KVM: MMU: fix bogus alloc_mmu_pages assignment
[linux-2.6/mini2440.git] / fs / dlm / lowcomms.c
blob609108a83267f3cfffd9d539f29496c0e5ffc1b1
1 /******************************************************************************
2 *******************************************************************************
3 **
4 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
5 ** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved.
6 **
7 ** This copyrighted material is made available to anyone wishing to use,
8 ** modify, copy, or redistribute it subject to the terms and conditions
9 ** of the GNU General Public License v.2.
11 *******************************************************************************
12 ******************************************************************************/
15 * lowcomms.c
17 * This is the "low-level" comms layer.
19 * It is responsible for sending/receiving messages
20 * from other nodes in the cluster.
22 * Cluster nodes are referred to by their nodeids. nodeids are
23 * simply 32 bit numbers to the locking module - if they need to
24 * be expanded for the cluster infrastructure then that is its
25 * responsibility. It is this layer's
26 * responsibility to resolve these into IP address or
27 * whatever it needs for inter-node communication.
29 * The comms level is two kernel threads that deal mainly with
30 * the receiving of messages from other nodes and passing them
31 * up to the mid-level comms layer (which understands the
32 * message format) for execution by the locking core, and
33 * a send thread which does all the setting up of connections
34 * to remote nodes and the sending of data. Threads are not allowed
35 * to send their own data because it may cause them to wait in times
36 * of high load. Also, this way, the sending thread can collect together
37 * messages bound for one node and send them in one block.
39 * lowcomms will choose to use either TCP or SCTP as its transport layer
40 * depending on the configuration variable 'protocol'. This should be set
41 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42 * cluster-wide mechanism as it must be the same on all nodes of the cluster
43 * for the DLM to function.
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <net/sctp/user.h>
55 #include <net/ipv6.h>
57 #include "dlm_internal.h"
58 #include "lowcomms.h"
59 #include "midcomms.h"
60 #include "config.h"
62 #define NEEDED_RMEM (4*1024*1024)
63 #define CONN_HASH_SIZE 32
65 struct cbuf {
66 unsigned int base;
67 unsigned int len;
68 unsigned int mask;
71 static void cbuf_add(struct cbuf *cb, int n)
73 cb->len += n;
76 static int cbuf_data(struct cbuf *cb)
78 return ((cb->base + cb->len) & cb->mask);
81 static void cbuf_init(struct cbuf *cb, int size)
83 cb->base = cb->len = 0;
84 cb->mask = size-1;
87 static void cbuf_eat(struct cbuf *cb, int n)
89 cb->len -= n;
90 cb->base += n;
91 cb->base &= cb->mask;
94 static bool cbuf_empty(struct cbuf *cb)
96 return cb->len == 0;
99 struct connection {
100 struct socket *sock; /* NULL if not connected */
101 uint32_t nodeid; /* So we know who we are in the list */
102 struct mutex sock_mutex;
103 unsigned long flags;
104 #define CF_READ_PENDING 1
105 #define CF_WRITE_PENDING 2
106 #define CF_CONNECT_PENDING 3
107 #define CF_INIT_PENDING 4
108 #define CF_IS_OTHERCON 5
109 struct list_head writequeue; /* List of outgoing writequeue_entries */
110 spinlock_t writequeue_lock;
111 int (*rx_action) (struct connection *); /* What to do when active */
112 void (*connect_action) (struct connection *); /* What to do to connect */
113 struct page *rx_page;
114 struct cbuf cb;
115 int retries;
116 #define MAX_CONNECT_RETRIES 3
117 int sctp_assoc;
118 struct hlist_node list;
119 struct connection *othercon;
120 struct work_struct rwork; /* Receive workqueue */
121 struct work_struct swork; /* Send workqueue */
123 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
125 /* An entry waiting to be sent */
126 struct writequeue_entry {
127 struct list_head list;
128 struct page *page;
129 int offset;
130 int len;
131 int end;
132 int users;
133 struct connection *con;
136 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
137 static int dlm_local_count;
139 /* Work queues */
140 static struct workqueue_struct *recv_workqueue;
141 static struct workqueue_struct *send_workqueue;
143 static struct hlist_head connection_hash[CONN_HASH_SIZE];
144 static DEFINE_MUTEX(connections_lock);
145 static struct kmem_cache *con_cache;
147 static void process_recv_sockets(struct work_struct *work);
148 static void process_send_sockets(struct work_struct *work);
151 /* This is deliberately very simple because most clusters have simple
152 sequential nodeids, so we should be able to go straight to a connection
153 struct in the array */
154 static inline int nodeid_hash(int nodeid)
156 return nodeid & (CONN_HASH_SIZE-1);
159 static struct connection *__find_con(int nodeid)
161 int r;
162 struct hlist_node *h;
163 struct connection *con;
165 r = nodeid_hash(nodeid);
167 hlist_for_each_entry(con, h, &connection_hash[r], list) {
168 if (con->nodeid == nodeid)
169 return con;
171 return NULL;
175 * If 'allocation' is zero then we don't attempt to create a new
176 * connection structure for this node.
