4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/config.h>
8 #include <linux/module.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/smp_lock.h>
13 #include <linux/notifier.h>
14 #include <linux/reboot.h>
15 #include <linux/prctl.h>
16 #include <linux/init.h>
17 #include <linux/highuid.h>
19 #include <linux/kernel.h>
20 #include <linux/kexec.h>
21 #include <linux/workqueue.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
33 #include <linux/compat.h>
34 #include <linux/syscalls.h>
36 #include <asm/uaccess.h>
38 #include <asm/unistd.h>
40 #ifndef SET_UNALIGN_CTL
41 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
43 #ifndef GET_UNALIGN_CTL
44 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
47 # define SET_FPEMU_CTL(a,b) (-EINVAL)
50 # define GET_FPEMU_CTL(a,b) (-EINVAL)
53 # define SET_FPEXC_CTL(a,b) (-EINVAL)
56 # define GET_FPEXC_CTL(a,b) (-EINVAL)
60 * this is where the system-wide overflow UID and GID are defined, for
61 * architectures that now have 32-bit UID/GID but didn't in the past
64 int overflowuid
= DEFAULT_OVERFLOWUID
;
65 int overflowgid
= DEFAULT_OVERFLOWGID
;
68 EXPORT_SYMBOL(overflowuid
);
69 EXPORT_SYMBOL(overflowgid
);
73 * the same as above, but for filesystems which can only store a 16-bit
74 * UID and GID. as such, this is needed on all architectures
77 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
78 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
80 EXPORT_SYMBOL(fs_overflowuid
);
81 EXPORT_SYMBOL(fs_overflowgid
);
84 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
91 * Notifier list for kernel code which wants to be called
92 * at shutdown. This is used to stop any idling DMA operations
96 static struct notifier_block
*reboot_notifier_list
;
97 static DEFINE_RWLOCK(notifier_lock
);
100 * notifier_chain_register - Add notifier to a notifier chain
101 * @list: Pointer to root list pointer
102 * @n: New entry in notifier chain
104 * Adds a notifier to a notifier chain.
106 * Currently always returns zero.
109 int notifier_chain_register(struct notifier_block
**list
, struct notifier_block
*n
)
111 write_lock(¬ifier_lock
);
114 if(n
->priority
> (*list
)->priority
)
116 list
= &((*list
)->next
);
120 write_unlock(¬ifier_lock
);
124 EXPORT_SYMBOL(notifier_chain_register
);
127 * notifier_chain_unregister - Remove notifier from a notifier chain
128 * @nl: Pointer to root list pointer
129 * @n: New entry in notifier chain
131 * Removes a notifier from a notifier chain.
133 * Returns zero on success, or %-ENOENT on failure.
136 int notifier_chain_unregister(struct notifier_block
**nl
, struct notifier_block
*n
)
138 write_lock(¬ifier_lock
);
144 write_unlock(¬ifier_lock
);
149 write_unlock(¬ifier_lock
);
153 EXPORT_SYMBOL(notifier_chain_unregister
);
156 * notifier_call_chain - Call functions in a notifier chain
157 * @n: Pointer to root pointer of notifier chain
158 * @val: Value passed unmodified to notifier function
159 * @v: Pointer passed unmodified to notifier function
161 * Calls each function in a notifier chain in turn.
163 * If the return value of the notifier can be and'd
164 * with %NOTIFY_STOP_MASK, then notifier_call_chain
165 * will return immediately, with the return value of
166 * the notifier function which halted execution.
167 * Otherwise, the return value is the return value
168 * of the last notifier function called.
171 int notifier_call_chain(struct notifier_block
**n
, unsigned long val
, void *v
)
174 struct notifier_block
*nb
= *n
;
178 ret
=nb
->notifier_call(nb
,val
,v
);
179 if(ret
&NOTIFY_STOP_MASK
)
188 EXPORT_SYMBOL(notifier_call_chain
);
191 * register_reboot_notifier - Register function to be called at reboot time
192 * @nb: Info about notifier function to be called
194 * Registers a function with the list of functions
195 * to be called at reboot time.
197 * Currently always returns zero, as notifier_chain_register
198 * always returns zero.
201 int register_reboot_notifier(struct notifier_block
* nb
)
203 return notifier_chain_register(&reboot_notifier_list
, nb
);
206 EXPORT_SYMBOL(register_reboot_notifier
);
209 * unregister_reboot_notifier - Unregister previously registered reboot notifier
210 * @nb: Hook to be unregistered
212 * Unregisters a previously registered reboot
215 * Returns zero on success, or %-ENOENT on failure.
218 int unregister_reboot_notifier(struct notifier_block
* nb
)
220 return notifier_chain_unregister(&reboot_notifier_list
, nb
);
223 EXPORT_SYMBOL(unregister_reboot_notifier
);
225 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
229 if (p
->uid
!= current
->euid
&&
230 p
->euid
!= current
->euid
&& !capable(CAP_SYS_NICE
)) {
234 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
238 no_nice
= security_task_setnice(p
, niceval
);
245 set_user_nice(p
, niceval
);
250 asmlinkage
long sys_setpriority(int which
, int who
, int niceval
)
252 struct task_struct
*g
, *p
;
253 struct user_struct
*user
;
256 if (which
> 2 || which
< 0)
259 /* normalize: avoid signed division (rounding problems) */
266 read_lock(&tasklist_lock
);
271 p
= find_task_by_pid(who
);
273 error
= set_one_prio(p
, niceval
, error
);
277 who
= process_group(current
);
278 do_each_task_pid(who
, PIDTYPE_PGID
, p
) {
279 error
= set_one_prio(p
, niceval
, error
);
280 } while_each_task_pid(who
, PIDTYPE_PGID
, p
);
283 user
= current
->user
;
287 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
288 goto out_unlock
; /* No processes for this user */
292 error
= set_one_prio(p
, niceval
, error
);
293 while_each_thread(g
, p
);
294 if (who
!= current
->uid
)
295 free_uid(user
); /* For find_user() */
299 read_unlock(&tasklist_lock
);
305 * Ugh. To avoid negative return values, "getpriority()" will
306 * not return the normal nice-value, but a negated value that
307 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
308 * to stay compatible.
