groups: move code to kernel/groups.c
[linux-2.6/mini2440.git] / mm / page_alloc.c
blob2f457a756d4678cadc46f012af8691db8da32826
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/page_cgroup.h>
48 #include <linux/debugobjects.h>
49 #include <linux/kmemleak.h>
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53 #include "internal.h"
56 * Array of node states.
58 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
59 [N_POSSIBLE] = NODE_MASK_ALL,
60 [N_ONLINE] = { { [0] = 1UL } },
61 #ifndef CONFIG_NUMA
62 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
63 #ifdef CONFIG_HIGHMEM
64 [N_HIGH_MEMORY] = { { [0] = 1UL } },
65 #endif
66 [N_CPU] = { { [0] = 1UL } },
67 #endif /* NUMA */
69 EXPORT_SYMBOL(node_states);
71 unsigned long totalram_pages __read_mostly;
72 unsigned long totalreserve_pages __read_mostly;
73 unsigned long highest_memmap_pfn __read_mostly;
74 int percpu_pagelist_fraction;
76 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
77 int pageblock_order __read_mostly;
78 #endif
80 static void __free_pages_ok(struct page *page, unsigned int order);
83 * results with 256, 32 in the lowmem_reserve sysctl:
84 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
85 * 1G machine -> (16M dma, 784M normal, 224M high)
86 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
87 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
88 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
90 * TBD: should special case ZONE_DMA32 machines here - in those we normally
91 * don't need any ZONE_NORMAL reservation
93 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
94 #ifdef CONFIG_ZONE_DMA
95 256,
96 #endif
97 #ifdef CONFIG_ZONE_DMA32
98 256,
99 #endif
100 #ifdef CONFIG_HIGHMEM
102 #endif
106 EXPORT_SYMBOL(totalram_pages);
108 static char * const zone_names[MAX_NR_ZONES] = {
109 #ifdef CONFIG_ZONE_DMA
110 "DMA",
111 #endif
112 #ifdef CONFIG_ZONE_DMA32
113 "DMA32",
114 #endif
115 "Normal",
116 #ifdef CONFIG_HIGHMEM
117 "HighMem",
118 #endif
119 "Movable",
122 int min_free_kbytes = 1024;
124 unsigned long __meminitdata nr_kernel_pages;
125 unsigned long __meminitdata nr_all_pages;
126 static unsigned long __meminitdata dma_reserve;
128 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
130 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
131 * ranges of memory (RAM) that may be registered with add_active_range().
132 * Ranges passed to add_active_range() will be merged if possible
133 * so the number of times add_active_range() can be called is
134 * related to the number of nodes and the number of holes
136 #ifdef CONFIG_MAX_ACTIVE_REGIONS
137 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
138 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139 #else
140 #if MAX_NUMNODES >= 32
141 /* If there can be many nodes, allow up to 50 holes per node */
142 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143 #else
144 /* By default, allow up to 256 distinct regions */
145 #define MAX_ACTIVE_REGIONS 256
146 #endif
147 #endif
149 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
150 static int __meminitdata nr_nodemap_entries;
151 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
152 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
153 static unsigned long __initdata required_kernelcore;
154 static unsigned long __initdata required_movablecore;
155 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158 int movable_zone;
159 EXPORT_SYMBOL(movable_zone);
160 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
162 #if MAX_NUMNODES > 1
163 int nr_node_ids __read_mostly = MAX_NUMNODES;
164 int nr_online_nodes __read_mostly = 1;
165 EXPORT_SYMBOL(nr_node_ids);
166 EXPORT_SYMBOL(nr_online_nodes);
167 #endif
169 int page_group_by_mobility_disabled __read_mostly;
171 static void set_pageblock_migratetype(struct page *page, int migratetype)
174 if (unlikely(page_group_by_mobility_disabled))
175 migratetype = MIGRATE_UNMOVABLE;
177 set_pageblock_flags_group(page, (unsigned long)migratetype,
178 PB_migrate, PB_migrate_end);
181 bool oom_killer_disabled __read_mostly;
183 #ifdef CONFIG_DEBUG_VM
184 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
186 int ret = 0;
187 unsigned seq;
188 unsigned long pfn = page_to_pfn(page);
190 do {
191 seq = zone_span_seqbegin(zone);
192 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
193 ret = 1;
194 else if (pfn < zone->zone_start_pfn)
195 ret = 1;
196 } while (zone_span_seqretry(zone, seq));
198 return ret;
201 static int page_is_consistent(struct zone *zone, struct page *page)
203 if (!pfn_valid_within(page_to_pfn(page)))
204 return 0;
205 if (zone != page_zone(page))
206 return 0;
208 return 1;
211 * Temporary debugging check for pages not lying within a given zone.
213 static int bad_range(struct zone *zone, struct page *page)
215 if (page_outside_zone_boundaries(zone, page))
216 return 1;
217 if (!page_is_consistent(zone, page))
218 return 1;
220 return 0;
222 #else
223 static inline int bad_range(struct zone *zone, struct page *page)
225 return 0;
227 #endif
229 static void bad_page(struct page *page)
231 static unsigned long resume;
232 static unsigned long nr_shown;
233 static unsigned long nr_unshown;
236 * Allow a burst of 60 reports, then keep quiet for that minute;
237 * or allow a steady drip of one report per second.
239 if (nr_shown == 60) {
240 if (time_before(jiffies, resume)) {
241 nr_unshown++;
242 goto out;
244 if (nr_unshown) {
245 printk(KERN_ALERT
246 "BUG: Bad page state: %lu messages suppressed\n",
247 nr_unshown);
248 nr_unshown = 0;
250 nr_shown = 0;
252 if (nr_shown++ == 0)
253 resume = jiffies + 60 * HZ;
255 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
256 current->comm, page_to_pfn(page));
257 printk(KERN_ALERT
258 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
259 page, (void *)page->flags, page_count(page),
260 page_mapcount(page), page->mapping, page->index);
262 dump_stack();
263 out:
264 /* Leave bad fields for debug, except PageBuddy could make trouble */
265 __ClearPageBuddy(page);
266 add_taint(TAINT_BAD_PAGE);
270 * Higher-order pages are called "compound pages". They are structured thusly:
272 * The first PAGE_SIZE page is called the "head page".
274 * The remaining PAGE_SIZE pages are called "tail pages".
276 * All pages have PG_compound set. All pages have their ->private pointing at
277 * the head page (even the head page has this).
279 * The first tail page's ->lru.next holds the address of the compound page's
280 * put_page() function. Its ->lru.prev holds the order of allocation.
281 * This usage means that zero-order pages may not be compound.
284 static void free_compound_page(struct page *page)
286 __free_pages_ok(page, compound_order(page));
289 void prep_compound_page(struct page *page, unsigned long order)
291 int i;
292 int nr_pages = 1 << order;
294 set_compound_page_dtor(page, free_compound_page);
295 set_compound_order(page, order);
296 __SetPageHead(page);
297 for (i = 1; i < nr_pages; i++) {
298 struct page *p = page + i;
300 __SetPageTail(p);
301 p->first_page = page;
305 static int destroy_compound_page(struct page *page, unsigned long order)
307 int i;
308 int nr_pages = 1 << order;
309 int bad = 0;
311 if (unlikely(compound_order(page) != order) ||
312 unlikely(!PageHead(page))) {
313 bad_page(page);
314 bad++;
317 __ClearPageHead(page);
319 for (i = 1; i < nr_pages; i++) {
320 struct page *p = page + i;
322 if (unlikely(!PageTail(p) || (p->first_page != page))) {
323 bad_page(page);
324 bad++;
326 __ClearPageTail(p);
329 return bad;
332 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
334 int i;
337 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
338 * and __GFP_HIGHMEM from hard or soft interrupt context.
340 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
341 for (i = 0; i < (1 << order); i++)
342 clear_highpage(page + i);
345 static inline void set_page_order(struct page *page, int order)
347 set_page_private(page, order);
348 __SetPageBuddy(page);
351 static inline void rmv_page_order(struct page *page)
353 __ClearPageBuddy(page);
354 set_page_private(page, 0);
358 * Locate the struct page for both the matching buddy in our
359 * pair (buddy1) and the combined O(n+1) page they form (page).
361 * 1) Any buddy B1 will have an order O twin B2 which satisfies
362 * the following equation:
363 * B2 = B1 ^ (1 << O)
364 * For example, if the starting buddy (buddy2) is #8 its order
365 * 1 buddy is #10:
366 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
368 * 2) Any buddy B will have an order O+1 parent P which
369 * satisfies the following equation:
370 * P = B & ~(1 << O)
372 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
374 static inline struct page *
375 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
377 unsigned long buddy_idx = page_idx ^ (1 << order);
379 return page + (buddy_idx - page_idx);
382 static inline unsigned long
383 __find_combined_index(unsigned long page_idx, unsigned int order)
385 return (page_idx & ~(1 << order));
389 * This function checks whether a page is free && is the buddy
390 * we can do coalesce a page and its buddy if
391 * (a) the buddy is not in a hole &&
392 * (b) the buddy is in the buddy system &&
393 * (c) a page and its buddy have the same order &&
394 * (d) a page and its buddy are in the same zone.
396 * For recording whether a page is in the buddy system, we use PG_buddy.
397 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
399 * For recording page's order, we use page_private(page).
401 static inline int page_is_buddy(struct page *page, struct page *buddy,
402 int order)
404 if (!pfn_valid_within(page_to_pfn(buddy)))
405 return 0;
407 if (page_zone_id(page) != page_zone_id(buddy))
408 return 0;
410 if (PageBuddy(buddy) && page_order(buddy) == order) {
411 VM_BUG_ON(page_count(buddy) != 0);
412 return 1;
414 return 0;
418 * Freeing function for a buddy system allocator.
420 * The concept of a buddy system is to maintain direct-mapped table
421 * (containing bit values) for memory blocks of various "orders".
422 * The bottom level table contains the map for the smallest allocatable
423 * units of memory (here, pages), and each level above it describes
424 * pairs of units from the levels below, hence, "buddies".
425 * At a high level, all that happens here is marking the table entry
426 * at the bottom level available, and propagating the changes upward
427 * as necessary, plus some accounting needed to play nicely with other
428 * parts of the VM system.
429 * At each level, we keep a list of pages, which are heads of continuous
430 * free pages of length of (1 << order) and marked with PG_buddy. Page's
431 * order is recorded in page_private(page) field.
432 * So when we are allocating or freeing one, we can derive the state of the
433 * other. That is, if we allocate a small block, and both were
434 * free, the remainder of the region must be split into blocks.
435 * If a block is freed, and its buddy is also free, then this
436 * triggers coalescing into a block of larger size.
438 * -- wli
441 static inline void __free_one_page(struct page *page,
442 struct zone *zone, unsigned int order,
443 int migratetype)
445 unsigned long page_idx;
447 if (unlikely(PageCompound(page)))
448 if (unlikely(destroy_compound_page(page, order)))
449 return;
451 VM_BUG_ON(migratetype == -1);
453 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
455 VM_BUG_ON(page_idx & ((1 << order) - 1));
456 VM_BUG_ON(bad_range(zone, page));
458 while (order < MAX_ORDER-1) {
459 unsigned long combined_idx;
460 struct page *buddy;
462 buddy = __page_find_buddy(page, page_idx, order);
463 if (!page_is_buddy(page, buddy, order))
464 break;
466 /* Our buddy is free, merge with it and move up one order. */
467 list_del(&buddy->lru);
468 zone->free_area[order].nr_free--;
469 rmv_page_order(buddy);
470 combined_idx = __find_combined_index(page_idx, order);
471 page = page + (combined_idx - page_idx);
472 page_idx = combined_idx;
473 order++;
475 set_page_order(page, order);
476 list_add(&page->lru,
477 &zone->free_area[order].free_list[migratetype]);
478 zone->free_area[order].nr_free++;
481 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
483 * free_page_mlock() -- clean up attempts to free and mlocked() page.
484 * Page should not be on lru, so no need to fix that up.
485 * free_pages_check() will verify...
487 static inline void free_page_mlock(struct page *page)
489 __ClearPageMlocked(page);
490 __dec_zone_page_state(page, NR_MLOCK);
491 __count_vm_event(UNEVICTABLE_MLOCKFREED);
493 #else
494 static void free_page_mlock(struct page *page) { }
495 #endif
497 static inline int free_pages_check(struct page *page)
499 if (unlikely(page_mapcount(page) |
500 (page->mapping != NULL) |
501 (atomic_read(&page->_count) != 0) |
502 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
503 bad_page(page);
504 return 1;
506 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
507 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
508 return 0;
512 * Frees a list of pages.
513 * Assumes all pages on list are in same zone, and of same order.
514 * count is the number of pages to free.
516 * If the zone was previously in an "all pages pinned" state then look to
517 * see if this freeing clears that state.
519 * And clear the zone's pages_scanned counter, to hold off the "all pages are
520 * pinned" detection logic.
522 static void free_pages_bulk(struct zone *zone, int count,
523 struct list_head *list, int order)
525 spin_lock(&zone->lock);
526 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
527 zone->pages_scanned = 0;
529 __mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
530 while (count--) {
531 struct page *page;
533 VM_BUG_ON(list_empty(list));
534 page = list_entry(list->prev, struct page, lru);
535 /* have to delete it as __free_one_page list manipulates */
536 list_del(&page->lru);
537 __free_one_page(page, zone, order, page_private(page));
539 spin_unlock(&zone->lock);
542 static void free_one_page(struct zone *zone, struct page *page, int order,
543 int migratetype)
545 spin_lock(&zone->lock);
546 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
547 zone->pages_scanned = 0;
549 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
550 __free_one_page(page, zone, order, migratetype);
551 spin_unlock(&zone->lock);
554 static void __free_pages_ok(struct page *page, unsigned int order)
556 unsigned long flags;
557 int i;
558 int bad = 0;
559 int clearMlocked = PageMlocked(page);
561 for (i = 0 ; i < (1 << order) ; ++i)
562 bad += free_pages_check(page + i);
563 if (bad)
564 return;
566 if (!PageHighMem(page)) {
567 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
568 debug_check_no_obj_freed(page_address(page),
569 PAGE_SIZE << order);
571 arch_free_page(page, order);
572 kernel_map_pages(page, 1 << order, 0);
574 local_irq_save(flags);
575 if (unlikely(clearMlocked))
576 free_page_mlock(page);
577 __count_vm_events(PGFREE, 1 << order);
578 free_one_page(page_zone(page), page, order,
579 get_pageblock_migratetype(page));
580 local_irq_restore(flags);
584 * permit the bootmem allocator to evade page validation on high-order frees
586 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
588 if (order == 0) {
589 __ClearPageReserved(page);
590 set_page_count(page, 0);
591 set_page_refcounted(page);
592 __free_page(page);
593 } else {
594 int loop;
596 prefetchw(page);
597 for (loop = 0; loop < BITS_PER_LONG; loop++) {
598 struct page *p = &page[loop];
600 if (loop + 1 < BITS_PER_LONG)
601 prefetchw(p + 1);
602 __ClearPageReserved(p);
603 set_page_count(p, 0);
606 set_page_refcounted(page);
607 __free_pages(page, order);
613 * The order of subdivision here is critical for the IO subsystem.
614 * Please do not alter this order without good reasons and regression
615 * testing. Specifically, as large blocks of memory are subdivided,
616 * the order in which smaller blocks are delivered depends on the order
617 * they're subdivided in this function. This is the primary factor
618 * influencing the order in which pages are delivered to the IO
619 * subsystem according to empirical testing, and this is also justified
620 * by considering the behavior of a buddy system containing a single
621 * large block of memory acted on by a series of small allocations.
622 * This behavior is a critical factor in sglist merging's success.
624 * -- wli
626 static inline void expand(struct zone *zone, struct page *page,
627 int low, int high, struct free_area *area,
628 int migratetype)
630 unsigned long size = 1 << high;
632 while (high > low) {
633 area--;
634 high--;
635 size >>= 1;
636 VM_BUG_ON(bad_range(zone, &page[size]));
637 list_add(&page[size].lru, &area->free_list[migratetype]);
638 area->nr_free++;
639 set_page_order(&page[size], high);
644 * This page is about to be returned from the page allocator
646 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
648 if (unlikely(page_mapcount(page) |
649 (page->mapping != NULL) |
650 (atomic_read(&page->_count) != 0) |
651 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
652 bad_page(page);
653 return 1;
656 set_page_private(page, 0);
657 set_page_refcounted(page);
659 arch_alloc_page(page, order);
660 kernel_map_pages(page, 1 << order, 1);
662 if (gfp_flags & __GFP_ZERO)
663 prep_zero_page(page, order, gfp_flags);
665 if (order && (gfp_flags & __GFP_COMP))
666 prep_compound_page(page, order);
668 return 0;
672 * Go through the free lists for the given migratetype and remove
673 * the smallest available page from the freelists
675 static inline
676 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
677 int migratetype)
679 unsigned int current_order;
680 struct free_area * area;
681 struct page *page;
683 /* Find a page of the appropriate size in the preferred list */
684 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
685 area = &(zone->free_area[current_order]);
686 if (list_empty(&area->free_list[migratetype]))
687 continue;
689 page = list_entry(area->free_list[migratetype].next,
690 struct page, lru);
691 list_del(&page->lru);
692 rmv_page_order(page);
693 area->nr_free--;
694 expand(zone, page, order, current_order, area, migratetype);
695 return page;
698 return NULL;
703 * This array describes the order lists are fallen back to when
704 * the free lists for the desirable migrate type are depleted
706 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
707 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
708 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
709 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
710 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
714 * Move the free pages in a range to the free lists of the requested type.