178 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
180 struct connection *con = NULL;
181 int r;
183 con = __find_con(nodeid);
184 if (con || !alloc)
185 return con;
187 con = kmem_cache_zalloc(con_cache, alloc);
188 if (!con)
189 return NULL;
191 r = nodeid_hash(nodeid);
192 hlist_add_head(&con->list, &connection_hash[r]);
194 con->nodeid = nodeid;
195 mutex_init(&con->sock_mutex);
196 INIT_LIST_HEAD(&con->writequeue);
197 spin_lock_init(&con->writequeue_lock);
198 INIT_WORK(&con->swork, process_send_sockets);
199 INIT_WORK(&con->rwork, process_recv_sockets);
201 /* Setup action pointers for child sockets */
202 if (con->nodeid) {
203 struct connection *zerocon = __find_con(0);
205 con->connect_action = zerocon->connect_action;
206 if (!con->rx_action)
207 con->rx_action = zerocon->rx_action;
210 return con;
213 /* Loop round all connections */
214 static void foreach_conn(void (*conn_func)(struct connection *c))
216 int i;
217 struct hlist_node *h, *n;
218 struct connection *con;
220 for (i = 0; i < CONN_HASH_SIZE; i++) {
221 hlist_for_each_entry_safe(con, h, n, &connection_hash[i], list){
222 conn_func(con);
227 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
229 struct connection *con;
231 mutex_lock(&connections_lock);
232 con = __nodeid2con(nodeid, allocation);
233 mutex_unlock(&connections_lock);
235 return con;
238 /* This is a bit drastic, but only called when things go wrong */
239 static struct connection *assoc2con(int assoc_id)
241 int i;
242 struct hlist_node *h;
243 struct connection *con;
245 mutex_lock(&connections_lock);
247 for (i = 0 ; i < CONN_HASH_SIZE; i++) {
248 hlist_for_each_entry(con, h, &connection_hash[i], list) {
249 if (con && con->sctp_assoc == assoc_id) {
250 mutex_unlock(&connections_lock);
251 return con;
255 mutex_unlock(&connections_lock);
256 return NULL;
259 static int nodeid_to_addr(int nodeid, struct sockaddr *retaddr)
261 struct sockaddr_storage addr;
262 int error;
264 if (!dlm_local_count)
265 return -1;
267 error = dlm_nodeid_to_addr(nodeid, &addr);
268 if (error)
269 return error;
271 if (dlm_local_addr[0]->ss_family == AF_INET) {
272 struct sockaddr_in *in4 = (struct sockaddr_in *) &addr;
273 struct sockaddr_in *ret4 = (struct sockaddr_in *) retaddr;
274 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
275 } else {
276 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &addr;
277 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) retaddr;
278 ipv6_addr_copy(&ret6->sin6_addr, &in6->sin6_addr);
281 return 0;
284 /* Data available on socket or listen socket received a connect */
285 static void lowcomms_data_ready(struct sock *sk, int count_unused)
287 struct connection *con = sock2con(sk);
288 if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
289 queue_work(recv_workqueue, &con->rwork);
292 static void lowcomms_write_space(struct sock *sk)
294 struct connection *con = sock2con(sk);
296 if (con && !test_and_set_bit(CF_WRITE_PENDING, &con->flags))
297 queue_work(send_workqueue, &con->swork);
300 static inline void lowcomms_connect_sock(struct connection *con)
302 if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
303 queue_work(send_workqueue, &con->swork);
306 static void lowcomms_state_change(struct sock *sk)
308 if (sk->sk_state == TCP_ESTABLISHED)
309 lowcomms_write_space(sk);
312 /* Make a socket active */
313 static int add_sock(struct socket *sock, struct connection *con)
315 con->sock = sock;
317 /* Install a data_ready callback */
318 con->sock->sk->sk_data_ready = lowcomms_data_ready;
319 con->sock->sk->sk_write_space = lowcomms_write_space;
320 con->sock->sk->sk_state_change = lowcomms_state_change;
321 con->sock->sk->sk_user_data = con;
322 con->sock->sk->sk_allocation = GFP_NOFS;
323 return 0;
326 /* Add the port number to an IPv6 or 4 sockaddr and return the address
327 length */
328 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
329 int *addr_len)
331 saddr->ss_family = dlm_local_addr[0]->ss_family;
332 if (saddr->ss_family == AF_INET) {
333 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
334 in4_addr->sin_port = cpu_to_be16(port);
335 *addr_len = sizeof(struct sockaddr_in);
336 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
337 } else {
338 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
339 in6_addr->sin6_port = cpu_to_be16(port);
340 *addr_len = sizeof(struct sockaddr_in6);
342 memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
345 /* Close a remote connection and tidy up */
346 static void close_connection(struct connection *con, bool and_other)
348 mutex_lock(&con->sock_mutex);
350 if (con->sock) {
351 sock_release(con->sock);
352 con->sock = NULL;
354 if (con->othercon && and_other) {
355 /* Will only re-enter once. */
356 close_connection(con->othercon, false);
358 if (con->rx_page) {
359 __free_page(con->rx_page);
360 con->rx_page = NULL;
363 con->retries = 0;
364 mutex_unlock(&con->sock_mutex);
367 /* We only send shutdown messages to nodes that are not part of the cluster */
368 static void sctp_send_shutdown(sctp_assoc_t associd)
370 static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
371 struct msghdr outmessage;
372 struct cmsghdr *cmsg;
373 struct sctp_sndrcvinfo *sinfo;
374 int ret;
375 struct connection *con;
377 con = nodeid2con(0,0);
378 BUG_ON(con == NULL);
380 outmessage.msg_name = NULL;
381 outmessage.msg_namelen = 0;
382 outmessage.msg_control = outcmsg;
383 outmessage.msg_controllen = sizeof(outcmsg);
384 outmessage.msg_flags = MSG_EOR;
386 cmsg = CMSG_FIRSTHDR(&outmessage);
387 cmsg->cmsg_level = IPPROTO_SCTP;
388 cmsg->cmsg_type = SCTP_SNDRCV;
389 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
390 outmessage.msg_controllen = cmsg->cmsg_len;
391 sinfo = CMSG_DATA(cmsg);
392 memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
394 sinfo->sinfo_flags |= MSG_EOF;
395 sinfo->sinfo_assoc_id = associd;
397 ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
399 if (ret != 0)
400 log_print("send EOF to node failed: %d", ret);
403 static void sctp_init_failed_foreach(struct connection *con)
405 con->sctp_assoc = 0;
406 if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
407 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
408 queue_work(send_workqueue, &con->swork);
412 /* INIT failed but we don't know which node...
