[CPUFREQ] Lots of whitespace & CodingStyle cleanup.
[linux-2.6/mini2440.git] / arch / i386 / kernel / cpu / cpufreq / powernow-k8.c
blobe85e90524df70de1bde8bcdc02e382d9338dd858
1 /*
2 * (c) 2003, 2004, 2005 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
7 * Support : mark.langsdorf@amd.com
9 * Based on the powernow-k7.c module written by Dave Jones.
10 * (C) 2003 Dave Jones <davej@codemonkey.org.uk> on behalf of SuSE Labs
11 * (C) 2004 Dominik Brodowski <linux@brodo.de>
12 * (C) 2004 Pavel Machek <pavel@suse.cz>
13 * Licensed under the terms of the GNU GPL License version 2.
14 * Based upon datasheets & sample CPUs kindly provided by AMD.
16 * Valuable input gratefully received from Dave Jones, Pavel Machek,
17 * Dominik Brodowski, and others.
18 * Originally developed by Paul Devriendt.
19 * Processor information obtained from Chapter 9 (Power and Thermal Management)
20 * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21 * Opteron Processors" available for download from www.amd.com
23 * Tables for specific CPUs can be infrerred from
24 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
27 #include <linux/kernel.h>
28 #include <linux/smp.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/cpufreq.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/cpumask.h>
35 #include <linux/sched.h> /* for current / set_cpus_allowed() */
37 #include <asm/msr.h>
38 #include <asm/io.h>
39 #include <asm/delay.h>
41 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
42 #include <linux/acpi.h>
43 #include <acpi/processor.h>
44 #endif
46 #define PFX "powernow-k8: "
47 #define BFX PFX "BIOS error: "
48 #define VERSION "version 1.60.0"
49 #include "powernow-k8.h"
51 /* serialize freq changes */
52 static DECLARE_MUTEX(fidvid_sem);
54 static struct powernow_k8_data *powernow_data[NR_CPUS];
56 #ifndef CONFIG_SMP
57 static cpumask_t cpu_core_map[1];
58 #endif
60 /* Return a frequency in MHz, given an input fid */
61 static u32 find_freq_from_fid(u32 fid)
63 return 800 + (fid * 100);
66 /* Return a frequency in KHz, given an input fid */
67 static u32 find_khz_freq_from_fid(u32 fid)
69 return 1000 * find_freq_from_fid(fid);
72 /* Return a voltage in miliVolts, given an input vid */
73 static u32 find_millivolts_from_vid(struct powernow_k8_data *data, u32 vid)
75 return 1550-vid*25;
78 /* Return the vco fid for an input fid
80 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
81 * only from corresponding high fids. This returns "high" fid corresponding to
82 * "low" one.
84 static u32 convert_fid_to_vco_fid(u32 fid)
86 if (fid < HI_FID_TABLE_BOTTOM)
87 return 8 + (2 * fid);
88 else
89 return fid;
93 * Return 1 if the pending bit is set. Unless we just instructed the processor
94 * to transition to a new state, seeing this bit set is really bad news.
96 static int pending_bit_stuck(void)
98 u32 lo, hi;
100 rdmsr(MSR_FIDVID_STATUS, lo, hi);
101 return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
105 * Update the global current fid / vid values from the status msr.
106 * Returns 1 on error.