715 * Note that start_page and end_pages are not aligned on a pageblock
716 * boundary. If alignment is required, use move_freepages_block()
718 static int move_freepages(struct zone *zone,
719 struct page *start_page, struct page *end_page,
720 int migratetype)
722 struct page *page;
723 unsigned long order;
724 int pages_moved = 0;
726 #ifndef CONFIG_HOLES_IN_ZONE
728 * page_zone is not safe to call in this context when
729 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
730 * anyway as we check zone boundaries in move_freepages_block().
731 * Remove at a later date when no bug reports exist related to
732 * grouping pages by mobility
734 BUG_ON(page_zone(start_page) != page_zone(end_page));
735 #endif
737 for (page = start_page; page <= end_page;) {
738 /* Make sure we are not inadvertently changing nodes */
739 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
741 if (!pfn_valid_within(page_to_pfn(page))) {
742 page++;
743 continue;
746 if (!PageBuddy(page)) {
747 page++;
748 continue;
751 order = page_order(page);
752 list_del(&page->lru);
753 list_add(&page->lru,
754 &zone->free_area[order].free_list[migratetype]);
755 page += 1 << order;
756 pages_moved += 1 << order;
759 return pages_moved;
762 static int move_freepages_block(struct zone *zone, struct page *page,
763 int migratetype)
765 unsigned long start_pfn, end_pfn;
766 struct page *start_page, *end_page;
768 start_pfn = page_to_pfn(page);
769 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
770 start_page = pfn_to_page(start_pfn);
771 end_page = start_page + pageblock_nr_pages - 1;
772 end_pfn = start_pfn + pageblock_nr_pages - 1;
774 /* Do not cross zone boundaries */
775 if (start_pfn < zone->zone_start_pfn)
776 start_page = page;
777 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
778 return 0;
780 return move_freepages(zone, start_page, end_page, migratetype);
783 /* Remove an element from the buddy allocator from the fallback list */
784 static inline struct page *
785 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
787 struct free_area * area;
788 int current_order;
789 struct page *page;
790 int migratetype, i;
792 /* Find the largest possible block of pages in the other list */
793 for (current_order = MAX_ORDER-1; current_order >= order;
794 --current_order) {
795 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
796 migratetype = fallbacks[start_migratetype][i];
798 /* MIGRATE_RESERVE handled later if necessary */
799 if (migratetype == MIGRATE_RESERVE)
800 continue;
802 area = &(zone->free_area[current_order]);
803 if (list_empty(&area->free_list[migratetype]))
804 continue;
806 page = list_entry(area->free_list[migratetype].next,
807 struct page, lru);
808 area->nr_free--;
811 * If breaking a large block of pages, move all free
812 * pages to the preferred allocation list. If falling
813 * back for a reclaimable kernel allocation, be more
814 * agressive about taking ownership of free pages
816 if (unlikely(current_order >= (pageblock_order >> 1)) ||
817 start_migratetype == MIGRATE_RECLAIMABLE) {
818 unsigned long pages;
819 pages = move_freepages_block(zone, page,
820 start_migratetype);
822 /* Claim the whole block if over half of it is free */
823 if (pages >= (1 << (pageblock_order-1)))
824 set_pageblock_migratetype(page,
825 start_migratetype);
827 migratetype = start_migratetype;
830 /* Remove the page from the freelists */
831 list_del(&page->lru);
832 rmv_page_order(page);
834 if (current_order == pageblock_order)
835 set_pageblock_migratetype(page,
836 start_migratetype);
838 expand(zone, page, order, current_order, area, migratetype);
839 return page;
843 return NULL;
847 * Do the hard work of removing an element from the buddy allocator.
848 * Call me with the zone->lock already held.
850 static struct page *__rmqueue(struct zone *zone, unsigned int order,
851 int migratetype)
853 struct page *page;
855 retry_reserve:
856 page = __rmqueue_smallest(zone, order, migratetype);
858 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
859 page = __rmqueue_fallback(zone, order, migratetype);
862 * Use MIGRATE_RESERVE rather than fail an allocation. goto
863 * is used because __rmqueue_smallest is an inline function
864 * and we want just one call site
866 if (!page) {
867 migratetype = MIGRATE_RESERVE;
868 goto retry_reserve;
872 return page;
876 * Obtain a specified number of elements from the buddy allocator, all under
877 * a single hold of the lock, for efficiency. Add them to the supplied list.
878 * Returns the number of new pages which were placed at *list.
880 static int rmqueue_bulk(struct zone *zone, unsigned int order,
881 unsigned long count, struct list_head *list,
882 int migratetype)
884 int i;
886 spin_lock(&zone->lock);
887 for (i = 0; i < count; ++i) {
888 struct page *page = __rmqueue(zone, order, migratetype);
889 if (unlikely(page == NULL))
890 break;
893 * Split buddy pages returned by expand() are received here
894 * in physical page order. The page is added to the callers and
895 * list and the list head then moves forward. From the callers
896 * perspective, the linked list is ordered by page number in
897 * some conditions. This is useful for IO devices that can
898 * merge IO requests if the physical pages are ordered
899 * properly.
901 list_add(&page->lru, list);
902 set_page_private(page, migratetype);
903 list = &page->lru;
905 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
906 spin_unlock(&zone->lock);
907 return i;
910 #ifdef CONFIG_NUMA
912 * Called from the vmstat counter updater to drain pagesets of this
913 * currently executing processor on remote nodes after they have
914 * expired.
916 * Note that this function must be called with the thread pinned to
917 * a single processor.
919 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
921 unsigned long flags;
922 int to_drain;
924 local_irq_save(flags);
925 if (pcp->count >= pcp->batch)
926 to_drain = pcp->batch;
927 else
928 to_drain = pcp->count;
929 free_pages_bulk(zone, to_drain, &pcp->list, 0);
930 pcp->count -= to_drain;
931 local_irq_restore(flags);
933 #endif
936 * Drain pages of the indicated processor.
938 * The processor must either be the current processor and the
939 * thread pinned to the current processor or a processor that
940 * is not online.
942 static void drain_pages(unsigned int cpu)
944 unsigned long flags;
945 struct zone *zone;
947 for_each_populated_zone(zone) {
948 struct per_cpu_pageset *pset;
949 struct per_cpu_pages *pcp;
951 pset = zone_pcp(zone, cpu);
953 pcp = &pset->pcp;
954 local_irq_save(flags);
955 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
956 pcp->count = 0;
957 local_irq_restore(flags);
962 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
964 void drain_local_pages(void *arg)
966 drain_pages(smp_processor_id());
970 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
972 void drain_all_pages(void)
974 on_each_cpu(drain_local_pages, NULL, 1);
977 #ifdef CONFIG_HIBERNATION
979 void mark_free_pages(struct zone *zone)
981 unsigned long pfn, max_zone_pfn;
982 unsigned long flags;
983 int order, t;
984 struct list_head *curr;
986 if (!zone->spanned_pages)
987 return;
989 spin_lock_irqsave(&zone->lock, flags);
991 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
992 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
993 if (pfn_valid(pfn)) {
994 struct page *page = pfn_to_page(pfn);
996 if (!swsusp_page_is_forbidden(page))
997 swsusp_unset_page_free(page);
1000 for_each_migratetype_order(order, t) {
1001 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1002 unsigned long i;
1004 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1005 for (i = 0; i < (1UL << order); i++)
1006 swsusp_set_page_free(pfn_to_page(pfn + i));
1009 spin_unlock_irqrestore(&zone->lock, flags);
1011 #endif /* CONFIG_PM */
1014 * Free a 0-order page
1016 static void free_hot_cold_page(struct page *page, int cold)
1018 struct zone *zone = page_zone(page);
1019 struct per_cpu_pages *pcp;
1020 unsigned long flags;
1021 int clearMlocked = PageMlocked(page);
1023 if (PageAnon(page))
1024 page->mapping = NULL;
1025 if (free_pages_check(page))
1026 return;
1028 if (!PageHighMem(page)) {
1029 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1030 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1032 arch_free_page(page, 0);
1033 kernel_map_pages(page, 1, 0);
1035 pcp = &zone_pcp(zone, get_cpu())->pcp;
1036 set_page_private(page, get_pageblock_migratetype(page));
1037 local_irq_save(flags);
1038 if (unlikely(clearMlocked))
1039 free_page_mlock(page);
1040 __count_vm_event(PGFREE);
1042 if (cold)
1043 list_add_tail(&page->lru, &pcp->list);
1044 else
1045 list_add(&page->lru, &pcp->list);
1046 pcp->count++;
1047 if (pcp->count >= pcp->high) {
1048 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1049 pcp->count -= pcp->batch;
1051 local_irq_restore(flags);
1052 put_cpu();
1055 void free_hot_page(struct page *page)
1057 free_hot_cold_page(page, 0);
1060 void free_cold_page(struct page *page)
1062 free_hot_cold_page(page, 1);
1066 * split_page takes a non-compound higher-order page, and splits it into
1067 * n (1<<order) sub-pages: page[0..n]
1068 * Each sub-page must be freed individually.
1070 * Note: this is probably too low level an operation for use in drivers.
1071 * Please consult with lkml before using this in your driver.
1073 void split_page(struct page *page, unsigned int order)
1075 int i;
1077 VM_BUG_ON(PageCompound(page));
1078 VM_BUG_ON(!page_count(page));
1079 for (i = 1; i < (1 << order); i++)
1080 set_page_refcounted(page + i);
1084 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1085 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1086 * or two.
1088 static inline
1089 struct page *buffered_rmqueue(struct zone *preferred_zone,
1090 struct zone *zone, int order, gfp_t gfp_flags,
1091 int migratetype)
1093 unsigned long flags;
1094 struct page *page;
1095 int cold = !!(gfp_flags & __GFP_COLD);
1096 int cpu;
1098 again:
1099 cpu = get_cpu();
1100 if (likely(order == 0)) {
1101 struct per_cpu_pages *pcp;
1103 pcp = &zone_pcp(zone, cpu)->pcp;
1104 local_irq_save(flags);
1105 if (!pcp->count) {
1106 pcp->count = rmqueue_bulk(zone, 0,
1107 pcp->batch, &pcp->list, migratetype);
1108 if (unlikely(!pcp->count))
1109 goto failed;
1112 /* Find a page of the appropriate migrate type */
1113 if (cold) {
1114 list_for_each_entry_reverse(page, &pcp->list, lru)
1115 if (page_private(page) == migratetype)
1116 break;
1117 } else {
1118 list_for_each_entry(page, &pcp->list, lru)
1119 if (page_private(page) == migratetype)
1120 break;
1123 /* Allocate more to the pcp list if necessary */
1124 if (unlikely(&page->lru == &pcp->list)) {
1125 pcp->count += rmqueue_bulk(zone, 0,
1126 pcp->batch, &pcp->list, migratetype);
1127 page = list_entry(pcp->list.next, struct page, lru);
1130 list_del(&page->lru);
1131 pcp->count--;
1132 } else {
1133 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1135 * __GFP_NOFAIL is not to be used in new code.
1137 * All __GFP_NOFAIL callers should be fixed so that they
1138 * properly detect and handle allocation failures.
1140 * We most definitely don't want callers attempting to
1141 * allocate greater than single-page units with
1142 * __GFP_NOFAIL.
1144 WARN_ON_ONCE(order > 0);
1146 spin_lock_irqsave(&zone->lock, flags);
1147 page = __rmqueue(zone, order, migratetype);
1148 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1149 spin_unlock(&zone->lock);
1150 if (!page)
1151 goto failed;
1154 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1155 zone_statistics(preferred_zone, zone);
1156 local_irq_restore(flags);
1157 put_cpu();
1159 VM_BUG_ON(bad_range(zone, page));
1160 if (prep_new_page(page, order, gfp_flags))
1161 goto again;
1162 return page;
1164 failed:
1165 local_irq_restore(flags);
1166 put_cpu();
1167 return NULL;
1170 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1171 #define ALLOC_WMARK_MIN WMARK_MIN
1172 #define ALLOC_WMARK_LOW WMARK_LOW
1173 #define ALLOC_WMARK_HIGH WMARK_HIGH
1174 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1176 /* Mask to get the watermark bits */
1177 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1179 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1180 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1181 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1183 #ifdef CONFIG_FAIL_PAGE_ALLOC
1185 static struct fail_page_alloc_attr {
1186 struct fault_attr attr;
1188 u32 ignore_gfp_highmem;
1189 u32 ignore_gfp_wait;
1190 u32 min_order;
1192 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1194 struct dentry *ignore_gfp_highmem_file;
1195 struct dentry *ignore_gfp_wait_file;
1196 struct dentry *min_order_file;
1198 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1200 } fail_page_alloc = {
1201 .attr = FAULT_ATTR_INITIALIZER,
1202 .ignore_gfp_wait = 1,
1203 .ignore_gfp_highmem = 1,
1204 .min_order = 1,
1207 static int __init setup_fail_page_alloc(char *str)
1209 return setup_fault_attr(&fail_page_alloc.attr, str);
1211 __setup("fail_page_alloc=", setup_fail_page_alloc);
1213 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1215 if (order < fail_page_alloc.min_order)
1216 return 0;
1217 if (gfp_mask & __GFP_NOFAIL)
1218 return 0;
1219 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1220 return 0;
1221 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1222 return 0;
1224 return should_fail(&fail_page_alloc.attr, 1 << order);
1227 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1229 static int __init fail_page_alloc_debugfs(void)
1231 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1232 struct dentry *dir;
1233 int err;
1235 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1236 "fail_page_alloc");
1237 if (err)
1238 return err;
1239 dir = fail_page_alloc.attr.dentries.dir;
1241 fail_page_alloc.ignore_gfp_wait_file =
1242 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1243 &fail_page_alloc.ignore_gfp_wait);
1245 fail_page_alloc.ignore_gfp_highmem_file =
1246 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1247 &fail_page_alloc.ignore_gfp_highmem);
1248 fail_page_alloc.min_order_file =
1249 debugfs_create_u32("min-order", mode, dir,
1250 &fail_page_alloc.min_order);
1252 if (!fail_page_alloc.ignore_gfp_wait_file ||
1253 !fail_page_alloc.ignore_gfp_highmem_file ||
1254 !fail_page_alloc.min_order_file) {
1255 err = -ENOMEM;
1256 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1257 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1258 debugfs_remove(fail_page_alloc.min_order_file);
1259 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1262 return err;
1265 late_initcall(fail_page_alloc_debugfs);
1267 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1269 #else /* CONFIG_FAIL_PAGE_ALLOC */
1271 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1273 return 0;
1276 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1279 * Return 1 if free pages are above 'mark'. This takes into account the order
1280 * of the allocation.
1282 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1283 int classzone_idx, int alloc_flags)
1285 /* free_pages my go negative - that's OK */
1286 long min = mark;
1287 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1288 int o;
1290 if (alloc_flags & ALLOC_HIGH)
1291 min -= min / 2;
1292 if (alloc_flags & ALLOC_HARDER)
1293 min -= min / 4;
1295 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1296 return 0;
1297 for (o = 0; o < order; o++) {
1298 /* At the next order, this order's pages become unavailable */
1299 free_pages -= z->free_area[o].nr_free << o;
1301 /* Require fewer higher order pages to be free */
1302 min >>= 1;
1304 if (free_pages <= min)
1305 return 0;
1307 return 1;
1310 #ifdef CONFIG_NUMA
1312 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1313 * skip over zones that are not allowed by the cpuset, or that have
1314 * been recently (in last second) found to be nearly full. See further
1315 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1316 * that have to skip over a lot of full or unallowed zones.
1318 * If the zonelist cache is present in the passed in zonelist, then
1319 * returns a pointer to the allowed node mask (either the current
1320 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1322 * If the zonelist cache is not available for this zonelist, does
1323 * nothing and returns NULL.
1325 * If the fullzones BITMAP in the zonelist cache is stale (more than
1326 * a second since last zap'd) then we zap it out (clear its bits.)