413 restart INIT on all pending nodes */
414 static void sctp_init_failed(void)
416 mutex_lock(&connections_lock);
418 foreach_conn(sctp_init_failed_foreach);
420 mutex_unlock(&connections_lock);
423 /* Something happened to an association */
424 static void process_sctp_notification(struct connection *con,
425 struct msghdr *msg, char *buf)
427 union sctp_notification *sn = (union sctp_notification *)buf;
429 if (sn->sn_header.sn_type == SCTP_ASSOC_CHANGE) {
430 switch (sn->sn_assoc_change.sac_state) {
432 case SCTP_COMM_UP:
433 case SCTP_RESTART:
435 /* Check that the new node is in the lockspace */
436 struct sctp_prim prim;
437 int nodeid;
438 int prim_len, ret;
439 int addr_len;
440 struct connection *new_con;
441 struct file *file;
442 sctp_peeloff_arg_t parg;
443 int parglen = sizeof(parg);
446 * We get this before any data for an association.
447 * We verify that the node is in the cluster and
448 * then peel off a socket for it.
450 if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
451 log_print("COMM_UP for invalid assoc ID %d",
452 (int)sn->sn_assoc_change.sac_assoc_id);
453 sctp_init_failed();
454 return;
456 memset(&prim, 0, sizeof(struct sctp_prim));
457 prim_len = sizeof(struct sctp_prim);
458 prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
460 ret = kernel_getsockopt(con->sock,
461 IPPROTO_SCTP,
462 SCTP_PRIMARY_ADDR,
463 (char*)&prim,
464 &prim_len);
465 if (ret < 0) {
466 log_print("getsockopt/sctp_primary_addr on "
467 "new assoc %d failed : %d",
468 (int)sn->sn_assoc_change.sac_assoc_id,
469 ret);
471 /* Retry INIT later */
472 new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
473 if (new_con)
474 clear_bit(CF_CONNECT_PENDING, &con->flags);
475 return;
477 make_sockaddr(&prim.ssp_addr, 0, &addr_len);
478 if (dlm_addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
479 int i;
480 unsigned char *b=(unsigned char *)&prim.ssp_addr;
481 log_print("reject connect from unknown addr");
482 for (i=0; i<sizeof(struct sockaddr_storage);i++)
483 printk("%02x ", b[i]);
484 printk("\n");
485 sctp_send_shutdown(prim.ssp_assoc_id);
486 return;
489 new_con = nodeid2con(nodeid, GFP_KERNEL);
490 if (!new_con)
491 return;
493 /* Peel off a new sock */
494 parg.associd = sn->sn_assoc_change.sac_assoc_id;
495 ret = kernel_getsockopt(con->sock, IPPROTO_SCTP,
496 SCTP_SOCKOPT_PEELOFF,
497 (void *)&parg, &parglen);
498 if (ret) {
499 log_print("Can't peel off a socket for "
500 "connection %d to node %d: err=%d\n",
501 parg.associd, nodeid, ret);
503 file = fget(parg.sd);
504 new_con->sock = SOCKET_I(file->f_dentry->d_inode);
505 add_sock(new_con->sock, new_con);
506 fput(file);
507 put_unused_fd(parg.sd);
509 log_print("got new/restarted association %d nodeid %d",
510 (int)sn->sn_assoc_change.sac_assoc_id, nodeid);
512 /* Send any pending writes */
513 clear_bit(CF_CONNECT_PENDING, &new_con->flags);
514 clear_bit(CF_INIT_PENDING, &con->flags);
515 if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
516 queue_work(send_workqueue, &new_con->swork);
518 if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
519 queue_work(recv_workqueue, &new_con->rwork);
521 break;
523 case SCTP_COMM_LOST:
524 case SCTP_SHUTDOWN_COMP:
526 con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
527 if (con) {
528 con->sctp_assoc = 0;
531 break;
533 /* We don't know which INIT failed, so clear the PENDING flags
534 * on them all. if assoc_id is zero then it will then try
535 * again */
537 case SCTP_CANT_STR_ASSOC:
539 log_print("Can't start SCTP association - retrying");
540 sctp_init_failed();
542 break;
544 default:
545 log_print("unexpected SCTP assoc change id=%d state=%d",
546 (int)sn->sn_assoc_change.sac_assoc_id,
547 sn->sn_assoc_change.sac_state);
552 /* Data received from remote end */
553 static int receive_from_sock(struct connection *con)
555 int ret = 0;
556 struct msghdr msg = {};
557 struct kvec iov[2];
558 unsigned len;
559 int r;
560 int call_again_soon = 0;
561 int nvec;
562 char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
564 mutex_lock(&con->sock_mutex);
566 if (con->sock == NULL) {
567 ret = -EAGAIN;
568 goto out_close;
571 if (con->rx_page == NULL) {
573 * This doesn't need to be atomic, but I think it should
574 * improve performance if it is.
