md: fix 'safemode' handling for external metadata.
[linux-2.6/mini2440.git] / include / asm-x86 / bitops.h
blobb81a4d4d333787e4c9e8b69cb74fd190f09c4e69
1 #ifndef _ASM_X86_BITOPS_H
2 #define _ASM_X86_BITOPS_H
4 /*
5 * Copyright 1992, Linus Torvalds.
6 */
8 #ifndef _LINUX_BITOPS_H
9 #error only <linux/bitops.h> can be included directly
10 #endif
12 #include <linux/compiler.h>
13 #include <asm/alternative.h>
16 * These have to be done with inline assembly: that way the bit-setting
17 * is guaranteed to be atomic. All bit operations return 0 if the bit
18 * was cleared before the operation and != 0 if it was not.
20 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
23 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
24 /* Technically wrong, but this avoids compilation errors on some gcc
25 versions. */
26 #define ADDR "=m" (*(volatile long *)addr)
27 #define BIT_ADDR "=m" (((volatile int *)addr)[nr >> 5])
28 #else
29 #define ADDR "+m" (*(volatile long *) addr)
30 #define BIT_ADDR "+m" (((volatile int *)addr)[nr >> 5])
31 #endif
32 #define BASE_ADDR "m" (*(volatile int *)addr)
34 /**
35 * set_bit - Atomically set a bit in memory
36 * @nr: the bit to set
37 * @addr: the address to start counting from
39 * This function is atomic and may not be reordered. See __set_bit()
40 * if you do not require the atomic guarantees.
42 * Note: there are no guarantees that this function will not be reordered
43 * on non x86 architectures, so if you are writing portable code,
44 * make sure not to rely on its reordering guarantees.
46 * Note that @nr may be almost arbitrarily large; this function is not
47 * restricted to acting on a single-word quantity.
49 static inline void set_bit(int nr, volatile void *addr)
51 asm volatile(LOCK_PREFIX "bts %1,%0" : ADDR : "Ir" (nr) : "memory");
54 /**
55 * __set_bit - Set a bit in memory
56 * @nr: the bit to set
57 * @addr: the address to start counting from
59 * Unlike set_bit(), this function is non-atomic and may be reordered.
60 * If it's called on the same region of memory simultaneously, the effect
61 * may be that only one operation succeeds.
63 static inline void __set_bit(int nr, volatile void *addr)
65 asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory");
68 /**
69 * clear_bit - Clears a bit in memory
70 * @nr: Bit to clear
71 * @addr: Address to start counting from
73 * clear_bit() is atomic and may not be reordered. However, it does
74 * not contain a memory barrier, so if it is used for locking purposes,
75 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
76 * in order to ensure changes are visible on other processors.
78 static inline void clear_bit(int nr, volatile void *addr)
80 asm volatile(LOCK_PREFIX "btr %1,%2" : BIT_ADDR : "Ir" (nr), BASE_ADDR);
84 * clear_bit_unlock - Clears a bit in memory
85 * @nr: Bit to clear
86 * @addr: Address to start counting from
88 * clear_bit() is atomic and implies release semantics before the memory
89 * operation. It can be used for an unlock.
91 static inline void clear_bit_unlock(unsigned nr, volatile void *addr)
93 barrier();
94 clear_bit(nr, addr);
97 static inline void __clear_bit(int nr, volatile void *addr)
99 asm volatile("btr %1,%2" : BIT_ADDR : "Ir" (nr), BASE_ADDR);
103 * __clear_bit_unlock - Clears a bit in memory
104 * @nr: Bit to clear
105 * @addr: Address to start counting from
107 * __clear_bit() is non-atomic and implies release semantics before the memory
108 * operation. It can be used for an unlock if no other CPUs can concurrently
109 * modify other bits in the word.
111 * No memory barrier is required here, because x86 cannot reorder stores past
112 * older loads. Same principle as spin_unlock.
114 static inline void __clear_bit_unlock(unsigned nr, volatile void *addr)
116 barrier();
117 __clear_bit(nr, addr);
120 #define smp_mb__before_clear_bit() barrier()
121 #define smp_mb__after_clear_bit() barrier()
124 * __change_bit - Toggle a bit in memory
125 * @nr: the bit to change
126 * @addr: the address to start counting from
128 * Unlike change_bit(), this function is non-atomic and may be reordered.
