_STATES 11
444 /* Set flag to exit FSM loop and reschedule tasklet */
445 static inline void ace_fsm_yield(struct ace_device *ace)
447 dev_dbg(ace->dev, "ace_fsm_yield()\n");
448 tasklet_schedule(&ace->fsm_tasklet);
449 ace->fsm_continue_flag = 0;
452 /* Set flag to exit FSM loop and wait for IRQ to reschedule tasklet */
453 static inline void ace_fsm_yieldirq(struct ace_device *ace)
455 dev_dbg(ace->dev, "ace_fsm_yieldirq()\n");
457 if (ace->irq == NO_IRQ)
458 /* No IRQ assigned, so need to poll */
459 tasklet_schedule(&ace->fsm_tasklet);
460 ace->fsm_continue_flag = 0;
463 /* Get the next read/write request; ending requests that we don't handle */
464 struct request *ace_get_next_request(struct request_queue * q)
466 struct request *req;
468 while ((req = elv_next_request(q)) != NULL) {
469 if (blk_fs_request(req))
470 break;
471 end_request(req, 0);
473 return req;
476 static void ace_fsm_dostate(struct ace_device *ace)
478 struct request *req;
479 u32 status;
480 u16 val;
481 int count;
482 int i;
484 #if defined(DEBUG)
485 dev_dbg(ace->dev, "fsm_state=%i, id_req_count=%i\n",
486 ace->fsm_state, ace->id_req_count);
487 #endif
489 switch (ace->fsm_state) {
490 case ACE_FSM_STATE_IDLE:
491 /* See if there is anything to do */
492 if (ace->id_req_count || ace_get_next_request(ace->queue)) {
493 ace->fsm_iter_num++;
494 ace->fsm_state = ACE_FSM_STATE_REQ_LOCK;
495 mod_timer(&ace->stall_timer, jiffies + HZ);
496 if (!timer_pending(&ace->stall_timer))
497 add_timer(&ace->stall_timer);
498 break;
500 del_timer(&ace->stall_timer);
501 ace->fsm_continue_flag = 0;
502 break;
504 case ACE_FSM_STATE_REQ_LOCK:
505 if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
506 /* Already have the lock, jump to next state */
507 ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
508 break;
511 /* Request the lock */
512 val = ace_in(ace, ACE_CTRL);
513 ace_out(ace, ACE_CTRL, val | ACE_CTRL_LOCKREQ);
514 ace->fsm_state = ACE_FSM_STATE_WAIT_LOCK;
515 break;
517 case ACE_FSM_STATE_WAIT_LOCK:
518 if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
519 /* got the lock; move to next state */
520 ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
521 break;
524 /* wait a bit for the lock */
525 ace_fsm_yield(ace);
526 break;
528 case ACE_FSM_STATE_WAIT_CFREADY:
529 status = ace_in32(ace, ACE_STATUS);
530 if (!(status & ACE_STATUS_RDYFORCFCMD) ||
531 (status & ACE_STATUS_CFBSY)) {
532 /* CF card isn't ready; it needs to be polled */
533 ace_fsm_yield(ace);
534 break;
537 /* Device is ready for command; determine what to do next */
538 if (ace->id_req_count)
539 ace->fsm_state = ACE_FSM_STATE_IDENTIFY_PREPARE;
540 else
541 ace->fsm_state = ACE_FSM_STATE_REQ_PREPARE;
542 break;
544 case ACE_FSM_STATE_IDENTIFY_PREPARE:
545 /* Send identify command */
546 ace->fsm_task = ACE_TASK_IDENTIFY;
547 ace->data_ptr = &ace->cf_id;
548 ace->data_count = ACE_BUF_PER_SECTOR;
549 ace_out(ace, ACE_SECCNTCMD, ACE_SECCNTCMD_IDENTIFY);
551 /* As per datasheet, put config controller in reset */
552 val = ace_in(ace, ACE_CTRL);
553 ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
555 /* irq handler takes over from this point; wait for the
556 * transfer to complete */
557 ace->fsm_state = ACE_FSM_STATE_IDENTIFY_TRANSFER;
558 ace_fsm_yieldirq(ace);
559 break;
