2 * linux/drivers/block/as-iosched.c
4 * Anticipatory & deadline i/o scheduler.
6 * Copyright (C) 2002 Jens Axboe <axboe@suse.de>
7 * Nick Piggin <nickpiggin@yahoo.com.au>
10 #include <linux/kernel.h>
12 #include <linux/blkdev.h>
13 #include <linux/elevator.h>
14 #include <linux/bio.h>
15 #include <linux/config.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/compiler.h>
20 #include <linux/hash.h>
21 #include <linux/rbtree.h>
22 #include <linux/interrupt.h>
28 * See Documentation/block/as-iosched.txt
32 * max time before a read is submitted.
34 #define default_read_expire (HZ / 8)
37 * ditto for writes, these limits are not hard, even
38 * if the disk is capable of satisfying them.
40 #define default_write_expire (HZ / 4)
43 * read_batch_expire describes how long we will allow a stream of reads to
44 * persist before looking to see whether it is time to switch over to writes.
46 #define default_read_batch_expire (HZ / 2)
49 * write_batch_expire describes how long we want a stream of writes to run for.
50 * This is not a hard limit, but a target we set for the auto-tuning thingy.
51 * See, the problem is: we can send a lot of writes to disk cache / TCQ in
52 * a short amount of time...
54 #define default_write_batch_expire (HZ / 8)
57 * max time we may wait to anticipate a read (default around 6ms)
59 #define default_antic_expire ((HZ / 150) ? HZ / 150 : 1)
62 * Keep track of up to 20ms thinktimes. We can go as big as we like here,
63 * however huge values tend to interfere and not decay fast enough. A program
64 * might be in a non-io phase of operation. Waiting on user input for example,
65 * or doing a lengthy computation. A small penalty can be justified there, and
66 * will still catch out those processes that constantly have large thinktimes.
68 #define MAX_THINKTIME (HZ/50UL)
70 /* Bits in as_io_context.state */
72 AS_TASK_RUNNING
=0, /* Process has not exited */
73 AS_TASK_IOSTARTED
, /* Process has started some IO */
74 AS_TASK_IORUNNING
, /* Process has completed some IO */
77 enum anticipation_status
{
78 ANTIC_OFF
=0, /* Not anticipating (normal operation) */
79 ANTIC_WAIT_REQ
, /* The last read has not yet completed */
80 ANTIC_WAIT_NEXT
, /* Currently anticipating a request vs
81 last read (which has completed) */
82 ANTIC_FINISHED
, /* Anticipating but have found a candidate
91 struct request_queue
*q
; /* the "owner" queue */
94 * requests (as_rq s) are present on both sort_list and fifo_list
96 struct rb_root sort_list
[2];
97 struct list_head fifo_list
[2];
99 struct as_rq
*next_arq
[2]; /* next in sort order */
100 sector_t last_sector
[2]; /* last REQ_SYNC & REQ_ASYNC sectors */
101 struct list_head
*hash
; /* request hash */
103 unsigned long exit_prob
; /* probability a task will exit while
105 unsigned long exit_no_coop
; /* probablility an exited task will
106 not be part of a later cooperating
108 unsigned long new_ttime_total
; /* mean thinktime on new proc */
109 unsigned long new_ttime_mean
;
110 u64 new_seek_total
; /* mean seek on new proc */
111 sector_t new_seek_mean
;
113 unsigned long current_batch_expires
;
114 unsigned long last_check_fifo
[2];
115 int changed_batch
; /* 1: waiting for old batch to end */
116 int new_batch
; /* 1: waiting on first read complete */
117 int batch_data_dir
; /* current batch REQ_SYNC / REQ_ASYNC */
118 int write_batch_count
; /* max # of reqs in a write batch */
119 int current_write_count
; /* how many requests left this batch */
120 int write_batch_idled
; /* has the write batch gone idle? */
123 enum anticipation_status antic_status
;
124 unsigned long antic_start
; /* jiffies: when it started */
125 struct timer_list antic_timer
; /* anticipatory scheduling timer */
126 struct work_struct antic_work
; /* Deferred unplugging */
127 struct io_context
*io_context
; /* Identify the expected process */
128 int ioc_finished
; /* IO associated with io_context is finished */
132 * settings that change how the i/o scheduler behaves
134 unsigned long fifo_expire
[2];
135 unsigned long batch_expire
[2];
136 unsigned long antic_expire
;
139 #define list_entry_fifo(ptr) list_entry((ptr), struct as_rq, fifo)
145 AS_RQ_NEW
=0, /* New - not referenced and not on any lists */
146 AS_RQ_QUEUED
, /* In the request queue. It belongs to the
148 AS_RQ_DISPATCHED
, /* On the dispatch list. It belongs to the
150 AS_RQ_PRESCHED
, /* Debug poisoning for requests being used */
153 AS_RQ_POSTSCHED
, /* when they shouldn't be */
158 * rbtree index, key is the starting offset
160 struct rb_node rb_node
;
163 struct request
*request
;
165 struct io_context
*io_context
; /* The submitting task */
168 * request hash, key is the ending offset (for back merge lookup)
170 struct list_head hash
;
171 unsigned int on_hash
;
176 struct list_head fifo
;
177 unsigned long expires
;
179 unsigned int is_sync
;
180 enum arq_state state
;
183 #define RQ_DATA(rq) ((struct as_rq *) (rq)->elevator_private)
185 static kmem_cache_t
*arq_pool
;
188 * IO Context helper functions
191 /* Called to deallocate the as_io_context */
192 static void free_as_io_context(struct as_io_context
*aic
)
197 /* Called when the task exits */
198 static void exit_as_io_context(struct as_io_context
*aic
)
200 WARN_ON(!test_bit(AS_TASK_RUNNING
, &aic
->state
));
201 clear_bit(AS_TASK_RUNNING
, &aic
->state
);
204 static struct as_io_context
*alloc_as_io_context(void)
206 struct as_io_context
*ret
;
208 ret
= kmalloc(sizeof(*ret
), GFP_ATOMIC
);
210 ret
->dtor
= free_as_io_context
;
211 ret
->exit
= exit_as_io_context
;
212 ret
->state
= 1 << AS_TASK_RUNNING
;
213 atomic_set(&ret
->nr_queued
, 0);
214 atomic_set(&ret
->nr_dispatched
, 0);
215 spin_lock_init(&ret
->lock
);
216 ret
->ttime_total
= 0;
217 ret
->ttime_samples
= 0;
220 ret
->seek_samples
= 0;
228 * If the current task has no AS IO context then create one and initialise it.
229 * Then take a ref on the task's io context and return it.