310 asmlinkage
long sys_getpriority(int which
, int who
)
312 struct task_struct
*g
, *p
;
313 struct user_struct
*user
;
314 long niceval
, retval
= -ESRCH
;
316 if (which
> 2 || which
< 0)
319 read_lock(&tasklist_lock
);
324 p
= find_task_by_pid(who
);
326 niceval
= 20 - task_nice(p
);
327 if (niceval
> retval
)
333 who
= process_group(current
);
334 do_each_task_pid(who
, PIDTYPE_PGID
, p
) {
335 niceval
= 20 - task_nice(p
);
336 if (niceval
> retval
)
338 } while_each_task_pid(who
, PIDTYPE_PGID
, p
);
341 user
= current
->user
;
345 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
346 goto out_unlock
; /* No processes for this user */
350 niceval
= 20 - task_nice(p
);
351 if (niceval
> retval
)
354 while_each_thread(g
, p
);
355 if (who
!= current
->uid
)
356 free_uid(user
); /* for find_user() */
360 read_unlock(&tasklist_lock
);
366 * emergency_restart - reboot the system
368 * Without shutting down any hardware or taking any locks
369 * reboot the system. This is called when we know we are in
370 * trouble so this is our best effort to reboot. This is
371 * safe to call in interrupt context.
373 void emergency_restart(void)
375 machine_emergency_restart();
377 EXPORT_SYMBOL_GPL(emergency_restart
);
379 void kernel_restart_prepare(char *cmd
)
381 notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
382 system_state
= SYSTEM_RESTART
;
387 * kernel_restart - reboot the system
388 * @cmd: pointer to buffer containing command to execute for restart
391 * Shutdown everything and perform a clean reboot.
392 * This is not safe to call in interrupt context.
394 void kernel_restart(char *cmd
)
396 kernel_restart_prepare(cmd
);
398 printk(KERN_EMERG
"Restarting system.\n");
400 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
403 machine_restart(cmd
);
405 EXPORT_SYMBOL_GPL(kernel_restart
);
408 * kernel_kexec - reboot the system
410 * Move into place and start executing a preloaded standalone
411 * executable. If nothing was preloaded return an error.
413 void kernel_kexec(void)
416 struct kimage
*image
;
417 image
= xchg(&kexec_image
, 0);
421 kernel_restart_prepare(NULL
);
422 printk(KERN_EMERG
"Starting new kernel\n");
424 machine_kexec(image
);
427 EXPORT_SYMBOL_GPL(kernel_kexec
);
430 * kernel_halt - halt the system
432 * Shutdown everything and perform a clean system halt.
434 void kernel_halt_prepare(void)
436 notifier_call_chain(&reboot_notifier_list
, SYS_HALT
, NULL
);
437 system_state
= SYSTEM_HALT
;
440 void kernel_halt(void)
442 kernel_halt_prepare();
443 printk(KERN_EMERG
"System halted.\n");
446 EXPORT_SYMBOL_GPL(kernel_halt
);
449 * kernel_power_off - power_off the system
451 * Shutdown everything and perform a clean system power_off.
453 void kernel_power_off_prepare(void)
455 notifier_call_chain(&reboot_notifier_list
, SYS_POWER_OFF
, NULL
);
456 system_state
= SYSTEM_POWER_OFF
;
459 void kernel_power_off(void)
461 kernel_power_off_prepare();
462 printk(KERN_EMERG
"Power down.\n");
465 EXPORT_SYMBOL_GPL(kernel_power_off
);
468 * Reboot system call: for obvious reasons only root may call it,
469 * and even root needs to set up some magic numbers in the registers
470 * so that some mistake won't make this reboot the whole machine.
471 * You can also set the meaning of the ctrl-alt-del-key here.
473 * reboot doesn't sync: do that yourself before calling this.
475 asmlinkage
long sys_reboot(int magic1
, int magic2
, unsigned int cmd
, void __user
* arg
)
479 /* We only trust the superuser with rebooting the system. */
480 if (!capable(CAP_SYS_BOOT
))
483 /* For safety, we require "magic" arguments. */
484 if (magic1
!= LINUX_REBOOT_MAGIC1
||
485 (magic2
!= LINUX_REBOOT_MAGIC2
&&
486 magic2
!= LINUX_REBOOT_MAGIC2A
&&
487 magic2
!= LINUX_REBOOT_MAGIC2B
&&
488 magic2
!= LINUX_REBOOT_MAGIC2C
))
493 case LINUX_REBOOT_CMD_RESTART
:
494 kernel_restart(NULL
);
497 case LINUX_REBOOT_CMD_CAD_ON
:
501 case LINUX_REBOOT_CMD_CAD_OFF
:
505 case LINUX_REBOOT_CMD_HALT
:
511 case LINUX_REBOOT_CMD_POWER_OFF
:
517 case LINUX_REBOOT_CMD_RESTART2
:
518 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
522 buffer
[sizeof(buffer
) - 1] = '\0';
524 kernel_restart(buffer
);
527 case LINUX_REBOOT_CMD_KEXEC
:
532 #ifdef CONFIG_SOFTWARE_SUSPEND
533 case LINUX_REBOOT_CMD_SW_SUSPEND
:
535 int ret
= software_suspend();
549 static void deferred_cad(void *dummy
)
551 kernel_restart(NULL
);
555 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
556 * As it's called within an interrupt, it may NOT sync: the only choice
557 * is whether to reboot at once, or just ignore the ctrl-alt-del.