108 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
110 u32 lo, hi;
111 u32 i = 0;
113 do {
114 if (i++ > 10000) {
115 dprintk("detected change pending stuck\n");
116 return 1;
118 rdmsr(MSR_FIDVID_STATUS, lo, hi);
119 } while (lo & MSR_S_LO_CHANGE_PENDING);
121 data->currvid = hi & MSR_S_HI_CURRENT_VID;
122 data->currfid = lo & MSR_S_LO_CURRENT_FID;
124 return 0;
127 /* the isochronous relief time */
128 static void count_off_irt(struct powernow_k8_data *data)
130 udelay((1 << data->irt) * 10);
131 return;
134 /* the voltage stabalization time */
135 static void count_off_vst(struct powernow_k8_data *data)
137 udelay(data->vstable * VST_UNITS_20US);
138 return;
141 /* need to init the control msr to a safe value (for each cpu) */
142 static void fidvid_msr_init(void)
144 u32 lo, hi;
145 u8 fid, vid;
147 rdmsr(MSR_FIDVID_STATUS, lo, hi);
148 vid = hi & MSR_S_HI_CURRENT_VID;
149 fid = lo & MSR_S_LO_CURRENT_FID;
150 lo = fid | (vid << MSR_C_LO_VID_SHIFT);
151 hi = MSR_C_HI_STP_GNT_BENIGN;
152 dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
153 wrmsr(MSR_FIDVID_CTL, lo, hi);
157 /* write the new fid value along with the other control fields to the msr */
158 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
160 u32 lo;
161 u32 savevid = data->currvid;
162 u32 i = 0;
164 if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
165 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
166 return 1;
169 lo = fid | (data->currvid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
171 dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
172 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
174 do {
175 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
176 if (i++ > 100) {
177 printk(KERN_ERR PFX "internal error - pending bit very stuck - no further pstate changes possible\n");
178 return 1;
180 } while (query_current_values_with_pending_wait(data));
182 count_off_irt(data);
184 if (savevid != data->currvid) {
185 printk(KERN_ERR PFX "vid change on fid trans, old 0x%x, new 0x%x\n",
186 savevid, data->currvid);
187 return 1;
190 if (fid != data->currfid) {
191 printk(KERN_ERR PFX "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
192 data->currfid);
193 return 1;
196 return 0;
199 /* Write a new vid to the hardware */
200 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
202 u32 lo;
203 u32 savefid = data->currfid;
204 int i = 0;
206 if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
207 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
208 return 1;
211 lo = data->currfid | (vid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
213 dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
214 vid, lo, STOP_GRANT_5NS);
216 do {
217 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
218 if (i++ > 100) {
219 printk(KERN_ERR PFX "internal error - pending bit very stuck - no further pstate changes possible\n");
220 return 1;
222 } while (query_current_values_with_pending_wait(data));
224 if (savefid != data->currfid) {
225 printk(KERN_ERR PFX "fid changed on vid trans, old 0x%x new 0x%x\n",
226 savefid, data->currfid);
227 return 1;
230 if (vid != data->currvid) {
231 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, curr 0x%x\n", vid,
232 data->currvid);
233 return 1;
236 return 0;
240 * Reduce the vid by the max of step or reqvid.
241 * Decreasing vid codes represent increasing voltages:
242 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
244 static int decrease_vid_code_by_step(struct powernow_k8_data *data, u32 reqvid, u32 step)
246 if ((data->currvid - reqvid) > step)
247 reqvid = data->currvid - step;
249 if (write_new_vid(data, reqvid))
250 return 1;
252 count_off_vst(data);
254 return 0;
257 /* Change the fid and vid, by the 3 phases. */
258 static int transition_fid_vid(struct powernow_k8_data *data, u32 reqfid, u32 reqvid)
260 if (core_voltage_pre_transition(data, reqvid))
261 return 1;
263 if (core_frequency_transition(data, reqfid))
264 return 1;
266 if (core_voltage_post_transition(data, reqvid))
267 return 1;
269 if (query_current_values_with_pending_wait(data))
270 return 1;
272 if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
273 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n",
274 smp_processor_id(),