231 static struct io_context
*as_get_io_context(void)
233 struct io_context
*ioc
= get_io_context(GFP_ATOMIC
);
234 if (ioc
&& !ioc
->aic
) {
235 ioc
->aic
= alloc_as_io_context();
244 static void as_put_io_context(struct as_rq
*arq
)
246 struct as_io_context
*aic
;
248 if (unlikely(!arq
->io_context
))
251 aic
= arq
->io_context
->aic
;
253 if (arq
->is_sync
== REQ_SYNC
&& aic
) {
254 spin_lock(&aic
->lock
);
255 set_bit(AS_TASK_IORUNNING
, &aic
->state
);
256 aic
->last_end_request
= jiffies
;
257 spin_unlock(&aic
->lock
);
260 put_io_context(arq
->io_context
);
264 * the back merge hash support functions
266 static const int as_hash_shift
= 6;
267 #define AS_HASH_BLOCK(sec) ((sec) >> 3)
268 #define AS_HASH_FN(sec) (hash_long(AS_HASH_BLOCK((sec)), as_hash_shift))
269 #define AS_HASH_ENTRIES (1 << as_hash_shift)
270 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
271 #define list_entry_hash(ptr) list_entry((ptr), struct as_rq, hash)
273 static inline void __as_del_arq_hash(struct as_rq
*arq
)
276 list_del_init(&arq
->hash
);
279 static inline void as_del_arq_hash(struct as_rq
*arq
)
282 __as_del_arq_hash(arq
);
285 static void as_add_arq_hash(struct as_data
*ad
, struct as_rq
*arq
)
287 struct request
*rq
= arq
->request
;
289 BUG_ON(arq
->on_hash
);
292 list_add(&arq
->hash
, &ad
->hash
[AS_HASH_FN(rq_hash_key(rq
))]);
296 * move hot entry to front of chain
298 static inline void as_hot_arq_hash(struct as_data
*ad
, struct as_rq
*arq
)
300 struct request
*rq
= arq
->request
;
301 struct list_head
*head
= &ad
->hash
[AS_HASH_FN(rq_hash_key(rq
))];
308 if (arq
->hash
.prev
!= head
) {
309 list_del(&arq
->hash
);
310 list_add(&arq
->hash
, head
);
314 static struct request
*as_find_arq_hash(struct as_data
*ad
, sector_t offset
)
316 struct list_head
*hash_list
= &ad
->hash
[AS_HASH_FN(offset
)];
317 struct list_head
*entry
, *next
= hash_list
->next
;
319 while ((entry
= next
) != hash_list
) {
320 struct as_rq
*arq
= list_entry_hash(entry
);
321 struct request
*__rq
= arq
->request
;
325 BUG_ON(!arq
->on_hash
);
327 if (!rq_mergeable(__rq
)) {
328 as_del_arq_hash(arq
);
332 if (rq_hash_key(__rq
) == offset
)
340 * rb tree support functions
343 #define RB_EMPTY(root) ((root)->rb_node == NULL)
344 #define ON_RB(node) ((node)->rb_color != RB_NONE)
345 #define RB_CLEAR(node) ((node)->rb_color = RB_NONE)
346 #define rb_entry_arq(node) rb_entry((node), struct as_rq, rb_node)
347 #define ARQ_RB_ROOT(ad, arq) (&(ad)->sort_list[(arq)->is_sync])
348 #define rq_rb_key(rq) (rq)->sector
351 * as_find_first_arq finds the first (lowest sector numbered) request
352 * for the specified data_dir. Used to sweep back to the start of the disk
353 * (1-way elevator) after we process the last (highest sector) request.
355 static struct as_rq
*as_find_first_arq(struct as_data
*ad
, int data_dir
)
357 struct rb_node
*n
= ad
->sort_list
[data_dir
].rb_node
;
363 if (n
->rb_left
== NULL
)
364 return rb_entry_arq(n
);
371 * Add the request to the rb tree if it is unique. If there is an alias (an
372 * existing request against the same sector), which can happen when using
373 * direct IO, then return the alias.
375 static struct as_rq
*as_add_arq_rb(struct as_data
*ad
, struct as_rq
*arq
)
377 struct rb_node
**p
= &ARQ_RB_ROOT(ad
, arq
)->rb_node
;
378 struct rb_node
*parent
= NULL
;
380 struct request
*rq
= arq
->request
;
382 arq
->rb_key
= rq_rb_key(rq
);
386 __arq
= rb_entry_arq(parent
);
388 if (arq
->rb_key
< __arq
->rb_key
)
390 else if (arq
->rb_key
> __arq
->rb_key
)
396 rb_link_node(&arq
->rb_node
, parent
, p
);
397 rb_insert_color(&arq
->rb_node
, ARQ_RB_ROOT(ad
, arq
));
402 static inline void as_del_arq_rb(struct as_data
*ad
, struct as_rq
*arq
)
404 if (!ON_RB(&arq
->rb_node
)) {
409 rb_erase(&arq
->rb_node
, ARQ_RB_ROOT(ad
, arq
));
410 RB_CLEAR(&arq
->rb_node
);
413 static struct request
*
414 as_find_arq_rb(struct as_data
*ad
, sector_t sector
, int data_dir
)
416 struct rb_node
*n
= ad
->sort_list
[data_dir
].rb_node
;
420 arq
= rb_entry_arq(n
);
422 if (sector
< arq
->rb_key
)
424 else if (sector
> arq
->rb_key
)
434 * IO Scheduler proper
437 #define MAXBACK (1024 * 1024) /*
438 * Maximum distance the disk will go backward
442 #define BACK_PENALTY 2
445 * as_choose_req selects the preferred one of two requests of the same data_dir
446 * ignoring time - eg. timeouts, which is the job of as_dispatch_request
448 static struct as_rq
*
449 as_choose_req(struct as_data
*ad
, struct as_rq
*arq1
, struct as_rq
*arq2
)
452 sector_t last
, s1
, s2
, d1
, d2
;
453 int r1_wrap
=0, r2_wrap
=0; /* requests are behind the disk head */
454 const sector_t maxback
= MAXBACK
;
456 if (arq1
== NULL
|| arq1
== arq2
)
461 data_dir
= arq1
->is_sync
;
463 last
= ad
->last_sector
[data_dir
];
464 s1
= arq1
->request
->sector
;
465 s2
= arq2
->request
->sector
;
467 BUG_ON(data_dir
!= arq2
->is_sync
);
470 * Strict one way elevator _except_ in the case where we allow
471 * short backward seeks which are biased as twice the cost of a
472 * similar forward seek.
476 else if (s1
+maxback
>= last
)
477 d1
= (last
- s1
)*BACK_PENALTY
;
480 d1
= 0; /* shut up, gcc */
485 else if (s2
+maxback
>= last
)
486 d2
= (last
- s2
)*BACK_PENALTY
;
492 /* Found required data */
493 if (!r1_wrap
&& r2_wrap
)
495 else if (!r2_wrap
&& r1_wrap
)
497 else if (r1_wrap
&& r2_wrap
) {
498 /* both behind the head */
505 /* Both requests in front of the head */
519 * as_find_next_arq finds the next request after @prev in elevator order.
520 * this with as_choose_req form the basis for how the scheduler chooses
521 * what request to process next. Anticipation works on top of this.
523 static struct as_rq
*as_find_next_arq(struct as_data
*ad
, struct as_rq
*last
)
525 const int data_dir
= last
->is_sync
;
527 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
528 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
529 struct as_rq
*arq_next
, *arq_prev
;
531 BUG_ON(!ON_RB(&last
->rb_node
));
534 arq_prev
= rb_entry_arq(rbprev
);
539 arq_next
= rb_entry_arq(rbnext
);
541 arq_next
= as_find_first_arq(ad
, data_dir
);
542 if (arq_next
== last
)
546 ret
= as_choose_req(ad
, arq_next
, arq_prev
);
552 * anticipatory scheduling functions follow
556 * as_antic_expired tells us when we have anticipated too long.
557 * The funny "absolute difference" math on the elapsed time is to handle
558 * jiffy wraps, and disks which have been idle for 0x80000000 jiffies.
560 static int as_antic_expired(struct as_data
*ad
)
564 delta_jif
= jiffies
- ad
->antic_start
;
565 if (unlikely(delta_jif
< 0))
566 delta_jif
= -delta_jif
;
567 if (delta_jif
< ad
->antic_expire
)
574 * as_antic_waitnext starts anticipating that a nice request will soon be
575 * submitted. See also as_antic_waitreq
577 static void as_antic_waitnext(struct as_data
*ad
)
579 unsigned long timeout
;
581 BUG_ON(ad
->antic_status
!= ANTIC_OFF
582 && ad
->antic_status
!= ANTIC_WAIT_REQ
);
584 timeout
= ad
->antic_start
+ ad
->antic_expire
;
586 mod_timer(&ad
->antic_timer
, timeout
);
588 ad
->antic_status
= ANTIC_WAIT_NEXT
;
592 * as_antic_waitreq starts anticipating. We don't start timing the anticipation
593 * until the request that we're anticipating on has finished. This means we
594 * are timing from when the candidate process wakes up hopefully.