129 * If it's called on the same region of memory simultaneously, the effect
130 * may be that only one operation succeeds.
132 static inline void __change_bit(int nr, volatile void *addr)
134 asm volatile("btc %1,%2" : BIT_ADDR : "Ir" (nr), BASE_ADDR);
138 * change_bit - Toggle a bit in memory
139 * @nr: Bit to change
140 * @addr: Address to start counting from
142 * change_bit() is atomic and may not be reordered.
143 * Note that @nr may be almost arbitrarily large; this function is not
144 * restricted to acting on a single-word quantity.
146 static inline void change_bit(int nr, volatile void *addr)
148 asm volatile(LOCK_PREFIX "btc %1,%2" : BIT_ADDR : "Ir" (nr), BASE_ADDR);
152 * test_and_set_bit - Set a bit and return its old value
153 * @nr: Bit to set
154 * @addr: Address to count from
156 * This operation is atomic and cannot be reordered.
157 * It also implies a memory barrier.
159 static inline int test_and_set_bit(int nr, volatile void *addr)
161 int oldbit;
163 asm volatile(LOCK_PREFIX "bts %2,%1\n\t"
164 "sbb %0,%0" : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
166 return oldbit;
170 * test_and_set_bit_lock - Set a bit and return its old value for lock
171 * @nr: Bit to set
172 * @addr: Address to count from
174 * This is the same as test_and_set_bit on x86.
176 static inline int test_and_set_bit_lock(int nr, volatile void *addr)
178 return test_and_set_bit(nr, addr);
182 * __test_and_set_bit - Set a bit and return its old value
183 * @nr: Bit to set
184 * @addr: Address to count from
186 * This operation is non-atomic and can be reordered.
187 * If two examples of this operation race, one can appear to succeed
188 * but actually fail. You must protect multiple accesses with a lock.
190 static inline int __test_and_set_bit(int nr, volatile void *addr)
192 int oldbit;
194 asm volatile("bts %2,%3\n\t"
195 "sbb %0,%0"
196 : "=r" (oldbit), BIT_ADDR : "Ir" (nr), BASE_ADDR);
197 return oldbit;
201 * test_and_clear_bit - Clear a bit and return its old value
202 * @nr: Bit to clear
203 * @addr: Address to count from
205 * This operation is atomic and cannot be reordered.
206 * It also implies a memory barrier.
208 static inline int test_and_clear_bit(int nr, volatile void *addr)
210 int oldbit;
212 asm volatile(LOCK_PREFIX "btr %2,%1\n\t"
213 "sbb %0,%0"
214 : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
216 return oldbit;
220 * __test_and_clear_bit - Clear a bit and return its old value
221 * @nr: Bit to clear
222 * @addr: Address to count from
224 * This operation is non-atomic and can be reordered.
225 * If two examples of this operation race, one can appear to succeed
226 * but actually fail. You must protect multiple accesses with a lock.
228 static inline int __test_and_clear_bit(int nr, volatile void *addr)
230 int oldbit;
232 asm volatile("btr %2,%3\n\t"
233 "sbb %0,%0"
234 : "=r" (oldbit), BIT_ADDR : "Ir" (nr), BASE_ADDR);
235 return oldbit;
238 /* WARNING: non atomic and it can be reordered! */
239 static inline int __test_and_change_bit(int nr, volatile void *addr)
241 int oldbit;
243 asm volatile("btc %2,%3\n\t"
244 "sbb %0,%0"
245 : "=r" (oldbit), BIT_ADDR : "Ir" (nr), BASE_ADDR);
247 return oldbit;
251 * test_and_change_bit - Change a bit and return its old value
252 * @nr: Bit to change
253 * @addr: Address to count from
255 * This operation is atomic and cannot be reordered.
256 * It also implies a memory barrier.