275 reqfid, reqvid, data->currfid, data->currvid);
276 return 1;
279 dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
280 smp_processor_id(), data->currfid, data->currvid);
282 return 0;
285 /* Phase 1 - core voltage transition ... setup voltage */
286 static int core_voltage_pre_transition(struct powernow_k8_data *data, u32 reqvid)
288 u32 rvosteps = data->rvo;
289 u32 savefid = data->currfid;
290 u32 maxvid, lo;
292 dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n",
293 smp_processor_id(),
294 data->currfid, data->currvid, reqvid, data->rvo);
296 rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
297 maxvid = 0x1f & (maxvid >> 16);
298 dprintk("ph1 maxvid=0x%x\n", maxvid);
299 if (reqvid < maxvid) /* lower numbers are higher voltages */
300 reqvid = maxvid;
302 while (data->currvid > reqvid) {
303 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
304 data->currvid, reqvid);
305 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
306 return 1;
309 while ((rvosteps > 0) && ((data->rvo + data->currvid) > reqvid)) {
310 if (data->currvid == maxvid) {
311 rvosteps = 0;
312 } else {
313 dprintk("ph1: changing vid for rvo, req 0x%x\n",
314 data->currvid - 1);
315 if (decrease_vid_code_by_step(data, data->currvid - 1, 1))
316 return 1;
317 rvosteps--;
321 if (query_current_values_with_pending_wait(data))
322 return 1;
324 if (savefid != data->currfid) {
325 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", data->currfid);
326 return 1;
329 dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
330 data->currfid, data->currvid);
332 return 0;
335 /* Phase 2 - core frequency transition */
336 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
338 u32 vcoreqfid, vcocurrfid, vcofiddiff, fid_interval, savevid = data->currvid;
340 if ((reqfid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
341 printk(KERN_ERR PFX "ph2: illegal lo-lo transition 0x%x 0x%x\n",
342 reqfid, data->currfid);
343 return 1;
346 if (data->currfid == reqfid) {
347 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", data->currfid);
348 return 0;
351 dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n",
352 smp_processor_id(),
353 data->currfid, data->currvid, reqfid);
355 vcoreqfid = convert_fid_to_vco_fid(reqfid);
356 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
357 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
358 : vcoreqfid - vcocurrfid;
360 while (vcofiddiff > 2) {
361 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
363 if (reqfid > data->currfid) {
364 if (data->currfid > LO_FID_TABLE_TOP) {
365 if (write_new_fid(data, data->currfid + fid_interval)) {
366 return 1;
368 } else {
369 if (write_new_fid
370 (data, 2 + convert_fid_to_vco_fid(data->currfid))) {
371 return 1;
374 } else {
375 if (write_new_fid(data, data->currfid - fid_interval))
376 return 1;
379 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
380 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
381 : vcoreqfid - vcocurrfid;
384 if (write_new_fid(data, reqfid))
385 return 1;
387 if (query_current_values_with_pending_wait(data))
388 return 1;
390 if (data->currfid != reqfid) {
391 printk(KERN_ERR PFX
392 "ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n",
393 data->currfid, reqfid);
394 return 1;
397 if (savevid != data->currvid) {
398 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
399 savevid, data->currvid);
400 return 1;
403 dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
404 data->currfid, data->currvid);
406 return 0;
409 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
410 static int core_voltage_post_transition(struct powernow_k8_data *data, u32 reqvid)
412 u32 savefid = data->currfid;
413 u32 savereqvid = reqvid;
415 dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
416 smp_processor_id(),
417 data->currfid, data->currvid);
419 if (reqvid != data->currvid) {
420 if (write_new_vid(data, reqvid))
421 return 1;
423 if (savefid != data->currfid) {
424 printk(KERN_ERR PFX
425 "ph3: bad fid change, save 0x%x, curr 0x%x\n",
426 savefid, data->currfid);
427 return 1;
430 if (data->currvid != reqvid) {
431 printk(KERN_ERR PFX
432 "ph3: failed vid transition\n, req 0x%x, curr 0x%x",
433 reqvid, data->currvid);
434 return 1;