596 static void as_antic_waitreq(struct as_data
*ad
)
598 BUG_ON(ad
->antic_status
== ANTIC_FINISHED
);
599 if (ad
->antic_status
== ANTIC_OFF
) {
600 if (!ad
->io_context
|| ad
->ioc_finished
)
601 as_antic_waitnext(ad
);
603 ad
->antic_status
= ANTIC_WAIT_REQ
;
608 * This is called directly by the functions in this file to stop anticipation.
609 * We kill the timer and schedule a call to the request_fn asap.
611 static void as_antic_stop(struct as_data
*ad
)
613 int status
= ad
->antic_status
;
615 if (status
== ANTIC_WAIT_REQ
|| status
== ANTIC_WAIT_NEXT
) {
616 if (status
== ANTIC_WAIT_NEXT
)
617 del_timer(&ad
->antic_timer
);
618 ad
->antic_status
= ANTIC_FINISHED
;
619 /* see as_work_handler */
620 kblockd_schedule_work(&ad
->antic_work
);
625 * as_antic_timeout is the timer function set by as_antic_waitnext.
627 static void as_antic_timeout(unsigned long data
)
629 struct request_queue
*q
= (struct request_queue
*)data
;
630 struct as_data
*ad
= q
->elevator
->elevator_data
;
633 spin_lock_irqsave(q
->queue_lock
, flags
);
634 if (ad
->antic_status
== ANTIC_WAIT_REQ
635 || ad
->antic_status
== ANTIC_WAIT_NEXT
) {
636 struct as_io_context
*aic
= ad
->io_context
->aic
;
638 ad
->antic_status
= ANTIC_FINISHED
;
639 kblockd_schedule_work(&ad
->antic_work
);
641 if (aic
->ttime_samples
== 0) {
642 /* process anticipated on has exited or timed out*/
643 ad
->exit_prob
= (7*ad
->exit_prob
+ 256)/8;
645 if (!test_bit(AS_TASK_RUNNING
, &aic
->state
)) {
646 /* process not "saved" by a cooperating request */
647 ad
->exit_no_coop
= (7*ad
->exit_no_coop
+ 256)/8;
650 spin_unlock_irqrestore(q
->queue_lock
, flags
);
653 static void as_update_thinktime(struct as_data
*ad
, struct as_io_context
*aic
,
656 /* fixed point: 1.0 == 1<<8 */
657 if (aic
->ttime_samples
== 0) {
658 ad
->new_ttime_total
= (7*ad
->new_ttime_total
+ 256*ttime
) / 8;
659 ad
->new_ttime_mean
= ad
->new_ttime_total
/ 256;
661 ad
->exit_prob
= (7*ad
->exit_prob
)/8;
663 aic
->ttime_samples
= (7*aic
->ttime_samples
+ 256) / 8;
664 aic
->ttime_total
= (7*aic
->ttime_total
+ 256*ttime
) / 8;
665 aic
->ttime_mean
= (aic
->ttime_total
+ 128) / aic
->ttime_samples
;
668 static void as_update_seekdist(struct as_data
*ad
, struct as_io_context
*aic
,
673 if (aic
->seek_samples
== 0) {
674 ad
->new_seek_total
= (7*ad
->new_seek_total
+ 256*(u64
)sdist
)/8;
675 ad
->new_seek_mean
= ad
->new_seek_total
/ 256;
679 * Don't allow the seek distance to get too large from the
680 * odd fragment, pagein, etc
682 if (aic
->seek_samples
<= 60) /* second&third seek */
683 sdist
= min(sdist
, (aic
->seek_mean
* 4) + 2*1024*1024);
685 sdist
= min(sdist
, (aic
->seek_mean
* 4) + 2*1024*64);
687 aic
->seek_samples
= (7*aic
->seek_samples
+ 256) / 8;
688 aic
->seek_total
= (7*aic
->seek_total
+ (u64
)256*sdist
) / 8;
689 total
= aic
->seek_total
+ (aic
->seek_samples
/2);
690 do_div(total
, aic
->seek_samples
);
691 aic
->seek_mean
= (sector_t
)total
;
695 * as_update_iohist keeps a decaying histogram of IO thinktimes, and
696 * updates @aic->ttime_mean based on that. It is called when a new
699 static void as_update_iohist(struct as_data
*ad
, struct as_io_context
*aic
,
702 struct as_rq
*arq
= RQ_DATA(rq
);
703 int data_dir
= arq
->is_sync
;
704 unsigned long thinktime
= 0;
710 if (data_dir
== REQ_SYNC
) {
711 unsigned long in_flight
= atomic_read(&aic
->nr_queued
)
712 + atomic_read(&aic
->nr_dispatched
);
713 spin_lock(&aic
->lock
);
714 if (test_bit(AS_TASK_IORUNNING
, &aic
->state
) ||
715 test_bit(AS_TASK_IOSTARTED
, &aic
->state
)) {
716 /* Calculate read -> read thinktime */
717 if (test_bit(AS_TASK_IORUNNING
, &aic
->state
)
719 thinktime
= jiffies
- aic
->last_end_request
;
720 thinktime
= min(thinktime
, MAX_THINKTIME
-1);
722 as_update_thinktime(ad
, aic
, thinktime
);
724 /* Calculate read -> read seek distance */
725 if (aic
->last_request_pos
< rq
->sector
)
726 seek_dist
= rq
->sector
- aic
->last_request_pos
;
728 seek_dist
= aic
->last_request_pos
- rq
->sector
;
729 as_update_seekdist(ad
, aic
, seek_dist
);
731 aic
->last_request_pos
= rq
->sector
+ rq
->nr_sectors
;
732 set_bit(AS_TASK_IOSTARTED
, &aic
->state
);
733 spin_unlock(&aic
->lock
);
738 * as_close_req decides if one request is considered "close" to the
739 * previous one issued.
741 static int as_close_req(struct as_data
*ad
, struct as_io_context
*aic
,
744 unsigned long delay
; /* milliseconds */
745 sector_t last
= ad
->last_sector
[ad
->batch_data_dir
];
746 sector_t next
= arq
->request
->sector
;
747 sector_t delta
; /* acceptable close offset (in sectors) */
750 if (ad
->antic_status
== ANTIC_OFF
|| !ad
->ioc_finished
)
753 delay
= ((jiffies
- ad
->antic_start
) * 1000) / HZ
;
757 else if (delay
<= 20 && delay
<= ad
->antic_expire
)
758 delta
= 8192 << delay
;
762 if ((last
<= next
+ (delta
>>1)) && (next
<= last
+ delta
))
770 if (aic
->seek_samples
== 0) {
772 * Process has just started IO. Use past statistics to
773 * gauge success possibility
775 if (ad
->new_seek_mean
> s
) {
776 /* this request is better than what we're expecting */
781 if (aic
->seek_mean
> s
) {
782 /* this request is better than what we're expecting */
791 * as_can_break_anticipation returns true if we have been anticipating this
794 * It also returns true if the process against which we are anticipating
795 * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to
796 * dispatch it ASAP, because we know that application will not be submitting
799 * If the task which has submitted the request has exited, break anticipation.
801 * If this task has queued some other IO, do not enter enticipation.
803 static int as_can_break_anticipation(struct as_data
*ad
, struct as_rq
*arq
)
805 struct io_context
*ioc
;
806 struct as_io_context
*aic
;
808 ioc
= ad
->io_context
;
811 if (arq
&& ioc
== arq
->io_context
) {
812 /* request from same process */
816 if (ad
->ioc_finished
&& as_antic_expired(ad
)) {
818 * In this situation status should really be FINISHED,
819 * however the timer hasn't had the chance to run yet.
