2 * Intel SMP support routines.
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
7 * This code is released under the GNU General Public License version 2 or
11 #include <linux/init.h>
14 #include <linux/delay.h>
15 #include <linux/spinlock.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/mc146818rtc.h>
18 #include <linux/cache.h>
19 #include <linux/interrupt.h>
20 #include <linux/cpu.h>
21 #include <linux/module.h>
24 #include <asm/tlbflush.h>
25 #include <asm/mmu_context.h>
26 #include <mach_apic.h>
27 #include <asm/proto.h>
30 * Some notes on x86 processor bugs affecting SMP operation:
32 * Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
33 * The Linux implications for SMP are handled as follows:
35 * Pentium III / [Xeon]
36 * None of the E1AP-E3AP errata are visible to the user.
43 * None of the A1AP-A3AP errata are visible to the user.
50 * None of 1AP-9AP errata are visible to the normal user,
51 * except occasional delivery of 'spurious interrupt' as trap #15.
52 * This is very rare and a non-problem.
54 * 1AP. Linux maps APIC as non-cacheable
55 * 2AP. worked around in hardware
56 * 3AP. fixed in C0 and above steppings microcode update.
57 * Linux does not use excessive STARTUP_IPIs.
58 * 4AP. worked around in hardware
59 * 5AP. symmetric IO mode (normal Linux operation) not affected.
60 * 'noapic' mode has vector 0xf filled out properly.
61 * 6AP. 'noapic' mode might be affected - fixed in later steppings
62 * 7AP. We do not assume writes to the LVT deassering IRQs
63 * 8AP. We do not enable low power mode (deep sleep) during MP bootup
64 * 9AP. We do not use mixed mode
67 * There is a marginal case where REP MOVS on 100MHz SMP
68 * machines with B stepping processors can fail. XXX should provide
69 * an L1cache=Writethrough or L1cache=off option.
71 * B stepping CPUs may hang. There are hardware work arounds
72 * for this. We warn about it in case your board doesn't have the work
73 * arounds. Basically that's so I can tell anyone with a B stepping
74 * CPU and SMP problems "tough".
76 * Specific items [From Pentium Processor Specification Update]
78 * 1AP. Linux doesn't use remote read
79 * 2AP. Linux doesn't trust APIC errors
80 * 3AP. We work around this
81 * 4AP. Linux never generated 3 interrupts of the same priority
82 * to cause a lost local interrupt.
83 * 5AP. Remote read is never used
84 * 6AP. not affected - worked around in hardware
85 * 7AP. not affected - worked around in hardware
86 * 8AP. worked around in hardware - we get explicit CS errors if not
87 * 9AP. only 'noapic' mode affected. Might generate spurious
88 * interrupts, we log only the first one and count the
90 * 10AP. not affected - worked around in hardware
91 * 11AP. Linux reads the APIC between writes to avoid this, as per
92 * the documentation. Make sure you preserve this as it affects
93 * the C stepping chips too.
94 * 12AP. not affected - worked around in hardware
95 * 13AP. not affected - worked around in hardware
96 * 14AP. we always deassert INIT during bootup
97 * 15AP. not affected - worked around in hardware
98 * 16AP. not affected - worked around in hardware
99 * 17AP. not affected - worked around in hardware
100 * 18AP. not affected - worked around in hardware
101 * 19AP. not affected - worked around in BIOS
103 * If this sounds worrying believe me these bugs are either ___RARE___,
104 * or are signal timing bugs worked around in hardware and there's
105 * about nothing of note with C stepping upwards.
108 DEFINE_PER_CPU(struct tlb_state
, cpu_tlbstate
) ____cacheline_aligned
= { &init_mm
, 0, };
111 * the following functions deal with sending IPIs between CPUs.
113 * We use 'broadcast', CPU->CPU IPIs and self-IPIs too.
116 static inline int __prepare_ICR (unsigned int shortcut
, int vector
)
118 unsigned int icr
= shortcut
| APIC_DEST_LOGICAL
;
122 icr
|= APIC_DM_FIXED
| vector
;
131 static inline int __prepare_ICR2 (unsigned int mask
)
133 return SET_APIC_DEST_FIELD(mask
);
136 void __send_IPI_shortcut(unsigned int shortcut
, int vector
)
139 * Subtle. In the case of the 'never do double writes' workaround
140 * we have to lock out interrupts to be safe. As we don't care
141 * of the value read we use an atomic rmw access to avoid costly
142 * cli/sti. Otherwise we use an even cheaper single atomic write
150 apic_wait_icr_idle();
153 * No need to touch the target chip field
155 cfg
= __prepare_ICR(shortcut
, vector
);
158 * Send the IPI. The write to APIC_ICR fires this off.