561 case ACE_FSM_STATE_IDENTIFY_TRANSFER:
562 /* Check that the sysace is ready to receive data */
563 status = ace_in32(ace, ACE_STATUS);
564 if (status & ACE_STATUS_CFBSY) {
565 dev_dbg(ace->dev, "CFBSY set; t=%i iter=%i dc=%i\n",
566 ace->fsm_task, ace->fsm_iter_num,
567 ace->data_count);
568 ace_fsm_yield(ace);
569 break;
571 if (!(status & ACE_STATUS_DATABUFRDY)) {
572 ace_fsm_yield(ace);
573 break;
576 /* Transfer the next buffer */
577 ace->reg_ops->datain(ace);
578 ace->data_count--;
580 /* If there are still buffers to be transfers; jump out here */
581 if (ace->data_count != 0) {
582 ace_fsm_yieldirq(ace);
583 break;
586 /* transfer finished; kick state machine */
587 dev_dbg(ace->dev, "identify finished\n");
588 ace->fsm_state = ACE_FSM_STATE_IDENTIFY_COMPLETE;
589 break;
591 case ACE_FSM_STATE_IDENTIFY_COMPLETE:
592 ace_fix_driveid(&ace->cf_id);
593 ace_dump_mem(&ace->cf_id, 512); /* Debug: Dump out disk ID */
595 if (ace->data_result) {
596 /* Error occured, disable the disk */
597 ace->media_change = 1;
598 set_capacity(ace->gd, 0);
599 dev_err(ace->dev, "error fetching CF id (%i)\n",
600 ace->data_result);
601 } else {
602 ace->media_change = 0;
604 /* Record disk parameters */
605 set_capacity(ace->gd, ace->cf_id.lba_capacity);
606 dev_info(ace->dev, "capacity: %i sectors\n",
607 ace->cf_id.lba_capacity);
610 /* We're done, drop to IDLE state and notify waiters */
611 ace->fsm_state = ACE_FSM_STATE_IDLE;
612 ace->id_result = ace->data_result;
613 while (ace->id_req_count) {
614 complete(&ace->id_completion);
615 ace->id_req_count--;
617 break;
619 case ACE_FSM_STATE_REQ_PREPARE:
620 req = ace_get_next_request(ace->queue);
621 if (!req) {
622 ace->fsm_state = ACE_FSM_STATE_IDLE;
623 break;
626 /* Okay, it's a data request, set it up for transfer */
627 dev_dbg(ace->dev,
628 "request: sec=%lx hcnt=%lx, ccnt=%x, dir=%i\n",
629 req->sector, req->hard_nr_sectors,
630 req->current_nr_sectors, rq_data_dir(req));
632 ace->req = req;
633 ace->data_ptr = req->buffer;
634 ace->data_count = req->current_nr_sectors * ACE_BUF_PER_SECTOR;
635 ace_out32(ace, ACE_MPULBA, req->sector & 0x0FFFFFFF);
637 count = req->hard_nr_sectors;
638 if (rq_data_dir(req)) {
639 /* Kick off write request */
640 dev_dbg(ace->dev, "write data\n");
641 ace->fsm_task = ACE_TASK_WRITE;
642 ace_out(ace, ACE_SECCNTCMD,
643 count | ACE_SECCNTCMD_WRITE_DATA);
644 } else {
645 /* Kick off read request */
646 dev_dbg(ace->dev, "read data\n");
647 ace->fsm_task = ACE_TASK_READ;
648 ace_out(ace, ACE_SECCNTCMD,
649 count | ACE_SECCNTCMD_READ_DATA);
652 /* As per datasheet, put config controller in reset */
653 val = ace_in(ace, ACE_CTRL);
654 ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
656 /* Move to the transfer state. The systemace will raise
657 * an interrupt once there is something to do
659 ace->fsm_state = ACE_FSM_STATE_REQ_TRANSFER;
660 if (ace->fsm_task == ACE_TASK_READ)
661 ace_fsm_yieldirq(ace); /* wait for data ready */
662 break;
664 case ACE_FSM_STATE_REQ_TRANSFER:
665 /* Check that the sysace is ready to receive data */
666 status = ace_in32(ace, ACE_STATUS);
667 if (status & ACE_STATUS_CFBSY) {
668 dev_dbg(ace->dev,
669 "CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n",
670 ace->fsm_task, ace->fsm_iter_num,
671 ace->req->current_nr_sectors * 16,