828 if (atomic_read(&aic
->nr_queued
) > 0) {
829 /* process has more requests queued */
833 if (atomic_read(&aic
->nr_dispatched
) > 0) {
834 /* process has more requests dispatched */
838 if (arq
&& arq
->is_sync
== REQ_SYNC
&& as_close_req(ad
, aic
, arq
)) {
840 * Found a close request that is not one of ours.
842 * This makes close requests from another process update
843 * our IO history. Is generally useful when there are
844 * two or more cooperating processes working in the same
847 if (!test_bit(AS_TASK_RUNNING
, &aic
->state
)) {
848 if (aic
->ttime_samples
== 0)
849 ad
->exit_prob
= (7*ad
->exit_prob
+ 256)/8;
851 ad
->exit_no_coop
= (7*ad
->exit_no_coop
)/8;
854 as_update_iohist(ad
, aic
, arq
->request
);
858 if (!test_bit(AS_TASK_RUNNING
, &aic
->state
)) {
859 /* process anticipated on has exited */
860 if (aic
->ttime_samples
== 0)
861 ad
->exit_prob
= (7*ad
->exit_prob
+ 256)/8;
863 if (ad
->exit_no_coop
> 128)
867 if (aic
->ttime_samples
== 0) {
868 if (ad
->new_ttime_mean
> ad
->antic_expire
)
870 if (ad
->exit_prob
* ad
->exit_no_coop
> 128*256)
872 } else if (aic
->ttime_mean
> ad
->antic_expire
) {
873 /* the process thinks too much between requests */
881 * as_can_anticipate indicates weather we should either run arq
882 * or keep anticipating a better request.
884 static int as_can_anticipate(struct as_data
*ad
, struct as_rq
*arq
)
888 * Last request submitted was a write
892 if (ad
->antic_status
== ANTIC_FINISHED
)
894 * Don't restart if we have just finished. Run the next request
898 if (as_can_break_anticipation(ad
, arq
))
900 * This request is a good candidate. Don't keep anticipating,
906 * OK from here, we haven't finished, and don't have a decent request!
907 * Status is either ANTIC_OFF so start waiting,
908 * ANTIC_WAIT_REQ so continue waiting for request to finish
909 * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request.
916 * as_update_arq must be called whenever a request (arq) is added to
917 * the sort_list. This function keeps caches up to date, and checks if the
918 * request might be one we are "anticipating"
920 static void as_update_arq(struct as_data
*ad
, struct as_rq
*arq
)
922 const int data_dir
= arq
->is_sync
;
924 /* keep the next_arq cache up to date */
925 ad
->next_arq
[data_dir
] = as_choose_req(ad
, arq
, ad
->next_arq
[data_dir
]);
928 * have we been anticipating this request?
929 * or does it come from the same process as the one we are anticipating
932 if (ad
->antic_status
== ANTIC_WAIT_REQ
933 || ad
->antic_status
== ANTIC_WAIT_NEXT
) {
934 if (as_can_break_anticipation(ad
, arq
))
940 * Gathers timings and resizes the write batch automatically
942 static void update_write_batch(struct as_data
*ad
)
944 unsigned long batch
= ad
->batch_expire
[REQ_ASYNC
];
947 write_time
= (jiffies
- ad
->current_batch_expires
) + batch
;
951 if (write_time
> batch
&& !ad
->write_batch_idled
) {
952 if (write_time
> batch
* 3)
953 ad
->write_batch_count
/= 2;
955 ad
->write_batch_count
--;
956 } else if (write_time
< batch
&& ad
->current_write_count
== 0) {
957 if (batch
> write_time
* 3)
958 ad
->write_batch_count
*= 2;
960 ad
->write_batch_count
++;
963 if (ad
->write_batch_count
< 1)
964 ad
->write_batch_count
= 1;
968 * as_completed_request is to be called when a request has completed and
969 * returned something to the requesting process, be it an error or data.
971 static void as_completed_request(request_queue_t
*q
, struct request
*rq
)
973 struct as_data
*ad
= q
->elevator
->elevator_data
;
974 struct as_rq
*arq
= RQ_DATA(rq
);
976 WARN_ON(!list_empty(&rq
->queuelist
));
978 if (arq
->state
!= AS_RQ_REMOVED
) {
979 printk("arq->state %d\n", arq
->state
);
984 if (ad
->changed_batch
&& ad
->nr_dispatched
== 1) {
985 kblockd_schedule_work(&ad
->antic_work
);
986 ad
->changed_batch
= 0;
988 if (ad
->batch_data_dir
== REQ_SYNC
)
991 WARN_ON(ad
->nr_dispatched
== 0);
995 * Start counting the batch from when a request of that direction is
996 * actually serviced. This should help devices with big TCQ windows
997 * and writeback caches
999 if (ad
->new_batch
&& ad
->batch_data_dir
== arq
->is_sync
) {
1000 update_write_batch(ad
);
1001 ad
->current_batch_expires
= jiffies
+
1002 ad
->batch_expire
[REQ_SYNC
];
1006 if (ad
->io_context
== arq
->io_context
&& ad
->io_context
) {
1007 ad
->antic_start
= jiffies
;
1008 ad
->ioc_finished
= 1;
1009 if (ad
->antic_status
== ANTIC_WAIT_REQ
) {
1011 * We were waiting on this request, now anticipate
1014 as_antic_waitnext(ad
);
1018 as_put_io_context(arq
);
1020 arq
->state
= AS_RQ_POSTSCHED
;
1024 * as_remove_queued_request removes a request from the pre dispatch queue
1025 * without updating refcounts. It is expected the caller will drop the
1026 * reference unless it replaces the request at somepart of the elevator
1027 * (ie. the dispatch queue)
1029 static void as_remove_queued_request(request_queue_t
*q
, struct request
*rq
)
1031 struct as_rq
*arq
= RQ_DATA(rq
);
1032 const int data_dir
= arq
->is_sync
;
1033 struct as_data
*ad
= q
->elevator
->elevator_data
;
1035 WARN_ON(arq
->state
!= AS_RQ_QUEUED
);
1037 if (arq
->io_context
&& arq
->io_context
->aic
) {
1038 BUG_ON(!atomic_read(&arq
->io_context
->aic
->nr_queued
));
1039 atomic_dec(&arq
->io_context
->aic
->nr_queued
);
1043 * Update the "next_arq" cache if we are about to remove its
1046 if (ad
->next_arq
[data_dir
] == arq
)
1047 ad
->next_arq
[data_dir
] = as_find_next_arq(ad
, arq
);
1049 list_del_init(&arq
->fifo
);
1050 as_del_arq_hash(arq
);
1051 as_del_arq_rb(ad
, arq
);
1055 * as_fifo_expired returns 0 if there are no expired reads on the fifo,
1056 * 1 otherwise. It is ratelimited so that we only perform the check once per
1057 * `fifo_expire' interval. Otherwise a large number of expired requests
1058 * would create a hopeless seekstorm.
1060 * See as_antic_expired comment.
1062 static int as_fifo_expired(struct as_data
*ad
, int adir
)
1067 delta_jif
= jiffies
- ad
->last_check_fifo
[adir
];
1068 if (unlikely(delta_jif
< 0))
1069 delta_jif
= -delta_jif
;
1070 if (delta_jif
< ad
->fifo_expire
[adir
])
1073 ad
->last_check_fifo
[adir
] = jiffies
;
1075 if (list_empty(&ad
->fifo_list
[adir
]))
1078 arq
= list_entry_fifo(ad
->fifo_list
[adir
].next
);
1080 return time_after(jiffies
, arq
->expires
);
1084 * as_batch_expired returns true if the current batch has expired. A batch
1085 * is a set of reads or a set of writes.