160 apic_write_around(APIC_ICR
, cfg
);
163 void send_IPI_self(int vector
)
165 __send_IPI_shortcut(APIC_DEST_SELF
, vector
);
169 * This is used to send an IPI with no shorthand notation (the destination is
170 * specified in bits 56 to 63 of the ICR).
172 static inline void __send_IPI_dest_field(unsigned long mask
, int vector
)
179 if (unlikely(vector
== NMI_VECTOR
))
180 safe_apic_wait_icr_idle();
182 apic_wait_icr_idle();
185 * prepare target chip field
187 cfg
= __prepare_ICR2(mask
);
188 apic_write_around(APIC_ICR2
, cfg
);
193 cfg
= __prepare_ICR(0, vector
);
196 * Send the IPI. The write to APIC_ICR fires this off.
198 apic_write_around(APIC_ICR
, cfg
);
202 * This is only used on smaller machines.
204 void send_IPI_mask_bitmask(cpumask_t cpumask
, int vector
)
206 unsigned long mask
= cpus_addr(cpumask
)[0];
209 local_irq_save(flags
);
210 WARN_ON(mask
& ~cpus_addr(cpu_online_map
)[0]);
211 __send_IPI_dest_field(mask
, vector
);
212 local_irq_restore(flags
);
215 void send_IPI_mask_sequence(cpumask_t mask
, int vector
)
218 unsigned int query_cpu
;
221 * Hack. The clustered APIC addressing mode doesn't allow us to send
222 * to an arbitrary mask, so I do a unicasts to each CPU instead. This
223 * should be modified to do 1 message per cluster ID - mbligh
226 local_irq_save(flags
);
227 for_each_possible_cpu(query_cpu
) {
228 if (cpu_isset(query_cpu
, mask
)) {
229 __send_IPI_dest_field(cpu_to_logical_apicid(query_cpu
),
233 local_irq_restore(flags
);
236 #include <mach_ipi.h> /* must come after the send_IPI functions above for inlining */
239 * Smarter SMP flushing macros.
240 * c/o Linus Torvalds.
242 * These mean you can really definitely utterly forget about
243 * writing to user space from interrupts. (Its not allowed anyway).
245 * Optimizations Manfred Spraul <manfred@colorfullife.com>
248 static cpumask_t flush_cpumask
;
249 static struct mm_struct
* flush_mm
;
250 static unsigned long flush_va
;
251 static DEFINE_SPINLOCK(tlbstate_lock
);
254 * We cannot call mmdrop() because we are in interrupt context,
255 * instead update mm->cpu_vm_mask.
257 * We need to reload %cr3 since the page tables may be going
258 * away from under us..
260 void leave_mm(int cpu
)
262 if (per_cpu(cpu_tlbstate
, cpu
).state
== TLBSTATE_OK
)
264 cpu_clear(cpu
, per_cpu(cpu_tlbstate
, cpu
).active_mm
->cpu_vm_mask
);
265 load_cr3(swapper_pg_dir
);
267 EXPORT_SYMBOL_GPL(leave_mm
);
271 * The flush IPI assumes that a thread switch happens in this order:
272 * [cpu0: the cpu that switches]
273 * 1) switch_mm() either 1a) or 1b)
274 * 1a) thread switch to a different mm
275 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
276 * Stop ipi delivery for the old mm. This is not synchronized with
277 * the other cpus, but smp_invalidate_interrupt ignore flush ipis
278 * for the wrong mm, and in the worst case we perform a superfluous
280 * 1a2) set cpu_tlbstate to TLBSTATE_OK
281 * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
282 * was in lazy tlb mode.
283 * 1a3) update cpu_tlbstate[].active_mm
284 * Now cpu0 accepts tlb flushes for the new mm.
285 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
286 * Now the other cpus will send tlb flush ipis.
288 * 1b) thread switch without mm change
289 * cpu_tlbstate[].active_mm is correct, cpu0 already handles
291 * 1b1) set cpu_tlbstate to TLBSTATE_OK
292 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
293 * Atomically set the bit [other cpus will start sending flush ipis],
295 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
296 * 2) switch %%esp, ie current
298 * The interrupt must handle 2 special cases:
299 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
300 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
301 * runs in kernel space, the cpu could load tlb entries for user space
304 * The good news is that cpu_tlbstate is local to each cpu, no
305 * write/read ordering problems.
311 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
312 * 2) Leave the mm if we are in the lazy tlb mode.