576 con->rx_page = alloc_page(GFP_ATOMIC);
577 if (con->rx_page == NULL)
578 goto out_resched;
579 cbuf_init(&con->cb, PAGE_CACHE_SIZE);
582 /* Only SCTP needs these really */
583 memset(&incmsg, 0, sizeof(incmsg));
584 msg.msg_control = incmsg;
585 msg.msg_controllen = sizeof(incmsg);
588 * iov[0] is the bit of the circular buffer between the current end
589 * point (cb.base + cb.len) and the end of the buffer.
591 iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
592 iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
593 iov[1].iov_len = 0;
594 nvec = 1;
597 * iov[1] is the bit of the circular buffer between the start of the
598 * buffer and the start of the currently used section (cb.base)
600 if (cbuf_data(&con->cb) >= con->cb.base) {
601 iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
602 iov[1].iov_len = con->cb.base;
603 iov[1].iov_base = page_address(con->rx_page);
604 nvec = 2;
606 len = iov[0].iov_len + iov[1].iov_len;
608 r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
609 MSG_DONTWAIT | MSG_NOSIGNAL);
610 if (ret <= 0)
611 goto out_close;
613 /* Process SCTP notifications */
614 if (msg.msg_flags & MSG_NOTIFICATION) {
615 msg.msg_control = incmsg;
616 msg.msg_controllen = sizeof(incmsg);
618 process_sctp_notification(con, &msg,
619 page_address(con->rx_page) + con->cb.base);
620 mutex_unlock(&con->sock_mutex);
621 return 0;
623 BUG_ON(con->nodeid == 0);
625 if (ret == len)
626 call_again_soon = 1;
627 cbuf_add(&con->cb, ret);
628 ret = dlm_process_incoming_buffer(con->nodeid,
629 page_address(con->rx_page),
630 con->cb.base, con->cb.len,
631 PAGE_CACHE_SIZE);
632 if (ret == -EBADMSG) {
633 log_print("lowcomms: addr=%p, base=%u, len=%u, "
634 "iov_len=%u, iov_base[0]=%p, read=%d",
635 page_address(con->rx_page), con->cb.base, con->cb.len,
636 len, iov[0].iov_base, r);
638 if (ret < 0)
639 goto out_close;
640 cbuf_eat(&con->cb, ret);
642 if (cbuf_empty(&con->cb) && !call_again_soon) {
643 __free_page(con->rx_page);
644 con->rx_page = NULL;
647 if (call_again_soon)
648 goto out_resched;
649 mutex_unlock(&con->sock_mutex);
650 return 0;
652 out_resched:
653 if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
654 queue_work(recv_workqueue, &con->rwork);
655 mutex_unlock(&con->sock_mutex);
656 return -EAGAIN;
658 out_close:
659 mutex_unlock(&con->sock_mutex);
660 if (ret != -EAGAIN) {
661 close_connection(con, false);
662 /* Reconnect when there is something to send */
664 /* Don't return success if we really got EOF */
665 if (ret == 0)
666 ret = -EAGAIN;
668 return ret;
671 /* Listening socket is busy, accept a connection */
672 static int tcp_accept_from_sock(struct connection *con)
674 int result;
675 struct sockaddr_storage peeraddr;
676 struct socket *newsock;
677 int len;
678 int nodeid;
679 struct connection *newcon;
680 struct connection *addcon;
682 memset(&peeraddr, 0, sizeof(peeraddr));
683 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
684 IPPROTO_TCP, &newsock);
685 if (result < 0)
686 return -ENOMEM;
688 mutex_lock_nested(&con->sock_mutex, 0);
690 result = -ENOTCONN;
691 if (con->sock == NULL)
692 goto accept_err;
694 newsock->type = con->sock->type;
695 newsock->ops = con->sock->ops;
697 result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
698 if (result < 0)
699 goto accept_err;
701 /* Get the connected socket's peer */
702 memset(&peeraddr, 0, sizeof(peeraddr));
703 if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
704 &len, 2)) {
705 result = -ECONNABORTED;
706 goto accept_err;
709 /* Get the new node's NODEID */
710 make_sockaddr(&peeraddr, 0, &len);
711 if (dlm_addr_to_nodeid(&peeraddr, &nodeid)) {
712 log_print("connect from non cluster node");
713 sock_release(newsock);
714 mutex_unlock(&con->sock_mutex);
715 return -1;
718 log_print("got connection from %d", nodeid);
720 /* Check to see if we already have a connection to this node. This
721 * could happen if the two nodes initiate a connection at roughly
722 * the same time and the connections cross on the wire.