1087 static inline int as_batch_expired(struct as_data
*ad
)
1089 if (ad
->changed_batch
|| ad
->new_batch
)
1092 if (ad
->batch_data_dir
== REQ_SYNC
)
1093 /* TODO! add a check so a complete fifo gets written? */
1094 return time_after(jiffies
, ad
->current_batch_expires
);
1096 return time_after(jiffies
, ad
->current_batch_expires
)
1097 || ad
->current_write_count
== 0;
1101 * move an entry to dispatch queue
1103 static void as_move_to_dispatch(struct as_data
*ad
, struct as_rq
*arq
)
1105 struct request
*rq
= arq
->request
;
1106 const int data_dir
= arq
->is_sync
;
1108 BUG_ON(!ON_RB(&arq
->rb_node
));
1111 ad
->antic_status
= ANTIC_OFF
;
1114 * This has to be set in order to be correctly updated by
1117 ad
->last_sector
[data_dir
] = rq
->sector
+ rq
->nr_sectors
;
1119 if (data_dir
== REQ_SYNC
) {
1120 /* In case we have to anticipate after this */
1121 copy_io_context(&ad
->io_context
, &arq
->io_context
);
1123 if (ad
->io_context
) {
1124 put_io_context(ad
->io_context
);
1125 ad
->io_context
= NULL
;
1128 if (ad
->current_write_count
!= 0)
1129 ad
->current_write_count
--;
1131 ad
->ioc_finished
= 0;
1133 ad
->next_arq
[data_dir
] = as_find_next_arq(ad
, arq
);
1136 * take it off the sort and fifo list, add to dispatch queue
1138 while (!list_empty(&rq
->queuelist
)) {
1139 struct request
*__rq
= list_entry_rq(rq
->queuelist
.next
);
1140 struct as_rq
*__arq
= RQ_DATA(__rq
);
1142 list_del(&__rq
->queuelist
);
1144 elv_dispatch_add_tail(ad
->q
, __rq
);
1146 if (__arq
->io_context
&& __arq
->io_context
->aic
)
1147 atomic_inc(&__arq
->io_context
->aic
->nr_dispatched
);
1149 WARN_ON(__arq
->state
!= AS_RQ_QUEUED
);
1150 __arq
->state
= AS_RQ_DISPATCHED
;
1152 ad
->nr_dispatched
++;
1155 as_remove_queued_request(ad
->q
, rq
);
1156 WARN_ON(arq
->state
!= AS_RQ_QUEUED
);
1158 elv_dispatch_sort(ad
->q
, rq
);
1160 arq
->state
= AS_RQ_DISPATCHED
;
1161 if (arq
->io_context
&& arq
->io_context
->aic
)
1162 atomic_inc(&arq
->io_context
->aic
->nr_dispatched
);
1163 ad
->nr_dispatched
++;
1167 * as_dispatch_request selects the best request according to
1168 * read/write expire, batch expire, etc, and moves it to the dispatch
1169 * queue. Returns 1 if a request was found, 0 otherwise.
1171 static int as_dispatch_request(request_queue_t
*q
, int force
)
1173 struct as_data
*ad
= q
->elevator
->elevator_data
;
1175 const int reads
= !list_empty(&ad
->fifo_list
[REQ_SYNC
]);
1176 const int writes
= !list_empty(&ad
->fifo_list
[REQ_ASYNC
]);
1178 if (unlikely(force
)) {
1180 * Forced dispatch, accounting is useless. Reset
1181 * accounting states and dump fifo_lists. Note that
1182 * batch_data_dir is reset to REQ_SYNC to avoid
1183 * screwing write batch accounting as write batch
1184 * accounting occurs on W->R transition.
1188 ad
->batch_data_dir
= REQ_SYNC
;
1189 ad
->changed_batch
= 0;
1192 while (ad
->next_arq
[REQ_SYNC
]) {
1193 as_move_to_dispatch(ad
, ad
->next_arq
[REQ_SYNC
]);
1196 ad
->last_check_fifo
[REQ_SYNC
] = jiffies
;
1198 while (ad
->next_arq
[REQ_ASYNC
]) {
1199 as_move_to_dispatch(ad
, ad
->next_arq
[REQ_ASYNC
]);
1202 ad
->last_check_fifo
[REQ_ASYNC
] = jiffies
;
1207 /* Signal that the write batch was uncontended, so we can't time it */
1208 if (ad
->batch_data_dir
== REQ_ASYNC
&& !reads
) {
1209 if (ad
->current_write_count
== 0 || !writes
)
1210 ad
->write_batch_idled
= 1;
1213 if (!(reads
|| writes
)
1214 || ad
->antic_status
== ANTIC_WAIT_REQ
1215 || ad
->antic_status
== ANTIC_WAIT_NEXT
1216 || ad
->changed_batch
)
1219 if (!(reads
&& writes
&& as_batch_expired(ad
))) {
1221 * batch is still running or no reads or no writes
1223 arq
= ad
->next_arq
[ad
->batch_data_dir
];
1225 if (ad
->batch_data_dir
== REQ_SYNC
&& ad
->antic_expire
) {
1226 if (as_fifo_expired(ad
, REQ_SYNC
))
1229 if (as_can_anticipate(ad
, arq
)) {
1230 as_antic_waitreq(ad
);
1236 /* we have a "next request" */
1237 if (reads
&& !writes
)
1238 ad
->current_batch_expires
=
1239 jiffies
+ ad
->batch_expire
[REQ_SYNC
];
1240 goto dispatch_request
;
1245 * at this point we are not running a batch. select the appropriate
1246 * data direction (read / write)
1250 BUG_ON(RB_EMPTY(&ad
->sort_list
[REQ_SYNC
]));
1252 if (writes
&& ad
->batch_data_dir
== REQ_SYNC
)
1254 * Last batch was a read, switch to writes
1256 goto dispatch_writes
;
1258 if (ad
->batch_data_dir
== REQ_ASYNC
) {
1259 WARN_ON(ad
->new_batch
);
1260 ad
->changed_batch
= 1;
1262 ad
->batch_data_dir
= REQ_SYNC
;
1263 arq
= list_entry_fifo(ad
->fifo_list
[ad
->batch_data_dir
].next
);
1264 ad
->last_check_fifo
[ad
->batch_data_dir
] = jiffies
;
1265 goto dispatch_request
;
1269 * the last batch was a read
1274 BUG_ON(RB_EMPTY(&ad
->sort_list
[REQ_ASYNC
]));
1276 if (ad
->batch_data_dir
== REQ_SYNC
) {
1277 ad
->changed_batch
= 1;
1280 * new_batch might be 1 when the queue runs out of
1281 * reads. A subsequent submission of a write might
1282 * cause a change of batch before the read is finished.
1286 ad
->batch_data_dir
= REQ_ASYNC
;
1287 ad
->current_write_count
= ad
->write_batch_count
;
1288 ad
->write_batch_idled
= 0;
1289 arq
= ad
->next_arq
[ad
->batch_data_dir
];
1290 goto dispatch_request
;
1298 * If a request has expired, service it.
1301 if (as_fifo_expired(ad
, ad
->batch_data_dir
)) {
1303 arq
= list_entry_fifo(ad
->fifo_list
[ad
->batch_data_dir
].next
);
1304 BUG_ON(arq
== NULL
);
1307 if (ad
->changed_batch
) {
1308 WARN_ON(ad
->new_batch
);
1310 if (ad
->nr_dispatched
)
1313 if (ad
->batch_data_dir
== REQ_ASYNC
)
1314 ad
->current_batch_expires
= jiffies
+
1315 ad
->batch_expire
[REQ_ASYNC
];
1319 ad
->changed_batch
= 0;
1323 * arq is the selected appropriate request.