559 void ctrl_alt_del(void)
561 static DECLARE_WORK(cad_work
, deferred_cad
, NULL
);
564 schedule_work(&cad_work
);
566 kill_proc(cad_pid
, SIGINT
, 1);
571 * Unprivileged users may change the real gid to the effective gid
572 * or vice versa. (BSD-style)
574 * If you set the real gid at all, or set the effective gid to a value not
575 * equal to the real gid, then the saved gid is set to the new effective gid.
577 * This makes it possible for a setgid program to completely drop its
578 * privileges, which is often a useful assertion to make when you are doing
579 * a security audit over a program.
581 * The general idea is that a program which uses just setregid() will be
582 * 100% compatible with BSD. A program which uses just setgid() will be
583 * 100% compatible with POSIX with saved IDs.
585 * SMP: There are not races, the GIDs are checked only by filesystem
586 * operations (as far as semantic preservation is concerned).
588 asmlinkage
long sys_setregid(gid_t rgid
, gid_t egid
)
590 int old_rgid
= current
->gid
;
591 int old_egid
= current
->egid
;
592 int new_rgid
= old_rgid
;
593 int new_egid
= old_egid
;
596 retval
= security_task_setgid(rgid
, egid
, (gid_t
)-1, LSM_SETID_RE
);
600 if (rgid
!= (gid_t
) -1) {
601 if ((old_rgid
== rgid
) ||
602 (current
->egid
==rgid
) ||
608 if (egid
!= (gid_t
) -1) {
609 if ((old_rgid
== egid
) ||
610 (current
->egid
== egid
) ||
611 (current
->sgid
== egid
) ||
618 if (new_egid
!= old_egid
)
620 current
->mm
->dumpable
= suid_dumpable
;
623 if (rgid
!= (gid_t
) -1 ||
624 (egid
!= (gid_t
) -1 && egid
!= old_rgid
))
625 current
->sgid
= new_egid
;
626 current
->fsgid
= new_egid
;
627 current
->egid
= new_egid
;
628 current
->gid
= new_rgid
;
629 key_fsgid_changed(current
);
630 proc_id_connector(current
, PROC_EVENT_GID
);
635 * setgid() is implemented like SysV w/ SAVED_IDS
637 * SMP: Same implicit races as above.
639 asmlinkage
long sys_setgid(gid_t gid
)
641 int old_egid
= current
->egid
;
644 retval
= security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_ID
);
648 if (capable(CAP_SETGID
))
652 current
->mm
->dumpable
= suid_dumpable
;
655 current
->gid
= current
->egid
= current
->sgid
= current
->fsgid
= gid
;
657 else if ((gid
== current
->gid
) || (gid
== current
->sgid
))
661 current
->mm
->dumpable
= suid_dumpable
;
664 current
->egid
= current
->fsgid
= gid
;
669 key_fsgid_changed(current
);
670 proc_id_connector(current
, PROC_EVENT_GID
);
674 static int set_user(uid_t new_ruid
, int dumpclear
)
676 struct user_struct
*new_user
;
678 new_user
= alloc_uid(new_ruid
);
682 if (atomic_read(&new_user
->processes
) >=
683 current
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
&&
684 new_user
!= &root_user
) {
689 switch_uid(new_user
);
693 current
->mm
->dumpable
= suid_dumpable
;
696 current
->uid
= new_ruid
;
701 * Unprivileged users may change the real uid to the effective uid
702 * or vice versa. (BSD-style)
704 * If you set the real uid at all, or set the effective uid to a value not
705 * equal to the real uid, then the saved uid is set to the new effective uid.
707 * This makes it possible for a setuid program to completely drop its
708 * privileges, which is often a useful assertion to make when you are doing
709 * a security audit over a program.
711 * The general idea is that a program which uses just setreuid() will be
712 * 100% compatible with BSD. A program which uses just setuid() will be
713 * 100% compatible with POSIX with saved IDs.
715 asmlinkage
long sys_setreuid(uid_t ruid
, uid_t euid
)
717 int old_ruid
, old_euid
, old_suid
, new_ruid
, new_euid
;
720 retval
= security_task_setuid(ruid
, euid
, (uid_t
)-1, LSM_SETID_RE
);
724 new_ruid
= old_ruid
= current
->uid
;
725 new_euid
= old_euid
= current
->euid
;
726 old_suid
= current
->suid
;
728 if (ruid
!= (uid_t
) -1) {
730 if ((old_ruid
!= ruid
) &&
731 (current
->euid
!= ruid
) &&
732 !capable(CAP_SETUID
))
736 if (euid
!= (uid_t
) -1) {
738 if ((old_ruid
!= euid
) &&
739 (current
->euid
!= euid
) &&
740 (current
->suid
!= euid
) &&
741 !capable(CAP_SETUID
))
745 if (new_ruid
!= old_ruid
&& set_user(new_ruid
, new_euid
!= old_euid
) < 0)
748 if (new_euid
!= old_euid
)
750 current
->mm
->dumpable
= suid_dumpable
;
753 current
->fsuid
= current
->euid
= new_euid
;
754 if (ruid
!= (uid_t
) -1 ||
755 (euid
!= (uid_t
) -1 && euid
!= old_ruid
))
756 current
->suid
= current
->euid
;
757 current
->fsuid
= current
->euid
;
759 key_fsuid_changed(current
);
760 proc_id_connector(current
, PROC_EVENT_UID
);
762 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RE
);
768 * setuid() is implemented like SysV with SAVED_IDS
770 * Note that SAVED_ID's is deficient in that a setuid root program
771 * like sendmail, for example, cannot set its uid to be a normal
772 * user and then switch back, because if you're root, setuid() sets
773 * the saved uid too. If you don't like this, blame the bright people
774 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
775 * will allow a root program to temporarily drop privileges and be able to
776 * regain them by swapping the real and effective uid.