1328 * We hold off even calling zlc_setup, until after we've checked the
1329 * first zone in the zonelist, on the theory that most allocations will
1330 * be satisfied from that first zone, so best to examine that zone as
1331 * quickly as we can.
1333 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1335 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1336 nodemask_t *allowednodes; /* zonelist_cache approximation */
1338 zlc = zonelist->zlcache_ptr;
1339 if (!zlc)
1340 return NULL;
1342 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1343 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1344 zlc->last_full_zap = jiffies;
1347 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1348 &cpuset_current_mems_allowed :
1349 &node_states[N_HIGH_MEMORY];
1350 return allowednodes;
1354 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1355 * if it is worth looking at further for free memory:
1356 * 1) Check that the zone isn't thought to be full (doesn't have its
1357 * bit set in the zonelist_cache fullzones BITMAP).
1358 * 2) Check that the zones node (obtained from the zonelist_cache
1359 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1360 * Return true (non-zero) if zone is worth looking at further, or
1361 * else return false (zero) if it is not.
1363 * This check -ignores- the distinction between various watermarks,
1364 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1365 * found to be full for any variation of these watermarks, it will
1366 * be considered full for up to one second by all requests, unless
1367 * we are so low on memory on all allowed nodes that we are forced
1368 * into the second scan of the zonelist.
1370 * In the second scan we ignore this zonelist cache and exactly
1371 * apply the watermarks to all zones, even it is slower to do so.
1372 * We are low on memory in the second scan, and should leave no stone
1373 * unturned looking for a free page.
1375 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1376 nodemask_t *allowednodes)
1378 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1379 int i; /* index of *z in zonelist zones */
1380 int n; /* node that zone *z is on */
1382 zlc = zonelist->zlcache_ptr;
1383 if (!zlc)
1384 return 1;
1386 i = z - zonelist->_zonerefs;
1387 n = zlc->z_to_n[i];
1389 /* This zone is worth trying if it is allowed but not full */
1390 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1394 * Given 'z' scanning a zonelist, set the corresponding bit in
1395 * zlc->fullzones, so that subsequent attempts to allocate a page
1396 * from that zone don't waste time re-examining it.
1398 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1400 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1401 int i; /* index of *z in zonelist zones */
1403 zlc = zonelist->zlcache_ptr;
1404 if (!zlc)
1405 return;
1407 i = z - zonelist->_zonerefs;
1409 set_bit(i, zlc->fullzones);
1412 #else /* CONFIG_NUMA */
1414 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1416 return NULL;
1419 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1420 nodemask_t *allowednodes)
1422 return 1;
1425 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1428 #endif /* CONFIG_NUMA */
1431 * get_page_from_freelist goes through the zonelist trying to allocate
1432 * a page.
1434 static struct page *
1435 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1436 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1437 struct zone *preferred_zone, int migratetype)
1439 struct zoneref *z;
1440 struct page *page = NULL;
1441 int classzone_idx;
1442 struct zone *zone;
1443 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1444 int zlc_active = 0; /* set if using zonelist_cache */
1445 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1447 classzone_idx = zone_idx(preferred_zone);
1448 zonelist_scan:
1450 * Scan zonelist, looking for a zone with enough free.
1451 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1453 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1454 high_zoneidx, nodemask) {
1455 if (NUMA_BUILD && zlc_active &&
1456 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1457 continue;
1458 if ((alloc_flags & ALLOC_CPUSET) &&
1459 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1460 goto try_next_zone;
1462 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1463 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1464 unsigned long mark;
1465 int ret;
1467 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1468 if (zone_watermark_ok(zone, order, mark,
1469 classzone_idx, alloc_flags))
1470 goto try_this_zone;
1472 if (zone_reclaim_mode == 0)
1473 goto this_zone_full;
1475 ret = zone_reclaim(zone, gfp_mask, order);
1476 switch (ret) {
1477 case ZONE_RECLAIM_NOSCAN:
1478 /* did not scan */
1479 goto try_next_zone;
1480 case ZONE_RECLAIM_FULL:
1481 /* scanned but unreclaimable */
1482 goto this_zone_full;
1483 default:
1484 /* did we reclaim enough */
1485 if (!zone_watermark_ok(zone, order, mark,
1486 classzone_idx, alloc_flags))
1487 goto this_zone_full;
1491 try_this_zone:
1492 page = buffered_rmqueue(preferred_zone, zone, order,
1493 gfp_mask, migratetype);
1494 if (page)
1495 break;
1496 this_zone_full:
1497 if (NUMA_BUILD)
1498 zlc_mark_zone_full(zonelist, z);
1499 try_next_zone:
1500 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1502 * we do zlc_setup after the first zone is tried but only
1503 * if there are multiple nodes make it worthwhile
1505 allowednodes = zlc_setup(zonelist, alloc_flags);
1506 zlc_active = 1;
1507 did_zlc_setup = 1;
1511 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1512 /* Disable zlc cache for second zonelist scan */
1513 zlc_active = 0;
1514 goto zonelist_scan;
1516 return page;
1519 static inline int
1520 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1521 unsigned long pages_reclaimed)
1523 /* Do not loop if specifically requested */
1524 if (gfp_mask & __GFP_NORETRY)
1525 return 0;
1528 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1529 * means __GFP_NOFAIL, but that may not be true in other
1530 * implementations.
1532 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1533 return 1;
1536 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1537 * specified, then we retry until we no longer reclaim any pages
1538 * (above), or we've reclaimed an order of pages at least as
1539 * large as the allocation's order. In both cases, if the
1540 * allocation still fails, we stop retrying.
1542 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1543 return 1;
1546 * Don't let big-order allocations loop unless the caller
1547 * explicitly requests that.
1549 if (gfp_mask & __GFP_NOFAIL)
1550 return 1;
1552 return 0;
1555 static inline struct page *
1556 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1557 struct zonelist *zonelist, enum zone_type high_zoneidx,
1558 nodemask_t *nodemask, struct zone *preferred_zone,
1559 int migratetype)
1561 struct page *page;
1563 /* Acquire the OOM killer lock for the zones in zonelist */
1564 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1565 schedule_timeout_uninterruptible(1);
1566 return NULL;
1570 * Go through the zonelist yet one more time, keep very high watermark
1571 * here, this is only to catch a parallel oom killing, we must fail if
1572 * we're still under heavy pressure.
1574 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1575 order, zonelist, high_zoneidx,
1576 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1577 preferred_zone, migratetype);
1578 if (page)
1579 goto out;
1581 /* The OOM killer will not help higher order allocs */
1582 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
1583 goto out;
1585 /* Exhausted what can be done so it's blamo time */
1586 out_of_memory(zonelist, gfp_mask, order);
1588 out:
1589 clear_zonelist_oom(zonelist, gfp_mask);
1590 return page;
1593 /* The really slow allocator path where we enter direct reclaim */
1594 static inline struct page *
1595 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1596 struct zonelist *zonelist, enum zone_type high_zoneidx,
1597 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1598 int migratetype, unsigned long *did_some_progress)
1600 struct page *page = NULL;
1601 struct reclaim_state reclaim_state;
1602 struct task_struct *p = current;
1604 cond_resched();
1606 /* We now go into synchronous reclaim */
1607 cpuset_memory_pressure_bump();
1610 * The task's cpuset might have expanded its set of allowable nodes
1612 p->flags |= PF_MEMALLOC;
1613 lockdep_set_current_reclaim_state(gfp_mask);
1614 reclaim_state.reclaimed_slab = 0;
1615 p->reclaim_state = &reclaim_state;
1617 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1619 p->reclaim_state = NULL;
1620 lockdep_clear_current_reclaim_state();
1621 p->flags &= ~PF_MEMALLOC;
1623 cond_resched();
1625 if (order != 0)
1626 drain_all_pages();
1628 if (likely(*did_some_progress))
1629 page = get_page_from_freelist(gfp_mask, nodemask, order,
1630 zonelist, high_zoneidx,
1631 alloc_flags, preferred_zone,
1632 migratetype);
1633 return page;
1637 * This is called in the allocator slow-path if the allocation request is of
1638 * sufficient urgency to ignore watermarks and take other desperate measures
1640 static inline struct page *
1641 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1642 struct zonelist *zonelist, enum zone_type high_zoneidx,
1643 nodemask_t *nodemask, struct zone *preferred_zone,
1644 int migratetype)
1646 struct page *page;
1648 do {
1649 page = get_page_from_freelist(gfp_mask, nodemask, order,
1650 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1651 preferred_zone, migratetype);
1653 if (!page && gfp_mask & __GFP_NOFAIL)
1654 congestion_wait(WRITE, HZ/50);
1655 } while (!page && (gfp_mask & __GFP_NOFAIL));
1657 return page;
1660 static inline
1661 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1662 enum zone_type high_zoneidx)
1664 struct zoneref *z;
1665 struct zone *zone;
1667 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1668 wakeup_kswapd(zone, order);
1671 static inline int
1672 gfp_to_alloc_flags(gfp_t gfp_mask)
1674 struct task_struct *p = current;
1675 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1676 const gfp_t wait = gfp_mask & __GFP_WAIT;
1678 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1679 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1682 * The caller may dip into page reserves a bit more if the caller
1683 * cannot run direct reclaim, or if the caller has realtime scheduling
1684 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1685 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1687 alloc_flags |= (gfp_mask & __GFP_HIGH);
1689 if (!wait) {
1690 alloc_flags |= ALLOC_HARDER;
1692 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1693 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1695 alloc_flags &= ~ALLOC_CPUSET;
1696 } else if (unlikely(rt_task(p)))
1697 alloc_flags |= ALLOC_HARDER;
1699 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1700 if (!in_interrupt() &&
1701 ((p->flags & PF_MEMALLOC) ||
1702 unlikely(test_thread_flag(TIF_MEMDIE))))
1703 alloc_flags |= ALLOC_NO_WATERMARKS;
1706 return alloc_flags;
1709 static inline struct page *
1710 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1711 struct zonelist *zonelist, enum zone_type high_zoneidx,
1712 nodemask_t *nodemask, struct zone *preferred_zone,
1713 int migratetype)
1715 const gfp_t wait = gfp_mask & __GFP_WAIT;
1716 struct page *page = NULL;
1717 int alloc_flags;
1718 unsigned long pages_reclaimed = 0;
1719 unsigned long did_some_progress;
1720 struct task_struct *p = current;
1723 * In the slowpath, we sanity check order to avoid ever trying to
1724 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1725 * be using allocators in order of preference for an area that is
1726 * too large.
1728 if (WARN_ON_ONCE(order >= MAX_ORDER))
1729 return NULL;
1732 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1733 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1734 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1735 * using a larger set of nodes after it has established that the
1736 * allowed per node queues are empty and that nodes are
1737 * over allocated.
1739 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1740 goto nopage;
1742 wake_all_kswapd(order, zonelist, high_zoneidx);
1745 * OK, we're below the kswapd watermark and have kicked background
1746 * reclaim. Now things get more complex, so set up alloc_flags according
1747 * to how we want to proceed.
1749 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1751 restart:
1752 /* This is the last chance, in general, before the goto nopage. */
1753 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1754 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1755 preferred_zone, migratetype);
1756 if (page)
1757 goto got_pg;
1759 rebalance:
1760 /* Allocate without watermarks if the context allows */
1761 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1762 page = __alloc_pages_high_priority(gfp_mask, order,
1763 zonelist, high_zoneidx, nodemask,
1764 preferred_zone, migratetype);
1765 if (page)
1766 goto got_pg;
1769 /* Atomic allocations - we can't balance anything */
1770 if (!wait)
1771 goto nopage;
1773 /* Avoid recursion of direct reclaim */
1774 if (p->flags & PF_MEMALLOC)
1775 goto nopage;
1777 /* Try direct reclaim and then allocating */
1778 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1779 zonelist, high_zoneidx,
1780 nodemask,
1781 alloc_flags, preferred_zone,
1782 migratetype, &did_some_progress);
1783 if (page)
1784 goto got_pg;
1787 * If we failed to make any progress reclaiming, then we are
1788 * running out of options and have to consider going OOM
1790 if (!did_some_progress) {
1791 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1792 if (oom_killer_disabled)
1793 goto nopage;
1794 page = __alloc_pages_may_oom(gfp_mask, order,
1795 zonelist, high_zoneidx,
1796 nodemask, preferred_zone,
1797 migratetype);
1798 if (page)
1799 goto got_pg;
1802 * The OOM killer does not trigger for high-order
1803 * ~__GFP_NOFAIL allocations so if no progress is being
1804 * made, there are no other options and retrying is
1805 * unlikely to help.
1807 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1808 !(gfp_mask & __GFP_NOFAIL))
1809 goto nopage;
1811 goto restart;
1815 /* Check if we should retry the allocation */
1816 pages_reclaimed += did_some_progress;
1817 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1818 /* Wait for some write requests to complete then retry */
1819 congestion_wait(WRITE, HZ/50);
1820 goto rebalance;
1823 nopage:
1824 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1825 printk(KERN_WARNING "%s: page allocation failure."
1826 " order:%d, mode:0x%x\n",
1827 p->comm, order, gfp_mask);
1828 dump_stack();
1829 show_mem();
1831 got_pg:
1832 return page;
1837 * This is the 'heart' of the zoned buddy allocator.
1839 struct page *
1840 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1841 struct zonelist *zonelist, nodemask_t *nodemask)
1843 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1844 struct zone *preferred_zone;
1845 struct page *page;
1846 int migratetype = allocflags_to_migratetype(gfp_mask);
1848 lockdep_trace_alloc(gfp_mask);
1850 might_sleep_if(gfp_mask & __GFP_WAIT);
1852 if (should_fail_alloc_page(gfp_mask, order))
1853 return NULL;
1856 * Check the zones suitable for the gfp_mask contain at least one
1857 * valid zone. It's possible to have an empty zonelist as a result
1858 * of GFP_THISNODE and a memoryless node
1860 if (unlikely(!zonelist->_zonerefs->zone))
1861 return NULL;
1863 /* The preferred zone is used for statistics later */
1864 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1865 if (!preferred_zone)
1866 return NULL;
1868 /* First allocation attempt */
1869 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1870 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1871 preferred_zone, migratetype);
1872 if (unlikely(!page))
1873 page = __alloc_pages_slowpath(gfp_mask, order,
1874 zonelist, high_zoneidx, nodemask,
1875 preferred_zone, migratetype);
1877 return page;
1879 EXPORT_SYMBOL(__alloc_pages_nodemask);
1882 * Common helper functions.
1884 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1886 struct page * page;
1887 page = alloc_pages(gfp_mask, order);
1888 if (!page)
1889 return 0;
1890 return (unsigned long) page_address(page);
1893 EXPORT_SYMBOL(__get_free_pages);
1895 unsigned long get_zeroed_page(gfp_t gfp_mask)
1897 struct page * page;
1900 * get_zeroed_page() returns a 32-bit address, which cannot represent
1901 * a highmem page
1903 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1905 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1906 if (page)
1907 return (unsigned long) page_address(page);
1908 return 0;
1911 EXPORT_SYMBOL(get_zeroed_page);
1913 void __pagevec_free(struct pagevec *pvec)
1915 int i = pagevec_count(pvec);
1917 while (--i >= 0)
1918 free_hot_cold_page(pvec->pages[i], pvec->cold);
1921 void __free_pages(struct page *page, unsigned int order)
1923 if (put_page_testzero(page)) {
1924 if (order == 0)
1925 free_hot_page(page);
1926 else
1927 __free_pages_ok(page, order);
1931 EXPORT_SYMBOL(__free_pages);
1933 void free_pages(unsigned long addr, unsigned int order)
1935 if (addr != 0) {
1936 VM_BUG_ON(!virt_addr_valid((void *)addr));
1937 __free_pages(virt_to_page((void *)addr), order);
1941 EXPORT_SYMBOL(free_pages);
1944 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1945 * @size: the number of bytes to allocate
1946 * @gfp_mask: GFP flags for the allocation
1948 * This function is similar to alloc_pages(), except that it allocates the
1949 * minimum number of pages to satisfy the request. alloc_pages() can only
1950 * allocate memory in power-of-two pages.
1952 * This function is also limited by MAX_ORDER.
1954 * Memory allocated by this function must be released by free_pages_exact().
1956 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1958 unsigned int order = get_order(size);
1959 unsigned long addr;
1961 addr = __get_free_pages(gfp_mask, order);
1962 if (addr) {
1963 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1964 unsigned long used = addr + PAGE_ALIGN(size);
1966 split_page(virt_to_page(addr), order);
1967 while (used < alloc_end) {
1968 free_page(used);
1969 used += PAGE_SIZE;
1973 return (void *)addr;
1975 EXPORT_SYMBOL(alloc_pages_exact);
1978 * free_pages_exact - release memory allocated via alloc_pages_exact()
1979 * @virt: the value returned by alloc_pages_exact.