1325 as_move_to_dispatch(ad
, arq
);
1331 * Add arq to a list behind alias
1334 as_add_aliased_request(struct as_data
*ad
, struct as_rq
*arq
,
1335 struct as_rq
*alias
)
1337 struct request
*req
= arq
->request
;
1338 struct list_head
*insert
= alias
->request
->queuelist
.prev
;
1341 * Transfer list of aliases
1343 while (!list_empty(&req
->queuelist
)) {
1344 struct request
*__rq
= list_entry_rq(req
->queuelist
.next
);
1345 struct as_rq
*__arq
= RQ_DATA(__rq
);
1347 list_move_tail(&__rq
->queuelist
, &alias
->request
->queuelist
);
1349 WARN_ON(__arq
->state
!= AS_RQ_QUEUED
);
1353 * Another request with the same start sector on the rbtree.
1354 * Link this request to that sector. They are untangled in
1355 * as_move_to_dispatch
1357 list_add(&arq
->request
->queuelist
, insert
);
1360 * Don't want to have to handle merges.
1362 as_del_arq_hash(arq
);
1363 arq
->request
->flags
|= REQ_NOMERGE
;
1367 * add arq to rbtree and fifo
1369 static void as_add_request(request_queue_t
*q
, struct request
*rq
)
1371 struct as_data
*ad
= q
->elevator
->elevator_data
;
1372 struct as_rq
*arq
= RQ_DATA(rq
);
1373 struct as_rq
*alias
;
1376 if (arq
->state
!= AS_RQ_PRESCHED
) {
1377 printk("arq->state: %d\n", arq
->state
);
1380 arq
->state
= AS_RQ_NEW
;
1382 if (rq_data_dir(arq
->request
) == READ
1383 || current
->flags
&PF_SYNCWRITE
)
1387 data_dir
= arq
->is_sync
;
1389 arq
->io_context
= as_get_io_context();
1391 if (arq
->io_context
) {
1392 as_update_iohist(ad
, arq
->io_context
->aic
, arq
->request
);
1393 atomic_inc(&arq
->io_context
->aic
->nr_queued
);
1396 alias
= as_add_arq_rb(ad
, arq
);
1399 * set expire time (only used for reads) and add to fifo list
1401 arq
->expires
= jiffies
+ ad
->fifo_expire
[data_dir
];
1402 list_add_tail(&arq
->fifo
, &ad
->fifo_list
[data_dir
]);
1404 if (rq_mergeable(arq
->request
))
1405 as_add_arq_hash(ad
, arq
);
1406 as_update_arq(ad
, arq
); /* keep state machine up to date */
1409 as_add_aliased_request(ad
, arq
, alias
);
1412 * have we been anticipating this request?
1413 * or does it come from the same process as the one we are
1416 if (ad
->antic_status
== ANTIC_WAIT_REQ
1417 || ad
->antic_status
== ANTIC_WAIT_NEXT
) {
1418 if (as_can_break_anticipation(ad
, arq
))
1423 arq
->state
= AS_RQ_QUEUED
;
1426 static void as_activate_request(request_queue_t
*q
, struct request
*rq
)
1428 struct as_rq
*arq
= RQ_DATA(rq
);
1430 WARN_ON(arq
->state
!= AS_RQ_DISPATCHED
);
1431 arq
->state
= AS_RQ_REMOVED
;
1432 if (arq
->io_context
&& arq
->io_context
->aic
)
1433 atomic_dec(&arq
->io_context
->aic
->nr_dispatched
);
1436 static void as_deactivate_request(request_queue_t
*q
, struct request
*rq
)
1438 struct as_rq
*arq
= RQ_DATA(rq
);
1440 WARN_ON(arq
->state
!= AS_RQ_REMOVED
);
1441 arq
->state
= AS_RQ_DISPATCHED
;
1442 if (arq
->io_context
&& arq
->io_context
->aic
)
1443 atomic_inc(&arq
->io_context
->aic
->nr_dispatched
);
1447 * as_queue_empty tells us if there are requests left in the device. It may
1448 * not be the case that a driver can get the next request even if the queue
1449 * is not empty - it is used in the block layer to check for plugging and
1450 * merging opportunities
1452 static int as_queue_empty(request_queue_t
*q
)
1454 struct as_data
*ad
= q
->elevator
->elevator_data
;
1456 return list_empty(&ad
->fifo_list
[REQ_ASYNC
])
1457 && list_empty(&ad
->fifo_list
[REQ_SYNC
]);
1460 static struct request
*as_former_request(request_queue_t
*q
,
1463 struct as_rq
*arq
= RQ_DATA(rq
);
1464 struct rb_node
*rbprev
= rb_prev(&arq
->rb_node
);
1465 struct request
*ret
= NULL
;
1468 ret
= rb_entry_arq(rbprev
)->request
;
1473 static struct request
*as_latter_request(request_queue_t
*q
,
1476 struct as_rq
*arq
= RQ_DATA(rq
);
1477 struct rb_node
*rbnext
= rb_next(&arq
->rb_node
);
1478 struct request
*ret
= NULL
;
1481 ret
= rb_entry_arq(rbnext
)->request
;
1487 as_merge(request_queue_t
*q
, struct request
**req
, struct bio
*bio
)
1489 struct as_data
*ad
= q
->elevator
->elevator_data
;
1490 sector_t rb_key
= bio
->bi_sector
+ bio_sectors(bio
);
1491 struct request
*__rq
;
1495 * see if the merge hash can satisfy a back merge
1497 __rq
= as_find_arq_hash(ad
, bio
->bi_sector
);
1499 BUG_ON(__rq
->sector
+ __rq
->nr_sectors
!= bio
->bi_sector
);
1501 if (elv_rq_merge_ok(__rq
, bio
)) {
1502 ret
= ELEVATOR_BACK_MERGE
;
1508 * check for front merge
1510 __rq
= as_find_arq_rb(ad
, rb_key
, bio_data_dir(bio
));
1512 BUG_ON(rb_key
!= rq_rb_key(__rq
));
1514 if (elv_rq_merge_ok(__rq
, bio
)) {
1515 ret
= ELEVATOR_FRONT_MERGE
;
1520 return ELEVATOR_NO_MERGE
;
1523 if (rq_mergeable(__rq
))
1524 as_hot_arq_hash(ad
, RQ_DATA(__rq
));
1530 static void as_merged_request(request_queue_t
*q
, struct request
*req
)
1532 struct as_data
*ad
= q
->elevator
->elevator_data
;
1533 struct as_rq
*arq
= RQ_DATA(req
);
1536 * hash always needs to be repositioned, key is end sector
1538 as_del_arq_hash(arq
);
1539 as_add_arq_hash(ad
, arq
);
1542 * if the merge was a front merge, we need to reposition request
1544 if (rq_rb_key(req
) != arq
->rb_key
) {
1545 struct as_rq
*alias
, *next_arq
= NULL
;
1547 if (ad
->next_arq
[arq
->is_sync
] == arq
)
1548 next_arq
= as_find_next_arq(ad
, arq
);
1551 * Note! We should really be moving any old aliased requests
1552 * off this request and try to insert them into the rbtree. We
1553 * currently don't bother. Ditto the next function.
1555 as_del_arq_rb(ad
, arq
);
1556 if ((alias
= as_add_arq_rb(ad
, arq
))) {
1557 list_del_init(&arq
->fifo
);
1558 as_add_aliased_request(ad
, arq
, alias
);
1560 ad
->next_arq
[arq
->is_sync
] = next_arq
;
1563 * Note! At this stage of this and the next function, our next
1564 * request may not be optimal - eg the request may have "grown"
1565 * behind the disk head. We currently don't bother adjusting.