778 asmlinkage
long sys_setuid(uid_t uid
)
780 int old_euid
= current
->euid
;
781 int old_ruid
, old_suid
, new_ruid
, new_suid
;
784 retval
= security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_ID
);
788 old_ruid
= new_ruid
= current
->uid
;
789 old_suid
= current
->suid
;
792 if (capable(CAP_SETUID
)) {
793 if (uid
!= old_ruid
&& set_user(uid
, old_euid
!= uid
) < 0)
796 } else if ((uid
!= current
->uid
) && (uid
!= new_suid
))
801 current
->mm
->dumpable
= suid_dumpable
;
804 current
->fsuid
= current
->euid
= uid
;
805 current
->suid
= new_suid
;
807 key_fsuid_changed(current
);
808 proc_id_connector(current
, PROC_EVENT_UID
);
810 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_ID
);
815 * This function implements a generic ability to update ruid, euid,
816 * and suid. This allows you to implement the 4.4 compatible seteuid().
818 asmlinkage
long sys_setresuid(uid_t ruid
, uid_t euid
, uid_t suid
)
820 int old_ruid
= current
->uid
;
821 int old_euid
= current
->euid
;
822 int old_suid
= current
->suid
;
825 retval
= security_task_setuid(ruid
, euid
, suid
, LSM_SETID_RES
);
829 if (!capable(CAP_SETUID
)) {
830 if ((ruid
!= (uid_t
) -1) && (ruid
!= current
->uid
) &&
831 (ruid
!= current
->euid
) && (ruid
!= current
->suid
))
833 if ((euid
!= (uid_t
) -1) && (euid
!= current
->uid
) &&
834 (euid
!= current
->euid
) && (euid
!= current
->suid
))
836 if ((suid
!= (uid_t
) -1) && (suid
!= current
->uid
) &&
837 (suid
!= current
->euid
) && (suid
!= current
->suid
))
840 if (ruid
!= (uid_t
) -1) {
841 if (ruid
!= current
->uid
&& set_user(ruid
, euid
!= current
->euid
) < 0)
844 if (euid
!= (uid_t
) -1) {
845 if (euid
!= current
->euid
)
847 current
->mm
->dumpable
= suid_dumpable
;
850 current
->euid
= euid
;
852 current
->fsuid
= current
->euid
;
853 if (suid
!= (uid_t
) -1)
854 current
->suid
= suid
;
856 key_fsuid_changed(current
);
857 proc_id_connector(current
, PROC_EVENT_UID
);
859 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RES
);
862 asmlinkage
long sys_getresuid(uid_t __user
*ruid
, uid_t __user
*euid
, uid_t __user
*suid
)
866 if (!(retval
= put_user(current
->uid
, ruid
)) &&
867 !(retval
= put_user(current
->euid
, euid
)))
868 retval
= put_user(current
->suid
, suid
);
874 * Same as above, but for rgid, egid, sgid.
876 asmlinkage
long sys_setresgid(gid_t rgid
, gid_t egid
, gid_t sgid
)
880 retval
= security_task_setgid(rgid
, egid
, sgid
, LSM_SETID_RES
);
884 if (!capable(CAP_SETGID
)) {
885 if ((rgid
!= (gid_t
) -1) && (rgid
!= current
->gid
) &&
886 (rgid
!= current
->egid
) && (rgid
!= current
->sgid
))
888 if ((egid
!= (gid_t
) -1) && (egid
!= current
->gid
) &&
889 (egid
!= current
->egid
) && (egid
!= current
->sgid
))
891 if ((sgid
!= (gid_t
) -1) && (sgid
!= current
->gid
) &&
892 (sgid
!= current
->egid
) && (sgid
!= current
->sgid
))
895 if (egid
!= (gid_t
) -1) {
896 if (egid
!= current
->egid
)
898 current
->mm
->dumpable
= suid_dumpable
;
901 current
->egid
= egid
;
903 current
->fsgid
= current
->egid
;
904 if (rgid
!= (gid_t
) -1)
906 if (sgid
!= (gid_t
) -1)
907 current
->sgid
= sgid
;
909 key_fsgid_changed(current
);
910 proc_id_connector(current
, PROC_EVENT_GID
);
914 asmlinkage
long sys_getresgid(gid_t __user
*rgid
, gid_t __user
*egid
, gid_t __user
*sgid
)
918 if (!(retval
= put_user(current
->gid
, rgid
)) &&
919 !(retval
= put_user(current
->egid
, egid
)))
920 retval
= put_user(current
->sgid
, sgid
);
927 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
928 * is used for "access()" and for the NFS daemon (letting nfsd stay at
929 * whatever uid it wants to). It normally shadows "euid", except when
930 * explicitly set by setfsuid() or for access..