672 ace->data_count, ace->in_irq);
673 ace_fsm_yield(ace); /* need to poll CFBSY bit */
674 break;
676 if (!(status & ACE_STATUS_DATABUFRDY)) {
677 dev_dbg(ace->dev,
678 "DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n",
679 ace->fsm_task, ace->fsm_iter_num,
680 ace->req->current_nr_sectors * 16,
681 ace->data_count, ace->in_irq);
682 ace_fsm_yieldirq(ace);
683 break;
686 /* Transfer the next buffer */
687 i = 16;
688 if (ace->fsm_task == ACE_TASK_WRITE)
689 ace->reg_ops->dataout(ace);
690 else
691 ace->reg_ops->datain(ace);
692 ace->data_count--;
694 /* If there are still buffers to be transfers; jump out here */
695 if (ace->data_count != 0) {
696 ace_fsm_yieldirq(ace);
697 break;
700 /* bio finished; is there another one? */
701 i = ace->req->current_nr_sectors;
702 if (end_that_request_first(ace->req, 1, i)) {
703 /* dev_dbg(ace->dev, "next block; h=%li c=%i\n",
704 * ace->req->hard_nr_sectors,
705 * ace->req->current_nr_sectors);
707 ace->data_ptr = ace->req->buffer;
708 ace->data_count = ace->req->current_nr_sectors * 16;
709 ace_fsm_yieldirq(ace);
710 break;
713 ace->fsm_state = ACE_FSM_STATE_REQ_COMPLETE;
714 break;
716 case ACE_FSM_STATE_REQ_COMPLETE:
717 /* Complete the block request */
718 blkdev_dequeue_request(ace->req);
719 end_that_request_last(ace->req, 1);
720 ace->req = NULL;
722 /* Finished request; go to idle state */
723 ace->fsm_state = ACE_FSM_STATE_IDLE;
724 break;
726 default:
727 ace->fsm_state = ACE_FSM_STATE_IDLE;
728 break;
732 static void ace_fsm_tasklet(unsigned long data)
734 struct ace_device *ace = (void *)data;
735 unsigned long flags;
737 spin_lock_irqsave(&ace->lock, flags);
739 /* Loop over state machine until told to stop */
740 ace->fsm_continue_flag = 1;
741 while (ace->fsm_continue_flag)
742 ace_fsm_dostate(ace);
744 spin_unlock_irqrestore(&ace->lock, flags);
747 static void ace_stall_timer(unsigned long data)
749 struct ace_device *ace = (void *)data;
750 unsigned long flags;
752 dev_warn(ace->dev,
753 "kicking stalled fsm; state=%i task=%i iter=%i dc=%i\n",
754 ace->fsm_state, ace->fsm_task, ace->fsm_iter_num,
755 ace->data_count);
756 spin_lock_irqsave(&ace->lock, flags);
758 /* Rearm the stall timer *before* entering FSM (which may then
759 * delete the timer) */
760 mod_timer(&ace->stall_timer, jiffies + HZ);
762 /* Loop over state machine until told to stop */
763 ace->fsm_continue_flag = 1;
764 while (ace->fsm_continue_flag)
765 ace_fsm_dostate(ace);
767 spin_unlock_irqrestore(&ace->lock, flags);
770 /* ---------------------------------------------------------------------
771 * Interrupt handling routines
773 static int ace_interrupt_checkstate(struct ace_device *ace)
775 u32 sreg = ace_in32(ace, ACE_STATUS);
776 u16 creg = ace_in(ace, ACE_CTRL);
778 /* Check for error occurance */
779 if ((sreg & (ACE_STATUS_CFGERROR | ACE_STATUS_CFCERROR)) &&
780 (creg & ACE_CTRL_ERRORIRQ)) {
781 dev_err(ace->dev, "transfer failure\n");
782 ace_dump_regs(ace);
783 return -EIO;
786 return 0;
789 static irqreturn_t ace_interrupt(int irq, void *dev_id)
791 u16 creg;
792 struct ace_device *ace = dev_id;
794 /* be safe and get the lock */
795 spin_lock(&ace->lock);
796 ace->in_irq = 1;
798 /* clear the interrupt */
799 creg = ace_in(ace, ACE_CTRL);
800 ace_out(ace, ACE_CTRL, creg | ACE_CTRL_RESETIRQ);