1570 static void as_merged_requests(request_queue_t
*q
, struct request
*req
,
1571 struct request
*next
)
1573 struct as_data
*ad
= q
->elevator
->elevator_data
;
1574 struct as_rq
*arq
= RQ_DATA(req
);
1575 struct as_rq
*anext
= RQ_DATA(next
);
1581 * reposition arq (this is the merged request) in hash, and in rbtree
1582 * in case of a front merge
1584 as_del_arq_hash(arq
);
1585 as_add_arq_hash(ad
, arq
);
1587 if (rq_rb_key(req
) != arq
->rb_key
) {
1588 struct as_rq
*alias
, *next_arq
= NULL
;
1590 if (ad
->next_arq
[arq
->is_sync
] == arq
)
1591 next_arq
= as_find_next_arq(ad
, arq
);
1593 as_del_arq_rb(ad
, arq
);
1594 if ((alias
= as_add_arq_rb(ad
, arq
))) {
1595 list_del_init(&arq
->fifo
);
1596 as_add_aliased_request(ad
, arq
, alias
);
1598 ad
->next_arq
[arq
->is_sync
] = next_arq
;
1603 * if anext expires before arq, assign its expire time to arq
1604 * and move into anext position (anext will be deleted) in fifo
1606 if (!list_empty(&arq
->fifo
) && !list_empty(&anext
->fifo
)) {
1607 if (time_before(anext
->expires
, arq
->expires
)) {
1608 list_move(&arq
->fifo
, &anext
->fifo
);
1609 arq
->expires
= anext
->expires
;
1611 * Don't copy here but swap, because when anext is
1612 * removed below, it must contain the unused context
1614 swap_io_context(&arq
->io_context
, &anext
->io_context
);
1619 * Transfer list of aliases
1621 while (!list_empty(&next
->queuelist
)) {
1622 struct request
*__rq
= list_entry_rq(next
->queuelist
.next
);
1623 struct as_rq
*__arq
= RQ_DATA(__rq
);
1625 list_move_tail(&__rq
->queuelist
, &req
->queuelist
);
1627 WARN_ON(__arq
->state
!= AS_RQ_QUEUED
);
1631 * kill knowledge of next, this one is a goner
1633 as_remove_queued_request(q
, next
);
1634 as_put_io_context(anext
);
1636 anext
->state
= AS_RQ_MERGED
;
1640 * This is executed in a "deferred" process context, by kblockd. It calls the
1641 * driver's request_fn so the driver can submit that request.
1643 * IMPORTANT! This guy will reenter the elevator, so set up all queue global
1644 * state before calling, and don't rely on any state over calls.
1646 * FIXME! dispatch queue is not a queue at all!
1648 static void as_work_handler(void *data
)
1650 struct request_queue
*q
= data
;
1651 unsigned long flags
;
1653 spin_lock_irqsave(q
->queue_lock
, flags
);
1654 if (!as_queue_empty(q
))
1656 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1659 static void as_put_request(request_queue_t
*q
, struct request
*rq
)
1661 struct as_data
*ad
= q
->elevator
->elevator_data
;
1662 struct as_rq
*arq
= RQ_DATA(rq
);
1669 if (unlikely(arq
->state
!= AS_RQ_POSTSCHED
&&
1670 arq
->state
!= AS_RQ_PRESCHED
&&
1671 arq
->state
!= AS_RQ_MERGED
)) {
1672 printk("arq->state %d\n", arq
->state
);
1676 mempool_free(arq
, ad
->arq_pool
);
1677 rq
->elevator_private
= NULL
;
1680 static int as_set_request(request_queue_t
*q
, struct request
*rq
,
1681 struct bio
*bio
, gfp_t gfp_mask
)
1683 struct as_data
*ad
= q
->elevator
->elevator_data
;
1684 struct as_rq
*arq
= mempool_alloc(ad
->arq_pool
, gfp_mask
);
1687 memset(arq
, 0, sizeof(*arq
));
1688 RB_CLEAR(&arq
->rb_node
);
1690 arq
->state
= AS_RQ_PRESCHED
;
1691 arq
->io_context
= NULL
;
1692 INIT_LIST_HEAD(&arq
->hash
);
1694 INIT_LIST_HEAD(&arq
->fifo
);
1695 rq
->elevator_private
= arq
;
1702 static int as_may_queue(request_queue_t
*q
, int rw
, struct bio
*bio
)
1704 int ret
= ELV_MQUEUE_MAY
;
1705 struct as_data
*ad
= q
->elevator
->elevator_data
;
1706 struct io_context
*ioc
;
1707 if (ad
->antic_status
== ANTIC_WAIT_REQ
||
1708 ad
->antic_status
== ANTIC_WAIT_NEXT
) {
1709 ioc
= as_get_io_context();
1710 if (ad
->io_context
== ioc
)
1711 ret
= ELV_MQUEUE_MUST
;
1712 put_io_context(ioc
);
1718 static void as_exit_queue(elevator_t
*e
)
1720 struct as_data
*ad
= e
->elevator_data
;
1722 del_timer_sync(&ad
->antic_timer
);
1725 BUG_ON(!list_empty(&ad
->fifo_list
[REQ_SYNC
]));
1726 BUG_ON(!list_empty(&ad
->fifo_list
[REQ_ASYNC
]));
1728 mempool_destroy(ad
->arq_pool
);
1729 put_io_context(ad
->io_context
);
1735 * initialize elevator private data (as_data), and alloc a arq for
1736 * each request on the free lists
1738 static int as_init_queue(request_queue_t
*q
, elevator_t
*e
)
1746 ad
= kmalloc_node(sizeof(*ad
), GFP_KERNEL
, q
->node
);
1749 memset(ad
, 0, sizeof(*ad
));
1751 ad
->q
= q
; /* Identify what queue the data belongs to */
1753 ad
->hash
= kmalloc_node(sizeof(struct list_head
)*AS_HASH_ENTRIES
,
1754 GFP_KERNEL
, q
->node
);
1760 ad
->arq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
1761 mempool_free_slab
, arq_pool
, q
->node
);
1762 if (!ad
->arq_pool
) {
1768 /* anticipatory scheduling helpers */
1769 ad
->antic_timer
.function
= as_antic_timeout
;
1770 ad
->antic_timer
.data
= (unsigned long)q
;
1771 init_timer(&ad
->antic_timer
);
1772 INIT_WORK(&ad
->antic_work
, as_work_handler
, q
);
1774 for (i
= 0; i
< AS_HASH_ENTRIES
; i
++)
1775 INIT_LIST_HEAD(&ad
->hash
[i
]);
1777 INIT_LIST_HEAD(&ad
->fifo_list
[REQ_SYNC
]);
1778 INIT_LIST_HEAD(&ad
->fifo_list
[REQ_ASYNC
]);
1779 ad
->sort_list
[REQ_SYNC
] = RB_ROOT
;
1780 ad
->sort_list
[REQ_ASYNC
] = RB_ROOT
;
1781 ad
->fifo_expire
[REQ_SYNC
] = default_read_expire
;
1782 ad
->fifo_expire
[REQ_ASYNC
] = default_write_expire
;
1783 ad
->antic_expire
= default_antic_expire
;
1784 ad
->batch_expire
[REQ_SYNC
] = default_read_batch_expire
;
1785 ad
->batch_expire
[REQ_ASYNC
] = default_write_batch_expire
;
1786 e
->elevator_data
= ad
;
1788 ad
->current_batch_expires
= jiffies
+ ad
->batch_expire
[REQ_SYNC
];
1789 ad
->write_batch_count
= ad
->batch_expire
[REQ_ASYNC
] / 10;
1790 if (ad
->write_batch_count
< 2)
1791 ad
->write_batch_count
= 2;
1799 struct as_fs_entry
{
1800 struct attribute attr
;
1801 ssize_t (*show
)(struct as_data
*, char *);
1802 ssize_t (*store
)(struct as_data
*, const char *, size_t);