723 * In this case we store the incoming one in "othercon"
725 newcon = nodeid2con(nodeid, GFP_KERNEL);
726 if (!newcon) {
727 result = -ENOMEM;
728 goto accept_err;
730 mutex_lock_nested(&newcon->sock_mutex, 1);
731 if (newcon->sock) {
732 struct connection *othercon = newcon->othercon;
734 if (!othercon) {
735 othercon = kmem_cache_zalloc(con_cache, GFP_KERNEL);
736 if (!othercon) {
737 log_print("failed to allocate incoming socket");
738 mutex_unlock(&newcon->sock_mutex);
739 result = -ENOMEM;
740 goto accept_err;
742 othercon->nodeid = nodeid;
743 othercon->rx_action = receive_from_sock;
744 mutex_init(&othercon->sock_mutex);
745 INIT_WORK(&othercon->swork, process_send_sockets);
746 INIT_WORK(&othercon->rwork, process_recv_sockets);
747 set_bit(CF_IS_OTHERCON, &othercon->flags);
749 if (!othercon->sock) {
750 newcon->othercon = othercon;
751 othercon->sock = newsock;
752 newsock->sk->sk_user_data = othercon;
753 add_sock(newsock, othercon);
754 addcon = othercon;
756 else {
757 printk("Extra connection from node %d attempted\n", nodeid);
758 result = -EAGAIN;
759 mutex_unlock(&newcon->sock_mutex);
760 goto accept_err;
763 else {
764 newsock->sk->sk_user_data = newcon;
765 newcon->rx_action = receive_from_sock;
766 add_sock(newsock, newcon);
767 addcon = newcon;
770 mutex_unlock(&newcon->sock_mutex);
773 * Add it to the active queue in case we got data
774 * beween processing the accept adding the socket
775 * to the read_sockets list
777 if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
778 queue_work(recv_workqueue, &addcon->rwork);
779 mutex_unlock(&con->sock_mutex);
781 return 0;
783 accept_err:
784 mutex_unlock(&con->sock_mutex);
785 sock_release(newsock);
787 if (result != -EAGAIN)
788 log_print("error accepting connection from node: %d", result);
789 return result;
792 static void free_entry(struct writequeue_entry *e)
794 __free_page(e->page);
795 kfree(e);
798 /* Initiate an SCTP association.
799 This is a special case of send_to_sock() in that we don't yet have a
800 peeled-off socket for this association, so we use the listening socket
801 and add the primary IP address of the remote node.
803 static void sctp_init_assoc(struct connection *con)
805 struct sockaddr_storage rem_addr;
806 char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
807 struct msghdr outmessage;
808 struct cmsghdr *cmsg;
809 struct sctp_sndrcvinfo *sinfo;
810 struct connection *base_con;
811 struct writequeue_entry *e;
812 int len, offset;
813 int ret;
814 int addrlen;
815 struct kvec iov[1];
817 if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
818 return;
820 if (con->retries++ > MAX_CONNECT_RETRIES)
821 return;
823 log_print("Initiating association with node %d", con->nodeid);
825 if (nodeid_to_addr(con->nodeid, (struct sockaddr *)&rem_addr)) {
826 log_print("no address for nodeid %d", con->nodeid);
827 return;
829 base_con = nodeid2con(0, 0);
830 BUG_ON(base_con == NULL);
832 make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
834 outmessage.msg_name = &rem_addr;
835 outmessage.msg_namelen = addrlen;
836 outmessage.msg_control = outcmsg;
837 outmessage.msg_controllen = sizeof(outcmsg);
838 outmessage.msg_flags = MSG_EOR;
840 spin_lock(&con->writequeue_lock);
841 e = list_entry(con->writequeue.next, struct writequeue_entry,
842 list);
844 BUG_ON((struct list_head *) e == &con->writequeue);
846 len = e->len;
847 offset = e->offset;
848 spin_unlock(&con->writequeue_lock);
850 /* Send the first block off the write queue */
851 iov[0].iov_base = page_address(e->page)+offset;
852 iov[0].iov_len = len;
854 cmsg = CMSG_FIRSTHDR(&outmessage);
855 cmsg->cmsg_level = IPPROTO_SCTP;
856 cmsg->cmsg_type = SCTP_SNDRCV;
857 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
858 sinfo = CMSG_DATA(cmsg);
859 memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
860 sinfo->sinfo_ppid = cpu_to_le32(dlm_our_nodeid());
861 outmessage.msg_controllen = cmsg->cmsg_len;
863 ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
864 if (ret < 0) {
865 log_print("Send first packet to node %d failed: %d",
866 con->nodeid, ret);
868 /* Try again later */
869 clear_bit(CF_CONNECT_PENDING, &con->flags);
870 clear_bit(CF_INIT_PENDING, &con->flags);
872 else {
873 spin_lock(&con->writequeue_lock);
874 e->offset += ret;
875 e->len -= ret;
877 if (e->len == 0 && e->users == 0) {
878 list_del(&e->list);
879 free_entry(e);
881 spin_unlock(&con->writequeue_lock);
885 /* Connect a new socket to its peer */
886 static void tcp_connect_to_sock(struct connection *con)
888 int result = -EHOSTUNREACH;
889 struct sockaddr_storage saddr, src_addr;
890 int addr_len;
891 struct socket *sock;
893 if (con->nodeid == 0) {
894 log_print("attempt to connect sock 0 foiled");
895 return;
898 mutex_lock(&con->sock_mutex);
899 if (con->retries++ > MAX_CONNECT_RETRIES)
900 goto out;
902 /* Some odd races can cause double-connects, ignore them */
903 if (con->sock) {
904 result = 0;
905 goto out;
908 /* Create a socket to communicate with */
909 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
910 IPPROTO_TCP, &sock);
911 if (result < 0)
912 goto out_err;
914 memset(&saddr, 0, sizeof(saddr));
915 if (dlm_nodeid_to_addr(con->nodeid, &saddr)) {
916 sock_release(sock);
917 goto out_err;
920 sock->sk->sk_user_data = con;
921 con->rx_action = receive_from_sock;
922 con->connect_action = tcp_connect_to_sock;
923 add_sock(sock, con);
925 /* Bind to our cluster-known address connecting to avoid
926 routing problems */
927 memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
928 make_sockaddr(&src_addr, 0, &addr_len);
929 result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
930 addr_len);
931 if (result < 0) {
932 log_print("could not bind for connect: %d", result);
933 /* This *may* not indicate a critical error */
936 make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
938 log_print("connecting to %d", con->nodeid);
939 result =
940 sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
941 O_NONBLOCK);
942 if (result == -EINPROGRESS)
943 result = 0;
944 if (result == 0)
945 goto out;
947 out_err:
948 if (con->sock) {
949 sock_release(con->sock);
950 con->sock = NULL;
953 * Some errors are fatal and this list might need adjusting. For other
954 * errors we try again until the max number of retries is reached.