801 ace_out(ace, ACE_CTRL, creg);
803 /* check for IO failures */
804 if (ace_interrupt_checkstate(ace))
805 ace->data_result = -EIO;
807 if (ace->fsm_task == 0) {
808 dev_err(ace->dev,
809 "spurious irq; stat=%.8x ctrl=%.8x cmd=%.4x\n",
810 ace_in32(ace, ACE_STATUS), ace_in32(ace, ACE_CTRL),
811 ace_in(ace, ACE_SECCNTCMD));
812 dev_err(ace->dev, "fsm_task=%i fsm_state=%i data_count=%i\n",
813 ace->fsm_task, ace->fsm_state, ace->data_count);
816 /* Loop over state machine until told to stop */
817 ace->fsm_continue_flag = 1;
818 while (ace->fsm_continue_flag)
819 ace_fsm_dostate(ace);
821 /* done with interrupt; drop the lock */
822 ace->in_irq = 0;
823 spin_unlock(&ace->lock);
825 return IRQ_HANDLED;
828 /* ---------------------------------------------------------------------
829 * Block ops
831 static void ace_request(struct request_queue * q)
833 struct request *req;
834 struct ace_device *ace;
836 req = ace_get_next_request(q);
838 if (req) {
839 ace = req->rq_disk->private_data;
840 tasklet_schedule(&ace->fsm_tasklet);
844 static int ace_media_changed(struct gendisk *gd)
846 struct ace_device *ace = gd->private_data;
847 dev_dbg(ace->dev, "ace_media_changed(): %i\n", ace->media_change);
849 return ace->media_change;
852 static int ace_revalidate_disk(struct gendisk *gd)
854 struct ace_device *ace = gd->private_data;
855 unsigned long flags;
857 dev_dbg(ace->dev, "ace_revalidate_disk()\n");
859 if (ace->media_change) {
860 dev_dbg(ace->dev, "requesting cf id and scheduling tasklet\n");
862 spin_lock_irqsave(&ace->lock, flags);
863 ace->id_req_count++;
864 spin_unlock_irqrestore(&ace->lock, flags);
866 tasklet_schedule(&ace->fsm_tasklet);
867 wait_for_completion(&ace->id_completion);
870 dev_dbg(ace->dev, "revalidate complete\n");
871 return ace->id_result;
874 static int ace_open(struct inode *inode, struct file *filp)
876 struct ace_device *ace = inode->i_bdev->bd_disk->private_data;
877 unsigned long flags;
879 dev_dbg(ace->dev, "ace_open() users=%i\n", ace->users + 1);
881 filp->private_data = ace;
882 spin_lock_irqsave(&ace->lock, flags);
883 ace->users++;
884 spin_unlock_irqrestore(&ace->lock, flags);
886 check_disk_change(inode->i_bdev);
887 return 0;
890 static int ace_release(struct inode *inode, struct file *filp)
892 struct ace_device *ace = inode->i_bdev->bd_disk->private_data;
893 unsigned long flags;
894 u16 val;
896 dev_dbg(ace->dev, "ace_release() users=%i\n", ace->users - 1);
898 spin_lock_irqsave(&ace->lock, flags);
899 ace->users--;
900 if (ace->users == 0) {
901 val = ace_in(ace, ACE_CTRL);
902 ace_out(ace, ACE_CTRL, val & ~ACE_CTRL_LOCKREQ);
904 spin_unlock_irqrestore(&ace->lock, flags);
905 return 0;
908 static int ace_getgeo(struct block_device *bdev, struct hd_geometry *geo)
910 struct ace_device *ace = bdev->bd_disk->private_data;
912 dev_dbg(ace->dev, "ace_getgeo()\n");
914 geo->heads = ace->cf_id.heads;
915 geo->sectors = ace->cf_id.sectors;
916 geo->cylinders = ace->cf_id.cyls;
918 return 0;
921 static struct block_device_operations ace_fops = {
922 .owner = THIS_MODULE,
923 .open = ace_open,
924 .release = ace_release,
925 .media_changed = ace_media_changed,
926 .revalidate_disk = ace_revalidate_disk,
927 .getgeo = ace_getgeo,
930 /* --------------------------------------------------------------------