1980 * @size: size of allocation, same value as passed to alloc_pages_exact().
1982 * Release the memory allocated by a previous call to alloc_pages_exact.
1984 void free_pages_exact(void *virt, size_t size)
1986 unsigned long addr = (unsigned long)virt;
1987 unsigned long end = addr + PAGE_ALIGN(size);
1989 while (addr < end) {
1990 free_page(addr);
1991 addr += PAGE_SIZE;
1994 EXPORT_SYMBOL(free_pages_exact);
1996 static unsigned int nr_free_zone_pages(int offset)
1998 struct zoneref *z;
1999 struct zone *zone;
2001 /* Just pick one node, since fallback list is circular */
2002 unsigned int sum = 0;
2004 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2006 for_each_zone_zonelist(zone, z, zonelist, offset) {
2007 unsigned long size = zone->present_pages;
2008 unsigned long high = high_wmark_pages(zone);
2009 if (size > high)
2010 sum += size - high;
2013 return sum;
2017 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2019 unsigned int nr_free_buffer_pages(void)
2021 return nr_free_zone_pages(gfp_zone(GFP_USER));
2023 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2026 * Amount of free RAM allocatable within all zones
2028 unsigned int nr_free_pagecache_pages(void)
2030 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2033 static inline void show_node(struct zone *zone)
2035 if (NUMA_BUILD)
2036 printk("Node %d ", zone_to_nid(zone));
2039 void si_meminfo(struct sysinfo *val)
2041 val->totalram = totalram_pages;
2042 val->sharedram = 0;
2043 val->freeram = global_page_state(NR_FREE_PAGES);
2044 val->bufferram = nr_blockdev_pages();
2045 val->totalhigh = totalhigh_pages;
2046 val->freehigh = nr_free_highpages();
2047 val->mem_unit = PAGE_SIZE;
2050 EXPORT_SYMBOL(si_meminfo);
2052 #ifdef CONFIG_NUMA
2053 void si_meminfo_node(struct sysinfo *val, int nid)
2055 pg_data_t *pgdat = NODE_DATA(nid);
2057 val->totalram = pgdat->node_present_pages;
2058 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2059 #ifdef CONFIG_HIGHMEM
2060 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2061 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2062 NR_FREE_PAGES);
2063 #else
2064 val->totalhigh = 0;
2065 val->freehigh = 0;
2066 #endif
2067 val->mem_unit = PAGE_SIZE;
2069 #endif
2071 #define K(x) ((x) << (PAGE_SHIFT-10))
2074 * Show free area list (used inside shift_scroll-lock stuff)
2075 * We also calculate the percentage fragmentation. We do this by counting the
2076 * memory on each free list with the exception of the first item on the list.
2078 void show_free_areas(void)
2080 int cpu;
2081 struct zone *zone;
2083 for_each_populated_zone(zone) {
2084 show_node(zone);
2085 printk("%s per-cpu:\n", zone->name);
2087 for_each_online_cpu(cpu) {
2088 struct per_cpu_pageset *pageset;
2090 pageset = zone_pcp(zone, cpu);
2092 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2093 cpu, pageset->pcp.high,
2094 pageset->pcp.batch, pageset->pcp.count);
2098 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2099 " inactive_file:%lu"
2100 " unevictable:%lu"
2101 " dirty:%lu writeback:%lu unstable:%lu\n"
2102 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
2103 global_page_state(NR_ACTIVE_ANON),
2104 global_page_state(NR_ACTIVE_FILE),
2105 global_page_state(NR_INACTIVE_ANON),
2106 global_page_state(NR_INACTIVE_FILE),
2107 global_page_state(NR_UNEVICTABLE),
2108 global_page_state(NR_FILE_DIRTY),
2109 global_page_state(NR_WRITEBACK),
2110 global_page_state(NR_UNSTABLE_NFS),
2111 global_page_state(NR_FREE_PAGES),
2112 global_page_state(NR_SLAB_RECLAIMABLE) +
2113 global_page_state(NR_SLAB_UNRECLAIMABLE),
2114 global_page_state(NR_FILE_MAPPED),
2115 global_page_state(NR_PAGETABLE),
2116 global_page_state(NR_BOUNCE));
2118 for_each_populated_zone(zone) {
2119 int i;
2121 show_node(zone);
2122 printk("%s"
2123 " free:%lukB"
2124 " min:%lukB"
2125 " low:%lukB"
2126 " high:%lukB"
2127 " active_anon:%lukB"
2128 " inactive_anon:%lukB"
2129 " active_file:%lukB"
2130 " inactive_file:%lukB"
2131 " unevictable:%lukB"
2132 " present:%lukB"
2133 " pages_scanned:%lu"
2134 " all_unreclaimable? %s"
2135 "\n",
2136 zone->name,
2137 K(zone_page_state(zone, NR_FREE_PAGES)),
2138 K(min_wmark_pages(zone)),
2139 K(low_wmark_pages(zone)),
2140 K(high_wmark_pages(zone)),
2141 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2142 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2143 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2144 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2145 K(zone_page_state(zone, NR_UNEVICTABLE)),
2146 K(zone->present_pages),
2147 zone->pages_scanned,
2148 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2150 printk("lowmem_reserve[]:");
2151 for (i = 0; i < MAX_NR_ZONES; i++)
2152 printk(" %lu", zone->lowmem_reserve[i]);
2153 printk("\n");
2156 for_each_populated_zone(zone) {
2157 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2159 show_node(zone);
2160 printk("%s: ", zone->name);
2162 spin_lock_irqsave(&zone->lock, flags);
2163 for (order = 0; order < MAX_ORDER; order++) {
2164 nr[order] = zone->free_area[order].nr_free;
2165 total += nr[order] << order;
2167 spin_unlock_irqrestore(&zone->lock, flags);
2168 for (order = 0; order < MAX_ORDER; order++)
2169 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2170 printk("= %lukB\n", K(total));
2173 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2175 show_swap_cache_info();
2178 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2180 zoneref->zone = zone;
2181 zoneref->zone_idx = zone_idx(zone);
2185 * Builds allocation fallback zone lists.
2187 * Add all populated zones of a node to the zonelist.
2189 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2190 int nr_zones, enum zone_type zone_type)
2192 struct zone *zone;
2194 BUG_ON(zone_type >= MAX_NR_ZONES);
2195 zone_type++;
2197 do {
2198 zone_type--;
2199 zone = pgdat->node_zones + zone_type;
2200 if (populated_zone(zone)) {
2201 zoneref_set_zone(zone,
2202 &zonelist->_zonerefs[nr_zones++]);
2203 check_highest_zone(zone_type);
2206 } while (zone_type);
2207 return nr_zones;
2212 * zonelist_order:
2213 * 0 = automatic detection of better ordering.
2214 * 1 = order by ([node] distance, -zonetype)
2215 * 2 = order by (-zonetype, [node] distance)
2217 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2218 * the same zonelist. So only NUMA can configure this param.
2220 #define ZONELIST_ORDER_DEFAULT 0
2221 #define ZONELIST_ORDER_NODE 1
2222 #define ZONELIST_ORDER_ZONE 2
2224 /* zonelist order in the kernel.
2225 * set_zonelist_order() will set this to NODE or ZONE.
2227 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2228 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2231 #ifdef CONFIG_NUMA
2232 /* The value user specified ....changed by config */
2233 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2234 /* string for sysctl */
2235 #define NUMA_ZONELIST_ORDER_LEN 16
2236 char numa_zonelist_order[16] = "default";
2239 * interface for configure zonelist ordering.
2240 * command line option "numa_zonelist_order"
2241 * = "[dD]efault - default, automatic configuration.
2242 * = "[nN]ode - order by node locality, then by zone within node
2243 * = "[zZ]one - order by zone, then by locality within zone
2246 static int __parse_numa_zonelist_order(char *s)
2248 if (*s == 'd' || *s == 'D') {
2249 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2250 } else if (*s == 'n' || *s == 'N') {
2251 user_zonelist_order = ZONELIST_ORDER_NODE;
2252 } else if (*s == 'z' || *s == 'Z') {
2253 user_zonelist_order = ZONELIST_ORDER_ZONE;
2254 } else {
2255 printk(KERN_WARNING
2256 "Ignoring invalid numa_zonelist_order value: "
2257 "%s\n", s);
2258 return -EINVAL;
2260 return 0;
2263 static __init int setup_numa_zonelist_order(char *s)
2265 if (s)
2266 return __parse_numa_zonelist_order(s);
2267 return 0;
2269 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2272 * sysctl handler for numa_zonelist_order
2274 int numa_zonelist_order_handler(ctl_table *table, int write,
2275 struct file *file, void __user *buffer, size_t *length,
2276 loff_t *ppos)
2278 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2279 int ret;
2281 if (write)
2282 strncpy(saved_string, (char*)table->data,
2283 NUMA_ZONELIST_ORDER_LEN);
2284 ret = proc_dostring(table, write, file, buffer, length, ppos);
2285 if (ret)
2286 return ret;
2287 if (write) {
2288 int oldval = user_zonelist_order;
2289 if (__parse_numa_zonelist_order((char*)table->data)) {
2291 * bogus value. restore saved string
2293 strncpy((char*)table->data, saved_string,
2294 NUMA_ZONELIST_ORDER_LEN);
2295 user_zonelist_order = oldval;
2296 } else if (oldval != user_zonelist_order)
2297 build_all_zonelists();
2299 return 0;
2303 #define MAX_NODE_LOAD (nr_online_nodes)
2304 static int node_load[MAX_NUMNODES];
2307 * find_next_best_node - find the next node that should appear in a given node's fallback list
2308 * @node: node whose fallback list we're appending
2309 * @used_node_mask: nodemask_t of already used nodes
2311 * We use a number of factors to determine which is the next node that should
2312 * appear on a given node's fallback list. The node should not have appeared
2313 * already in @node's fallback list, and it should be the next closest node
2314 * according to the distance array (which contains arbitrary distance values
2315 * from each node to each node in the system), and should also prefer nodes
2316 * with no CPUs, since presumably they'll have very little allocation pressure
2317 * on them otherwise.
2318 * It returns -1 if no node is found.
2320 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2322 int n, val;
2323 int min_val = INT_MAX;
2324 int best_node = -1;
2325 const struct cpumask *tmp = cpumask_of_node(0);
2327 /* Use the local node if we haven't already */
2328 if (!node_isset(node, *used_node_mask)) {
2329 node_set(node, *used_node_mask);
2330 return node;
2333 for_each_node_state(n, N_HIGH_MEMORY) {
2335 /* Don't want a node to appear more than once */
2336 if (node_isset(n, *used_node_mask))
2337 continue;
2339 /* Use the distance array to find the distance */
2340 val = node_distance(node, n);
2342 /* Penalize nodes under us ("prefer the next node") */
2343 val += (n < node);
2345 /* Give preference to headless and unused nodes */
2346 tmp = cpumask_of_node(n);
2347 if (!cpumask_empty(tmp))
2348 val += PENALTY_FOR_NODE_WITH_CPUS;
2350 /* Slight preference for less loaded node */
2351 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2352 val += node_load[n];
2354 if (val < min_val) {
2355 min_val = val;
2356 best_node = n;
2360 if (best_node >= 0)
2361 node_set(best_node, *used_node_mask);
2363 return best_node;
2368 * Build zonelists ordered by node and zones within node.
2369 * This results in maximum locality--normal zone overflows into local
2370 * DMA zone, if any--but risks exhausting DMA zone.
2372 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2374 int j;
2375 struct zonelist *zonelist;
2377 zonelist = &pgdat->node_zonelists[0];
2378 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2380 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2381 MAX_NR_ZONES - 1);
2382 zonelist->_zonerefs[j].zone = NULL;
2383 zonelist->_zonerefs[j].zone_idx = 0;
2387 * Build gfp_thisnode zonelists
2389 static void build_thisnode_zonelists(pg_data_t *pgdat)
2391 int j;
2392 struct zonelist *zonelist;
2394 zonelist = &pgdat->node_zonelists[1];
2395 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2396 zonelist->_zonerefs[j].zone = NULL;
2397 zonelist->_zonerefs[j].zone_idx = 0;
2401 * Build zonelists ordered by zone and nodes within zones.
2402 * This results in conserving DMA zone[s] until all Normal memory is
2403 * exhausted, but results in overflowing to remote node while memory
2404 * may still exist in local DMA zone.
2406 static int node_order[MAX_NUMNODES];
2408 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2410 int pos, j, node;
2411 int zone_type; /* needs to be signed */
2412 struct zone *z;
2413 struct zonelist *zonelist;
2415 zonelist = &pgdat->node_zonelists[0];
2416 pos = 0;
2417 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2418 for (j = 0; j < nr_nodes; j++) {
2419 node = node_order[j];
2420 z = &NODE_DATA(node)->node_zones[zone_type];
2421 if (populated_zone(z)) {
2422 zoneref_set_zone(z,
2423 &zonelist->_zonerefs[pos++]);
2424 check_highest_zone(zone_type);
2428 zonelist->_zonerefs[pos].zone = NULL;
2429 zonelist->_zonerefs[pos].zone_idx = 0;
2432 static int default_zonelist_order(void)
2434 int nid, zone_type;
2435 unsigned long low_kmem_size,total_size;
2436 struct zone *z;
2437 int average_size;
2439 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2440 * If they are really small and used heavily, the system can fall
2441 * into OOM very easily.
2442 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2444 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2445 low_kmem_size = 0;
2446 total_size = 0;
2447 for_each_online_node(nid) {
2448 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2449 z = &NODE_DATA(nid)->node_zones[zone_type];
2450 if (populated_zone(z)) {
2451 if (zone_type < ZONE_NORMAL)
2452 low_kmem_size += z->present_pages;
2453 total_size += z->present_pages;
2457 if (!low_kmem_size || /* there are no DMA area. */
2458 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2459 return ZONELIST_ORDER_NODE;
2461 * look into each node's config.
2462 * If there is a node whose DMA/DMA32 memory is very big area on
2463 * local memory, NODE_ORDER may be suitable.
2465 average_size = total_size /
2466 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2467 for_each_online_node(nid) {
2468 low_kmem_size = 0;
2469 total_size = 0;
2470 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2471 z = &NODE_DATA(nid)->node_zones[zone_type];
2472 if (populated_zone(z)) {
2473 if (zone_type < ZONE_NORMAL)
2474 low_kmem_size += z->present_pages;
2475 total_size += z->present_pages;
2478 if (low_kmem_size &&
2479 total_size > average_size && /* ignore small node */
2480 low_kmem_size > total_size * 70/100)
2481 return ZONELIST_ORDER_NODE;
2483 return ZONELIST_ORDER_ZONE;
2486 static void set_zonelist_order(void)
2488 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2489 current_zonelist_order = default_zonelist_order();
2490 else
2491 current_zonelist_order = user_zonelist_order;
2494 static void build_zonelists(pg_data_t *pgdat)
2496 int j, node, load;
2497 enum zone_type i;
2498 nodemask_t used_mask;
2499 int local_node, prev_node;
2500 struct zonelist *zonelist;
2501 int order = current_zonelist_order;
2503 /* initialize zonelists */
2504 for (i = 0; i < MAX_ZONELISTS; i++) {
2505 zonelist = pgdat->node_zonelists + i;
2506 zonelist->_zonerefs[0].zone = NULL;
2507 zonelist->_zonerefs[0].zone_idx = 0;
2510 /* NUMA-aware ordering of nodes */
2511 local_node = pgdat->node_id;
2512 load = nr_online_nodes;
2513 prev_node = local_node;
2514 nodes_clear(used_mask);
2516 memset(node_load, 0, sizeof(node_load));
2517 memset(node_order, 0, sizeof(node_order));
2518 j = 0;
2520 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2521 int distance = node_distance(local_node, node);
2524 * If another node is sufficiently far away then it is better
2525 * to reclaim pages in a zone before going off node.
2527 if (distance > RECLAIM_DISTANCE)
2528 zone_reclaim_mode = 1;
2531 * We don't want to pressure a particular node.
2532 * So adding penalty to the first node in same
2533 * distance group to make it round-robin.