438 if (query_current_values_with_pending_wait(data))
439 return 1;
441 if (savereqvid != data->currvid) {
442 dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
443 return 1;
446 if (savefid != data->currfid) {
447 dprintk("ph3 failed, currfid changed 0x%x\n",
448 data->currfid);
449 return 1;
452 dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
453 data->currfid, data->currvid);
455 return 0;
458 static int check_supported_cpu(unsigned int cpu)
460 cpumask_t oldmask = CPU_MASK_ALL;
461 u32 eax, ebx, ecx, edx;
462 unsigned int rc = 0;
464 oldmask = current->cpus_allowed;
465 set_cpus_allowed(current, cpumask_of_cpu(cpu));
467 if (smp_processor_id() != cpu) {
468 printk(KERN_ERR PFX "limiting to cpu %u failed\n", cpu);
469 goto out;
472 if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
473 goto out;
475 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
476 if ((eax & CPUID_XFAM) != CPUID_XFAM_K8)
477 goto out;
479 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
480 ((eax & CPUID_XMOD) > CPUID_XMOD_REV_G)) {
481 printk(KERN_INFO PFX "Processor cpuid %x not supported\n", eax);
482 goto out;
485 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
486 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
487 printk(KERN_INFO PFX
488 "No frequency change capabilities detected\n");
489 goto out;
492 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
493 if ((edx & P_STATE_TRANSITION_CAPABLE) != P_STATE_TRANSITION_CAPABLE) {
494 printk(KERN_INFO PFX "Power state transitions not supported\n");
495 goto out;
498 rc = 1;
500 out:
501 set_cpus_allowed(current, oldmask);
502 return rc;
505 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
507 unsigned int j;
508 u8 lastfid = 0xff;
510 for (j = 0; j < data->numps; j++) {
511 if (pst[j].vid > LEAST_VID) {
512 printk(KERN_ERR PFX "vid %d invalid : 0x%x\n", j, pst[j].vid);
513 return -EINVAL;
515 if (pst[j].vid < data->rvo) { /* vid + rvo >= 0 */
516 printk(KERN_ERR BFX "0 vid exceeded with pstate %d\n", j);
517 return -ENODEV;
519 if (pst[j].vid < maxvid + data->rvo) { /* vid + rvo >= maxvid */
520 printk(KERN_ERR BFX "maxvid exceeded with pstate %d\n", j);
521 return -ENODEV;
523 if (pst[j].fid > MAX_FID) {
524 printk(KERN_ERR BFX "maxfid exceeded with pstate %d\n", j);
525 return -ENODEV;
527 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
528 /* Only first fid is allowed to be in "low" range */
529 printk(KERN_ERR BFX "two low fids - %d : 0x%x\n", j, pst[j].fid);
530 return -EINVAL;
532 if (pst[j].fid < lastfid)
533 lastfid = pst[j].fid;
535 if (lastfid & 1) {
536 printk(KERN_ERR BFX "lastfid invalid\n");
537 return -EINVAL;
539 if (lastfid > LO_FID_TABLE_TOP)
540 printk(KERN_INFO BFX "first fid not from lo freq table\n");
542 return 0;
545 static void print_basics(struct powernow_k8_data *data)
547 int j;
548 for (j = 0; j < data->numps; j++) {
549 if (data->powernow_table[j].frequency != CPUFREQ_ENTRY_INVALID)
550 printk(KERN_INFO PFX " %d : fid 0x%x (%d MHz), vid 0x%x (%d mV)\n", j,
551 data->powernow_table[j].index & 0xff,
552 data->powernow_table[j].frequency/1000,
553 data->powernow_table[j].index >> 8,
554 find_millivolts_from_vid(data, data->powernow_table[j].index >> 8));
556 if (data->batps)
557 printk(KERN_INFO PFX "Only %d pstates on battery\n", data->batps);
560 static int fill_powernow_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
562 struct cpufreq_frequency_table *powernow_table;
563 unsigned int j;
565 if (data->batps) { /* use ACPI support to get full speed on mains power */
566 printk(KERN_WARNING PFX "Only %d pstates usable (use ACPI driver for full range\n", data->batps);
567 data->numps = data->batps;
570 for ( j=1; j<data->numps; j++ ) {
571 if (pst[j-1].fid >= pst[j].fid) {
572 printk(KERN_ERR PFX "PST out of sequence\n");
573 return -EINVAL;
577 if (data->numps < 2) {
578 printk(KERN_ERR PFX "no p states to transition\n");
579 return -ENODEV;
582 if (check_pst_table(data, pst, maxvid))
583 return -EINVAL;
585 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
586 * (data->numps + 1)), GFP_KERNEL);
587 if (!powernow_table) {
588 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
589 return -ENOMEM;
592 for (j = 0; j < data->numps; j++) {
593 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