956 if (result != -EHOSTUNREACH && result != -ENETUNREACH &&
957 result != -ENETDOWN && result != -EINVAL
958 && result != -EPROTONOSUPPORT) {
959 lowcomms_connect_sock(con);
960 result = 0;
962 out:
963 mutex_unlock(&con->sock_mutex);
964 return;
967 static struct socket *tcp_create_listen_sock(struct connection *con,
968 struct sockaddr_storage *saddr)
970 struct socket *sock = NULL;
971 int result = 0;
972 int one = 1;
973 int addr_len;
975 if (dlm_local_addr[0]->ss_family == AF_INET)
976 addr_len = sizeof(struct sockaddr_in);
977 else
978 addr_len = sizeof(struct sockaddr_in6);
980 /* Create a socket to communicate with */
981 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
982 IPPROTO_TCP, &sock);
983 if (result < 0) {
984 log_print("Can't create listening comms socket");
985 goto create_out;
988 result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
989 (char *)&one, sizeof(one));
991 if (result < 0) {
992 log_print("Failed to set SO_REUSEADDR on socket: %d", result);
994 sock->sk->sk_user_data = con;
995 con->rx_action = tcp_accept_from_sock;
996 con->connect_action = tcp_connect_to_sock;
997 con->sock = sock;
999 /* Bind to our port */
1000 make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1001 result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1002 if (result < 0) {
1003 log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1004 sock_release(sock);
1005 sock = NULL;
1006 con->sock = NULL;
1007 goto create_out;
1009 result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1010 (char *)&one, sizeof(one));
1011 if (result < 0) {
1012 log_print("Set keepalive failed: %d", result);
1015 result = sock->ops->listen(sock, 5);
1016 if (result < 0) {
1017 log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1018 sock_release(sock);
1019 sock = NULL;
1020 goto create_out;
1023 create_out:
1024 return sock;
1027 /* Get local addresses */
1028 static void init_local(void)
1030 struct sockaddr_storage sas, *addr;
1031 int i;
1033 dlm_local_count = 0;
1034 for (i = 0; i < DLM_MAX_ADDR_COUNT - 1; i++) {
1035 if (dlm_our_addr(&sas, i))
1036 break;
1038 addr = kmalloc(sizeof(*addr), GFP_KERNEL);
1039 if (!addr)
1040 break;
1041 memcpy(addr, &sas, sizeof(*addr));
1042 dlm_local_addr[dlm_local_count++] = addr;
1046 /* Bind to an IP address. SCTP allows multiple address so it can do
1047 multi-homing */
1048 static int add_sctp_bind_addr(struct connection *sctp_con,
1049 struct sockaddr_storage *addr,
1050 int addr_len, int num)
1052 int result = 0;
1054 if (num == 1)
1055 result = kernel_bind(sctp_con->sock,
1056 (struct sockaddr *) addr,
1057 addr_len);
1058 else
1059 result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1060 SCTP_SOCKOPT_BINDX_ADD,
1061 (char *)addr, addr_len);
1063 if (result < 0)
1064 log_print("Can't bind to port %d addr number %d",
1065 dlm_config.ci_tcp_port, num);
1067 return result;
1070 /* Initialise SCTP socket and bind to all interfaces */
1071 static int sctp_listen_for_all(void)
1073 struct socket *sock = NULL;
1074 struct sockaddr_storage localaddr;
1075 struct sctp_event_subscribe subscribe;
1076 int result = -EINVAL, num = 1, i, addr_len;
1077 struct connection *con = nodeid2con(0, GFP_KERNEL);
1078 int bufsize = NEEDED_RMEM;
1080 if (!con)
1081 return -ENOMEM;
1083 log_print("Using SCTP for communications");
1085 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1086 IPPROTO_SCTP, &sock);
1087 if (result < 0) {
1088 log_print("Can't create comms socket, check SCTP is loaded");
1089 goto out;
1092 /* Listen for events */
1093 memset(&subscribe, 0, sizeof(subscribe));
1094 subscribe.sctp_data_io_event = 1;
1095 subscribe.sctp_association_event = 1;
1096 subscribe.sctp_send_failure_event = 1;
1097 subscribe.sctp_shutdown_event = 1;
1098 subscribe.sctp_partial_delivery_event = 1;
1100 result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1101 (char *)&bufsize, sizeof(bufsize));
1102 if (result)
1103 log_print("Error increasing buffer space on socket %d", result);
1105 result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1106 (char *)&subscribe, sizeof(subscribe));
1107 if (result < 0) {
1108 log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1109 result);
1110 goto create_delsock;
1113 /* Init con struct */