2535 if (distance != node_distance(local_node, prev_node))
2536 node_load[node] = load;
2538 prev_node = node;
2539 load--;
2540 if (order == ZONELIST_ORDER_NODE)
2541 build_zonelists_in_node_order(pgdat, node);
2542 else
2543 node_order[j++] = node; /* remember order */
2546 if (order == ZONELIST_ORDER_ZONE) {
2547 /* calculate node order -- i.e., DMA last! */
2548 build_zonelists_in_zone_order(pgdat, j);
2551 build_thisnode_zonelists(pgdat);
2554 /* Construct the zonelist performance cache - see further mmzone.h */
2555 static void build_zonelist_cache(pg_data_t *pgdat)
2557 struct zonelist *zonelist;
2558 struct zonelist_cache *zlc;
2559 struct zoneref *z;
2561 zonelist = &pgdat->node_zonelists[0];
2562 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2563 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2564 for (z = zonelist->_zonerefs; z->zone; z++)
2565 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2569 #else /* CONFIG_NUMA */
2571 static void set_zonelist_order(void)
2573 current_zonelist_order = ZONELIST_ORDER_ZONE;
2576 static void build_zonelists(pg_data_t *pgdat)
2578 int node, local_node;
2579 enum zone_type j;
2580 struct zonelist *zonelist;
2582 local_node = pgdat->node_id;
2584 zonelist = &pgdat->node_zonelists[0];
2585 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2588 * Now we build the zonelist so that it contains the zones
2589 * of all the other nodes.
2590 * We don't want to pressure a particular node, so when
2591 * building the zones for node N, we make sure that the
2592 * zones coming right after the local ones are those from
2593 * node N+1 (modulo N)
2595 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2596 if (!node_online(node))
2597 continue;
2598 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2599 MAX_NR_ZONES - 1);
2601 for (node = 0; node < local_node; node++) {
2602 if (!node_online(node))
2603 continue;
2604 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2605 MAX_NR_ZONES - 1);
2608 zonelist->_zonerefs[j].zone = NULL;
2609 zonelist->_zonerefs[j].zone_idx = 0;
2612 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2613 static void build_zonelist_cache(pg_data_t *pgdat)
2615 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2618 #endif /* CONFIG_NUMA */
2620 /* return values int ....just for stop_machine() */
2621 static int __build_all_zonelists(void *dummy)
2623 int nid;
2625 for_each_online_node(nid) {
2626 pg_data_t *pgdat = NODE_DATA(nid);
2628 build_zonelists(pgdat);
2629 build_zonelist_cache(pgdat);
2631 return 0;
2634 void build_all_zonelists(void)
2636 set_zonelist_order();
2638 if (system_state == SYSTEM_BOOTING) {
2639 __build_all_zonelists(NULL);
2640 mminit_verify_zonelist();
2641 cpuset_init_current_mems_allowed();
2642 } else {
2643 /* we have to stop all cpus to guarantee there is no user
2644 of zonelist */
2645 stop_machine(__build_all_zonelists, NULL, NULL);
2646 /* cpuset refresh routine should be here */
2648 vm_total_pages = nr_free_pagecache_pages();
2650 * Disable grouping by mobility if the number of pages in the
2651 * system is too low to allow the mechanism to work. It would be
2652 * more accurate, but expensive to check per-zone. This check is
2653 * made on memory-hotadd so a system can start with mobility
2654 * disabled and enable it later
2656 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2657 page_group_by_mobility_disabled = 1;
2658 else
2659 page_group_by_mobility_disabled = 0;
2661 printk("Built %i zonelists in %s order, mobility grouping %s. "
2662 "Total pages: %ld\n",
2663 nr_online_nodes,
2664 zonelist_order_name[current_zonelist_order],
2665 page_group_by_mobility_disabled ? "off" : "on",
2666 vm_total_pages);
2667 #ifdef CONFIG_NUMA
2668 printk("Policy zone: %s\n", zone_names[policy_zone]);
2669 #endif
2673 * Helper functions to size the waitqueue hash table.
2674 * Essentially these want to choose hash table sizes sufficiently
2675 * large so that collisions trying to wait on pages are rare.
2676 * But in fact, the number of active page waitqueues on typical
2677 * systems is ridiculously low, less than 200. So this is even
2678 * conservative, even though it seems large.
2680 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2681 * waitqueues, i.e. the size of the waitq table given the number of pages.
2683 #define PAGES_PER_WAITQUEUE 256
2685 #ifndef CONFIG_MEMORY_HOTPLUG
2686 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2688 unsigned long size = 1;
2690 pages /= PAGES_PER_WAITQUEUE;
2692 while (size < pages)
2693 size <<= 1;
2696 * Once we have dozens or even hundreds of threads sleeping
2697 * on IO we've got bigger problems than wait queue collision.
2698 * Limit the size of the wait table to a reasonable size.
2700 size = min(size, 4096UL);
2702 return max(size, 4UL);
2704 #else
2706 * A zone's size might be changed by hot-add, so it is not possible to determine
2707 * a suitable size for its wait_table. So we use the maximum size now.
2709 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2711 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2712 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2713 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2715 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2716 * or more by the traditional way. (See above). It equals:
2718 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2719 * ia64(16K page size) : = ( 8G + 4M)byte.
2720 * powerpc (64K page size) : = (32G +16M)byte.
2722 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2724 return 4096UL;
2726 #endif
2729 * This is an integer logarithm so that shifts can be used later
2730 * to extract the more random high bits from the multiplicative
2731 * hash function before the remainder is taken.
2733 static inline unsigned long wait_table_bits(unsigned long size)
2735 return ffz(~size);
2738 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2741 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2742 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2743 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2744 * higher will lead to a bigger reserve which will get freed as contiguous
2745 * blocks as reclaim kicks in
2747 static void setup_zone_migrate_reserve(struct zone *zone)
2749 unsigned long start_pfn, pfn, end_pfn;
2750 struct page *page;
2751 unsigned long reserve, block_migratetype;
2753 /* Get the start pfn, end pfn and the number of blocks to reserve */
2754 start_pfn = zone->zone_start_pfn;
2755 end_pfn = start_pfn + zone->spanned_pages;
2756 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2757 pageblock_order;
2759 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2760 if (!pfn_valid(pfn))
2761 continue;
2762 page = pfn_to_page(pfn);
2764 /* Watch out for overlapping nodes */
2765 if (page_to_nid(page) != zone_to_nid(zone))
2766 continue;
2768 /* Blocks with reserved pages will never free, skip them. */
2769 if (PageReserved(page))
2770 continue;
2772 block_migratetype = get_pageblock_migratetype(page);
2774 /* If this block is reserved, account for it */
2775 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2776 reserve--;
2777 continue;
2780 /* Suitable for reserving if this block is movable */
2781 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2782 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2783 move_freepages_block(zone, page, MIGRATE_RESERVE);
2784 reserve--;
2785 continue;
2789 * If the reserve is met and this is a previous reserved block,
2790 * take it back
2792 if (block_migratetype == MIGRATE_RESERVE) {
2793 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2794 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2800 * Initially all pages are reserved - free ones are freed
2801 * up by free_all_bootmem() once the early boot process is
2802 * done. Non-atomic initialization, single-pass.
2804 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2805 unsigned long start_pfn, enum memmap_context context)
2807 struct page *page;
2808 unsigned long end_pfn = start_pfn + size;
2809 unsigned long pfn;
2810 struct zone *z;
2812 if (highest_memmap_pfn < end_pfn - 1)
2813 highest_memmap_pfn = end_pfn - 1;
2815 z = &NODE_DATA(nid)->node_zones[zone];
2816 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2818 * There can be holes in boot-time mem_map[]s
2819 * handed to this function. They do not
2820 * exist on hotplugged memory.
2822 if (context == MEMMAP_EARLY) {
2823 if (!early_pfn_valid(pfn))
2824 continue;
2825 if (!early_pfn_in_nid(pfn, nid))
2826 continue;
2828 page = pfn_to_page(pfn);
2829 set_page_links(page, zone, nid, pfn);
2830 mminit_verify_page_links(page, zone, nid, pfn);
2831 init_page_count(page);
2832 reset_page_mapcount(page);
2833 SetPageReserved(page);
2835 * Mark the block movable so that blocks are reserved for
2836 * movable at startup. This will force kernel allocations
2837 * to reserve their blocks rather than leaking throughout
2838 * the address space during boot when many long-lived
2839 * kernel allocations are made. Later some blocks near
2840 * the start are marked MIGRATE_RESERVE by
2841 * setup_zone_migrate_reserve()
2843 * bitmap is created for zone's valid pfn range. but memmap
2844 * can be created for invalid pages (for alignment)
2845 * check here not to call set_pageblock_migratetype() against
2846 * pfn out of zone.
2848 if ((z->zone_start_pfn <= pfn)
2849 && (pfn < z->zone_start_pfn + z->spanned_pages)
2850 && !(pfn & (pageblock_nr_pages - 1)))
2851 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2853 INIT_LIST_HEAD(&page->lru);
2854 #ifdef WANT_PAGE_VIRTUAL
2855 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2856 if (!is_highmem_idx(zone))
2857 set_page_address(page, __va(pfn << PAGE_SHIFT));
2858 #endif
2862 static void __meminit zone_init_free_lists(struct zone *zone)
2864 int order, t;
2865 for_each_migratetype_order(order, t) {
2866 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2867 zone->free_area[order].nr_free = 0;
2871 #ifndef __HAVE_ARCH_MEMMAP_INIT
2872 #define memmap_init(size, nid, zone, start_pfn) \
2873 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2874 #endif
2876 static int zone_batchsize(struct zone *zone)
2878 #ifdef CONFIG_MMU
2879 int batch;
2882 * The per-cpu-pages pools are set to around 1000th of the
2883 * size of the zone. But no more than 1/2 of a meg.
2885 * OK, so we don't know how big the cache is. So guess.
2887 batch = zone->present_pages / 1024;
2888 if (batch * PAGE_SIZE > 512 * 1024)
2889 batch = (512 * 1024) / PAGE_SIZE;
2890 batch /= 4; /* We effectively *= 4 below */
2891 if (batch < 1)
2892 batch = 1;
2895 * Clamp the batch to a 2^n - 1 value. Having a power
2896 * of 2 value was found to be more likely to have
2897 * suboptimal cache aliasing properties in some cases.
2899 * For example if 2 tasks are alternately allocating
2900 * batches of pages, one task can end up with a lot
2901 * of pages of one half of the possible page colors
2902 * and the other with pages of the other colors.
2904 batch = rounddown_pow_of_two(batch + batch/2) - 1;
2906 return batch;
2908 #else
2909 /* The deferral and batching of frees should be suppressed under NOMMU
2910 * conditions.
2912 * The problem is that NOMMU needs to be able to allocate large chunks
2913 * of contiguous memory as there's no hardware page translation to
2914 * assemble apparent contiguous memory from discontiguous pages.
2916 * Queueing large contiguous runs of pages for batching, however,
2917 * causes the pages to actually be freed in smaller chunks. As there
2918 * can be a significant delay between the individual batches being
2919 * recycled, this leads to the once large chunks of space being
2920 * fragmented and becoming unavailable for high-order allocations.
2922 return 0;
2923 #endif
2926 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2928 struct per_cpu_pages *pcp;
2930 memset(p, 0, sizeof(*p));
2932 pcp = &p->pcp;
2933 pcp->count = 0;
2934 pcp->high = 6 * batch;
2935 pcp->batch = max(1UL, 1 * batch);
2936 INIT_LIST_HEAD(&pcp->list);
2940 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2941 * to the value high for the pageset p.
2944 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2945 unsigned long high)
2947 struct per_cpu_pages *pcp;
2949 pcp = &p->pcp;
2950 pcp->high = high;
2951 pcp->batch = max(1UL, high/4);
2952 if ((high/4) > (PAGE_SHIFT * 8))
2953 pcp->batch = PAGE_SHIFT * 8;
2957 #ifdef CONFIG_NUMA
2959 * Boot pageset table. One per cpu which is going to be used for all
2960 * zones and all nodes. The parameters will be set in such a way
2961 * that an item put on a list will immediately be handed over to
2962 * the buddy list. This is safe since pageset manipulation is done
2963 * with interrupts disabled.
2965 * Some NUMA counter updates may also be caught by the boot pagesets.
2967 * The boot_pagesets must be kept even after bootup is complete for
2968 * unused processors and/or zones. They do play a role for bootstrapping
2969 * hotplugged processors.
2971 * zoneinfo_show() and maybe other functions do
2972 * not check if the processor is online before following the pageset pointer.
2973 * Other parts of the kernel may not check if the zone is available.
2975 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2978 * Dynamically allocate memory for the
2979 * per cpu pageset array in struct zone.
2981 static int __cpuinit process_zones(int cpu)
2983 struct zone *zone, *dzone;
2984 int node = cpu_to_node(cpu);
2986 node_set_state(node, N_CPU); /* this node has a cpu */
2988 for_each_populated_zone(zone) {
2989 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2990 GFP_KERNEL, node);
2991 if (!zone_pcp(zone, cpu))
2992 goto bad;
2994 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2996 if (percpu_pagelist_fraction)
2997 setup_pagelist_highmark(zone_pcp(zone, cpu),
2998 (zone->present_pages / percpu_pagelist_fraction));
3001 return 0;
3002 bad:
3003 for_each_zone(dzone) {
3004 if (!populated_zone(dzone))
3005 continue;
3006 if (dzone == zone)
3007 break;
3008 kfree(zone_pcp(dzone, cpu));
3009 zone_pcp(dzone, cpu) = NULL;
3011 return -ENOMEM;
3014 static inline void free_zone_pagesets(int cpu)
3016 struct zone *zone;
3018 for_each_zone(zone) {
3019 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3021 /* Free per_cpu_pageset if it is slab allocated */
3022 if (pset != &boot_pageset[cpu])
3023 kfree(pset);
3024 zone_pcp(zone, cpu) = NULL;
3028 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3029 unsigned long action,
3030 void *hcpu)
3032 int cpu = (long)hcpu;
3033 int ret = NOTIFY_OK;
3035 switch (action) {
3036 case CPU_UP_PREPARE:
3037 case CPU_UP_PREPARE_FROZEN:
3038 if (process_zones(cpu))
3039 ret = NOTIFY_BAD;
3040 break;
3041 case CPU_UP_CANCELED:
3042 case CPU_UP_CANCELED_FROZEN:
3043 case CPU_DEAD:
3044 case CPU_DEAD_FROZEN:
3045 free_zone_pagesets(cpu);
3046 break;
3047 default:
3048 break;
3050 return ret;
3053 static struct notifier_block __cpuinitdata pageset_notifier =
3054 { &pageset_cpuup_callback, NULL, 0 };
3056 void __init setup_per_cpu_pageset(void)
3058 int err;
3060 /* Initialize per_cpu_pageset for cpu 0.
3061 * A cpuup callback will do this for every cpu
3062 * as it comes online
3064 err = process_zones(smp_processor_id());
3065 BUG_ON(err);
3066 register_cpu_notifier(&pageset_notifier);
3069 #endif
3071 static noinline __init_refok
3072 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3074 int i;
3075 struct pglist_data *pgdat = zone->zone_pgdat;
3076 size_t alloc_size;
3079 * The per-page waitqueue mechanism uses hashed waitqueues
3080 * per zone.
3082 zone->wait_table_hash_nr_entries =
3083 wait_table_hash_nr_entries(zone_size_pages);
3084 zone->wait_table_bits =
3085 wait_table_bits(zone->wait_table_hash_nr_entries);
3086 alloc_size = zone->wait_table_hash_nr_entries
3087 * sizeof(wait_queue_head_t);
3089 if (!slab_is_available()) {
3090 zone->wait_table = (wait_queue_head_t *)
3091 alloc_bootmem_node(pgdat, alloc_size);
3092 } else {
3094 * This case means that a zone whose size was 0 gets new memory
3095 * via memory hot-add.
3096 * But it may be the case that a new node was hot-added. In
3097 * this case vmalloc() will not be able to use this new node's
3098 * memory - this wait_table must be initialized to use this new
3099 * node itself as well.
3100 * To use this new node's memory, further consideration will be
3101 * necessary.