315 void smp_invalidate_interrupt(struct pt_regs
*regs
)
321 if (!cpu_isset(cpu
, flush_cpumask
))
324 * This was a BUG() but until someone can quote me the
325 * line from the intel manual that guarantees an IPI to
326 * multiple CPUs is retried _only_ on the erroring CPUs
327 * its staying as a return
332 if (flush_mm
== per_cpu(cpu_tlbstate
, cpu
).active_mm
) {
333 if (per_cpu(cpu_tlbstate
, cpu
).state
== TLBSTATE_OK
) {
334 if (flush_va
== TLB_FLUSH_ALL
)
337 __flush_tlb_one(flush_va
);
342 smp_mb__before_clear_bit();
343 cpu_clear(cpu
, flush_cpumask
);
344 smp_mb__after_clear_bit();
346 put_cpu_no_resched();
347 __get_cpu_var(irq_stat
).irq_tlb_count
++;
350 void native_flush_tlb_others(const cpumask_t
*cpumaskp
, struct mm_struct
*mm
,
353 cpumask_t cpumask
= *cpumaskp
;
356 * A couple of (to be removed) sanity checks:
358 * - current CPU must not be in mask
359 * - mask must exist :)
361 BUG_ON(cpus_empty(cpumask
));
362 BUG_ON(cpu_isset(smp_processor_id(), cpumask
));
365 #ifdef CONFIG_HOTPLUG_CPU
366 /* If a CPU which we ran on has gone down, OK. */
367 cpus_and(cpumask
, cpumask
, cpu_online_map
);
368 if (unlikely(cpus_empty(cpumask
)))
373 * i'm not happy about this global shared spinlock in the
374 * MM hot path, but we'll see how contended it is.
375 * AK: x86-64 has a faster method that could be ported.
377 spin_lock(&tlbstate_lock
);
381 cpus_or(flush_cpumask
, cpumask
, flush_cpumask
);
383 * We have to send the IPI only to
386 send_IPI_mask(cpumask
, INVALIDATE_TLB_VECTOR
);
388 while (!cpus_empty(flush_cpumask
))
389 /* nothing. lockup detection does not belong here */
394 spin_unlock(&tlbstate_lock
);
397 void flush_tlb_current_task(void)
399 struct mm_struct
*mm
= current
->mm
;
403 cpu_mask
= mm
->cpu_vm_mask
;
404 cpu_clear(smp_processor_id(), cpu_mask
);
407 if (!cpus_empty(cpu_mask
))
408 flush_tlb_others(cpu_mask
, mm
, TLB_FLUSH_ALL
);
412 void flush_tlb_mm (struct mm_struct
* mm
)
417 cpu_mask
= mm
->cpu_vm_mask
;
418 cpu_clear(smp_processor_id(), cpu_mask
);
420 if (current
->active_mm
== mm
) {
424 leave_mm(smp_processor_id());
426 if (!cpus_empty(cpu_mask
))
427 flush_tlb_others(cpu_mask
, mm
, TLB_FLUSH_ALL
);
432 void flush_tlb_page(struct vm_area_struct
* vma
, unsigned long va
)
434 struct mm_struct
*mm
= vma
->vm_mm
;
438 cpu_mask
= mm
->cpu_vm_mask
;
439 cpu_clear(smp_processor_id(), cpu_mask
);
441 if (current
->active_mm
== mm
) {
445 leave_mm(smp_processor_id());
448 if (!cpus_empty(cpu_mask
))
449 flush_tlb_others(cpu_mask
, mm
, va
);
453 EXPORT_SYMBOL(flush_tlb_page
);
455 static void do_flush_tlb_all(void* info
)
457 unsigned long cpu
= smp_processor_id();
460 if (per_cpu(cpu_tlbstate
, cpu
).state
== TLBSTATE_LAZY
)
464 void flush_tlb_all(void)
466 on_each_cpu(do_flush_tlb_all
, NULL
, 1, 1);
470 * this function sends a 'reschedule' IPI to another CPU.
471 * it goes straight through and wastes no time serializing
472 * anything. Worst case is that we lose a reschedule ...
474 static void native_smp_send_reschedule(int cpu
)
476 WARN_ON(cpu_is_offline(cpu
));
477 send_IPI_mask(cpumask_of_cpu(cpu
), RESCHEDULE_VECTOR
);
481 * Structure and data for smp_call_function(). This is designed to minimise
482 * static memory requirements. It also looks cleaner.
484 static DEFINE_SPINLOCK(call_lock
);
486 struct call_data_struct
{
487 void (*func
) (void *info
);
494 void lock_ipi_call_lock(void)
496 spin_lock_irq(&call_lock
);
499 void unlock_ipi_call_lock(void)
501 spin_unlock_irq(&call_lock
);
504 static struct call_data_struct
*call_data
;
506 static void __smp_call_function(void (*func
) (void *info
), void *info
,
507 int nonatomic
, int wait
)
509 struct call_data_struct data
;
510 int cpus
= num_online_cpus() - 1;
517 atomic_set(&data
.started
, 0);
520 atomic_set(&data
.finished
, 0);
525 /* Send a message to all other CPUs and wait for them to respond */
526 send_IPI_allbutself(CALL_FUNCTION_VECTOR
);
528 /* Wait for response */
529 while (atomic_read(&data
.started
) != cpus
)
533 while (atomic_read(&data
.finished
) != cpus
)
539 * smp_call_function_mask(): Run a function on a set of other CPUs.