1114 sock->sk->sk_user_data = con;
1115 con->sock = sock;
1116 con->sock->sk->sk_data_ready = lowcomms_data_ready;
1117 con->rx_action = receive_from_sock;
1118 con->connect_action = sctp_init_assoc;
1120 /* Bind to all interfaces. */
1121 for (i = 0; i < dlm_local_count; i++) {
1122 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1123 make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
1125 result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1126 if (result)
1127 goto create_delsock;
1128 ++num;
1131 result = sock->ops->listen(sock, 5);
1132 if (result < 0) {
1133 log_print("Can't set socket listening");
1134 goto create_delsock;
1137 return 0;
1139 create_delsock:
1140 sock_release(sock);
1141 con->sock = NULL;
1142 out:
1143 return result;
1146 static int tcp_listen_for_all(void)
1148 struct socket *sock = NULL;
1149 struct connection *con = nodeid2con(0, GFP_KERNEL);
1150 int result = -EINVAL;
1152 if (!con)
1153 return -ENOMEM;
1155 /* We don't support multi-homed hosts */
1156 if (dlm_local_addr[1] != NULL) {
1157 log_print("TCP protocol can't handle multi-homed hosts, "
1158 "try SCTP");
1159 return -EINVAL;
1162 log_print("Using TCP for communications");
1164 sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1165 if (sock) {
1166 add_sock(sock, con);
1167 result = 0;
1169 else {
1170 result = -EADDRINUSE;
1173 return result;
1178 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1179 gfp_t allocation)
1181 struct writequeue_entry *entry;
1183 entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1184 if (!entry)
1185 return NULL;
1187 entry->page = alloc_page(allocation);
1188 if (!entry->page) {
1189 kfree(entry);
1190 return NULL;
1193 entry->offset = 0;
1194 entry->len = 0;
1195 entry->end = 0;
1196 entry->users = 0;
1197 entry->con = con;
1199 return entry;
1202 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1204 struct connection *con;
1205 struct writequeue_entry *e;
1206 int offset = 0;
1207 int users = 0;
1209 con = nodeid2con(nodeid, allocation);
1210 if (!con)
1211 return NULL;
1213 spin_lock(&con->writequeue_lock);
1214 e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1215 if ((&e->list == &con->writequeue) ||
1216 (PAGE_CACHE_SIZE - e->end < len)) {
1217 e = NULL;
1218 } else {
1219 offset = e->end;
1220 e->end += len;
1221 users = e->users++;
1223 spin_unlock(&con->writequeue_lock);
1225 if (e) {
1226 got_one:
1227 *ppc = page_address(e->page) + offset;
1228 return e;
1231 e = new_writequeue_entry(con, allocation);
1232 if (e) {
1233 spin_lock(&con->writequeue_lock);
1234 offset = e->end;
1235 e->end += len;
1236 users = e->users++;
1237 list_add_tail(&e->list, &con->writequeue);
1238 spin_unlock(&con->writequeue_lock);
1239 goto got_one;
1241 return NULL;
1244 void dlm_lowcomms_commit_buffer(void *mh)
1246 struct writequeue_entry *e = (struct writequeue_entry *)mh;
1247 struct connection *con = e->con;
1248 int users;
1250 spin_lock(&con->writequeue_lock);
1251 users = --e->users;
1252 if (users)
1253 goto out;
1254 e->len = e->end - e->offset;
1255 spin_unlock(&con->writequeue_lock);
1257 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1258 queue_work(send_workqueue, &con->swork);
1260 return;
1262 out:
1263 spin_unlock(&con->writequeue_lock);
1264 return;
1267 /* Send a message */
1268 static void send_to_sock(struct connection *con)
1270 int ret = 0;
1271 ssize_t(*sendpage) (struct socket *, struct page *, int, size_t, int);
1272 const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1273 struct writequeue_entry *e;
1274 int len, offset;
1276 mutex_lock(&con->sock_mutex);
1277 if (con->sock == NULL)
1278 goto out_connect;
1280 sendpage = con->sock->ops->sendpage;
1282 spin_lock(&con->writequeue_lock);
1283 for (;;) {
1284 e = list_entry(con->writequeue.next, struct writequeue_entry,
1285 list);
1286 if ((struct list_head *) e == &con->writequeue)
1287 break;
1289 len = e->len;
1290 offset = e->offset;
1291 BUG_ON(len == 0 && e->users == 0);
1292 spin_unlock(&con->writequeue_lock);
1294 ret = 0;
1295 if (len) {
1296 ret = sendpage(con->sock, e->page, offset, len,
1297 msg_flags);
1298 if (ret == -EAGAIN || ret == 0) {
1299 cond_resched();
1300 goto out;
1302 if (ret <= 0)
1303 goto send_error;
1305 /* Don't starve people filling buffers */