594 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
595 powernow_table[j].frequency = find_khz_freq_from_fid(pst[j].fid);
597 powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
598 powernow_table[data->numps].index = 0;
600 if (query_current_values_with_pending_wait(data)) {
601 kfree(powernow_table);
602 return -EIO;
605 dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
606 data->powernow_table = powernow_table;
607 print_basics(data);
609 for (j = 0; j < data->numps; j++)
610 if ((pst[j].fid==data->currfid) && (pst[j].vid==data->currvid))
611 return 0;
613 dprintk("currfid/vid do not match PST, ignoring\n");
614 return 0;
617 /* Find and validate the PSB/PST table in BIOS. */
618 static int find_psb_table(struct powernow_k8_data *data)
620 struct psb_s *psb;
621 unsigned int i;
622 u32 mvs;
623 u8 maxvid;
624 u32 cpst = 0;
625 u32 thiscpuid;
627 for (i = 0xc0000; i < 0xffff0; i += 0x10) {
628 /* Scan BIOS looking for the signature. */
629 /* It can not be at ffff0 - it is too big. */
631 psb = phys_to_virt(i);
632 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
633 continue;
635 dprintk("found PSB header at 0x%p\n", psb);
637 dprintk("table vers: 0x%x\n", psb->tableversion);
638 if (psb->tableversion != PSB_VERSION_1_4) {
639 printk(KERN_ERR BFX "PSB table is not v1.4\n");
640 return -ENODEV;
643 dprintk("flags: 0x%x\n", psb->flags1);
644 if (psb->flags1) {
645 printk(KERN_ERR BFX "unknown flags\n");
646 return -ENODEV;
649 data->vstable = psb->vstable;
650 dprintk("voltage stabilization time: %d(*20us)\n", data->vstable);
652 dprintk("flags2: 0x%x\n", psb->flags2);
653 data->rvo = psb->flags2 & 3;
654 data->irt = ((psb->flags2) >> 2) & 3;
655 mvs = ((psb->flags2) >> 4) & 3;
656 data->vidmvs = 1 << mvs;
657 data->batps = ((psb->flags2) >> 6) & 3;
659 dprintk("ramp voltage offset: %d\n", data->rvo);
660 dprintk("isochronous relief time: %d\n", data->irt);
661 dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
663 dprintk("numpst: 0x%x\n", psb->num_tables);
664 cpst = psb->num_tables;
665 if ((psb->cpuid == 0x00000fc0) || (psb->cpuid == 0x00000fe0) ){
666 thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
667 if ((thiscpuid == 0x00000fc0) || (thiscpuid == 0x00000fe0) ) {
668 cpst = 1;
671 if (cpst != 1) {
672 printk(KERN_ERR BFX "numpst must be 1\n");
673 return -ENODEV;
676 data->plllock = psb->plllocktime;
677 dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
678 dprintk("maxfid: 0x%x\n", psb->maxfid);
679 dprintk("maxvid: 0x%x\n", psb->maxvid);
680 maxvid = psb->maxvid;
682 data->numps = psb->numps;
683 dprintk("numpstates: 0x%x\n", data->numps);
684 return fill_powernow_table(data, (struct pst_s *)(psb+1), maxvid);
687 * If you see this message, complain to BIOS manufacturer. If
688 * he tells you "we do not support Linux" or some similar
689 * nonsense, remember that Windows 2000 uses the same legacy
690 * mechanism that the old Linux PSB driver uses. Tell them it
691 * is broken with Windows 2000.
693 * The reference to the AMD documentation is chapter 9 in the
694 * BIOS and Kernel Developer's Guide, which is available on
695 * www.amd.com
697 printk(KERN_ERR PFX "BIOS error - no PSB or ACPI _PSS objects\n");
698 return -ENODEV;
701 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
702 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index)
704 if (!data->acpi_data.state_count)
705 return;
707 data->irt = (data->acpi_data.states[index].control >> IRT_SHIFT) & IRT_MASK;
708 data->rvo = (data->acpi_data.states[index].control >> RVO_SHIFT) & RVO_MASK;
709 data->exttype = (data->acpi_data.states[index].control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
710 data->plllock = (data->acpi_data.states[index].control >> PLL_L_SHIFT) & PLL_L_MASK;
711 data->vidmvs = 1 << ((data->acpi_data.states[index].control >> MVS_SHIFT) & MVS_MASK);
712 data->vstable = (data->acpi_data.states[index].control >> VST_SHIFT) & VST_MASK;
715 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
717 int i;
718 int cntlofreq = 0;
719 struct cpufreq_frequency_table *powernow_table;
721 if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
722 dprintk("register performance failed: bad ACPI data\n");
723 return -EIO;
