1 #ifndef _ASM_X86_BITOPS_H
2 #define _ASM_X86_BITOPS_H
5 * Copyright 1992, Linus Torvalds.
8 #ifndef _LINUX_BITOPS_H
9 #error only <linux/bitops.h> can be included directly
12 #include <linux/compiler.h>
13 #include <asm/alternative.h>
16 * These have to be done with inline assembly: that way the bit-setting
17 * is guaranteed to be atomic. All bit operations return 0 if the bit
18 * was cleared before the operation and != 0 if it was not.
20 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
23 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
24 /* Technically wrong, but this avoids compilation errors on some gcc
26 #define ADDR "=m" (*(volatile long *)addr)
27 #define BIT_ADDR "=m" (((volatile int *)addr)[nr >> 5])
29 #define ADDR "+m" (*(volatile long *) addr)
30 #define BIT_ADDR "+m" (((volatile int *)addr)[nr >> 5])
32 #define BASE_ADDR "m" (*(volatile int *)addr)
35 * set_bit - Atomically set a bit in memory
37 * @addr: the address to start counting from
39 * This function is atomic and may not be reordered. See __set_bit()
40 * if you do not require the atomic guarantees.
42 * Note: there are no guarantees that this function will not be reordered
43 * on non x86 architectures, so if you are writing portable code,
44 * make sure not to rely on its reordering guarantees.
46 * Note that @nr may be almost arbitrarily large; this function is not
47 * restricted to acting on a single-word quantity.
49 static inline void set_bit(int nr
, volatile void *addr
)
51 asm volatile(LOCK_PREFIX
"bts %1,%0" : ADDR
: "Ir" (nr
) : "memory");
55 * __set_bit - Set a bit in memory
57 * @addr: the address to start counting from
59 * Unlike set_bit(), this function is non-atomic and may be reordered.
60 * If it's called on the same region of memory simultaneously, the effect
61 * may be that only one operation succeeds.
63 static inline void __set_bit(int nr
, volatile void *addr
)
65 asm volatile("bts %1,%0" : ADDR
: "Ir" (nr
) : "memory");
69 * clear_bit - Clears a bit in memory
71 * @addr: Address to start counting from
73 * clear_bit() is atomic and may not be reordered. However, it does
74 * not contain a memory barrier, so if it is used for locking purposes,
75 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
76 * in order to ensure changes are visible on other processors.
78 static inline void clear_bit(int nr
, volatile void *addr
)
80 asm volatile(LOCK_PREFIX
"btr %1,%2" : BIT_ADDR
: "Ir" (nr
), BASE_ADDR
);
84 * clear_bit_unlock - Clears a bit in memory
86 * @addr: Address to start counting from
88 * clear_bit() is atomic and implies release semantics before the memory
89 * operation. It can be used for an unlock.
91 static inline void clear_bit_unlock(unsigned nr
, volatile void *addr
)
97 static inline void __clear_bit(int nr
, volatile void *addr
)
99 asm volatile("btr %1,%2" : BIT_ADDR
: "Ir" (nr
), BASE_ADDR
);
103 * __clear_bit_unlock - Clears a bit in memory
105 * @addr: Address to start counting from
107 * __clear_bit() is non-atomic and implies release semantics before the memory
108 * operation. It can be used for an unlock if no other CPUs can concurrently
109 * modify other bits in the word.
111 * No memory barrier is required here, because x86 cannot reorder stores past
112 * older loads. Same principle as spin_unlock.
114 static inline void __clear_bit_unlock(unsigned nr
, volatile void *addr
)
117 __clear_bit(nr
, addr
);
120 #define smp_mb__before_clear_bit() barrier()
121 #define smp_mb__after_clear_bit() barrier()
124 * __change_bit - Toggle a bit in memory
125 * @nr: the bit to change
126 * @addr: the address to start counting from
128 * Unlike change_bit(), this function is non-atomic and may be reordered.
129 * If it's called on the same region of memory simultaneously, the effect
130 * may be that only one operation succeeds.
132 static inline void __change_bit(int nr
, volatile void *addr
)
134 asm volatile("btc %1,%2" : BIT_ADDR
: "Ir" (nr
), BASE_ADDR
);
138 * change_bit - Toggle a bit in memory
140 * @addr: Address to start counting from
142 * change_bit() is atomic and may not be reordered.
143 * Note that @nr may be almost arbitrarily large; this function is not
144 * restricted to acting on a single-word quantity.
146 static inline void change_bit(int nr
, volatile void *addr
)
148 asm volatile(LOCK_PREFIX
"btc %1,%2" : BIT_ADDR
: "Ir" (nr
), BASE_ADDR
);
152 * test_and_set_bit - Set a bit and return its old value
154 * @addr: Address to count from
156 * This operation is atomic and cannot be reordered.
157 * It also implies a memory barrier.
159 static inline int test_and_set_bit(int nr
, volatile void *addr
)
163 asm volatile(LOCK_PREFIX
"bts %2,%1\n\t"
164 "sbb %0,%0" : "=r" (oldbit
), ADDR
: "Ir" (nr
) : "memory");
170 * test_and_set_bit_lock - Set a bit and return its old value for lock
172 * @addr: Address to count from
174 * This is the same as test_and_set_bit on x86.
176 static inline int test_and_set_bit_lock(int nr
, volatile void *addr
)
178 return test_and_set_bit(nr
, addr
);
182 * __test_and_set_bit - Set a bit and return its old value
184 * @addr: Address to count from
186 * This operation is non-atomic and can be reordered.