931 * SystemACE device setup/teardown code
933 static int __devinit ace_setup(struct ace_device *ace)
935 u16 version;
936 u16 val;
937 int rc;
939 dev_dbg(ace->dev, "ace_setup(ace=0x%p)\n", ace);
940 dev_dbg(ace->dev, "physaddr=0x%lx irq=%i\n", ace->physaddr, ace->irq);
942 spin_lock_init(&ace->lock);
943 init_completion(&ace->id_completion);
946 * Map the device
948 ace->baseaddr = ioremap(ace->physaddr, 0x80);
949 if (!ace->baseaddr)
950 goto err_ioremap;
953 * Initialize the state machine tasklet and stall timer
955 tasklet_init(&ace->fsm_tasklet, ace_fsm_tasklet, (unsigned long)ace);
956 setup_timer(&ace->stall_timer, ace_stall_timer, (unsigned long)ace);
959 * Initialize the request queue
961 ace->queue = blk_init_queue(ace_request, &ace->lock);
962 if (ace->queue == NULL)
963 goto err_blk_initq;
964 blk_queue_hardsect_size(ace->queue, 512);
967 * Allocate and initialize GD structure
969 ace->gd = alloc_disk(ACE_NUM_MINORS);
970 if (!ace->gd)
971 goto err_alloc_disk;
973 ace->gd->major = ace_major;
974 ace->gd->first_minor = ace->id * ACE_NUM_MINORS;
975 ace->gd->fops = &ace_fops;
976 ace->gd->queue = ace->queue;
977 ace->gd->private_data = ace;
978 snprintf(ace->gd->disk_name, 32, "xs%c", ace->id + 'a');
980 /* set bus width */
981 if (ace->bus_width == ACE_BUS_WIDTH_16) {
982 /* 0x0101 should work regardless of endianess */
983 ace_out_le16(ace, ACE_BUSMODE, 0x0101);
985 /* read it back to determine endianess */
986 if (ace_in_le16(ace, ACE_BUSMODE) == 0x0001)
987 ace->reg_ops = &ace_reg_le16_ops;
988 else
989 ace->reg_ops = &ace_reg_be16_ops;
990 } else {
991 ace_out_8(ace, ACE_BUSMODE, 0x00);
992 ace->reg_ops = &ace_reg_8_ops;
995 /* Make sure version register is sane */
996 version = ace_in(ace, ACE_VERSION);
997 if ((version == 0) || (version == 0xFFFF))
998 goto err_read;
1000 /* Put sysace in a sane state by clearing most control reg bits */
1001 ace_out(ace, ACE_CTRL, ACE_CTRL_FORCECFGMODE |
1002 ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ);
1004 /* Enable interrupts */
1005 val = ace_in(ace, ACE_CTRL);
1006 val |= ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ;
1007 ace_out(ace, ACE_CTRL, val);
1009 /* Now we can hook up the irq handler */
1010 if (ace->irq != NO_IRQ) {
1011 rc = request_irq(ace->irq, ace_interrupt, 0, "systemace", ace);
1012 if (rc) {
1013 /* Failure - fall back to polled mode */
1014 dev_err(ace->dev, "request_irq failed\n");
1015 ace->irq = NO_IRQ;
1019 /* Print the identification */
1020 dev_info(ace->dev, "Xilinx SystemACE revision %i.%i.%i\n",
1021 (version >> 12) & 0xf, (version >> 8) & 0x0f, version & 0xff);
1022 dev_dbg(ace->dev, "physaddr 0x%lx, mapped to 0x%p, irq=%i\n",
1023 ace->physaddr, ace->baseaddr, ace->irq);
1025 ace->media_change = 1;
1026 ace_revalidate_disk(ace->gd);
1028 /* Make the sysace device 'live' */
1029 add_disk(ace->gd);
1031 return 0;
1033 err_read:
1034 put_disk(ace->gd);
1035 err_alloc_disk:
1036 blk_cleanup_queue(ace->queue);
1037 err_blk_initq:
1038 iounmap(ace->baseaddr);
1039 err_ioremap:
1040 dev_info(ace->dev, "xsysace: error initializing device at 0x%lx\n",
1041 ace->physaddr);
1042 return -ENOMEM;
1045 static void __devexit ace_teardown(struct ace_device *ace)
1047 if (ace->gd) {
1048 del_gendisk(ace->gd);
1049 put_disk(ace->gd);