1306 cond_resched();
1308 spin_lock(&con->writequeue_lock);
1309 e->offset += ret;
1310 e->len -= ret;
1312 if (e->len == 0 && e->users == 0) {
1313 list_del(&e->list);
1314 free_entry(e);
1315 continue;
1318 spin_unlock(&con->writequeue_lock);
1319 out:
1320 mutex_unlock(&con->sock_mutex);
1321 return;
1323 send_error:
1324 mutex_unlock(&con->sock_mutex);
1325 close_connection(con, false);
1326 lowcomms_connect_sock(con);
1327 return;
1329 out_connect:
1330 mutex_unlock(&con->sock_mutex);
1331 if (!test_bit(CF_INIT_PENDING, &con->flags))
1332 lowcomms_connect_sock(con);
1333 return;
1336 static void clean_one_writequeue(struct connection *con)
1338 struct writequeue_entry *e, *safe;
1340 spin_lock(&con->writequeue_lock);
1341 list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1342 list_del(&e->list);
1343 free_entry(e);
1345 spin_unlock(&con->writequeue_lock);
1348 /* Called from recovery when it knows that a node has
1349 left the cluster */
1350 int dlm_lowcomms_close(int nodeid)
1352 struct connection *con;
1354 log_print("closing connection to node %d", nodeid);
1355 con = nodeid2con(nodeid, 0);
1356 if (con) {
1357 clean_one_writequeue(con);
1358 close_connection(con, true);
1360 return 0;
1363 /* Receive workqueue function */
1364 static void process_recv_sockets(struct work_struct *work)
1366 struct connection *con = container_of(work, struct connection, rwork);
1367 int err;
1369 clear_bit(CF_READ_PENDING, &con->flags);
1370 do {
1371 err = con->rx_action(con);
1372 } while (!err);
1375 /* Send workqueue function */
1376 static void process_send_sockets(struct work_struct *work)
1378 struct connection *con = container_of(work, struct connection, swork);
1380 if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1381 con->connect_action(con);
1383 clear_bit(CF_WRITE_PENDING, &con->flags);
1384 send_to_sock(con);
1388 /* Discard all entries on the write queues */
1389 static void clean_writequeues(void)
1391 foreach_conn(clean_one_writequeue);
1394 static void work_stop(void)
1396 destroy_workqueue(recv_workqueue);
1397 destroy_workqueue(send_workqueue);
1400 static int work_start(void)
1402 int error;
1403 recv_workqueue = create_workqueue("dlm_recv");
1404 error = IS_ERR(recv_workqueue);
1405 if (error) {
1406 log_print("can't start dlm_recv %d", error);
1407 return error;
1410 send_workqueue = create_singlethread_workqueue("dlm_send");
1411 error = IS_ERR(send_workqueue);
1412 if (error) {
1413 log_print("can't start dlm_send %d", error);
1414 destroy_workqueue(recv_workqueue);
1415 return error;
1418 return 0;
1421 static void stop_conn(struct connection *con)
1423 con->flags |= 0x0F;
1424 if (con->sock)
1425 con->sock->sk->sk_user_data = NULL;
1428 static void free_conn(struct connection *con)
1430 close_connection(con, true);
1431 if (con->othercon)
1432 kmem_cache_free(con_cache, con->othercon);
1433 hlist_del(&con->list);
1434 kmem_cache_free(con_cache, con);
1437 void dlm_lowcomms_stop(void)
1439 /* Set all the flags to prevent any
1440 socket activity.
1442 mutex_lock(&connections_lock);
1443 foreach_conn(stop_conn);
1444 mutex_unlock(&connections_lock);
1446 work_stop();
1448 mutex_lock(&connections_lock);
1449 clean_writequeues();
1451 foreach_conn(free_conn);
1453 mutex_unlock(&connections_lock);
1454 kmem_cache_destroy(con_cache);
1457 int dlm_lowcomms_start(void)
1459 int error = -EINVAL;
1460 struct connection *con;
1461 int i;
1463 for (i = 0; i < CONN_HASH_SIZE; i++)
1464 INIT_HLIST_HEAD(&connection_hash[i]);
1466 init_local();
1467 if (!dlm_local_count) {
1468 error = -ENOTCONN;
1469 log_print("no local IP address has been set");
1470 goto out;
1473 error = -ENOMEM;
1474 con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1475 __alignof__(struct connection), 0,
1476 NULL);
1477 if (!con_cache)
1478 goto out;
1480 /* Start listening */
1481 if (dlm_config.ci_protocol == 0)
1482 error = tcp_listen_for_all();
1483 else
1484 error = sctp_listen_for_all();
1485 if (error)
1486 goto fail_unlisten;
1488 error = work_start();
1489 if (error)
1490 goto fail_unlisten;
1492 return 0;
1494 fail_unlisten:
1495 con = nodeid2con(0,0);
1496 if (con) {
1497 close_connection(con, false);
1498 kmem_cache_free(con_cache, con);
1500 kmem_cache_destroy(con_cache);
1502 out:
1503 return error;