932 asmlinkage
long sys_setfsuid(uid_t uid
)
936 old_fsuid
= current
->fsuid
;
937 if (security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
))
940 if (uid
== current
->uid
|| uid
== current
->euid
||
941 uid
== current
->suid
|| uid
== current
->fsuid
||
944 if (uid
!= old_fsuid
)
946 current
->mm
->dumpable
= suid_dumpable
;
949 current
->fsuid
= uid
;
952 key_fsuid_changed(current
);
953 proc_id_connector(current
, PROC_EVENT_UID
);
955 security_task_post_setuid(old_fsuid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
);
961 * Samma på svenska..
963 asmlinkage
long sys_setfsgid(gid_t gid
)
967 old_fsgid
= current
->fsgid
;
968 if (security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_FS
))
971 if (gid
== current
->gid
|| gid
== current
->egid
||
972 gid
== current
->sgid
|| gid
== current
->fsgid
||
975 if (gid
!= old_fsgid
)
977 current
->mm
->dumpable
= suid_dumpable
;
980 current
->fsgid
= gid
;
981 key_fsgid_changed(current
);
982 proc_id_connector(current
, PROC_EVENT_GID
);
987 asmlinkage
long sys_times(struct tms __user
* tbuf
)
990 * In the SMP world we might just be unlucky and have one of
991 * the times increment as we use it. Since the value is an
992 * atomically safe type this is just fine. Conceptually its
993 * as if the syscall took an instant longer to occur.
997 cputime_t utime
, stime
, cutime
, cstime
;
1000 if (thread_group_empty(current
)) {
1002 * Single thread case without the use of any locks.
1004 * We may race with release_task if two threads are
1005 * executing. However, release task first adds up the
1006 * counters (__exit_signal) before removing the task
1007 * from the process tasklist (__unhash_process).
1008 * __exit_signal also acquires and releases the
1009 * siglock which results in the proper memory ordering
1010 * so that the list modifications are always visible
1011 * after the counters have been updated.
1013 * If the counters have been updated by the second thread
1014 * but the thread has not yet been removed from the list
1015 * then the other branch will be executing which will
1016 * block on tasklist_lock until the exit handling of the
1017 * other task is finished.
1019 * This also implies that the sighand->siglock cannot
1020 * be held by another processor. So we can also
1021 * skip acquiring that lock.
1023 utime
= cputime_add(current
->signal
->utime
, current
->utime
);
1024 stime
= cputime_add(current
->signal
->utime
, current
->stime
);
1025 cutime
= current
->signal
->cutime
;
1026 cstime
= current
->signal
->cstime
;
1031 /* Process with multiple threads */
1032 struct task_struct
*tsk
= current
;
1033 struct task_struct
*t
;
1035 read_lock(&tasklist_lock
);
1036 utime
= tsk
->signal
->utime
;
1037 stime
= tsk
->signal
->stime
;
1040 utime
= cputime_add(utime
, t
->utime
);
1041 stime
= cputime_add(stime
, t
->stime
);
1046 * While we have tasklist_lock read-locked, no dying thread
1047 * can be updating current->signal->[us]time. Instead,
1048 * we got their counts included in the live thread loop.
1049 * However, another thread can come in right now and
1050 * do a wait call that updates current->signal->c[us]time.
1051 * To make sure we always see that pair updated atomically,
1052 * we take the siglock around fetching them.
1054 spin_lock_irq(&tsk
->sighand
->siglock
);
1055 cutime
= tsk
->signal
->cutime
;
1056 cstime
= tsk
->signal
->cstime
;
1057 spin_unlock_irq(&tsk
->sighand
->siglock
);
1058 read_unlock(&tasklist_lock
);
1060 tmp
.tms_utime
= cputime_to_clock_t(utime
);
1061 tmp
.tms_stime
= cputime_to_clock_t(stime
);
1062 tmp
.tms_cutime
= cputime_to_clock_t(cutime
);
1063 tmp
.tms_cstime
= cputime_to_clock_t(cstime
);
1064 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
1067 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1071 * This needs some heavy checking ...
1072 * I just haven't the stomach for it. I also don't fully
1073 * understand sessions/pgrp etc. Let somebody who does explain it.
1075 * OK, I think I have the protection semantics right.... this is really
1076 * only important on a multi-user system anyway, to make sure one user
1077 * can't send a signal to a process owned by another. -TYT, 12/12/91
1079 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1083 asmlinkage
long sys_setpgid(pid_t pid
, pid_t pgid
)
1085 struct task_struct
*p
;
1095 /* From this point forward we keep holding onto the tasklist lock
1096 * so that our parent does not change from under us. -DaveM
1098 write_lock_irq(&tasklist_lock
);
1101 p
= find_task_by_pid(pid
);
1106 if (!thread_group_leader(p
))
1109 if (p
->parent
== current
|| p
->real_parent
== current
) {
1111 if (p
->signal
->session
!= current
->signal
->session
)
1123 if (p
->signal
->leader
)
1127 struct task_struct
*p
;
1129 do_each_task_pid(pgid
, PIDTYPE_PGID
, p
) {
1130 if (p
->signal
->session
== current
->signal
->session
)
1132 } while_each_task_pid(pgid
, PIDTYPE_PGID
, p
);
1137 err
= security_task_setpgid(p
, pgid
);
1141 if (process_group(p
) != pgid
) {
1142 detach_pid(p
, PIDTYPE_PGID
);
1143 p
->signal
->pgrp
= pgid
;
1144 attach_pid(p
, PIDTYPE_PGID
, pgid
);
1149 /* All paths lead to here, thus we are safe. -DaveM */
1150 write_unlock_irq(&tasklist_lock