726 /* verify the data contained in the ACPI structures */
727 if (data->acpi_data.state_count <= 1) {
728 dprintk("No ACPI P-States\n");
729 goto err_out;
732 if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
733 (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
734 dprintk("Invalid control/status registers (%x - %x)\n",
735 data->acpi_data.control_register.space_id,
736 data->acpi_data.status_register.space_id);
737 goto err_out;
740 /* fill in data->powernow_table */
741 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
742 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
743 if (!powernow_table) {
744 dprintk("powernow_table memory alloc failure\n");
745 goto err_out;
748 for (i = 0; i < data->acpi_data.state_count; i++) {
749 u32 fid;
750 u32 vid;
752 if (data->exttype) {
753 fid = data->acpi_data.states[i].status & FID_MASK;
754 vid = (data->acpi_data.states[i].status >> VID_SHIFT) & VID_MASK;
755 } else {
756 fid = data->acpi_data.states[i].control & FID_MASK;
757 vid = (data->acpi_data.states[i].control >> VID_SHIFT) & VID_MASK;
760 dprintk(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
762 powernow_table[i].index = fid; /* lower 8 bits */
763 powernow_table[i].index |= (vid << 8); /* upper 8 bits */
764 powernow_table[i].frequency = find_khz_freq_from_fid(fid);
766 /* verify frequency is OK */
767 if ((powernow_table[i].frequency > (MAX_FREQ * 1000)) ||
768 (powernow_table[i].frequency < (MIN_FREQ * 1000))) {
769 dprintk("invalid freq %u kHz, ignoring\n", powernow_table[i].frequency);
770 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
771 continue;
774 /* verify voltage is OK - BIOSs are using "off" to indicate invalid */
775 if (vid == VID_OFF) {
776 dprintk("invalid vid %u, ignoring\n", vid);
777 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
778 continue;
781 /* verify only 1 entry from the lo frequency table */
782 if (fid < HI_FID_TABLE_BOTTOM) {
783 if (cntlofreq) {
784 /* if both entries are the same, ignore this one ... */
785 if ((powernow_table[i].frequency != powernow_table[cntlofreq].frequency) ||
786 (powernow_table[i].index != powernow_table[cntlofreq].index)) {
787 printk(KERN_ERR PFX "Too many lo freq table entries\n");
788 goto err_out_mem;
791 dprintk("double low frequency table entry, ignoring it.\n");
792 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
793 continue;
794 } else
795 cntlofreq = i;
798 if (powernow_table[i].frequency != (data->acpi_data.states[i].core_frequency * 1000)) {
799 printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n",
800 powernow_table[i].frequency,
801 (unsigned int) (data->acpi_data.states[i].core_frequency * 1000));
802 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
803 continue;
807 powernow_table[data->acpi_data.state_count].frequency = CPUFREQ_TABLE_END;
808 powernow_table[data->acpi_data.state_count].index = 0;
809 data->powernow_table = powernow_table;
811 /* fill in data */
812 data->numps = data->acpi_data.state_count;
813 print_basics(data);
814 powernow_k8_acpi_pst_values(data, 0);
816 /* notify BIOS that we exist */
817 acpi_processor_notify_smm(THIS_MODULE);
819 return 0;
821 err_out_mem:
822 kfree(powernow_table);
824 err_out:
825 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
827 /* data->acpi_data.state_count informs us at ->exit() whether ACPI was used */
828 data->acpi_data.state_count = 0;
830 return -ENODEV;
833 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
835 if (data->acpi_data.state_count)
836 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
839 #else
840 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) { return -ENODEV; }
841 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) { return; }
842 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index) { return; }
843 #endif /* CONFIG_X86_POWERNOW_K8_ACPI */
845 /* Take a frequency, and issue the fid/vid transition command */
846 static int transition_frequency(struct powernow_k8_data *data, unsigned int index)
848 u32 fid;
849 u32 vid;
850 int res, i;
851 struct cpufreq_freqs freqs;
853 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
855 /* fid are the lower 8 bits of the index we stored into
856 * the cpufreq frequency table in find_psb_table, vid are
857 * the upper 8 bits.