3103 zone->wait_table = vmalloc(alloc_size);
3105 if (!zone->wait_table)
3106 return -ENOMEM;
3108 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3109 init_waitqueue_head(zone->wait_table + i);
3111 return 0;
3114 static __meminit void zone_pcp_init(struct zone *zone)
3116 int cpu;
3117 unsigned long batch = zone_batchsize(zone);
3119 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3120 #ifdef CONFIG_NUMA
3121 /* Early boot. Slab allocator not functional yet */
3122 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3123 setup_pageset(&boot_pageset[cpu],0);
3124 #else
3125 setup_pageset(zone_pcp(zone,cpu), batch);
3126 #endif
3128 if (zone->present_pages)
3129 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3130 zone->name, zone->present_pages, batch);
3133 __meminit int init_currently_empty_zone(struct zone *zone,
3134 unsigned long zone_start_pfn,
3135 unsigned long size,
3136 enum memmap_context context)
3138 struct pglist_data *pgdat = zone->zone_pgdat;
3139 int ret;
3140 ret = zone_wait_table_init(zone, size);
3141 if (ret)
3142 return ret;
3143 pgdat->nr_zones = zone_idx(zone) + 1;
3145 zone->zone_start_pfn = zone_start_pfn;
3147 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3148 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3149 pgdat->node_id,
3150 (unsigned long)zone_idx(zone),
3151 zone_start_pfn, (zone_start_pfn + size));
3153 zone_init_free_lists(zone);
3155 return 0;
3158 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3160 * Basic iterator support. Return the first range of PFNs for a node
3161 * Note: nid == MAX_NUMNODES returns first region regardless of node
3163 static int __meminit first_active_region_index_in_nid(int nid)
3165 int i;
3167 for (i = 0; i < nr_nodemap_entries; i++)
3168 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3169 return i;
3171 return -1;
3175 * Basic iterator support. Return the next active range of PFNs for a node
3176 * Note: nid == MAX_NUMNODES returns next region regardless of node
3178 static int __meminit next_active_region_index_in_nid(int index, int nid)
3180 for (index = index + 1; index < nr_nodemap_entries; index++)
3181 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3182 return index;
3184 return -1;
3187 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3189 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3190 * Architectures may implement their own version but if add_active_range()
3191 * was used and there are no special requirements, this is a convenient
3192 * alternative
3194 int __meminit __early_pfn_to_nid(unsigned long pfn)
3196 int i;
3198 for (i = 0; i < nr_nodemap_entries; i++) {
3199 unsigned long start_pfn = early_node_map[i].start_pfn;
3200 unsigned long end_pfn = early_node_map[i].end_pfn;
3202 if (start_pfn <= pfn && pfn < end_pfn)
3203 return early_node_map[i].nid;
3205 /* This is a memory hole */
3206 return -1;
3208 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3210 int __meminit early_pfn_to_nid(unsigned long pfn)
3212 int nid;
3214 nid = __early_pfn_to_nid(pfn);
3215 if (nid >= 0)
3216 return nid;
3217 /* just returns 0 */
3218 return 0;
3221 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3222 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3224 int nid;
3226 nid = __early_pfn_to_nid(pfn);
3227 if (nid >= 0 && nid != node)
3228 return false;
3229 return true;
3231 #endif
3233 /* Basic iterator support to walk early_node_map[] */
3234 #define for_each_active_range_index_in_nid(i, nid) \
3235 for (i = first_active_region_index_in_nid(nid); i != -1; \
3236 i = next_active_region_index_in_nid(i, nid))
3239 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3240 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3241 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3243 * If an architecture guarantees that all ranges registered with
3244 * add_active_ranges() contain no holes and may be freed, this
3245 * this function may be used instead of calling free_bootmem() manually.
3247 void __init free_bootmem_with_active_regions(int nid,
3248 unsigned long max_low_pfn)
3250 int i;
3252 for_each_active_range_index_in_nid(i, nid) {
3253 unsigned long size_pages = 0;
3254 unsigned long end_pfn = early_node_map[i].end_pfn;
3256 if (early_node_map[i].start_pfn >= max_low_pfn)
3257 continue;
3259 if (end_pfn > max_low_pfn)
3260 end_pfn = max_low_pfn;
3262 size_pages = end_pfn - early_node_map[i].start_pfn;
3263 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3264 PFN_PHYS(early_node_map[i].start_pfn),
3265 size_pages << PAGE_SHIFT);
3269 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3271 int i;
3272 int ret;
3274 for_each_active_range_index_in_nid(i, nid) {
3275 ret = work_fn(early_node_map[i].start_pfn,
3276 early_node_map[i].end_pfn, data);
3277 if (ret)
3278 break;
3282 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3283 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3285 * If an architecture guarantees that all ranges registered with
3286 * add_active_ranges() contain no holes and may be freed, this
3287 * function may be used instead of calling memory_present() manually.
3289 void __init sparse_memory_present_with_active_regions(int nid)
3291 int i;
3293 for_each_active_range_index_in_nid(i, nid)
3294 memory_present(early_node_map[i].nid,
3295 early_node_map[i].start_pfn,
3296 early_node_map[i].end_pfn);
3300 * get_pfn_range_for_nid - Return the start and end page frames for a node
3301 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3302 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3303 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3305 * It returns the start and end page frame of a node based on information
3306 * provided by an arch calling add_active_range(). If called for a node
3307 * with no available memory, a warning is printed and the start and end
3308 * PFNs will be 0.
3310 void __meminit get_pfn_range_for_nid(unsigned int nid,
3311 unsigned long *start_pfn, unsigned long *end_pfn)
3313 int i;
3314 *start_pfn = -1UL;
3315 *end_pfn = 0;
3317 for_each_active_range_index_in_nid(i, nid) {
3318 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3319 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3322 if (*start_pfn == -1UL)
3323 *start_pfn = 0;
3327 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3328 * assumption is made that zones within a node are ordered in monotonic
3329 * increasing memory addresses so that the "highest" populated zone is used
3331 static void __init find_usable_zone_for_movable(void)
3333 int zone_index;
3334 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3335 if (zone_index == ZONE_MOVABLE)
3336 continue;
3338 if (arch_zone_highest_possible_pfn[zone_index] >
3339 arch_zone_lowest_possible_pfn[zone_index])
3340 break;
3343 VM_BUG_ON(zone_index == -1);
3344 movable_zone = zone_index;
3348 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3349 * because it is sized independant of architecture. Unlike the other zones,
3350 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3351 * in each node depending on the size of each node and how evenly kernelcore
3352 * is distributed. This helper function adjusts the zone ranges
3353 * provided by the architecture for a given node by using the end of the
3354 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3355 * zones within a node are in order of monotonic increases memory addresses
3357 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3358 unsigned long zone_type,
3359 unsigned long node_start_pfn,
3360 unsigned long node_end_pfn,
3361 unsigned long *zone_start_pfn,
3362 unsigned long *zone_end_pfn)
3364 /* Only adjust if ZONE_MOVABLE is on this node */
3365 if (zone_movable_pfn[nid]) {
3366 /* Size ZONE_MOVABLE */
3367 if (zone_type == ZONE_MOVABLE) {
3368 *zone_start_pfn = zone_movable_pfn[nid];
3369 *zone_end_pfn = min(node_end_pfn,
3370 arch_zone_highest_possible_pfn[movable_zone]);
3372 /* Adjust for ZONE_MOVABLE starting within this range */
3373 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3374 *zone_end_pfn > zone_movable_pfn[nid]) {
3375 *zone_end_pfn = zone_movable_pfn[nid];
3377 /* Check if this whole range is within ZONE_MOVABLE */
3378 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3379 *zone_start_pfn = *zone_end_pfn;
3384 * Return the number of pages a zone spans in a node, including holes
3385 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3387 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3388 unsigned long zone_type,
3389 unsigned long *ignored)
3391 unsigned long node_start_pfn, node_end_pfn;
3392 unsigned long zone_start_pfn, zone_end_pfn;
3394 /* Get the start and end of the node and zone */
3395 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3396 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3397 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3398 adjust_zone_range_for_zone_movable(nid, zone_type,
3399 node_start_pfn, node_end_pfn,
3400 &zone_start_pfn, &zone_end_pfn);
3402 /* Check that this node has pages within the zone's required range */
3403 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3404 return 0;
3406 /* Move the zone boundaries inside the node if necessary */
3407 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3408 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3410 /* Return the spanned pages */
3411 return zone_end_pfn - zone_start_pfn;
3415 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3416 * then all holes in the requested range will be accounted for.
3418 static unsigned long __meminit __absent_pages_in_range(int nid,
3419 unsigned long range_start_pfn,
3420 unsigned long range_end_pfn)
3422 int i = 0;
3423 unsigned long prev_end_pfn = 0, hole_pages = 0;
3424 unsigned long start_pfn;
3426 /* Find the end_pfn of the first active range of pfns in the node */
3427 i = first_active_region_index_in_nid(nid);
3428 if (i == -1)
3429 return 0;
3431 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3433 /* Account for ranges before physical memory on this node */
3434 if (early_node_map[i].start_pfn > range_start_pfn)
3435 hole_pages = prev_end_pfn - range_start_pfn;
3437 /* Find all holes for the zone within the node */
3438 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3440 /* No need to continue if prev_end_pfn is outside the zone */
3441 if (prev_end_pfn >= range_end_pfn)
3442 break;
3444 /* Make sure the end of the zone is not within the hole */
3445 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3446 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3448 /* Update the hole size cound and move on */
3449 if (start_pfn > range_start_pfn) {
3450 BUG_ON(prev_end_pfn > start_pfn);
3451 hole_pages += start_pfn - prev_end_pfn;
3453 prev_end_pfn = early_node_map[i].end_pfn;
3456 /* Account for ranges past physical memory on this node */
3457 if (range_end_pfn > prev_end_pfn)
3458 hole_pages += range_end_pfn -
3459 max(range_start_pfn, prev_end_pfn);
3461 return hole_pages;
3465 * absent_pages_in_range - Return number of page frames in holes within a range
3466 * @start_pfn: The start PFN to start searching for holes
3467 * @end_pfn: The end PFN to stop searching for holes
3469 * It returns the number of pages frames in memory holes within a range.
3471 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3472 unsigned long end_pfn)
3474 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3477 /* Return the number of page frames in holes in a zone on a node */
3478 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3479 unsigned long zone_type,
3480 unsigned long *ignored)
3482 unsigned long node_start_pfn, node_end_pfn;
3483 unsigned long zone_start_pfn, zone_end_pfn;
3485 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3486 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3487 node_start_pfn);
3488 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3489 node_end_pfn);
3491 adjust_zone_range_for_zone_movable(nid, zone_type,
3492 node_start_pfn, node_end_pfn,
3493 &zone_start_pfn, &zone_end_pfn);
3494 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3497 #else
3498 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3499 unsigned long zone_type,
3500 unsigned long *zones_size)
3502 return zones_size[zone_type];
3505 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3506 unsigned long zone_type,
3507 unsigned long *zholes_size)
3509 if (!zholes_size)
3510 return 0;
3512 return zholes_size[zone_type];
3515 #endif
3517 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3518 unsigned long *zones_size, unsigned long *zholes_size)
3520 unsigned long realtotalpages, totalpages = 0;
3521 enum zone_type i;
3523 for (i = 0; i < MAX_NR_ZONES; i++)
3524 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3525 zones_size);
3526 pgdat->node_spanned_pages = totalpages;
3528 realtotalpages = totalpages;
3529 for (i = 0; i < MAX_NR_ZONES; i++)
3530 realtotalpages -=
3531 zone_absent_pages_in_node(pgdat->node_id, i,
3532 zholes_size);
3533 pgdat->node_present_pages = realtotalpages;
3534 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3535 realtotalpages);
3538 #ifndef CONFIG_SPARSEMEM
3540 * Calculate the size of the zone->blockflags rounded to an unsigned long
3541 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3542 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3543 * round what is now in bits to nearest long in bits, then return it in
3544 * bytes.
3546 static unsigned long __init usemap_size(unsigned long zonesize)
3548 unsigned long usemapsize;
3550 usemapsize = roundup(zonesize, pageblock_nr_pages);
3551 usemapsize = usemapsize >> pageblock_order;
3552 usemapsize *= NR_PAGEBLOCK_BITS;
3553 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3555 return usemapsize / 8;
3558 static void __init setup_usemap(struct pglist_data *pgdat,
3559 struct zone *zone, unsigned long zonesize)
3561 unsigned long usemapsize = usemap_size(zonesize);
3562 zone->pageblock_flags = NULL;
3563 if (usemapsize)
3564 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3566 #else
3567 static void inline setup_usemap(struct pglist_data *pgdat,
3568 struct zone *zone, unsigned long zonesize) {}
3569 #endif /* CONFIG_SPARSEMEM */
3571 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3573 /* Return a sensible default order for the pageblock size. */
3574 static inline int pageblock_default_order(void)
3576 if (HPAGE_SHIFT > PAGE_SHIFT)
3577 return HUGETLB_PAGE_ORDER;
3579 return MAX_ORDER-1;
3582 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3583 static inline void __init set_pageblock_order(unsigned int order)
3585 /* Check that pageblock_nr_pages has not already been setup */
3586 if (pageblock_order)
3587 return;
3590 * Assume the largest contiguous order of interest is a huge page.
3591 * This value may be variable depending on boot parameters on IA64
3593 pageblock_order = order;
3595 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3598 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3599 * and pageblock_default_order() are unused as pageblock_order is set
3600 * at compile-time. See include/linux/pageblock-flags.h for the values of
3601 * pageblock_order based on the kernel config
3603 static inline int pageblock_default_order(unsigned int order)
3605 return MAX_ORDER-1;
3607 #define set_pageblock_order(x) do {} while (0)
3609 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3612 * Set up the zone data structures:
3613 * - mark all pages reserved
3614 * - mark all memory queues empty
3615 * - clear the memory bitmaps
3617 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3618 unsigned long *zones_size, unsigned long *zholes_size)
3620 enum zone_type j;
3621 int nid = pgdat->node_id;
3622 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3623 int ret;
3625 pgdat_resize_init(pgdat);
3626 pgdat->nr_zones = 0;
3627 init_waitqueue_head(&pgdat->kswapd_wait);
3628 pgdat->kswapd_max_order = 0;
3629 pgdat_page_cgroup_init(pgdat);
3631 for (j = 0; j < MAX_NR_ZONES; j++) {
3632 struct zone *zone = pgdat->node_zones + j;
3633 unsigned long size, realsize, memmap_pages;
3634 enum lru_list l;
3636 size = zone_spanned_pages_in_node(nid, j, zones_size);
3637 realsize = size - zone_absent_pages_in_node(nid, j,
3638 zholes_size);
3641 * Adjust realsize so that it accounts for how much memory
3642 * is used by this zone for memmap. This affects the watermark
3643 * and per-cpu initialisations
3645 memmap_pages =
3646 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3647 if (realsize >= memmap_pages) {
3648 realsize -= memmap_pages;
3649 if (memmap_pages)
3650 printk(KERN_DEBUG
3651 " %s zone: %lu pages used for memmap\n",
3652 zone_names[j], memmap_pages);
3653 } else
3654 printk(KERN_WARNING
3655 " %s zone: %lu pages exceeds realsize %lu\n",
3656 zone_names[j], memmap_pages, realsize);
3658 /* Account for reserved pages */
3659 if (j == 0 && realsize > dma_reserve) {
3660 realsize -= dma_reserve;
3661 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3662 zone_names[0], dma_reserve);
3665 if (!is_highmem_idx(j))
3666 nr_kernel_pages += realsize;
3667 nr_all_pages += realsize;
3669 zone->spanned_pages = size;
3670 zone->present_pages = realsize;
3671 #ifdef CONFIG_NUMA
3672 zone->node = nid;
3673 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3674 / 100;
3675 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3676 #endif
3677 zone->name = zone_names[j];
3678 spin_lock_init(&zone->lock);
3679 spin_lock_init(&zone->lru_lock);
3680 zone_seqlock_init(zone);
3681 zone->zone_pgdat = pgdat;
3683 zone->prev_priority = DEF_PRIORITY;
3685 zone_pcp_init(zone);
3686 for_each_lru(l) {
3687 INIT_LIST_HEAD(&zone->lru[l].list);
3688 zone->lru[l].nr_saved_scan = 0;
3690 zone->reclaim_stat.recent_rotated[0] = 0;
3691 zone->reclaim_stat.recent_rotated[1] = 0;
3692 zone->reclaim_stat.recent_scanned[0] = 0;
3693 zone->reclaim_stat.recent_scanned[1] = 0;
3694 zap_zone_vm_stats(zone);
3695 zone->flags = 0;
3696 if (!size)
3697 continue;
3699 set_pageblock_order(pageblock_default_order());
3700 setup_usemap(pgdat, zone, size);
3701 ret = init_currently_empty_zone(zone, zone_start_pfn,
3702 size, MEMMAP_EARLY);
3703 BUG_ON(ret);
3704 memmap_init(size, nid, j, zone_start_pfn);
3705 zone_start_pfn += size;
3709 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3711 /* Skip empty nodes */
3712 if (!pgdat->node_spanned_pages)
3713 return;
3715 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3716 /* ia64 gets its own node_mem_map, before this, without bootmem */
3717 if (!pgdat->node_mem_map) {
3718 unsigned long size, start, end;
3719 struct page *map;
3722 * The zone's endpoints aren't required to be MAX_ORDER
3723 * aligned but the node_mem_map endpoints must be in order
3724 * for the buddy allocator to function correctly.