);
1154 asmlinkage
long sys_getpgid(pid_t pid
)
1157 return process_group(current
);
1160 struct task_struct
*p
;
1162 read_lock(&tasklist_lock
);
1163 p
= find_task_by_pid(pid
);
1167 retval
= security_task_getpgid(p
);
1169 retval
= process_group(p
);
1171 read_unlock(&tasklist_lock
);
1176 #ifdef __ARCH_WANT_SYS_GETPGRP
1178 asmlinkage
long sys_getpgrp(void)
1180 /* SMP - assuming writes are word atomic this is fine */
1181 return process_group(current
);
1186 asmlinkage
long sys_getsid(pid_t pid
)
1189 return current
->signal
->session
;
1192 struct task_struct
*p
;
1194 read_lock(&tasklist_lock
);
1195 p
= find_task_by_pid(pid
);
1199 retval
= security_task_getsid(p
);
1201 retval
= p
->signal
->session
;
1203 read_unlock(&tasklist_lock
);
1208 asmlinkage
long sys_setsid(void)
1213 if (!thread_group_leader(current
))
1217 write_lock_irq(&tasklist_lock
);
1219 pid
= find_pid(PIDTYPE_PGID
, current
->pid
);
1223 current
->signal
->leader
= 1;
1224 __set_special_pids(current
->pid
, current
->pid
);
1225 current
->signal
->tty
= NULL
;
1226 current
->signal
->tty_old_pgrp
= 0;
1227 err
= process_group(current
);
1229 write_unlock_irq(&tasklist_lock
);
1235 * Supplementary group IDs
1238 /* init to 2 - one for init_task, one to ensure it is never freed */
1239 struct group_info init_groups
= { .usage
= ATOMIC_INIT(2) };
1241 struct group_info
*groups_alloc(int gidsetsize
)
1243 struct group_info
*group_info
;
1247 nblocks
= (gidsetsize
+ NGROUPS_PER_BLOCK
- 1) / NGROUPS_PER_BLOCK
;
1248 /* Make sure we always allocate at least one indirect block pointer */
1249 nblocks
= nblocks
? : 1;
1250 group_info
= kmalloc(sizeof(*group_info
) + nblocks
*sizeof(gid_t
*), GFP_USER
);
1253 group_info
->ngroups
= gidsetsize
;
1254 group_info
->nblocks
= nblocks
;
1255 atomic_set(&group_info
->usage
, 1);
1257 if (gidsetsize
<= NGROUPS_SMALL
) {
1258 group_info
->blocks
[0] = group_info
->small_block
;
1260 for (i
= 0; i
< nblocks
; i
++) {
1262 b
= (void *)__get_free_page(GFP_USER
);
1264 goto out_undo_partial_alloc
;
1265 group_info
->blocks
[i
] = b
;
1270 out_undo_partial_alloc
:
1272 free_page((unsigned long)group_info
->blocks
[i
]);
1278 EXPORT_SYMBOL(groups_alloc
);
1280 void groups_free(struct group_info
*group_info
)
1282 if (group_info
->blocks
[0] != group_info
->small_block
) {
1284 for (i
= 0; i
< group_info
->nblocks
; i
++)
1285 free_page((unsigned long)group_info
->blocks
[i
]);
1290 EXPORT_SYMBOL(groups_free
);
1292 /* export the group_info to a user-space array */
1293 static int groups_to_user(gid_t __user
*grouplist
,
1294 struct group_info
*group_info
)
1297 int count
= group_info
->ngroups
;
1299 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1300 int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1301 int off
= i
* NGROUPS_PER_BLOCK
;
1302 int len
= cp_count
* sizeof(*grouplist
);
1304 if (copy_to_user(grouplist
+off
, group_info
->blocks
[i
], len
))
1312 /* fill a group_info from a user-space array - it must be allocated already */
1313 static int groups_from_user(struct group_info
*group_info
,
1314 gid_t __user
*grouplist
)
1317 int count
= group_info
->ngroups
;
1319 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1320 int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1321 int off
= i
* NGROUPS_PER_BLOCK
;
1322 int len
= cp_count
* sizeof(*grouplist
);
1324 if (copy_from_user(group_info
->blocks
[i
], grouplist
+off
, len
))
1332 /* a simple Shell sort */
1333 static void groups_sort(struct group_info
*group_info
)
1335 int base
, max
, stride
;
1336 int gidsetsize
= group_info
->ngroups
;
1338 for (stride
= 1; stride
< gidsetsize
; stride
= 3 * stride
+ 1)
1343 max
= gidsetsize
- stride
;
1344 for (base
= 0; base
< max
; base
++) {
1346 int right
= left
+ stride
;
1347 gid_t tmp
= GROUP_AT(group_info
, right
);
1349 while (left
>= 0 && GROUP_AT(group_info
, left
) > tmp
) {
1350 GROUP_AT(group_info
, right
) =
1351 GROUP_AT(group_info
, left
);
1355 GROUP_AT(group_info
, right
) = tmp
;
1361 /* a simple bsearch */
1362 int groups_search(struct group_info
*group_info
, gid_t grp
)
1370 right
= group_info
->ngroups
;
1371 while (left
< right
) {
1372 int mid
= (left
+right
)/2;
1373 int cmp
= grp
- GROUP_AT(group_info
, mid
);
1384 /* validate and set current->group_info */
1385 int set_current_groups(struct group_info
*group_info
)
1388 struct group_info
*old_info
;
1390 retval
= security_task_setgroups(group_info
);
1394 groups_sort(group_info
);
1395 get_group_info(group_info
);
1398 old_info
= current
->group_info
;
1399 current
->group_info
= group_info
;
1400 task_unlock(current
);
1402 put_group_info(old_info
);
1407 EXPORT_SYMBOL(set_current_groups
);
1409 asmlinkage
long sys_getgroups(int gidsetsize
, gid_t __user
*grouplist
)
1414 * SMP: Nobody else can change our grouplist. Thus we are
1421 /* no need to grab task_lock here; it cannot change */
1422 get_group_info(current
->group_info
);
1423 i
= current
->group_info
->ngroups
;
1425 if (i
> gidsetsize
) {
1429 if (groups_to_user(grouplist
, current
->group_info
)) {
1435 put_group_info(current
->group_info
);
1440 * SMP: Our groups are copy-on-write. We can set them safely
1441 * without another task interfering.