1052 if (ace->queue)
1053 blk_cleanup_queue(ace->queue);
1055 tasklet_kill(&ace->fsm_tasklet);
1057 if (ace->irq != NO_IRQ)
1058 free_irq(ace->irq, ace);
1060 iounmap(ace->baseaddr);
1063 static int __devinit
1064 ace_alloc(struct device *dev, int id, unsigned long physaddr,
1065 int irq, int bus_width)
1067 struct ace_device *ace;
1068 int rc;
1069 dev_dbg(dev, "ace_alloc(%p)\n", dev);
1071 if (!physaddr) {
1072 rc = -ENODEV;
1073 goto err_noreg;
1076 /* Allocate and initialize the ace device structure */
1077 ace = kzalloc(sizeof(struct ace_device), GFP_KERNEL);
1078 if (!ace) {
1079 rc = -ENOMEM;
1080 goto err_alloc;
1083 ace->dev = dev;
1084 ace->id = id;
1085 ace->physaddr = physaddr;
1086 ace->irq = irq;
1087 ace->bus_width = bus_width;
1089 /* Call the setup code */
1090 if ((rc = ace_setup(ace)) != 0)
1091 goto err_setup;
1093 dev_set_drvdata(dev, ace);
1094 return 0;
1096 err_setup:
1097 dev_set_drvdata(dev, NULL);
1098 kfree(ace);
1099 err_alloc:
1100 err_noreg:
1101 dev_err(dev, "could not initialize device, err=%i\n", rc);
1102 return rc;
1105 static void __devexit ace_free(struct device *dev)
1107 struct ace_device *ace = dev_get_drvdata(dev);
1108 dev_dbg(dev, "ace_free(%p)\n", dev);
1110 if (ace) {
1111 ace_teardown(ace);
1112 dev_set_drvdata(dev, NULL);
1113 kfree(ace);
1117 /* ---------------------------------------------------------------------
1118 * Platform Bus Support
1121 static int __devinit ace_probe(struct platform_device *dev)
1123 unsigned long physaddr = 0;
1124 int bus_width = ACE_BUS_WIDTH_16; /* FIXME: should not be hard coded */
1125 int id = dev->id;
1126 int irq = NO_IRQ;
1127 int i;
1129 dev_dbg(&dev->dev, "ace_probe(%p)\n", dev);
1131 for (i = 0; i < dev->num_resources; i++) {
1132 if (dev->resource[i].flags & IORESOURCE_MEM)
1133 physaddr = dev->resource[i].start;
1134 if (dev->resource[i].flags & IORESOURCE_IRQ)
1135 irq = dev->resource[i].start;
1138 /* Call the bus-independant setup code */
1139 return ace_alloc(&dev->dev, id, physaddr, irq, bus_width);
1143 * Platform bus remove() method
1145 static int __devexit ace_remove(struct platform_device *dev)
1147 ace_free(&dev->dev);
1148 return 0;
1151 static struct platform_driver ace_platform_driver = {
1152 .probe = ace_probe,
1153 .remove = __devexit_p(ace_remove),
1154 .driver = {
1155 .owner = THIS_MODULE,
1156 .name = "xsysace",
1160 /* ---------------------------------------------------------------------
1161 * Module init/exit routines
1163 static int __init ace_init(void)
1165 int rc;
1167 ace_major = register_blkdev(ace_major, "xsysace");
1168 if (ace_major <= 0) {
1169 rc = -ENOMEM;
1170 goto err_blk;
1173 pr_debug("xsysace: registering platform binding\n");
1174 if ((rc = platform_driver_register(&ace_platform_driver)) != 0)
1175 goto err_plat;
1177 pr_info("Xilinx SystemACE device driver, major=%i\n", ace_major);
1178 return 0;
1180 err_plat:
1181 unregister_blkdev(ace_major, "xsysace");
1182 err_blk:
1183 printk(KERN_ERR "xsysace: registration failed; err=%i\n", rc);
1184 return rc;
1187 static void __exit ace_exit(void)
1189 pr_debug("Unregistering Xilinx SystemACE driver\n");
1190 platform_driver_unregister(&ace_platform_driver);
1191 unregister_blkdev(ace_major, "xsysace");
1194 module_init(ace_init);
1195 module_exit(ace_exit);