3726 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3727 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3728 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3729 size = (end - start) * sizeof(struct page);
3730 map = alloc_remap(pgdat->node_id, size);
3731 if (!map)
3732 map = alloc_bootmem_node(pgdat, size);
3733 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3735 #ifndef CONFIG_NEED_MULTIPLE_NODES
3737 * With no DISCONTIG, the global mem_map is just set as node 0's
3739 if (pgdat == NODE_DATA(0)) {
3740 mem_map = NODE_DATA(0)->node_mem_map;
3741 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3742 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3743 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3744 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3746 #endif
3747 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3750 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3751 unsigned long node_start_pfn, unsigned long *zholes_size)
3753 pg_data_t *pgdat = NODE_DATA(nid);
3755 pgdat->node_id = nid;
3756 pgdat->node_start_pfn = node_start_pfn;
3757 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3759 alloc_node_mem_map(pgdat);
3760 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3761 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3762 nid, (unsigned long)pgdat,
3763 (unsigned long)pgdat->node_mem_map);
3764 #endif
3766 free_area_init_core(pgdat, zones_size, zholes_size);
3769 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3771 #if MAX_NUMNODES > 1
3773 * Figure out the number of possible node ids.
3775 static void __init setup_nr_node_ids(void)
3777 unsigned int node;
3778 unsigned int highest = 0;
3780 for_each_node_mask(node, node_possible_map)
3781 highest = node;
3782 nr_node_ids = highest + 1;
3784 #else
3785 static inline void setup_nr_node_ids(void)
3788 #endif
3791 * add_active_range - Register a range of PFNs backed by physical memory
3792 * @nid: The node ID the range resides on
3793 * @start_pfn: The start PFN of the available physical memory
3794 * @end_pfn: The end PFN of the available physical memory
3796 * These ranges are stored in an early_node_map[] and later used by
3797 * free_area_init_nodes() to calculate zone sizes and holes. If the
3798 * range spans a memory hole, it is up to the architecture to ensure
3799 * the memory is not freed by the bootmem allocator. If possible
3800 * the range being registered will be merged with existing ranges.
3802 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3803 unsigned long end_pfn)
3805 int i;
3807 mminit_dprintk(MMINIT_TRACE, "memory_register",
3808 "Entering add_active_range(%d, %#lx, %#lx) "
3809 "%d entries of %d used\n",
3810 nid, start_pfn, end_pfn,
3811 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3813 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3815 /* Merge with existing active regions if possible */
3816 for (i = 0; i < nr_nodemap_entries; i++) {
3817 if (early_node_map[i].nid != nid)
3818 continue;
3820 /* Skip if an existing region covers this new one */
3821 if (start_pfn >= early_node_map[i].start_pfn &&
3822 end_pfn <= early_node_map[i].end_pfn)
3823 return;
3825 /* Merge forward if suitable */
3826 if (start_pfn <= early_node_map[i].end_pfn &&
3827 end_pfn > early_node_map[i].end_pfn) {
3828 early_node_map[i].end_pfn = end_pfn;
3829 return;
3832 /* Merge backward if suitable */
3833 if (start_pfn < early_node_map[i].end_pfn &&
3834 end_pfn >= early_node_map[i].start_pfn) {
3835 early_node_map[i].start_pfn = start_pfn;
3836 return;
3840 /* Check that early_node_map is large enough */
3841 if (i >= MAX_ACTIVE_REGIONS) {
3842 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3843 MAX_ACTIVE_REGIONS);
3844 return;
3847 early_node_map[i].nid = nid;
3848 early_node_map[i].start_pfn = start_pfn;
3849 early_node_map[i].end_pfn = end_pfn;
3850 nr_nodemap_entries = i + 1;
3854 * remove_active_range - Shrink an existing registered range of PFNs
3855 * @nid: The node id the range is on that should be shrunk
3856 * @start_pfn: The new PFN of the range
3857 * @end_pfn: The new PFN of the range
3859 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3860 * The map is kept near the end physical page range that has already been
3861 * registered. This function allows an arch to shrink an existing registered
3862 * range.
3864 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3865 unsigned long end_pfn)
3867 int i, j;
3868 int removed = 0;
3870 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3871 nid, start_pfn, end_pfn);
3873 /* Find the old active region end and shrink */
3874 for_each_active_range_index_in_nid(i, nid) {
3875 if (early_node_map[i].start_pfn >= start_pfn &&
3876 early_node_map[i].end_pfn <= end_pfn) {
3877 /* clear it */
3878 early_node_map[i].start_pfn = 0;
3879 early_node_map[i].end_pfn = 0;
3880 removed = 1;
3881 continue;
3883 if (early_node_map[i].start_pfn < start_pfn &&
3884 early_node_map[i].end_pfn > start_pfn) {
3885 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3886 early_node_map[i].end_pfn = start_pfn;
3887 if (temp_end_pfn > end_pfn)
3888 add_active_range(nid, end_pfn, temp_end_pfn);
3889 continue;
3891 if (early_node_map[i].start_pfn >= start_pfn &&
3892 early_node_map[i].end_pfn > end_pfn &&
3893 early_node_map[i].start_pfn < end_pfn) {
3894 early_node_map[i].start_pfn = end_pfn;
3895 continue;
3899 if (!removed)
3900 return;
3902 /* remove the blank ones */
3903 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3904 if (early_node_map[i].nid != nid)
3905 continue;
3906 if (early_node_map[i].end_pfn)
3907 continue;
3908 /* we found it, get rid of it */
3909 for (j = i; j < nr_nodemap_entries - 1; j++)
3910 memcpy(&early_node_map[j], &early_node_map[j+1],
3911 sizeof(early_node_map[j]));
3912 j = nr_nodemap_entries - 1;
3913 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3914 nr_nodemap_entries--;
3919 * remove_all_active_ranges - Remove all currently registered regions
3921 * During discovery, it may be found that a table like SRAT is invalid
3922 * and an alternative discovery method must be used. This function removes
3923 * all currently registered regions.
3925 void __init remove_all_active_ranges(void)
3927 memset(early_node_map, 0, sizeof(early_node_map));
3928 nr_nodemap_entries = 0;
3931 /* Compare two active node_active_regions */
3932 static int __init cmp_node_active_region(const void *a, const void *b)
3934 struct node_active_region *arange = (struct node_active_region *)a;
3935 struct node_active_region *brange = (struct node_active_region *)b;
3937 /* Done this way to avoid overflows */
3938 if (arange->start_pfn > brange->start_pfn)
3939 return 1;
3940 if (arange->start_pfn < brange->start_pfn)
3941 return -1;
3943 return 0;
3946 /* sort the node_map by start_pfn */
3947 static void __init sort_node_map(void)
3949 sort(early_node_map, (size_t)nr_nodemap_entries,
3950 sizeof(struct node_active_region),
3951 cmp_node_active_region, NULL);
3954 /* Find the lowest pfn for a node */
3955 static unsigned long __init find_min_pfn_for_node(int nid)
3957 int i;
3958 unsigned long min_pfn = ULONG_MAX;
3960 /* Assuming a sorted map, the first range found has the starting pfn */
3961 for_each_active_range_index_in_nid(i, nid)
3962 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3964 if (min_pfn == ULONG_MAX) {
3965 printk(KERN_WARNING
3966 "Could not find start_pfn for node %d\n", nid);
3967 return 0;
3970 return min_pfn;
3974 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3976 * It returns the minimum PFN based on information provided via
3977 * add_active_range().
3979 unsigned long __init find_min_pfn_with_active_regions(void)
3981 return find_min_pfn_for_node(MAX_NUMNODES);
3985 * early_calculate_totalpages()
3986 * Sum pages in active regions for movable zone.
3987 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3989 static unsigned long __init early_calculate_totalpages(void)
3991 int i;
3992 unsigned long totalpages = 0;
3994 for (i = 0; i < nr_nodemap_entries; i++) {
3995 unsigned long pages = early_node_map[i].end_pfn -
3996 early_node_map[i].start_pfn;
3997 totalpages += pages;
3998 if (pages)
3999 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4001 return totalpages;
4005 * Find the PFN the Movable zone begins in each node. Kernel memory
4006 * is spread evenly between nodes as long as the nodes have enough
4007 * memory. When they don't, some nodes will have more kernelcore than
4008 * others
4010 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4012 int i, nid;
4013 unsigned long usable_startpfn;
4014 unsigned long kernelcore_node, kernelcore_remaining;
4015 unsigned long totalpages = early_calculate_totalpages();
4016 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4019 * If movablecore was specified, calculate what size of
4020 * kernelcore that corresponds so that memory usable for
4021 * any allocation type is evenly spread. If both kernelcore
4022 * and movablecore are specified, then the value of kernelcore
4023 * will be used for required_kernelcore if it's greater than
4024 * what movablecore would have allowed.
4026 if (required_movablecore) {
4027 unsigned long corepages;
4030 * Round-up so that ZONE_MOVABLE is at least as large as what
4031 * was requested by the user
4033 required_movablecore =
4034 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4035 corepages = totalpages - required_movablecore;
4037 required_kernelcore = max(required_kernelcore, corepages);
4040 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4041 if (!required_kernelcore)
4042 return;
4044 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4045 find_usable_zone_for_movable();
4046 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4048 restart:
4049 /* Spread kernelcore memory as evenly as possible throughout nodes */
4050 kernelcore_node = required_kernelcore / usable_nodes;
4051 for_each_node_state(nid, N_HIGH_MEMORY) {
4053 * Recalculate kernelcore_node if the division per node
4054 * now exceeds what is necessary to satisfy the requested
4055 * amount of memory for the kernel
4057 if (required_kernelcore < kernelcore_node)
4058 kernelcore_node = required_kernelcore / usable_nodes;
4061 * As the map is walked, we track how much memory is usable
4062 * by the kernel using kernelcore_remaining. When it is
4063 * 0, the rest of the node is usable by ZONE_MOVABLE
4065 kernelcore_remaining = kernelcore_node;
4067 /* Go through each range of PFNs within this node */
4068 for_each_active_range_index_in_nid(i, nid) {
4069 unsigned long start_pfn, end_pfn;
4070 unsigned long size_pages;
4072 start_pfn = max(early_node_map[i].start_pfn,
4073 zone_movable_pfn[nid]);
4074 end_pfn = early_node_map[i].end_pfn;
4075 if (start_pfn >= end_pfn)
4076 continue;
4078 /* Account for what is only usable for kernelcore */
4079 if (start_pfn < usable_startpfn) {
4080 unsigned long kernel_pages;
4081 kernel_pages = min(end_pfn, usable_startpfn)
4082 - start_pfn;
4084 kernelcore_remaining -= min(kernel_pages,
4085 kernelcore_remaining);
4086 required_kernelcore -= min(kernel_pages,
4087 required_kernelcore);
4089 /* Continue if range is now fully accounted */
4090 if (end_pfn <= usable_startpfn) {
4093 * Push zone_movable_pfn to the end so
4094 * that if we have to rebalance
4095 * kernelcore across nodes, we will
4096 * not double account here
4098 zone_movable_pfn[nid] = end_pfn;
4099 continue;
4101 start_pfn = usable_startpfn;
4105 * The usable PFN range for ZONE_MOVABLE is from
4106 * start_pfn->end_pfn. Calculate size_pages as the
4107 * number of pages used as kernelcore
4109 size_pages = end_pfn - start_pfn;
4110 if (size_pages > kernelcore_remaining)
4111 size_pages = kernelcore_remaining;
4112 zone_movable_pfn[nid] = start_pfn + size_pages;
4115 * Some kernelcore has been met, update counts and
4116 * break if the kernelcore for this node has been
4117 * satisified
4119 required_kernelcore -= min(required_kernelcore,
4120 size_pages);
4121 kernelcore_remaining -= size_pages;
4122 if (!kernelcore_remaining)
4123 break;
4128 * If there is still required_kernelcore, we do another pass with one
4129 * less node in the count. This will push zone_movable_pfn[nid] further
4130 * along on the nodes that still have memory until kernelcore is
4131 * satisified
4133 usable_nodes--;
4134 if (usable_nodes && required_kernelcore > usable_nodes)
4135 goto restart;
4137 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4138 for (nid = 0; nid < MAX_NUMNODES; nid++)
4139 zone_movable_pfn[nid] =
4140 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4143 /* Any regular memory on that node ? */
4144 static void check_for_regular_memory(pg_data_t *pgdat)
4146 #ifdef CONFIG_HIGHMEM
4147 enum zone_type zone_type;
4149 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4150 struct zone *zone = &pgdat->node_zones[zone_type];
4151 if (zone->present_pages)
4152 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4154 #endif
4158 * free_area_init_nodes - Initialise all pg_data_t and zone data
4159 * @max_zone_pfn: an array of max PFNs for each zone
4161 * This will call free_area_init_node() for each active node in the system.
4162 * Using the page ranges provided by add_active_range(), the size of each
4163 * zone in each node and their holes is calculated. If the maximum PFN
4164 * between two adjacent zones match, it is assumed that the zone is empty.
4165 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4166 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4167 * starts where the previous one ended. For example, ZONE_DMA32 starts
4168 * at arch_max_dma_pfn.
4170 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4172 unsigned long nid;
4173 int i;
4175 /* Sort early_node_map as initialisation assumes it is sorted */
4176 sort_node_map();
4178 /* Record where the zone boundaries are */
4179 memset(arch_zone_lowest_possible_pfn, 0,
4180 sizeof(arch_zone_lowest_possible_pfn));
4181 memset(arch_zone_highest_possible_pfn, 0,
4182 sizeof(arch_zone_highest_possible_pfn));
4183 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4184 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4185 for (i = 1; i < MAX_NR_ZONES; i++) {
4186 if (i == ZONE_MOVABLE)
4187 continue;
4188 arch_zone_lowest_possible_pfn[i] =
4189 arch_zone_highest_possible_pfn[i-1];
4190 arch_zone_highest_possible_pfn[i] =
4191 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4193 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4194 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4196 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4197 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4198 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4200 /* Print out the zone ranges */
4201 printk("Zone PFN ranges:\n");
4202 for (i = 0; i < MAX_NR_ZONES; i++) {
4203 if (i == ZONE_MOVABLE)
4204 continue;
4205 printk(" %-8s %0#10lx -> %0#10lx\n",
4206 zone_names[i],
4207 arch_zone_lowest_possible_pfn[i],
4208 arch_zone_highest_possible_pfn[i]);
4211 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4212 printk("Movable zone start PFN for each node\n");
4213 for (i = 0; i < MAX_NUMNODES; i++) {
4214 if (zone_movable_pfn[i])
4215 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4218 /* Print out the early_node_map[] */
4219 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4220 for (i = 0; i < nr_nodemap_entries; i++)
4221 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4222 early_node_map[i].start_pfn,
4223 early_node_map[i].end_pfn);
4226 * find_zone_movable_pfns_for_nodes/early_calculate_totalpages init
4227 * that node_mask, clear it at first
4229 nodes_clear(node_states[N_HIGH_MEMORY]);
4230 /* Initialise every node */
4231 mminit_verify_pageflags_layout();
4232 setup_nr_node_ids();
4233 for_each_online_node(nid) {
4234 pg_data_t *pgdat = NODE_DATA(nid);
4235 free_area_init_node(nid, NULL,
4236 find_min_pfn_for_node(nid), NULL);
4238 /* Any memory on that node */
4239 if (pgdat->node_present_pages)
4240 node_set_state(nid, N_HIGH_MEMORY);
4241 check_for_regular_memory(pgdat);
4245 static int __init cmdline_parse_core(char *p, unsigned long *core)
4247 unsigned long long coremem;
4248 if (!p)
4249 return -EINVAL;
4251 coremem = memparse(p, &p);
4252 *core = coremem >> PAGE_SHIFT;
4254 /* Paranoid check that UL is enough for the coremem value */
4255 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4257 return 0;
4261 * kernelcore=size sets the amount of memory for use for allocations that
4262 * cannot be reclaimed or migrated.
4264 static int __init cmdline_parse_kernelcore(char *p)
4266 return cmdline_parse_core(p, &required_kernelcore);
4270 * movablecore=size sets the amount of memory for use for allocations that
4271 * can be reclaimed or migrated.
4273 static int __init cmdline_parse_movablecore(char *p)
4275 return cmdline_parse_core(p, &required_movablecore);
4278 early_param("kernelcore", cmdline_parse_kernelcore);
4279 early_param("movablecore", cmdline_parse_movablecore);
4281 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4284 * set_dma_reserve - set the specified number of pages reserved in the first zone
4285 * @new_dma_reserve: The number of pages to mark reserved
4287 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4288 * In the DMA zone, a significant percentage may be consumed by kernel image
4289 * and other unfreeable allocations which can skew the watermarks badly. This
4290 * function may optionally be used to account for unfreeable pages in the
4291 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4292 * smaller per-cpu batchsize.