1444 asmlinkage
long sys_setgroups(int gidsetsize
, gid_t __user
*grouplist
)
1446 struct group_info
*group_info
;
1449 if (!capable(CAP_SETGID
))
1451 if ((unsigned)gidsetsize
> NGROUPS_MAX
)
1454 group_info
= groups_alloc(gidsetsize
);
1457 retval
= groups_from_user(group_info
, grouplist
);
1459 put_group_info(group_info
);
1463 retval
= set_current_groups(group_info
);
1464 put_group_info(group_info
);
1470 * Check whether we're fsgid/egid or in the supplemental group..
1472 int in_group_p(gid_t grp
)
1475 if (grp
!= current
->fsgid
) {
1476 get_group_info(current
->group_info
);
1477 retval
= groups_search(current
->group_info
, grp
);
1478 put_group_info(current
->group_info
);
1483 EXPORT_SYMBOL(in_group_p
);
1485 int in_egroup_p(gid_t grp
)
1488 if (grp
!= current
->egid
) {
1489 get_group_info(current
->group_info
);
1490 retval
= groups_search(current
->group_info
, grp
);
1491 put_group_info(current
->group_info
);
1496 EXPORT_SYMBOL(in_egroup_p
);
1498 DECLARE_RWSEM(uts_sem
);
1500 EXPORT_SYMBOL(uts_sem
);
1502 asmlinkage
long sys_newuname(struct new_utsname __user
* name
)
1506 down_read(&uts_sem
);
1507 if (copy_to_user(name
,&system_utsname
,sizeof *name
))
1513 asmlinkage
long sys_sethostname(char __user
*name
, int len
)
1516 char tmp
[__NEW_UTS_LEN
];
1518 if (!capable(CAP_SYS_ADMIN
))
1520 if (len
< 0 || len
> __NEW_UTS_LEN
)
1522 down_write(&uts_sem
);
1524 if (!copy_from_user(tmp
, name
, len
)) {
1525 memcpy(system_utsname
.nodename
, tmp
, len
);
1526 system_utsname
.nodename
[len
] = 0;
1533 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1535 asmlinkage
long sys_gethostname(char __user
*name
, int len
)
1541 down_read(&uts_sem
);
1542 i
= 1 + strlen(system_utsname
.nodename
);
1546 if (copy_to_user(name
, system_utsname
.nodename
, i
))
1555 * Only setdomainname; getdomainname can be implemented by calling
1558 asmlinkage
long sys_setdomainname(char __user
*name
, int len
)
1561 char tmp
[__NEW_UTS_LEN
];
1563 if (!capable(CAP_SYS_ADMIN
))
1565 if (len
< 0 || len
> __NEW_UTS_LEN
)
1568 down_write(&uts_sem
);
1570 if (!copy_from_user(tmp
, name
, len
)) {
1571 memcpy(system_utsname
.domainname
, tmp
, len
);
1572 system_utsname
.domainname
[len
] = 0;
1579 asmlinkage
long sys_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1581 if (resource
>= RLIM_NLIMITS
)
1584 struct rlimit value
;
1585 task_lock(current
->group_leader
);
1586 value
= current
->signal
->rlim
[resource
];
1587 task_unlock(current
->group_leader
);
1588 return copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1592 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1595 * Back compatibility for getrlimit. Needed for some apps.
1598 asmlinkage
long sys_old_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1601 if (resource
>= RLIM_NLIMITS
)
1604 task_lock(current
->group_leader
);
1605 x
= current
->signal
->rlim
[resource
];
1606 task_unlock(current
->group_leader
);
1607 if(x
.rlim_cur
> 0x7FFFFFFF)
1608 x
.rlim_cur
= 0x7FFFFFFF;
1609 if(x
.rlim_max
> 0x7FFFFFFF)
1610 x
.rlim_max
= 0x7FFFFFFF;
1611 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1616 asmlinkage
long sys_setrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1618 struct rlimit new_rlim
, *old_rlim
;
1621 if (resource
>= RLIM_NLIMITS
)
1623 if(copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1625 if (new_rlim
.rlim_cur
> new_rlim
.rlim_max
)
1627 old_rlim
= current
->signal
->rlim
+ resource
;
1628 if ((new_rlim
.rlim_max
> old_rlim
->rlim_max
) &&
1629 !capable(CAP_SYS_RESOURCE
))
1631 if (resource
== RLIMIT_NOFILE
&& new_rlim
.rlim_max
> NR_OPEN
)
1634 retval
= security_task_setrlimit(resource
, &new_rlim
);
1638 task_lock(current
->group_leader
);
1639 *old_rlim
= new_rlim
;
1640 task_unlock(current
->group_leader
);
1642 if (resource
== RLIMIT_CPU
&& new_rlim
.rlim_cur
!= RLIM_INFINITY
&&
1643 (cputime_eq(current
->signal
->it_prof_expires
, cputime_zero
) ||
1644 new_rlim
.rlim_cur
<= cputime_to_secs(
1645 current
->signal
->it_prof_expires
))) {
1646 cputime_t cputime
= secs_to_cputime(new_rlim
.rlim_cur
);
1647 read_lock(&tasklist_lock
);
1648 spin_lock_irq(¤t
->sighand
->siglock
);
1649 set_process_cpu_timer(current
, CPUCLOCK_PROF
,
1651 spin_unlock_irq(¤t
->sighand
->siglock
);
1652 read_unlock(&tasklist_lock
);
1659 * It would make sense to put struct rusage in the task_struct,
1660 * except that would make the task_struct be *really big*. After
1661 * task_struct gets moved into malloc'ed memory, it would
1662 * make sense to do this. It will make moving the rest of the information
1663 * a lot simpler! (Which we're not doing right now because we're not
1664 * measuring them yet).