1806 as_var_show(unsigned int var
, char *page
)
1808 return sprintf(page
, "%d\n", var
);
1812 as_var_store(unsigned long *var
, const char *page
, size_t count
)
1814 char *p
= (char *) page
;
1816 *var
= simple_strtoul(p
, &p
, 10);
1820 static ssize_t
as_est_show(struct as_data
*ad
, char *page
)
1824 pos
+= sprintf(page
+pos
, "%lu %% exit probability\n",
1825 100*ad
->exit_prob
/256);
1826 pos
+= sprintf(page
+pos
, "%lu %% probability of exiting without a "
1827 "cooperating process submitting IO\n",
1828 100*ad
->exit_no_coop
/256);
1829 pos
+= sprintf(page
+pos
, "%lu ms new thinktime\n", ad
->new_ttime_mean
);
1830 pos
+= sprintf(page
+pos
, "%llu sectors new seek distance\n",
1831 (unsigned long long)ad
->new_seek_mean
);
1836 #define SHOW_FUNCTION(__FUNC, __VAR) \
1837 static ssize_t __FUNC(struct as_data *ad, char *page) \
1839 return as_var_show(jiffies_to_msecs((__VAR)), (page)); \
1841 SHOW_FUNCTION(as_readexpire_show
, ad
->fifo_expire
[REQ_SYNC
]);
1842 SHOW_FUNCTION(as_writeexpire_show
, ad
->fifo_expire
[REQ_ASYNC
]);
1843 SHOW_FUNCTION(as_anticexpire_show
, ad
->antic_expire
);
1844 SHOW_FUNCTION(as_read_batchexpire_show
, ad
->batch_expire
[REQ_SYNC
]);
1845 SHOW_FUNCTION(as_write_batchexpire_show
, ad
->batch_expire
[REQ_ASYNC
]);
1846 #undef SHOW_FUNCTION
1848 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
1849 static ssize_t __FUNC(struct as_data *ad, const char *page, size_t count) \
1851 int ret = as_var_store(__PTR, (page), count); \
1852 if (*(__PTR) < (MIN)) \
1854 else if (*(__PTR) > (MAX)) \
1856 *(__PTR) = msecs_to_jiffies(*(__PTR)); \
1859 STORE_FUNCTION(as_readexpire_store
, &ad
->fifo_expire
[REQ_SYNC
], 0, INT_MAX
);
1860 STORE_FUNCTION(as_writeexpire_store
, &ad
->fifo_expire
[REQ_ASYNC
], 0, INT_MAX
);
1861 STORE_FUNCTION(as_anticexpire_store
, &ad
->antic_expire
, 0, INT_MAX
);
1862 STORE_FUNCTION(as_read_batchexpire_store
,
1863 &ad
->batch_expire
[REQ_SYNC
], 0, INT_MAX
);
1864 STORE_FUNCTION(as_write_batchexpire_store
,
1865 &ad
->batch_expire
[REQ_ASYNC
], 0, INT_MAX
);
1866 #undef STORE_FUNCTION
1868 static struct as_fs_entry as_est_entry
= {
1869 .attr
= {.name
= "est_time", .mode
= S_IRUGO
},
1870 .show
= as_est_show
,
1872 static struct as_fs_entry as_readexpire_entry
= {
1873 .attr
= {.name
= "read_expire", .mode
= S_IRUGO
| S_IWUSR
},
1874 .show
= as_readexpire_show
,
1875 .store
= as_readexpire_store
,
1877 static struct as_fs_entry as_writeexpire_entry
= {
1878 .attr
= {.name
= "write_expire", .mode
= S_IRUGO
| S_IWUSR
},
1879 .show
= as_writeexpire_show
,
1880 .store
= as_writeexpire_store
,
1882 static struct as_fs_entry as_anticexpire_entry
= {
1883 .attr
= {.name
= "antic_expire", .mode
= S_IRUGO
| S_IWUSR
},
1884 .show
= as_anticexpire_show
,
1885 .store
= as_anticexpire_store
,
1887 static struct as_fs_entry as_read_batchexpire_entry
= {
1888 .attr
= {.name
= "read_batch_expire", .mode
= S_IRUGO
| S_IWUSR
},
1889 .show
= as_read_batchexpire_show
,
1890 .store
= as_read_batchexpire_store
,
1892 static struct as_fs_entry as_write_batchexpire_entry
= {
1893 .attr
= {.name
= "write_batch_expire", .mode
= S_IRUGO
| S_IWUSR
},
1894 .show
= as_write_batchexpire_show
,
1895 .store
= as_write_batchexpire_store
,
1898 static struct attribute
*default_attrs
[] = {
1900 &as_readexpire_entry
.attr
,
1901 &as_writeexpire_entry
.attr
,
1902 &as_anticexpire_entry
.attr
,
1903 &as_read_batchexpire_entry
.attr
,
1904 &as_write_batchexpire_entry
.attr
,
1908 #define to_as(atr) container_of((atr), struct as_fs_entry, attr)
1911 as_attr_show(struct kobject
*kobj
, struct attribute
*attr
, char *page
)
1913 elevator_t
*e
= container_of(kobj
, elevator_t
, kobj
);
1914 struct as_fs_entry
*entry
= to_as(attr
);
1919 return entry
->show(e
->elevator_data
, page
);
1923 as_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
1924 const char *page
, size_t length
)
1926 elevator_t
*e
= container_of(kobj
, elevator_t
, kobj
);
1927 struct as_fs_entry
*entry
= to_as(attr
);
1932 return entry
->store(e
->elevator_data
, page
, length
);
1935 static struct sysfs_ops as_sysfs_ops
= {
1936 .show
= as_attr_show
,
1937 .store
= as_attr_store
,
1940 static struct kobj_type as_ktype
= {
1941 .sysfs_ops
= &as_sysfs_ops
,
1942 .default_attrs
= default_attrs
,
1945 static struct elevator_type iosched_as
= {
1947 .elevator_merge_fn
= as_merge
,
1948 .elevator_merged_fn
= as_merged_request
,
1949 .elevator_merge_req_fn
= as_merged_requests
,
1950 .elevator_dispatch_fn
= as_dispatch_request
,
1951 .elevator_add_req_fn
= as_add_request
,
1952 .elevator_activate_req_fn
= as_activate_request
,
1953 .elevator_deactivate_req_fn
= as_deactivate_request
,
1954 .elevator_queue_empty_fn
= as_queue_empty
,
1955 .elevator_completed_req_fn
= as_completed_request
,
1956 .elevator_former_req_fn
= as_former_request
,
1957 .elevator_latter_req_fn
= as_latter_request
,
1958 .elevator_set_req_fn
= as_set_request
,
1959 .elevator_put_req_fn
= as_put_request
,
1960 .elevator_may_queue_fn
= as_may_queue
,
1961 .elevator_init_fn
= as_init_queue
,
1962 .elevator_exit_fn
= as_exit_queue
,
1965 .elevator_ktype
= &as_ktype
,
1966 .elevator_name
= "anticipatory",
1967 .elevator_owner
= THIS_MODULE
,
1970 static int __init
as_init(void)
1974 arq_pool
= kmem_cache_create("as_arq", sizeof(struct as_rq
),
1979 ret
= elv_register(&iosched_as
);
1982 * don't allow AS to get unregistered, since we would have
1983 * to browse all tasks in the system and release their
1984 * as_io_context first
1986 __module_get(THIS_MODULE
);
1990 kmem_cache_destroy(arq_pool
);
1994 static void __exit
as_exit(void)
1996 elv_unregister(&iosched_as
);
1997 kmem_cache_destroy(arq_pool
);
2000 module_init(as_init
);
2001 module_exit(as_exit
);
2003 MODULE_AUTHOR("Nick Piggin");
2004 MODULE_LICENSE("GPL");
2005 MODULE_DESCRIPTION("anticipatory IO scheduler");