540 * @mask: The set of cpus to run on. Must not include the current cpu.
541 * @func: The function to run. This must be fast and non-blocking.
542 * @info: An arbitrary pointer to pass to the function.
543 * @wait: If true, wait (atomically) until function has completed on other CPUs.
545 * Returns 0 on success, else a negative status code.
547 * If @wait is true, then returns once @func has returned; otherwise
548 * it returns just before the target cpu calls @func.
550 * You must not call this function with disabled interrupts or from a
551 * hardware interrupt handler or from a bottom half handler.
554 native_smp_call_function_mask(cpumask_t mask
,
555 void (*func
)(void *), void *info
,
558 struct call_data_struct data
;
559 cpumask_t allbutself
;
562 /* Can deadlock when called with interrupts disabled */
563 WARN_ON(irqs_disabled());
565 /* Holding any lock stops cpus from going down. */
566 spin_lock(&call_lock
);
568 allbutself
= cpu_online_map
;
569 cpu_clear(smp_processor_id(), allbutself
);
571 cpus_and(mask
, mask
, allbutself
);
572 cpus
= cpus_weight(mask
);
575 spin_unlock(&call_lock
);
581 atomic_set(&data
.started
, 0);
584 atomic_set(&data
.finished
, 0);
589 /* Send a message to other CPUs */
590 if (cpus_equal(mask
, allbutself
))
591 send_IPI_allbutself(CALL_FUNCTION_VECTOR
);
593 send_IPI_mask(mask
, CALL_FUNCTION_VECTOR
);
595 /* Wait for response */
596 while (atomic_read(&data
.started
) != cpus
)
600 while (atomic_read(&data
.finished
) != cpus
)
602 spin_unlock(&call_lock
);
607 static void stop_this_cpu (void * dummy
)
613 cpu_clear(smp_processor_id(), cpu_online_map
);
614 disable_local_APIC();
615 if (hlt_works(smp_processor_id()))
621 * this function calls the 'stop' function on all other CPUs in the system.
624 static void native_smp_send_stop(void)
632 /* Don't deadlock on the call lock in panic */
633 nolock
= !spin_trylock(&call_lock
);
634 local_irq_save(flags
);
635 __smp_call_function(stop_this_cpu
, NULL
, 0, 0);
637 spin_unlock(&call_lock
);
638 disable_local_APIC();
639 local_irq_restore(flags
);
643 * Reschedule call back. Nothing to do,
644 * all the work is done automatically when
645 * we return from the interrupt.
647 void smp_reschedule_interrupt(struct pt_regs
*regs
)
650 __get_cpu_var(irq_stat
).irq_resched_count
++;
653 void smp_call_function_interrupt(struct pt_regs
*regs
)
655 void (*func
) (void *info
) = call_data
->func
;
656 void *info
= call_data
->info
;
657 int wait
= call_data
->wait
;
661 * Notify initiating CPU that I've grabbed the data and am
662 * about to execute the function
665 atomic_inc(&call_data
->started
);
667 * At this point the info structure may be out of scope unless wait==1
671 __get_cpu_var(irq_stat
).irq_call_count
++;
676 atomic_inc(&call_data
->finished
);
680 static int convert_apicid_to_cpu(int apic_id
)
684 for_each_possible_cpu(i
) {
685 if (per_cpu(x86_cpu_to_apicid
, i
) == apic_id
)
691 int safe_smp_processor_id(void)
695 if (!boot_cpu_has(X86_FEATURE_APIC
))
698 apicid
= hard_smp_processor_id();
699 if (apicid
== BAD_APICID
)
702 cpuid
= convert_apicid_to_cpu(apicid
);
704 return cpuid
>= 0 ? cpuid
: 0;
707 struct smp_ops smp_ops
= {
708 .smp_prepare_boot_cpu
= native_smp_prepare_boot_cpu
,
709 .smp_prepare_cpus
= native_smp_prepare_cpus
,
710 .cpu_up
= native_cpu_up
,
711 .smp_cpus_done
= native_smp_cpus_done
,
713 .smp_send_stop
= native_smp_send_stop
,
714 .smp_send_reschedule
= native_smp_send_reschedule
,
715 .smp_call_function_mask
= native_smp_call_function_mask
,
717 EXPORT_SYMBOL_GPL(smp_ops
);