187 * If two examples of this operation race, one can appear to succeed
188 * but actually fail. You must protect multiple accesses with a lock.
190 static inline int __test_and_set_bit(int nr
, volatile void *addr
)
194 asm volatile("bts %2,%3\n\t"
196 : "=r" (oldbit
), BIT_ADDR
: "Ir" (nr
), BASE_ADDR
);
201 * test_and_clear_bit - Clear a bit and return its old value
203 * @addr: Address to count from
205 * This operation is atomic and cannot be reordered.
206 * It also implies a memory barrier.
208 static inline int test_and_clear_bit(int nr
, volatile void *addr
)
212 asm volatile(LOCK_PREFIX
"btr %2,%1\n\t"
214 : "=r" (oldbit
), ADDR
: "Ir" (nr
) : "memory");
220 * __test_and_clear_bit - Clear a bit and return its old value
222 * @addr: Address to count from
224 * This operation is non-atomic and can be reordered.
225 * If two examples of this operation race, one can appear to succeed
226 * but actually fail. You must protect multiple accesses with a lock.
228 static inline int __test_and_clear_bit(int nr
, volatile void *addr
)
232 asm volatile("btr %2,%3\n\t"
234 : "=r" (oldbit
), BIT_ADDR
: "Ir" (nr
), BASE_ADDR
);
238 /* WARNING: non atomic and it can be reordered! */
239 static inline int __test_and_change_bit(int nr
, volatile void *addr
)
243 asm volatile("btc %2,%3\n\t"
245 : "=r" (oldbit
), BIT_ADDR
: "Ir" (nr
), BASE_ADDR
);
251 * test_and_change_bit - Change a bit and return its old value
253 * @addr: Address to count from
255 * This operation is atomic and cannot be reordered.
256 * It also implies a memory barrier.
258 static inline int test_and_change_bit(int nr
, volatile void *addr
)
262 asm volatile(LOCK_PREFIX
"btc %2,%1\n\t"
264 : "=r" (oldbit
), ADDR
: "Ir" (nr
) : "memory");
269 static inline int constant_test_bit(int nr
, const volatile void *addr
)
271 return ((1UL << (nr
% BITS_PER_LONG
)) &
272 (((unsigned long *)addr
)[nr
/ BITS_PER_LONG
])) != 0;
275 static inline int variable_test_bit(int nr
, volatile const void *addr
)
279 asm volatile("bt %2,%3\n\t"
282 : "m" (((volatile const int *)addr
)[nr
>> 5]),
283 "Ir" (nr
), BASE_ADDR
);
288 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
290 * test_bit - Determine whether a bit is set
291 * @nr: bit number to test
292 * @addr: Address to start counting from
294 static int test_bit(int nr
, const volatile unsigned long *addr
);
297 #define test_bit(nr, addr) \
298 (__builtin_constant_p((nr)) \
299 ? constant_test_bit((nr), (addr)) \
300 : variable_test_bit((nr), (addr)))
303 * __ffs - find first set bit in word
304 * @word: The word to search
306 * Undefined if no bit exists, so code should check against 0 first.
308 static inline unsigned long __ffs(unsigned long word
)
317 * ffz - find first zero bit in word
318 * @word: The word to search
320 * Undefined if no zero exists, so code should check against ~0UL first.
322 static inline unsigned long ffz(unsigned long word
)
331 * __fls: find last set bit in word
332 * @word: The word to search
334 * Undefined if no zero exists, so code should check against ~0UL first.
336 static inline unsigned long __fls(unsigned long word
)
346 * ffs - find first set bit in word
347 * @x: the word to search
349 * This is defined the same way as the libc and compiler builtin ffs
350 * routines, therefore differs in spirit from the other bitops.
352 * ffs(value) returns 0 if value is 0 or the position of the first
353 * set bit if value is nonzero. The first (least significant) bit
356 static inline int ffs(int x
)
359 #ifdef CONFIG_X86_CMOV
362 : "=r" (r
) : "rm" (x
), "r" (-1));
367 "1:" : "=r" (r
) : "rm" (x
));
373 * fls - find last set bit in word
374 * @x: the word to search
376 * This is defined in a similar way as the libc and compiler builtin
377 * ffs, but returns the position of the most significant set bit.
379 * fls(value) returns 0 if value is 0 or the position of the last
380 * set bit if value is nonzero. The last (most significant) bit is
383 static inline int fls(int x
)
386 #ifdef CONFIG_X86_CMOV
389 : "=&r" (r
) : "rm" (x
), "rm" (-1));
394 "1:" : "=r" (r
) : "rm" (x
));
398 #endif /* __KERNEL__ */
404 static inline void set_bit_string(unsigned long *bitmap
,
405 unsigned long i
, int len
)
407 unsigned long end
= i
+ len
;
409 __set_bit(i
, bitmap
);
416 #include <asm-generic/bitops/sched.h>
418 #define ARCH_HAS_FAST_MULTIPLIER 1
420 #include <asm-generic/bitops/hweight.h>
422 #endif /* __KERNEL__ */
424 #include <asm-generic/bitops/fls64.h>
428 #include <asm-generic/bitops/ext2-non-atomic.h>
430 #define ext2_set_bit_atomic(lock, nr, addr) \
431 test_and_set_bit((nr), (unsigned long *)(addr))
432 #define ext2_clear_bit_atomic(lock, nr, addr) \
433 test_and_clear_bit((nr), (unsigned long *)(addr))
435 #include <asm-generic/bitops/minix.h>
437 #endif /* __KERNEL__ */
438 #endif /* _ASM_X86_BITOPS_H */