860 fid = data->powernow_table[index].index & 0xFF;
861 vid = (data->powernow_table[index].index & 0xFF00) >> 8;
863 dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
865 if (query_current_values_with_pending_wait(data))
866 return 1;
868 if ((data->currvid == vid) && (data->currfid == fid)) {
869 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
870 fid, vid);
871 return 0;
874 if ((fid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
875 printk(KERN_ERR PFX
876 "ignoring illegal change in lo freq table-%x to 0x%x\n",
877 data->currfid, fid);
878 return 1;
881 dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
882 smp_processor_id(), fid, vid);
884 freqs.cpu = data->cpu;
885 freqs.old = find_khz_freq_from_fid(data->currfid);
886 freqs.new = find_khz_freq_from_fid(fid);
887 for_each_cpu_mask(i, cpu_core_map[data->cpu]) {
888 freqs.cpu = i;
889 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
892 res = transition_fid_vid(data, fid, vid);
894 freqs.new = find_khz_freq_from_fid(data->currfid);
895 for_each_cpu_mask(i, cpu_core_map[data->cpu]) {
896 freqs.cpu = i;
897 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
899 return res;
902 /* Driver entry point to switch to the target frequency */
903 static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsigned relation)
905 cpumask_t oldmask = CPU_MASK_ALL;
906 struct powernow_k8_data *data = powernow_data[pol->cpu];
907 u32 checkfid = data->currfid;
908 u32 checkvid = data->currvid;
909 unsigned int newstate;
910 int ret = -EIO;
911 int i;
913 /* only run on specific CPU from here on */
914 oldmask = current->cpus_allowed;
915 set_cpus_allowed(current, cpumask_of_cpu(pol->cpu));
917 if (smp_processor_id() != pol->cpu) {
918 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
919 goto err_out;
922 if (pending_bit_stuck()) {
923 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
924 goto err_out;
927 dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
928 pol->cpu, targfreq, pol->min, pol->max, relation);
930 if (query_current_values_with_pending_wait(data)) {
931 ret = -EIO;
932 goto err_out;
935 dprintk("targ: curr fid 0x%x, vid 0x%x\n",
936 data->currfid, data->currvid);
938 if ((checkvid != data->currvid) || (checkfid != data->currfid)) {
939 printk(KERN_INFO PFX
940 "error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
941 checkfid, data->currfid, checkvid, data->currvid);
944 if (cpufreq_frequency_table_target(pol, data->powernow_table, targfreq, relation, &newstate))
945 goto err_out;
947 down(&fidvid_sem);
949 powernow_k8_acpi_pst_values(data, newstate);
951 if (transition_frequency(data, newstate)) {
952 printk(KERN_ERR PFX "transition frequency failed\n");
953 ret = 1;
954 up(&fidvid_sem);
955 goto err_out;
958 /* Update all the fid/vids of our siblings */
959 for_each_cpu_mask(i, cpu_core_map[pol->cpu]) {
960 powernow_data[i]->currvid = data->currvid;
961 powernow_data[i]->currfid = data->currfid;
963 up(&fidvid_sem);
965 pol->cur = find_khz_freq_from_fid(data->currfid);
966 ret = 0;
968 err_out:
969 set_cpus_allowed(current, oldmask);
970 return ret;
973 /* Driver entry point to verify the policy and range of frequencies */
974 static int powernowk8_verify(struct cpufreq_policy *pol)
976 struct powernow_k8_data *data = powernow_data[pol->cpu];
978 return cpufreq_frequency_table_verify(pol, data->powernow_table);
981 /* per CPU init entry point to the driver */
982 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
984 struct powernow_k8_data *data;
985 cpumask_t oldmask = CPU_MASK_ALL;
986 int rc, i;
988 if (!cpu_online(pol->cpu))
989 return -ENODEV;
991 if (!check_supported_cpu(pol->cpu))
992 return -ENODEV;
994 data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
995 if (!data) {
996 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
997 return -ENOMEM;
1000 data->cpu = pol->cpu;
1002 if (powernow_k8_cpu_init_acpi(data)) {
1004 * Use the PSB BIOS structure. This is only availabe on
1005 * an UP version, and is deprecated by AMD.
1008 if ((num_online_cpus() != 1) || (num_possible_cpus() != 1)) {
1009 printk(KERN_ERR PFX "MP systems not supported by PSB BIOS structure\n");
1010 kfree(data);
1011 return -ENODEV;
1013 if (pol->cpu != 0) {
1014 printk(KERN_ERR PFX "init not cpu 0\n");
1015 kfree(data);
1016 return -ENODEV;
1018 rc = find_psb_table(data);
1019 if (rc) {
1020 kfree(data);
1021 return -ENODEV;
1025 /* only run on specific CPU from here on */
1026 oldmask = current->cpus_allowed;
1027 set_cpus_allowed(current, cpumask_of_cpu(pol->cpu));
1029 if (smp_processor_id() != pol->cpu) {
1030 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1031 goto err_out;
1034 if (pending_bit_stuck()) {
1035 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1036 goto err_out;
1039 if (query_current_values_with_pending_wait(data))
1040 goto err_out;
1042 fidvid_msr_init();
1044 /* run on any CPU again */
1045 set_cpus_allowed(current, oldmask);
1047 pol->governor = CPUFREQ_DEFAULT_GOVERNOR;
1048 pol->cpus = cpu_core_map[pol->cpu];
1050 /* Take a crude guess here.