1666 * This expects to be called with tasklist_lock read-locked or better,
1667 * and the siglock not locked. It may momentarily take the siglock.
1669 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1670 * races with threads incrementing their own counters. But since word
1671 * reads are atomic, we either get new values or old values and we don't
1672 * care which for the sums. We always take the siglock to protect reading
1673 * the c* fields from p->signal from races with exit.c updating those
1674 * fields when reaping, so a sample either gets all the additions of a
1675 * given child after it's reaped, or none so this sample is before reaping.
1678 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1680 struct task_struct
*t
;
1681 unsigned long flags
;
1682 cputime_t utime
, stime
;
1684 memset((char *) r
, 0, sizeof *r
);
1686 if (unlikely(!p
->signal
))
1690 case RUSAGE_CHILDREN
:
1691 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
1692 utime
= p
->signal
->cutime
;
1693 stime
= p
->signal
->cstime
;
1694 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1695 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1696 r
->ru_minflt
= p
->signal
->cmin_flt
;
1697 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1698 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
1699 cputime_to_timeval(utime
, &r
->ru_utime
);
1700 cputime_to_timeval(stime
, &r
->ru_stime
);
1703 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
1704 utime
= stime
= cputime_zero
;
1707 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
1708 utime
= p
->signal
->cutime
;
1709 stime
= p
->signal
->cstime
;
1710 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1711 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1712 r
->ru_minflt
= p
->signal
->cmin_flt
;
1713 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1715 utime
= cputime_add(utime
, p
->signal
->utime
);
1716 stime
= cputime_add(stime
, p
->signal
->stime
);
1717 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1718 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1719 r
->ru_minflt
+= p
->signal
->min_flt
;
1720 r
->ru_majflt
+= p
->signal
->maj_flt
;
1723 utime
= cputime_add(utime
, t
->utime
);
1724 stime
= cputime_add(stime
, t
->stime
);
1725 r
->ru_nvcsw
+= t
->nvcsw
;
1726 r
->ru_nivcsw
+= t
->nivcsw
;
1727 r
->ru_minflt
+= t
->min_flt
;
1728 r
->ru_majflt
+= t
->maj_flt
;
1731 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
1732 cputime_to_timeval(utime
, &r
->ru_utime
);
1733 cputime_to_timeval(stime
, &r
->ru_stime
);
1740 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1743 read_lock(&tasklist_lock
);
1744 k_getrusage(p
, who
, &r
);
1745 read_unlock(&tasklist_lock
);
1746 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1749 asmlinkage
long sys_getrusage(int who
, struct rusage __user
*ru
)
1751 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
)
1753 return getrusage(current
, who
, ru
);
1756 asmlinkage
long sys_umask(int mask
)
1758 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1762 asmlinkage
long sys_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
1763 unsigned long arg4
, unsigned long arg5
)
1767 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
1772 case PR_SET_PDEATHSIG
:
1773 if (!valid_signal(arg2
)) {
1777 current
->pdeath_signal
= arg2
;
1779 case PR_GET_PDEATHSIG
:
1780 error
= put_user(current
->pdeath_signal
, (int __user
*)arg2
);
1782 case PR_GET_DUMPABLE
:
1783 error
= current
->mm
->dumpable
;
1785 case PR_SET_DUMPABLE
:
1786 if (arg2
< 0 || arg2
> 2) {
1790 current
->mm
->dumpable
= arg2
;
1793 case PR_SET_UNALIGN
:
1794 error
= SET_UNALIGN_CTL(current
, arg2
);
1796 case PR_GET_UNALIGN
:
1797 error
= GET_UNALIGN_CTL(current
, arg2
);
1800 error
= SET_FPEMU_CTL(current
, arg2
);
1803 error
= GET_FPEMU_CTL(current
, arg2
);
1806 error
= SET_FPEXC_CTL(current
, arg2
);
1809 error
= GET_FPEXC_CTL(current
, arg2
);
1812 error
= PR_TIMING_STATISTICAL
;
1815 if (arg2
== PR_TIMING_STATISTICAL
)
1821 case PR_GET_KEEPCAPS
:
1822 if (current
->keep_capabilities
)
1825 case PR_SET_KEEPCAPS
:
1826 if (arg2
!= 0 && arg2
!= 1) {
1830 current
->keep_capabilities
= arg2
;
1833 struct task_struct
*me
= current
;
1834 unsigned char ncomm
[sizeof(me
->comm
)];
1836 ncomm
[sizeof(me
->comm
)-1] = 0;
1837 if (strncpy_from_user(ncomm
, (char __user
*)arg2
,
1838 sizeof(me
->comm
)-1) < 0)
1840 set_task_comm(me
, ncomm
);
1844 struct task_struct
*me
= current
;
1845 unsigned char tcomm
[sizeof(me
->comm
)];
1847 get_task_comm(tcomm
, me
);
1848 if (copy_to_user((char __user
*)arg2
, tcomm
, sizeof(tcomm
)))