258 static inline int test_and_change_bit(int nr, volatile void *addr)
260 int oldbit;
262 asm volatile(LOCK_PREFIX "btc %2,%1\n\t"
263 "sbb %0,%0"
264 : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
266 return oldbit;
269 static inline int constant_test_bit(int nr, const volatile void *addr)
271 return ((1UL << (nr % BITS_PER_LONG)) &
272 (((unsigned long *)addr)[nr / BITS_PER_LONG])) != 0;
275 static inline int variable_test_bit(int nr, volatile const void *addr)
277 int oldbit;
279 asm volatile("bt %2,%3\n\t"
280 "sbb %0,%0"
281 : "=r" (oldbit)
282 : "m" (((volatile const int *)addr)[nr >> 5]),
283 "Ir" (nr), BASE_ADDR);
285 return oldbit;
288 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
290 * test_bit - Determine whether a bit is set
291 * @nr: bit number to test
292 * @addr: Address to start counting from
294 static int test_bit(int nr, const volatile unsigned long *addr);
295 #endif
297 #define test_bit(nr, addr) \
298 (__builtin_constant_p((nr)) \
299 ? constant_test_bit((nr), (addr)) \
300 : variable_test_bit((nr), (addr)))
303 * __ffs - find first set bit in word
304 * @word: The word to search
306 * Undefined if no bit exists, so code should check against 0 first.
308 static inline unsigned long __ffs(unsigned long word)
310 asm("bsf %1,%0"
311 : "=r" (word)
312 : "rm" (word));
313 return word;
317 * ffz - find first zero bit in word
318 * @word: The word to search
320 * Undefined if no zero exists, so code should check against ~0UL first.
322 static inline unsigned long ffz(unsigned long word)
324 asm("bsf %1,%0"
325 : "=r" (word)
326 : "r" (~word));
327 return word;
331 * __fls: find last set bit in word
332 * @word: The word to search
334 * Undefined if no zero exists, so code should check against ~0UL first.
336 static inline unsigned long __fls(unsigned long word)
338 asm("bsr %1,%0"
339 : "=r" (word)
340 : "rm" (word));
341 return word;
344 #ifdef __KERNEL__
346 * ffs - find first set bit in word
347 * @x: the word to search
349 * This is defined the same way as the libc and compiler builtin ffs
350 * routines, therefore differs in spirit from the other bitops.
352 * ffs(value) returns 0 if value is 0 or the position of the first
353 * set bit if value is nonzero. The first (least significant) bit
354 * is at position 1.
356 static inline int ffs(int x)
358 int r;
359 #ifdef CONFIG_X86_CMOV
360 asm("bsfl %1,%0\n\t"
361 "cmovzl %2,%0"
362 : "=r" (r) : "rm" (x), "r" (-1));
363 #else
364 asm("bsfl %1,%0\n\t"
365 "jnz 1f\n\t"
366 "movl $-1,%0\n"
367 "1:" : "=r" (r) : "rm" (x));
368 #endif
369 return r + 1;
373 * fls - find last set bit in word
374 * @x: the word to search
376 * This is defined in a similar way as the libc and compiler builtin
377 * ffs, but returns the position of the most significant set bit.
379 * fls(value) returns 0 if value is 0 or the position of the last
380 * set bit if value is nonzero. The last (most significant) bit is
381 * at position 32.
383 static inline int fls(int x)
385 int r;
386 #ifdef CONFIG_X86_CMOV
387 asm("bsrl %1,%0\n\t"
388 "cmovzl %2,%0"
389 : "=&r" (r) : "rm" (x), "rm" (-1));
390 #else
391 asm("bsrl %1,%0\n\t"
392 "jnz 1f\n\t"
393 "movl $-1,%0\n"
394 "1:" : "=r" (r) : "rm" (x));
395 #endif
396 return r + 1;
398 #endif /* __KERNEL__ */
400 #undef BASE_ADDR
401 #undef BIT_ADDR
402 #undef ADDR
404 static inline void set_bit_string(unsigned long *bitmap,
405 unsigned long i, int len)
407 unsigned long end = i + len;
408 while (i < end) {
409 __set_bit(i, bitmap);
410 i++;
414 #ifdef __KERNEL__
416 #include <asm-generic/bitops/sched.h>
418 #define ARCH_HAS_FAST_MULTIPLIER 1
420 #include <asm-generic/bitops/hweight.h>
422 #endif /* __KERNEL__ */
424 #include <asm-generic/bitops/fls64.h>
426 #ifdef __KERNEL__
428 #include <asm-generic/bitops/ext2-non-atomic.h>
430 #define ext2_set_bit_atomic(lock, nr, addr) \
431 test_and_set_bit((nr), (unsigned long *)(addr))
432 #define ext2_clear_bit_atomic(lock, nr, addr) \
433 test_and_clear_bit((nr), (unsigned long *)(addr))
435 #include <asm-generic/bitops/minix.h>
437 #endif /* __KERNEL__ */
438 #endif /* _ASM_X86_BITOPS_H */