1051 * That guess was in microseconds, so multiply with 1000 */
1052 pol->cpuinfo.transition_latency = (((data->rvo + 8) * data->vstable * VST_UNITS_20US)
1053 + (3 * (1 << data->irt) * 10)) * 1000;
1055 pol->cur = find_khz_freq_from_fid(data->currfid);
1056 dprintk("policy current frequency %d kHz\n", pol->cur);
1058 /* min/max the cpu is capable of */
1059 if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1060 printk(KERN_ERR PFX "invalid powernow_table\n");
1061 powernow_k8_cpu_exit_acpi(data);
1062 kfree(data->powernow_table);
1063 kfree(data);
1064 return -EINVAL;
1067 cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1069 printk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1070 data->currfid, data->currvid);
1072 for_each_cpu_mask(i, cpu_core_map[pol->cpu]) {
1073 powernow_data[i] = data;
1076 return 0;
1078 err_out:
1079 set_cpus_allowed(current, oldmask);
1080 powernow_k8_cpu_exit_acpi(data);
1082 kfree(data);
1083 return -ENODEV;
1086 static int __devexit powernowk8_cpu_exit (struct cpufreq_policy *pol)
1088 struct powernow_k8_data *data = powernow_data[pol->cpu];
1090 if (!data)
1091 return -EINVAL;
1093 powernow_k8_cpu_exit_acpi(data);
1095 cpufreq_frequency_table_put_attr(pol->cpu);
1097 kfree(data->powernow_table);
1098 kfree(data);
1100 return 0;
1103 static unsigned int powernowk8_get (unsigned int cpu)
1105 struct powernow_k8_data *data = powernow_data[cpu];
1106 cpumask_t oldmask = current->cpus_allowed;
1107 unsigned int khz = 0;
1109 set_cpus_allowed(current, cpumask_of_cpu(cpu));
1110 if (smp_processor_id() != cpu) {
1111 printk(KERN_ERR PFX "limiting to CPU %d failed in powernowk8_get\n", cpu);
1112 set_cpus_allowed(current, oldmask);
1113 return 0;
1116 if (query_current_values_with_pending_wait(data))
1117 goto out;
1119 khz = find_khz_freq_from_fid(data->currfid);
1121 out:
1122 set_cpus_allowed(current, oldmask);
1123 return khz;
1126 static struct freq_attr* powernow_k8_attr[] = {
1127 &cpufreq_freq_attr_scaling_available_freqs,
1128 NULL,
1131 static struct cpufreq_driver cpufreq_amd64_driver = {
1132 .verify = powernowk8_verify,
1133 .target = powernowk8_target,
1134 .init = powernowk8_cpu_init,
1135 .exit = __devexit_p(powernowk8_cpu_exit),
1136 .get = powernowk8_get,
1137 .name = "powernow-k8",
1138 .owner = THIS_MODULE,
1139 .attr = powernow_k8_attr,
1142 /* driver entry point for init */
1143 static int __cpuinit powernowk8_init(void)
1145 unsigned int i, supported_cpus = 0;
1147 for (i=0; i<NR_CPUS; i++) {
1148 if (!cpu_online(i))
1149 continue;
1150 if (check_supported_cpu(i))
1151 supported_cpus++;
1154 if (supported_cpus == num_online_cpus()) {
1155 printk(KERN_INFO PFX "Found %d AMD Athlon 64 / Opteron processors (" VERSION ")\n",
1156 supported_cpus);
1157 return cpufreq_register_driver(&cpufreq_amd64_driver);
1160 return -ENODEV;
1163 /* driver entry point for term */
1164 static void __exit powernowk8_exit(void)
1166 dprintk("exit\n");
1168 cpufreq_unregister_driver(&cpufreq_amd64_driver);
1171 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and Mark Langsdorf <mark.langsdorf@amd.com>");
1172 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1173 MODULE_LICENSE("GPL");
1175 late_initcall(powernowk8_init);
1176 module_exit(powernowk8_exit);