4294 void __init set_dma_reserve(unsigned long new_dma_reserve)
4296 dma_reserve = new_dma_reserve;
4299 #ifndef CONFIG_NEED_MULTIPLE_NODES
4300 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4301 EXPORT_SYMBOL(contig_page_data);
4302 #endif
4304 void __init free_area_init(unsigned long *zones_size)
4306 free_area_init_node(0, zones_size,
4307 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4310 static int page_alloc_cpu_notify(struct notifier_block *self,
4311 unsigned long action, void *hcpu)
4313 int cpu = (unsigned long)hcpu;
4315 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4316 drain_pages(cpu);
4319 * Spill the event counters of the dead processor
4320 * into the current processors event counters.
4321 * This artificially elevates the count of the current
4322 * processor.
4324 vm_events_fold_cpu(cpu);
4327 * Zero the differential counters of the dead processor
4328 * so that the vm statistics are consistent.
4330 * This is only okay since the processor is dead and cannot
4331 * race with what we are doing.
4333 refresh_cpu_vm_stats(cpu);
4335 return NOTIFY_OK;
4338 void __init page_alloc_init(void)
4340 hotcpu_notifier(page_alloc_cpu_notify, 0);
4344 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4345 * or min_free_kbytes changes.
4347 static void calculate_totalreserve_pages(void)
4349 struct pglist_data *pgdat;
4350 unsigned long reserve_pages = 0;
4351 enum zone_type i, j;
4353 for_each_online_pgdat(pgdat) {
4354 for (i = 0; i < MAX_NR_ZONES; i++) {
4355 struct zone *zone = pgdat->node_zones + i;
4356 unsigned long max = 0;
4358 /* Find valid and maximum lowmem_reserve in the zone */
4359 for (j = i; j < MAX_NR_ZONES; j++) {
4360 if (zone->lowmem_reserve[j] > max)
4361 max = zone->lowmem_reserve[j];
4364 /* we treat the high watermark as reserved pages. */
4365 max += high_wmark_pages(zone);
4367 if (max > zone->present_pages)
4368 max = zone->present_pages;
4369 reserve_pages += max;
4372 totalreserve_pages = reserve_pages;
4376 * setup_per_zone_lowmem_reserve - called whenever
4377 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4378 * has a correct pages reserved value, so an adequate number of
4379 * pages are left in the zone after a successful __alloc_pages().
4381 static void setup_per_zone_lowmem_reserve(void)
4383 struct pglist_data *pgdat;
4384 enum zone_type j, idx;
4386 for_each_online_pgdat(pgdat) {
4387 for (j = 0; j < MAX_NR_ZONES; j++) {
4388 struct zone *zone = pgdat->node_zones + j;
4389 unsigned long present_pages = zone->present_pages;
4391 zone->lowmem_reserve[j] = 0;
4393 idx = j;
4394 while (idx) {
4395 struct zone *lower_zone;
4397 idx--;
4399 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4400 sysctl_lowmem_reserve_ratio[idx] = 1;
4402 lower_zone = pgdat->node_zones + idx;
4403 lower_zone->lowmem_reserve[j] = present_pages /
4404 sysctl_lowmem_reserve_ratio[idx];
4405 present_pages += lower_zone->present_pages;
4410 /* update totalreserve_pages */
4411 calculate_totalreserve_pages();
4415 * setup_per_zone_wmarks - called when min_free_kbytes changes
4416 * or when memory is hot-{added|removed}
4418 * Ensures that the watermark[min,low,high] values for each zone are set
4419 * correctly with respect to min_free_kbytes.
4421 void setup_per_zone_wmarks(void)
4423 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4424 unsigned long lowmem_pages = 0;
4425 struct zone *zone;
4426 unsigned long flags;
4428 /* Calculate total number of !ZONE_HIGHMEM pages */
4429 for_each_zone(zone) {
4430 if (!is_highmem(zone))
4431 lowmem_pages += zone->present_pages;
4434 for_each_zone(zone) {
4435 u64 tmp;
4437 spin_lock_irqsave(&zone->lock, flags);
4438 tmp = (u64)pages_min * zone->present_pages;
4439 do_div(tmp, lowmem_pages);
4440 if (is_highmem(zone)) {
4442 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4443 * need highmem pages, so cap pages_min to a small
4444 * value here.
4446 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4447 * deltas controls asynch page reclaim, and so should
4448 * not be capped for highmem.
4450 int min_pages;
4452 min_pages = zone->present_pages / 1024;
4453 if (min_pages < SWAP_CLUSTER_MAX)
4454 min_pages = SWAP_CLUSTER_MAX;
4455 if (min_pages > 128)
4456 min_pages = 128;
4457 zone->watermark[WMARK_MIN] = min_pages;
4458 } else {
4460 * If it's a lowmem zone, reserve a number of pages
4461 * proportionate to the zone's size.
4463 zone->watermark[WMARK_MIN] = tmp;
4466 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4467 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4468 setup_zone_migrate_reserve(zone);
4469 spin_unlock_irqrestore(&zone->lock, flags);
4472 /* update totalreserve_pages */
4473 calculate_totalreserve_pages();
4477 * The inactive anon list should be small enough that the VM never has to
4478 * do too much work, but large enough that each inactive page has a chance
4479 * to be referenced again before it is swapped out.
4481 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4482 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4483 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4484 * the anonymous pages are kept on the inactive list.
4486 * total target max
4487 * memory ratio inactive anon
4488 * -------------------------------------
4489 * 10MB 1 5MB
4490 * 100MB 1 50MB
4491 * 1GB 3 250MB
4492 * 10GB 10 0.9GB
4493 * 100GB 31 3GB
4494 * 1TB 101 10GB
4495 * 10TB 320 32GB
4497 void calculate_zone_inactive_ratio(struct zone *zone)
4499 unsigned int gb, ratio;
4501 /* Zone size in gigabytes */
4502 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4503 if (gb)
4504 ratio = int_sqrt(10 * gb);
4505 else
4506 ratio = 1;
4508 zone->inactive_ratio = ratio;
4511 static void __init setup_per_zone_inactive_ratio(void)
4513 struct zone *zone;
4515 for_each_zone(zone)
4516 calculate_zone_inactive_ratio(zone);
4520 * Initialise min_free_kbytes.
4522 * For small machines we want it small (128k min). For large machines
4523 * we want it large (64MB max). But it is not linear, because network
4524 * bandwidth does not increase linearly with machine size. We use
4526 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4527 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4529 * which yields
4531 * 16MB: 512k
4532 * 32MB: 724k
4533 * 64MB: 1024k
4534 * 128MB: 1448k
4535 * 256MB: 2048k
4536 * 512MB: 2896k
4537 * 1024MB: 4096k
4538 * 2048MB: 5792k
4539 * 4096MB: 8192k
4540 * 8192MB: 11584k
4541 * 16384MB: 16384k
4543 static int __init init_per_zone_wmark_min(void)
4545 unsigned long lowmem_kbytes;
4547 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4549 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4550 if (min_free_kbytes < 128)
4551 min_free_kbytes = 128;
4552 if (min_free_kbytes > 65536)
4553 min_free_kbytes = 65536;
4554 setup_per_zone_wmarks();
4555 setup_per_zone_lowmem_reserve();
4556 setup_per_zone_inactive_ratio();
4557 return 0;
4559 module_init(init_per_zone_wmark_min)
4562 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4563 * that we can call two helper functions whenever min_free_kbytes
4564 * changes.
4566 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4567 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4569 proc_dointvec(table, write, file, buffer, length, ppos);
4570 if (write)
4571 setup_per_zone_wmarks();
4572 return 0;
4575 #ifdef CONFIG_NUMA
4576 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4577 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4579 struct zone *zone;
4580 int rc;
4582 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4583 if (rc)
4584 return rc;
4586 for_each_zone(zone)
4587 zone->min_unmapped_pages = (zone->present_pages *
4588 sysctl_min_unmapped_ratio) / 100;
4589 return 0;
4592 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4593 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4595 struct zone *zone;
4596 int rc;
4598 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4599 if (rc)
4600 return rc;
4602 for_each_zone(zone)
4603 zone->min_slab_pages = (zone->present_pages *
4604 sysctl_min_slab_ratio) / 100;
4605 return 0;
4607 #endif
4610 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4611 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4612 * whenever sysctl_lowmem_reserve_ratio changes.
4614 * The reserve ratio obviously has absolutely no relation with the
4615 * minimum watermarks. The lowmem reserve ratio can only make sense
4616 * if in function of the boot time zone sizes.
4618 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4619 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4621 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4622 setup_per_zone_lowmem_reserve();
4623 return 0;
4627 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4628 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4629 * can have before it gets flushed back to buddy allocator.
4632 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4633 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4635 struct zone *zone;
4636 unsigned int cpu;
4637 int ret;
4639 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4640 if (!write || (ret == -EINVAL))
4641 return ret;
4642 for_each_zone(zone) {
4643 for_each_online_cpu(cpu) {
4644 unsigned long high;
4645 high = zone->present_pages / percpu_pagelist_fraction;
4646 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4649 return 0;
4652 int hashdist = HASHDIST_DEFAULT;
4654 #ifdef CONFIG_NUMA
4655 static int __init set_hashdist(char *str)
4657 if (!str)
4658 return 0;
4659 hashdist = simple_strtoul(str, &str, 0);
4660 return 1;
4662 __setup("hashdist=", set_hashdist);
4663 #endif
4666 * allocate a large system hash table from bootmem
4667 * - it is assumed that the hash table must contain an exact power-of-2
4668 * quantity of entries
4669 * - limit is the number of hash buckets, not the total allocation size
4671 void *__init alloc_large_system_hash(const char *tablename,
4672 unsigned long bucketsize,
4673 unsigned long numentries,
4674 int scale,
4675 int flags,
4676 unsigned int *_hash_shift,
4677 unsigned int *_hash_mask,
4678 unsigned long limit)
4680 unsigned long long max = limit;
4681 unsigned long log2qty, size;
4682 void *table = NULL;
4684 /* allow the kernel cmdline to have a say */
4685 if (!numentries) {
4686 /* round applicable memory size up to nearest megabyte */
4687 numentries = nr_kernel_pages;
4688 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4689 numentries >>= 20 - PAGE_SHIFT;
4690 numentries <<= 20 - PAGE_SHIFT;
4692 /* limit to 1 bucket per 2^scale bytes of low memory */
4693 if (scale > PAGE_SHIFT)
4694 numentries >>= (scale - PAGE_SHIFT);
4695 else
4696 numentries <<= (PAGE_SHIFT - scale);
4698 /* Make sure we've got at least a 0-order allocation.. */
4699 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4700 numentries = PAGE_SIZE / bucketsize;
4702 numentries = roundup_pow_of_two(numentries);
4704 /* limit allocation size to 1/16 total memory by default */
4705 if (max == 0) {
4706 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4707 do_div(max, bucketsize);
4710 if (numentries > max)
4711 numentries = max;
4713 log2qty = ilog2(numentries);
4715 do {
4716 size = bucketsize << log2qty;
4717 if (flags & HASH_EARLY)
4718 table = alloc_bootmem_nopanic(size);
4719 else if (hashdist)
4720 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4721 else {
4723 * If bucketsize is not a power-of-two, we may free
4724 * some pages at the end of hash table which
4725 * alloc_pages_exact() automatically does
4727 if (get_order(size) < MAX_ORDER)
4728 table = alloc_pages_exact(size, GFP_ATOMIC);
4730 } while (!table && size > PAGE_SIZE && --log2qty);
4732 if (!table)
4733 panic("Failed to allocate %s hash table\n", tablename);
4735 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4736 tablename,
4737 (1U << log2qty),
4738 ilog2(size) - PAGE_SHIFT,
4739 size);
4741 if (_hash_shift)
4742 *_hash_shift = log2qty;
4743 if (_hash_mask)
4744 *_hash_mask = (1 << log2qty) - 1;
4747 * If hashdist is set, the table allocation is done with __vmalloc()
4748 * which invokes the kmemleak_alloc() callback. This function may also
4749 * be called before the slab and kmemleak are initialised when
4750 * kmemleak simply buffers the request to be executed later
4751 * (GFP_ATOMIC flag ignored in this case).
4753 if (!hashdist)
4754 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4756 return table;
4759 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4760 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4761 unsigned long pfn)
4763 #ifdef CONFIG_SPARSEMEM
4764 return __pfn_to_section(pfn)->pageblock_flags;
4765 #else
4766 return zone->pageblock_flags;
4767 #endif /* CONFIG_SPARSEMEM */
4770 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4772 #ifdef CONFIG_SPARSEMEM
4773 pfn &= (PAGES_PER_SECTION-1);
4774 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4775 #else
4776 pfn = pfn - zone->zone_start_pfn;
4777 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4778 #endif /* CONFIG_SPARSEMEM */
4782 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4783 * @page: The page within the block of interest
4784 * @start_bitidx: The first bit of interest to retrieve
4785 * @end_bitidx: The last bit of interest
4786 * returns pageblock_bits flags
4788 unsigned long get_pageblock_flags_group(struct page *page,
4789 int start_bitidx, int end_bitidx)
4791 struct zone *zone;
4792 unsigned long *bitmap;
4793 unsigned long pfn, bitidx;
4794 unsigned long flags = 0;
4795 unsigned long value = 1;
4797 zone = page_zone(page);
4798 pfn = page_to_pfn(page);
4799 bitmap = get_pageblock_bitmap(zone, pfn);
4800 bitidx = pfn_to_bitidx(zone, pfn);
4802 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4803 if (test_bit(bitidx + start_bitidx, bitmap))
4804 flags |= value;
4806 return flags;
4810 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4811 * @page: The page within the block of interest
4812 * @start_bitidx: The first bit of interest
4813 * @end_bitidx: The last bit of interest
4814 * @flags: The flags to set
4816 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4817 int start_bitidx, int end_bitidx)
4819 struct zone *zone;
4820 unsigned long *bitmap;
4821 unsigned long pfn, bitidx;
4822 unsigned long value = 1;
4824 zone = page_zone(page);
4825 pfn = page_to_pfn(page);
4826 bitmap = get_pageblock_bitmap(zone, pfn);
4827 bitidx = pfn_to_bitidx(zone, pfn);
4828 VM_BUG_ON(pfn < zone->zone_start_pfn);
4829 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4831 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4832 if (flags & value)
4833 __set_bit(bitidx + start_bitidx, bitmap);
4834 else
4835 __clear_bit(bitidx + start_bitidx, bitmap);
4839 * This is designed as sub function...plz see page_isolation.c also.
4840 * set/clear page block's type to be ISOLATE.
4841 * page allocater never alloc memory from ISOLATE block.
4844 int set_migratetype_isolate(struct page *page)
4846 struct zone *zone;
4847 unsigned long flags;
4848 int ret = -EBUSY;
4850 zone = page_zone(page);
4851 spin_lock_irqsave(&zone->lock, flags);
4853 * In future, more migrate types will be able to be isolation target.
4855 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4856 goto out;
4857 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4858 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4859 ret = 0;
4860 out:
4861 spin_unlock_irqrestore(&zone->lock, flags);
4862 if (!ret)
4863 drain_all_pages();
4864 return ret;
4867 void unset_migratetype_isolate(struct page *page)
4869 struct zone *zone;
4870 unsigned long flags;
4871 zone = page_zone(page);
4872 spin_lock_irqsave(&zone->lock, flags);
4873 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4874 goto out;
4875 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4876 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4877 out:
4878 spin_unlock_irqrestore(&zone->lock, flags);
4881 #ifdef CONFIG_MEMORY_HOTREMOVE
4883 * All pages in the range must be isolated before calling this.
4885 void
4886 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4888 struct page *page;
4889 struct zone *zone;
4890 int order, i;
4891 unsigned long pfn;
4892 unsigned long flags;
4893 /* find the first valid pfn */
4894 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4895 if (pfn_valid(pfn))
4896 break;
4897 if (pfn == end_pfn)
4898 return;
4899 zone = page_zone(pfn_to_page(pfn));
4900 spin_lock_irqsave(&zone->lock, flags);
4901 pfn = start_pfn;
4902 while (pfn < end_pfn) {
4903 if (!pfn_valid(pfn)) {
4904 pfn++;
4905 continue;
4907 page = pfn_to_page(pfn);
4908 BUG_ON(page_count(page));
4909 BUG_ON(!PageBuddy(page));
4910 order = page_order(page);
4911 #ifdef CONFIG_DEBUG_VM
4912 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4913 pfn, 1 << order, end_pfn);
4914 #endif
4915 list_del(&page->lru);
4916 rmv_page_order(page);
4917 zone->free_area[order].nr_free--;
4918 __mod_zone_page_state(zone, NR_FREE_PAGES,
4919 - (1UL << order));
4920 for (i = 0; i < (1 << order); i++)
4921 SetPageReserved((page+i));
4922 pfn += (1 << order);
4924 spin_unlock_irqrestore(&zone->lock, flags);
4926 #endif